├── readme_img ├── plot1.png └── plot2.png ├── include └── kalman_filter │ ├── ground_truth_package.h │ ├── measurement_package.h │ ├── tools.h │ ├── fusion_ekf.h │ ├── kalman_filter.h │ └── fusion_ukf.h ├── Docs ├── Input_Output File Format.txt └── Data_Flow_Doc.txt ├── CMakeLists.txt ├── README.md ├── src ├── kalman_filter.cpp ├── tools.cpp ├── fusion_ekf.cpp ├── main_ekf.cpp ├── main_ukf.cpp └── fusion_ukf.cpp ├── task.md ├── package.xml ├── results ├── output2.txt └── input2.log └── data └── sample-laser-radar-measurement-data-2.txt /readme_img/plot1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/JokerJohn/kalman_filter/HEAD/readme_img/plot1.png -------------------------------------------------------------------------------- /readme_img/plot2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/JokerJohn/kalman_filter/HEAD/readme_img/plot2.png -------------------------------------------------------------------------------- /include/kalman_filter/ground_truth_package.h: -------------------------------------------------------------------------------- 1 | #ifndef GROUND_TRUTH_PACKAGE_H_ 2 | #define GROUND_TRUTH_PACKAGE_H_ 3 | 4 | #include "Eigen/Dense" 5 | 6 | class GroundTruthPackage { 7 | public: 8 | long timestamp_; 9 | 10 | enum SensorType{ 11 | LASER, 12 | RADAR 13 | } sensor_type_; 14 | 15 | Eigen::VectorXd gt_values_; 16 | 17 | }; 18 | 19 | #endif /* GROUND_TRUTH_PACKAGE_H_ */ 20 | -------------------------------------------------------------------------------- /include/kalman_filter/measurement_package.h: -------------------------------------------------------------------------------- 1 | #ifndef MEASUREMENT_PACKAGE_H_ 2 | #define MEASUREMENT_PACKAGE_H_ 3 | 4 | #include "Eigen/Dense" 5 | 6 | class MeasurementPackage { 7 | public: 8 | long long timestamp_; 9 | 10 | enum SensorType{ 11 | LASER, 12 | RADAR 13 | } sensor_type_; 14 | 15 | Eigen::VectorXd raw_measurements_; 16 | }; 17 | 18 | #endif /* MEASUREMENT_PACKAGE_H_ */ 19 | -------------------------------------------------------------------------------- /Docs/Input_Output File Format.txt: -------------------------------------------------------------------------------- 1 | #L(for laser) meas_px meas_py timestamp gt_px gt_py gt_vx gt_vy 2 | #R(for radar) meas_rho meas_phi meas_rho_dot timestamp gt_px gt_py gt_vx gt_vy 3 | ----------------------------- 4 | Example 5 | ----------------------------- 6 | R 8.60363 0.0290616 -2.99903 1477010443399637 8.6 0.25 -3.00029 0 7 | L 8.45 0.25 1477010443349642 8.45 0.25 -3.00027 0 8 | 9 | #Output file format: 10 | est_px est_py est_vx est_vy meas_px meas_py gt_px gt_py gt_vx gt_vy -------------------------------------------------------------------------------- /include/kalman_filter/tools.h: -------------------------------------------------------------------------------- 1 | #ifndef TOOLS_H_ 2 | #define TOOLS_H_ 3 | #include 4 | #include "Eigen/Dense" 5 | 6 | class Tools { 7 | public: 8 | /** 9 | * Constructor. 10 | */ 11 | Tools(); 12 | 13 | /** 14 | * Destructor. 15 | */ 16 | virtual ~Tools(); 17 | 18 | /** 19 | * A helper method to calculate RMSE. 20 | */ 21 | Eigen::VectorXd CalculateRMSE(const std::vector &estimations, const std::vector &ground_truth); 22 | 23 | /** 24 | * A helper method to calculate Jacobians. 25 | */ 26 | Eigen::MatrixXd CalculateJacobian(const Eigen::VectorXd& x_state); 27 | 28 | }; 29 | 30 | #endif /* TOOLS_H_ */ 31 | -------------------------------------------------------------------------------- /CMakeLists.txt: -------------------------------------------------------------------------------- 1 | cmake_minimum_required(VERSION 3.0.2) 2 | project(kalman_filter) 3 | 4 | add_compile_options(-std=c++11) 5 | find_package(Eigen3 QUIET) 6 | find_package(catkin REQUIRED COMPONENTS 7 | roscpp 8 | rospy 9 | sensor_msgs 10 | std_msgs 11 | ) 12 | catkin_package() 13 | 14 | include_directories( 15 | include 16 | ${catkin_INCLUDE_DIRS} 17 | ${Eigen3_INCLUDE_DIRS} 18 | ) 19 | 20 | set(SOURCE 21 | src/fusion_ekf.cpp 22 | src/kalman_filter.cpp 23 | src/main_ekf.cpp 24 | src/tools.cpp) 25 | add_executable(ekf_node ${SOURCE}) 26 | target_link_libraries(ekf_node 27 | ${catkin_LIBRARIES} 28 | ) 29 | 30 | add_executable(ukf_node src/fusion_ukf.cpp src/main_ukf.cpp src/tools.cpp) 31 | target_link_libraries(ukf_node 32 | ${catkin_LIBRARIES} 33 | ) -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## Udacity KF UKF EKF Project 2 | 3 | Udacity毫米波,激光数据融合项目。 4 | 5 | ## 数据 6 | 7 | 激光测量:【vx, vy】 8 | 9 | 毫米波测量:【ro, rhi,r_dot】 10 | 11 | 当前数据可能是激光,也可能是毫米波,穿插着来。 12 | 13 | 毫米波观测空间->状态空间变换是非线性的,可以采用EKF将h(x)近似线性化,经F矩阵转换到当前预测,线性转换后为高斯。也可以通过取上一帧观测sigma点,分别通过h(x)计算转换后的sigma,用这些sigma点来近似拟合一个高斯分布。 14 | 15 | 激光雷达观测->状态空间是线性变换,可以直接写出来F矩阵。 16 | 17 | ## KF/EKF 18 | 19 | 预测当前位置和速度,状态变量【px, py, vx, vy】 20 | 21 | 流程: 22 | 23 | - 第一帧数据初始化EKF,包括状态量x_k-1,不确定性P_k-1 24 | - 后续每帧数据,计算F矩阵和过程噪声Q(,预测当前状态x_k, 不确定性P_k(状态空间) 25 | - 预测结果转换到观测空间(H矩阵) 26 | - 当前观测z和不确定度R,求残差(z-H*x_k),残差不确定度(H*Q*H(T)+R),卡尔曼增益K 27 | - 计算融合后的状态量x'和不确定度P' 28 | 29 | ## KF/UKF 30 | 31 | 预测当前位置、速度、偏航角及变化率,状态变量【px, py, v, yaw, yaw_rate】 32 | 33 | - 第一帧数据初始化EKF,包括状态量x_k-1,不确定性P_k-1,sigma点权重 34 | - 根据h(x)计算sigma点转换后的点集矩阵(维度*点集) 35 | - 预测系统状态(sigma矩阵*权重),预测不确定度P(P_K-1+权重*维度变化量) 36 | - 计算拟合的高斯参数,根据观测计算残差、残差不确定度 37 | - 计算融合后的状态量x'和不确定度P' 38 | 39 | ## 使用 40 | 41 | 修改ekf_main.cpp和ukf_main.cpp中输入文件地址和输出文件地址,丢在catkin下编译即可。 42 | 43 | ```c++ 44 | rosrun kalman_filter ekf_node 45 | rosrun kalman_filter ukf_node 46 | ``` 47 | 48 | -------------------------------------------------------------------------------- /include/kalman_filter/fusion_ekf.h: -------------------------------------------------------------------------------- 1 | #ifndef FusionEKF_H_ 2 | #define FusionEKF_H_ 3 | 4 | #include "measurement_package.h" 5 | #include "Eigen/Dense" 6 | #include 7 | #include 8 | #include 9 | #include "kalman_filter.h" 10 | #include "tools.h" 11 | 12 | class FusionEKF { 13 | public: 14 | /** 15 | * Constructor. 16 | */ 17 | FusionEKF(); 18 | 19 | /** 20 | * Destructor. 21 | */ 22 | virtual ~FusionEKF(); 23 | 24 | /** 25 | * Run the whole flow of the Kalman Filter from here. 26 | */ 27 | void ProcessMeasurement(const MeasurementPackage &measurement_pack); 28 | 29 | /** 30 | * Kalman Filter update and prediction math lives in here. 31 | */ 32 | KalmanFilter ekf_; 33 | 34 | private: 35 | // check whether the tracking toolbox was initiallized or not (first measurement) 36 | bool is_initialized_; 37 | 38 | // previous timestamp 39 | long previous_timestamp_; 40 | 41 | // tool object used to compute Jacobian and RMSE 42 | Tools tools; 43 | Eigen::MatrixXd R_laser_; 44 | Eigen::MatrixXd R_radar_; 45 | Eigen::MatrixXd H_laser_; 46 | Eigen::MatrixXd Hj_; 47 | }; 48 | 49 | #endif /* FusionEKF_H_ */ 50 | -------------------------------------------------------------------------------- /Docs/Data_Flow_Doc.txt: -------------------------------------------------------------------------------- 1 | Data Flow: 2 | 1) The measuremennt processor/matlab simulator is generating the FUSION .txt file: 3 | "data/obj_pose-laser-radar-synthetic-ukf-input.txt"; 4 | OR 5 | "../matlab_examples/obj_pose-laser-radar-synthetic-ukf-input.txt"; 6 | 7 | The Input file format is: 8 | #L(for laser) meas_px meas_py timestamp gt_px gt_py gt_vx gt_vy 9 | #R(for radar) meas_rho meas_phi meas_rho_dot timestamp gt_px gt_py gt_vx gt_vy 10 | 11 | Example: 12 | R 8.60363 0.0290616 -2.99903 1477010443399637 8.6 0.25 -3.00029 0 13 | L 8.45 0.25 1477010443349642 8.45 0.25 -3.00027 0 14 | 15 | 2) The EKF Algorithm reads form file reads all the lines and generates measurement structures 16 | 3) The MeasurementProcessor() is called with individual measurements (one by one). The results are saved 17 | (Attention: no file processing routines are used inside MeasurementProcessor() all the file processing routines are in the main function 18 | So the data read/write is decoupled from the algorithm 19 | 4) The results are saved in an output file: 20 | "data/obj_pose-laser-radar-ekf-output.txt" 21 | 22 | Output file format: 23 | est_px est_py est_vx est_vy meas_px meas_py gt_px gt_py gt_vx gt_vy 24 | 25 | Example: 26 | 4.53271 0.279 -0.842172 53.1339 4.29136 0.215312 2.28434 0.226323 27 | 43.2222 2.65959 0.931181 23.2469 4.29136 0.215312 2.28434 0.226323 28 | 29 | -------------------------------------------------------------------------------- /include/kalman_filter/kalman_filter.h: -------------------------------------------------------------------------------- 1 | #ifndef KALMAN_FILTER_H_ 2 | #define KALMAN_FILTER_H_ 3 | #include "Eigen/Dense" 4 | 5 | class KalmanFilter { 6 | public: 7 | 8 | // state vector 9 | Eigen::VectorXd x_; 10 | 11 | // state covariance matrix 12 | Eigen::MatrixXd P_; 13 | 14 | // state transistion matrix 15 | Eigen::MatrixXd F_; 16 | 17 | // process covariance matrix 18 | Eigen::MatrixXd Q_; 19 | 20 | // measurement matrix 21 | Eigen::MatrixXd H_; 22 | 23 | // measurement covariance matrix 24 | Eigen::MatrixXd R_; 25 | 26 | /** 27 | * Constructor 28 | */ 29 | KalmanFilter(); 30 | 31 | /** 32 | * Destructor 33 | */ 34 | virtual ~KalmanFilter(); 35 | 36 | /** 37 | * Init Initializes Kalman filter 38 | * @param x_in Initial state 39 | * @param P_in Initial state covariance 40 | * @param F_in Transition matrix 41 | * @param H_in Measurement matrix 42 | * @param R_in Measurement covariance matrix 43 | * @param Q_in Process covariance matrix 44 | */ 45 | void Init(Eigen::VectorXd &x_in, Eigen::MatrixXd &P_in, Eigen::MatrixXd &F_in, 46 | Eigen::MatrixXd &H_in, Eigen::MatrixXd &R_in, Eigen::MatrixXd &Q_in); 47 | 48 | /** 49 | * Prediction Predicts the state and the state covariance 50 | * using the process model 51 | * @param delta_T Time between k and k+1 in s 52 | */ 53 | void Predict(); 54 | 55 | /** 56 | * Updates the state by using standard Kalman Filter equations 57 | * @param z The measurement at k+1 58 | */ 59 | void Update(const Eigen::VectorXd &z); 60 | 61 | /** 62 | * Updates the state by using Extended Kalman Filter equations 63 | * @param z The measurement at k+1 64 | */ 65 | void UpdateEKF(const Eigen::VectorXd &z); 66 | 67 | /** 68 | * Universal update Kalman Filter step. Equations from the lectures 69 | * @param y The error 70 | */ 71 | void KF(const Eigen::VectorXd &y); 72 | 73 | }; 74 | 75 | #endif /* KALMAN_FILTER_H_ */ 76 | -------------------------------------------------------------------------------- /src/kalman_filter.cpp: -------------------------------------------------------------------------------- 1 | #include "kalman_filter/kalman_filter.h" 2 | 3 | using Eigen::MatrixXd; 4 | using Eigen::VectorXd; 5 | 6 | KalmanFilter::KalmanFilter() {} 7 | 8 | KalmanFilter::~KalmanFilter() {} 9 | 10 | void KalmanFilter::Init(VectorXd &x_in, MatrixXd &P_in, MatrixXd &F_in, 11 | MatrixXd &H_in, MatrixXd &R_in, MatrixXd &Q_in) { 12 | x_ = x_in; // object state 13 | P_ = P_in; // object covariance matrix 14 | F_ = F_in; // state transition matrix 15 | H_ = H_in; // measurement matrix 16 | R_ = R_in; // measurement covariance matrix 17 | Q_ = Q_in; // process covariance matrix 18 | } 19 | 20 | // The Kalman filter predict function. The same for linear and extended Kalman filter 21 | void KalmanFilter::Predict() { 22 | x_ = F_ * x_; // There is no external motion, so, we do not have to add "+u" 23 | MatrixXd Ft = F_.transpose(); 24 | P_ = F_ * P_ * Ft + Q_; 25 | } 26 | 27 | void KalmanFilter::Update(const VectorXd &z) { 28 | // Kalman filter update step. Equations from the lectures 29 | VectorXd y = z - H_ * x_; // 残差:当前观测 - H(X)*根据上一帧预测的状态量 = 当前观测 - 预测得到的观测 30 | KF(y); 31 | } 32 | 33 | void KalmanFilter::UpdateEKF(const VectorXd &z) { 34 | 35 | // 预测的状态量->预测的观测 36 | double rho = sqrt(x_(0) * x_(0) + x_(1) * x_(1)); 37 | double theta = atan(x_(1) / x_(0)); 38 | double rho_dot = (x_(0) * x_(2) + x_(1) * x_(3)) / rho; 39 | VectorXd h = VectorXd(3); // h(x_) 40 | h << rho, theta, rho_dot; 41 | 42 | VectorXd y = z - h; // 观测空间: 计算状态量残差 = 观测 - 预测 43 | // Calculations are essentially the same to the Update function 44 | KF(y); 45 | } 46 | 47 | // Universal update Kalman Filter step. Equations from the lectures 48 | void KalmanFilter::KF(const VectorXd &y) { 49 | // 观测空间 50 | // 根据观测的残差计算残差的协方差矩阵、卡尔曼增益 51 | MatrixXd Ht = H_.transpose(); // H-1 52 | MatrixXd S = H_ * P_ * Ht + R_; // 观测残差的协方差矩阵 53 | MatrixXd Si = S.inverse(); 54 | MatrixXd K = P_ * Ht * Si; // 卡尔安增益, 预测的协方差/观测残差的协方差,即预测的权重占比 55 | 56 | // 更新当前系统状态 57 | x_ = x_ + (K * y); // 当前状态 = 预测状态 + 权重 * 预测在残差权重的占比 58 | int x_size = x_.size(); 59 | MatrixXd I = MatrixXd::Identity(x_size, x_size); 60 | P_ = (I - K * H_) * P_; // 当前协方差 = (1-K)* 预测的协方差 61 | } 62 | -------------------------------------------------------------------------------- /src/tools.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include "kalman_filter/tools.h" 3 | 4 | #define EPS 0.0001 // A very small number 5 | #define EPS2 0.0000001 6 | 7 | using namespace std; 8 | using Eigen::VectorXd; 9 | using Eigen::MatrixXd; 10 | using std::vector; 11 | 12 | Tools::Tools() {} 13 | 14 | Tools::~Tools() {} 15 | 16 | VectorXd Tools::CalculateRMSE(const vector &estimations, 17 | const vector &ground_truth) { 18 | VectorXd rmse(4); 19 | rmse << 0,0,0,0; 20 | // Check the validity of the following inputs: 21 | // The estimation vector size should not be zero 22 | if(estimations.size() == 0){ 23 | cout << "Input is empty" << endl; 24 | return rmse; 25 | } 26 | // The estimation vector size should equal ground truth vector size 27 | if(estimations.size() != ground_truth.size()){ 28 | cout << "Invalid estimation or ground_truth. Data should have the same size" << endl; 29 | return rmse; 30 | } 31 | // Accumulate squared residuals 32 | for(unsigned int i=0; i < estimations.size(); ++i){ 33 | VectorXd residual = estimations[i] - ground_truth[i]; 34 | // Coefficient-wise multiplication 35 | residual = residual.array()*residual.array(); 36 | rmse += residual; 37 | } 38 | 39 | // Calculate the mean 40 | rmse = rmse / estimations.size(); 41 | rmse = rmse.array().sqrt(); 42 | return rmse; 43 | } 44 | 45 | MatrixXd Tools::CalculateJacobian(const VectorXd& x_state) { 46 | // Code from lectures quizes 47 | float px = x_state(0); 48 | float py = x_state(1); 49 | float vx = x_state(2); 50 | float vy = x_state(3); 51 | MatrixXd Hj(3,4); 52 | // Deal with the special case problems 53 | if (fabs(px) < EPS and fabs(py) < EPS){ 54 | px = EPS; 55 | py = EPS; 56 | } 57 | // Pre-compute a set of terms to avoid repeated calculation 58 | float c1 = px*px+py*py; 59 | // Check division by zero 60 | if(fabs(c1) < EPS2){ 61 | c1 = EPS2; 62 | } 63 | float c2 = sqrt(c1); 64 | float c3 = (c1*c2); 65 | // Compute the Jacobian matrix 66 | Hj << (px/c2), (py/c2), 0, 0, 67 | -(py/c1), (px/c1), 0, 0, 68 | py*(vx*py - vy*px)/c3, px*(px*vy - py*vx)/c3, px/c2, py/c2; 69 | return Hj; 70 | } 71 | -------------------------------------------------------------------------------- /task.md: -------------------------------------------------------------------------------- 1 | # Extended Kalman Filter Project Starter Code 2 | Self-Driving Car Engineer Nanodegree Program 3 | 4 | --- 5 | 6 | ## Dependencies 7 | 8 | * cmake >= 3.5 9 | * All OSes: [click here for installation instructions](https://cmake.org/install/) 10 | * make >= 4.1 11 | * Linux: make is installed by default on most Linux distros 12 | * Mac: [install Xcode command line tools to get make](https://developer.apple.com/xcode/features/) 13 | * Windows: [Click here for installation instructions](http://gnuwin32.sourceforge.net/packages/make.htm) 14 | * gcc/g++ >= 5.4 15 | * Linux: gcc / g++ is installed by default on most Linux distros 16 | * Mac: same deal as make - [install Xcode command line tools]((https://developer.apple.com/xcode/features/) 17 | * Windows: recommend using [MinGW](http://www.mingw.org/) 18 | 19 | ## Basic Build Instructions 20 | 21 | 1. Clone this repo. 22 | 2. Make a build directory: `mkdir build && cd build` 23 | 3. Compile: `cmake .. && make` 24 | * On windows, you may need to run: `cmake .. -G "Unix Makefiles" && make` 25 | 4. Run it: `./ExtendedKF path/to/input.txt path/to/output.txt`. You can find 26 | some sample inputs in 'data/'. 27 | - eg. `./ExtendedKF ../data/sample-laser-radar-measurement-data-1.txt output.txt` 28 | 29 | ## Editor Settings 30 | 31 | We've purposefully kept editor configuration files out of this repo in order to 32 | keep it as simple and environment agnostic as possible. However, we recommend 33 | using the following settings: 34 | 35 | * indent using spaces 36 | * set tab width to 2 spaces (keeps the matrices in source code aligned) 37 | 38 | ## Code Style 39 | 40 | Please (do your best to) stick to [Google's C++ style guide](https://google.github.io/styleguide/cppguide.html). 41 | 42 | ## Generating Additional Data 43 | 44 | This is optional! 45 | 46 | If you'd like to generate your own radar and lidar data, see the 47 | [utilities repo](https://github.com/udacity/CarND-Mercedes-SF-Utilities) for 48 | Matlab scripts that can generate additional data. 49 | 50 | ## Project Instructions and Rubric 51 | 52 | Note: regardless of the changes you make, your project must be buildable using 53 | cmake and make! 54 | 55 | More information is only accessible by people who are already enrolled in Term 2 56 | of CarND. If you are enrolled, see [the project page](https://classroom.udacity.com/nanodegrees/nd013/parts/40f38239-66b6-46ec-ae68-03afd8a601c8/modules/0949fca6-b379-42af-a919-ee50aa304e6a/lessons/f758c44c-5e40-4e01-93b5-1a82aa4e044f/concepts/12dd29d8-2755-4b1b-8e03-e8f16796bea8) 57 | for instructions and the project rubric. 58 | 59 | ## Hints! 60 | 61 | * You don't have to follow this directory structure, but if you do, your work 62 | will span all of the .cpp files here. Keep an eye out for TODOs. 63 | 64 | -------------------------------------------------------------------------------- /package.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | kalman_filter 4 | 0.0.0 5 | The kalman_filter package 6 | 7 | 8 | 9 | 10 | xchu 11 | 12 | 13 | 14 | 15 | 16 | TODO 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | catkin 52 | roscpp 53 | rospy 54 | sensor_msgs 55 | std_msgs 56 | roscpp 57 | rospy 58 | sensor_msgs 59 | std_msgs 60 | roscpp 61 | rospy 62 | sensor_msgs 63 | std_msgs 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | -------------------------------------------------------------------------------- /include/kalman_filter/fusion_ukf.h: -------------------------------------------------------------------------------- 1 | #ifndef UKF_H 2 | #define UKF_H 3 | 4 | #include "measurement_package.h" 5 | #include "Eigen/Dense" 6 | #include 7 | #include 8 | #include 9 | #include "tools.h" 10 | 11 | using Eigen::MatrixXd; 12 | using Eigen::VectorXd; 13 | 14 | class UKF { 15 | public: 16 | 17 | ///* initially set to false, set to true in first call of ProcessMeasurement 18 | bool is_initialized_; 19 | 20 | ///* if this is false, laser measurements will be ignored (except for init) 21 | bool use_laser_; 22 | 23 | ///* if this is false, radar measurements will be ignored (except for init) 24 | bool use_radar_; 25 | 26 | ///* state vector: [pos1 pos2 vel_abs yaw_angle yaw_rate] in SI units and rad 27 | VectorXd x_; 28 | 29 | ///* state covariance matrix 30 | MatrixXd P_; 31 | 32 | ///* predicted sigma points matrix 33 | MatrixXd Xsig_pred_; 34 | 35 | ///* time when the state is true, in us 36 | long long time_us_; 37 | 38 | ///* Process noise standard deviation longitudinal acceleration in m/s^2 39 | double std_a_; 40 | 41 | ///* Process noise standard deviation yaw acceleration in rad/s^2 42 | double std_yawdd_; 43 | 44 | ///* Laser measurement noise standard deviation position1 in m 45 | double std_laspx_; 46 | 47 | ///* Laser measurement noise standard deviation position2 in m 48 | double std_laspy_; 49 | 50 | ///* Radar measurement noise standard deviation radius in m 51 | double std_radr_; 52 | 53 | ///* Radar measurement noise standard deviation angle in rad 54 | double std_radphi_; 55 | 56 | ///* Radar measurement noise standard deviation radius change in m/s 57 | double std_radrd_ ; 58 | 59 | ///* Weights of sigma points 60 | VectorXd weights_; 61 | 62 | ///* State dimension 63 | int n_x_; 64 | 65 | ///* Augmented state dimension 66 | int n_aug_; 67 | 68 | ///* Number of sigma points 69 | int n_sig_; 70 | 71 | ///* Sigma point spreading parameter 72 | double lambda_; 73 | 74 | ///* the current NIS for radar 75 | double NIS_radar_; 76 | 77 | ///* the current NIS for laser 78 | double NIS_laser_; 79 | 80 | ///* Radar measurement noise covariance matrix 81 | MatrixXd R_radar_; 82 | 83 | ///* Lidar measurement noise covariance matrix 84 | MatrixXd R_lidar_; 85 | 86 | /** 87 | * Constructor 88 | */ 89 | UKF(); 90 | 91 | /** 92 | * Destructor 93 | */ 94 | virtual ~UKF(); 95 | 96 | /** 97 | * Angle normalization to [-Pi, Pi] 98 | */ 99 | void NormAng(double *ang); 100 | 101 | /** 102 | * ProcessMeasurement 103 | * @param measurement_pack The latest measurement data of either radar or laser 104 | */ 105 | void ProcessMeasurement(MeasurementPackage measurement_pack); 106 | 107 | /** 108 | * Prediction Predicts sigma points, the state, and the state covariance 109 | * matrix 110 | * @param delta_t Time between k and k+1 in s 111 | */ 112 | void Prediction(double delta_t); 113 | 114 | /** 115 | * Updates the state and the state covariance matrix using a laser measurement 116 | * @param meas_package The measurement at k+1 117 | */ 118 | void UpdateLidar(MeasurementPackage meas_package); 119 | 120 | /** 121 | * Updates the state and the state covariance matrix using a radar measurement 122 | * @param meas_package The measurement at k+1 123 | */ 124 | void UpdateRadar(MeasurementPackage meas_package); 125 | /** 126 | * Updates the state and the state covariance matrix of the UKF 127 | * 128 | */ 129 | void UpdateUKF(MeasurementPackage meas_package, MatrixXd Zsig, int n_z); 130 | }; 131 | 132 | #endif /* UKF_H */ 133 | -------------------------------------------------------------------------------- /src/fusion_ekf.cpp: -------------------------------------------------------------------------------- 1 | #include "kalman_filter/fusion_ekf.h" 2 | #include "kalman_filter/tools.h" 3 | #include "Eigen/Dense" 4 | #include 5 | #define EPS 0.0001 // A very small number 6 | 7 | using namespace std; 8 | using Eigen::MatrixXd; 9 | using Eigen::VectorXd; 10 | using std::vector; 11 | 12 | /* 13 | * Constructor. 