└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # This repository is to collect BERT related resources. 2 | 3 | AD: a repository for graph convolutional networks at https://github.com/Jiakui/awesome-gcn (resources for graph convolutional networks (图卷积神经网络相关资源)). 4 | 5 | 6 | # Papers: 7 | 8 | 1. [arXiv:1810.04805](https://arxiv.org/abs/1810.04805), BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 9 | , Authors: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova 10 | 11 |
12 | 13 | Click to see more 14 | 15 | 2. [arXiv:1812.06705](https://arxiv.org/abs/1812.06705), Conditional BERT Contextual Augmentation, Authors: Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, Songlin Hu 16 | 17 | 3. [arXiv:1812.03593](https://arxiv.org/pdf/1812.03593), SDNet: Contextualized Attention-based Deep Network for Conversational Question Answering, Authors: Chenguang Zhu, Michael Zeng, Xuedong Huang 18 | 19 | 4. [arXiv:1901.02860](https://arxiv.org/abs/1901.02860), Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, Authors: Zihang Dai, Zhilin Yang, Yiming Yang, William W. Cohen, Jaime Carbonell, Quoc V. Le and Ruslan Salakhutdinov. 20 | 21 | 5. [arXiv:1901.04085](https://arxiv.org/pdf/1901.04085.pdf), Passage Re-ranking with BERT, Authors: Rodrigo Nogueira, Kyunghyun Cho 22 | 23 | 6. [arXiv:1902.02671](https://arxiv.org/pdf/1902.02671.pdf), BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning, Authors: Asa Cooper Stickland, Iain Murray 24 | 25 | 7. [arXiv:1904.02232](https://arxiv.org/abs/1904.02232), BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis, Authors: Hu Xu, Bing Liu, Lei Shu, Philip S. Yu, [[code](https://github.com/howardhsu/BERT-for-RRC-ABSA)] 26 | 27 |
28 | 29 | 30 | 31 | 32 | # Github Repositories: 33 | 34 | ## official implement: 35 | 36 | 1. [google-research/bert](https://github.com/google-research/bert), **officical** TensorFlow code and pre-trained models for BERT , 37 | ![](https://img.shields.io/github/stars/google-research/bert.svg) 38 | 39 | 40 | ## implement of BERT besides tensorflow: 41 | 42 | 43 | 44 | 45 | 1. [codertimo/BERT-pytorch](https://github.com/codertimo/BERT-pytorch), Google AI 2018 BERT pytorch implementation, 46 | ![](https://img.shields.io/github/stars/codertimo/BERT-pytorch.svg) 47 | 48 | 2. [huggingface/pytorch-pretrained-BERT](https://github.com/huggingface/pytorch-pretrained-BERT), A PyTorch implementation of Google AI's BERT model with script to load Google's pre-trained models, 49 | ![](https://img.shields.io/github/stars/huggingface/pytorch-pretrained-BERT.svg) 50 | 51 | 52 | 53 | 3. [dmlc/gluon-nlp](https://github.com/dmlc/gluon-nlp), Gluon + MXNet implementation that reproduces BERT pretraining and finetuning on GLUE benchmark, SQuAD, etc, 54 | ![](https://img.shields.io/github/stars/dmlc/gluon-nlp.svg) 55 | 56 | 4. [dbiir/UER-py](https://github.com/dbiir/UER-py), UER-py is a toolkit for pre-training on general-domain corpus and fine-tuning on downstream task. UER-py maintains model modularity and supports research extensibility. It facilitates the use of different pre-training models (e.g. BERT), and provides interfaces for users to further extend upon. 57 | ![](https://img.shields.io/github/stars/dbiir/UER-py.svg) 58 | 59 | 60 | 5. [BrikerMan/Kashgari](https://github.com/BrikerMan/Kashgari), Simple, Keras-powered multilingual NLP framework, allows you to build your models in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS) and text classification tasks. Includes BERT, GPT-2 and word2vec embedding. 61 | ![](https://img.shields.io/github/stars/BrikerMan/Kashgari.svg) 62 | 63 | 6. [kaushaltrivedi/fast-bert](https://github.com/kaushaltrivedi/fast-bert), Super easy library for BERT based NLP models, 64 | ![](https://img.shields.io/github/stars/kaushaltrivedi/fast-bert.svg) 65 | 66 | 67 | 68 | 69 |
70 | 71 | Click to see more 72 | 73 | 74 | 7. [Separius/BERT-keras](https://github.com/Separius/BERT-keras), Keras implementation of BERT with pre-trained weights, 75 | ![](https://img.shields.io/github/stars/Separius/BERT-keras.svg) 76 | 77 | 8. [soskek/bert-chainer](https://github.com/soskek/bert-chainer), Chainer implementation of "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 78 | ![](https://img.shields.io/github/stars/soskek/bert-chainer.svg) 79 | 80 | 9. [innodatalabs/tbert](https://github.com/innodatalabs/tbert), PyTorch port of BERT ML model 81 | ![](https://img.shields.io/github/stars/innodatalabs/tbert.svg) 82 | 83 | 10. [guotong1988/BERT-tensorflow](https://github.com/guotong1988/BERT-tensorflow), BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 84 | ![](https://img.shields.io/github/stars/guotong1988/BERT-tensorflow.svg) 85 | 86 | 11. [dreamgonfly/BERT-pytorch](https://github.com/dreamgonfly/BERT-pytorch), 87 | PyTorch implementation of BERT in "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 88 | ![](https://img.shields.io/github/stars/dreamgonfly/BERT-pytorch.svg) 89 | 90 | 12. [CyberZHG/keras-bert](https://github.com/CyberZHG/keras-bert), Implementation of BERT that could load official pre-trained models for feature extraction and prediction 91 | ![](https://img.shields.io/github/stars/CyberZHG/keras-bert.svg) 92 | 93 | 13. [soskek/bert-chainer](https://github.com/soskek/bert-chainer), Chainer implementation of "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 94 | ![](https://img.shields.io/github/stars/soskek/bert-chainer.svg) 