├── __init__.py
├── lib
├── __init__.py
├── infer_pack
│ ├── __init__.py
│ └── modules
│ │ └── F0Predictor
│ │ ├── __init__.py
│ │ ├── F0Predictor.py
│ │ ├── HarvestF0Predictor.py
│ │ ├── DioF0Predictor.py
│ │ └── PMF0Predictor.py
├── uvr5_pack
│ ├── __init__.py
│ ├── lib_v5
│ │ ├── __init__.py
│ │ ├── modelparams
│ │ │ ├── __init__.py
│ │ │ ├── 1band_sr44100_hl256.json
│ │ │ ├── 1band_sr16000_hl512.json
│ │ │ ├── 1band_sr32000_hl512.json
│ │ │ ├── 1band_sr33075_hl384.json
│ │ │ ├── 1band_sr44100_hl1024.json
│ │ │ ├── 1band_sr44100_hl512.json
│ │ │ ├── 1band_sr44100_hl512_cut.json
│ │ │ ├── 2band_48000.json
│ │ │ ├── 2band_32000.json
│ │ │ ├── 2band_44100_lofi.json
│ │ │ ├── 3band_44100.json
│ │ │ ├── ensemble.json
│ │ │ ├── 3band_44100_mid.json
│ │ │ ├── 3band_44100_msb2.json
│ │ │ ├── 4band_v2.json
│ │ │ ├── 4band_44100.json
│ │ │ ├── 4band_44100_sw.json
│ │ │ ├── 4band_44100_msb.json
│ │ │ ├── 4band_44100_msb2.json
│ │ │ ├── 4band_44100_reverse.json
│ │ │ ├── 4band_v2_sn.json
│ │ │ ├── 4band_44100_mid.json
│ │ │ └── 4band_v3.json
│ │ ├── model_param_init.py
│ │ ├── layers.py
│ │ ├── layers_123812KB .py
│ │ ├── layers_123821KB.py
│ │ ├── nets.py
│ │ ├── nets_123812KB.py
│ │ ├── nets_123821KB.py
│ │ ├── nets_33966KB.py
│ │ ├── nets_61968KB.py
│ │ ├── nets_537227KB.py
│ │ ├── nets_537238KB.py
│ │ ├── layers_new.py
│ │ ├── layers_33966KB.py
│ │ ├── layers_537227KB.py
│ │ ├── layers_537238KB.py
│ │ └── nets_new.py
│ └── utils.py
├── train
│ ├── cmd.txt
│ ├── losses.py
│ └── mel_processing.py
├── audio.py
└── i18n
│ └── locale_diff.py
├── tools
├── __init__.py
├── infer
│ ├── __init__.py
│ ├── trans_weights.py
│ ├── train-index.py
│ └── train-index-v2.py
├── onnx_inference_demo.py
├── export_onnx.py
└── calc_rvc_model_similarity.py
├── venv.sh
├── pretrained
└── .gitignore
├── weights
└── .gitignore
├── pretrained_v2
└── .gitignore
├── uvr5_weights
└── .gitignore
├── go-realtime-gui.bat
├── MANIFEST.in
├── docs
├── 小白简易教程.doc
├── Changelog_CN.md
├── training_tips_ja.md
├── training_tips_ko.md
├── faq.md
├── faiss_tips_ja.md
├── Changelog_KO.md
├── README.ko.han.md
├── README.ja.md
├── README.ko.md
├── training_tips_en.md
└── Changelog_EN.md
├── go-web.bat
├── .gitignore
├── logs
└── mute
│ ├── 1_16k_wavs
│ └── mute.wav
│ ├── 2a_f0
│ └── mute.wav.npy
│ ├── 0_gt_wavs
│ ├── mute32k.wav
│ ├── mute40k.wav
│ └── mute48k.wav
│ ├── 2b-f0nsf
│ └── mute.wav.npy
│ ├── 3_feature256
│ └── mute.npy
│ └── 3_feature768
│ └── mute.npy
├── Dockerfile
├── setup.py
├── requirements-win-for-realtime_vc_gui.txt
├── requirements.txt
├── i18n.py
├── extract_locale.py
├── .github
└── workflows
│ ├── genlocale.yml
│ ├── pull_format.yml
│ ├── unitest.yml
│ ├── push_format.yml
│ └── docker.yml
├── LICENSE
├── configs
├── 40k.json
├── 32k.json
├── 32k_v2.json
├── 48k.json
└── 48k_v2.json
├── MIT协议暨相关引用库协议
├── run.sh
├── infer_uvr.py
├── extract_feature_print.py
├── extract_f0_rmvpe.py
├── trainset_preprocess_pipeline_print.py
├── config.py
└── README.md
/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/lib/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tools/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tools/infer/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/lib/infer_pack/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/venv.sh:
--------------------------------------------------------------------------------
1 | python3 -m venv .venv
2 |
--------------------------------------------------------------------------------
/pretrained/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/weights/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/lib/infer_pack/modules/F0Predictor/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/pretrained_v2/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/uvr5_weights/.gitignore:
--------------------------------------------------------------------------------
1 | *
2 | !.gitignore
3 |
--------------------------------------------------------------------------------
/go-realtime-gui.bat:
--------------------------------------------------------------------------------
1 | runtime\python.exe gui_v1.py
2 | pause
3 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | recursive-include lib/uvr5_pack/lib_v5/modelparams *.json
2 |
--------------------------------------------------------------------------------
/docs/小白简易教程.doc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/docs/小白简易教程.doc
--------------------------------------------------------------------------------
/go-web.bat:
--------------------------------------------------------------------------------
1 | runtime\python.exe infer-web.py --pycmd runtime\python.exe --port 7897
2 | pause
3 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 | __pycache__
3 | /TEMP
4 | *.pyd
5 | hubert_base.pt
6 | /logs
7 | .venv
8 |
--------------------------------------------------------------------------------
/logs/mute/1_16k_wavs/mute.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/1_16k_wavs/mute.wav
--------------------------------------------------------------------------------
/logs/mute/2a_f0/mute.wav.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/2a_f0/mute.wav.npy
--------------------------------------------------------------------------------
/lib/train/cmd.txt:
--------------------------------------------------------------------------------
1 | python train_nsf_sim_cache_sid.py -c configs/mi_mix40k_nsf_co256_cs1sid_ms2048.json -m ft-mi
--------------------------------------------------------------------------------
/logs/mute/0_gt_wavs/mute32k.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/0_gt_wavs/mute32k.wav
--------------------------------------------------------------------------------
/logs/mute/0_gt_wavs/mute40k.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/0_gt_wavs/mute40k.wav
--------------------------------------------------------------------------------
/logs/mute/0_gt_wavs/mute48k.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/0_gt_wavs/mute48k.wav
--------------------------------------------------------------------------------
/logs/mute/2b-f0nsf/mute.wav.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/2b-f0nsf/mute.wav.npy
--------------------------------------------------------------------------------
/logs/mute/3_feature256/mute.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/3_feature256/mute.npy
--------------------------------------------------------------------------------
/logs/mute/3_feature768/mute.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/JarodMica/rvc/HEAD/logs/mute/3_feature768/mute.npy
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | # syntax=docker/dockerfile:1
2 |
3 | FROM python:3.10-bullseye
4 |
5 | EXPOSE 7865
6 |
7 | WORKDIR /app
8 |
9 | COPY . .
10 |
11 | RUN pip3 install -r requirements.txt
12 |
13 | CMD ["python3", "infer-web.py"]
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 256,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 256,
9 | "n_fft": 512,
10 | "crop_start": 0,
11 | "crop_stop": 256,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 256,
18 | "pre_filter_stop": 256
19 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 16000,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 16000,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 1024
19 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 32000,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "kaiser_fast"
14 | }
15 | },
16 | "sr": 32000,
17 | "pre_filter_start": 1000,
18 | "pre_filter_stop": 1021
19 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 33075,
8 | "hl": 384,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 33075,
17 | "pre_filter_start": 1000,
18 | "pre_filter_stop": 1021
19 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 1024,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 1024
19 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 1024,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 1024
19 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 1024,
3 | "unstable_bins": 0,
4 | "reduction_bins": 0,
5 | "band": {
6 | "1": {
7 | "sr": 44100,
8 | "hl": 512,
9 | "n_fft": 2048,
10 | "crop_start": 0,
11 | "crop_stop": 700,
12 | "hpf_start": -1,
13 | "res_type": "sinc_best"
14 | }
15 | },
16 | "sr": 44100,
17 | "pre_filter_start": 1023,
18 | "pre_filter_stop": 700
19 | }
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup, find_packages
2 |
3 | # Read the requirements.txt file
4 | with open('requirements.txt', 'r') as f:
5 | requirements = f.read().splitlines()
6 |
7 | setup(
8 | name='rvc',
9 | version='0.1',
10 | description='rvc package',
11 | author='RVC people',
12 | packages=find_packages(),
13 | install_requires=requirements,
14 | package_data={
15 | 'lib.uvr5_pack.lib_v5.modelparams': ['*.json']
16 | }
17 |
18 | )
19 |
--------------------------------------------------------------------------------
/lib/infer_pack/modules/F0Predictor/F0Predictor.py:
--------------------------------------------------------------------------------
1 | class F0Predictor(object):
2 | def compute_f0(self, wav, p_len):
3 | """
4 | input: wav:[signal_length]
5 | p_len:int
6 | output: f0:[signal_length//hop_length]
7 | """
8 | pass
9 |
10 | def compute_f0_uv(self, wav, p_len):
11 | """
12 | input: wav:[signal_length]
13 | p_len:int
14 | output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
15 | """
16 | pass
17 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/2band_48000.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "reduction_bins": 705,
5 | "band": {
6 | "1": {
7 | "sr": 6000,
8 | "hl": 66,
9 | "n_fft": 512,
10 | "crop_start": 0,
11 | "crop_stop": 240,
12 | "lpf_start": 60,
13 | "lpf_stop": 240,
14 | "res_type": "sinc_fastest"
15 | },
16 | "2": {
17 | "sr": 48000,
18 | "hl": 528,
19 | "n_fft": 1536,
20 | "crop_start": 22,
21 | "crop_stop": 505,
22 | "hpf_start": 82,
23 | "hpf_stop": 22,
24 | "res_type": "sinc_medium"
25 | }
26 | },
27 | "sr": 48000,
28 | "pre_filter_start": 710,
29 | "pre_filter_stop": 731
30 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/2band_32000.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "reduction_bins": 705,
5 | "band": {
6 | "1": {
7 | "sr": 6000,
8 | "hl": 66,
9 | "n_fft": 512,
10 | "crop_start": 0,
11 | "crop_stop": 240,
12 | "lpf_start": 60,
13 | "lpf_stop": 118,
14 | "res_type": "sinc_fastest"
15 | },
16 | "2": {
17 | "sr": 32000,
18 | "hl": 352,
19 | "n_fft": 1024,
20 | "crop_start": 22,
21 | "crop_stop": 505,
22 | "hpf_start": 44,
23 | "hpf_stop": 23,
24 | "res_type": "sinc_medium"
25 | }
26 | },
27 | "sr": 32000,
28 | "pre_filter_start": 710,
29 | "pre_filter_stop": 731
30 | }
31 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 512,
3 | "unstable_bins": 7,
4 | "reduction_bins": 510,
5 | "band": {
6 | "1": {
7 | "sr": 11025,
8 | "hl": 160,
9 | "n_fft": 768,
10 | "crop_start": 0,
11 | "crop_stop": 192,
12 | "lpf_start": 41,
13 | "lpf_stop": 139,
14 | "res_type": "sinc_fastest"
15 | },
16 | "2": {
17 | "sr": 44100,
18 | "hl": 640,
19 | "n_fft": 1024,
20 | "crop_start": 10,
21 | "crop_stop": 320,
22 | "hpf_start": 47,
23 | "hpf_stop": 15,
24 | "res_type": "sinc_medium"
25 | }
26 | },
27 | "sr": 44100,
28 | "pre_filter_start": 510,
29 | "pre_filter_stop": 512
30 | }
31 |
--------------------------------------------------------------------------------
/requirements-win-for-realtime_vc_gui.txt:
--------------------------------------------------------------------------------
1 | #1.Install torch from pytorch.org:
2 | #torch 2.0 with cuda 11.8
3 | #pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
4 | #torch 1.11.0 with cuda 11.3
5 | #pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
6 | einops
7 | fairseq
8 | flask
9 | flask_cors
10 | gin
11 | gin_config
12 | librosa
13 | local_attention
14 | matplotlib
15 | praat-parselmouth
16 | pyworld
17 | PyYAML
18 | resampy
19 | scikit_learn
20 | scipy
21 | SoundFile
22 | tensorboard
23 | tqdm
24 | wave
25 | PySimpleGUI
26 | sounddevice
27 | gradio
28 | noisereduce
29 |