14 | */ 15 | FusionEKF::FusionEKF() { 16 | /** 17 | TODO: 18 | * Finish initializing the FusionEKF. 19 | * Set the process and measurement noises 20 | * 系统状态量:px, py, vx, vy 21 | * 观测量: 22 | * 1.激光雷达:px, py ,可直接作为系统状态量使用, 无需转换(H矩阵) 23 | * 2.毫米波雷达:rho(距离), phi(角度), rho_dot(角度变化率), 需要先转换成系统状态量使用(非线性过程) 24 | * 两个步骤: 25 | * 1.预测:根据运动模型预测下一时刻的系统状态 (px py vx vy), x_k = F(x)*x_k-1+Q 26 | * 系统上一时刻状态->系统当前时刻状态, 不涉及状态空间与观测空间的转换, 即不考虑传感器类型 27 | * 这个过程是线性的, 其状态转换矩阵定义为F(x), 过程噪声定义为Q 28 | * 2.测量更新: 根据当前的观测数据, 去修正预测的结果 29 | * 这里首先需要将预测数据转换到测量空间下, 这个过程涉及到具体的传感器模型, 以及观测带来的传感器本身的噪声R 30 | * z_k = H(x)*x_k + R H矩阵则是描述这个状态空间到观测空间的转换 31 | * 这样计算残差 delta_x = z_k - x_k 32 | * 33 | * 34 | */ 35 | is_initialized_ = false; 36 | previous_timestamp_ = 0; 37 | // Initializing matrices 38 | // 激光雷达与毫米波的观测协方差矩阵R 39 | R_laser_ = MatrixXd(2, 2); 40 | R_radar_ = MatrixXd(3, 3); 41 | // 激光雷达、毫米波状态空间->观测空间的变换矩阵H 42 | H_laser_ = MatrixXd(2, 4); 43 | H_laser_ << 1, 0, 0, 0, 44 | 0, 1, 0, 0; 45 | // 毫米波的状态变换矩阵(雅克比), 因为是非线性 46 | Hj_ = MatrixXd(3, 4); 47 | 48 | // 激光雷达和毫米波的测量噪声R是设备固有的,在说明中已给出 49 | R_laser_ << 0.0225, 0, 50 | 0, 0.0225; 51 | R_radar_ << 0.09, 0, 0, 52 | 0, 0.0009, 0, 53 | 0, 0, 0.09; 54 | } 55 | 56 | /** 57 | * Destructor. 58 | */ 59 | FusionEKF::~FusionEKF() {} 60 | 61 | void FusionEKF::ProcessMeasurement(const MeasurementPackage &measurement_pack) { 62 | 63 | /***************************************************************************** 64 | * TODO: Initialization 65 | * 利用第一帧数据, 初始化系统状态变量 ekf_.x_,协方差矩阵P,状态量(px, py, vx, vy) 66 | * 这里传感器不同, 可以初始化的变量就不同, 比如激光雷达只能初始化px和py 67 | * 第二帧之后进来的数据则直接进入预测流程 68 | ****************************************************************************/ 69 | if (!is_initialized_) { 70 | ekf_.x_ = VectorXd(4); 71 | if (measurement_pack.sensor_type_ == MeasurementPackage::RADAR) { 72 | // 利用第一帧毫米波数据初始化状态量 73 | float rho = measurement_pack.raw_measurements_[0]; // range 74 | float phi = measurement_pack.raw_measurements_[1]; // bearing 75 | float rho_dot = measurement_pack.raw_measurements_[2]; // velocity of rho 76 | // 毫米波数据可同时初始化所有的系统状态变量 77 | float x = rho * cos(phi); 78 | float y = rho * sin(phi); 79 | float vx = rho_dot * cos(phi); 80 | float vy = rho_dot * sin(phi); 81 | ekf_.x_ << x, y, vx , vy; 82 | } 83 | else if (measurement_pack.sensor_type_ == MeasurementPackage::LASER) { 84 | // 激光只能初始化px和py 85 | ekf_.x_ << measurement_pack.raw_measurements_[0], measurement_pack.raw_measurements_[1], 0, 0; 86 | } 87 | // 这里校验状态量, 状态量xy太小的话设为EPS 88 | if (fabs(ekf_.x_(0)) < EPS and fabs(ekf_.x_(1)) < EPS){ 89 | ekf_.x_(0) = EPS; 90 | ekf_.x_(1) = EPS; 91 | } 92 | // 初始化系统4*4的协方差矩阵P,因为我们不知道速度,所以将vx,vy方差设置大一些 93 | ekf_.P_ = MatrixXd(4, 4); 94 | ekf_.P_ << 1, 0, 0, 0, 95 | 0, 1, 0, 0, 96 | 0, 0, 1000, 0, 97 | 0, 0, 0, 1000; 98 | // Print the initialization results 99 | cout << "EKF init: " << ekf_.x_ << endl; 100 | // 更新时间戳,后面需要计算delta_t 101 | previous_timestamp_ = measurement_pack.timestamp_; 102 | is_initialized_ = true; 103 | return; 104 | } 105 | 106 | /** 107 | TODO: Prediction 108 | * 根据上一帧的系统状态(px_1, py_1, vx_1, vy_1)预测当前帧的状态(px py vx vy) 109 | * 计算状态转换矩阵F->当前预测的状态量x 110 | * 预测的过程噪声Q, 一部分噪声是由匀速运动模型带来的 111 | */ 112 | // 计算两帧的时间差dt 113 | float dt = (measurement_pack.timestamp_ - previous_timestamp_); 114 | dt /= 1000000.0; // convert micros to s 115 | previous_timestamp_ = measurement_pack.timestamp_; 116 | 117 | // 根据匀速运动模型,设置状态变换的F矩阵 118 | // px = px_1 + vx*dt 119 | // py = py_1 + vy*dt 120 | ekf_.F_ = MatrixXd(4, 4); 121 | ekf_.F_ << 1, 0, dt, 0, 122 | 0, 1, 0, dt, 123 | 0, 0, 1, 0, 124 | 0, 0, 0, 1; 125 | // 计算随机加速度噪声协方差,需要根据实际的运动模型进行估计 126 | float noise_ax = 9.0; 127 | float noise_ay = 9.0; 128 | // 根据上一时刻状态->预测当前状态,过程噪声协方差矩阵Q 129 | float dt_2 = dt * dt; //dt^2 130 | float dt_3 = dt_2 * dt; //dt^3 131 | float dt_4 = dt_3 * dt; //dt^4 132 | float dt_4_4 = dt_4 / 4; //dt^4/4 133 | float dt_3_2 = dt_3 / 2; //dt^3/2 134 | ekf_.Q_ = MatrixXd(4, 4); 135 | ekf_.Q_ << dt_4_4 * noise_ax, 0, dt_3_2 * noise_ax, 0, 136 | 0, dt_4_4 * noise_ay, 0, dt_3_2 * noise_ay, 137 | dt_3_2 * noise_ax, 0, dt_2 * noise_ax, 0, 138 | 0, dt_3_2 * noise_ay, 0, dt_2 * noise_ay; 139 | 140 | ekf_.Predict(); // 输入转换矩阵F,过程噪声Q 141 | 142 | /** 143 | TODO: Update 144 | * 根据当前不同类型的观测数据和上一帧预测的状态,来计算残差和卡尔曼增益. 145 | * 获取当前的状态量以及协方差矩阵. 146 | */ 147 | 148 | if (measurement_pack.sensor_type_ == MeasurementPackage::RADAR) { 149 | // 当前你观测是毫米波数据的话,H(X)是从状态空间4->测量空间的转换3 150 | // H(X)是非线性的,观测空间->状态空间的变换之后,已经不一定服从高斯分布了 151 | // 所以对H(X)用泰勒一阶展开,因此H矩阵可以由雅克比矩阵J代替 152 | ekf_.H_ = tools.CalculateJacobian(ekf_.x_); // 测量变量3个,状态变量4个,雅克比3*4 153 | ekf_.R_ = R_radar_; 154 | ekf_.UpdateEKF(measurement_pack.raw_measurements_); 155 | } else { 156 | // 当前观测是激光雷达数据的话,就是线性变换了 157 | // 按卡尔曼滤波模型更新测量 158 | ekf_.H_ = H_laser_; 159 | ekf_.R_ = R_laser_; 160 | ekf_.Update(measurement_pack.raw_measurements_); 161 | } 162 | // print the output 163 | cout << "x_ = " << ekf_.x_ << endl; 164 | cout << "P_ = " << ekf_.P_ << endl; 165 | } 166 | -------------------------------------------------------------------------------- /src/main_ekf.cpp: -------------------------------------------------------------------------------- 1 | 2 | 3 | #include "kalman_filter/fusion_ekf.h" 4 | #include "kalman_filter/ground_truth_package.h" 5 | #include "kalman_filter/measurement_package.h" 6 | 7 | #include "Eigen/Dense" 8 | #include "ros/ros.h" 9 | #include 10 | #include 11 | #include 12 | #include 13 | 14 | using namespace std; 15 | using Eigen::MatrixXd; 16 | using Eigen::VectorXd; 17 | using std::vector; 18 | 19 | void check_arguments(int argc, char *argv[]) { 20 | string usage_instructions = "Usage instructions: "; 21 | usage_instructions += argv[0]; 22 | usage_instructions += " path/to/input.txt output.txt"; 23 | 24 | bool has_valid_args = false; 25 | 26 | // make sure the user has provided input and output files 27 | if (argc == 1) { 28 | cerr << usage_instructions << endl; 29 | } else if (argc == 2) { 30 | cerr << "Please include an output file.\n" << usage_instructions << endl; 31 | } else if (argc == 3) { 32 | has_valid_args = true; 33 | } else if (argc > 3) { 34 | cerr << "Too many arguments.\n" << usage_instructions << endl; 35 | } 36 | 37 | if (!has_valid_args) { 38 | exit(EXIT_FAILURE); 39 | } 40 | } 41 | 42 | void check_files(ifstream &in_file, string &in_name, 43 | ofstream &out_file, string &out_name) { 44 | if (!in_file.is_open()) { 45 | cerr << "Cannot open input file: " << in_name << endl; 46 | exit(EXIT_FAILURE); 47 | } 48 | 49 | if (!out_file.is_open()) { 50 | cerr << "Cannot open output file: " << out_name << endl; 51 | exit(EXIT_FAILURE); 52 | } 53 | } 54 | 55 | int main(int argc, char **argv) { 56 | 57 | ros::init(argc, argv, "kalmanfilter"); 58 | ros::NodeHandle node_handle; 59 | 60 | // check参数 61 | // check_arguments(argc, argv); 62 | // string in_file_name_ = argv[1]; 63 | // string out_file_name_ = argv[2]; 64 | 65 | string in_file_name_ = 66 | "/home/xchu/workspace/hdmap_testws/src/kalman_filter/data/sample-laser-radar-measurement-data-1.txt"; 67 | string out_file_name_ = "/home/xchu/workspace/hdmap_testws/src/kalman_filter/data/ekf_out.txt"; 68 | 69 | ifstream in_file_(in_file_name_.c_str(), ifstream::in); 70 | ofstream out_file_(out_file_name_.c_str(), ofstream::out); 71 | 72 | // 校验文件路径 73 | check_files(in_file_, in_file_name_, out_file_, out_file_name_); 74 | 75 | // measurement_pack_list 中包含一个时间戳和两种类型的数据,按时间戳顺序排列。用来存储读取的数据文件 76 | vector measurement_pack_list; 77 | vector gt_pack_list; 78 | 79 | // 逐行读取毫米波和激光雷达数据 80 | string line; 81 | while (getline(in_file_, line)) { 82 | string sensor_type; 83 | MeasurementPackage meas_package; 84 | GroundTruthPackage gt_package; 85 | istringstream iss(line); 86 | long long timestamp; 87 | 88 | // 读取激光雷达、毫米波、groundTruth数据 89 | iss >> sensor_type; // 数据的第一行 90 | if (sensor_type.compare("L") == 0) { 91 | // LASER MEASUREMENT 92 | // 激光雷达数据, 只有px,py 93 | // read measurements at this timestamp 94 | meas_package.sensor_type_ = MeasurementPackage::LASER; 95 | meas_package.raw_measurements_ = VectorXd(2); 96 | float x; 97 | float y; 98 | iss >> x; 99 | iss >> y; 100 | meas_package.raw_measurements_ << x, y; 101 | iss >> timestamp; 102 | meas_package.timestamp_ = timestamp; 103 | measurement_pack_list.push_back(meas_package); 104 | } else if (sensor_type.compare("R") == 0) { 105 | // RADAR MEASUREMENT 106 | // 毫米波数据, 包含ro, phi, ro_dot 107 | meas_package.sensor_type_ = MeasurementPackage::RADAR; 108 | meas_package.raw_measurements_ = VectorXd(3); 109 | float ro; 110 | float phi; 111 | float ro_dot; 112 | iss >> ro; 113 | iss >> phi; 114 | iss >> ro_dot; 115 | meas_package.raw_measurements_ << ro, phi, ro_dot; 116 | iss >> timestamp; 117 | meas_package.timestamp_ = timestamp; 118 | measurement_pack_list.push_back(meas_package); 119 | } 120 | 121 | // ground truth data 122 | float x_gt; 123 | float y_gt; 124 | float vx_gt; 125 | float vy_gt; 126 | iss >> x_gt; 127 | iss >> y_gt; 128 | iss >> vx_gt; 129 | iss >> vy_gt; 130 | gt_package.gt_values_ = VectorXd(4); 131 | gt_package.gt_values_ << x_gt, y_gt, vx_gt, vy_gt; 132 | gt_pack_list.push_back(gt_package); 133 | } 134 | 135 | // 初始化EKF参数 136 | // EKF主要包括两个矩阵, 两个函数 137 | // 状态预测函数,需要计算状态变换的F矩阵; 138 | // 测量更新函数,需要计算测量变换矩阵H 139 | FusionEKF fusionEKF; 140 | 141 | vector estimations; 142 | vector ground_truth; 143 | 144 | //Call the EKF-based fusion 145 | size_t N = measurement_pack_list.size(); 146 | for (size_t k = 0; k < N; ++k) { 147 | 148 | // 第一帧数据初始化预测的X,P和转换矩阵F 149 | // 从第二帧数据起开始进行融合 (the speed is unknown in the