95 | 96 | 14. [MaZhiyuanBUAA/bert-tf1.4.0](https://github.com/MaZhiyuanBUAA/bert-tf1.4.0), bert-tf1.4.0 97 | ![](https://img.shields.io/github/stars/MaZhiyuanBUAA/bert-tf1.4.0.svg) 98 | 99 | 15. [dhlee347/pytorchic-bert](https://github.com/dhlee347/pytorchic-bert), Pytorch Implementation of Google BERT, 100 | ![](https://img.shields.io/github/stars/dhlee347/pytorchic-bert.svg) 101 | 102 | 16. [kpot/keras-transformer](https://github.com/kpot/keras-transformer), Keras library for building (Universal) Transformers, facilitating BERT and GPT models, 103 | ![](https://img.shields.io/github/stars/kpot/keras-transformer.svg) 104 | 105 | 17. [miroozyx/BERT_with_keras](https://github.com/miroozyx/BERT_with_keras), A Keras version of Google's BERT model, 106 | ![](https://img.shields.io/github/stars/miroozyx/BERT_with_keras.svg) 107 | 108 | 18. [conda-forge/pytorch-pretrained-bert-feedstock](https://github.com/conda-forge/pytorch-pretrained-bert-feedstock), A conda-smithy repository for pytorch-pretrained-bert. , 109 | ![](https://img.shields.io/github/stars/conda-forge/pytorch-pretrained-bert-feedstock.svg) 110 | 111 | 112 | 19. [Rshcaroline/BERT_Pytorch_fastNLP](https://github.com/Rshcaroline/BERT_Pytorch_fastNLP), A PyTorch & fastNLP implementation of Google AI's BERT model. 113 | ![](https://img.shields.io/github/stars/Rshcaroline/BERT_Pytorch_fastNLP.svg) 114 | 115 | 20. [nghuyong/ERNIE-Pytorch](https://github.com/nghuyong/ERNIE-Pytorch), ERNIE Pytorch Version, 116 | ![](https://img.shields.io/github/stars/nghuyong/ERNIE-Pytorch.svg) 117 | 118 |
119 | 120 | 121 | 122 | ## Pretrained BERT weights: 123 | 1. [brightmart/roberta_zh](https://github.com/brightmart/roberta_zh), RoBERTa for Chinese, 中文预训练RoBERTa模型, 124 | ![](https://img.shields.io/github/stars/brightmart/roberta_zh.svg) 125 | 126 | 2. [ymcui/Chinese-BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm), Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm预训练模型) https://arxiv.org/abs/1906.08101, 127 | ![](https://img.shields.io/github/stars/ymcui/Chinese-BERT-wwm.svg) 128 | 129 | 3. [thunlp/OpenCLaP](https://github.com/thunlp/OpenCLaP),Open Chinese Language Pre-trained Model Zoo, OpenCLaP:多领域开源中文预训练语言模型仓库, 130 | ![](https://img.shields.io/github/stars/thunlp/OpenCLaP.svg) 131 | 132 | 4. [ymcui/Chinese-PreTrained-XLNet](https://github.com/ymcui/Chinese-PreTrained-XLNet), Pre-Trained Chinese XLNet(中文XLNet预训练模型), 133 | ![](https://img.shields.io/github/stars/ymcui/Chinese-PreTrained-XLNet.svg) 134 | 135 | 5. [brightmart/xlnet_zh](https://github.com/brightmart/xlnet_zh), 中文预训练XLNet模型: Pre-Trained Chinese XLNet_Large, 136 | ![](https://img.shields.io/github/stars/brightmart/xlnet_zh.svg) 137 | 138 | 139 | ## improvement over BERT: 140 | 1. [thunlp/ERNIE](https://github.com/https://github.com/thunlp/ERNIE), Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities", imporove bert with heterogeneous information fusion. 141 | ![](https://img.shields.io/github/stars/thunlp/ERNIE.svg) 142 | 143 | 2. [PaddlePaddle/LARK](https://github.com/PaddlePaddle/LARK), LAnguage Representations Kit, PaddlePaddle implementation of BERT. It also contains an improved version of BERT, ERNIE, for chinese NLP tasks. BERT 的中文改进版 ERNIE, 144 | ![](https://img.shields.io/github/stars/PaddlePaddle/LARK.svg) 145 | 146 | 3. [zihangdai/xlnet](https://github.com/zihangdai/xlnet), XLNet: Generalized Autoregressive Pretraining for Language Understanding, 147 | ![](https://img.shields.io/github/stars/zihangdai/xlnet.svg) 148 | 149 | 4. [kimiyoung/transformer-xl](https://github.com/kimiyoung/transformer-xl), Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, This repository contains the code in both PyTorch and TensorFlow for our paper. 150 | ![](https://img.shields.io/github/stars/kimiyoung/transformer-xl.svg) 151 | 152 | 5. [GaoPeng97/transformer-xl-chinese](https://github.com/GaoPeng97/transformer-xl-chinese), transformer xl在中文文本生成上的尝试。(transformer xl for text generation of chinese), 153 | ![](https://img.shields.io/github/stars/GaoPeng97/transformer-xl-chinese.svg) 154 | 155 | 6. [PaddlePaddle/ERNIE](https://github.com/PaddlePaddle/ERNIE), An Implementation of ERNIE For Language Understanding (including Pre-training models and Fine-tuning tools) BERT 的中文改进版 ERNIE, 156 | ![](https://img.shields.io/github/stars/PaddlePaddle/ERNIE.svg) 157 | 158 | 7. [pytorch/fairseq](https://github.com/pytorch/fairseq), Facebook AI Research Sequence-to-Sequence Toolkit written in Python. RoBERTa: A Robustly Optimized BERT Pretraining Approach, 159 | ![](https://img.shields.io/github/stars/pytorch/fairseq.svg) 160 | 161 | 162 | 8. [facebookresearch/SpanBERT](https://github.com/facebookresearch/SpanBERT), Code for using and evaluating SpanBERT. 