--------------------------------------------------------------------------------
/tools/onnx_inference_demo.py:
--------------------------------------------------------------------------------
1 | import soundfile
2 | from ..lib.infer_pack.onnx_inference import OnnxRVC
3 |
4 | hop_size = 512
5 | sampling_rate = 40000 # 采样率
6 | f0_up_key = 0 # 升降调
7 | sid = 0 # 角色ID
8 | f0_method = "dio" # F0提取算法
9 | model_path = "ShirohaRVC.onnx" # 模型的完整路径
10 | vec_name = "vec-256-layer-9" # 内部自动补齐为 f"pretrained/{vec_name}.onnx" 需要onnx的vec模型
11 | wav_path = "123.wav" # 输入路径或ByteIO实例
12 | out_path = "out.wav" # 输出路径或ByteIO实例
13 |
14 | model = OnnxRVC(
15 | model_path, vec_path=vec_name, sr=sampling_rate, hop_size=hop_size, device="cuda"
16 | )
17 |
18 | audio = model.inference(wav_path, sid, f0_method=f0_method, f0_up_key=f0_up_key)
19 |
20 | soundfile.write(out_path, audio, sampling_rate)
21 |
--------------------------------------------------------------------------------
/tools/infer/trans_weights.py:
--------------------------------------------------------------------------------
1 | import torch, pdb
2 |
3 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-suc\G_1000.pth")["model"]#sim_nsf#
4 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder-flow-enc_q\G_1000.pth")["model"]#sim_nsf#
5 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder\G_1000.pth")["model"]#sim_nsf#
6 | # a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-test\G_1000.pth")["model"]#sim_nsf#
7 | a = torch.load(
8 | r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-no_opt-no_dropout\G_1000.pth"
9 | )[
10 | "model"
11 | ] # sim_nsf#
12 | for key in a.keys():
13 | a[key] = a[key].half()
14 | # torch.save(a,"ft-mi-freeze-vocoder_true_1k.pt")#
15 | # torch.save(a,"ft-mi-sim1k.pt")#
16 | torch.save(a, "ft-mi-no_opt-no_dropout.pt") #
17 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | joblib>=1.1.0
2 | numba==0.56.4
3 | numpy==1.23.5
4 | scipy==1.9.3
5 | librosa==0.9.1
6 | llvmlite==0.39.0
7 | fairseq==0.12.2
8 | faiss-cpu==1.7.3
9 | gradio==3.14.0
10 | Cython
11 | pydub>=0.25.1
12 | soundfile>=0.12.1
13 | ffmpeg-python>=0.2.0
14 | tensorboardX
15 | Jinja2>=3.1.2
16 | json5
17 | Markdown
18 | matplotlib>=3.7.0
19 | matplotlib-inline>=0.1.3
20 | praat-parselmouth>=0.4.2
21 | Pillow>=9.1.1
22 | resampy>=0.4.2
23 | scikit-learn
24 | tensorboard
25 | tqdm>=4.63.1
26 | tornado>=6.1
27 | Werkzeug>=2.2.3
28 | uc-micro-py>=1.0.1
29 | sympy>=1.11.1
30 | tabulate>=0.8.10
31 | PyYAML>=6.0
32 | pyasn1>=0.4.8
33 | pyasn1-modules>=0.2.8
34 | fsspec>=2022.11.0
35 | absl-py>=1.2.0
36 | audioread
37 | uvicorn>=0.21.1
38 | colorama>=0.4.5
39 | pyworld==0.3.2
40 | httpx==0.23.0
41 | #onnxruntime-gpu
42 | torchcrepe==0.0.20
43 | fastapi==0.88
44 | ffmpy==0.3.1
45 |
--------------------------------------------------------------------------------
/lib/audio.py:
--------------------------------------------------------------------------------
1 | import ffmpeg
2 | import numpy as np
3 |
4 |
5 | def load_audio(file, sr):
6 | try:
7 | # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
8 | # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
9 | # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
10 | file = (
11 | file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
12 | ) # 防止小白拷路径头尾带了空格和"和回车
13 | out, _ = (
14 | ffmpeg.input(file, threads=0)
15 | .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
16 | .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
17 | )
18 | except Exception as e:
19 | raise RuntimeError(f"Failed to load audio: {e}")
20 |
21 | return np.frombuffer(out, np.float32).flatten()
22 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/3band_44100.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 5,
4 | "reduction_bins": 733,
5 | "band": {
6 | "1": {
7 | "sr": 11025,
8 | "hl": 128,
9 | "n_fft": 768,
10 | "crop_start": 0,
11 | "crop_stop": 278,
12 | "lpf_start": 28,
13 | "lpf_stop": 140,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 22050,
18 | "hl": 256,
19 | "n_fft": 768,
20 | "crop_start": 14,
21 | "crop_stop": 322,
22 | "hpf_start": 70,
23 | "hpf_stop": 14,
24 | "lpf_start": 283,
25 | "lpf_stop": 314,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 44100,
30 | "hl": 512,
31 | "n_fft": 768,
32 | "crop_start": 131,
33 | "crop_stop": 313,
34 | "hpf_start": 154,
35 | "hpf_stop": 141,
36 | "res_type": "sinc_medium"
37 | }
38 | },
39 | "sr": 44100,
40 | "pre_filter_start": 757,
41 | "pre_filter_stop": 768
42 | }
43 |
--------------------------------------------------------------------------------
/i18n.py:
--------------------------------------------------------------------------------
1 | import locale
2 | import json
3 | import os
4 |
5 |
6 | def load_language_list(language):
7 | with open(f"./lib/i18n/{language}.json", "r", encoding="utf-8") as f:
8 | language_list = json.load(f)
9 | return language_list
10 |
11 |
12 | class I18nAuto:
13 | def __init__(self, language=None):
14 | if language in ["Auto", None]:
15 | language = locale.getdefaultlocale()[
16 | 0
17 | ] # getlocale can't identify the system's language ((None, None))
18 | if not os.path.exists(f"./lib/i18n/{language}.json"):
19 | language = "en_US"
20 | self.language = language
21 | # print("Use Language:", language)
22 | self.language_map = load_language_list(language)
23 |
24 | def __call__(self, key):
25 | return self.language_map.get(key, key)
26 |
27 | def print(self):
28 | print("Use Language:", self.language)
29 |
--------------------------------------------------------------------------------
/extract_locale.py:
--------------------------------------------------------------------------------
1 | import json
2 | import re
3 |
4 | # Define regular expression patterns
5 | pattern = r"""i18n\([\s\n\t]*(["'][^"']+["'])[\s\n\t]*\)"""
6 |
7 | # Initialize the dictionary to store key-value pairs
8 | data = {}
9 |
10 |
11 | def process(fn: str):
12 | global data
13 | with open(fn, "r", encoding="utf-8") as f:
14 | contents = f.read()
15 | matches = re.findall(pattern, contents)
16 | for key in matches:
17 | key = eval(key)
18 | print("extract:", key)
19 | data[key] = key
20 |
21 |
22 | print("processing infer-web.py")
23 | process("infer-web.py")
24 |
25 | print("processing gui_v0.py")
26 | process("gui_v0.py")
27 |
28 | print("processing gui_v1.py")
29 | process("gui_v1.py")
30 |
31 | # Save as a JSON file
32 | with open("./lib/i18n/zh_CN.json", "w", encoding="utf-8") as f:
33 | json.dump(data, f, ensure_ascii=False, indent=4)
34 | f.write("\n")
35 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/ensemble.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b2": true,
3 | "bins": 1280,
4 | "unstable_bins": 7,
5 | "reduction_bins": 565,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 108,
10 | "n_fft": 2048,
11 | "crop_start": 0,
12 | "crop_stop": 374,
13 | "lpf_start": 92,
14 | "lpf_stop": 186,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 22050,
19 | "hl": 216,
20 | "n_fft": 1536,
21 | "crop_start": 0,
22 | "crop_stop": 424,
23 | "hpf_start": 68,
24 | "hpf_stop": 34,
25 | "lpf_start": 348,
26 | "lpf_stop": 418,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 44100,
31 | "hl": 432,
32 | "n_fft": 1280,
33 | "crop_start": 132,
34 | "crop_stop": 614,
35 | "hpf_start": 172,
36 | "hpf_stop": 144,
37 | "res_type": "polyphase"
38 | }
39 | },
40 | "sr": 44100,
41 | "pre_filter_start": 1280,
42 | "pre_filter_stop": 1280
43 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/3band_44100_mid.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side": true,
3 | "bins": 768,
4 | "unstable_bins": 5,
5 | "reduction_bins": 733,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 768,
11 | "crop_start": 0,
12 | "crop_stop": 278,
13 | "lpf_start": 28,
14 | "lpf_stop": 140,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 22050,
19 | "hl": 256,
20 | "n_fft": 768,
21 | "crop_start": 14,
22 | "crop_stop": 322,
23 | "hpf_start": 70,
24 | "hpf_stop": 14,
25 | "lpf_start": 283,
26 | "lpf_stop": 314,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 44100,
31 | "hl": 512,
32 | "n_fft": 768,
33 | "crop_start": 131,
34 | "crop_stop": 313,
35 | "hpf_start": 154,
36 | "hpf_stop": 141,
37 | "res_type": "sinc_medium"
38 | }
39 | },
40 | "sr": 44100,
41 | "pre_filter_start": 757,
42 | "pre_filter_stop": 768
43 | }
44 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b2": true,
3 | "bins": 640,
4 | "unstable_bins": 7,
5 | "reduction_bins": 565,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 108,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 187,
13 | "lpf_start": 92,
14 | "lpf_stop": 186,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 22050,
19 | "hl": 216,
20 | "n_fft": 768,
21 | "crop_start": 0,
22 | "crop_stop": 212,
23 | "hpf_start": 68,
24 | "hpf_stop": 34,
25 | "lpf_start": 174,
26 | "lpf_stop": 209,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 44100,
31 | "hl": 432,
32 | "n_fft": 640,
33 | "crop_start": 66,
34 | "crop_stop": 307,
35 | "hpf_start": 86,
36 | "hpf_stop": 72,
37 | "res_type": "kaiser_fast"
38 | }
39 | },
40 | "sr": 44100,
41 | "pre_filter_start": 639,
42 | "pre_filter_stop": 640
43 | }
44 |
--------------------------------------------------------------------------------
/.github/workflows/genlocale.yml:
--------------------------------------------------------------------------------
1 | name: genlocale
2 | on:
3 | push:
4 | branches:
5 | - main
6 | jobs:
7 | genlocale:
8 | name: genlocale
9 | runs-on: ubuntu-latest
10 | steps:
11 | - name: Check out
12 | uses: actions/checkout@master
13 |
14 | - name: Run locale generation
15 | run: |
16 | python3 extract_locale.py
17 | cd lib/i18n && python3 locale_diff.py
18 |
19 | - name: Commit back
20 | if: ${{ !github.head_ref }}
21 | continue-on-error: true
22 | run: |
23 | git config --local user.name 'github-actions[bot]'
24 | git config --local user.email 'github-actions[bot]@users.noreply.github.com'
25 | git add --all
26 | git commit -m "🎨 同步 locale"
27 |
28 | - name: Create Pull Request
29 | if: ${{ !github.head_ref }}
30 | continue-on-error: true
31 | uses: peter-evans/create-pull-request@v4
32 |
33 |
--------------------------------------------------------------------------------
/.github/workflows/pull_format.yml:
--------------------------------------------------------------------------------
1 | name: pull format
2 |
3 | on: [pull_request]
4 |
5 | permissions:
6 | contents: write
7 |
8 | jobs:
9 | pull_format:
10 | runs-on: ${{ matrix.os }}
11 |
12 | strategy:
13 | matrix:
14 | python-version: ["3.10"]
15 | os: [ubuntu-latest]
16 | fail-fast: false
17 |
18 | continue-on-error: true
19 |
20 | steps:
21 | - name: checkout
22 | continue-on-error: true
23 | uses: actions/checkout@v3
24 | with:
25 | ref: ${{ github.head_ref }}
26 | fetch-depth: 0
27 |
28 | - name: Set up Python ${{ matrix.python-version }}
29 | uses: actions/setup-python@v4
30 | with:
31 | python-version: ${{ matrix.python-version }}
32 |
33 | - name: Install Black
34 | run: pip install "black[jupyter]"
35 |
36 | - name: Run Black
37 | # run: black $(git ls-files '*.py')
38 | run: black .
39 |
40 | - name: Commit Back
41 | uses: stefanzweifel/git-auto-commit-action@v4
42 | with:
43 | commit_message: Apply Code Formatter Change
44 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2023 liujing04
4 | Copyright (c) 2023 源文雨
5 |
6 | Permission is hereby granted, free of charge, to any person obtaining a copy
7 | of this software and associated documentation files (the "Software"), to deal
8 | in the Software without restriction, including without limitation the rights
9 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 | copies of the Software, and to permit persons to whom the Software is
11 | furnished to do so, subject to the following conditions:
12 |
13 | The above copyright notice and this permission notice shall be included in all
14 | copies or substantial portions of the Software.
15 |
16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 | SOFTWARE.