first frame) 150 | fusionEKF.ProcessMeasurement(measurement_pack_list[k]); 151 | 152 | // 将预测状态量结果输出到文件 153 | out_file_ << fusionEKF.ekf_.x_(0) << "\t"; 154 | out_file_ << fusionEKF.ekf_.x_(1) << "\t"; 155 | out_file_ << fusionEKF.ekf_.x_(2) << "\t"; 156 | out_file_ << fusionEKF.ekf_.x_(3) << "\t"; 157 | 158 | // 将观测结果输出到文件 159 | if (measurement_pack_list[k].sensor_type_ == MeasurementPackage::LASER) { 160 | // output the estimation 161 | out_file_ << measurement_pack_list[k].raw_measurements_(0) << "\t"; 162 | out_file_ << measurement_pack_list[k].raw_measurements_(1) << "\t"; 163 | } else if (measurement_pack_list[k].sensor_type_ == MeasurementPackage::RADAR) { 164 | // output the estimation in the cartesian coordinates 165 | float ro = measurement_pack_list[k].raw_measurements_(0); 166 | float phi = measurement_pack_list[k].raw_measurements_(1); 167 | out_file_ << ro * cos(phi) << "\t"; // p1_meas 168 | out_file_ << ro * sin(phi) << "\t"; // ps_meas 169 | } 170 | 171 | // 输出ground truth 172 | out_file_ << gt_pack_list[k].gt_values_(0) << "\t"; 173 | out_file_ << gt_pack_list[k].gt_values_(1) << "\t"; 174 | out_file_ << gt_pack_list[k].gt_values_(2) << "\t"; 175 | out_file_ << gt_pack_list[k].gt_values_(3) << "\n"; 176 | 177 | estimations.push_back(fusionEKF.ekf_.x_); 178 | ground_truth.push_back(gt_pack_list[k].gt_values_); 179 | } 180 | 181 | // 计算RMSE 182 | Tools tools; 183 | cout << "Accuracy - RMSE:" << endl << tools.CalculateRMSE(estimations, ground_truth) << endl; 184 | 185 | // close files 186 | if (out_file_.is_open()) { 187 | out_file_.close(); 188 | } 189 | if (in_file_.is_open()) { 190 | in_file_.close(); 191 | } 192 | 193 | return 0; 194 | } 195 | -------------------------------------------------------------------------------- /src/main_ukf.cpp: -------------------------------------------------------------------------------- 1 | /** 2 | * Author: xc Hu 3 | * Date: 2020/8/12 下午2:15 4 | * Content: 5 | * Email: 2022087641@qq.com 6 | */ 7 | 8 | #include 9 | #include 10 | #include 11 | #include 12 | #include "Eigen/Dense" 13 | #include "kalman_filter/fusion_ukf.h" 14 | #include "kalman_filter/ground_truth_package.h" 15 | #include "kalman_filter/measurement_package.h" 16 | #include "ros/ros.h" 17 | using namespace std; 18 | using Eigen::MatrixXd; 19 | using Eigen::VectorXd; 20 | using std::vector; 21 | 22 | void check_arguments(int argc, char *argv[]) { 23 | string usage_instructions = "Usage instructions: "; 24 | usage_instructions += argv[0]; 25 | usage_instructions += " path/to/input.txt output.txt"; 26 | 27 | bool has_valid_args = false; 28 | 29 | // make sure the user has provided input and output files 30 | if (argc == 1) { 31 | cerr << usage_instructions << endl; 32 | } else if (argc == 2) { 33 | cerr << "Please include an output file.\n" << usage_instructions << endl; 34 | } else if (argc == 3) { 35 | has_valid_args = true; 36 | } else if (argc > 3) { 37 | cerr << "Too many arguments.\n" << usage_instructions << endl; 38 | } 39 | 40 | if (!has_valid_args) { 41 | exit(EXIT_FAILURE); 42 | } 43 | } 44 | 45 | void check_files(ifstream &in_file, string &in_name, 46 | ofstream &out_file, string &out_name) { 47 | if (!in_file.is_open()) { 48 | cerr << "Cannot open input file: " << in_name << endl; 49 | exit(EXIT_FAILURE); 50 | } 51 | 52 | if (!out_file.is_open()) { 53 | cerr << "Cannot open output file: " << out_name << endl; 54 | exit(EXIT_FAILURE); 55 | } 56 | } 57 | 58 | int main(int argc, char *argv[]) { 59 | 60 | // check_arguments(argc, argv); 61 | // string in_file_name_ = argv[1]; 62 | // ifstream in_file_(in_file_name_.c_str(), ifstream::in); 63 | // string out_file_name_ = argv[2]; 64 | // ofstream out_file_(out_file_name_.c_str(), ofstream::out); 65 | // check_files(in_file_, in_file_name_, out_file_, out_file_name_); 66 | 67 | ros::init(argc, argv, "ukalmanfilter"); 68 | ros::NodeHandle node_handle; 69 | 70 | string in_file_name_ = 71 | "/home/xchu/workspace/hdmap_testws/src/kalman_filter/data/sample-laser-radar-measurement-data-1.txt"; 72 | string out_file_name_ = "/home/xchu/workspace/hdmap_testws/src/kalman_filter/data/ukf_out.txt"; 73 | 74 | ifstream in_file_(in_file_name_.c_str(), ifstream::in); 75 | ofstream out_file_(out_file_name_.c_str(), ofstream::out); 76 | 77 | check_files(in_file_, in_file_name_, out_file_, out_file_name_); 78 | 79 | /********************************************** 80 | * Set Measurements * 81 | **********************************************/ 82 | 83 | vector measurement_pack_list; 84 | vector gt_pack_list; 85 | 86 | string line; 87 | 88 | // 读数据和ground truth 89 | while (getline(in_file_, line)) { 90 | string sensor_type; 91 | MeasurementPackage meas_package; 92 | GroundTruthPackage gt_package; 93 | istringstream iss(line); 94 | long long timestamp; 95 | 96 | // reads first element from the current line 97 | iss >> sensor_type; 98 | 99 | if (sensor_type.compare("L") == 0) { 100 | // laser measurement 101 | 102 | // read measurements at this timestamp 103 | meas_package.sensor_type_ = MeasurementPackage::LASER; 104 | meas_package.raw_measurements_ = VectorXd(2); 105 | float px; 106 | float py; 107 | iss >> px; 108 | iss >> py; 109 | meas_package.raw_measurements_ << px, py; 110 | iss >> timestamp; 111 | meas_package.timestamp_ = timestamp; 112 | measurement_pack_list.push_back(meas_package); 113 | } else if (sensor_type.compare("R") == 0) { 114 | // radar measurement 115 | 116 | // read measurements at this timestamp 117 | meas_package.sensor_type_ = MeasurementPackage::RADAR; 118 | meas_package.raw_measurements_ = VectorXd(3); 119 | float ro; 120 | float phi; 121 | float ro_dot; 122 | iss >> ro; 123 | iss >> phi; 124 | iss >> ro_dot; 125 | meas_package.raw_measurements_ << ro, phi, ro_dot; 126 | iss >> timestamp; 127 | meas_package.timestamp_ = timestamp; 128 | measurement_pack_list.push_back(meas_package); 129 | } 130 | 131 | // read ground truth data to compare later 132 | float x_gt; 133 | float y_gt; 134 | float vx_gt; 135 | float vy_gt; 136 | iss >> x_gt; 137 | iss >> y_gt; 138 | iss >> vx_gt; 139 | iss >> vy_gt; 140 | gt_package.gt_values_ = VectorXd(4); 141 | gt_package.gt_values_ << x_gt, y_gt, vx_gt, vy_gt; 142 | gt_pack_list.push_back(gt_package); 143 | } 144 | 145 | // 初始化UKF 146 | UKF ukf; 147 | 148 | // used to compute the RMSE later 149 | vector estimations; 150 | vector ground_truth; 151 | 152 | size_t number_of_measurements = measurement_pack_list.size(); 153 | 154 | // column names for output file 155 | out_file_ << "px" << "\t"; 156 | out_file_ << "py" << "\t"; 157 | out_file_ << "v" << "\t"; 158 | out_file_ << "yaw_angle" << "\t"; 159 | out_file_ << "yaw_rate" << "\t"; 160 | out_file_ << "px_measured" << "\t"; 161 | out_file_ << "py_measured" << "\t"; 162 | out_file_ << "px_true" << "\t"; 163 | out_file_ << "py_true" << "\t"; 164 | out_file_ << "vx_true" << "\t"; 165 | out_file_ << "vy_true" << "\t"; 166 | out_file_ << "NIS" << "\n"; 167 | 168 | for (size_t k = 0; k < number_of_measurements; ++k) { 169 | // Call the UKF-based fusion 170 | ukf.ProcessMeasurement(measurement_pack_list[k]); 171 | 172 | // output the estimation 173 | out_file_ << ukf.x_(0) << "\t"; // pos1 - est 174 | out_file_ << ukf.x_(1) << "\t"; // pos2 - est 175 | out_file_ << ukf.x_(2) << "\t"; // vel_abs -est 176 | out_file_ << ukf.x_(3) << "\t"; // yaw_angle -est 177 | out_file_ << ukf.x_(4) << "\t"; // yaw_rate -est 178 | 179 | // output the measurements 180 | if (measurement_pack_list[k].sensor_type_ == MeasurementPackage::LASER) { 181 | // output the estimation 182 | 183 | // p1 - meas 184 | out_file_ << measurement_pack_list[k].raw_measurements_(0) << "\t"; 185 | 186 | // p2 - meas 187 | out_file_ << measurement_pack_list[k].raw_measurements_(1) << "\t"; 188 | } else if (measurement_pack_list[k].sensor_type_ == MeasurementPackage::RADAR) { 189 | // output the estimation in the cartesian coordinates 190 | float ro = measurement_pack_list[k].raw_measurements_(0); 191 | float phi = measurement_pack_list[k].raw_measurements_(1); 192 | out_file_ << ro * cos(phi) << "\t"; // p1_meas 193 | out_file_ << ro * sin(phi) << "\t"; // p2_meas 194 | } 195 | 196 | // output the ground truth packages 197 | out_file_ << gt_pack_list[k].gt_values_(0) << "\t"; 198 | out_file_ << gt_pack_list[k].gt_values_(1) << "\t"; 199 | out_file_ << gt_pack_list[k].gt_values_(2) << "\t"; 200 | out_file_ << gt_pack_list[k].gt_values_(3) << "\t"; 201 | 202 | // output the NIS values 203 | 204 | if (measurement_pack_list[k].sensor_type_ == MeasurementPackage::LASER) { 205 | out_file_ << ukf.NIS_laser_ << "\n"; 206 | } else if (measurement_pack_list[k].sensor_type_ == MeasurementPackage::RADAR) { 207 | out_file_ << ukf.NIS_radar_ << "\n"; 208 | } 209 | 210 | 211 | // convert ukf x vector to cartesian to compare to ground truth 212 | VectorXd ukf_x_cartesian_ = VectorXd(4); 213 | 214 | float x_estimate_ = ukf.x_(0); 215 | float y_estimate_ = ukf.x_(1); 216 | float vx_estimate_ = ukf.x_(2) * cos(ukf.x_(3)); 217 | float vy_estimate_ = ukf.x_(2) * sin(ukf.x_(3)); 218 | 219 | ukf_x_cartesian_ << x_estimate_, y_estimate_, vx_estimate_, vy_estimate_; 220 | 221 | estimations.push_back(ukf_x_cartesian_); 222 | ground_truth.push_back(gt_pack_list[k].gt_values_); 223 | 224 | } 225 | 226 | // compute the accuracy (RMSE) 227 | Tools tools; 228 | cout << "Accuracy - RMSE:" << endl << tools.CalculateRMSE(estimations, ground_truth) << endl; 229 | 230 | // close files 231 | if (out_file_.is_open()) { 232 | out_file_.close(); 233 | } 234 | 235 | if (in_file_.is_open()) { 236 | in_file_.close(); 237 | } 238 | 239 | cout << "Done!" << endl; 240 | return 0; 241 | } -------------------------------------------------------------------------------- /src/fusion_ukf.cpp: -------------------------------------------------------------------------------- 1 | #include "kalman_filter/fusion_ukf.h" 2 | #include "kalman_filter/tools.h" 3 | #include "Eigen/Dense" 4 | #include 5 | 6 | #define EPS 0.001 // Just a small number 7 | 8 | using namespace std; 9 | using Eigen::MatrixXd; 10 | using Eigen::VectorXd; 11 | using std::vector; 12 | 13 | /** 14 | * Initializes Unscented Kalman filter 15 | */ 16 | UKF::UKF() { 17 | is_initialized_ = false; 18 | 19 | // 是否融合这些观测数据 20 | use_laser_ = true; 21 | use_radar_ = true; 22 | 23 | // 系统的状态量和不确定度 24 | x_ = VectorXd(5); 25 | P_ = MatrixXd(5, 5); 26 | 27 | // 纵向加速度上的过程噪声标准差 m/s^2 28 | std_a_ = 1.5; 29 | // yaw加速度上的过程噪声标准差 in rad/s^2 30 | std_yawdd_ = 0.57; 31 | // 激光雷达在px上测测量噪声标准差 m 32 | std_laspx_ = 0.15; 33 | // 激光雷达在py上测测量噪声标准差 m 34 | std_laspy_ = 0.15; 35 | // 毫米波测量的rho标准差 m 36 | std_radr_ = 0.3; 37 | // 毫米波测量的phi角度标准差 38 | std_radphi_ = 0.03; 39 | // 毫米波测量的角度变化率rho_phi in m/s 40 | std_radrd_ = 0.3; 41 | 42 | n_x_ = x_.size(); // 系统状态维度 43 | n_aug_ = n_x_ + 2; // 采样点的状态维度, 这里直接7个维度 44 | n_sig_ = 2 * n_aug_ + 1; // sigma点个数, 15个 45 | 46 | Xsig_pred_ = MatrixXd(n_x_, n_sig_); // 预测的sigma点集状态矩阵 5*15 47 | lambda_ = 3 - n_aug_; // sigma点扩散参数 48 | weights_ = VectorXd(n_sig_); // sigma点权重 49 | 50 | // 初始化测量毫米波和激光的噪声矩阵R 51 | R_radar_ = MatrixXd(3, 3); 52 | R_radar_ << std_radr_ * std_radr_, 0, 0, 53 | 0, std_radphi_ * std_radphi_, 0, 54 | 0, 0, std_radrd_ * std_radrd_; 55 | 56 | R_lidar_ = MatrixXd(2, 2); 57 | R_lidar_ << std_laspx_ * std_laspx_, 0, 58 | 0, std_laspy_ * std_laspy_; 59 | } 60 | 61 | UKF::~UKF() {} 62 | 63 | /** 64 | * Angle normalization to [-Pi, Pi] 65 | */ 66 | void UKF::NormAng(double *ang) { 67 | while (*ang > M_PI) *ang -= 2. * M_PI; 68 | while (*ang < -M_PI) *ang += 2. * M_PI; 69 | } 70 | 71 | /** 72 | * @param {MeasurementPackage} meas_package The latest measurement data of 73 | * either radar or laser. 