163 | , This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans., 164 | ![](https://img.shields.io/github/stars/facebookresearch/SpanBERT.svg) 165 | 166 | 9. [brightmart/albert_zh](https://github.com/brightmart/albert_zh), 海量中文预训练ALBERT模型, A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS https://arxiv.org/pdf/1909.11942.pdf, 167 | ![](https://img.shields.io/github/stars/brightmart/albert_zh.svg) 168 | 169 | 10. [lonePatient/albert_pytorch](https://github.com/lonePatient/albert_pytorch), A Lite Bert For Self-Supervised Learning Language Representations, 170 | ![](https://img.shields.io/github/stars/lonePatient/albert_pytorch.svg) 171 | 172 | 173 | 11. [kpe/bert-for-tf2](https://github.com/kpe/bert-for-tf2), A Keras TensorFlow 2.0 implementation of BERT, ALBERT and adapter-BERT. https://github.com/kpe/bert-for-tf2, 174 | ![](https://img.shields.io/github/stars/kpe/bert-for-tf2.svg) 175 | 176 | 177 | 178 | ## other resources for BERT: 179 | 180 | 1. [brightmart/bert_language_understanding](https://github.com/brightmart/bert_language_understanding), Pre-training of Deep Bidirectional Transformers for Language Understanding: pre-train TextCNN, 181 | ![](https://img.shields.io/github/stars/brightmart/bert_language_understanding.svg) 182 | 183 | 2. [Y1ran/NLP-BERT--ChineseVersion](https://github.com/Y1ran/NLP-BERT--ChineseVersion), 谷歌自然语言处理模型BERT:论文解析与python代码, 184 | ![](https://img.shields.io/github/stars/Y1ran/NLP-BERT--ChineseVersion.svg) 185 | 186 |
187 | 188 | Click to see more 189 | 190 | 191 | 3. [yangbisheng2009/cn-bert](https://github.com/yangbisheng2009/cn-bert), BERT在中文NLP的应用, 语法检查 192 | ![](https://img.shields.io/github/stars/yangbisheng2009/cn-bert.svg) 193 | 194 | 4. [JayYip/bert-multiple-gpu](https://github.com/JayYip/bert-multiple-gpu), A multiple GPU support version of BERT, 195 | ![](https://img.shields.io/github/stars/JayYip/bert-multiple-gpu.svg) 196 | 197 | 5. [HighCWu/keras-bert-tpu](https://github.com/HighCWu/keras-bert-tpu), Implementation of BERT that could load official pre-trained models for feature extraction and prediction on TPU, 198 | ![](https://img.shields.io/github/stars/HighCWu/keras-bert-tpu.svg) 199 | 200 | 6. [Willyoung2017/Bert_Attempt](https://github.com/Willyoung2017/Bert_Attempt), PyTorch Pretrained Bert, 201 | ![](https://img.shields.io/github/stars/Willyoung2017/Bert_Attempt.svg) 202 | 203 | 7. [Pydataman/bert_examples](https://github.com/Pydataman/bert_examples), some examples of bert, run_classifier.py 是基于谷歌bert实现了Quora Insincere Questions Classification二分类比赛。run_ner.py是基于瑞金医院AI大赛 第一赛季数据和bert写的一个命名实体识别。 204 | ![](https://img.shields.io/github/stars/Pydataman/bert_examples.svg) 205 | 206 | 8. [guotong1988/BERT-chinese](https://github.com/guotong1988/BERT-chinese), BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 中文 汉语 207 | ![](https://img.shields.io/github/stars/guotong1988/BERT-chinese.svg) 208 | 209 | 9. [zhongyunuestc/bert_multitask](https://github.com/zhongyunuestc/bert_multitask), 多任务task 210 | ![](https://img.shields.io/github/stars/zhongyunuestc/bert_multitask.svg) 211 | 212 | 10. [Microsoft/AzureML-BERT](https://github.com/Microsoft/AzureML-BERT), End-to-end walk through for fine-tuning BERT using Azure Machine Learning , 213 | ![](https://img.shields.io/github/stars/Microsoft/AzureML-BERT.svg) 214 | 215 | 11. [bigboNed3/bert_serving](https://github.com/bigboNed3/bert_serving), export bert model for serving, 216 | ![](https://img.shields.io/github/stars/nghuyong/ERNIE-Pytorch.svg) 217 | 218 | 12. [yoheikikuta/bert-japanese](https://github.com/yoheikikuta/bert-japanese), BERT with SentencePiece for Japanese text. 219 | ![](https://img.shields.io/github/stars/bigboNed3/bert_serving.svg) 220 | 221 | 13. [whqwill/seq2seq-keyphrase-bert](https://github.com/whqwill/seq2seq-keyphrase-bert), add BERT to encoder part for https://github.com/memray/seq2seq-keyphrase-pytorch, 222 | ![](https://img.shields.io/github/stars/whqwill/seq2seq-keyphrase-bert.svg) 223 | 224 | 14. [algteam/bert-examples](https://github.com/algteam/bert-examples), bert-demo, 225 | ![](https://img.shields.io/github/stars/algteam/bert-examples.svg) 226 | 227 | 15. [cedrickchee/awesome-bert-nlp](https://github.com/cedrickchee/awesome-bert-nlp), A curated list of NLP resources focused on BERT, attention mechanism, Transformer networks, and transfer learning. 228 | ![](https://img.shields.io/github/stars/cedrickchee/awesome-bert-nlp.svg) 229 | 230 | 16. [cnfive/cnbert](https://github.com/cnfive/cnbert), 中文注释一下bert代码功能, 231 | ![](https://img.shields.io/github/stars/cnfive/cnbert.svg) 232 | 233 | 17. [brightmart/bert_customized](https://github.com/brightmart/bert_customized), bert with customized features, 234 | ![](https://img.shields.io/github/stars/brightmart/bert_customized.svg) 235 | 236 | 237 | 19. [JayYip/bert-multitask-learning](https://github.com/JayYip/bert-multitask-learning), BERT for Multitask Learning, 238 | ![](https://img.shields.io/github/stars/JayYip/bert-multitask-learning.svg) 239 | 240 | 20. [yuanxiaosc/BERT_Paper_Chinese_Translation](https://github.com/yuanxiaosc/BERT_Paper_Chinese_Translation), BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 论文的中文翻译。Chinese Translation! https://yuanxiaosc.github.io/2018/12/…, 241 | ![](https://img.shields.io/github/stars/yuanxiaosc/BERT_Paper_Chinese_Translation.svg) 242 | 243 | 21. [yaserkl/BERTvsULMFIT](https://github.com/yaserkl/BERTvsULMFIT), Comparing Text Classification results using BERT embedding and ULMFIT embedding, 244 | ![](https://img.shields.io/github/stars/yaserkl/BERTvsULMFIT.svg) 245 | 246 | 22. [kpot/keras-transformer](https://github.com/kpot/keras-transformer), Keras library for building (Universal) Transformers, facilitating BERT and GPT models, 247 | ![](https://img.shields.io/github/stars/kpot/keras-transformer.svg) 248 | 249 | 23. [1234560o/Bert-model-code-interpretation](https://github.com/1234560o/Bert-model-code-interpretation), 解读tensorflow版本Bert中modeling.py数据流 250 | ![](https://img.shields.io/github/stars/1234560o/Bert-model-code-interpretation.svg) 251 | 252 | 24. [cdathuraliya/bert-inference](https://github.com/cdathuraliya/bert-inference), A helper class for Google BERT (Devlin et al., 2018) to support online prediction and model pipelining. 