├── .gitignore
├── CMakeLists.txt
├── LICENSE
├── README.md
├── bench
└── sig_tree_bench.cpp
├── main.cpp
├── src
├── allocator.h
├── autovector.h
├── coding.h
├── kv_trans_trait.h
├── likely.h
├── page_size.h
├── sig_tree.h
├── sig_tree_impl.h
├── sig_tree_mop_impl.h
├── sig_tree_node_impl.h
├── sig_tree_rebuild_impl.h
├── sig_tree_visit_impl.h
└── slice.h
└── test
└── sig_tree_test.cpp
/.gitignore:
--------------------------------------------------------------------------------
1 | /.idea/
2 | /.vscode/
3 | /cmake-*/
4 | .DS_Store
--------------------------------------------------------------------------------
/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required(VERSION 3.8)
2 | project(sig_tree)
3 |
4 | set(CMAKE_CXX_STANDARD 17)
5 |
6 | set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=native -Wall -Werror")
7 |
8 | add_executable(sig_tree main.cpp
9 | bench/sig_tree_bench.cpp
10 | src/allocator.h
11 | src/autovector.h
12 | src/coding.h
13 | src/kv_trans_trait.h
14 | src/likely.h
15 | src/page_size.h
16 | src/sig_tree.h
17 | src/sig_tree_impl.h
18 | src/sig_tree_mop_impl.h
19 | src/sig_tree_node_impl.h
20 | src/sig_tree_rebuild_impl.h
21 | src/sig_tree_visit_impl.h
22 | src/slice.h
23 | test/sig_tree_test.cpp)
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # sig_tree
2 | Read ./bench/sig_tree_bench.cpp
3 |
4 | 1M 16B Keys Only Benchmark
5 | ```
6 | SGT - Add took 941 milliseconds
7 | std::set - emplace took 1027 milliseconds
8 | std::unordered_set - emplace took 440 milliseconds
9 | SGT - Get took 664 milliseconds
10 | std::set - find took 1381 milliseconds
11 | std::unordered_set - find took 192 milliseconds
12 | ```
--------------------------------------------------------------------------------
/bench/sig_tree_bench.cpp:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 |
7 | #include "../src/sig_tree.h"
8 | #include "../src/sig_tree_impl.h"
9 | #include "../src/sig_tree_mop_impl.h"
10 | #include "../src/sig_tree_node_impl.h"
11 | #include "../src/sig_tree_rebuild_impl.h"
12 | #include "../src/sig_tree_visit_impl.h"
13 |
14 | namespace sgt::sig_tree_bench {
15 | // 字符串比较次数
16 | static unsigned int sig_tree_cmp_times = 0;
17 | static unsigned int std_set_cmp_times = 0;
18 |
19 | /*
20 | * 将 SGT 中表示 KV 的 Token
21 | * 翻译还原为 Key 和 Value 的代理类
22 | * 大体为 Token => KV 的单向映射
23 | *
24 | * 这里的实现没有区分 Key 和 Value
25 | */
26 | class KVTrans {
27 | private:
28 | // KV 在内存中的表达是 C 式字符串
29 | const char * s_;
30 |
31 | public:
32 | explicit KVTrans(const char * s) : s_(s) {}
33 |
34 | public:
35 | bool operator==(const Slice & k) const {
36 | ++sig_tree_cmp_times;
37 | return strcmp(k.data(), s_) == 0;
38 | }
39 |
40 | Slice Key() const {
41 | return {s_};
42 | }
43 |
44 | bool Get(const Slice & k, std::string * v) const {
45 | if (*this == k) {
46 | if (v != nullptr) {
47 | v->assign(s_);
48 | }
49 | return true;
50 | }
51 | return false;
52 | }
53 |
54 | public:
55 | static uint64_t Pack(size_t offset) {
56 | return offset + 1;
57 | }
58 |
59 | static size_t Unpack(const uint64_t & rep) {
60 | return rep - 1;
61 | }
62 |
63 | static bool IsPacked(const uint64_t & rep) {
64 | return rep % 2 == 1;
65 | }
66 |
67 | static void * Base() {
68 | return nullptr;
69 | }
70 | };
71 |
72 | /*
73 | * Helper 接口定义了如何生成和使用 KV Token
74 | */
75 | class Helper final : public SignatureTreeTpl::Helper {
76 | public:
77 | ~Helper() override = default;
78 |
79 | public:
80 | // 根据要存储的 KV 返回一个 Token
81 | uint64_t Add(const Slice & k, const Slice & v) override {
82 | // 我确信 k.data() 会返回一个外部的 C 式字符串
83 | // 如果需要交接资源所有权, 可以在这里进行移动/复制
84 | return reinterpret_cast(k.data());
85 | }
86 |
87 | // 释放资源, 由于 KV 的所有权在外部, 这里不需要任何操作
88 | void Del(KVTrans & trans) override {}
89 |
90 | // Allocator.AllocatePage() 后获得的 offset 必须要能够打包进 Token
91 | // 言下之意就是 Token(默认类型 uint64_t) 的空间内必须能自省表达两种数据
92 | // union Token {
93 | // TokenByAdd a;
94 | // TokenByAllocatePage b;
95 | // }
96 | //
97 | // Add 和 AllocatePage 必然返回偶数
98 | // 后者 +1 成为奇数, 通过奇偶性区分二者
99 | uint64_t Pack(size_t offset) const override {
100 | return offset + 1;
101 | }
102 |
103 | size_t Unpack(const uint64_t & rep) const override {
104 | return rep - 1;
105 | }
106 |
107 | bool IsPacked(const uint64_t & rep) const override {
108 | return rep % 2 == 1;
109 | }
110 |
111 | KVTrans Trans(const uint64_t & rep) const override {
112 | // Token(rep) => KVTrans => KV
113 | return KVTrans(reinterpret_cast(static_cast(rep)));
114 | }
115 | };
116 |
117 | /*
118 | * 内存分配器
119 | *
120 | * 如果分配在 file-backed mmap 上可作为硬盘索引
121 | * 直接 malloc 就是内存索引
122 | */
123 | class AllocatorImpl final : public Allocator {
124 | public:
125 | std::unordered_set records_;
126 |
127 | public:
128 | // 释放已分配的内存
129 | ~AllocatorImpl() override {
130 | for (uintptr_t record:records_) {
131 | free(reinterpret_cast(record));
132 | }
133 | }
134 |
135 | public:
136 | // Base() + AllocatePage() 返回的 offset = 真实内存位置
137 | // 合理性在于如果使用 mmap, 有可能需要 re-mmap
138 | // 相同的偏移量永远能得到相同的内容, 尽管 Base() 可能返回不同的值
139 | // 如果是内存索引直接返回 0(nullptr) 即可
140 | void * Base() override {
141 | return nullptr;
142 | }
143 |
144 | // 分配一页内存, 大小为 kPageSize
145 | // 如果是 mmap 且需要扩容才能完成分配, 务必 throw AllocatorFullException
146 | // SGT 会捕获这一异常并调用 Grow(), 再根据 Base() 重新计算内存位置
147 | size_t AllocatePage() override {
148 | auto page = reinterpret_cast(malloc(kPageSize));
149 | records_.emplace(page);
150 | return page;
151 | }
152 |
153 | // 释放内存页
154 | void FreePage(size_t offset) override {
155 | auto it = records_.find(offset);
156 | free(reinterpret_cast(*it));
157 | records_.erase(it);
158 | }
159 |
160 | // 扩容
161 | void Grow() override {}
162 | };
163 |
164 | #define TIME_START auto start = std::chrono::high_resolution_clock::now()
165 | #define TIME_END auto end = std::chrono::high_resolution_clock::now()
166 | #define PRINT_TIME(name) \
167 | std::cout << name " took " << std::chrono::duration_cast(end - start).count() << " milliseconds" << std::endl
168 |
169 | void Run() {
170 | auto seed = std::random_device()();
171 | std::cout << "sig_tree_bench_seed: " << seed << std::endl;
172 |
173 | std::default_random_engine engine(seed);
174 | std::uniform_int_distribution dist(1);
175 |
176 | // 随机生成 1M 16B C 式字符串
177 | std::vector src(1000000);
178 | for (auto & s:src) {
179 | s = static_cast(malloc(16));
180 | for (size_t i = 0; i < 15; ++i) {
181 | s[i] = dist(engine);
182 | }
183 | s[15] = 0;
184 | }
185 |
186 | // 初始化 SGT
187 | Helper helper;
188 | AllocatorImpl allocator;
189 | SignatureTreeTpl tree(&helper, &allocator);
190 |
191 | // 初始化 std::set
192 | struct cmp {
193 | bool operator()(const char * a, const char * b) const {
194 | ++std_set_cmp_times;
195 | return strcmp(a, b) < 0;
196 | }
197 | };
198 | std::set set;
199 |
200 | // 初始化 std::unordered_set
201 | struct hash {
202 | size_t operator()(const char * a) const {
203 | return SliceHasher()(Slice(a));
204 | }
205 | };
206 | struct equal {
207 | bool operator()(const char * a, const char * b) const {
208 | return strcmp(a, b) == 0;
209 | }
210 | };
211 | std::unordered_set unordered_set;
212 |
213 | // Add - 开始
214 | {
215 | TIME_START;
216 | for (const auto & s:src) {
217 | tree.Add(reinterpret_cast(s), {});
218 | }
219 | TIME_END;
220 | PRINT_TIME("SGT - Add");
221 | }
222 | {
223 | TIME_START;
224 | for (const auto & s:src) {
225 | set.emplace(reinterpret_cast(s));
226 | }
227 | TIME_END;
228 | PRINT_TIME("std::set - emplace");
229 | }
230 | {
231 | TIME_START;
232 | for (const auto & s:src) {
233 | unordered_set.emplace(reinterpret_cast(s));
234 | }
235 | TIME_END;
236 | PRINT_TIME("std::unordered_set - emplace");
237 | }
238 | // Add - 结束
239 | // Get - 开始
240 | {
241 | TIME_START;
242 | for (const auto & s:src) {
243 | tree.Get(reinterpret_cast(s), nullptr);
244 | }
245 | TIME_END;
246 | PRINT_TIME("SGT - Get");
247 | }
248 | {
249 | TIME_START;
250 | for (const auto & s:src) {
251 | set.find(reinterpret_cast(s));
252 | }
253 | TIME_END;
254 | PRINT_TIME("std::set - find");
255 | }
256 | {
257 | TIME_START;
258 | for (const auto & s:src) {
259 | unordered_set.find(reinterpret_cast(s));
260 | }
261 | TIME_END;
262 | PRINT_TIME("std::unordered_set - find");
263 | }
264 | // Get - 结束
265 |
266 | // 统计
267 | std::cout << "sig_tree_cmp_times: " << sig_tree_cmp_times << std::endl;
268 | std::cout << "sig_tree_mem_pages: " << allocator.records_.size() << std::endl;
269 | std::cout << "std_set_cmp_times : " << std_set_cmp_times << std::endl;
270 |
271 | {
272 | TIME_START;
273 | for (auto it = src.cbegin(); it != src.cend();) {
274 | std::array ss;
275 | ss[0] = reinterpret_cast(*it++);
276 | ss[1] = it != src.cend() ? reinterpret_cast(*it++) : ss[0];
277 | ss[2] = it != src.cend() ? reinterpret_cast(*it++) : ss[1];
278 | ss[3] = it != src.cend() ? reinterpret_cast(*it++) : ss[2];