74 | */ 75 | void UKF::ProcessMeasurement(MeasurementPackage measurement_pack) { 76 | // CTRV Model, x_ is [px, py, vel, ang, ang_rate] 77 | if (!is_initialized_) { 78 | // 初始化系统协方差矩阵P 79 | P_ << 1, 0, 0, 0, 0, 80 | 0, 1, 0, 0, 0, 81 | 0, 0, 1, 0, 0, 82 | 0, 0, 0, 1, 0, 83 | 0, 0, 0, 0, 1; 84 | if (measurement_pack.sensor_type_ == MeasurementPackage::RADAR) { 85 | // 毫米波雷达数据的话 86 | float rho = measurement_pack.raw_measurements_[0]; // range 87 | float phi = measurement_pack.raw_measurements_[1]; // bearing 88 | float rho_dot = measurement_pack.raw_measurements_[2]; // velocity of rho 89 | // 求系统状态并作为初值 90 | float px = rho * cos(phi); 91 | float py = rho * sin(phi); 92 | float vx = rho_dot * cos(phi); 93 | float vy = rho_dot * sin(phi); 94 | float v = sqrt(vx * vx + vy * vy); 95 | x_ << px, py, v, 0, 0; // 另外两个数据没有,设为0 96 | } else if (measurement_pack.sensor_type_ == MeasurementPackage::LASER) { 97 | // 激光雷达数据,只有位置px,py, 其他初始化为0 98 | x_ << measurement_pack.raw_measurements_[0], measurement_pack.raw_measurements_[1], 0, 0, 0; 99 | // Deal with the special case initialisation problems 100 | if (fabs(x_(0)) < EPS and fabs(x_(1)) < EPS) { 101 | x_(0) = EPS; 102 | x_(1) = EPS; 103 | } 104 | } 105 | 106 | // 初始化sigma点权重,一共15个sigma点 107 | weights_(0) = lambda_ / (lambda_ + n_aug_); // 第一个点的权重lamda/(n+lamda) 108 | for (int i = 1; i < weights_.size(); i++) { // 之后每个点的权重 1/2(n+lamda) 109 | weights_(i) = 0.5 / (n_aug_ + lambda_); 110 | } 111 | 112 | time_us_ = measurement_pack.timestamp_; // 更新时间戳 113 | is_initialized_ = true; 114 | //cout << "Init" << endl; 115 | //cout << "x_" << x_ << endl; 116 | return; 117 | } 118 | 119 | // 计算delta_t并更新 120 | double dt = (measurement_pack.timestamp_ - time_us_); 121 | dt /= 1000000.0; // convert micros to s 122 | time_us_ = measurement_pack.timestamp_; 123 | 124 | // 根据上一帧状态,预测当前状态,计算转换后的sigma点,并拟合高斯 125 | Prediction(dt); 126 | //cout << "predict:" << endl; 127 | //cout << "x_" << endl << x_ << endl; 128 | 129 | // 根据传感器数据类型去获取融合结果 130 | if (measurement_pack.sensor_type_ == MeasurementPackage::RADAR && use_radar_) { 131 | //cout << "Radar " << measurement_pack.raw_measurements_[0] << " " << measurement_pack.raw_measurements_[1] << endl; 132 | UpdateRadar(measurement_pack); 133 | } 134 | if (measurement_pack.sensor_type_ == MeasurementPackage::LASER && use_laser_) { 135 | //cout << "Lidar " << measurement_pack.raw_measurements_[0] << " " << measurement_pack.raw_measurements_[1] << endl; 136 | UpdateLidar(measurement_pack); 137 | } 138 | } 139 | 140 | /** 141 | * Predicts sigma points, the state, and the state covariance matrix. 142 | * @param {double} delta_t the change in time (in seconds) between the last 143 | * measurement and this one. 144 | */ 145 | void UKF::Prediction(double delta_t) { 146 | // 匀加速运动模型,这里是dt^2 147 | double delta_t2 = delta_t * delta_t; 148 | 149 | // 扩展到7维的状态 150 | VectorXd x_aug = VectorXd(n_aug_); // Augmented mean vector 7×1 151 | MatrixXd P_aug = MatrixXd(n_aug_, n_aug_); // Augmented state covarience matrix 7×7 152 | MatrixXd Xsig_aug = MatrixXd(n_aug_, n_sig_); // Sigma point matrix 7*15 153 | 154 | // Fill the matrices 155 | x_aug.fill(0.0); 156 | x_aug.head(n_x_) = x_; 157 | P_aug.fill(0); 158 | P_aug.topLeftCorner(n_x_, n_x_) = P_; 159 | 160 | P_aug(5, 5) = std_a_ * std_a_; // 剩下两个维度对加速度和yaw变化率噪声进行估计 161 | P_aug(6, 6) = std_yawdd_ * std_yawdd_; 162 | MatrixXd L = P_aug.llt().matrixL(); // Square root of P matrix 163 | 164 | // 创建sigma点 7*15 165 | Xsig_aug.col(0) = x_aug; 166 | double sqrt_lambda_n_aug = sqrt(lambda_ + n_aug_); // Save some computations 167 | VectorXd sqrt_lambda_n_aug_L; 168 | for (int i = 0; i < n_aug_; i++) { 169 | // 每一行赋值 170 | sqrt_lambda_n_aug_L = sqrt_lambda_n_aug * L.col(i); 171 | Xsig_aug.col(i + 1) = x_aug + sqrt_lambda_n_aug_L; 172 | Xsig_aug.col(i + 1 + n_aug_) = x_aug - sqrt_lambda_n_aug_L; 173 | } 174 | 175 | // 预测sigma点的状态,根据匀加速运动模型来计算 176 | for (int i = 0; i < n_sig_; i++) { 177 | // Extract values for better readability 178 | double p_x = Xsig_aug(0, i); 179 | double p_y = Xsig_aug(1, i); 180 | double v = Xsig_aug(2, i); 181 | double yaw = Xsig_aug(3, i); 182 | double yawd = Xsig_aug(4, i); 183 | double nu_a = Xsig_aug(5, i); 184 | double nu_yawdd = Xsig_aug(6, i); 185 | // Precalculate sin and cos for optimization 186 | double sin_yaw = sin(yaw); 187 | double cos_yaw = cos(yaw); 188 | double arg = yaw + yawd * delta_t; 189 | 190 | // Predicted state values 191 | double px_p, py_p; 192 | // Avoid division by zero 193 | if (fabs(yawd) > EPS) { 194 | double v_yawd = v / yawd; 195 | px_p = p_x + v_yawd * (sin(arg) - sin_yaw); 196 | py_p = p_y + v_yawd * (cos_yaw - cos(arg)); 197 | } else { 198 | double v_delta_t = v * delta_t; 199 | px_p = p_x + v_delta_t * cos_yaw; 200 | py_p = p_y + v_delta_t * sin_yaw; 201 | } 202 | double v_p = v; 203 | double yaw_p = arg; 204 | double yawd_p = yawd; 205 | 206 | // Add noise 207 | px_p += 0.5 * nu_a * delta_t2 * cos_yaw; 208 | py_p += 0.5 * nu_a * delta_t2 * sin_yaw; 209 | v_p += nu_a * delta_t; 210 | yaw_p += 0.5 * nu_yawdd * delta_t2; 211 | yawd_p += nu_yawdd * delta_t; 212 | 213 | // Write predicted sigma point into right column 214 | Xsig_pred_(0, i) = px_p; 215 | Xsig_pred_(1, i) = py_p; 216 | Xsig_pred_(2, i) = v_p; 217 | Xsig_pred_(3, i) = yaw_p; 218 | Xsig_pred_(4, i) = yawd_p; 219 | } 220 | 221 | // 计算系统的加权均值以及不确定度 222 | x_ = Xsig_pred_ * weights_; // vectorised sum 223 | // Predicted state covariance matrix 224 | P_.fill(0.0); 225 | for (int i = 0; i < n_sig_; i++) { //iterate over sigma points 226 | // State difference 227 | VectorXd x_diff = Xsig_pred_.col(i) - x_; 228 | // Angle normalization 229 | NormAng(&(x_diff(3))); 230 | P_ = P_ + weights_(i) * x_diff * x_diff.transpose(); 231 | } 232 | } 233 | 234 | /** 235 | * Updates the state and the state covariance matrix using a radar measurement. 236 | * @param {MeasurementPackage} meas_package 237 | */ 238 | void UKF::UpdateRadar(MeasurementPackage meas_package) { 239 | int n_z = 3; // 观测变量只有3维 240 | MatrixXd Zsig = MatrixXd(n_z, n_sig_); 241 | // 将预测的7维状态变量的sigma点转换到3维观测空间 242 | for (int i = 0; i < n_sig_; i++) { 243 | // 列为状态空间维度,行为每一个sigma点 244 | double p_x = Xsig_pred_(0, i); 245 | double p_y = Xsig_pred_(1, i); 246 | double v = Xsig_pred_(2, i); 247 | double yaw = Xsig_pred_(3, i); 248 | double v1 = cos(yaw) * v; 249 | double v2 = sin(yaw) * v; 250 | // Measurement model 251 | Zsig(0, i) = sqrt(p_x * p_x + p_y * p_y); //r 252 | Zsig(1, i) = atan2(p_y, p_x); //phi 253 | Zsig(2, i) = (p_x * v1 + p_y * v2) / Zsig(0, i); //r_dot 254 | } 255 | UpdateUKF(meas_package, Zsig, n_z); 256 | } 257 | 258 | /** 259 | * Updates the state and the state covariance matrix using a laser measurement. 260 | * @param {MeasurementPackage} meas_package 261 | */ 262 | void UKF::UpdateLidar(MeasurementPackage meas_package) { 263 | int n_z = 2; // 设置观测维度 264 | // 将7*15的sigma 点集合转换到测量空间 265 | MatrixXd Zsig = Xsig_pred_.block(0, 0, n_z, n_sig_); 266 | UpdateUKF(meas_package, Zsig, n_z); 267 | } 268 | 269 | // Universal update function 270 | void UKF::UpdateUKF(MeasurementPackage meas_package, MatrixXd Zsig, int n_z) { 271 | 272 | VectorXd z_pred = VectorXd(n_z); // 观测状态量 3*1或者2*1 273 | z_pred = Zsig * weights_; // sigma点集加权均值 274 | MatrixXd S = MatrixXd(n_z, n_z); // 观测不确定度 3*3或者2*2 275 | S.fill(0.0); 276 | 277 | // 计算状态量的加权均值 278 | for (int i = 0; i < n_sig_; i++) { 279 | // Residual 280 | VectorXd z_diff = Zsig.col(i) - z_pred; // 计算每个点状态量的残差 281 | NormAng(&(z_diff(1))); 282 | S = S + weights_(i) * z_diff * z_diff.transpose(); 283 | } 284 | 285 | // 测量噪声也加入进来 286 | MatrixXd R = MatrixXd(n_z, n_z); 287 | if (meas_package.sensor_type_ == MeasurementPackage::RADAR) { // Radar 288 | R = R_radar_; 289 | } else if (meas_package.sensor_type_ == MeasurementPackage::LASER) { // Lidar 290 | R = R_lidar_; 291 | } 292 | S = S + R; 293 | 294 | // 计算关联矩阵T 5*3或者5*2 295 | MatrixXd Tc = MatrixXd(n_x_, n_z); 296 | Tc.fill(0.0); 297 | for (int i = 0; i < n_sig_; i++) { 298 | //residual 299 | VectorXd z_diff = Zsig.col(i) - z_pred; 300 | if (meas_package.sensor_type_ == MeasurementPackage::RADAR) { // Radar 301 | NormAng(&(z_diff(1))); // Angle normalization 302 | } 303 | // State difference 304 | VectorXd x_diff = Xsig_pred_.col(i) - x_; 305 | // Angle normalization 306 | NormAng(&(x_diff(3))); 307 | Tc = Tc + weights_(i) * x_diff * z_diff.transpose(); 308 | } 309 | // Measurements 310 | VectorXd z = meas_package.raw_measurements_; 311 | //Kalman gain K; 312 | MatrixXd K = Tc * S.inverse(); 313 | // Residual 314 | VectorXd z_diff = z - z_pred; 315 | if (meas_package.sensor_type_ == MeasurementPackage::RADAR) { // Radar 316 | // Angle normalization 317 | NormAng(&(z_diff(1))); 318 | } 319 | // Update state mean and covariance matrix 320 | x_ = x_ + K * z_diff; 321 | P_ = P_ - K * S * K.transpose(); 322 | // Calculate NIS 323 | if (meas_package.sensor_type_ == MeasurementPackage::RADAR) { // Radar 324 | NIS_radar_ = z.transpose() * S.inverse() * z; 325 | } else if (meas_package.sensor_type_ == MeasurementPackage::LASER) { // Lidar 326 | NIS_laser_ = z.transpose() * S.inverse() * z; 327 | } 328 | } 329 | -------------------------------------------------------------------------------- /results/output2.txt: -------------------------------------------------------------------------------- 1 | 0.0001 0.0001 0 0 0 0 0 0 0 0 2 | 0.000338488 -0.000446911 0 0 0 0 0 0 0 0 3 | 1.55415 -0.143754 2.01017 0.309235 1.55945 -0.138501 2.09897 0.0522228 2.19595 0.109339 4 | 1.62109 0.0192285 2.30043 0.494589 1.81209 0.0474826 2.09897 0.0522228 2.19595 0.109339 5 | 3.89102 -0.130397 2.26271 -0.525834 3.89093 -0.134166 4.29136 0.215312 2.28434 0.226323 6 | 3.96437 