253 | ![](https://img.shields.io/github/stars/cdathuraliya/bert-inference.svg) 254 | 255 | 256 | 25. [gameofdimension/java-bert-predict](https://github.com/gameofdimension/java-bert-predict), turn bert pretrain checkpoint into saved model for a feature extracting demo in java 257 | ![](https://img.shields.io/github/stars/gameofdimension/java-bert-predict.svg) 258 | 259 | 26. [1234560o/Bert-model-code-interpretation](https://github.com/1234560o/Bert-model-code-interpretation), 解读tensorflow版本Bert中modeling.py数据流 260 | ![](https://img.shields.io/github/stars/1234560o/Bert-model-code-interpretation.svg) 261 | 262 |
263 | 264 | 265 | ## domain specific BERT: 266 | 267 | 1. [allenai/scibert](https://github.com/allenai/scibert), A BERT model for scientific text. https://arxiv.org/abs/1903.10676, 268 | ![](https://img.shields.io/github/stars/allenai/scibert.svg) 269 | 270 | 2. [MeRajat/SolvingAlmostAnythingWithBert](https://github.com/MeRajat/SolvingAlmostAnythingWithBert), BioBert Pytorch 271 | ![](https://img.shields.io/github/stars/MeRajat/SolvingAlmostAnythingWithBert.svg) 272 | 273 | 3. [kexinhuang12345/clinicalBERT](https://github.com/kexinhuang12345/clinicalBERT), ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission https://arxiv.org/abs/1904.05342 274 | ![](https://img.shields.io/github/stars/kexinhuang12345/clinicalBERT.svg) 275 | 276 | 4. [EmilyAlsentzer/clinicalBERT](https://github.com/EmilyAlsentzer/clinicalBERT), repository for Publicly Available Clinical BERT Embeddings 277 | ![](https://img.shields.io/github/stars/EmilyAlsentzer/clinicalBERT.svg) 278 | 279 | 280 | ## BERT Deploy Tricks: 281 | 282 | 1. [zhihu/cuBERT](https://github.com/zhihu/cuBERT), Fast implementation of BERT inference directly on NVIDIA (CUDA, CUBLAS) and Intel MKL 283 | ![](https://img.shields.io/github/stars/zhihu/cuBERT.svg) 284 | 285 | 2. [xmxoxo/BERT-train2deploy](https://github.com/xmxoxo/BERT-train2deploy), Bert Model training and deploy, BERT模型从训练到部署, 286 | ![](https://img.shields.io/github/stars/xmxoxo/BERT-train2deploy.svg) 287 | 288 | 289 | 3. [https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT), BERT For TensorFlow, This repository provides a script and recipe to train BERT to achieve state of the art accuracy, and is tested and maintained by NVIDIA. 290 | ![](https://img.shields.io/github/stars/NVIDIA/DeepLearningExamples.svg) 291 | 292 | 4. [qiangsiwei/bert_distill](https://github.com/qiangsiwei/bert_distill), BERT distillation(基于BERT的蒸馏实验 ), 293 | ![](https://img.shields.io/github/stars/qiangsiwei/bert_distill.svg) 294 | 295 | 5. [kevinmtian/distill-bert](https://github.com/kevinmtian/distill-bert), Knowledge Distillation from BERT, 296 | ![](https://img.shields.io/github/stars/kevinmtian/distill-bert.svg) 297 | 298 | 299 | 300 | 301 | 302 | ## BERT QA & RC task: 303 | 304 | 1. [sogou/SMRCToolkit](https://github.com/sogou/SMRCToolkit), This toolkit was designed for the fast and efficient development of modern machine comprehension models, including both published models and original prototypes., 305 | ![](https://img.shields.io/github/stars/sogou/SMRCToolkit.svg) 306 | 307 | 308 | 2. [benywon/ChineseBert](https://github.com/benywon/ChineseBert), This is a chinese Bert model specific for question answering, 309 | ![](https://img.shields.io/github/stars/benywon/ChineseBert.svg) 310 | 311 | 3. [matthew-z/R-net](https://github.com/matthew-z/R-net), R-net in PyTorch, with BERT and ELMo, 312 | ![](https://img.shields.io/github/stars/matthew-z/R-net.svg) 313 | 314 | 4. [nyu-dl/dl4marco-bert](https://github.com/nyu-dl/dl4marco-bert), Passage Re-ranking with BERT, 315 | ![](https://img.shields.io/github/stars/nyu-dl/dl4marco-bert.svg) 316 | 317 | 5. [xzp27/BERT-for-Chinese-Question-Answering](https://github.com/xzp27/BERT-for-Chinese-Question-Answering), 318 | ![](https://img.shields.io/github/stars/xzp27/BERT-for-Chinese-Question-Answering.svg) 319 | 320 | 6. [chiayewken/bert-qa](https://github.com/chiayewken/bert-qa), BERT for question answering starting with HotpotQA, 321 | ![](https://img.shields.io/github/stars/chiayewken/bert-qa.svg) 322 | 323 | 7. [ankit-ai/BertQA-Attention-on-Steroids](https://github.com/ankit-ai/BertQA-Attention-on-Steroids), BertQA - Attention on Steroids, 324 | ![](https://img.shields.io/github/stars/ankit-ai/BertQA-Attention-on-Steroids.svg) 325 | 326 | 8. [NoviScl/BERT-RACE](https://github.com/NoviScl/BERT-RACE), This work is based on Pytorch implementation of BERT (https://github.com/huggingface/pytorch-pretrained-BERT). I adapted the original BERT model to work on multiple choice machine comprehension. 327 | ![](https://img.shields.io/github/stars/NoviScl/BERT-RACE.svg) 328 | 329 | 9. [eva-n27/BERT-for-Chinese-Question-Answering](https://github.com/eva-n27/BERT-for-Chinese-Question-Answering), 330 | ![](https://img.shields.io/github/stars/eva-n27/BERT-for-Chinese-Question-Answering.svg) 331 | 332 | 10. [allenai/allennlp-bert-qa-wrapper](https://github.com/allenai/allennlp-bert-qa-wrapper), This is a simple wrapper on top of pretrained BERT based QA models from pytorch-pretrained-bert to make AllenNLP model archives, so that you can serve demos from AllenNLP. 