279 | ss[4] = it != src.cend() ? reinterpret_cast(*it++) : ss[3];
280 | ss[5] = it != src.cend() ? reinterpret_cast(*it++) : ss[4];
281 | ss[6] = it != src.cend() ? reinterpret_cast(*it++) : ss[5];
282 | ss[7] = it != src.cend() ? reinterpret_cast(*it++) : ss[6];
283 | ss[8] = it != src.cend() ? reinterpret_cast(*it++) : ss[7];
284 | ss[9] = it != src.cend() ? reinterpret_cast(*it++) : ss[8];
285 | tree.MultiGetWithCallback<10>(ss.data());
286 | }
287 | TIME_END;
288 | PRINT_TIME("SGT - MultiGetWithCallback<10>");
289 | }
290 | {
291 | TIME_START;
292 | for (const auto & s:src) {
293 | tree.GetWithCallback(reinterpret_cast(s));
294 | }
295 | TIME_END;
296 | PRINT_TIME("SGT - GetWithCallback");
297 | }
298 | {
299 | TIME_START;
300 | tree.Compact();
301 | TIME_END;
302 | PRINT_TIME("SGT - Compact");
303 | }
304 | {
305 | Helper helper_rebuild;
306 | AllocatorImpl allocator_rebuild;
307 | SignatureTreeTpl tree_rebuild(&helper_rebuild, &allocator_rebuild);
308 | {
309 | TIME_START;
310 | tree.Rebuild(&tree_rebuild);
311 | TIME_END;
312 | PRINT_TIME("SGT - Rebuild");
313 | }
314 | {
315 | TIME_START;
316 | tree_rebuild.VisitDel({}, [](auto) {
317 | return std::make_pair(true, true);
318 | });
319 | TIME_END;
320 | PRINT_TIME("SGT - VisitDel");
321 | assert(tree_rebuild.Size() == 0);
322 | }
323 | }
324 | {
325 | TIME_START;
326 | tree.Visit({}, [](auto) { return true; });
327 | TIME_END;
328 | PRINT_TIME("SGT - Visit");
329 | }
330 | {
331 | TIME_START;
332 | for (const auto & s:src) {
333 | tree.Del(reinterpret_cast(s));
334 | }
335 | TIME_END;
336 | PRINT_TIME("SGT - Del");
337 | }
338 |
339 | for (auto & s:src) {
340 | free(s);
341 | }
342 | }
343 | }
--------------------------------------------------------------------------------
/main.cpp:
--------------------------------------------------------------------------------
1 | #include
2 |
3 | namespace sgt {
4 | namespace sig_tree_test {
5 | void Run();
6 | }
7 | namespace sig_tree_bench {
8 | void Run();
9 | }
10 | }
11 |
12 | using namespace sgt;
13 |
14 | int main() {
15 | sig_tree_test::Run();
16 | sig_tree_bench::Run();
17 | std::cout << "Done." << std::endl;
18 | return 0;
19 | }
--------------------------------------------------------------------------------
/src/allocator.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_ALLOCATOR_H
3 | #define SIG_TREE_ALLOCATOR_H
4 |
5 | #include
6 |
7 | namespace sgt {
8 | class AllocatorFullException : public std::exception {
9 | public:
10 | const char * what() const noexcept override {
11 | return "no space for allocation";
12 | }
13 | };
14 |
15 | class Allocator {
16 | public:
17 | Allocator() = default;
18 |
19 | virtual ~Allocator() = default;
20 |
21 | public:
22 | virtual void * Base() = 0;
23 |
24 | // 如无法分配, 抛出 AllocatorFullException
25 | virtual size_t AllocatePage() = 0;
26 |
27 | virtual void FreePage(size_t offset) = 0;
28 |
29 | virtual void Grow() = 0;
30 | };
31 | }
32 |
33 | #endif //SIG_TREE_ALLOCATOR_H
34 |
--------------------------------------------------------------------------------
/src/autovector.h:
--------------------------------------------------------------------------------
1 | // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
2 | // This source code is licensed under both the GPLv2 (found in the
3 | // COPYING file in the root directory) and Apache 2.0 License
4 | // (found in the LICENSE.Apache file in the root directory).
5 | #pragma once
6 |
7 | #include
8 | #include
9 | #include
10 | #include
11 | #include
12 | #include
13 |
14 | namespace rocksdb {
15 |
16 | // A vector that leverages pre-allocated stack-based array to achieve better
17 | // performance for array with small amount of items.
18 | //
19 | // The interface resembles that of vector, but with less features since we aim
20 | // to solve the problem that we have in hand, rather than implementing a
21 | // full-fledged generic container.
22 | //
23 | // Currently we don't support:
24 | // * reserve()/shrink_to_fit()
25 | // If used correctly, in most cases, people should not touch the
26 | // underlying vector at all.
27 | // * random insert()/erase(), please only use push_back()/pop_back().
28 | // * No move/swap operations. Each autovector instance has a
29 | // stack-allocated array and if we want support move/swap operations, we
30 | // need to copy the arrays other than just swapping the pointers. In this
31 | // case we'll just explicitly forbid these operations since they may
32 | // lead users to make false assumption by thinking they are inexpensive
33 | // operations.
34 | //
35 | // Naming style of public methods almost follows that of the STL's.
36 | template
37 | class autovector {
38 | public:
39 | // General STL-style container member types.
40 | typedef T value_type;
41 | typedef typename std::vector::difference_type difference_type;
42 | typedef typename std::vector::size_type size_type;
43 | typedef value_type & reference;
44 | typedef const value_type & const_reference;
45 | typedef value_type * pointer;
46 | typedef const value_type * const_pointer;
47 |
48 | // This class is the base for regular/const iterator
49 | template
50 | class iterator_impl {
51 | public:
52 | // -- iterator traits
53 | typedef iterator_impl self_type;
54 | typedef TValueType value_type;
55 | typedef TValueType & reference;
56 | typedef TValueType * pointer;
57 | typedef typename TAutoVector::difference_type difference_type;
58 | typedef std::random_access_iterator_tag iterator_category;
59 |
60 | iterator_impl(TAutoVector * vect, size_t index)
61 | : vect_(vect), index_(index) {};
62 |
63 | iterator_impl(const iterator_impl &) = default;
64 |
65 | ~iterator_impl() {}
66 |
67 | iterator_impl & operator=(const iterator_impl &) = default;
68 |
69 | // -- Advancement
70 | // ++iterator
71 | self_type & operator++() {
72 | ++index_;
73 | return *this;
74 | }
75 |
76 | // iterator++
77 | self_type operator++(int) {
78 | auto old = *this;
79 | ++index_;
80 | return old;
81 | }
82 |
83 | // --iterator
84 | self_type & operator--() {
85 | --index_;
86 | return *this;
87 | }
88 |
89 | // iterator--
90 | self_type operator--(int) {
91 | auto old = *this;
92 | --index_;
93 | return old;
94 | }
95 |
96 | self_type operator-(difference_type len) const {
97 | return self_type(vect_, index_ - len);
98 | }
99 |
100 | difference_type operator-(const self_type & other) const {
101 | assert(vect_ == other.vect_);
102 | return index_ - other.index_;
103 | }
104 |
105 | self_type operator+(difference_type len) const {
106 | return self_type(vect_, index_ + len);
107 | }
108 |
109 | self_type & operator+=(difference_type len) {
110 | index_ += len;
111 | return *this;
112 | }
113 |
114 | self_type & operator-=(difference_type len) {
115 | index_ -= len;
116 | return *this;
117 | }
118 |
119 | // -- Reference
120 | reference operator*() const {
121 | assert(vect_->size() >= index_);
122 | return (*vect_)[index_];
123 | }
124 |
125 | pointer operator->() const {
126 | assert(vect_->size() >= index_);
127 | return &(*vect_)[index_];
128 | }
129 |
130 | reference operator[](difference_type len) const {
131 | return *(*this + len);
132 | }
133 |
134 | // -- Logical Operators
135 | bool operator==(const self_type & other) const {
136 | assert(vect_ == other.vect_);
137 | return index_ == other.index_;
138 | }
139 |
140 | bool operator!=(const self_type & other) const { return !(*this == other); }
141 |
142 | bool operator>(const self_type & other) const {
143 | assert(vect_ == other.vect_);
144 | return index_ > other.index_;
145 | }
146 |
147 | bool operator<(const self_type & other) const {
148 | assert(vect_ == other.vect_);
149 | return index_ < other.index_;
150 | }
151 |
152 | bool operator>=(const self_type & other) const {
153 | assert(vect_ == other.vect_);
154 | return index_ >= other.index_;
155 | }
156 |
157 | bool operator<=(const self_type & other) const {
158 | assert(vect_ == other.vect_);
159 | return index_ <= other.index_;
160 | }
161 |
162 | private:
163 | TAutoVector * vect_ = nullptr;
164 | size_t index_ = 0;
165 | };
166 |
167 | typedef iterator_impl iterator;
168 | typedef iterator_impl const_iterator;
169 | typedef std::reverse_iterator reverse_iterator;
170 | typedef std::reverse_iterator const_reverse_iterator;
171 |
172 | autovector() : values_(reinterpret_cast(buf_)) {}
173 |
174 | autovector(std::initializer_list init_list)
175 | : values_(reinterpret_cast(buf_)) {
176 | for (const T & item : init_list) {
177 | push_back(item);
178 | }
179 | }
180 |
181 | ~autovector() { clear(); }
182 |
183 | // -- Immutable operations
184 | // Indicate if all data resides in in-stack data structure.
185 | bool only_in_stack() const {
186 | // If no element was inserted at all, the vector's capacity will be `0`.