23 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_v2.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 672,
3 | "unstable_bins": 8,
4 | "reduction_bins": 637,
5 | "band": {
6 | "1": {
7 | "sr": 7350,
8 | "hl": 80,
9 | "n_fft": 640,
10 | "crop_start": 0,
11 | "crop_stop": 85,
12 | "lpf_start": 25,
13 | "lpf_stop": 53,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 7350,
18 | "hl": 80,
19 | "n_fft": 320,
20 | "crop_start": 4,
21 | "crop_stop": 87,
22 | "hpf_start": 25,
23 | "hpf_stop": 12,
24 | "lpf_start": 31,
25 | "lpf_stop": 62,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 14700,
30 | "hl": 160,
31 | "n_fft": 512,
32 | "crop_start": 17,
33 | "crop_stop": 216,
34 | "hpf_start": 48,
35 | "hpf_stop": 24,
36 | "lpf_start": 139,
37 | "lpf_stop": 210,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 480,
43 | "n_fft": 960,
44 | "crop_start": 78,
45 | "crop_stop": 383,
46 | "hpf_start": 130,
47 | "hpf_stop": 86,
48 | "res_type": "kaiser_fast"
49 | }
50 | },
51 | "sr": 44100,
52 | "pre_filter_start": 668,
53 | "pre_filter_stop": 672
54 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_44100.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "reduction_bins": 668,
5 | "band": {
6 | "1": {
7 | "sr": 11025,
8 | "hl": 128,
9 | "n_fft": 1024,
10 | "crop_start": 0,
11 | "crop_stop": 186,
12 | "lpf_start": 37,
13 | "lpf_stop": 73,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 11025,
18 | "hl": 128,
19 | "n_fft": 512,
20 | "crop_start": 4,
21 | "crop_stop": 185,
22 | "hpf_start": 36,
23 | "hpf_stop": 18,
24 | "lpf_start": 93,
25 | "lpf_stop": 185,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 22050,
30 | "hl": 256,
31 | "n_fft": 512,
32 | "crop_start": 46,
33 | "crop_stop": 186,
34 | "hpf_start": 93,
35 | "hpf_stop": 46,
36 | "lpf_start": 164,
37 | "lpf_stop": 186,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 512,
43 | "n_fft": 768,
44 | "crop_start": 121,
45 | "crop_stop": 382,
46 | "hpf_start": 138,
47 | "hpf_stop": 123,
48 | "res_type": "sinc_medium"
49 | }
50 | },
51 | "sr": 44100,
52 | "pre_filter_start": 740,
53 | "pre_filter_stop": 768
54 | }
55 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_44100_sw.json:
--------------------------------------------------------------------------------
1 | {
2 | "stereo_w": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_44100_msb.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json:
--------------------------------------------------------------------------------
1 | {
2 | "mid_side_b": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json:
--------------------------------------------------------------------------------
1 | {
2 | "reverse": true,
3 | "bins": 768,
4 | "unstable_bins": 7,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_v2_sn.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 672,
3 | "unstable_bins": 8,
4 | "reduction_bins": 637,
5 | "band": {
6 | "1": {
7 | "sr": 7350,
8 | "hl": 80,
9 | "n_fft": 640,
10 | "crop_start": 0,
11 | "crop_stop": 85,
12 | "lpf_start": 25,
13 | "lpf_stop": 53,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 7350,
18 | "hl": 80,
19 | "n_fft": 320,
20 | "crop_start": 4,
21 | "crop_stop": 87,
22 | "hpf_start": 25,
23 | "hpf_stop": 12,
24 | "lpf_start": 31,
25 | "lpf_stop": 62,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 14700,
30 | "hl": 160,
31 | "n_fft": 512,
32 | "crop_start": 17,
33 | "crop_stop": 216,
34 | "hpf_start": 48,
35 | "hpf_stop": 24,
36 | "lpf_start": 139,
37 | "lpf_stop": 210,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 480,
43 | "n_fft": 960,
44 | "crop_start": 78,
45 | "crop_stop": 383,
46 | "hpf_start": 130,
47 | "hpf_stop": 86,
48 | "convert_channels": "stereo_n",
49 | "res_type": "kaiser_fast"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 668,
54 | "pre_filter_stop": 672
55 | }
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_44100_mid.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 768,
3 | "unstable_bins": 7,
4 | "mid_side": true,
5 | "reduction_bins": 668,
6 | "band": {
7 | "1": {
8 | "sr": 11025,
9 | "hl": 128,
10 | "n_fft": 1024,
11 | "crop_start": 0,
12 | "crop_stop": 186,
13 | "lpf_start": 37,
14 | "lpf_stop": 73,
15 | "res_type": "polyphase"
16 | },
17 | "2": {
18 | "sr": 11025,
19 | "hl": 128,
20 | "n_fft": 512,
21 | "crop_start": 4,
22 | "crop_stop": 185,
23 | "hpf_start": 36,
24 | "hpf_stop": 18,
25 | "lpf_start": 93,
26 | "lpf_stop": 185,
27 | "res_type": "polyphase"
28 | },
29 | "3": {
30 | "sr": 22050,
31 | "hl": 256,
32 | "n_fft": 512,
33 | "crop_start": 46,
34 | "crop_stop": 186,
35 | "hpf_start": 93,
36 | "hpf_stop": 46,
37 | "lpf_start": 164,
38 | "lpf_stop": 186,
39 | "res_type": "polyphase"
40 | },
41 | "4": {
42 | "sr": 44100,
43 | "hl": 512,
44 | "n_fft": 768,
45 | "crop_start": 121,
46 | "crop_stop": 382,
47 | "hpf_start": 138,
48 | "hpf_stop": 123,
49 | "res_type": "sinc_medium"
50 | }
51 | },
52 | "sr": 44100,
53 | "pre_filter_start": 740,
54 | "pre_filter_stop": 768
55 | }
56 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/modelparams/4band_v3.json:
--------------------------------------------------------------------------------
1 | {
2 | "bins": 672,
3 | "unstable_bins": 8,
4 | "reduction_bins": 530,
5 | "band": {
6 | "1": {
7 | "sr": 7350,
8 | "hl": 80,
9 | "n_fft": 640,
10 | "crop_start": 0,
11 | "crop_stop": 85,
12 | "lpf_start": 25,
13 | "lpf_stop": 53,
14 | "res_type": "polyphase"
15 | },
16 | "2": {
17 | "sr": 7350,
18 | "hl": 80,
19 | "n_fft": 320,
20 | "crop_start": 4,
21 | "crop_stop": 87,
22 | "hpf_start": 25,
23 | "hpf_stop": 12,
24 | "lpf_start": 31,
25 | "lpf_stop": 62,
26 | "res_type": "polyphase"
27 | },
28 | "3": {
29 | "sr": 14700,
30 | "hl": 160,
31 | "n_fft": 512,
32 | "crop_start": 17,
33 | "crop_stop": 216,
34 | "hpf_start": 48,
35 | "hpf_stop": 24,
36 | "lpf_start": 139,
37 | "lpf_stop": 210,
38 | "res_type": "polyphase"
39 | },
40 | "4": {
41 | "sr": 44100,
42 | "hl": 480,
43 | "n_fft": 960,
44 | "crop_start": 78,
45 | "crop_stop": 383,
46 | "hpf_start": 130,
47 | "hpf_stop": 86,
48 | "res_type": "kaiser_fast"
49 | }
50 | },
51 | "sr": 44100,
52 | "pre_filter_start": 668,
53 | "pre_filter_stop": 672
54 | }
--------------------------------------------------------------------------------
/configs/40k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 12800,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 40000,
21 | "filter_length": 2048,
22 | "hop_length": 400,
23 | "win_length": 2048,
24 | "n_mel_channels": 125,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,10,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [16,16,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/32k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 12800,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 32000,
21 | "filter_length": 1024,
22 | "hop_length": 320,
23 | "win_length": 1024,
24 | "n_mel_channels": 80,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,4,2,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [16,16,4,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/32k_v2.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 12800,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 32000,
21 | "filter_length": 1024,
22 | "hop_length": 320,
23 | "win_length": 1024,
24 | "n_mel_channels": 80,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,8,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [20,16,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/48k.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 11520,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 48000,
21 | "filter_length": 2048,
22 | "hop_length": 480,
23 | "win_length": 2048,
24 | "n_mel_channels": 128,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [10,6,2,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [16,16,4,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/configs/48k_v2.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "seed": 1234,
5 | "epochs": 20000,
6 | "learning_rate": 1e-4,
7 | "betas": [0.8, 0.99],
8 | "eps": 1e-9,
9 | "batch_size": 4,
10 | "fp16_run": true,
11 | "lr_decay": 0.999875,
12 | "segment_size": 17280,
13 | "init_lr_ratio": 1,
14 | "warmup_epochs": 0,
15 | "c_mel": 45,
16 | "c_kl": 1.0
17 | },
18 | "data": {
19 | "max_wav_value": 32768.0,
20 | "sampling_rate": 48000,
21 | "filter_length": 2048,
22 | "hop_length": 480,
23 | "win_length": 2048,
24 | "n_mel_channels": 128,
25 | "mel_fmin": 0.0,
26 | "mel_fmax": null
27 | },
28 | "model": {
29 | "inter_channels": 192,
30 | "hidden_channels": 192,
31 | "filter_channels": 768,
32 | "n_heads": 2,
33 | "n_layers": 6,
34 | "kernel_size": 3,
35 | "p_dropout": 0,
36 | "resblock": "1",
37 | "resblock_kernel_sizes": [3,7,11],
38 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
39 | "upsample_rates": [12,10,2,2],
40 | "upsample_initial_channel": 512,
41 | "upsample_kernel_sizes": [24,20,4,4],
42 | "use_spectral_norm": false,
43 | "gin_channels": 256,
44 | "spk_embed_dim": 109
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/tools/infer/train-index.py:
--------------------------------------------------------------------------------
1 | """
2 | 格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
3 | """
4 | import faiss, numpy as np, os
5 |
6 | # ###########如果是原始特征要先写save
7 | inp_root = r"E:\codes\py39\dataset\mi\2-co256"
8 | npys = []
9 | for name in sorted(list(os.listdir(inp_root))):
10 | phone = np.load("%s/%s" % (inp_root, name))
11 | npys.append(phone)
12 | big_npy = np.concatenate(npys, 0)
13 | print(big_npy.shape) # (6196072, 192)#fp32#4.43G
14 | np.save("infer/big_src_feature_mi.npy", big_npy)
15 |
16 | ##################train+add
17 | # big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
18 | print(big_npy.shape)
19 | index = faiss.index_factory(256, "IVF512,Flat") # mi
20 | print("training")
21 | index_ivf = faiss.extract_index_ivf(index) #
22 | index_ivf.nprobe = 9
23 | index.train(big_npy)
24 | faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
25 | print("adding")
26 | index.add(big_npy)
27 | faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
28 | """
29 | 大小(都是FP32)
30 | big_src_feature 2.95G
31 | (3098036, 256)
32 | big_emb 4.43G
33 | (6196072, 192)
34 | big_emb双倍是因为求特征要repeat后再加pitch
35 |
36 | """
37 |
--------------------------------------------------------------------------------
/MIT协议暨相关引用库协议:
--------------------------------------------------------------------------------
1 | 本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
2 | 如不认可该条款,则不能使用或引用软件包内任何代码和文件。
3 |
4 | 特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
5 | 上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
6 | 软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
7 |
8 |
9 | The LICENCEs for related libraries are as follows.
10 | 相关引用库协议如下:
11 |
12 | ContentVec
13 | https://github.com/auspicious3000/contentvec/blob/main/LICENSE
14 | MIT License
15 |
16 | VITS
17 | https://github.com/jaywalnut310/vits/blob/main/LICENSE
18 | MIT License
19 |
20 | HIFIGAN
21 | https://github.com/jik876/hifi-gan/blob/master/LICENSE
22 | MIT License
23 |
24 | gradio
25 | https://github.com/gradio-app/gradio/blob/main/LICENSE
26 | Apache License 2.0
27 |
28 | ffmpeg
29 | https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
30 | https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
31 | LPGLv3 License
32 | MIT License
33 |
34 | ultimatevocalremovergui
35 | https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
36 | https://github.com/yang123qwe/vocal_separation_by_uvr5
37 | MIT License
38 |
39 | audio-slicer
40 | https://github.com/openvpi/audio-slicer/blob/main/LICENSE
41 | MIT License
42 |
43 | PySimpleGUI
44 | https://github.com/PySimpleGUI/PySimpleGUI/blob/master/license.txt
45 | LPGLv3 License
46 |
--------------------------------------------------------------------------------
/.github/workflows/unitest.yml:
--------------------------------------------------------------------------------
1 | name: unitest
2 | on: [ push, pull_request ]
3 | jobs:
4 | build:
5 | runs-on: ${{ matrix.os }}
6 | strategy:
7 | matrix:
8 | python-version: ["3.8", "3.9", "3.10"]
9 | os: [ubuntu-latest]
10 | fail-fast: false
11 |
12 | steps:
13 | - uses: actions/checkout@master
14 | - name: Set up Python ${{ matrix.python-version }}
15 | uses: actions/setup-python@v4
16 | with:
17 | python-version: ${{ matrix.python-version }}
18 | - name: Install dependencies
19 | run: |
20 | sudo apt update
21 | sudo apt -y install ffmpeg
22 | sudo apt -y install -qq aria2
23 | aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d ./ -o hubert_base.pt
24 | python -m pip install --upgrade pip
25 | python -m pip install --upgrade setuptools
26 | python -m pip install --upgrade wheel
27 | pip install torch torchvision torchaudio
28 | pip install -r requirements.txt
29 | - name: Test step 1 & 2
30 | run: |
31 | mkdir -p logs/mi-test
32 | touch logs/mi-test/preprocess.log
33 | python trainset_preprocess_pipeline_print.py logs/mute/0_gt_wavs 48000 8 logs/mi-test True
34 | touch logs/mi-test/extract_f0_feature.log
35 | python extract_f0_print.py logs/mi-test $(nproc) pm
36 | python extract_feature_print.py cpu 1 0 0 logs/mi-test v1
37 |
--------------------------------------------------------------------------------
/lib/i18n/locale_diff.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | from collections import OrderedDict
4 |
5 | # Define the standard file name
6 | standard_file = "zh_CN.json"
7 |
8 | # Find all JSON files in the directory
9 | dir_path = "./"
10 | languages = [
11 | f for f in os.listdir(dir_path) if f.endswith(".json") and f != standard_file
12 | ]
13 |
14 | # Load the standard file
15 | with open(standard_file, "r", encoding="utf-8") as f:
16 | standard_data = json.load(f, object_pairs_hook=OrderedDict)
17 |
18 | # Loop through each language file
19 | for lang_file in languages:
20 | # Load the language file
21 | with open(lang_file, "r", encoding="utf-8") as f:
22 | lang_data = json.load(f, object_pairs_hook=OrderedDict)
23 |
24 | # Find the difference between the language file and the standard file
25 | diff = set(standard_data.keys()) - set(lang_data.keys())
26 |
27 | miss = set(lang_data.keys()) - set(standard_data.keys())
28 |
29 | # Add any missing keys to the language file
30 | for key in diff:
31 | lang_data[key] = key
32 |
33 | # Del any extra keys to the language file
34 | for key in miss:
35 | del lang_data[key]
36 |
37 | # Sort the keys of the language file to match the order of the standard file
38 | lang_data = OrderedDict(
39 | sorted(lang_data.items(), key=lambda x: list(standard_data.keys()).index(x[0]))
40 | )
41 |
42 | # Save the updated language file
43 | with open(lang_file, "w", encoding="utf-8") as f:
44 | json.dump(lang_data, f, ensure_ascii=False, indent=4)
45 | f.write("\n")
46 |
--------------------------------------------------------------------------------
/.github/workflows/push_format.yml:
--------------------------------------------------------------------------------
1 | name: push format
2 |
3 | on:
4 | push:
5 | branches:
6 | - main
7 |
8 | permissions:
9 | contents: write
10 | pull-requests: write
11 |
12 | jobs:
13 | push_format:
14 | runs-on: ${{ matrix.os }}
15 |
16 | strategy:
17 | matrix:
18 | python-version: ["3.10"]
19 | os: [ubuntu-latest]
20 | fail-fast: false
21 |
22 | steps:
23 | - uses: actions/checkout@v3
24 | with:
25 | ref: ${{github.ref_name}}
26 |
27 | - name: Set up Python ${{ matrix.python-version }}
28 | uses: actions/setup-python@v4
29 | with:
30 | python-version: ${{ matrix.python-version }}
31 |
32 | - name: Install Black
33 | run: pip install "black[jupyter]"
34 |
35 | - name: Run Black
36 | # run: black $(git ls-files '*.py')
37 | run: black .