333 | ![](https://img.shields.io/github/stars/allenai/allennlp-bert-qa-wrapper.svg) 334 | 335 | 11. [edmondchensj/ChineseQA-with-BERT](https://github.com/edmondchensj/ChineseQA-with-BERT), EECS 496: Advanced Topics in Deep Learning Final Project: Chinese Question Answering with BERT (Baidu DuReader Dataset) 336 | ![](https://img.shields.io/github/stars/edmondchensj/ChineseQA-with-BERT.svg) 337 | 338 | 12. [graykode/toeicbert](https://github.com/graykode/toeicbert), TOEIC(Test of English for International Communication) solving using pytorch-pretrained-BERT model., 339 | ![](https://img.shields.io/github/starsgraykode/toeicbert.svg) 340 | 341 | 13. [graykode/KorQuAD-beginner](https://github.com/graykode/KorQuAD-beginner), https://github.com/graykode/KorQuAD-beginner 342 | ![](https://img.shields.io/github/stars/graykode/KorQuAD-beginner.svg) 343 | 344 | 14. [krishna-sharma19/SBU-QA](https://github.com/krishna-sharma19/SBU-QA), This repository uses pretrain BERT embeddings for transfer learning in QA domain 345 | ![](https://img.shields.io/github/stars/krishna-sharma19/SBU-QA.svg) 346 | 347 | 15. [basketballandlearn/Dureader-Bert](https://github.com/basketballandlearn/Dureader-Bert), BERT Dureader多文档阅读理解 排名第七, 2019 Dureader机器阅读理解 单模型代码。, 348 | ![](https://img.shields.io/github/stars/basketballandlearn/Dureader-Bert.svg) 349 | 350 | 351 | 352 | ## BERT classification task: 353 | 354 | 1. [zhpmatrix/Kaggle-Quora-Insincere-Questions-Classification](https://github.com/zhpmatrix/Kaggle-Quora-Insincere-Questions-Classification), Kaggle新赛(baseline)-基于BERT的fine-tuning方案+基于tensor2tensor的Transformer Encoder方案 355 | ![](https://img.shields.io/github/stars/zhpmatrix/Kaggle-Quora-Insincere-Questions-Classification.svg) 356 | 357 | 2. [maksna/bert-fine-tuning-for-chinese-multiclass-classification](https://github.com/maksna/bert-fine-tuning-for-chinese-multiclass-classification), use google pre-training model bert to fine-tuning for the chinese multiclass classification 358 | ![](https://img.shields.io/github/stars/maksna/bert-fine-tuning-for-chinese-multiclass-classification.svg) 359 | 360 | 3. [NLPScott/bert-Chinese-classification-task](https://github.com/NLPScott/bert-Chinese-classification-task), bert中文分类实践, 361 | ![](https://img.shields.io/github/stars/NLPScott/bert-Chinese-classification-task.svg) 362 | 363 | 4. [Socialbird-AILab/BERT-Classification-Tutorial](https://github.com/Socialbird-AILab/BERT-Classification-Tutorial), 364 | ![](https://img.shields.io/github/stars/Socialbird-AILab/BERT-Classification-Tutorial.svg) 365 | 366 | 5. [fooSynaptic/BERT_classifer_trial](https://github.com/fooSynaptic/BERT_classifer_trial), BERT trial for chinese corpus classfication 367 | ![](https://img.shields.io/github/stars/fooSynaptic/BERT_classifer_trial.svg) 368 | 369 | 6. [xiaopingzhong/bert-finetune-for-classfier](https://github.com/xiaopingzhong/bert-finetune-for-classfier), 微调BERT模型,同时构建自己的数据集实现分类 370 | ![](https://img.shields.io/github/stars/xiaopingzhong/bert-finetune-for-classfier.svg) 371 | 372 | 7. [pengming617/bert_classification](https://github.com/pengming617/bert_classification), 利用bert预训练的中文模型进行文本分类, 373 | ![](https://img.shields.io/github/stars/pengming617/bert_classification.svg) 374 | 375 | 8. [xieyufei1993/Bert-Pytorch-Chinese-TextClassification](https://github.com/xieyufei1993/Bert-Pytorch-Chinese-TextClassification), Pytorch Bert Finetune in Chinese Text Classification, 376 | ![](https://img.shields.io/github/stars/xieyufei1993/Bert-Pytorch-Chinese-TextClassification.svg) 377 | 378 | 9. [liyibo/text-classification-demos](https://github.com/liyibo/text-classification-demos), Neural models for Text Classification in Tensorflow, such as cnn, dpcnn, fasttext, bert ..., 379 | ![](https://img.shields.io/github/stars/liyibo/text-classification-demos.svg) 380 | 381 | 10. [circlePi/BERT_Chinese_Text_Class_By_pytorch](https://github.com/circlePi/BERT_Chinese_Text_Class_By_pytorch), A Pytorch implements of Chinese text class based on BERT_Pretrained_Model, 382 | ![](https://img.shields.io/github/stars/circlePi/BERT_Chinese_Text_Class_By_pytorch.svg) 383 | 384 | 11. [kaushaltrivedi/bert-toxic-comments-multilabel](https://github.com/kaushaltrivedi/bert-toxic-comments-multilabel), Multilabel classification for Toxic comments challenge using Bert, 385 | ![](https://img.shields.io/github/stars/kaushaltrivedi/bert-toxic-comments-multilabel.svg) 386 | 387 | 12. [lonePatient/BERT-chinese-text-classification-pytorch](https://github.com/lonePatient/BERT-chinese-text-classification-pytorch), This repo contains a PyTorch implementation of a pretrained BERT model for text classification., 388 | ![](https://img.shields.io/github/stars/lonePatient/BERT-chinese-text-classification-pytorch.svg) 389 | 390 | 391 | 392 | ## BERT Sentiment Analysis 393 | 394 | 1. [Chung-I/Douban-Sentiment-Analysis](https://github.com/Chung-I/Douban-Sentiment-Analysis), Sentiment Analysis on Douban Movie Short Comments Dataset using BERT. 395 | ![](https://img.shields.io/github/stars/Chung-I/Douban-Sentiment-Analysis.svg) 396 | 397 | 2. [lynnna-xu/bert_sa](https://github.com/lynnna-xu/bert_sa), bert sentiment analysis tensorflow serving with RESTful API 398 | ![](https://img.shields.io/github/stars/lynnna-xu/bert_sa.svg) 399 | 400 | 3. [HSLCY/ABSA-BERT-pair](https://github.com/HSLCY/ABSA-BERT-pair), Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence (NAACL 2019) https://arxiv.org/abs/1903.09588, 401 | ![](https://img.shields.io/github/stars/HSLCY/ABSA-BERT-pair.svg) 402 | 403 | 4. [songyouwei/ABSA-PyTorch](https://github.com/songyouwei/ABSA-PyTorch), Aspect Based Sentiment Analysis, PyTorch Implementations. 