187 | return vect_.capacity() == 0;
188 | }
189 |
190 | size_type size() const { return num_stack_items_ + vect_.size(); }
191 |
192 | // resize does not guarantee anything about the contents of the newly
193 | // available elements
194 | void resize(size_type n) {
195 | if (n > kSize) {
196 | vect_.resize(n - kSize);
197 | while (num_stack_items_ < kSize) {
198 | new((void *) (&values_[num_stack_items_++])) value_type();
199 | }
200 | num_stack_items_ = kSize;
201 | } else {
202 | vect_.clear();
203 | while (num_stack_items_ < n) {
204 | new((void *) (&values_[num_stack_items_++])) value_type();
205 | }
206 | while (num_stack_items_ > n) {
207 | values_[--num_stack_items_].~value_type();
208 | }
209 | }
210 | }
211 |
212 | bool empty() const { return size() == 0; }
213 |
214 | const_reference operator[](size_type n) const {
215 | assert(n < size());
216 | if (n < kSize) {
217 | return values_[n];
218 | }
219 | return vect_[n - kSize];
220 | }
221 |
222 | reference operator[](size_type n) {
223 | assert(n < size());
224 | if (n < kSize) {
225 | return values_[n];
226 | }
227 | return vect_[n - kSize];
228 | }
229 |
230 | const_reference at(size_type n) const {
231 | assert(n < size());
232 | return (*this)[n];
233 | }
234 |
235 | reference at(size_type n) {
236 | assert(n < size());
237 | return (*this)[n];
238 | }
239 |
240 | reference front() {
241 | assert(!empty());
242 | return *begin();
243 | }
244 |
245 | const_reference front() const {
246 | assert(!empty());
247 | return *begin();
248 | }
249 |
250 | reference back() {
251 | assert(!empty());
252 | return *(end() - 1);
253 | }
254 |
255 | const_reference back() const {
256 | assert(!empty());
257 | return *(end() - 1);
258 | }
259 |
260 | // -- Mutable Operations
261 | void push_back(T && item) {
262 | if (num_stack_items_ < kSize) {
263 | new((void *) (&values_[num_stack_items_])) value_type();
264 | values_[num_stack_items_++] = std::move(item);
265 | } else {
266 | vect_.push_back(item);
267 | }
268 | }
269 |
270 | void push_back(const T & item) {
271 | if (num_stack_items_ < kSize) {
272 | new((void *) (&values_[num_stack_items_])) value_type();
273 | values_[num_stack_items_++] = item;
274 | } else {
275 | vect_.push_back(item);
276 | }
277 | }
278 |
279 | template
280 | void emplace_back(Args && ... args) {
281 | if (num_stack_items_ < kSize) {
282 | new((void *) (&values_[num_stack_items_++]))
283 | value_type(std::forward(args)...);
284 | } else {
285 | vect_.emplace_back(std::forward(args)...);
286 | }
287 | }
288 |
289 | void pop_back() {
290 | assert(!empty());
291 | if (!vect_.empty()) {
292 | vect_.pop_back();
293 | } else {
294 | values_[--num_stack_items_].~value_type();
295 | }
296 | }
297 |
298 | void clear() {
299 | while (num_stack_items_ > 0) {
300 | values_[--num_stack_items_].~value_type();
301 | }
302 | vect_.clear();
303 | }
304 |
305 | // -- Copy and Assignment
306 | autovector & assign(const autovector & other);
307 |
308 | autovector(const autovector & other) { assign(other); }
309 |
310 | autovector & operator=(const autovector & other) { return assign(other); }
311 |
312 | // -- Iterator Operations
313 | iterator begin() { return iterator(this, 0); }
314 |
315 | const_iterator begin() const { return const_iterator(this, 0); }
316 |
317 | iterator end() { return iterator(this, this->size()); }
318 |
319 | const_iterator end() const { return const_iterator(this, this->size()); }
320 |
321 | reverse_iterator rbegin() { return reverse_iterator(end()); }
322 |
323 | const_reverse_iterator rbegin() const {
324 | return const_reverse_iterator(end());
325 | }
326 |
327 | reverse_iterator rend() { return reverse_iterator(begin()); }
328 |
329 | const_reverse_iterator rend() const {
330 | return const_reverse_iterator(begin());
331 | }
332 |
333 | private:
334 | size_type num_stack_items_ = 0; // current number of items
335 |
336 | alignas(alignof(value_type))
337 | char buf_[kSize * sizeof(value_type)]; // the first `kSize` items
338 |
339 | pointer values_;
340 | // used only if there are more than `kSize` items.
341 | std::vector vect_;
342 | };
343 |
344 | template
345 | autovector & autovector::assign(const autovector & other) {
346 | values_ = reinterpret_cast(buf_);
347 | // copy the internal vector
348 | vect_.assign(other.vect_.begin(), other.vect_.end());
349 |
350 | // copy array
351 | num_stack_items_ = other.num_stack_items_;
352 | std::copy(other.values_, other.values_ + num_stack_items_, values_);
353 |
354 | return *this;
355 | }
356 |
357 | } // namespace rocksdb
--------------------------------------------------------------------------------
/src/coding.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_CODING_H
3 | #define SIG_TREE_CODING_H
4 |
5 | #include
6 |
7 | namespace sgt {
8 | static_assert(sizeof(uint8_t) == sizeof(char));
9 |
10 | inline char Uint8ToChar(uint8_t i) {
11 | return (char) i;
12 | }
13 |
14 | inline uint8_t CharToUint8(char c) {
15 | return (uint8_t) c;
16 | }
17 | }
18 |
19 | #endif //SIG_TREE_CODING_H
20 |
--------------------------------------------------------------------------------
/src/kv_trans_trait.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_KV_TRANS_TRAIT_H
3 | #define SIG_TREE_KV_TRANS_TRAIT_H
4 |
5 | #include
6 |
7 | #include "slice.h"
8 |
9 | #define SGT_CHECK_EXPR(Name, Expr) \
10 | template \
11 | struct Name { \
12 | private: \
13 | template \
14 | inline static constexpr std::false_type Check(...); \
15 | \
16 | template \
17 | inline static constexpr decltype((Expr), std::true_type()) Check(int); \
18 | \
19 | public: \
20 | enum { \
21 | value = decltype(Name::Check(int()))::value \
22 | }; \
23 | }
24 |
25 | namespace sgt {
26 | template
27 | struct is_kv_trans {
28 | enum {
29 | value =
30 | std::is_same() == Slice()), bool>::value &&
31 | std::is_same().Key()), Slice>::value &&
32 | std::is_same().Get(Slice(), (std::string *) {})), bool>::value
33 | };
34 | };
35 |
36 | SGT_CHECK_EXPR(has_pack, T::Pack);
37 |
38 | SGT_CHECK_EXPR(has_unpack, T::Unpack);
39 |
40 | SGT_CHECK_EXPR(has_is_packed, T::IsPacked);
41 |
42 | SGT_CHECK_EXPR(has_base, T::Base);
43 | }
44 |
45 | #endif //SIG_TREE_KV_TRANS_TRAIT_H
46 |
--------------------------------------------------------------------------------
/src/likely.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_LIKELY_H
3 | #define SIG_TREE_LIKELY_H
4 |
5 | #define SGT_LIKELY(x) (__builtin_expect((x), 1))
6 | #define SGT_UNLIKELY(x) (__builtin_expect((x), 0))
7 |
8 | #endif //SIG_TREE_LIKELY_H
9 |
--------------------------------------------------------------------------------
/src/page_size.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_PAGE_SIZE_H
3 | #define SIG_TREE_PAGE_SIZE_H
4 |
5 | namespace sgt {
6 | constexpr unsigned int kPageSize = 4096; // 4KB
7 | }
8 |
9 | #endif //SIG_TREE_PAGE_SIZE_H
10 |
--------------------------------------------------------------------------------
/src/sig_tree.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_SIG_TREE_H
3 | #define SIG_TREE_SIG_TREE_H
4 |
5 | /*
6 | * 签名树
7 | * 作者: 林诚
8 | * 发布协议: AGPL
9 | * 完成时间: 2018春
10 | *
11 | * SGT 无法区分 "abc\0\0" 与 "abc\0"
12 | * 解决方案: C 式字符串等
13 | */
14 |
15 | #include
16 | #include
17 | #include
18 | #include
19 |
20 | #include "allocator.h"
21 | #include "kv_trans_trait.h"
22 | #include "likely.h"
23 | #include "page_size.h"
24 |
25 | namespace sgt {
26 | template<
27 | typename KV_TRANS, // KV_REP => K, V
28 | typename K_DIFF = uint16_t,
29 | typename KV_REP = uint64_t>
30 | class SignatureTreeTpl {
31 | static_assert(is_kv_trans::value);
32 | static_assert(!std::numeric_limits::is_signed);
33 |
34 | public:
35 | class Helper {
36 | public:
37 | Helper() = default;
38 |
39 | virtual ~Helper() = default;
40 |
41 | public:
42 | virtual KV_REP Add(const Slice & k, const Slice & v) = 0;
43 |
44 | virtual void Del(KV_TRANS & trans) = 0;
45 |
46 | virtual KV_REP Pack(size_t offset) const = 0;
47 |
48 | virtual size_t Unpack(const KV_REP & rep) const = 0;
49 |
50 | virtual bool IsPacked(const KV_REP & rep) const = 0;
51 |
52 | virtual KV_TRANS Trans(const KV_REP & rep) const = 0;
53 | };
54 |
55 | protected:
56 | Helper * const helper_;
57 | Allocator * const allocator_;
58 | void * base_;
59 | const size_t kRootOffset;
60 |
61 | public:
62 | SignatureTreeTpl(Helper * helper, Allocator * allocator);
63 |
64 | SignatureTreeTpl(Helper * helper, Allocator * allocator, size_t root_offset)
65 | : helper_(helper),
66 | allocator_(allocator),
67 | base_(allocator->Base()),
68 | kRootOffset(root_offset) {}
69 |
70 | SignatureTreeTpl(const SignatureTreeTpl &) = delete;
71 |
72 | SignatureTreeTpl & operator=(const SignatureTreeTpl &) = delete;