38 |
39 | - name: Commit Back
40 | continue-on-error: true
41 | id: commitback
42 | run: |
43 | git config --local user.email "github-actions[bot]@users.noreply.github.com"
44 | git config --local user.name "github-actions[bot]"
45 | git add --all
46 | git commit -m "Format code"
47 |
48 | - name: Create Pull Request
49 | if: steps.commitback.outcome == 'success'
50 | continue-on-error: true
51 | uses: peter-evans/create-pull-request@v5
52 | with:
53 | delete-branch: true
54 | body: Apply Code Formatter Change
55 | title: Apply Code Formatter Change
56 | commit-message: Automatic code format
57 |
--------------------------------------------------------------------------------
/run.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | if [[ "$(uname)" == "Darwin" ]]; then
4 | # macOS specific env:
5 | export PYTORCH_ENABLE_MPS_FALLBACK=1
6 | export PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0
7 | elif [[ "$(uname)" != "Linux" ]]; then
8 | echo "Unsupported operating system."
9 | exit 1
10 | fi
11 |
12 | requirements_file="requirements.txt"
13 |
14 | # Check if Python 3.8 is installed
15 | if ! command -v python3.8 &> /dev/null; then
16 | echo "Python 3.8 not found. Attempting to install..."
17 | if [[ "$(uname)" == "Darwin" ]] && command -v brew &> /dev/null; then
18 | brew install python@3.8
19 | elif [[ "$(uname)" == "Linux" ]] && command -v apt-get &> /dev/null; then
20 | sudo apt-get update
21 | sudo apt-get install python3.8
22 | else
23 | echo "Please install Python 3.8 manually."
24 | exit 1
25 | fi
26 | fi
27 |
28 | # Check if required packages are installed and install them if not
29 | if [ -f "${requirements_file}" ]; then
30 | installed_packages=$(python3.8 -m pip freeze)
31 | while IFS= read -r package; do
32 | [[ "${package}" =~ ^#.* ]] && continue
33 | package_name=$(echo "${package}" | sed 's/[<>=!].*//')
34 | if ! echo "${installed_packages}" | grep -q "${package_name}"; then
35 | echo "${package_name} not found. Attempting to install..."
36 | python3.8 -m pip install --upgrade "${package}"
37 | fi
38 | done < "${requirements_file}"
39 | else
40 | echo "${requirements_file} not found. Please ensure the requirements file with required packages exists."
41 | exit 1
42 | fi
43 |
44 | # Run the main script
45 | python3.8 infer-web.py --pycmd python3.8
--------------------------------------------------------------------------------
/lib/train/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 |
4 | def feature_loss(fmap_r, fmap_g):
5 | loss = 0
6 | for dr, dg in zip(fmap_r, fmap_g):
7 | for rl, gl in zip(dr, dg):
8 | rl = rl.float().detach()
9 | gl = gl.float()
10 | loss += torch.mean(torch.abs(rl - gl))
11 |
12 | return loss * 2
13 |
14 |
15 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
16 | loss = 0
17 | r_losses = []
18 | g_losses = []
19 | for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
20 | dr = dr.float()
21 | dg = dg.float()
22 | r_loss = torch.mean((1 - dr) ** 2)
23 | g_loss = torch.mean(dg**2)
24 | loss += r_loss + g_loss
25 | r_losses.append(r_loss.item())
26 | g_losses.append(g_loss.item())
27 |
28 | return loss, r_losses, g_losses
29 |
30 |
31 | def generator_loss(disc_outputs):
32 | loss = 0
33 | gen_losses = []
34 | for dg in disc_outputs:
35 | dg = dg.float()
36 | l = torch.mean((1 - dg) ** 2)
37 | gen_losses.append(l)
38 | loss += l
39 |
40 | return loss, gen_losses
41 |
42 |
43 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
44 | """
45 | z_p, logs_q: [b, h, t_t]
46 | m_p, logs_p: [b, h, t_t]
47 | """
48 | z_p = z_p.float()
49 | logs_q = logs_q.float()
50 | m_p = m_p.float()
51 | logs_p = logs_p.float()
52 | z_mask = z_mask.float()
53 |
54 | kl = logs_p - logs_q - 0.5
55 | kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
56 | kl = torch.sum(kl * z_mask)
57 | l = kl / torch.sum(z_mask)
58 | return l
59 |
--------------------------------------------------------------------------------
/lib/uvr5_pack/lib_v5/model_param_init.py:
--------------------------------------------------------------------------------
1 | import json
2 | import os
3 | import pathlib
4 |
5 | default_param = {}
6 | default_param["bins"] = 768
7 | default_param["unstable_bins"] = 9 # training only
8 | default_param["reduction_bins"] = 762 # training only
9 | default_param["sr"] = 44100
10 | default_param["pre_filter_start"] = 757
11 | default_param["pre_filter_stop"] = 768
12 | default_param["band"] = {}
13 |
14 |
15 | default_param["band"][1] = {
16 | "sr": 11025,
17 | "hl": 128,
18 | "n_fft": 960,
19 | "crop_start": 0,
20 | "crop_stop": 245,
21 | "lpf_start": 61, # inference only
22 | "res_type": "polyphase",
23 | }
24 |
25 | default_param["band"][2] = {
26 | "sr": 44100,
27 | "hl": 512,
28 | "n_fft": 1536,
29 | "crop_start": 24,
30 | "crop_stop": 547,
31 | "hpf_start": 81, # inference only
32 | "res_type": "sinc_best",
33 | }
34 |
35 |
36 | def int_keys(d):
37 | r = {}
38 | for k, v in d:
39 | if k.isdigit():
40 | k = int(k)
41 | r[k] = v
42 | return r
43 |
44 |
45 | class ModelParameters(object):
46 | def __init__(self, config_path=""):
47 | if ".pth" == pathlib.Path(config_path).suffix:
48 | import zipfile
49 |
50 | with zipfile.ZipFile(config_path, "r") as zip:
51 | self.param = json.loads(
52 | zip.read("param.json"), object_pairs_hook=int_keys
53 | )
54 | elif ".json" == pathlib.Path(config_path).suffix:
55 | with open(config_path, "r") as f:
56 | self.param = json.loads(f.read(), object_pairs_hook=int_keys)
57 | else:
58 | self.param = default_param
59 |
60 | for k in [
61 | "mid_side",
62 | "mid_side_b",
63 | "mid_side_b2",
64 | "stereo_w",
65 | "stereo_n",
66 | "reverse",
67 | ]:
68 | if not k in self.param:
69 | self.param[k] = False
70 |
--------------------------------------------------------------------------------
/tools/export_onnx.py:
--------------------------------------------------------------------------------
1 | from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
2 | import torch
3 |
4 | if __name__ == "__main__":
5 | MoeVS = True # 模型是否为MoeVoiceStudio(原MoeSS)使用
6 |
7 | ModelPath = "Shiroha/shiroha.pth" # 模型路径
8 | ExportedPath = "model.onnx" # 输出路径
9 | hidden_channels = 256 # hidden_channels,为768Vec做准备
10 | cpt = torch.load(ModelPath, map_location="cpu")
11 | cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
12 | print(*cpt["config"])
13 |
14 | test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
15 | test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
16 | test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
17 | test_pitchf = torch.rand(1, 200) # nsf基频
18 | test_ds = torch.LongTensor([0]) # 说话人ID
19 | test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
20 |
21 | device = "cpu" # 导出时设备(不影响使用模型)
22 |
23 | net_g = SynthesizerTrnMsNSFsidM(
24 | *cpt["config"], is_half=False
25 | ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
26 | net_g.load_state_dict(cpt["weight"], strict=False)
27 | input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
28 | output_names = [
29 | "audio",
30 | ]
31 | # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
32 | torch.onnx.export(
33 | net_g,
34 | (
35 | test_phone.to(device),
36 | test_phone_lengths.to(device),
37 | test_pitch.to(device),
38 | test_pitchf.to(device),
39 | test_ds.to(device),
40 | test_rnd.to(device),
41 | ),
42 | ExportedPath,
43 | dynamic_axes={
44 | "phone": [1],
45 | "pitch": [1],
46 | "pitchf": [1],
47 | "rnd": [2],
48 | },
49 | do_constant_folding=False,
50 | opset_version=16,
51 | verbose=False,
52 | input_names=input_names,
53 | output_names=output_names,
54 | )
55 |
--------------------------------------------------------------------------------
/docs/Changelog_CN.md:
--------------------------------------------------------------------------------
1 | ### 20230618更新
2 | - v2增加32k和48k两个新预训练模型
3 | - 修复非f0模型推理报错
4 | - 对于超过一小时的训练集的索引建立环节,自动kmeans缩小特征处理以加速索引训练、加入和查询
5 | - 附送一个人声转吉他玩具仓库
6 | - 数据处理剔除异常值切片
7 | - onnx导出选项卡
8 |
9 | 失败的实验:
10 | - ~~特征检索增加时序维度:寄,没啥效果~~
11 | - ~~特征检索增加PCAR降维可选项:寄,数据大用kmeans缩小数据量,数据小降维操作耗时比省下的匹配耗时还多~~
12 | - ~~支持onnx推理(附带仅推理的小压缩包):寄,生成nsf还是需要pytorch~~
13 | - ~~训练时在音高、gender、eq、噪声等方面对输入进行随机增强:寄,没啥效果~~
14 |
15 | todolist:
16 | - 接入小型声码器调研
17 | - 训练集音高识别支持crepe
18 | - crepe的精度支持和RVC-config同步
19 | - 对接F0编辑器
20 |
21 |
22 | ### 20230528更新
23 | - 增加v2的jupyter notebook,韩文changelog,增加一些环境依赖
24 | - 增加呼吸、清辅音、齿音保护模式
25 | - 支持crepe-full推理
26 | - UVR5人声伴奏分离加上3个去延迟模型和MDX-Net去混响模型,增加HP3人声提取模型
27 | - 索引名称增加版本和实验名称
28 | - 人声伴奏分离、推理批量导出增加音频导出格式选项
29 | - 废弃32k模型的训练
30 |
31 | ### 20230513更新
32 | - 清除一键包内部老版本runtime内残留的lib.infer_pack和uvr5_pack
33 | - 修复训练集预处理伪多进程的bug
34 | - 增加harvest识别音高可选通过中值滤波削弱哑音现象,可调整中值滤波半径
35 | - 导出音频增加后处理重采样
36 | - 训练n_cpu进程数从"仅调整f0提取"改为"调整数据预处理和f0提取"
37 | - 自动检测logs文件夹下的index路径,提供下拉列表功能
38 | - tab页增加"常见问题解答"(也可参考github-rvc-wiki)
39 | - 相同路径的输入音频推理增加了音高缓存(用途:使用harvest音高提取,整个pipeline会经历漫长且重复的音高提取过程,如果不使用缓存,实验不同音色、索引、音高中值滤波半径参数的用户在第一次测试后的等待结果会非常痛苦)
40 |
41 | ### 20230514更新
42 | - 音量包络对齐输入混合(可以缓解“输入静音输出小幅度噪声”的问题。如果输入音频背景底噪大则不建议开启,默认不开启(值为1可视为不开启))
43 | - 支持按照指定频率保存提取的小模型(假如你想尝试不同epoch下的推理效果,但是不想保存所有大checkpoint并且每次都要ckpt手工处理提取小模型,这项功能会非常实用)
44 | - 通过设置环境变量解决服务端开了系统全局代理导致浏览器连接错误的问题
45 | - 支持v2预训练模型(目前只公开了40k版本进行测试,另外2个采样率还没有训练完全)
46 | - 推理前限制超过1的过大音量
47 | - 微调数据预处理参数
48 |
49 |
50 | ### 20230409更新
51 | - 修正训练参数,提升显卡平均利用率,A100最高从25%提升至90%左右,V100:50%->90%左右,2060S:60%->85%左右,P40:25%->95%左右,训练速度显著提升
52 | - 修正参数:总batch_size改为每张卡的batch_size
53 | - 修正total_epoch:最大限制100解锁至1000;默认10提升至默认20
54 | - 修复ckpt提取识别是否带音高错误导致推理异常的问题
55 | - 修复分布式训练每个rank都保存一次ckpt的问题
56 | - 特征提取进行nan特征过滤
57 | - 修复静音输入输出随机辅音or噪声的问题(老版模型需要重做训练集重训)
58 |
59 | ### 20230416更新
60 | - 新增本地实时变声迷你GUI,双击go-realtime-gui.bat启动
61 | - 训练推理均对<50Hz的频段进行滤波过滤
62 | - 训练推理音高提取pyworld最低音高从默认80下降至50,50-80hz间的男声低音不会哑
63 | - WebUI支持根据系统区域变更语言(现支持en_US,ja_JP,zh_CN,zh_HK,zh_SG,zh_TW,不支持的默认en_US)
64 | - 修正部分显卡识别(例如V100-16G识别失败,P4识别失败)
65 |
66 | ### 20230428更新
67 | - 升级faiss索引设置,速度更快,质量更高
68 | - 取消total_npy依赖,后续分享模型不再需要填写total_npy
69 | - 解锁16系限制。4G显存GPU给到4G的推理设置。
70 | - 修复部分音频格式下UVR5人声伴奏分离的bug
71 | - 实时变声迷你gui增加对非40k与不懈怠音高模型的支持
72 |
73 | ### 后续计划:
74 | 功能:
75 | - 支持多人训练选项卡(至多4人)
76 |
77 | 底模:
78 | - 收集呼吸wav加入训练集修正呼吸变声电音的问题
79 | - 我们正在训练增加了歌声训练集的底模,未来会公开
80 |
81 |
--------------------------------------------------------------------------------
/.github/workflows/docker.yml:
--------------------------------------------------------------------------------
1 | name: Build And Push Docker Image
2 |
3 | on:
4 | workflow_dispatch:
5 | push:
6 | # Sequence of patterns matched against refs/tags
7 | tags:
8 | - 'v*' # Push events to matching v*, i.e. v1.0, v20.15.10
9 |
10 | jobs:
11 | build:
12 | runs-on: ubuntu-latest
13 | permissions:
14 | packages: write
15 | contents: read
16 | steps:
17 | - uses: actions/checkout@v3
18 | - name: Set time zone
19 | uses: szenius/set-timezone@v1.0
20 | with:
21 | timezoneLinux: "Asia/Shanghai"
22 | timezoneMacos: "Asia/Shanghai"
23 | timezoneWindows: "China Standard Time"
24 |
25 | # # 如果有 dockerhub 账户,可以在github的secrets中配置下面两个,然后取消下面注释的这几行,并在meta步骤的images增加一行 ${{ github.repository }}
26 | # - name: Login to DockerHub
27 | # uses: docker/login-action@v1
28 | # with:
29 | # username: ${{ secrets.DOCKERHUB_USERNAME }}
30 | # password: ${{ secrets.DOCKERHUB_TOKEN }}
31 |
32 | - name: Login to GHCR
33 | uses: docker/login-action@v2
34 | with:
35 | registry: ghcr.io
36 | username: ${{ github.repository_owner }}
37 | password: ${{ secrets.GITHUB_TOKEN }}
38 |
39 | - name: Extract metadata (tags, labels) for Docker
40 | id: meta
41 | uses: docker/metadata-action@v4
42 | with:
43 | images: |
44 | ghcr.io/${{ github.repository }}
45 | # generate Docker tags based on the following events/attributes
46 | # nightly, master, pr-2, 1.2.3, 1.2, 1
47 | tags: |
48 | type=schedule,pattern=nightly
49 | type=edge
50 | type=ref,event=branch
51 | type=ref,event=pr
52 | type=semver,pattern={{version}}
53 | type=semver,pattern={{major}}.{{minor}}
54 | type=semver,pattern={{major}}
55 |
56 | - name: Set up QEMU
57 | uses: docker/setup-qemu-action@v2
58 |
59 | - name: Set up Docker Buildx
60 | uses: docker/setup-buildx-action@v2
61 |
62 | - name: Build and push
63 | id: docker_build
64 | uses: docker/build-push-action@v4
65 | with:
66 | context: .