基于方面的情感分析,使用PyTorch实现。, 404 | ![](https://img.shields.io/github/stars/songyouwei/ABSA-PyTorch.svg) 405 | 406 | 5. [howardhsu/BERT-for-RRC-ABSA](https://github.com/howardhsu/BERT-for-RRC-ABSA), code for our NAACL 2019 paper: "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", 407 | ![](https://img.shields.io/github/stars/howardhsu/BERT-for-RRC-ABSA.svg) 408 | 409 | 6. [brightmart/sentiment_analysis_fine_grain](https://github.com/brightmart/sentiment_analysis_fine_grain), Multi-label Classification with BERT; Fine Grained Sentiment Analysis from AI challenger, 410 | ![](https://img.shields.io/github/stars/brightmart/sentiment_analysis_fine_grain.svg) 411 | 412 | 413 | ## BERT NER task: 414 | 415 | 1. [zhpmatrix/bert-sequence-tagging](https://github.com/zhpmatrix/bert-sequence-tagging), 基于BERT的中文序列标注 416 | ![](https://img.shields.io/github/stars/zhpmatrix/bert-sequence-tagging.svg) 417 | 418 | 2. [kyzhouhzau/BERT-NER](https://github.com/kyzhouhzau/BERT-NER), Use google BERT to do CoNLL-2003 NER ! , 419 | ![](https://img.shields.io/github/stars/kyzhouhzau/BERT-NER.svg) 420 | 421 | 3. [king-menin/ner-bert](https://github.com/king-menin/ner-bert), NER task solution (bert-Bi-LSTM-CRF) with google bert https://github.com/google-research. 422 | ![](https://img.shields.io/github/stars/king-menin/ner-bert.svg) 423 | 424 | 4. [macanv/BERT-BiLSMT-CRF-NER](https://github.com/macanv/BERT-BiLSMT-CRF-NER), Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning , 425 | ![](https://img.shields.io/github/stars/macanv/BERT-BiLSMT-CRF-NER.svg) 426 | 427 | 5. [FuYanzhe2/Name-Entity-Recognition](https://github.com/FuYanzhe2/Name-Entity-Recognition), Lstm-crf,Lattice-CRF,bert-ner及近年ner相关论文follow, 428 | ![](https://img.shields.io/github/stars/FuYanzhe2/Name-Entity-Recognition.svg) 429 | 430 | 6. [mhcao916/NER_Based_on_BERT](https://github.com/mhcao916/NER_Based_on_BERT), this project is based on google bert model, which is a Chinese NER 431 | ![](https://img.shields.io/github/stars/mhcao916/NER_Based_on_BERT.svg) 432 | 433 | 7. [ProHiryu/bert-chinese-ner](https://github.com/ProHiryu/bert-chinese-ner), 使用预训练语言模型BERT做中文NER, 434 | ![](https://img.shields.io/github/stars/ProHiryu/bert-chinese-ner.svg) 435 | 436 | 8. [sberbank-ai/ner-bert](https://github.com/sberbank-ai/ner-bert), BERT-NER (nert-bert) with google bert, 437 | ![](https://img.shields.io/github/stars/sberbank-ai/ner-bert.svg) 438 | 439 | 9. [kyzhouhzau/Bert-BiLSTM-CRF](https://github.com/kyzhouhzau/Bert-BiLSTM-CRF), This model base on bert-as-service. Model structure : bert-embedding bilstm crf. , 440 | ![](https://img.shields.io/github/stars/kyzhouhzau/Bert-BiLSTM-CRF.svg) 441 | 442 | 10. [Hoiy/berserker](https://github.com/Hoiy/berserker), Berserker - BERt chineSE woRd toKenizER, Berserker (BERt chineSE woRd toKenizER) is a Chinese tokenizer built on top of Google's BERT model. , 443 | ![](https://img.shields.io/github/stars/Hoiy/berserker.svg) 444 | 445 | 11. [Kyubyong/bert_ner](https://github.com/Kyubyong/bert_ner), Ner with Bert, 446 | ![](https://img.shields.io/github/stars/Kyubyong/bert_ner.svg) 447 | 448 | 12. [jiangpinglei/BERT_ChineseWordSegment](https://github.com/jiangpinglei/BERT_ChineseWordSegment), A Chinese word segment model based on BERT, F1-Score 97%, 449 | ![](https://img.shields.io/github/stars/jiangpinglei/BERT_ChineseWordSegment.svg) 450 | 451 | 13. [yanwii/ChineseNER](https://github.com/yanwii/ChineseNER), 基于Bi-GRU + CRF 的中文机构名、人名识别 中文实体识别, 支持google bert模型 452 | ![](https://img.shields.io/github/stars/yanwii/ChineseNER.svg) 453 | 454 | 14. [lemonhu/NER-BERT-pytorch](https://github.com/lemonhu/NER-BERT-pytorch), PyTorch solution of NER task Using Google AI's pre-trained BERT model. 455 | ![](https://img.shields.io/github/stars/lemonhu/NER-BERT-pytorch.svg) 456 | 457 | 458 | ## BERT Text Summarization Task: 459 | 460 | 1. [nlpyang/BertSum](https://github.com/nlpyang/BertSum), Code for paper Fine-tune BERT for Extractive Summarization, 461 | ![](https://img.shields.io/github/stars/nlpyang/BertSum.svg) 462 | 463 | 2. [santhoshkolloju/Abstractive-Summarization-With-Transfer-Learning](https://github.com/santhoshkolloju/Abstractive-Summarization-With-Transfer-Learning), Abstractive summarisation using Bert as encoder and Transformer Decoder, 464 | ![](https://img.shields.io/github/stars/santhoshkolloju/Abstractive-Summarization-With-Transfer-Learning.svg) 465 | 466 | 3. [nayeon7lee/bert-summarization](https://github.com/nayeon7lee/bert-summarization), Implementation of 'Pretraining-Based Natural Language Generation for Text Summarization', Paper: https://arxiv.org/pdf/1902.09243.pdf 467 | ![](https://img.shields.io/github/stars/nayeon7lee/bert-summarization.svg) 468 | 469 | 4. [dmmiller612/lecture-summarizer](https://github.com/dmmiller612/lecture-summarizer), Lecture summarizer with BERT 470 | ![](https://img.shields.io/github/stars/dmmiller612/lecture-summarizer.svg) 471 | 472 | 473 | 474 | 475 | ## BERT Text Generation Task: 476 | 1. [asyml/texar](https://github.com/asyml/texar), Toolkit for Text Generation and Beyond https://texar.io, Texar is a general-purpose text generation toolkit, has also implemented BERT here for classification, and text generation applications by combining with Texar's other modules. 