0.0739224 2.42288 -0.197898 4.19528 0.218461 4.29136 0.215312 2.28434 0.226323 7 | 6.85906 0.413143 3.33637 0.702939 6.86352 0.416817 6.56942 0.496096 2.36382 0.348847 8 | 6.6903 0.432431 2.62654 0.574797 6.43926 0.472879 6.56942 0.496096 2.36382 0.348847 9 | 9.07965 0.596255 2.15901 -0.135533 9.07733 0.593211 8.92437 0.89924 2.43359 0.474526 10 | 9.09362 0.667446 2.40714 0.00382532 8.89749 0.886982 8.92437 0.89924 2.43359 0.474526 11 | 11.5747 1.65959 2.56527 1.70838 11.5756 1.6669 11.3468 1.427 2.49328 0.600781 12 | 11.5246 1.61821 2.36441 1.59307 11.4447 1.42958 11.3468 1.427 2.49328 0.600781 13 | 13.5952 2.31862 1.76386 0.0442223 13.5921 2.31191 13.827 2.07905 2.5429 0.724947 14 | 13.6906 2.29565 2.32833 0.0971446 13.6572 1.99915 13.827 2.07905 2.5429 0.724947 15 | 16.6395 2.89904 3.55283 0.991102 16.6456 2.903 16.3554 2.85243 2.58284 0.844365 16 | 16.4806 2.87106 2.85466 0.861002 16.282 2.84648 16.3554 2.85243 2.58284 0.844365 17 | 19.0137 3.70587 2.22932 0.802891 19.0106 3.70555 18.923 3.74161 2.61382 0.95648 18 | 19.0872 3.72615 2.38026 0.842603 19.363 3.87122 18.923 3.74161 2.61382 0.95648 19 | 21.3324 4.73093 2.12594 1.11391 21.3312 4.73205 21.5215 4.73855 2.63679 1.05891 20 | 21.4286 4.75053 2.48866 1.20798 21.6213 4.74762 21.5215 4.73855 2.63679 1.05891 21 | 24.0774 5.57241 2.77833 0.555692 24.0787 5.56967 24.1437 5.83295 2.65286 1.14953 22 | 24.1858 5.60662 3.0073 0.624424 24.5601 5.92334 24.1437 5.83295 2.65286 1.14953 23 | 26.6104 6.95605 1.91948 1.83217 26.6052 6.96102 26.7833 7.01246 2.6632 1.22647 24 | 26.669 6.97214 2.35329 1.98497 26.5419 6.90075 26.7833 7.01246 2.6632 1.22647 25 | 29.5816 8.09386 3.38012 0.541373 29.5864 8.08789 29.4352 8.26299 2.66893 1.28822 26 | 29.5271 8.08402 3.09614 0.466634 29.4716 8.24519 29.4352 8.26299 2.66893 1.28822 27 | 31.9471 9.87095 1.8757 2.6839 31.9416 9.88017 32.0955 9.56901 2.67105 1.33358 28 | 31.9327 9.86053 1.98511 2.72836 31.7928 9.49891 32.0955 9.56901 2.67105 1.33358 29 | 34.6105 10.7121 3.18342 -0.443884 34.6157 10.6988 34.7608 10.9139 2.67035 1.3617 30 | 34.6942 10.741 3.28977 -0.4049 35.0599 10.9953 34.7608 10.9139 2.67035 1.3617 31 | 37.147 12.0761 1.802 2.52021 37.1404 12.0883 37.4287 12.2803 2.66736 1.37209 32 | 37.2622 12.1165 2.20137 2.66782 37.4973 12.2943 37.4287 12.2803 2.66736 1.37209 33 | 40.3215 13.4756 3.75256 0.484602 40.3285 13.4666 40.0971 13.6505 2.66232 1.36459 34 | 40.1874 13.4356 3.1988 0.302444 39.9009 13.6243 40.0971 13.6505 2.66232 1.36459 35 | 42.7713 14.8218 2.09976 2.1173 42.7664 14.8294 42.7638 15.0065 2.65515 1.33938 36 | 42.7953 14.8338 2.36692 2.22852 42.5714 14.9817 42.7638 15.0065 2.65515 1.33938 37 | 45.3558 16.556 2.69835 1.37297 45.3572 16.5524 45.4265 16.3307 2.64546 1.29701 38 | 45.4025 16.5716 2.77683 1.3981 45.649 16.5213 45.4265 16.3307 2.64546 1.29701 39 | 48.1549 17.2885 2.6736 0.223198 48.1541 17.2835 48.0823 17.6063 2.6326 1.23832 40 | 48.1527 17.2906 2.76745 0.259331 47.9331 17.5349 48.0823 17.6063 2.6326 1.23832 41 | 50.6243 19.0612 2.32289 2.83589 50.6228 19.0721 50.7276 18.8172 2.61569 1.16454 42 | 50.5741 19.0396 2.12039 2.74739 50.5737 18.7834 50.7276 18.8172 2.61569 1.16454 43 | 53.7188 19.9113 3.9236 -0.398974 53.7268 19.8982 53.3577 19.9486 2.59372 1.07716 44 | 53.6036 19.8704 3.3505 -0.596477 53.5277 19.862 53.3577 19.9486 2.59372 1.07716 45 | 56.0393 21.0797 1.74676 2.4372 56.0322 21.0923 55.9669 20.9874 2.56561 0.978022 46 | 56.0303 21.0766 1.84832 2.47996 55.867 20.985 55.9669 20.9874 2.56561 0.978022 47 | 58.6574 21.7945 3.19094 -0.490703 58.6632 21.7821 58.5484 21.9225 2.53033 0.869205 48 | 58.6557 21.7952 3.1878 -0.489578 58.5799 21.9815 58.5484 21.9225 2.53033 0.869205 49 | 60.88 22.7775 1.46369 1.96475 60.8722 22.7876 61.0941 22.7449 2.48697 0.753031 50 | 60.9212 22.7934 1.85305 2.11731 60.7648 22.6398 61.0941 22.7449 2.48697 0.753031 51 | 63.3777 23.4175 2.88317 -0.404352 63.3821 23.4069 63.5955 23.4479 2.43482 0.631987 52 | 63.438 23.4411 2.88902 -0.396882 63.7478 23.7442 63.5955 23.4479 2.43482 0.631987 53 | 66.3394 23.9889 2.99152 1.23058 66.3403 23.9959 66.0431 24.0276 2.37349 0.508655 54 | 66.1698 23.928 2.27246 0.979948 65.8838 23.9541 66.0431 24.0276 2.37349 0.508655 55 | 68.2641 24.3623 1.88592 0.0264649 68.262 24.3582 68.4273 24.4824 2.30293 0.385623 56 | 68.4083 24.4139 2.41734 0.211611 68.6759 24.6059 68.4273 24.4824 2.30293 0.385623 57 | 70.8273 24.8825 2.44139 0.653677 70.8275 24.8844 70.7384 24.8137 2.22347 0.265395 58 | 70.7719 24.8623 2.21238 0.574144 70.7403 24.6728 70.7384 24.8137 2.22347 0.265395 59 | 72.8937 24.7189 1.98072 -0.666701 72.8923 24.7135 72.9675 25.025 2.13584 0.150292 60 | 72.9792 24.7486 2.30324 -0.563106 73.0732 25.0343 72.9675 25.025 2.13584 0.150292 61 | 75.0039 25.2518 1.85107 1.2463 75.0021 25.2595 75.1062 25.1224 2.04114 0.0423626 62 | 74.9802 25.2434 1.75283 1.21262 74.9748 25.1377 75.1062 25.1224 2.04114 0.0423626 63 | 77.12 24.9405 2.3784 -1.35949 77.1225 24.9297 77.1475 25.1137 1.9408 -0.0566978 64 | 77.1134 24.9402 2.23022 -1.39709 77.1386 25.2948 77.1475 25.1137 1.9408 -0.0566978 65 | 79.11 25.0262 1.89208 1.12899 79.1089 25.0369 79.0861 25.0086 1.83649 -0.145607 66 | 79.0734 25.0141 1.62212 1.04643 79.1718 24.9698 79.0861 25.0086 1.83649 -0.145607 67 | 80.8072 24.8774 1.74951 -0.9735 80.8074 24.8688 80.9183 24.8178 1.73008 -0.223536 68 | 80.8647 24.8947 1.84799 -0.943153 81.1423 24.8704 80.9183 24.8178 1.73008 -0.223536 69 | 82.622 24.6344 1.72251 0.219904 82.6216 24.6393 82.6423 24.5525 1.6235 -0.29012 70 | 82.5827 24.6234 1.52136 0.165049 82.5085 24.8114 82.6423 24.5525 1.6235 -0.29012 71 | 84.1729 24.5521 1.63723 -0.234727 84.1733 24.5504 84.2584 24.2245 1.51869 -0.345444 72 | 84.1797 24.5533 1.63712 -0.23578 84.2898 24.3312 84.2584 24.2245 1.51869 -0.345444 73 | 85.6398 23.8118 1.26079 -1.11328 85.6378 23.808 85.7688 23.8451 1.41749 -0.390006 74 | 85.7256 23.8349 1.54821 -1.04032 85.9743 23.7547 85.7688 23.8451 1.41749 -0.390006 75 | 86.9475 23.522 0.966863 0.181192 86.9449 23.527 87.1776 23.4252 1.32159 -0.424654 76 | 87.0599 23.5518 1.13591 0.227366 87.6171 23.5127 87.1776 23.4252 1.32159 -0.424654 77 | 88.8174 22.7937 2.27202 -1.41572 88.8227 22.7869 88.4904 22.9745 1.23248 -0.450514 78 | 88.6883 22.7621 1.74243 -1.5345 88.4191 22.9498 88.4904 22.9745 1.23248 -0.450514 79 | 89.5048 22.3009 0.0195024 0.240042 89.4967 22.3082 89.7145 22.5017 1.15138 -0.468904 80 | 89.634 22.3336 0.577943 0.3734 89.7821 22.4826 89.7145 22.5017 1.15138 -0.468904 81 | 90.511 21.675 1.09378 -1.36904 90.5133 21.6677 90.858 22.0141 1.07929 -0.481241 82 | 90.6023 21.6977 1.31756 -1.31553 90.8419 22.0974 90.858 22.0141 1.07929 -0.481241 83 | 91.7193 21.1101 0.971842 -0.086387 91.7178 21.1152 91.9302 21.5174 1.01698 -0.488964 84 | 91.7765 21.1242 0.980908 -0.0793717 92.0492 21.5289 91.9302 21.5174 1.01698 -0.488964 85 | 92.859 20.9543 1.1723 -0.227902 92.8599 20.9537 92.9411 21.016 0.964993 -0.493443 86 | 92.9079 20.9655 1.07757 -0.245694 93.3186 21.0712 92.9411 21.016 0.964993 -0.493443 87 | 93.472 20.2194 0.0560218 -1.1264 93.4668 20.2155 93.9011 20.513 0.92369 -0.495919 88 | 93.6323 20.254 0.800877 -0.98001 93.7423 20.5071 93.9011 20.513 0.92369 -0.495919 89 | 95.3143 19.6553 2.52761 -0.284208 95.3229 19.6585 94.8209 20.01 0.893308 -0.497439 90 | 95.0094 19.5941 1.23197 -0.524167 94.494 19.8854 94.8209 20.01 0.893308 -0.497439 91 | 95.5105 19.6943 -0.152303 0.500752 95.5039 19.6984 95.7116 19.5078 0.87398 -0.498816 92 | 95.6121 19.7152 0.430349 0.621647 95.6097 19.5804 95.7116 19.5078 0.87398 -0.498816 93 | 96.2625 19.168 0.797252 -1.35544 96.2641 19.1597 96.5842 19.0065 0.865773 -0.500589 94 | 96.3223 19.1789 0.97708 -1.32316 96.559 18.8688 96.5842 19.0065 0.865773 -0.500589 95 | 97.5261 18.7206 1.45885 0.158666 97.5286 18.727 97.45 18.506 0.868716 -0.503009 96 | 97.4439 18.7035 1.01503 0.077536 97.5333 18.1735 97.45 18.506 0.868716 -0.503009 97 | 98.213 18.3769 0.518857 -0.621104 98.2105 18.3739 98.3198 18.0049 0.882805 -0.506023 98 | 98.2756 18.3879 0.779833 -0.57614 98.4162 18.1556 98.3198 18.0049 0.882805 -0.506023 99 | 99.0367 17.3602 0.722475 -1.34425 99.0363 17.357 99.2049 17.503 0.908006 -0.509278 100 | 99.0751 17.3664 1.02804 -1.30161 98.9782 17.2949 99.2049 17.503 0.908006 -0.509278 101 | 99.9975 16.9817 0.863034 0.250894 99.9969 16.9882 100.117 17.0001 0.944242 -0.512134 102 | 100.056 16.9914 0.862789 0.252413 100.441 16.9521 100.117 17.0001 0.944242 -0.512134 103 | 101.201 16.5418 1.38105 -0.927518 101.204 16.5368 101.065 16.497 0.991362 -0.513687 104 | 101.157 16.5345 1.13968 -0.963097 101.169 16.4353 101.065 16.497 0.991362 -0.513687 105 | 102.386 16.3933 1.34601 0.435614 102.387 16.3992 102.063 15.9949 1.04911 -0.512803 106 | 102.277 16.3746 0.987376 0.377426 102.081 15.8359 102.063 15.9949 1.04911 -0.512803 107 | 103.006 15.3631 0.431207 -1.99018 103.003 15.353 103.119 15.4967 1.11708 -0.508169 108 | 103.065 15.3701 1.03393 -1.92442 102.776 15.1195 103.119 15.4967 1.11708 -0.508169 109 | 104.114 15.2579 1.13046 1.14999 104.114 15.2708 104.244 15.0064 1.19469 -0.498349 110 | 104.057 15.2486 1.01316 1.13102 103.905 14.7607 104.244 15.0064 1.19469 -0.498349 111 | 105.537 14.4548 1.84801 -2.1162 105.541 14.4412 105.447 14.5293 1.28111 -0.481861 112 | 105.451 14.4425 1.54307 -2.15345 105.316 14.0026 105.447 14.5293 1.28111 -0.481861 113 | 106.832 14.0358 1.28789 0.802138 106.831 14.0482 106.737 14.0724 1.37529 -0.457255 114 | 106.776 14.029 1.24487 0.796471 106.439 14.2401 106.737 14.0724 1.37529 -0.457255 115 | 108.083 13.6686 1.3283 -1.16224 108.084 13.6604 108.122 13.644 1.47592 -0.423202 116 | 108.126 13.6738 1.55755 -1.13673 108.131 13.6844 108.122 13.644 1.47592 -0.423202 117 | 109.535 13.5641 1.30224 0.59887 109.534 13.5714 109.606 13.2536 1.58144 -0.378583 118 | 109.514 13.5607 1.33611 0.601308 109.388 13.1556 109.606 13.2536 1.58144 -0.378583 119 | 111.061 12.5925 1.69752 -2.05147 111.063 12.5814 111.196 12.9118 1.69008 -0.322574 120 | 111.143 12.6024 1.86465 -2.03162 111.426 12.9557 111.196 12.9118 1.69008 -0.322574 121 | 112.913 12.4742 1.73515 1.18981 112.913 12.4877 112.893 12.6299 1.7999 -0.254723 122 | 112.89 12.4723 1.65476 1.18219 112.797 12.8241 112.893 12.6299 1.7999 -0.254723 123 | 114.799 12.5583 2.11831 -0.66721 114.801 12.5506 114.699 12.4195 1.90891 -0.175007 124 | 114.788 12.5567 1.96667 -0.683374 114.916 12.3187 114.699 12.4195 1.90891 -0.175007 125 | 116.688 12.1019 1.84354 -0.29812 116.687 12.1035 116.611 12.2921 2.01507 -0.0838683 126 | 116.749 12.1081 2.07684 -0.276336 116.871 12.0659 116.611 12.2921 2.01507 -0.0838683 127 | 118.952 11.9997 2.3262 0.0113285 118.953 12.0009 118.628 12.2586 2.11648 0.0177712 128 | 118.92 11.9973 2.18003 -0.00132765 118.85 12.4063 