67 | platforms: linux/amd64,linux/arm64
68 | push: true
69 | tags: ${{ steps.meta.outputs.tags }}
70 | labels: ${{ steps.meta.outputs.labels }}
71 |
--------------------------------------------------------------------------------
/tools/infer/train-index-v2.py:
--------------------------------------------------------------------------------
1 | """
2 | 格式:直接cid为自带的index位;aid放不下了,通过字典来查,反正就5w个
3 | """
4 | import faiss, numpy as np, os
5 | from sklearn.cluster import MiniBatchKMeans
6 | import traceback
7 | from multiprocessing import cpu_count
8 |
9 | # ###########如果是原始特征要先写save
10 | n_cpu = 0
11 | if n_cpu == 0:
12 | n_cpu = cpu_count()
13 | inp_root = r"./logs/anz/3_feature768"
14 | npys = []
15 | listdir_res = list(os.listdir(inp_root))
16 | for name in sorted(listdir_res):
17 | phone = np.load("%s/%s" % (inp_root, name))
18 | npys.append(phone)
19 | big_npy = np.concatenate(npys, 0)
20 | big_npy_idx = np.arange(big_npy.shape[0])
21 | np.random.shuffle(big_npy_idx)
22 | big_npy = big_npy[big_npy_idx]
23 | print(big_npy.shape) # (6196072, 192)#fp32#4.43G
24 | if big_npy.shape[0] > 2e5:
25 | # if(1):
26 | info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
27 | print(info)
28 | try:
29 | big_npy = (
30 | MiniBatchKMeans(
31 | n_clusters=10000,
32 | verbose=True,
33 | batch_size=256 * n_cpu,
34 | compute_labels=False,
35 | init="random",
36 | )
37 | .fit(big_npy)
38 | .cluster_centers_
39 | )
40 | except:
41 | info = traceback.format_exc()
42 | print(info)
43 |
44 | np.save("tools/infer/big_src_feature_mi.npy", big_npy)
45 |
46 | ##################train+add
47 | # big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
48 | n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
49 | index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi
50 | print("training")
51 | index_ivf = faiss.extract_index_ivf(index) #
52 | index_ivf.nprobe = 1
53 | index.train(big_npy)
54 | faiss.write_index(
55 | index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf)
56 | )
57 | print("adding")
58 | batch_size_add = 8192
59 | for i in range(0, big_npy.shape[0], batch_size_add):
60 | index.add(big_npy[i : i + batch_size_add])
61 | faiss.write_index(
62 | index, "tools/infer/added_IVF%s_Flat_mi_baseline_src_feat.index" % (n_ivf)
63 | )
64 | """
65 | 大小(都是FP32)
66 | big_src_feature 2.95G
67 | (3098036, 256)
68 | big_emb 4.43G
69 | (6196072, 192)
70 | big_emb双倍是因为求特征要repeat后再加pitch
71 |
72 | """
73 |
--------------------------------------------------------------------------------
/docs/training_tips_ja.md:
--------------------------------------------------------------------------------
1 | RVCの訓練における説明、およびTIPS
2 | ===============================
3 | 本TIPSではどのようにデータの訓練が行われているかを説明します。
4 |
5 | # 訓練の流れ
6 | GUIの訓練タブのstepに沿って説明します。
7 |
8 | ## step1
9 | 実験名の設定を行います。
10 |
11 | また、モデルに音高ガイド(ピッチ)を考慮させるかもここで設定できます。考慮させない場合はモデルは軽量になりますが、歌唱には向かなくなります。
12 |
13 | 各実験のデータは`/logs/実験名/`に配置されます。
14 |
15 | ## step2a
16 | 音声の読み込みと前処理を行います。
17 |
18 | ### load audio
19 | 音声のあるフォルダを指定すると、そのフォルダ内にある音声ファイルを自動で読み込みます。
20 | 例えば`C:Users\hoge\voices`を指定した場合、`C:Users\hoge\voices\voice.mp3`は読み込まれますが、`C:Users\hoge\voices\dir\voice.mp3`は読み込まれません。
21 |
22 | 音声の読み込みには内部でffmpegを利用しているので、ffmpegで対応している拡張子であれば自動的に読み込まれます。
23 | ffmpegでint16に変換した後、float32に変換し、-1 ~ 1の間に正規化されます。
24 |
25 | ### denoising
26 | 音声についてscipyのfiltfiltによる平滑化を行います。
27 |
28 | ### 音声の分割
29 | 入力した音声はまず、一定期間(max_sil_kept=5秒?)より長く無音が続く部分を検知して音声を分割します。無音で音声を分割した後は、0.3秒のoverlapを含む4秒ごとに音声を分割します。4秒以内に区切られた音声は、音量の正規化を行った後wavファイルを`/logs/実験名/0_gt_wavs`に、そこから16kのサンプリングレートに変換して`/logs/実験名/1_16k_wavs`にwavファイルで保存します。
30 |
31 | ## step2b
32 | ### ピッチの抽出
33 | wavファイルからピッチ(音の高低)の情報を抽出します。parselmouthやpyworldに内蔵されている手法でピッチ情報(=f0)を抽出し、`/logs/実験名/2a_f0`に保存します。その後、ピッチ情報を対数で変換して1~255の整数に変換し、`/logs/実験名/2b-f0nsf`に保存します。
34 |
35 | ### feature_printの抽出
36 | HuBERTを用いてwavファイルを事前にembeddingに変換します。`/logs/実験名/1_16k_wavs`に保存したwavファイルを読み込み、HuBERTでwavファイルを256次元の特徴量に変換し、npy形式で`/logs/実験名/3_feature256`に保存します。
37 |
38 | ## step3
39 | モデルのトレーニングを行います。
40 | ### 初心者向け用語解説
41 | 深層学習ではデータセットを分割し、少しずつ学習を進めていきます。一回のモデルの更新(step)では、batch_size個のデータを取り出し予測と誤差の修正を行います。これをデータセットに対して一通り行うと一epochと数えます。
42 |
43 | そのため、学習時間は 1step当たりの学習時間 x (データセット内のデータ数 ÷ バッチサイズ) x epoch数 かかります。一般にバッチサイズを大きくするほど学習は安定し、(1step当たりの学習時間÷バッチサイズ)は小さくなりますが、その分GPUのメモリを多く使用します。GPUのRAMはnvidia-smiコマンド等で確認できます。実行環境のマシンに合わせてバッチサイズをできるだけ大きくするとより短時間で学習が可能です。
44 |
45 | ### pretrained modelの指定
46 | RVCではモデルの訓練を0からではなく、事前学習済みの重みから開始するため、少ないデータセットで学習を行えます。
47 |
48 | デフォルトでは
49 |
50 | - 音高ガイドを考慮する場合、`RVCのある場所/pretrained/f0G40k.pth`と`RVCのある場所/pretrained/f0D40k.pth`を読み込みます。
51 | - 音高ガイドを考慮しない場合、`RVCのある場所/pretrained/G40k.pth`と`RVCのある場所/pretrained/D40k.pth`を読み込みます。
52 |
53 | 学習時はsave_every_epochごとにモデルのパラメータが`logs/実験名/G_{}.pth`と`logs/実験名/D_{}.pth`に保存されますが、このパスを指定することで学習を再開したり、もしくは違う実験で学習したモデルの重みから学習を開始できます。
54 |
55 | ### indexの学習
56 | RVCでは学習時に使われたHuBERTの特徴量を保存し、推論時は学習時の特徴量から近い特徴量を探してきて推論を行います。この検索を高速に行うために事前にindexの学習を行います。
57 | indexの学習には近似近傍探索ライブラリのfaissを用います。`/logs/実験名/3_feature256`の特徴量を読み込み、それを用いて学習したindexを`/logs/実験名/add_XXX.index`として保存します。
58 | (20230428updateよりtotal_fea.npyはindexから読み込むので不要になりました。)
59 |
60 | ### ボタンの説明
61 | - モデルのトレーニング: step2bまでを実行した後、このボタンを押すとモデルの学習を行います。
62 | - 特徴インデックスのトレーニング: モデルのトレーニング後、indexの学習を行います。
63 | - ワンクリックトレーニング: step2bまでとモデルのトレーニング、特徴インデックスのトレーニングを一括で行います。
64 |
65 |
--------------------------------------------------------------------------------
/docs/training_tips_ko.md:
--------------------------------------------------------------------------------
1 | RVC 훈련에 대한 설명과 팁들
2 | ======================================
3 | 본 팁에서는 어떻게 데이터 훈련이 이루어지고 있는지 설명합니다.
4 |
5 | # 훈련의 흐름
6 | GUI의 훈련 탭의 단계를 따라 설명합니다.
7 |
8 | ## step1
9 | 실험 이름을 지정합니다. 또한, 모델이 피치(소리의 높낮이)를 고려해야 하는지 여부를 여기에서 설정할 수도 있습니다..
10 | 각 실험을 위한 데이터는 `/logs/experiment name/`에 배치됩니다..
11 |
12 | ## step2a
13 | 음성 파일을 불러오고 전처리합니다.
14 |
15 | ### 음성 파일 불러오기
16 | 음성 파일이 있는 폴더를 지정하면 해당 폴더에 있는 음성 파일이 자동으로 가져와집니다.
17 | 예를 들어 `C:Users\hoge\voices`를 지정하면 `C:Users\hoge\voices\voice.mp3`가 읽히지만 `C:Users\hoge\voices\dir\voice.mp3`는 읽히지 않습니다.
18 |
19 | 음성 로드에는 내부적으로 ffmpeg를 이용하고 있으므로, ffmpeg로 대응하고 있는 확장자라면 자동적으로 읽힙니다.
20 | ffmpeg에서 int16으로 변환한 후 float32로 변환하고 -1과 1 사이에 정규화됩니다.
21 |
22 | ### 잡음 제거
23 | 음성 파일에 대해 scipy의 filtfilt를 이용하여 잡음을 처리합니다.