477 | ![](https://img.shields.io/github/stars/asyml/texar.svg) 478 | 479 | 2. [voidful/BertGenerate](https://github.com/voidful/BertGenerate), Fine tuning bert for text generation, Bert 做 文本生成 的一些實驗 480 | ![](https://img.shields.io/github/stars/voidful/BertGenerate.svg) 481 | 482 | 3. [Tiiiger/bert_score](https://github.com/Tiiiger/bert_score), BERT score for language generation, 483 | ![](https://img.shields.io/github/stars/Tiiiger/bert_score.svg) 484 | 485 | 486 | 487 | ## BERT Knowledge Graph Task : 488 | 489 | 1. [lvjianxin/Knowledge-extraction](https://github.com/lvjianxin/Knowledge-extraction), 基于中文的知识抽取,BaseLine:Bi-LSTM+CRF 升级版:Bert预训练 490 | ![](https://img.shields.io/github/stars/lvjianxin/Knowledge-extraction.svg) 491 | 492 | 2. [sakuranew/BERT-AttributeExtraction](https://github.com/sakuranew/BERT-AttributeExtraction), USING BERT FOR Attribute Extraction in KnowledgeGraph. fine-tuning and feature extraction. 使用基于bert的微调和特征提取方法来进行知识图谱百度百科人物词条属性抽取。, 493 | ![](https://img.shields.io/github/stars/sakuranew/BERT-AttributeExtraction.svg) 494 | 495 | 3. [aditya-AI/Information-Retrieval-System-using-BERT](https://github.com/aditya-AI/Information-Retrieval-System-using-BERT), 496 | ![](https://img.shields.io/github/stars/aditya-AI/Information-Retrieval-System-using-BERT.svg) 497 | 498 | 4. [jkszw2014/bert-kbqa-NLPCC2017](https://github.com/jkszw2014/bert-kbqa-NLPCC2017), A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通),博客介绍 https://blog.csdn.net/ai_1046067944/article/details/86707784 , 499 | ![](https://img.shields.io/github/stars/jkszw2014/bert-kbqa-NLPCC2017.svg) 500 | 501 | 5. [yuanxiaosc/Schema-based-Knowledge-Extraction](https://github.com/yuanxiaosc/Schema-based-Knowledge-Extraction), Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。(将在比赛结束后,完善代码和使用说明), 502 | ![](https://img.shields.io/github/stars/yuanxiaosc/Schema-based-Knowledge-Extraction.svg) 503 | 504 | 6. [yuanxiaosc/Entity-Relation-Extraction](https://github.com/yuanxiaosc/Entity-Relation-Extraction), Entity and Relation Extraction Based on TensorFlow. 基于TensorFlow的管道式实体及关系抽取,2019语言与智能技术竞赛信息抽取任务解决方案(比赛结束后完善代码)。Schema based Knowledge Extraction, SKE 2019 http://lic2019.ccf.org.cn, 505 | ![](https://img.shields.io/github/stars/yuanxiaosc/Entity-Relation-Extraction.svg) 506 | 507 | 7. [WenRichard/KBQA-BERT](https://github.com/WenRichard/KBQA-BERT), 基于知识图谱的问答系统,BERT做命名实体识别和句子相似度,分为online和outline模式,博客介绍 https://zhuanlan.zhihu.com/p/62946533 , 508 | ![](https://img.shields.io/github/stars/WenRichard/KBQA-BERT.svg) 509 | 510 | 8. [zhpmatrix/BERTem](https://github.com/zhpmatrix/BERTem), ACL2019论文实现《Matching the Blanks: Distributional Similarity for Relation Learning》 , 511 | ![](https://img.shields.io/github/stars/zhpmatrix/BERTem.svg) 512 | 513 | 514 | 515 | 516 | ## BERT Coreference Resolution 517 | 1. [ianycxu/RGCN-with-BERT](https://github.com/ianycxu/RGCN-with-BERT), Gated-Relational Graph Convolutional Networks (RGCN) with BERT for Coreference Resolution Task 518 | ![](https://img.shields.io/github/stars/ianycxu/RGCN-with-BERT.svg) 519 | 520 | 2. [isabellebouchard/BERT_for_GAP-coreference](https://github.com/isabellebouchard/BERT_for_GAP-coreference), BERT finetuning for GAP unbiased pronoun resolution 521 | ![](https://img.shields.io/github/stars/isabellebouchard/BERT_for_GAP-coreference.svg) 522 | 523 | 524 | 525 | ## BERT visualization toolkit: 526 | 1. [jessevig/bertviz](https://github.com/jessevig/bertviz), Tool for visualizing BERT's attention, 527 | ![](https://img.shields.io/github/stars/jessevig/bertviz.svg) 528 | 529 | 530 | ## BERT chatbot : 531 | 1. [GaoQ1/rasa_nlu_gq](https://github.com/GaoQ1/rasa_nlu_gq), turn natural language into structured data(支持中文,自定义了N种模型,支持不同的场景和任务), 532 | ![](https://img.shields.io/github/stars/GaoQ1/rasa_nlu_gq.svg) 533 | 534 | 2. [GaoQ1/rasa_chatbot_cn](https://github.com/GaoQ1/rasa_chatbot_cn), 基于rasa-nlu和rasa-core 搭建的对话系统demo, 535 | ![](https://img.shields.io/github/stars/GaoQ1/rasa_chatbot_cn.svg) 536 | 537 | 3. [GaoQ1/rasa-bert-finetune](https://github.com/GaoQ1/rasa-bert-finetune), 支持rasa-nlu 的bert finetune, 538 | ![](https://img.shields.io/github/stars/GaoQ1/rasa-bert-finetune.svg) 539 | 540 | 4. [geodge831012/bert_robot](https://github.com/geodge831012/bert_robot), 用于智能助手回答问题的训练,基于BERT模型进行训练改造 541 | ![](https://img.shields.io/github/stars/geodge831012/bert_robot.svg) 542 | 543 | 5. [yuanxiaosc/BERT-for-Sequence-Labeling-and-Text-Classification](https://github.com/yuanxiaosc/BERT-for-Sequence-Labeling-and-Text-Classification), This is the template code to use BERT for sequence lableing and text classification, in order to facilitate BERT for more tasks. Currently, the template code has included conll-2003 named entity identification, Snips Slot Filling and Intent Prediction. 544 | ![](https://img.shields.io/github/stars/yuanxiaosc/BERT-for-Sequence-Labeling-and-Text-Classification.svg) 545 | 546 | 6. [guillaume-chevalier/ReuBERT](https://github.com/guillaume-chevalier/ReuBERT), A question-answering chatbot, simply. 