118.628 12.2586 2.11648 0.0177712 129 | 120.699 12.2898 1.40639 0.485827 120.695 12.2918 120.743 12.3289 2.21139 0.128528 130 | 120.812 12.3012 1.929 0.540118 120.934 12.1905 120.743 12.3289 2.21139 0.128528 131 | 123.56 12.8296 3.52325 0.541531 123.568 12.8297 122.95 12.5114 2.29835 0.246599 132 | 123.356 12.8083 2.59162 0.440987 123.142 12.7694 122.95 12.5114 2.29835 0.246599 133 | 124.904 12.7779 0.548536 -0.384718 124.894 12.7743 125.242 12.8125 2.37624 0.369827 134 | 125.208 12.8089 2.05789 -0.236286 125.376 12.9964 125.242 12.8125 2.37624 0.369827 135 | 127.847 13.3218 3.20799 1.04732 127.853 13.3273 127.609 13.2365 2.44434 0.495787 136 | 127.707 13.3068 2.62711 0.983489 127.506 13.153 127.609 13.2365 2.44434 0.495787 137 | 129.951 13.7006 1.86588 -0.0251618 129.947 13.6963 130.042 13.7853 2.50232 0.621879 138 | 130.072 13.7133 2.29301 0.0204279 130.334 13.781 130.042 13.7853 2.50232 0.621879 139 | 132.094 14.5016 1.7878 1.31347 132.092 14.507 132.53 14.458 2.55028 0.74543 140 | 132.221 14.5156 2.30611 1.37509 132.447 14.3423 132.53 14.458 2.55028 0.74543 141 | 135.069 15.0533 3.33499 -0.0279259 135.074 15.0475 135.066 15.2513 2.58865 0.863795 142 | 134.989 15.0441 2.81698 -0.0876768 135.127 14.6575 135.066 15.2513 2.58865 0.863795 143 | 137.563 16.2059 2.37858 2.02155 137.561 16.2147 137.639 16.1592 2.61821 0.974442 144 | 137.613 16.2124 2.59233 2.05063 137.653 16.5145 137.639 16.1592 2.61821 0.974442 145 | 140.331 17.0169 2.7975 -0.0567298 140.331 17.008 140.242 17.1733 2.63994 1.07503 146 | 140.347 17.0195 2.86758 -0.0468062 140.305 17.5379 140.242 17.1733 2.63994 1.07503 147 | 142.891 17.9847 2.2704 1.65791 142.888 17.9918 142.868 18.2829 2.65497 1.16346 148 | 142.895 17.9857 2.50637 1.69291 142.626 18.1458 142.868 18.2829 2.65497 1.16346 149 | 145.392 19.1653 2.47212 0.82285 145.392 19.1617 145.51 19.4754 2.66445 1.23795 150 | 145.496 19.1792 2.76299 0.863239 145.789 19.3785 145.51 19.4754 2.66445 1.23795 151 | 148.251 20.4723 2.76243 1.5916 148.251 20.4754 148.163 20.7364 2.66951 1.29702 152 | 148.223 20.4689 2.61793 1.57028 148.146 20.9376 148.163 20.7364 2.66951 1.29702 153 | 150.687 22.1137 2.32262 1.69142 150.686 22.1142 150.825 22.0502 2.67111 1.33953 154 | 150.722 22.1187 2.61229 1.74079 150.649 21.8148 150.825 22.0502 2.67111 1.33953 155 | 153.421 23.4934 2.76778 1.12316 153.422 23.4909 153.491 23.3999 2.66999 1.3647 156 | 153.403 23.49 2.68699 1.10874 153.466 22.9115 153.491 23.3999 2.66999 1.3647 157 | 156.047 24.807 2.61185 1.46035 156.047 24.8084 156.159 24.7682 2.66666 1.37208 158 | 156.029 24.8044 2.49616 1.44054 156.009 25.0678 156.159 24.7682 2.66666 1.37208 159 | 158.901 26.0322 3.21775 1.09458 158.905 26.0308 158.827 26.1372 2.66127 1.36157 160 | 158.885 26.0295 2.99321 1.0546 159.014 26.1903 158.827 26.1372 2.66127 1.36157 161 | 161.416 27.4234 2.11036 1.61147 161.412 27.4256 161.493 27.4891 2.65371 1.33344 162 | 161.484 27.4355 2.38818 1.66276 161.529 27.8454 161.493 27.4891 2.65371 1.33344 163 | 163.628 28.7707 1.89893 1.09629 163.625 28.7683 164.155 28.8064 2.64354 1.28825 164 | 163.797 28.801 2.47969 1.20438 164.116 29.315 164.155 28.8064 2.64354 1.28825 165 | 166.823 30.2046 3.54767 1.56655 166.828 30.2062 166.809 30.0721 2.63006 1.22694 166 | 166.69 30.1798 2.84112 1.4289 166.748 29.7121 166.809 30.0721 2.63006 1.22694 167 | 169.101 31.3736 1.99744 1.01011 169.097 31.3717 169.452 31.2706 2.61238 1.15075 168 | 169.189 31.3895 2.45422 1.09854 169.345 30.7063 169.452 31.2706 2.61238 1.15075 169 | 172.17 32.3412 3.4687 0.873502 172.175 32.3404 172.079 32.3873 2.58945 1.06126 170 | 172.091 32.3265 2.94005 0.771587 172.135 32.6666 172.079 32.3873 2.58945 1.06126 171 | 174.646 33.4601 2.21206 1.36879 174.643 33.4625 174.685 33.4095 2.56021 0.960341 172 | 174.655 33.4622 2.33731 1.39513 174.474 33.9157 174.685 33.4095 2.56021 0.960341 173 | 177.03 34.2056 2.37946 0.289327 177.03 34.2009 177.261 34.3262 2.52363 0.850119 174 | 177.06 34.2111 2.47569 0.307569 177.211 33.8467 177.261 34.3262 2.52363 0.850119 175 | 180.139 35.1376 3.67553 1.3884 180.145 35.1423 179.799 35.1289 2.47883 0.732949 176 | 179.907 35.0923 2.64508 1.18316 179.543 35.4767 179.799 35.1289 2.47883 0.732949 177 | 182.599 35.7567 2.7111 0.303646 182.599 35.753 182.292 35.8114 2.42515 0.611338 178 | 182.501 35.738 2.46886 0.256896 182.047 36.2626 182.292 35.8114 2.42515 0.611338 179 | 184.734 36.5119 2.03648 1.12429 184.732 36.5155 184.73 36.37 2.36226 0.487877 180 | 184.736 36.5121 2.02947 1.12235 184.833 36.1451 184.73 36.37 2.36226 0.487877 181 | 186.945 36.9453 2.3426 -0.0404633 186.946 36.9404 187.103 36.804 2.29017 0.365145 182 | 187.01 36.9582 2.46388 -0.01657 187.296 36.9375 187.103 36.804 2.29017 0.365145 183 | 189.465 37.4019 2.46873 0.765419 189.465 37.4052 189.401 37.1147 2.20928 0.245623 184 | 189.454 37.3993 2.24249 0.720097 189.738 36.951 189.401 37.1147 2.20928 0.245623 185 | 191.735 37.567 2.29034 -0.217098 191.735 37.5631 191.615 37.3064 2.12037 0.131591 186 | 191.703 37.5604 2.20377 -0.234389 191.682 37.1147 191.615 37.3064 2.12037 0.131591 187 | 193.475 37.2794 1.36525 -0.334537 193.471 37.2789 193.738 37.3853 2.02462 0.0250452 188 | 193.567 37.2971 1.86005 -0.242849 193.555 37.4234 193.738 37.3853 2.02462 0.0250452 189 | 195.986 37.3964 2.95945 0.365282 195.991 37.3991 195.762 37.3598 1.92349 -0.072386 190 | 195.785 37.3582 2.07145 0.199258 195.507 37.4891 195.762 37.3598 1.92349 -0.072386 191 | 197.726 37.7274 1.82572 0.481806 197.725 37.7285 197.683 37.2395 1.81869 -0.159495 192 | 197.691 37.7205 1.79369 0.475296 197.582 37.303 197.683 37.2395 1.81869 -0.159495 193 | 199.296 37.2927 1.38567 -1.06834 199.294 37.2862 199.497 37.0353 1.71212 -0.235529 194 | 199.353 37.3033 1.68851 -1.01466 199.356 37.3527 199.497 37.0353 1.71212 -0.235529 195 | 201.544 36.9921 2.69514 0.203906 201.549 36.9973 201.203 36.7587 1.6057 -0.300201 196 | 201.335 36.954 1.80514 0.0468283 200.932 37.4694 201.203 36.7587 1.6057 -0.300201 197 | 202.964 36.4608 1.44018 -0.878651 202.962 36.4568 202.801 36.4212 1.50137 -0.353671 198 | 202.938 36.4566 1.42104 -0.881796 202.65 37.2445 202.801 36.4212 1.50137 -0.353671 199 | 203.994 36.1924 0.739444 0.150829 203.991 36.1967 204.294 36.0343 1.40095 -0.396497 200 | 204.044 36.2015 1.20283 0.230669 203.809 36.2941 204.294 36.0343 1.40095 -0.396497 201 | -------------------------------------------------------------------------------- /data/sample-laser-radar-measurement-data-2.txt: -------------------------------------------------------------------------------- 1 | L 0 0 1477010443349642 0 0 0 0 2 | R 0 0 0 1477010443349642 0 0 0 0 3 | L 1.559445e+00 -1.385015e-01 1477010444349642 2.098967e+00 5.222280e-02 2.195949e+00 1.093391e-01 4 | R 1.812711e+00 2.619727e-02 2.305732e+00 1477010444349642 2.098967e+00 5.222280e-02 2.195949e+00 1.093391e-01 5 | L 3.890927e+00 -1.341657e-01 1477010445349642 4.291359e+00 2.153118e-01 2.284336e+00 2.263225e-01 6 | R 4.200967e+00 5.202598e-02 2.418127e+00 1477010445349642 4.291359e+00 2.153118e-01 2.284336e+00 2.263225e-01 7 | L 6.863517e+00 4.168175e-01 1477010446349642 6.569422e+00 4.960956e-01 2.363816e+00 3.488471e-01 8 | R 6.456604e+00 7.330529e-02 2.438466e+00 1477010446349642 6.569422e+00 4.960956e-01 2.363816e+00 3.488471e-01 9 | L 9.077331e+00 5.932112e-01 1477010447349642 8.924371e+00 8.992403e-01 2.433593e+00 4.745258e-01 10 | R 8.941596e+00 9.936074e-02 2.529122e+00 1477010447349642 8.924371e+00 8.992403e-01 2.433593e+00 4.745258e-01 11 | L 1.157555e+01 1.666900e+00 1477010448349642 1.134677e+01 1.426997e+00 2.493282e+00 6.007812e-01 12 | R 1.153365e+01 1.242681e-01 2.500995e+00 1477010448349642 1.134677e+01 1.426997e+00 2.493282e+00 6.007812e-01 13 | L 1.359209e+01 2.311915e+00 1477010449349642 1.382695e+01 2.079045e+00 2.542900e+00 7.249468e-01 14 | R 1.380271e+01 1.453491e-01 2.539724e+00 1477010449349642 1.382695e+01 2.079045e+00 2.542900e+00 7.249468e-01 15 | L 1.664559e+01 2.902999e+00 1477010450349642 1.635537e+01 2.852433e+00 2.582842e+00 8.443653e-01 16 | R 1.652890e+01 1.730753e-01 2.728349e+00 1477010450349642 1.635537e+01 2.852433e+00 2.582842e+00 8.443653e-01 17 | L 1.901058e+01 3.705553e+00 1477010451349642 1.892299e+01 3.741610e+00 2.613820e+00 9.564796e-01 18 | R 1.974624e+01 1.973267e-01 2.502012e+00 1477010451349642 1.892299e+01 3.741610e+00 2.613820e+00 9.564796e-01 19 | L 2.133124e+01 4.732053e+00 1477010452349642 2.152152e+01 4.738551e+00 2.636790e+00 1.058912e+00 20 | R 2.213645e+01 2.161499e-01 2.798219e+00 1477010452349642 2.152152e+01 4.738551e+00 2.636790e+00 1.058912e+00 21 | L 2.407871e+01 5.569675e+00 1477010453349642 2.414369e+01 5.832949e+00 2.652861e+00 1.149525e+00 22 | R 2.526425e+01 2.366585e-01 3.081090e+00 1477010453349642 2.414369e+01 5.832949e+00 2.652861e+00 1.149525e+00 23 | L 2.660525e+01 6.961020e+00 1477010454349642 2.678329e+01 7.012457e+00 2.663198e+00 1.226470e+00 24 | R 2.742432e+01 2.543628e-01 2.977206e+00 1477010454349642 2.678329e+01 7.012457e+00 2.663198e+00 1.226470e+00 25 | L 2.958639e+01 8.087890e+00 1477010455349642 2.943523e+01 8.262985e+00 2.668927e+00 1.288219e+00 26 | R 3.060322e+01 2.727931e-01 3.000533e+00 1477010455349642 2.943523e+01 8.262985e+00 2.668927e+00 1.288219e+00 27 | L 3.194160e+01 9.880168e+00 1477010456349642 3.209547e+01 9.569013e+00 2.671045e+00 1.333578e+00 28 | R 3.318149e+01 2.903330e-01 2.789422e+00 1477010456349642 3.209547e+01 9.569013e+00 2.671045e+00 1.333578e+00 29 | L 3.461568e+01 1.069880e+01 1477010457349642 3.476081e+01 1.091392e+01 2.670346e+00 1.361701e+00 30 | R 3.674365e+01 3.039004e-01 2.988207e+00 1477010457349642 3.476081e+01 1.091392e+01 2.670346e+00 1.361701e+00 31 | L 3.714036e+01 1.208833e+01 1477010458349642 3.742874e+01 1.228034e+01 2.667361e+00 1.372088e+00 32 | R 3.946136e+01 3.168263e-01 3.028242e+00 1477010458349642 3.742874e+01 1.228034e+01 2.667361e+00 1.372088e+00 33 | L 4.032853e+01 1.346661e+01 1477010459349642 4.009711e+01 1.365048e+01 2.662324e+00 1.364585e+00 34 | R 4.216287e+01 3.290412e-01 2.947967e+00 1477010459349642 4.009711e+01 1.365048e+01 2.662324e+00 1.364585e+00 35 | L 4.276639e+01 1.482937e+01 1477010460349642 4.276381e+01 1.500648e+01 2.655152e+00 1.339380e+00 36 | R 4.513067e+01 3.383838e-01 3.104881e+00 1477010460349642 4.276381e+01 1.500648e+01 2.655152e+00 1.339380e+00 37 | L 4.535721e+01 1.655239e+01 1477010461349642 4.542651e+01 1.633075e+01 2.645461e+00 1.297005e+00 38 | R 4.854672e+01 3.472554e-01 3.079899e+00 1477010461349642 4.542651e+01 1.633075e+01 2.645461e+00 1.297005e+00 39 | L 4.815409e+01 1.728347e+01 1477010462349642 4.808234e+01 1.760632e+01 2.632596e+00 1.238325e+00 40 | R 5.103968e+01 3.506980e-01 2.752674e+00 1477010462349642 4.808234e+01 