24 |
25 | ### 음성 분할
26 | 입력한 음성 파일은 먼저 일정 기간(max_sil_kept=5초?)보다 길게 무음이 지속되는 부분을 감지하여 음성을 분할합니다.무음으로 음성을 분할한 후에는 0.3초의 overlap을 포함하여 4초마다 음성을 분할합니다.4초 이내에 구분된 음성은 음량의 정규화를 실시한 후 wav 파일을 `/logs/실험명/0_gt_wavs`로, 거기에서 16k의 샘플링 레이트로 변환해 `/logs/실험명/1_16k_wavs`에 wav 파일로 저장합니다.
27 |
28 | ## step2b
29 | ### 피치 추출
30 | wav 파일에서 피치(소리의 높낮이) 정보를 추출합니다. parselmouth나 pyworld에 내장되어 있는 메서드으로 피치 정보(=f0)를 추출해, `/logs/실험명/2a_f0`에 저장합니다. 그 후 피치 정보를 로그로 변환하여 1~255 정수로 변환하고 `/logs/실험명/2b-f0nsf`에 저장합니다.
31 |
32 | ### feature_print 추출
33 | HuBERT를 이용하여 wav 파일을 미리 embedding으로 변환합니다. `/logs/실험명/1_16k_wavs`에 저장한 wav 파일을 읽고 HuBERT에서 wav 파일을 256차원 feature들로 변환한 후 npy 형식으로 `/logs/실험명/3_feature256`에 저장합니다.
34 |
35 | ## step3
36 | 모델의 훈련을 진행합니다.
37 |
38 | ### 초보자용 용어 해설
39 | 심층학습(딥러닝)에서는 데이터셋을 분할하여 조금씩 학습을 진행합니다.한 번의 모델 업데이트(step) 단계 당 batch_size개의 데이터를 탐색하여 예측과 오차를 수정합니다. 데이터셋 전부에 대해 이 작업을 한 번 수행하는 이를 하나의 epoch라고 계산합니다.
40 |
41 | 따라서 학습 시간은 단계당 학습 시간 x (데이터셋 내 데이터의 수 / batch size) x epoch 수가 소요됩니다. 일반적으로 batch size가 클수록 학습이 안정적이게 됩니다. (step당 학습 시간 ÷ batch size)는 작아지지만 GPU 메모리를 더 많이 사용합니다. GPU RAM은 nvidia-smi 명령어를 통해 확인할 수 있습니다. 실행 환경에 따라 배치 크기를 최대한 늘리면 짧은 시간 내에 학습이 가능합니다.
42 |
43 | ### 사전 학습된 모델 지정
44 | RVC는 적은 데이터셋으로도 훈련이 가능하도록 사전 훈련된 가중치에서 모델 훈련을 시작합니다. 기본적으로 `rvc-location/pretrained/f0G40k.pth` 및 `rvc-location/pretrained/f0D40k.pth`를 불러옵니다. 학습을 할 시에, 모델 파라미터는 각 save_every_epoch별로 `logs/experiment name/G_{}.pth` 와 `logs/experiment name/D_{}.pth`로 저장이 되는데, 이 경로를 지정함으로써 학습을 재개하거나, 다른 실험에서 학습한 모델의 가중치에서 학습을 시작할 수 있습니다.
45 |
46 | ### index의 학습
47 | RVC에서는 학습시에 사용된 HuBERT의 feature값을 저장하고, 추론 시에는 학습 시 사용한 feature값과 유사한 feature 값을 탐색해 추론을 진행합니다. 이 탐색을 고속으로 수행하기 위해 사전에 index을 학습하게 됩니다.
48 | Index 학습에는 근사 근접 탐색법 라이브러리인 Faiss를 사용하게 됩니다. `/logs/실험명/3_feature256`의 feature값을 불러와, 이를 모두 결합시킨 feature값을 `/logs/실험명/total_fea.npy`로서 저장, 그것을 사용해 학습한 index를`/logs/실험명/add_XXX.index`로 저장합니다.
49 |
50 | ### 버튼 설명
51 | - モデルのトレーニング (모델 학습): step2b까지 실행한 후, 이 버튼을 눌러 모델을 학습합니다.
52 | - 特徴インデックスのトレーニング (특징 지수 훈련): 모델의 훈련 후, index를 학습합니다.
53 | - ワンクリックトレーニング (원클릭 트레이닝): step2b까지의 모델 훈련, feature index 훈련을 일괄로 실시합니다.
--------------------------------------------------------------------------------
/tools/calc_rvc_model_similarity.py:
--------------------------------------------------------------------------------
1 | # This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
2 | # Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
3 | import sys, os
4 | import torch
5 | import torch.nn as nn
6 | import torch.nn.functional as F
7 |
8 |
9 | def cal_cross_attn(to_q, to_k, to_v, rand_input):
10 | hidden_dim, embed_dim = to_q.shape
11 | attn_to_q = nn.Linear(hidden_dim, embed_dim, bias=False)
12 | attn_to_k = nn.Linear(hidden_dim, embed_dim, bias=False)
13 | attn_to_v = nn.Linear(hidden_dim, embed_dim, bias=False)
14 | attn_to_q.load_state_dict({"weight": to_q})
15 | attn_to_k.load_state_dict({"weight": to_k})
16 | attn_to_v.load_state_dict({"weight": to_v})
17 |
18 | return torch.einsum(
19 | "ik, jk -> ik",
20 | F.softmax(
21 | torch.einsum("ij, kj -> ik", attn_to_q(rand_input), attn_to_k(rand_input)),
22 | dim=-1,
23 | ),
24 | attn_to_v(rand_input),
25 | )
26 |
27 |
28 | def model_hash(filename):
29 | try:
30 | with open(filename, "rb") as file:
31 | import hashlib
32 |
33 | m = hashlib.sha256()
34 |
35 | file.seek(0x100000)
36 | m.update(file.read(0x10000))
37 | return m.hexdigest()[0:8]
38 | except FileNotFoundError:
39 | return "NOFILE"
40 |
41 |
42 | def eval(model, n, input):
43 | qk = f"enc_p.encoder.attn_layers.{n}.conv_q.weight"
44 | uk = f"enc_p.encoder.attn_layers.{n}.conv_k.weight"
45 | vk = f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
46 | atoq, atok, atov = model[qk][:, :, 0], model[uk][:, :, 0], model[vk][:, :, 0]
47 |
48 | attn = cal_cross_attn(atoq, atok, atov, input)
49 | return attn
50 |
51 |
52 | def main(path, root):
53 | torch.manual_seed(114514)
54 | model_a = torch.load(path, map_location="cpu")["weight"]
55 |
56 | print("query:\t\t%s\t%s" % (path, model_hash(path)))
57 |
58 | map_attn_a = {}
59 | map_rand_input = {}
60 | for n in range(6):
61 | hidden_dim, embed_dim, _ = model_a[
62 | f"enc_p.encoder.attn_layers.{n}.conv_v.weight"
63 | ].shape
64 | rand_input = torch.randn([embed_dim, hidden_dim])
65 |
66 | map_attn_a[n] = eval(model_a, n, rand_input)
67 | map_rand_input[n] = rand_input
68 |
69 | del model_a
70 |
71 | for name in sorted(list(os.listdir(root))):
72 | path = "%s/%s" % (root, name)
73 | model_b = torch.load(path, map_location="cpu")["weight"]
74 |
75 | sims = []
76 | for n in range(6):
77 | attn_a = map_attn_a[n]
78 | attn_b = eval(model_b, n, map_rand_input[n])
79 |
80 | sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
81 | sims.append(sim)
82 |
83 | print(
84 | "reference:\t%s\t%s\t%s"
85 | % (path, model_hash(path), f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%")
86 | )
87 |
88 |
89 | if __name__ == "__main__":
90 | query_path = r"weights\mi v3.pth"
91 | reference_root = r"weights"
92 | main(query_path, reference_root)
93 |
--------------------------------------------------------------------------------
/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py:
--------------------------------------------------------------------------------
1 | from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2 | import pyworld
3 | import numpy as np
4 |
5 |
6 | class HarvestF0Predictor(F0Predictor):
7 | def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8 | self.hop_length = hop_length
9 | self.f0_min = f0_min
10 | self.f0_max = f0_max
11 | self.sampling_rate = sampling_rate
12 |
13 | def interpolate_f0(self, f0):
14 | """
15 | 对F0进行插值处理
16 | """
17 |
18 | data = np.reshape(f0, (f0.size, 1))
19 |
20 | vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21 | vuv_vector[data > 0.0] = 1.0
22 | vuv_vector[data <= 0.0] = 0.0
23 |
24 | ip_data = data
25 |
26 | frame_number = data.size
27 | last_value = 0.0
28 | for i in range(frame_number):
29 | if data[i] <= 0.0:
30 | j = i + 1
31 | for j in range(i + 1, frame_number):
32 | if data[j] > 0.0:
33 | break
34 | if j < frame_number - 1:
35 | if last_value > 0.0:
36 | step = (data[j] - data[i - 1]) / float(j - i)
37 | for k in range(i, j):
38 | ip_data[k] = data[i - 1] + step * (k - i + 1)
39 | else:
40 | for k in range(i, j):
41 | ip_data[k] = data[j]
42 | else:
43 | for k in range(i, frame_number):
44 | ip_data[k] = last_value
45 | else:
46 | ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47 | last_value = data[i]
48 |
49 | return ip_data[:, 0], vuv_vector[:, 0]
50 |
51 | def resize_f0(self, x, target_len):
52 | source = np.array(x)
53 | source[source < 0.001] = np.nan
54 | target = np.interp(
55 | np.arange(0, len(source) * target_len, len(source)) / target_len,
56 | np.arange(0, len(source)),
57 | source,
58 | )
59 | res = np.nan_to_num(target)
60 | return res
61 |
62 | def compute_f0(self, wav, p_len=None):
63 | if p_len is None:
64 | p_len = wav.shape[0] // self.hop_length
65 | f0, t = pyworld.harvest(
66 | wav.astype(np.double),
67 | fs=self.hop_length,
68 | f0_ceil=self.f0_max,
69 | f0_floor=self.f0_min,
70 | frame_period=1000 * self.hop_length / self.sampling_rate,
71 | )
72 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
73 | return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
74 |
75 | def compute_f0_uv(self, wav, p_len=None):
76 | if p_len is None:
77 | p_len = wav.shape[0] // self.hop_length
78 | f0, t = pyworld.harvest(
79 | wav.astype(np.double),
80 | fs=self.sampling_rate,
81 | f0_floor=self.f0_min,
82 | f0_ceil=self.f0_max,
83 | frame_period=1000 * self.hop_length / self.sampling_rate,
84 | )
85 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
86 | return self.interpolate_f0(self.resize_f0(f0, p_len))
87 |
--------------------------------------------------------------------------------
/docs/faq.md:
--------------------------------------------------------------------------------
1 | ## Q1:ffmpeg error/utf8 error.
2 |
3 | 大概率不是ffmpeg问题,而是音频路径问题;
4 | ffmpeg读取路径带空格、()等特殊符号,可能出现ffmpeg error;训练集音频带中文路径,在写入filelist.txt的时候可能出现utf8 error;
5 |
6 | ## Q2:一键训练结束没有索引
7 |
8 | 显示"Training is done. The program is closed."则模型训练成功,后续紧邻的报错是假的;
9 |
10 | 一键训练结束完成没有added开头的索引文件,可能是因为训练集太大卡住了添加索引的步骤;已通过批处理add索引解决内存add索引对内存需求过大的问题。临时可尝试再次点击"训练索引"按钮。
11 |
12 | ## Q3:训练结束推理没看到训练集的音色
13 | 点刷新音色再看看,如果还没有看看训练有没有报错,控制台和webui的截图,logs/实验名下的log,都可以发给开发者看看。
14 |
15 | ## Q4:如何分享模型
16 | rvc_root/logs/实验名 下面存储的pth不是用来分享模型用来推理的,而是为了存储实验状态供复现,以及继续训练用的。用来分享的模型应该是weights文件夹下大小为60+MB的pth文件;
17 | 后续将把weights/exp_name.pth和logs/exp_name/added_xxx.index合并打包成weights/exp_name.zip省去填写index的步骤,那么zip文件用来分享,不要分享pth文件,除非是想换机器继续训练;
18 | 如果你把logs文件夹下的几百MB的pth文件复制/分享到weights文件夹下强行用于推理,可能会出现f0,tgt_sr等各种key不存在的报错。你需要用ckpt选项卡最下面,手工或自动(本地logs下如果能找到相关信息则会自动)选择是否携带音高、目标音频采样率的选项后进行ckpt小模型提取(输入路径填G开头的那个),提取完在weights文件夹下会出现60+MB的pth文件,刷新音色后可以选择使用。
19 |
20 | ## Q5:Connection Error.
21 | 也许你关闭了控制台(黑色窗口)。
22 |
23 | ## Q6:WebUI弹出Expecting value: line 1 column 1 (char 0).
24 | 请关闭系统局域网代理/全局代理。
25 |
26 | 这个不仅是客户端的代理,也包括服务端的代理(例如你使用autodl设置了http_proxy和https_proxy学术加速,使用时也需要unset关掉)
27 |
28 | ## Q7:不用WebUI如何通过命令训练推理
29 | 训练脚本:
30 | 可先跑通WebUI,消息窗内会显示数据集处理和训练用命令行;
31 |
32 | 推理脚本:
33 | https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py
34 |
35 | 例子:
36 |
37 | runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True
38 |
39 | f0up_key=sys.argv[1]
40 | input_path=sys.argv[2]
41 | index_path=sys.argv[3]
42 | f0method=sys.argv[4]#harvest or pm
43 | opt_path=sys.argv[5]
44 | model_path=sys.argv[6]
45 | index_rate=float(sys.argv[7])
46 | device=sys.argv[8]
47 | is_half=bool(sys.argv[9])
48 |
49 | ## Q8:Cuda error/Cuda out of memory.