547 | ![](https://img.shields.io/github/stars/guillaume-chevalier/ReuBERT.svg) 548 | 549 | 550 | 551 | ## BERT language model and embedding: 552 | 553 | 1. [hanxiao/bert-as-service](https://github.com/hanxiao/bert-as-service), Mapping a variable-length sentence to a fixed-length vector using pretrained BERT model, 554 | ![](https://img.shields.io/github/stars/hanxiao/bert-as-service.svg) 555 | 556 | 2. [YC-wind/embedding_study](https://github.com/YC-wind/embedding_study), 中文预训练模型生成字向量学习,测试BERT,ELMO的中文效果, 557 | ![](https://img.shields.io/github/stars/YC-wind/embedding_study.svg) 558 | 559 | 3. [Kyubyong/bert-token-embeddings](https://github.com/Kyubyong/bert-token-embeddings), Bert Pretrained Token Embeddings, 560 | ![](https://img.shields.io/github/stars/Kyubyong/bert-token-embeddings.svg) 561 | 562 | 4. [xu-song/bert_as_language_model](https://github.com/xu-song/bert_as_language_model), bert as language model, fork from https://github.com/google-research/bert, 563 | ![](https://img.shields.io/github/stars/xu-song/bert_as_language_model.svg) 564 | 565 | 5. [yuanxiaosc/Deep_dynamic_word_representation](https://github.com/yuanxiaosc/Deep_dynamic_word_representation), TensorFlow code and pre-trained models for deep dynamic word representation (DDWR). It combines the BERT model and ELMo's deep context word representation., 566 | ![](https://img.shields.io/github/stars/yuanxiaosc/Deep_dynamic_word_representation.svg) 567 | 568 | 6. [imgarylai/bert-embedding](https://github.com/imgarylai/bert-embedding), Token level embeddings from BERT model on mxnet and gluonnlp http://bert-embedding.readthedocs.io/, 569 | ![](https://img.shields.io/github/stars/imgarylai/bert-embedding.svg) 570 | 571 | 7. [terrifyzhao/bert-utils](https://github.com/terrifyzhao/bert-utils), BERT生成句向量,BERT做文本分类、文本相似度计算, 572 | ![](https://img.shields.io/github/stars/terrifyzhao/bert-utils.svg) 573 | 574 | 8. [fennuDetudou/BERT_implement](https://github.com/fennuDetudou/BERT_implement), 使用BERT模型进行文本分类,相似句子判断,以及词性标注, 575 | ![](https://img.shields.io/github/stars/fennuDetudou/BERT_implement.svg) 576 | 577 | 9. [whqwill/seq2seq-keyphrase-bert](https://github.com/whqwill/seq2seq-keyphrase-bert), add BERT to encoder part for https://github.com/memray/seq2seq-keyphrase-pytorch, 578 | ![](https://img.shields.io/github/stars/whqwill/seq2seq-keyphrase-bert.svg) 579 | 580 | 10. [charles9n/bert-sklearn](https://github.com/charles9n/bert-sklearn), a sklearn wrapper for Google's BERT model, 581 | ![](https://img.shields.io/github/stars/charles9n/bert-sklearn.svg) 582 | 583 | 584 | 11. [NVIDIA/Megatron-LM](https://github.com/NVIDIA/Megatron-LM), Ongoing research training transformer language models at scale, including: BERT, 585 | ![](https://img.shields.io/github/stars/NVIDIA/Megatron-LM.svg) 586 | 587 | 12. [hankcs/BERT-token-level-embedding](https://github.com/hankcs/BERT-token-level-embedding), Generate BERT token level embedding without pain 588 | ![](https://img.shields.io/github/stars/hankcs/BERT-token-level-embedding.svg) 589 | 590 | 13. [facebookresearch/LAMA](https://github.com/facebookresearch/LAMA), LAMA: LAnguage Model Analysis, LAMA is a set of connectors to pre-trained language models. 591 | ![](https://img.shields.io/github/stars/facebookresearch/LAMA.svg) 592 | 593 | 594 | 595 | 596 | ## BERT Text Match: 597 | 598 | 1. [pengming617/bert_textMatching](https://github.com/pengming617/bert_textMatching), 利用预训练的中文模型实现基于bert的语义匹配模型 数据集为LCQMC官方数据 599 | ![](https://img.shields.io/github/stars/pengming617/bert_textMatching.svg) 600 | 601 | 2. [Brokenwind/BertSimilarity](https://github.com/Brokenwind/BertSimilarity), Computing similarity of two sentences with google's BERT algorithm 602 | ![](https://img.shields.io/github/stars/Brokenwind/BertSimilarity.svg) 603 | 604 | 3. [policeme/chinese_bert_similarity](https://github.com/policeme/chinese_bert_similarity), bert chinese similarity 605 | ![](https://img.shields.io/github/stars/policeme/chinese_bert_similarity.svg) 606 | 607 | 4. [lonePatient/bert-sentence-similarity-pytorch](https://github.com/lonePatient/bert-sentence-similarity-pytorch), This repo contains a PyTorch implementation of a pretrained BERT model for sentence similarity task. 608 | ![](https://img.shields.io/github/stars/lonePatient/bert-sentence-similarity-pytorch.svg) 609 | 610 | 5. [nouhadziri/DialogEntailment](https://github.com/nouhadziri/DialogEntailment), The implementation of the paper "Evaluating Coherence in Dialogue Systems using Entailment" https://arxiv.org/abs/1904.03371 611 | ![](https://img.shields.io/github/stars/nouhadziri/DialogEntailment.svg) 612 | 613 | 6. [UKPLab/sentence-transformers](https://github.com/UKPLab/sentence-transformers), Sentence Embeddings with BERT & XLNet, 614 | Sentence Transformers: Sentence Embeddings using BERT / RoBERTa / XLNet with PyTorch, 615 | ![](https://img.shields.io/github/stars/UKPLab/sentence-transformers.svg) 616 | 617 | 618 | ## BERT tutorials: 619 | 620 | 1. [graykode/nlp-tutorial](https://github.com/graykode/nlp-tutorial), Natural Language Processing Tutorial for Deep Learning Researchers https://www.reddit.com/r/MachineLearn…, 621 | ![](https://img.shields.io/github/stars/graykode/nlp-tutorial.svg) 622 | 623 | 2. [dragen1860/TensorFlow-2.x-Tutorials](https://github.com/dragen1860/TensorFlow-2.x-Tutorials), TensorFlow 2.x version's Tutorials and Examples, including CNN, RNN, GAN, Auto-Encoders, FasterRCNN, GPT, BERT examples, etc. TF 2.0版入门实例代码,实战教程。, 624 | ![](https://img.shields.io/github/stars/dragen1860/TensorFlow-2.x-Tutorials.svg) 625 | 626 | 627 | --------------------------------------------------------------------------------