73 |
74 | public:
75 | bool Get(const Slice & k, std::string * v) const;
76 |
77 | // auto(* callback)(KV_REP * rep)
78 | template
79 | auto GetWithCallback(const Slice & k,
80 | CALLBACK && callback = {} /* [](KV_REP * rep) { return rep; } */);
81 |
82 | // auto(* callback)(std::array & reps)
83 | template
84 | auto MultiGetWithCallback(const Slice * ks,
85 | CALLBACK && callback = {} /* [](std::array & reps) { return reps; } */);
86 |
87 | size_t Size() const;
88 |
89 | size_t RootOffset() const { return kRootOffset; }
90 |
91 | // bool(* visitor)(const KV_REP & rep)
92 | template
93 | void Visit(const Slice & target, VISITOR && visitor, E && expected = {}) const {
94 | VisitGenericImpl(this, target,
95 | std::forward(visitor),
96 | std::forward(expected));
97 | }
98 |
99 | // std::pair(* visitor)(KV_REP & rep)
100 | template
101 | void VisitDel(const Slice & target, VISITOR && visitor, E && expected = {}) {
102 | VisitGenericImpl(this, target,
103 | std::forward(visitor),
104 | std::forward(expected));
105 | }
106 |
107 | // bool(* if_dup_callback)(KV_TRANS & trans, KV_REP & rep)
108 | template
109 | bool Add(const Slice & k, V && v,
110 | IF_DUP_CALLBACK && if_dup_callback = {});
111 |
112 | bool Del(const Slice & k);
113 |
114 | void Compact();
115 |
116 | void Rebuild(SignatureTreeTpl * dst) const;
117 |
118 | protected:
119 | enum {
120 | kPyramidBrickLength = 8
121 | };
122 |
123 | inline static constexpr size_t PyramidBrickNum(size_t rank) {
124 | size_t num = 0;
125 | do {
126 | rank = (rank + kPyramidBrickLength - 1) / kPyramidBrickLength;
127 | num += rank;
128 | } while (rank > 1);
129 | return num;
130 | }
131 |
132 | inline static constexpr size_t CalcPyramidHeight(size_t rank) {
133 | size_t height = 0;
134 | do {
135 | rank = (rank + kPyramidBrickLength - 1) / kPyramidBrickLength;
136 | ++height;
137 | } while (rank > 1);
138 | return height;
139 | }
140 |
141 | inline static constexpr size_t PyramidHeight(size_t rank) {
142 | if constexpr (kPyramidBrickLength != 8) {
143 | return CalcPyramidHeight(rank);
144 | } else {
145 | if (SGT_UNLIKELY(rank <= 8)) {
146 | return 1;
147 | } else if (SGT_UNLIKELY(rank <= 64)) {
148 | return 2;
149 | } else {
150 | return 3;
151 | }
152 | }
153 | }
154 |
155 | template
156 | struct NodeTpl {
157 | struct Pyramid {
158 | enum {
159 | kBrickNum = PyramidBrickNum(RANK),
160 | kHeight = PyramidHeight(RANK)
161 | };
162 |
163 | std::array vals_;
164 | std::array idxes_;
165 |
166 | static constexpr auto kAbsOffsets = []() {
167 | std::array arr{};
168 | size_t i = 0;
169 | size_t offset = 0;
170 | size_t rank = RANK;
171 | do {
172 | arr[i++] = offset;
173 | rank = (rank + kPyramidBrickLength - 1) / kPyramidBrickLength;
174 | offset += rank;
175 | } while (rank > 1);
176 | return arr;
177 | }();
178 |
179 | void Build(const K_DIFF * from, const K_DIFF * to, size_t rebuild_idx);
180 |
181 | size_t MinAt(const K_DIFF * from, const K_DIFF * to,
182 | K_DIFF * min_val = nullptr) const;
183 |
184 | size_t TrimLeft(const K_DIFF * cbegin, const K_DIFF * from, const K_DIFF * to,
185 | K_DIFF * min_val = nullptr);
186 |
187 | size_t TrimRight(const K_DIFF * cbegin, const K_DIFF * from, const K_DIFF * to,
188 | K_DIFF * min_val = nullptr);
189 |
190 | size_t CalcOffset(size_t level, size_t index, K_DIFF * min_val) const;
191 | };
192 |
193 | union CacheEntry {
194 | std::array as_uint8_array;
195 | uint16_t as_uint16;
196 | };
197 | typedef std::array Cache;
198 |
199 | std::array reps_;
200 | std::array diffs_;
201 | uint32_t size_ = 0;
202 | #ifndef SGT_NO_DENSE_INPUT_CACHE
203 | Cache cache_;
204 | #endif
205 | Pyramid pyramid_;
206 | };
207 |
208 | template
209 | struct NodeRank {
210 | enum {
211 | kSize = sizeof(NodeTpl),
212 | value = kSize > kPageSize
213 | ? static_cast(NodeRank::value)
214 | : static_cast(NodeRank kPageSize)>::value)
215 | };
216 | };
217 |
218 | template
219 | struct NodeRank {
220 | enum {
221 | kSize = sizeof(NodeTpl),
222 | value = RANK
223 | };
224 | };
225 |
226 | typedef NodeTpl::value> Node;
227 | static_assert(std::is_standard_layout::value &&
228 | std::is_trivially_copyable::value);
229 |
230 | struct Page {
231 | std::vector diffs;
232 | std::vector reps;
233 | };
234 |
235 | protected:
236 | Node * OffsetToMemNode(size_t offset) const {
237 | return reinterpret_cast(reinterpret_cast(Base()) + offset);
238 | }
239 |
240 | static std::tuple
241 | FindBestMatch(const Node * node, const Slice & k);
242 |
243 | static std::tuple
244 | FindBestMatchImpl(const Node * node, const Slice & k);
245 |
246 | bool CombatInsert(const Slice & opponent, const Slice & k, KV_REP v,
247 | Node * hint, size_t hint_idx, bool hint_direct);
248 |
249 | void NodeSplit(Node * parent);
250 |
251 | void NodeMerge(Node * parent, size_t idx, bool direct, size_t parent_size,
252 | Node * child, size_t child_size);
253 |
254 | void NodeCompact(Node * node);
255 |
256 | Page RebuildHeadNode(const Node * node, SignatureTreeTpl * dst,
257 | std::vector * pool) const;
258 |
259 | Page RebuildInternalNode(const Node * node,
260 | const K_DIFF * cbegin, const K_DIFF * cend, const K_DIFF * min_it,
261 | typename Node::Pyramid & pyramid, bool direct, SignatureTreeTpl * dst,
262 | std::vector * pool) const;
263 |
264 | static Page RebuildLRPagesToTree(Page && l, Page && r, K_DIFF diff, SignatureTreeTpl * dst,
265 | std::vector * pool);
266 |
267 | static size_t RebuildPageToTree(const Page & page, SignatureTreeTpl * dst);
268 |
269 | static void RebuildPageToNode(const Page & page, Node * node);
270 |
271 | static void NodeInsert(Node * node, size_t insert_idx, bool insert_direct,
272 | bool direct, K_DIFF diff, const KV_REP & rep, size_t size);
273 |
274 | static void NodeRemove(Node * node, size_t idx, bool direct, size_t size);
275 |
276 | static void NodeBuild(Node * node, size_t rebuild_idx = 0);
277 |
278 | static size_t NodeSize(const Node * node);
279 |
280 | static bool IsNodeFull(const Node * node);
281 |
282 | static K_DIFF PackDiffAtAndShift(K_DIFF diff_at, uint8_t shift) {
283 | return (diff_at << 3) | (7 - shift);
284 | }
285 |
286 | static std::pair
287 | UnpackDiffAtAndShift(K_DIFF packed_diff) {
288 | return {packed_diff >> 3, (~packed_diff) & 0b111 /* 7 - (packed_diff & 0b111) */};
289 | }
290 |
291 | template
292 | static void VisitGenericImpl(T self, const Slice & target, VISITOR && visitor, E && expected);
293 |
294 | protected:
295 | inline KV_REP Pack(size_t offset) const {
296 | if constexpr (has_pack::value) {
297 | return KV_TRANS::Pack(offset);
298 | } else {
299 | return helper_->Pack(offset);
300 | }
301 | }
302 |
303 | inline size_t Unpack(const KV_REP & rep) const {
304 | if constexpr (has_unpack::value) {
305 | return KV_TRANS::Unpack(rep);
306 | } else {
307 | return helper_->Unpack(rep);
308 | }
309 | }
310 |
311 | inline bool IsPacked(const KV_REP & rep) const {
312 | if constexpr (has_is_packed::value) {
313 | return KV_TRANS::IsPacked(rep);
314 | } else {
315 | return helper_->IsPacked(rep);
316 | }
317 | }
318 |
319 | inline void * Base() const {
320 | if constexpr (has_base::value) {
321 | return KV_TRANS::Base();
322 | } else {
323 | return base_;
324 | }
325 | }
326 |
327 | public:
328 | enum {
329 | kNodeRank = NodeRank<>::value,
330 | kNodeRepRank = kNodeRank + 1,
331 | kForward = false,
332 | kBackward = true,
333 | kMajorVersion = 1,
334 | kMinorVersion = 20,
335 | kMaxKeyLength = std::numeric_limits::max() >> 3
336 | };
337 |
338 | static_assert(PyramidHeight(kNodeRank) == CalcPyramidHeight(kNodeRank));
339 | };
340 | }
341 |
342 | #endif //SIG_TREE_SIG_TREE_H
343 |
--------------------------------------------------------------------------------
/src/sig_tree_impl.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_SIG_TREE_IMPL_H
3 | #define SIG_TREE_SIG_TREE_IMPL_H
4 |
5 | #ifndef SGT_NO_MM_PREFETCH
6 | #include
7 | #endif
8 |
9 | #include
10 |
11 | #include "coding.h"
12 | #include "likely.h"
13 | #include "sig_tree.h"
14 |
15 | namespace sgt {
16 | template
17 | inline const T * SmartMinElem8(const T * from, const T * to, T * min_val);
18 |
19 | template
20 | SignatureTreeTpl::
21 | SignatureTreeTpl(Helper * helper, Allocator * allocator)
22 | : SignatureTreeTpl(helper, allocator, allocator->AllocatePage()) {
23 | new(OffsetToMemNode(kRootOffset)) Node();
24 | }
25 |
26 | template
27 | bool SignatureTreeTpl::
28 | Get(const Slice & k, std::string * v) const {
29 | const Node * cursor = OffsetToMemNode(kRootOffset);
30 | if (SGT_UNLIKELY(NodeSize(cursor) == 0)) {
31 | return false;
32 | }
33 |
34 | while (true) {
35 | auto[idx, direct, _] = FindBestMatch(cursor, k);