50 | 小概率是cuda配置问题、设备不支持;大概率是显存不够(out of memory);
51 |
52 | 训练的话缩小batch size(如果缩小到1还不够只能更换显卡训练),推理的话酌情缩小config.py结尾的x_pad,x_query,x_center,x_max。4G以下显存(例如1060(3G)和各种2G显卡)可以直接放弃,4G显存显卡还有救。
53 |
54 | ## Q9:total_epoch调多少比较好
55 |
56 | 如果训练集音质差底噪大,20~30足够了,调太高,底模音质无法带高你的低音质训练集
57 | 如果训练集音质高底噪低时长多,可以调高,200是ok的(训练速度很快,既然你有条件准备高音质训练集,显卡想必条件也不错,肯定不在乎多一些训练时间)
58 |
59 | ## Q10:需要多少训练集时长
60 | 推荐10min至50min
61 | 保证音质高底噪低的情况下,如果有个人特色的音色统一,则多多益善
62 | 高水平的训练集(精简+音色有特色),5min至10min也是ok的,仓库作者本人就经常这么玩
63 | 也有人拿1min至2min的数据来训练并且训练成功的,但是成功经验是其他人不可复现的,不太具备参考价值。这要求训练集音色特色非常明显(比如说高频气声较明显的萝莉少女音),且音质高;
64 | 1min以下时长数据目前没见有人尝试(成功)过。不建议进行这种鬼畜行为。
65 |
66 | ## Q11:index rate干嘛用的,怎么调(科普)
67 | 如果底模和推理源的音质高于训练集的音质,他们可以带高推理结果的音质,但代价可能是音色往底模/推理源的音色靠,这种现象叫做"音色泄露";
68 | index rate用来削减/解决音色泄露问题。调到1,则理论上不存在推理源的音色泄露问题,但音质更倾向于训练集。如果训练集音质比推理源低,则index rate调高可能降低音质。调到0,则不具备利用检索混合来保护训练集音色的效果;
69 | 如果训练集优质时长多,可调高total_epoch,此时模型本身不太会引用推理源和底模的音色,很少存在"音色泄露"问题,此时index_rate不重要,你甚至可以不建立/分享index索引文件。
70 |
71 | ## Q11:推理怎么选gpu
72 | config.py文件里device cuda:后面选择卡号;
73 | 卡号和显卡的映射关系,在训练选项卡的显卡信息栏里能看到。
74 |
75 | ## Q12:如何推理训练中间保存的pth
76 | 通过ckpt选项卡最下面提取小模型。
77 |
78 |
79 | ## Q13:如何中断和继续训练
80 | 现阶段只能关闭WebUI控制台双击go-web.bat重启程序。网页参数也要刷新重新填写;
81 | 继续训练:相同网页参数点训练模型,就会接着上次的checkpoint继续训练。
82 |
83 | ## Q14:训练时出现文件页面/内存error
84 | 进程开太多了,内存炸了。你可能可以通过如下方式解决
85 | 1、"提取音高和处理数据使用的CPU进程数" 酌情拉低;
86 | 2、训练集音频手工切一下,不要太长。
87 |
88 |
89 | ## Q15:如何中途加数据训练
90 | 1、所有数据新建一个实验名;
91 | 2、拷贝上一次的最新的那个G和D文件(或者你想基于哪个中间ckpt训练,也可以拷贝中间的)到新实验名;下
92 | 3、一键训练新实验名,他会继续上一次的最新进度训练。
93 |
94 |
--------------------------------------------------------------------------------
/docs/faiss_tips_ja.md:
--------------------------------------------------------------------------------
1 | faiss tuning TIPS
2 | ==================
3 | # about faiss
4 | faissはfacebook researchの開発する、密なベクトルに対する近傍探索をまとめたライブラリで、多くの近似近傍探索の手法を効率的に実装しています。
5 | 近似近傍探索はある程度精度を犠牲にしながら高速に類似するベクトルを探します。
6 |
7 | ## faiss in RVC
8 | RVCではHuBERTで変換した特徴量のEmbeddingに対し、学習データから生成されたEmbeddingと類似するものを検索し、混ぜることでより元の音声に近い変換を実現しています。ただ、この検索は愚直に行うと時間がかかるため、近似近傍探索を用いることで高速な変換を実現しています。
9 |
10 | # 実装のoverview
11 | モデルが配置されている '/logs/your-experiment/3_feature256'には各音声データからHuBERTで抽出された特徴量が配置されています。
12 | ここからnpyファイルをファイル名でソートした順番で読み込み、ベクトルを連結してbig_npyを作成しfaissを学習させます。(このベクトルのshapeは[N, 256]です。)
13 |
14 | 本Tipsではまずこれらのパラメータの意味を解説します。
15 |
16 | # 手法の解説
17 | ## index factory
18 | index factoryは複数の近似近傍探索の手法を繋げるパイプラインをstringで表記するfaiss独自の記法です。
19 | これにより、index factoryの文字列を変更するだけで様々な近似近傍探索の手法を試せます。
20 | RVCでは以下のように使われています。
21 |
22 | ```python
23 | index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
24 | ```
25 | index_factoryの引数のうち、1つ目はベクトルの次元数、2つ目はindex factoryの文字列で、3つ目には用いる距離を指定することができます。
26 |
27 | より詳細な記法については
28 | https://github.com/facebookresearch/faiss/wiki/The-index-factory
29 |
30 | ## 距離指標
31 | embeddingの類似度として用いられる代表的な指標として以下の二つがあります。
32 |
33 | - ユークリッド距離(METRIC_L2)
34 | - 内積(METRIC_INNER_PRODUCT)
35 |
36 | ユークリッド距離では各次元において二乗の差をとり、全次元の差を足してから平方根をとります。これは日常的に用いる2次元、3次元での距離と同じです。
37 | 内積はこのままでは類似度の指標として用いず、一般的にはL2ノルムで正規化してから内積をとるコサイン類似度を用います。
38 |
39 | どちらがよいかは場合によりますが、word2vec等で得られるembeddingやArcFace等で学習した類似画像検索のモデルではコサイン類似度が用いられることが多いです。ベクトルXに対してl2正規化をnumpyで行う場合は、0 divisionを避けるために十分に小さな値をepsとして以下のコードで可能です。
40 |
41 | ```python
42 | X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
43 | ```
44 |
45 | また、index factoryには第3引数に渡す値を選ぶことで計算に用いる距離指標を変更できます。
46 |
47 | ```python
48 | index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
49 | ```
50 |
51 | ## IVF
52 | IVF(Inverted file indexes)は全文検索における転置インデックスと似たようなアルゴリズムです。
53 | 学習時には検索対象に対してkmeansでクラスタリングを行い、クラスタ中心を用いてボロノイ分割を行います。各データ点には一つずつクラスタが割り当てられるので、クラスタからデータ点を逆引きする辞書を作成します。
54 |
55 | 例えば以下のようにクラスタが割り当てられた場合
56 | |index|クラスタ|
57 | |-----|-------|
58 | |1|A|
59 | |2|B|
60 | |3|A|
61 | |4|C|
62 | |5|B|
63 |
64 | 作成される転置インデックスは以下のようになります。
65 |
66 | |クラスタ|index|
67 | |-------|-----|
68 | |A|1, 3|
69 | |B|2, 5|
70 | |C|4|
71 |
72 | 検索時にはまずクラスタからn_probe個のクラスタを検索し、次にそれぞれのクラスタに属するデータ点について距離を計算します。
73 |
74 | # 推奨されるパラメータ
75 | indexの選び方については公式にガイドラインがあるので、それに準じて説明します。
76 | https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
77 |
78 | 1M以下のデータセットにおいては4bit-PQが2023年4月時点ではfaissで利用できる最も効率的な手法です。
79 | これをIVFと組み合わせ、4bit-PQで候補を絞り、最後に正確な指標で距離を再計算するには以下のindex factoryを用いることで記載できます。
80 |
81 | ```python
82 | index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
83 | ```
84 |
85 | ## IVFの推奨パラメータ
86 | IVFの数が多すぎる場合、たとえばデータ数の数だけIVFによる粗量子化を行うと、これは愚直な全探索と同じになり効率が悪いです。
87 | 1M以下の場合ではIVFの値はデータ点の数Nに対して4*sqrt(N) ~ 16*sqrt(N)に推奨しています。
88 |
89 | n_probeはn_probeの数に比例して計算時間が増えるので、精度と相談して適切に選んでください。個人的にはRVCにおいてそこまで精度は必要ないと思うのでn_probe = 1で良いと思います。
90 |
91 | ## FastScan
92 | FastScanは直積量子化で大まかに距離を近似するのを、レジスタ内で行うことにより高速に行うようにした手法です。
93 | 直積量子化は学習時にd次元ごと(通常はd=2)に独立してクラスタリングを行い、クラスタ同士の距離を事前計算してlookup tableを作成します。予測時はlookup tableを見ることで各次元の距離をO(1)で計算できます。
94 | そのため、PQの次に指定する数字は通常ベクトルの半分の次元を指定します。
95 |
96 | FastScanに関するより詳細な説明は公式のドキュメントを参照してください。
97 | https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
98 |
99 | ## RFlat
100 | RFlatはFastScanで計算した大まかな距離を、index factoryの第三引数で指定した正確な距離で再計算する指示です。
101 | k個の近傍を取得する際は、k*k_factor個の点について再計算が行われます。
102 |
--------------------------------------------------------------------------------
/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py:
--------------------------------------------------------------------------------
1 | from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2 | import pyworld
3 | import numpy as np
4 |
5 |
6 | class DioF0Predictor(F0Predictor):
7 | def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8 | self.hop_length = hop_length
9 | self.f0_min = f0_min
10 | self.f0_max = f0_max
11 | self.sampling_rate = sampling_rate
12 |
13 | def interpolate_f0(self, f0):
14 | """
15 | 对F0进行插值处理
16 | """
17 |
18 | data = np.reshape(f0, (f0.size, 1))
19 |
20 | vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21 | vuv_vector[data > 0.0] = 1.0
22 | vuv_vector[data <= 0.0] = 0.0
23 |
24 | ip_data = data
25 |
26 | frame_number = data.size
27 | last_value = 0.0
28 | for i in range(frame_number):
29 | if data[i] <= 0.0:
30 | j = i + 1
31 | for j in range(i + 1, frame_number):
32 | if data[j] > 0.0:
33 | break
34 | if j < frame_number - 1:
35 | if last_value > 0.0:
36 | step = (data[j] - data[i - 1]) / float(j - i)
37 | for k in range(i, j):
38 | ip_data[k] = data[i - 1] + step * (k - i + 1)
39 | else:
40 | for k in range(i, j):
41 | ip_data[k] = data[j]
42 | else:
43 | for k in range(i, frame_number):
44 | ip_data[k] = last_value
45 | else:
46 | ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47 | last_value = data[i]
48 |
49 | return ip_data[:, 0], vuv_vector[:, 0]
50 |
51 | def resize_f0(self, x, target_len):
52 | source = np.array(x)
53 | source[source < 0.001] = np.nan
54 | target = np.interp(
55 | np.arange(0, len(source) * target_len, len(source)) / target_len,
56 | np.arange(0, len(source)),
57 | source,
58 | )
59 | res = np.nan_to_num(target)
60 | return res
61 |
62 | def compute_f0(self, wav, p_len=None):
63 | if p_len is None:
64 | p_len = wav.shape[0] // self.hop_length
65 | f0, t = pyworld.dio(
66 | wav.astype(np.double),
67 | fs=self.sampling_rate,
68 | f0_floor=self.f0_min,
69 | f0_ceil=self.f0_max,
70 | frame_period=1000 * self.hop_length / self.sampling_rate,
71 | )
72 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
73 | for index, pitch in enumerate(f0):
74 | f0[index] = round(pitch, 1)
75 | return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
76 |
77 | def compute_f0_uv(self, wav, p_len=None):
78 | if p_len is None:
79 | p_len = wav.shape[0] // self.hop_length
80 | f0, t = pyworld.dio(
81 | wav.astype(np.double),
82 | fs=self.sampling_rate,
83 | f0_floor=self.f0_min,
84 | f0_ceil=self.f0_max,
85 | frame_period=1000 * self.hop_length / self.sampling_rate,
86 | )
87 | f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
88 | for index, pitch in enumerate(f0):
89 | f0[index] = round(pitch, 1)
90 | return self.interpolate_f0(self.resize_f0(f0, p_len))
91 |
--------------------------------------------------------------------------------
/docs/Changelog_KO.md:
--------------------------------------------------------------------------------
1 | ### 2023년 6월 18일 업데이트
2 |
3 | - v2 버전에서 새로운 32k와 48k 사전 학습 모델을 추가.
4 | - non-f0 모델들의 추론 오류 수정.
5 | - 학습 세트가 1시간을 넘어가는 경우, 인덱스 생성 단계에서 minibatch-kmeans을 사용해, 학습속도 가속화.
6 | - [huggingface](https://huggingface.co/spaces/lj1995/vocal2guitar)에서 vocal2guitar 제공.
7 | - 데이터 처리 단계에서 이상 값 자동으로 제거.
8 | - ONNX로 내보내는(export) 옵션 탭 추가.
9 |
10 | 업데이트에 적용되지 않았지만 시도한 것들 :
11 |
12 | - 시계열 차원을 추가하여 특징 검색을 진행했지만, 유의미한 효과는 없었습니다.
13 | - PCA 차원 축소를 추가하여 특징 검색을 진행했지만, 유의미한 효과는 없었습니다.
14 | - ONNX 추론을 지원하는 것에 실패했습니다. nsf 생성시, Pytorch가 필요하기 때문입니다.
15 | - 훈련 중에 입력에 대한 음고, 성별, 이퀄라이저, 노이즈 등 무작위로 강화하는 것에, 유의미한 효과는 없었습니다.
16 |
17 | 추후 업데이트 목록:
18 |
19 | - Vocos-RVC (소형 보코더) 통합 예정.
20 | - 학습 단계에 음고 인식을 위한 Crepe 지원 예정.
21 | - Crepe의 정밀도를 REC-config와 동기화하여 지원 예정.
22 | - FO 에디터 지원 예정.
23 |
24 | ### 2023년 5월 28일 업데이트
25 |
26 | - v2 jupyter notebook 추가, 한국어 업데이트 로그 추가, 의존성 모듈 일부 수정.
27 | - 무성음 및 숨소리 보호 모드 추가.
28 | - crepe-full pitch 감지 지원.
29 | - UVR5 보컬 분리: 디버브 및 디-에코 모델 지원.
30 | - index 이름에 experiment 이름과 버전 추가.
31 | - 배치 음성 변환 처리 및 UVR5 보컬 분리 시, 사용자가 수동으로 출력 오디오의 내보내기(export) 형식을 선택할 수 있도록 지원.
32 | - 32k 훈련 모델 지원 종료.
33 |
34 | ### 2023년 5월 13일 업데이트
35 |
36 | - 원클릭 패키지의 이전 버전 런타임 내, 불필요한 코드(lib.infer_pack 및 uvr5_pack) 제거.
37 | - 훈련 세트 전처리의 유사 다중 처리 버그 수정.
38 | - Harvest 피치 인식 알고리즘에 대한 중위수 필터링 반경 조정 추가.
39 | - 오디오 내보낼 때, 후처리 리샘플링 지원.
40 | - 훈련에 대한 다중 처리 "n_cpu" 설정이 "f0 추출"에서 "데이터 전처리 및 f0 추출"로 변경.
41 | - logs 폴더 하의 인덱스 경로를 자동으로 감지 및 드롭다운 목록 기능 제공.
42 | - 탭 페이지에 "자주 묻는 질문과 답변" 추가. (github RVC wiki 참조 가능)
43 | - 동일한 입력 오디오 경로를 사용할 때 추론, Harvest 피치를 캐시.
44 | (주의: Harvest 피치 추출을 사용하면 전체 파이프라인은 길고 반복적인 피치 추출 과정을 거치게됩니다. 캐싱을 하지 않는다면, 첫 inference 이후의 단계에서 timbre, 인덱스, 피치 중위수 필터링 반경 설정 등 대기시간이 엄청나게 길어집니다!)
45 |
46 | ### 2023년 5월 14일 업데이트
47 |
48 | - 입력의 볼륨 캡슐을 사용하여 출력의 볼륨 캡슐을 혼합하거나 대체. (입력이 무음이거나 출력의 노이즈 문제를 최소화 할 수 있습니다. 입력 오디오의 배경 노이즈(소음)가 큰 경우 해당 기능을 사용하지 않는 것이 좋습니다. 기본적으로 비활성화 되어있는 옵션입니다. (1: 비활성화 상태))
49 | - 추출된 소형 모델을 지정된 빈도로 저장하는 기능을 지원. (다양한 에폭 하에서의 성능을 보려고 하지만 모든 대형 체크포인트를 저장하고 매번 ckpt 처리를 통해 소형 모델을 수동으로 추출하고 싶지 않은 경우 이 기능은 매우 유용합니다)
50 | - 환경 변수를 설정하여 서버의 전역 프록시로 인한 "연결 오류" 문제 해결.
51 | - 사전 훈련된 v2 모델 지원. (현재 40k 버전만 테스트를 위해 공개적으로 사용 가능하며, 다른 두 개의 샘플링 비율은 아직 완전히 훈련되지 않아 보류되었습니다.)
52 | - 추론 전, 1을 초과하는 과도한 볼륨 제한.
53 | - 데이터 전처리 매개변수 미세 조정.
54 |
55 | ### 2023년 4월 9일 업데이트
56 |
57 | - GPU 이용률 향상을 위해 훈련 파라미터 수정: A100은 25%에서 약 90%로 증가, V100: 50%에서 약 90%로 증가, 2060S: 60%에서 약 85%로 증가, P40: 25%에서 약 95%로 증가.
58 | 훈련 속도가 크게 향상.
59 | - 매개변수 기준 변경: total batch_size는 GPU당 batch_size를 의미.
60 | - total_epoch 변경: 최대 한도가 100에서 1000으로 증가. 기본값이 10에서 20으로 증가.
61 | - ckpt 추출이 피치를 잘못 인식하여 비정상적인 추론을 유발하는 문제 수정.
62 | - 분산 훈련 과정에서 각 랭크마다 ckpt를 저장하는 문제 수정.
63 | - 특성 추출 과정에 나노 특성 필터링 적용.
64 | - 무음 입력/출력이 랜덤하게 소음을 생성하는 문제 수정. (이전 모델은 새 데이터셋으로 다시 훈련해야 합니다)
65 |
66 | ### 2023년 4월 16일 업데이트
67 |
68 | - 로컬 실시간 음성 변경 미니-GUI 추가, go-realtime-gui.bat를 더블 클릭하여 시작.
69 | - 훈련 및 추론 중 50Hz 이하의 주파수 대역에 대해 필터링 적용.
70 | - 훈련 및 추론의 pyworld 최소 피치 추출을 기본 80에서 50으로 낮춤. 이로 인해, 50-80Hz 사이의 남성 저음이 무음화되지 않습니다.
71 | - 시스템 지역에 따른 WebUI 언어 변경 지원. (현재 en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW를 지원하며, 지원되지 않는 경우 기본값은 en_US)
72 | - 일부 GPU의 인식 수정. (예: V100-16G 인식 실패, P4 인식 실패)
73 |
74 | ### 2023년 4월 28일 업데이트
75 |
76 | - Faiss 인덱스 설정 업그레이드로 속도가 더 빨라지고 품질이 향상.
77 | - total_npy에 대한 의존성 제거. 추후의 모델 공유는 total_npy 입력을 필요로 하지 않습니다.
78 | - 16 시리즈 GPU에 대한 제한 해제, 4GB VRAM GPU에 대한 4GB 추론 설정 제공.
79 | - 일부 오디오 형식에 대한 UVR5 보컬 동반 분리에서의 버그 수정.
80 | - 실시간 음성 변경 미니-GUI는 이제 non-40k 및 non-lazy 피치 모델을 지원합니다.
81 |
82 | ### 추후 계획
83 |
84 | Features:
85 |
86 | - 다중 사용자 훈련 탭 지원.(최대 4명)
87 |
88 | Base model:
89 |
90 | - 훈련 데이터셋에 숨소리 wav 파일을 추가하여, 보컬의 호흡이 노이즈로 변환되는 문제 수정.
91 | - 보컬 훈련 세트의 기본 모델을 추가하기 위한 작업을 진행중이며, 이는 향후에 발표될 예정.
92 |
--------------------------------------------------------------------------------
/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py:
--------------------------------------------------------------------------------
1 | from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
2 | import parselmouth
3 | import numpy as np
4 |
5 |
6 | class PMF0Predictor(F0Predictor):
7 | def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
8 | self.hop_length = hop_length
9 | self.f0_min = f0_min
10 | self.f0_max = f0_max
11 | self.sampling_rate = sampling_rate
12 |
13 | def interpolate_f0(self, f0):
14 | """
15 | 对F0进行插值处理
16 | """
17 |
18 | data = np.reshape(f0, (f0.size, 1))
19 |
20 | vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
21 | vuv_vector[data > 0.0] = 1.0
22 | vuv_vector[data <= 0.0] = 0.0
23 |
24 | ip_data = data
25 |
26 | frame_number = data.size
27 | last_value = 0.0
28 | for i in range(frame_number):
29 | if data[i] <= 0.0:
30 | j = i + 1
31 | for j in range(i + 1, frame_number):
32 | if data[j] > 0.0:
33 | break
34 | if j < frame_number - 1:
35 | if last_value > 0.0:
36 | step = (data[j] - data[i - 1]) / float(j - i)
37 | for k in range(i, j):
38 | ip_data[k] = data[i - 1] + step * (k - i + 1)
39 | else:
40 | for k in range(i, j):
41 | ip_data[k] = data[j]
42 | else:
43 | for k in range(i, frame_number):
44 | ip_data[k] = last_value
45 | else:
46 | ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
47 | last_value = data[i]
48 |
49 | return ip_data[:, 0], vuv_vector[:, 0]
50 |
51 | def compute_f0(self, wav, p_len=None):
52 | x = wav
53 | if p_len is None:
54 | p_len = x.shape[0] // self.hop_length
55 | else:
56 | assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
57 | time_step = self.hop_length / self.sampling_rate * 1000
58 | f0 = (
59 | parselmouth.Sound(x, self.sampling_rate)
60 | .to_pitch_ac(
61 | time_step=time_step / 1000,
62 | voicing_threshold=0.6,
63 | pitch_floor=self.f0_min,
64 | pitch_ceiling=self.f0_max,
65 | )
66 | .selected_array["frequency"]
67 | )
68 |
69 | pad_size = (p_len - len(f0) + 1) // 2
70 | if pad_size > 0 or p_len - len(f0) - pad_size > 0:
71 | f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
72 | f0, uv = self.interpolate_f0(f0)
73 | return f0
74 |
75 | def compute_f0_uv(self, wav, p_len=None):
76 | x = wav
77 | if p_len is None:
78 | p_len = x.shape[0] // self.hop_length
79 | else:
80 | assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
81 | time_step = self.hop_length / self.sampling_rate * 1000
82 | f0 = (
83 | parselmouth.Sound(x, self.sampling_rate)
84 | .to_pitch_ac(
85 | time_step=time_step / 1000,
86 | voicing_threshold=0.6,
87 | pitch_floor=self.f0_min,
88 | pitch_ceiling=self.f0_max,
89 | )
90 | .selected_array["frequency"]
91 | )
92 |
93 | pad_size = (p_len - len(f0) + 1) // 2
94 | if pad_size > 0 or p_len - len(f0) - pad_size > 0:
95 | f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
96 | f0, uv = self.interpolate_f0(f0)
97 | return f0, uv
98 |
--------------------------------------------------------------------------------
/infer_uvr.py:
--------------------------------------------------------------------------------
1 | import os
2 | import shutil
3 | import sys
4 | import traceback
5 | import torch
6 |
7 | os.environ["OPENBLAS_NUM_THREADS"] = "1"
8 | os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
9 |
10 | import ffmpeg
11 | from infer_uvr5 import _audio_pre_, _audio_pre_new
12 |
13 | now_dir = os.getcwd()
14 | sys.path.append(now_dir)
15 | tmp = os.path.join(now_dir, "TEMP")
16 | # shutil.rmtree(tmp, ignore_errors=True)
17 | shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
18 | shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
19 | os.makedirs(tmp, exist_ok=True)
20 | os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
21 | os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
22 | os.environ["TEMP"] = tmp
23 | torch.manual_seed(114514)
24 |
25 | weight_root = "weights"
26 | weight_uvr5_root = "uvr5_weights"
27 | index_root = "logs"
28 |
29 | def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
30 | infos = []
31 | try:
32 | inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
33 | save_root_vocal = save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
34 | save_root_ins = save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
35 |
36 | if model_name == "onnx_dereverb_By_FoxJoy":
37 | from MDXNet import MDXNetDereverb
38 | pre_fun = MDXNetDereverb(15)
39 | else:
40 | func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new
41 | pre_fun = func(
42 | agg=int(agg),
43 | model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
44 | device="cuda",
45 | is_half=True
46 | )
47 |
48 | need_reformat = 1
49 | done = 0
50 | try:
51 | info = ffmpeg.probe(inp_root, cmd="ffprobe")
52 | if (info["streams"][0]["channels"] == 2 and info["streams"][0]["sample_rate"] == "44100"):
53 | need_reformat = 0
54 | pre_fun._path_audio_(inp_root, save_root_ins, save_root_vocal, format0)
55 | done = 1
56 | except:
57 | need_reformat = 1
58 | infos.append(traceback.format_exc())
59 |
60 | if need_reformat == 1:
61 | tmp_path = os.path.join(tmp, "{}.reformatted.wav".format(os.path.basename(inp_root)))
62 |
63 | # Wrap paths in double quotes to handle spaces
64 | os.system('ffmpeg -i "{}" -vn -acodec pcm_s16le -ac 2 -ar 44100 "{}" -y'.format(inp_root, tmp_path))
65 |
66 | inp_root = tmp_path
67 |
68 | try:
69 | if done == 0:
70 | pre_fun._path_audio_(inp_root, save_root_ins, save_root_vocal, format0)
71 | infos.append("{}->Success".format(os.path.basename(inp_root)))
72 | except:
73 | infos.append("{}->{}".format(os.path.basename(inp_root), traceback.format_exc()))
74 |
75 | except Exception as e:
76 | infos.append(traceback.format_exc())
77 |
78 | finally:
79 | try:
80 | if model_name == "onnx_dereverb_By_FoxJoy":
81 | del pre_fun.pred.model
82 | del pre_fun.pred.model_
83 | else:
84 | del pre_fun.model
85 | del pre_fun
86 | except:
87 | infos.append(traceback.format_exc())
88 |
89 | print("clean_empty_cache")
90 | if torch.cuda.is_available():
91 | torch.cuda.empty_cache()
92 |
93 | for info in infos:
94 | print(info)
95 |
96 | if __name__ == "__main__":
97 | uvr(model_name="5_HP-Karaoke-UVR",
98 | inp_root="songs\heythere.mp4",
99 | save_root_vocal="opt",
100 | paths="",
101 | save_root_ins="opt",
102 | agg=10,
103 | format0="wav")
--------------------------------------------------------------------------------
/docs/README.ko.han.md:
--------------------------------------------------------------------------------
1 |