36 | const auto & rep = cursor->reps_[idx + direct];
37 | if (IsPacked(rep)) {
38 | cursor = OffsetToMemNode(Unpack(rep));
39 | } else {
40 | const auto & trans = helper_->Trans(rep);
41 | return trans.Get(k, v);
42 | }
43 | }
44 | }
45 |
46 | template
47 | template
48 | auto SignatureTreeTpl::
49 | GetWithCallback(const Slice & k,
50 | CALLBACK && callback) {
51 | Node * cursor = OffsetToMemNode(kRootOffset);
52 | if (SGT_UNLIKELY(NodeSize(cursor) == 0)) {
53 | if constexpr (std::is_same::value) {
54 | return static_cast(nullptr);
55 | } else {
56 | return callback(static_cast(nullptr));
57 | }
58 | }
59 |
60 | while (true) {
61 | auto[idx, direct, _] = FindBestMatch(cursor, k);
62 | auto & r = cursor->reps_[idx + direct];
63 | if (IsPacked(r)) {
64 | cursor = OffsetToMemNode(Unpack(r));
65 | } else {
66 | if constexpr (std::is_same::value) {
67 | return &r;
68 | } else {
69 | return callback(&r);
70 | }
71 | }
72 | }
73 | }
74 |
75 | template
76 | size_t SignatureTreeTpl::
77 | Size() const {
78 | auto SizeSub = [this](size_t offset, auto && SizeSub) -> size_t {
79 | size_t cnt = 0;
80 | const Node * cursor = OffsetToMemNode(offset);
81 | for (size_t i = 0; i < NodeSize(cursor); ++i) {
82 | const auto & rep = cursor->reps_[i];
83 | if (IsPacked(rep)) {
84 | cnt += SizeSub(Unpack(rep), SizeSub);
85 | } else {
86 | ++cnt;
87 | }
88 | }
89 | return cnt;
90 | };
91 | return SizeSub(kRootOffset, SizeSub);
92 | }
93 |
94 | template
95 | template
96 | bool SignatureTreeTpl::
97 | Add(const Slice & k, V && v,
98 | IF_DUP_CALLBACK && if_dup_callback) {
99 | assert(k.size() < kMaxKeyLength);
100 | Node * cursor = OffsetToMemNode(kRootOffset);
101 | if (SGT_UNLIKELY(NodeSize(cursor) == 0)) {
102 | if constexpr (std::is_convertible::value) {
103 | cursor->reps_[0] = v;
104 | } else {
105 | cursor->reps_[0] = helper_->Add(k, std::forward(v));
106 | }
107 | cursor->size_ = 1;
108 | return true;
109 | }
110 |
111 | while (true) {
112 | auto[idx, direct, _] = FindBestMatch(cursor, k);
113 | auto & rep = cursor->reps_[idx + direct];
114 | if (IsPacked(rep)) {
115 | cursor = OffsetToMemNode(Unpack(rep));
116 | } else {
117 | auto && trans = helper_->Trans(rep);
118 | if (trans == k) {
119 | if constexpr (!std::is_same::value) {
120 | return if_dup_callback(trans, rep);
121 | } else { // cannot overwrite by default
122 | return false;
123 | }
124 | } else { // insert
125 | if constexpr (std::is_convertible::value) {
126 | return CombatInsert(trans.Key(), k, v,
127 | cursor, idx, direct);
128 | } else {
129 | return CombatInsert(trans.Key(), k, helper_->Add(k, std::forward(v)),
130 | cursor, idx, direct);
131 | }
132 | }
133 | }
134 | }
135 | }
136 |
137 | template
138 | bool SignatureTreeTpl::
139 | Del(const Slice & k) {
140 | Node * cursor = OffsetToMemNode(kRootOffset);
141 | if (SGT_UNLIKELY(NodeSize(cursor) == 0)) {
142 | return false;
143 | }
144 |
145 | Node * parent = nullptr;
146 | size_t parent_idx{};
147 | bool parent_direct{};
148 | size_t parent_size{};
149 |
150 | while (true) {
151 | auto[idx, direct, size] = FindBestMatch(cursor, k);
152 | const auto & rep = cursor->reps_[idx + direct];
153 | if (IsPacked(rep)) {
154 | parent = cursor;
155 | parent_idx = idx;
156 | parent_direct = direct;
157 | parent_size = size;
158 | cursor = OffsetToMemNode(Unpack(rep));
159 | } else {
160 | auto && trans = helper_->Trans(rep);
161 | if (trans == k) {
162 | helper_->Del(trans);
163 | NodeRemove(cursor, idx, direct, size--);
164 | if (parent != nullptr && parent->reps_.size() - parent_size + 1 >= size) {
165 | NodeMerge(parent, parent_idx, parent_direct, parent_size,
166 | cursor, size);
167 | } else if (KV_REP r;
168 | size == 1 && (r = cursor->reps_[0], IsPacked(r))) {
169 | assert(parent == nullptr);
170 | Node * child = OffsetToMemNode(Unpack(r));
171 | NodeMerge(cursor, 0, false, 1,
172 | child, NodeSize(child));
173 | }
174 | return true;
175 | } else {
176 | return false;
177 | }
178 | }
179 | }
180 | }
181 |
182 | template
183 | void SignatureTreeTpl::
184 | Compact() {
185 | NodeCompact(OffsetToMemNode(kRootOffset));
186 | }
187 |
188 | template
189 | std::tuple
190 | SignatureTreeTpl::
191 | FindBestMatch(const Node * node, const Slice & k) {
192 | #ifndef SGT_NO_MM_PREFETCH
193 | _mm_prefetch(&node->size_, _MM_HINT_T0);
194 | auto p = reinterpret_cast(&node->diffs_);
195 | p -= reinterpret_cast(p) % 64;
196 | _mm_prefetch(p + 64 * 0, _MM_HINT_T2);
197 | _mm_prefetch(p + 64 * 1, _MM_HINT_T2);
198 | _mm_prefetch(p + 64 * 2, _MM_HINT_T2);
199 | _mm_prefetch(p + 64 * 3, _MM_HINT_T2);
200 | _mm_prefetch(p + 64 * 4, _MM_HINT_T2);
201 | #endif
202 | return FindBestMatchImpl(node, k);
203 | }
204 |
205 | template
206 | std::tuple
207 | SignatureTreeTpl::
208 | FindBestMatchImpl(const Node * node, const Slice & k) {
209 | size_t size = NodeSize(node);
210 | if (SGT_UNLIKELY(size <= 1)) {
211 | return {0, false, size};
212 | }
213 |
214 | #ifndef SGT_NO_DENSE_INPUT_CACHE
215 | uint8_t diff_a;
216 | uint8_t diff_b;
217 | unsigned int diff_m;
218 | unsigned int diff_n;
219 | typename Node::Pyramid pyramid;
220 | const K_DIFF * base;
221 | K_DIFF base_val;
222 |
223 | const K_DIFF * cbegin = node->diffs_.cbegin();
224 | const K_DIFF * cend = &node->diffs_[size - 1];
225 |
226 | K_DIFF min_val;
227 | const K_DIFF * min_it = cbegin + node->pyramid_.MinAt(cbegin, cend, &min_val);
228 | auto[diff_at, shift] = UnpackDiffAtAndShift(min_val);
229 |
230 | uint8_t crit_byte = k.size() > diff_at
231 | ? CharToUint8(k[diff_at])
232 | : static_cast(0);
233 | unsigned int pos = (crit_byte & ((1 << (shift + 1)) - 1));
234 | if (shift < 3) {
235 | ++diff_at;
236 | uint8_t remaining = 3 - shift;
237 | pos <<= remaining;
238 | pos |= ((k.size() > diff_at
239 | ? CharToUint8(k[diff_at])
240 | : static_cast(0)) >> (8 - remaining));
241 | } else if (shift > 3) {
242 | pos >>= (shift - 3);
243 | }
244 |
245 | auto direct = (pos >> 3);
246 | auto & entry = const_cast(node->cache_)[pos];
247 | #define entry_as_ar entry.as_uint8_array
248 | #define entry_as_ui entry.as_uint16
249 |
250 | if (entry_as_ui > 1) {
251 | const K_DIFF * cb;
252 | const K_DIFF * ce;
253 | if (!direct) { // left
254 | ce = min_it - entry_as_ar[0];
255 | cb = ce - entry_as_ar[1];
256 | } else { // right
257 | cb = min_it + entry_as_ar[0];
258 | ce = cb + entry_as_ar[1];
259 | }
260 |
261 | if (entry_as_ar[1] == 9) {
262 | const auto it = &cb[8];
263 | const auto val = cb[8];
264 | min_it = SmartMinElem8(cb, it, &min_val);
265 | if (min_val > val) {
266 | min_val = val;
267 | min_it = it;
268 | }
269 | } else if (entry_as_ar[1] <= 8) {
270 | min_it = SmartMinElem8(cb, ce, &min_val);
271 | } else {
272 | pyramid = node->pyramid_;
273 | if (cb != cbegin) {
274 | min_it = node->diffs_.cbegin() + pyramid.TrimLeft(node->diffs_.cbegin(), cb, ce, &min_val);
275 | }
276 | if (ce != cend) {
277 | min_it = node->diffs_.cbegin() + pyramid.TrimRight(node->diffs_.cbegin(), cb, ce, &min_val);
278 | }
279 | }
280 |
281 | cbegin = cb;
282 | cend = ce;
283 | } else if (auto it = min_it + direct;
284 | it == cbegin || // !direct && min_it - direct == cbegin
285 | it == cend) { // direct && min_it + direct == cend
286 | return {min_it - node->diffs_.cbegin(), direct, size};
287 | } else {
288 | pyramid = node->pyramid_;
289 |
290 | if (entry_as_ui != 0) {
291 | goto search_skip;
292 | }
293 | diff_a = 1;
294 | diff_b = 0;
295 | base = min_it;
296 | base_val = min_val;
297 | if (!direct) {
298 | goto build_cache_left;
299 | } else {
300 | goto build_cache_right;
301 | }
302 | }
303 |
304 | while (true) {
305 | search:
306 | assert(min_it == std::min_element(cbegin, cend) && *min_it == min_val);
307 | std::tie(diff_at, shift) = UnpackDiffAtAndShift(min_val);
308 |
309 | // left or right?
310 | crit_byte = k.size() > diff_at
311 | ? CharToUint8(k[diff_at])
312 | : static_cast(0);
313 | direct = ((crit_byte >> shift) & 1);
314 | search_skip:
315 | if (!direct) { // go left
316 | cend = min_it;
317 | if (cbegin == cend) {
318 | return {min_it - node->diffs_.cbegin(), direct, size};
319 | }
320 | min_it = node->diffs_.cbegin() + pyramid.TrimRight(node->diffs_.cbegin(), cbegin, cend, &min_val);
321 | } else { // go right
322 | cbegin = min_it + 1;
323 | if (cbegin == cend) {
324 | return {min_it - node->diffs_.cbegin(), direct, size};
325 | }
326 | min_it = node->diffs_.cbegin() + pyramid.TrimLeft(node->diffs_.cbegin(), cbegin, cend, &min_val);
327 | }
328 | }
329 |
330 | while (true) {
331 | assert(min_it == std::min_element(cbegin, cend) && *min_it == min_val);
332 | std::tie(diff_at, shift) = UnpackDiffAtAndShift(min_val);
333 |
334 | // left or right?
335 | crit_byte = k.size() > diff_at
336 | ? CharToUint8(k[diff_at])
337 | : static_cast(0);
338 | direct = ((crit_byte >> shift) & 1);
339 | if (!direct) { // go left
340 | build_cache_left:
341 | cend = min_it;
342 | if (cbegin == cend) {
343 | if ((diff_m = static_cast(base - (cend + 1) /* can be negative */)) <= UINT8_MAX) {
344 | diff_a = diff_m;
345 | diff_b = 1;
346 | }
347 | entry_as_ui = typename Node::CacheEntry{{diff_a, diff_b}}.as_uint16;
348 | return {min_it - node->diffs_.cbegin(), direct, size};
349 | }
350 | min_it = node->diffs_.cbegin() + pyramid.TrimRight(node->diffs_.cbegin(), cbegin, cend, &min_val);
351 | } else { // go right
352 | cbegin = min_it + 1;
353 | if (cbegin == cend) {
354 | if ((diff_m = static_cast(base - cend)) <= UINT8_MAX) {
355 | diff_a = diff_m;
356 | diff_b = 1;
357 | }
358 | entry_as_ui = typename Node::CacheEntry{{diff_a, diff_b}}.as_uint16;
359 | return {min_it - node->diffs_.cbegin(), direct, size};
360 | }
361 | min_it = node->diffs_.cbegin() + pyramid.TrimLeft(node->diffs_.cbegin(), cbegin, cend, &min_val);
362 | }
363 |
364 | if ((diff_m = static_cast(base - cend)) <= UINT8_MAX &&
365 | (diff_n = cend - cbegin) <= UINT8_MAX) {
366 | diff_a = diff_m;
367 | diff_b = diff_n;
368 | }
369 | if (min_val - base_val >= 4) {
370 | entry_as_ui = typename Node::CacheEntry{{diff_a, diff_b}}.as_uint16;
371 | goto search;
372 | }
373 | }
374 |
375 | while (true) {
376 | assert(min_it == std::min_element(cbegin, cend) && *min_it == min_val);
377 | std::tie(diff_at, shift) = UnpackDiffAtAndShift(min_val);
378 |
379 | // left or right?
380 | crit_byte = k.size() > diff_at
381 | ? CharToUint8(k[diff_at])
382 | : static_cast(0);
383 | direct = ((crit_byte >> shift) & 1);
384 | if (!direct) { // go left
385 | cend = min_it;
386 | if (cbegin == cend) {
387 | if ((diff_m = static_cast(cbegin - base)) <= UINT8_MAX) {
388 | diff_a = diff_m;
389 | diff_b = 1;
390 | }
391 | entry_as_ui = typename Node::CacheEntry{{diff_a, diff_b}}.as_uint16;
392 | return {min_it - node->diffs_.cbegin(), direct, size};
393 | }
394 | min_it = node->diffs_.cbegin() + pyramid.TrimRight(node->diffs_.cbegin(), cbegin, cend, &min_val);
395 | } else { // go right
396 | build_cache_right:
397 | cbegin = min_it + 1;
398 | if (cbegin == cend) {
399 | if ((diff_m = static_cast(min_it /* cbegin - 1 */ - base)) <= UINT8_MAX) {
400 | diff_a = diff_m;
401 | diff_b = 1;
402 | }
403 | entry_as_ui = typename Node::CacheEntry{{diff_a, diff_b}}.as_uint16;
404 | return {min_it - node->diffs_.cbegin(), direct, size};
405 | }
406 | min_it = node->diffs_.cbegin() + pyramid.TrimLeft(node->diffs_.cbegin(), cbegin, cend, &min_val);
407 | }
408 |
409 | if ((diff_m = static_cast(cbegin - base)) <= UINT8_MAX &&
410 | (diff_n = cend - cbegin) <= UINT8_MAX) {
411 | diff_a = diff_m;
412 | diff_b = diff_n;
413 | }
414 | if (min_val - base_val >= 4) {
415 | entry_as_ui = typename Node::CacheEntry{{diff_a, diff_b}}.as_uint16;
416 | goto search;
417 | }
418 | }
419 | #undef entry_as_ar
420 | #undef entry_as_ui
421 | #else
422 | const K_DIFF * cbegin = node->diffs_.cbegin();
423 | const K_DIFF * cend = &node->diffs_[size - 1];
424 |
425 | K_DIFF min_val;
426 | auto pyramid = node->pyramid_;
427 | const K_DIFF * min_it = cbegin + node->pyramid_.MinAt(cbegin, cend, &min_val);
428 | while (true) {
429 | assert(min_it == std::min_element(cbegin, cend) && *min_it == min_val);
430 | auto[diff_at, shift] = UnpackDiffAtAndShift(min_val);
431 |
432 | // left or right?
433 | uint8_t crit_byte = k.size() > diff_at
434 | ? CharToUint8(k[diff_at])
435 | : static_cast(0);
436 | auto direct = ((crit_byte >> shift) & 1);
437 | if (!direct) { // go left
438 | cend = min_it;
439 | if (cbegin == cend) {
440 | return {min_it - node->diffs_.cbegin(), direct, size};
441 | }
442 | min_it = node->diffs_.cbegin() + pyramid.TrimRight(node->diffs_.cbegin(), cbegin, cend, &min_val);
443 | } else { // go right
444 | cbegin = min_it + 1;
445 | if (cbegin == cend) {
446 | return {min_it - node->diffs_.cbegin(), direct, size};
447 | }
448 | min_it = node->diffs_.cbegin() + pyramid.TrimLeft(node->diffs_.cbegin(), cbegin, cend, &min_val);
449 | }
450 | }
451 | #endif
452 | }
453 |
454 | template
455 | bool SignatureTreeTpl::
456 | CombatInsert(const Slice & opponent, const Slice & k, KV_REP v,
457 | Node * hint, size_t hint_idx, bool hint_direct) {
458 | K_DIFF diff_at = 0;
459 | char a, b;
460 | while ((a = opponent[diff_at]) == (b = k[diff_at])) {
461 | ++diff_at;
462 | }
463 |
464 | // __builtin_clz: returns the number of leading 0-bits in x, starting at the
465 | // most significant bit position if x is 0, the result is undefined
466 | uint8_t shift = (__builtin_clz(CharToUint8(a ^ b)) ^ 31); // bsr
467 | auto direct = ((CharToUint8(b) >> shift) & 1);
468 |
469 | K_DIFF packed_diff = PackDiffAtAndShift(diff_at, shift);
470 | Node * cursor = hint;
471 | restart:
472 | while (true) {
473 | size_t insert_idx;
474 | bool insert_direct;
475 |
476 | size_t cursor_size = NodeSize(cursor);
477 | if (cursor_size == 1 || (hint != nullptr && packed_diff > hint->diffs_[hint_idx])) {
478 | insert_idx = hint_idx;
479 | insert_direct = hint_direct;
480 | hint = nullptr;
481 | } else {
482 | const K_DIFF * cbegin = cursor->diffs_.cbegin();
483 | const K_DIFF * cend = &cursor->diffs_[cursor_size - 1];
484 |
485 | K_DIFF exist_diff;
486 | auto pyramid = cursor->pyramid_;
487 | const K_DIFF * min_it = cbegin + cursor->pyramid_.MinAt(cbegin, cend, &exist_diff);
488 | while (true) {
489 | assert(min_it == std::min_element(cbegin, cend) && *min_it == exist_diff);
490 | if (exist_diff > packed_diff) {
491 | if (hint != nullptr) {
492 | hint = nullptr;
493 | cursor = OffsetToMemNode(kRootOffset);
494 | goto restart;
495 | }
496 | insert_idx = (!direct ? cbegin : (cend - 1)) - cursor->diffs_.cbegin();
497 | insert_direct = direct;
498 | break;
499 | }
500 | hint = nullptr;
501 |
502 | auto[crit_diff_at, crit_shift] = UnpackDiffAtAndShift(exist_diff);
503 | uint8_t crit_byte = k.size() > crit_diff_at
504 | ? CharToUint8(k[crit_diff_at])
505 | : static_cast(0);
506 | auto crit_direct = ((crit_byte >> crit_shift) & 1);
507 | if (!crit_direct) {
508 | cend = min_it;
509 | if (cbegin == cend) {
510 | insert_idx = min_it - cursor->diffs_.cbegin();
511 | insert_direct = crit_direct;
512 | break;
513 | }
514 | min_it = cursor->diffs_.cbegin() +
515 | pyramid.TrimRight(cursor->diffs_.cbegin(), cbegin, cend, &exist_diff);
516 | } else {
517 | cbegin = min_it + 1;
518 | if (cbegin == cend) {
519 | insert_idx = min_it - cursor->diffs_.cbegin();
520 | insert_direct = crit_direct;
521 | break;
522 | }
523 | min_it = cursor->diffs_.cbegin() +
524 | pyramid.TrimLeft(cursor->diffs_.cbegin(), cbegin, cend, &exist_diff);
525 | }
526 | }
527 | }
528 |
529 | const auto & rep = cursor->reps_[insert_idx + insert_direct];
530 | if (cursor->diffs_[insert_idx] > packed_diff || !IsPacked(rep)) {
531 | if (IsNodeFull(cursor)) {
532 | try {
533 | NodeSplit(cursor);
534 | } catch (const AllocatorFullException &) {
535 | size_t offset = reinterpret_cast(cursor) -
536 | reinterpret_cast(base_);
537 | allocator_->Grow();
538 | base_ = allocator_->Base();
539 | cursor = OffsetToMemNode(offset);
540 | NodeSplit(cursor);
541 | }
542 | continue;
543 | }
544 | NodeInsert(cursor, insert_idx, insert_direct,
545 | direct, packed_diff, v, cursor_size);
546 | break;
547 | }
548 | cursor = OffsetToMemNode(Unpack(rep));
549 | }
550 | return true;
551 | }
552 |
553 | #define add_gap(arr, idx, size) \
554 | do { \
555 | auto idx__ = (idx); \
556 | auto size__ = (size); \
557 | memmove(&arr[idx__ + 1], &arr[idx__], sizeof(arr[0]) * (size__ - idx__)); \
558 | } while (false)
559 |
560 | #define del_gap(arr, idx, size) \
561 | do { \
562 | auto idx__ = (idx); \
563 | auto size__ = (size); \
564 | auto indx__ = (idx__ + 1); \
565 | memmove(&arr[idx__], &arr[indx__], sizeof(arr[0]) * (size__ - indx__)); \
566 | } while (false)
567 |
568 | #define add_gaps(arr, idx, size, n) \
569 | do { \
570 | auto idx__ = (idx); \
571 | auto size__ = (size); \
572 | auto n__ = (n); \
573 | memmove(&arr[idx__ + n__], &arr[idx__], sizeof(arr[0]) * (size__ - idx__)); \
574 | } while (false)
575 |
576 | #define del_gaps(arr, idx, size, n) \
577 | do { \
578 | auto idx__ = (idx); \
579 | auto size__ = (size); \
580 | auto n__ = (n); \
581 | auto indx__ = (idx__ + n__); \
582 | memmove(&arr[idx__], &arr[indx__], sizeof(arr[0]) * (size__ - indx__)); \
583 | } while (false)
584 |
585 | #define cpy_part(dst, dst_idx, src, src_idx, n) \
586 | do { \
587 | auto dst_idx__ = (dst_idx); \
588 | auto src_idx__ = (src_idx); \
589 | auto n__ = (n); \
590 | memcpy(&dst[dst_idx__], &src[src_idx__], sizeof(src[0]) * n__); \
591 | } while (false)
592 |
593 | template
594 | void SignatureTreeTpl::
595 | NodeSplit(Node * parent) {
596 | for (size_t i = 0; i < parent->reps_.size(); ++i) {
597 | const auto & rep = parent->reps_[i];
598 | if (IsPacked(rep)) {
599 | Node * child = OffsetToMemNode(Unpack(rep));
600 | if (!IsNodeFull(child)) {
601 | size_t child_size = NodeSize(child);
602 |
603 | // left child or right child?
604 | if (i == 0 ||
605 | (i != parent->reps_.size() - 1 && parent->diffs_[i - 1] < parent->diffs_[i])) { // left
606 |
607 | // how long?
608 | size_t j = i + 1;
609 | for (; j < parent->diffs_.size(); ++j) {
610 | if (parent->diffs_[j] < parent->diffs_[i]) {
611 | break;
612 | }
613 | }
614 |
615 | // enough space?
616 | size_t range = j - i;
617 | if (child_size + range <= child->reps_.size()) { // move to the tail
618 | size_t child_diff_size = child_size - 1;
619 | j = i + 1;
620 |
621 | cpy_part(child->diffs_, child_diff_size, parent->diffs_, i, range);
622 | cpy_part(child->reps_, child_size, parent->reps_, j, range);
623 |
624 | del_gaps(parent->diffs_, i, parent->diffs_.size(), range);
625 | del_gaps(parent->reps_, j, parent->reps_.size(), range);
626 |
627 | parent->size_ -= range;
628 | child->size_ += range;
629 | assert(NodeSize(parent) == parent->reps_.size() - range);
630 | assert(NodeSize(child) == child_size + range);
631 | NodeBuild(parent, i);
632 | NodeBuild(child, child_diff_size);
633 | return;
634 | }
635 | } else { // right
636 |
637 | size_t j = i - 1;
638 | while (j != 0) {
639 | if (parent->diffs_[j - 1] < parent->diffs_[i - 1]) {
640 | break;
641 | }
642 | --j;
643 | }
644 |
645 | size_t range = i - j;
646 | if (child_size + range <= child->reps_.size()) { // move to the head
647 | add_gaps(child->diffs_, 0, child_size - 1, range);
648 | add_gaps(child->reps_, 0, child_size, range);
649 |
650 | cpy_part(child->diffs_, 0, parent->diffs_, j, range);
651 | cpy_part(child->reps_, 0, parent->reps_, j, range);
652 |
653 | del_gaps(parent->diffs_, j, parent->diffs_.size(), range);
654 | del_gaps(parent->reps_, j, parent->reps_.size(), range);
655 |
656 | parent->size_ -= range;
657 | child->size_ += range;
658 | assert(NodeSize(parent) == parent->reps_.size() - range);
659 | assert(NodeSize(child) == child_size + range);
660 | NodeBuild(parent, j);
661 | NodeBuild(child);
662 | return;
663 | }
664 | }
665 | }
666 | }
667 | }
668 |
669 | size_t offset = allocator_->AllocatePage(); // may throw AllocatorFullException
670 | Node * child = new(OffsetToMemNode(offset)) Node();
671 |
672 | // find nearly half
673 | const K_DIFF * cbegin = parent->diffs_.cbegin();
674 | const K_DIFF * cend = parent->diffs_.cend();
675 |
676 | auto pyramid = parent->pyramid_;
677 | const K_DIFF * min_it = cbegin + parent->pyramid_.MinAt(cbegin, cend);
678 | while (true) {
679 | assert(min_it == std::min_element(cbegin, cend));
680 | if (min_it - cbegin <= cend - min_it) { // go right
681 | cbegin = min_it + 1;
682 | if (static_cast(cend - cbegin) < parent->diffs_.size() / 2) {
683 | break;
684 | }
685 | min_it = parent->diffs_.cbegin() +
686 | pyramid.TrimLeft(parent->diffs_.cbegin(), cbegin, cend);
687 | } else { // go left
688 | cend = min_it;
689 | if (static_cast(cend - cbegin) < parent->diffs_.size() / 2) {
690 | break;
691 | }
692 | min_it = parent->diffs_.cbegin() +
693 | pyramid.TrimRight(parent->diffs_.cbegin(), cbegin, cend);
694 | }
695 | }
696 |
697 | size_t item_num = cend - cbegin;
698 | size_t child_size = item_num + 1;
699 | size_t nth = cbegin - parent->diffs_.cbegin();
700 |
701 | cpy_part(child->diffs_, 0, parent->diffs_, nth, item_num);
702 | cpy_part(child->reps_, 0, parent->reps_, nth, child_size);
703 |
704 | del_gaps(parent->diffs_, nth, parent->diffs_.size(), item_num);
705 | del_gaps(parent->reps_, nth + 1, parent->reps_.size(), item_num);
706 | parent->reps_[nth] = Pack(offset);
707 |
708 | child->size_ = static_cast(child_size);
709 | parent->size_ -= item_num;
710 | NodeBuild(parent, nth);
711 | NodeBuild(child);
712 | }
713 |
714 | template
715 | void SignatureTreeTpl::
716 | NodeMerge(Node * parent, size_t idx, bool direct, size_t parent_size,
717 | Node * child, size_t child_size) {
718 | idx += static_cast(direct);
719 | size_t offset = Unpack(parent->reps_[idx]);
720 | size_t child_diff_size = child_size - 1;
721 |
722 | add_gaps(parent->diffs_, idx, parent_size - 1, child_diff_size);
723 | add_gaps(parent->reps_, idx + 1, parent_size, child_diff_size);
724 |
725 | cpy_part(parent->diffs_, idx, child->diffs_, 0, child_diff_size);
726 | cpy_part(parent->reps_, idx, child->reps_, 0, child_size);
727 |
728 | allocator_->FreePage(offset);
729 | parent->size_ += child_diff_size;
730 | NodeBuild(parent, idx);
731 | }
732 |
733 | template
734 | void SignatureTreeTpl::
735 | NodeCompact(Node * node) {
736 | for (size_t i = 0; !IsNodeFull(node) && i < NodeSize(node); ++i) {
737 | restart:
738 | const auto & rep = node->reps_[i];
739 | if (IsPacked(rep)) {
740 | Node * child = OffsetToMemNode(Unpack(rep));
741 | size_t child_size = NodeSize(child);
742 | size_t node_size = NodeSize(node);
743 |
744 | if (node->reps_.size() - node_size + 1 >= child_size) {
745 | NodeMerge(node, i, false, node_size,
746 | child, child_size);
747 | goto restart;
748 | }
749 |
750 | const K_DIFF * cbegin = child->diffs_.cbegin();
751 | const K_DIFF * cend = &child->diffs_[child_size - 1];
752 | const K_DIFF * min_it = cbegin + child->pyramid_.MinAt(cbegin, cend);
753 | assert(min_it == std::min_element(cbegin, cend));
754 |
755 | if (min_it - cbegin < cend - min_it) { // go left
756 | cend = min_it + 1;
757 | size_t item_num = cend - cbegin;
758 | if (item_num + node_size <= node->reps_.size()) {
759 | add_gaps(node->diffs_, i, node_size - 1, item_num);
760 | add_gaps(node->reps_, i, node_size, item_num);
761 |
762 | cpy_part(node->diffs_, i, child->diffs_, 0, item_num);
763 | cpy_part(node->reps_, i, child->reps_, 0, item_num);
764 |
765 | del_gaps(child->diffs_, 0, child_size - 1, item_num);
766 | del_gaps(child->reps_, 0, child_size, item_num);
767 |
768 | node->size_ += item_num;
769 | child->size_ -= item_num;
770 | NodeBuild(node, i);
771 | NodeBuild(child);
772 | goto restart;
773 | }
774 | } else { // go right
775 | cbegin = min_it;
776 | size_t item_num = cend - cbegin;
777 | if (item_num + node_size <= node->reps_.size()) {
778 | size_t nth = cbegin - child->diffs_.cbegin();
779 | size_t j = i + 1;
780 |
781 | add_gaps(node->diffs_, i, node_size - 1, item_num);
782 | add_gaps(node->reps_, j, node_size, item_num);
783 |
784 | cpy_part(node->diffs_, i, child->diffs_, nth, item_num);
785 | cpy_part(node->reps_, j, child->reps_, nth + 1, item_num);
786 |
787 | node->size_ += item_num;
788 | child->size_ -= item_num;
789 | NodeBuild(node, i);
790 | NodeBuild(child, nth);
791 | goto restart;
792 | }
793 | }
794 | }
795 | }
796 |
797 | for (size_t i = 0; i < NodeSize(node); ++i) {
798 | const auto & rep = node->reps_[i];
799 | if (IsPacked(rep)) {
800 | NodeCompact(OffsetToMemNode(Unpack(rep)));
801 | }
802 | }
803 | }
804 |
805 | template
806 | void SignatureTreeTpl::
807 | NodeInsert(Node * node, size_t insert_idx, bool insert_direct,
808 | bool direct, K_DIFF diff, const KV_REP & rep, size_t size) {
809 | assert(!IsNodeFull(node));
810 | insert_idx += insert_direct;
811 | size_t rep_idx = insert_idx + direct;
812 |
813 | add_gap(node->diffs_, insert_idx, size - 1);
814 | add_gap(node->reps_, rep_idx, size);
815 |
816 | node->diffs_[insert_idx] = diff;
817 | node->reps_[rep_idx] = rep;
818 | node->size_ = size + 1;
819 | NodeBuild(node, insert_idx);
820 | }
821 |
822 | template
823 | void SignatureTreeTpl::
824 | NodeRemove(Node * node, size_t idx, bool direct, size_t size) {
825 | assert(size >= 1);
826 | del_gap(node->reps_, idx + direct, size);
827 | node->size_ = --size;
828 | if (SGT_LIKELY(size > 0)) {
829 | del_gap(node->diffs_, idx, size);
830 | NodeBuild(node, idx);
831 | }
832 | }
833 |
834 | template
835 | void SignatureTreeTpl::
836 | NodeBuild(Node * node, size_t rebuild_idx) {
837 | #ifndef SGT_NO_DENSE_INPUT_CACHE
838 | node->cache_ = {};
839 | #endif
840 | node->pyramid_.Build(node->diffs_.data(), node->diffs_.data() + NodeSize(node) - 1, rebuild_idx);
841 | }
842 |
843 | #undef add_gap
844 | #undef del_gap
845 | #undef add_gaps
846 | #undef del_gaps
847 | #undef cpy_part
848 | }
849 |
850 | #endif //SIG_TREE_SIG_TREE_IMPL_H
851 |
--------------------------------------------------------------------------------
/src/sig_tree_mop_impl.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_SIG_TREE_MOP_IMPL_H
3 | #define SIG_TREE_SIG_TREE_MOP_IMPL_H
4 |
5 | #ifndef SGT_NO_MM_PREFETCH
6 | #include
7 | #endif
8 |
9 | #include "likely.h"
10 | #include "sig_tree.h"
11 |
12 | namespace sgt {
13 | template
14 | template
15 | auto SignatureTreeTpl::
16 | MultiGetWithCallback(const Slice * ks,
17 | CALLBACK && callback) {
18 | std::array reps{};
19 | Node * root = OffsetToMemNode(kRootOffset);
20 | if (SGT_UNLIKELY(NodeSize(root) == 0)) {
21 | if constexpr (std::is_same::value) {
22 | return reps;
23 | } else {
24 | return callback(reps);
25 | }
26 | }
27 |
28 | std::array cursors;
29 | cursors.fill(root);
30 |
31 | size_t remaining;
32 | do {
33 | remaining = N;
34 |
35 | for (size_t i = 0; i < N; ++i) {
36 | Node * cursor = cursors[i];
37 | if (cursor != nullptr) {
38 | auto[idx, direct, _] = FindBestMatchImpl(cursor, ks[i]);
39 | auto & rep = reps[i];
40 | rep = &cursor->reps_[idx + direct];
41 | #ifndef SGT_NO_MM_PREFETCH
42 | _mm_prefetch(rep, _MM_HINT_T0);
43 | #endif
44 | }
45 | }
46 |
47 | for (size_t i = 0; i < N; ++i) {
48 | Node *& cursor = cursors[i];
49 | if (cursor != nullptr) {
50 | const auto & r = *reps[i];
51 | if (IsPacked(r)) {
52 | cursor = OffsetToMemNode(Unpack(r));
53 | #ifndef SGT_NO_MM_PREFETCH
54 | _mm_prefetch(&cursor->size_, _MM_HINT_T0);
55 | auto p = reinterpret_cast(&cursor->diffs_);
56 | p -= reinterpret_cast(p) % 64;
57 | _mm_prefetch(p + 64 * 0, _MM_HINT_T2);
58 | _mm_prefetch(p + 64 * 1, _MM_HINT_T2);
59 | _mm_prefetch(p + 64 * 2, _MM_HINT_T2);
60 | _mm_prefetch(p + 64 * 3, _MM_HINT_T2);
61 | _mm_prefetch(p + 64 * 4, _MM_HINT_T2);
62 | #endif
63 | continue;
64 | }
65 | cursor = nullptr;
66 | }
67 | --remaining;
68 | }
69 | } while (remaining != 0);
70 |
71 | if constexpr (std::is_same::value) {
72 | return reps;
73 | } else {
74 | return callback(reps);
75 | }
76 | }
77 | }
78 |
79 | #endif //SIG_TREE_SIG_TREE_MOP_IMPL_H
80 |
--------------------------------------------------------------------------------
/src/sig_tree_node_impl.h:
--------------------------------------------------------------------------------
1 | #pragma once
2 | #ifndef SIG_TREE_SIG_TREE_NODE_IMPL_H
3 | #define SIG_TREE_SIG_TREE_NODE_IMPL_H
4 |
5 | #if __has_include() && defined(__SSE4_1__)
6 | #include
7 |
8 | namespace sgt {
9 | constexpr bool kHasMinpos = true;
10 | }
11 | #else
12 | namespace sgt {
13 | constexpr bool kHasMinpos = false;
14 | }
15 | #endif
16 |
17 | #include "likely.h"
18 | #include "sig_tree.h"
19 |
20 | namespace sgt {
21 | template
22 | size_t SignatureTreeTpl::
23 | NodeSize(const Node * node) {
24 | return node->size_;
25 | }
26 |
27 | template
28 | bool SignatureTreeTpl::
29 | IsNodeFull(const Node * node) {
30 | return node->size_ == kNodeRepRank;
31 | }
32 |
33 | template
34 | inline const T * SmartMinElem8(const T * from, const T * to, T * min_val) {
35 | if constexpr (std::is_same::value && kHasMinpos) {
36 | __m128i vec = _mm_loadu_si128(reinterpret_cast(from));
37 |
38 | size_t size = to - from;
39 | if (size != 8) {
40 | assert(size < 8);
41 |
42 | static constexpr auto masks = []() {
43 | std::array, 8> arr{};
44 | arr[1][0] = UINT16_MAX;
45 | arr[2][0] = (arr[1][0] << 16) | UINT16_MAX;
46 | arr[3][0] = (arr[2][0] << 16) | UINT16_MAX;
47 | arr[4][0] = (arr[3][0] << 16) | UINT16_MAX;
48 | for (size_t i = 5; i < 8; ++i) { arr[i][0] = UINT64_MAX; }
49 | arr[5][1] = UINT16_MAX;
50 | arr[6][1] = (arr[5][1] << 16) | UINT16_MAX;
51 | arr[7][1] = (arr[6][1] << 16) | UINT16_MAX;
52 | for (size_t i = 0; i < 8; ++i) { arr[i] = {~arr[i][0], ~arr[i][1]}; }
53 | return arr;
54 | }();
55 |
56 | vec = _mm_or_si128(vec, _mm_loadu_si128(reinterpret_cast(&masks[size])));
57 | }
58 |
59 | vec = _mm_minpos_epu16(vec);
60 | if (min_val != nullptr) { *min_val = static_cast(_mm_extract_epi16(vec, 0)); }
61 | return from + _mm_extract_epi8(vec, 2);
62 | } else {
63 | const T * min_it = std::min_element(from, to);
64 | if (min_val != nullptr) { *min_val = *min_it; }
65 | return min_it;
66 | }
67 | }
68 |
69 | template
70 | template
71 | void SignatureTreeTpl::
72 | NodeTpl::Pyramid::Build(const K_DIFF * from, const K_DIFF * to, size_t rebuild_idx) {
73 | size_t size = to - from;
74 | if (size <= 8) {
75 | return;
76 | } else if (size == 9) {
77 | rebuild_idx = 0;
78 | }
79 |
80 | size_t level = 0;
81 | while (true) {
82 | const size_t q = size / 8;
83 | const size_t r = size % 8;
84 | K_DIFF * val_from = vals_.begin() + kAbsOffsets[level];
85 | uint8_t * idx_from = idxes_.begin() + kAbsOffsets[level++];
86 | const K_DIFF * next_from = val_from;
87 |
88 | if (rebuild_idx > 0) {
89 | rebuild_idx /= 8;
90 | val_from += rebuild_idx;
91 | idx_from += rebuild_idx;
92 | from += (8 * rebuild_idx);
93 | }
94 |
95 | while (to - from >= 8) {
96 | K_DIFF val;
97 | uint8_t idx;
98 | if constexpr (std::is_same::value && kHasMinpos) {
99 | __m128i vec = _mm_loadu_si128(reinterpret_cast(from));
100 | vec = _mm_minpos_epu16(vec);
101 | val = static_cast(_mm_extract_epi16(vec, 0));
102 | idx = static_cast(_mm_extract_epi8(vec, 2));
103 | } else {
104 | const K_DIFF * min_elem = std::min_element(from, from + 8);
105 | val = *min_elem;
106 | idx = static_cast(min_elem - from);
107 | }
108 |
109 | (*val_from++) = val;
110 | (*idx_from++) = idx;
111 | from += 8;
112 | }
113 |
114 | if (r != 0) {
115 | size = q + 1;
116 | const K_DIFF * min_elem = SmartMinElem8(from, to, val_from);
117 | (*idx_from) = static_cast(min_elem - from);
118 | } else {
119 | size = q;
120 | }
121 |
122 | if (size == 1) {
123 | break;
124 | }
125 | from = next_from;
126 | to = from + size;
127 | }
128 | }
129 |
130 | template
131 | template
132 | size_t SignatureTreeTpl::
133 | NodeTpl::Pyramid::MinAt(const K_DIFF * from, const K_DIFF * to,
134 | K_DIFF * min_val) const {
135 | size_t size = to - from;
136 | if (size <= 8) {
137 | static_assert(!(std::is_same::value && kHasMinpos)
138 | || sizeof(idxes_) >= sizeof(uint16_t) * 8);
139 | const K_DIFF * min_it = SmartMinElem8(from, to, min_val);
140 | return min_it - from;
141 | }
142 | return CalcOffset(PyramidHeight(size) - 1, 0, min_val);
143 | }
144 |
145 | template
146 | template
147 | size_t SignatureTreeTpl::
148 | NodeTpl::Pyramid::TrimLeft(const K_DIFF * cbegin, const K_DIFF * from, const K_DIFF * to,
149 | K_DIFF * min_val) {
150 | size_t pos = from - cbegin;
151 | size_t end_pos = to - cbegin;
152 | assert(end_pos >= pos + 1);
153 | if (end_pos - pos <= 8) {
154 | const K_DIFF * min_it = SmartMinElem8(from, to, min_val);
155 | return min_it - cbegin;
156 | }
157 |
158 | bool accumulator = true;
159 | size_t level = 0;
160 | do {
161 | const size_t q = pos / 8;
162 | const size_t r = pos % 8;
163 | pos = q;
164 | end_pos = end_pos / 8 + static_cast(end_pos % 8 != 0);
165 |
166 | const size_t offset = kAbsOffsets[level++];
167 | uint8_t & upper_idx = idxes_[offset + pos];
168 | if ((accumulator = (static_cast(upper_idx + accumulator) > r))) {
169 | cbegin = vals_.cbegin() + offset;
170 | from = cbegin + pos;
171 | to = cbegin + end_pos;
172 | } else {
173 | K_DIFF val;
174 | const K_DIFF * min_elem = SmartMinElem8(from, std::min(from + (8 - r), to), &val);
175 | const size_t idx = (min_elem - from) + r;
176 |
177 | cbegin = vals_.cbegin() + offset;
178 | from = cbegin + pos;
179 | to = cbegin + end_pos;
180 |
181 | *const_cast(from) = val;
182 | upper_idx = static_cast(idx);
183 | }
184 | } while (end_pos - pos > 1);
185 | return CalcOffset(level - 1, pos, min_val);
186 | }
187 |
188 | template
189 | template