1.760632e+01 2.632596e+00 1.238325e+00 41 | L 5.062278e+01 1.907211e+01 1477010463349642 5.072763e+01 1.881717e+01 2.615687e+00 1.164538e+00 42 | R 5.394915e+01 3.556170e-01 2.885539e+00 1477010463349642 5.072763e+01 1.881717e+01 2.615687e+00 1.164538e+00 43 | L 5.372678e+01 1.989821e+01 1477010464349642 5.335773e+01 1.994857e+01 2.593717e+00 1.077164e+00 44 | R 5.709391e+01 3.553123e-01 2.718978e+00 1477010464349642 5.335773e+01 1.994857e+01 2.593717e+00 1.077164e+00 45 | L 5.603223e+01 2.109230e+01 1477010465349642 5.596692e+01 2.098742e+01 2.565613e+00 9.780221e-01 46 | R 5.967820e+01 3.593175e-01 2.678392e+00 1477010465349642 5.596692e+01 2.098742e+01 2.565613e+00 9.780221e-01 47 | L 5.866320e+01 2.178207e+01 1477010466349642 5.854835e+01 2.192253e+01 2.530333e+00 8.692047e-01 48 | R 6.256831e+01 3.589798e-01 2.817748e+00 1477010466349642 5.854835e+01 2.192253e+01 2.530333e+00 8.692047e-01 49 | L 6.087224e+01 2.278765e+01 1477010467349642 6.109413e+01 2.274490e+01 2.486966e+00 7.530307e-01 50 | R 6.484539e+01 3.566487e-01 2.671849e+00 1477010467349642 6.109413e+01 2.274490e+01 2.486966e+00 7.530307e-01 51 | L 6.338208e+01 2.340690e+01 1477010468349642 6.359551e+01 2.344793e+01 2.434818e+00 6.319871e-01 52 | R 6.802621e+01 3.565512e-01 2.503319e+00 1477010468349642 6.359551e+01 2.344793e+01 2.434818e+00 6.319871e-01 53 | L 6.634029e+01 2.399586e+01 1477010469349642 6.604312e+01 2.402757e+01 2.373488e+00 5.086549e-01 54 | R 7.010336e+01 3.487223e-01 2.230104e+00 1477010469349642 6.604312e+01 2.402757e+01 2.373488e+00 5.086549e-01 55 | L 6.826205e+01 2.435817e+01 1477010470349642 6.842730e+01 2.448242e+01 2.302925e+00 3.856231e-01 56 | R 7.295088e+01 3.440404e-01 2.502639e+00 1477010470349642 6.842730e+01 2.448242e+01 2.302925e+00 3.856231e-01 57 | L 7.082748e+01 2.488439e+01 1477010471349642 7.073845e+01 2.481366e+01 2.223466e+00 2.653951e-01 58 | R 7.491955e+01 3.355868e-01 2.202921e+00 1477010471349642 7.073845e+01 2.481366e+01 2.223466e+00 2.653951e-01 59 | L 7.289226e+01 2.471354e+01 1477010472349642 7.296749e+01 2.502499e+01 2.135839e+00 1.502921e-01 60 | R 7.724250e+01 3.300601e-01 2.095280e+00 1477010472349642 7.296749e+01 2.502499e+01 2.135839e+00 1.502921e-01 61 | L 7.500209e+01 2.525945e+01 1477010473349642 7.510617e+01 2.512237e+01 2.041141e+00 4.236258e-02 62 | R 7.907670e+01 3.235040e-01 2.015980e+00 1477010473349642 7.510617e+01 2.512237e+01 2.041141e+00 4.236258e-02 63 | L 7.712245e+01 2.492967e+01 1477010474349642 7.714752e+01 2.511374e+01 1.940798e+00 -5.669785e-02 64 | R 8.117997e+01 3.168645e-01 1.610124e+00 1477010474349642 7.714752e+01 2.511374e+01 1.940798e+00 -5.669785e-02 65 | L 7.910890e+01 2.503687e+01 1477010475349642 7.908610e+01 2.500864e+01 1.836491e+00 -1.456073e-01 66 | R 8.301602e+01 3.055133e-01 1.740946e+00 1477010475349642 7.908610e+01 2.500864e+01 1.836491e+00 -1.456073e-01 67 | L 8.080743e+01 2.486882e+01 1477010476349642 8.091825e+01 2.481776e+01 1.730078e+00 -2.235364e-01 68 | R 8.486818e+01 2.974122e-01 1.480564e+00 1477010476349642 8.091825e+01 2.481776e+01 1.730078e+00 -2.235364e-01 69 | L 8.262158e+01 2.463932e+01 1477010477349642 8.264225e+01 2.455250e+01 1.623498e+00 -2.901201e-01 70 | R 8.615829e+01 2.921110e-01 1.429528e+00 1477010477349642 8.264225e+01 2.455250e+01 1.623498e+00 -2.901201e-01 71 | L 8.417335e+01 2.455042e+01 1477010478349642 8.425837e+01 2.422449e+01 1.518687e+00 -3.454441e-01 72 | R 8.773126e+01 2.810227e-01 1.497477e+00 1477010478349642 8.425837e+01 2.422449e+01 1.518687e+00 -3.454441e-01 73 | L 8.563776e+01 2.380798e+01 1477010479349642 8.576880e+01 2.384512e+01 1.417490e+00 -3.900057e-01 74 | R 8.919568e+01 2.695749e-01 1.285113e+00 1477010479349642 8.576880e+01 2.384512e+01 1.417490e+00 -3.900057e-01 75 | L 8.694492e+01 2.352704e+01 1477010480349642 8.717760e+01 2.342518e+01 1.321593e+00 -4.246540e-01 76 | R 9.071713e+01 2.621807e-01 1.125894e+00 1477010480349642 8.717760e+01 2.342518e+01 1.321593e+00 -4.246540e-01 77 | L 8.882267e+01 2.278691e+01 1477010481349642 8.849045e+01 2.297451e+01 1.232475e+00 -4.505145e-01 78 | R 9.134890e+01 2.539530e-01 1.140412e+00 1477010481349642 8.849045e+01 2.297451e+01 1.232475e+00 -4.505145e-01 79 | L 8.949667e+01 2.230817e+01 1477010482349642 8.971448e+01 2.250173e+01 1.151377e+00 -4.689038e-01 80 | R 9.255422e+01 2.453672e-01 8.351101e-01 1477010482349642 8.971448e+01 2.250173e+01 1.151377e+00 -4.689038e-01 81 | L 9.051327e+01 2.166767e+01 1477010483349642 9.085799e+01 2.201409e+01 1.079294e+00 -4.812415e-01 82 | R 9.349083e+01 2.386165e-01 1.002329e+00 1477010483349642 9.085799e+01 2.201409e+01 1.079294e+00 -4.812415e-01 83 | L 9.171782e+01 2.111524e+01 1477010484349642 9.193022e+01 2.151741e+01 1.016984e+00 -4.889635e-01 84 | R 9.453330e+01 2.297548e-01 8.770099e-01 1477010484349642 9.193022e+01 2.151741e+01 1.016984e+00 -4.889635e-01 85 | L 9.285989e+01 2.095372e+01 1477010485349642 9.294111e+01 2.101603e+01 9.649925e-01 -4.934427e-01 86 | R 9.566793e+01 2.220744e-01 8.834777e-01 1477010485349642 9.294111e+01 2.101603e+01 9.649925e-01 -4.934427e-01 87 | L 9.346683e+01 2.021548e+01 1477010486349642 9.390109e+01 2.051295e+01 9.236899e-01 -4.959185e-01 88 | R 9.595920e+01 2.153676e-01 8.327357e-01 1477010486349642 9.390109e+01 2.051295e+01 9.236899e-01 -4.959185e-01 89 | L 9.532289e+01 1.965849e+01 1477010487349642 9.482094e+01 2.000996e+01 8.933078e-01 -4.974393e-01 90 | R 9.656365e+01 2.074150e-01 6.844031e-01 1477010487349642 9.482094e+01 2.000996e+01 8.933078e-01 -4.974393e-01 91 | L 9.550389e+01 1.969840e+01 1477010488349642 9.571161e+01 1.950782e+01 8.739797e-01 -4.988160e-01 92 | R 9.759407e+01 2.020017e-01 7.770975e-01 1477010488349642 9.571161e+01 1.950782e+01 8.739797e-01 -4.988160e-01 93 | L 9.626405e+01 1.915973e+01 1477010489349642 9.658418e+01 1.900655e+01 8.657734e-01 -5.005895e-01 94 | R 9.838528e+01 1.929804e-01 7.375068e-01 1477010489349642 9.658418e+01 1.900655e+01 8.657734e-01 -5.005895e-01 95 | L 9.752863e+01 1.872696e+01 1477010490349642 9.744996e+01 1.850597e+01 8.687159e-01 -5.030091e-01 96 | R 9.921197e+01 1.842182e-01 8.430504e-01 1477010490349642 9.744996e+01 1.850597e+01 8.687159e-01 -5.030091e-01 97 | L 9.821047e+01 1.837390e+01 1477010491349642 9.831977e+01 1.800486e+01 8.828045e-01 -5.060226e-01 98 | R 1.000768e+02 1.824270e-01 7.431117e-01 1477010491349642 9.831977e+01 1.800486e+01 8.828045e-01 -5.060226e-01 99 | L 9.903627e+01 1.735698e+01 1477010492349642 9.920492e+01 1.750296e+01 9.080060e-01 -5.092777e-01 100 | R 1.004778e+02 1.729878e-01 9.239015e-01 1477010492349642 9.920492e+01 1.750296e+01 9.080060e-01 -5.092777e-01 101 | L 9.999686e+01 1.698822e+01 1477010493349642 1.001165e+02 1.700014e+01 9.442419e-01 -5.121341e-01 102 | R 1.018611e+02 1.672018e-01 8.250369e-01 1477010493349642 1.001165e+02 1.700014e+01 9.442419e-01 -5.121341e-01 103 | L 1.012038e+02 1.653684e+01 1477010494349642 1.010655e+02 1.649696e+01 9.913622e-01 -5.136871e-01 104 | R 1.024956e+02 1.610466e-01 8.779700e-01 1477010494349642 1.010655e+02 1.649696e+01 9.913622e-01 -5.136871e-01 105 | L 1.023868e+02 1.639923e+01 1477010495349642 1.020628e+02 1.599493e+01 1.049110e+00 -5.128034e-01 106 | R 1.033017e+02 1.539040e-01 9.479811e-01 1477010495349642 1.020628e+02 1.599493e+01 1.049110e+00 -5.128034e-01 107 | L 1.030034e+02 1.535302e+01 1477010496349642 1.031189e+02 1.549673e+01 1.117082e+00 -5.081689e-01 108 | R 1.038820e+02 1.460638e-01 1.026220e+00 1477010496349642 1.031189e+02 1.549673e+01 1.117082e+00 -5.081689e-01 109 | L 1.041144e+02 1.527083e+01 1477010497349642 1.042439e+02 1.500637e+01 1.194686e+00 -4.983491e-01 110 | R 1.049482e+02 1.411149e-01 1.161765e+00 1477010497349642 1.042439e+02 1.500637e+01 1.194686e+00 -4.983491e-01 111 | L 1.055409e+02 1.444125e+01 1477010498349642 1.054471e+02 1.452929e+01 1.281109e+00 -4.818613e-01 112 | R 1.062427e+02 1.321827e-01 1.155763e+00 1477010498349642 1.054471e+02 1.452929e+01 1.281109e+00 -4.818613e-01 113 | L 1.068312e+02 1.404819e+01 1477010499349642 1.067373e+02 1.407238e+01 1.375293e+00 -4.572554e-01 114 | R 1.073871e+02 1.329968e-01 1.377422e+00 1477010499349642 1.067373e+02 1.407238e+01 1.375293e+00 -4.572554e-01 115 | L 1.080836e+02 1.366040e+01 1477010500349642 1.081217e+02 1.364396e+01 1.475922e+00 -4.232023e-01 116 | R 1.089939e+02 1.258840e-01 1.488510e+00 1477010500349642 1.081217e+02 1.364396e+01 1.475922e+00 -4.232023e-01 117 | L 1.095344e+02 1.357136e+01 1477010501349642 1.096065e+02 1.325356e+01 1.581440e+00 -3.785832e-01 118 | R 1.101759e+02 1.196914e-01 1.444469e+00 1477010501349642 1.096065e+02 1.325356e+01 1.581440e+00 -3.785832e-01 119 | L 1.110630e+02 1.258139e+01 1477010502349642 1.111961e+02 1.291178e+01 1.690076e+00 -3.225744e-01 120 | R 1.121764e+02 1.157520e-01 1.628898e+00 1477010502349642 1.111961e+02 1.291178e+01 1.690076e+00 -3.225744e-01 121 | L 1.129126e+02 1.248773e+01 1477010503349642 1.128933e+02 1.262989e+01 1.799903e+00 -2.547234e-01 122 | R 1.135236e+02 1.132060e-01 1.753766e+00 1477010503349642 1.128933e+02 1.262989e+01 1.799903e+00 -2.547234e-01 123 | L 1.148010e+02 1.255057e+01 1477010504349642 1.146988e+02 1.241950e+01 1.908905e+00 -1.750069e-01 124 | R 1.155748e+02 1.067891e-01 1.804447e+00 1477010504349642 1.146988e+02 1.241950e+01 1.908905e+00 -1.750069e-01 125 | L 1.166871e+02 1.210355e+01 1477010505349642 1.166112e+02 1.229211e+01 2.015069e+00 -8.386825e-02 126 | R 1.174924e+02 1.028766e-01 2.104336e+00 1477010505349642 1.166112e+02 1.229211e+01 2.015069e+00 -8.386825e-02 127 | L 1.189528e+02 1.200094e+01 1477010506349642 1.186276e+02 1.225864e+01 2.116475e+00 1.777120e-02 128 | R 1.194957e+02 1.040097e-01 2.118656e+00 1477010506349642 1.186276e+02 1.225864e+01 2.116475e+00 1.777120e-02 129 | L 1.206951e+02 1.229180e+01 1477010507349642 1.207427e+02 1.232894e+01 2.211388e+00 1.285280e-01 130 | R 1.215471e+02 1.004631e-01 2.152026e+00 1477010507349642 1.207427e+02 1.232894e+01 2.211388e+00 1.285280e-01 131 | L 1.235682e+02 1.282970e+01 1477010508349642 1.229501e+02 1.251140e+01 2.298350e+00 2.465990e-01 132 | R 1.238025e+02 1.033269e-01 2.308969e+00 1477010508349642 1.229501e+02 1.251140e+01 2.298350e+00 2.465990e-01 133 | L 1.248938e+02 1.277429e+01 1477010509349642 1.252417e+02 1.281250e+01 2.376243e+00 3.698274e-01 134 | R 1.260477e+02 1.032906e-01 2.561986e+00 1477010509349642 1.252417e+02 1.281250e+01 2.376243e+00 3.698274e-01 135 | L 1.278531e+02 1.332727e+01 1477010510349642 1.276087e+02 1.323651e+01 2.444340e+00 4.957869e-01 136 | R 1.281830e+02 1.027923e-01 2.533509e+00 1477010510349642 1.276087e+02 1.323651e+01 2.444340e+00 4.957869e-01 137 | L 1.299473e+02 1.369630e+01 1477010511349642 1.300415e+02 1.378526e+01 2.502323e+00 6.218785e-01 138 | R 1.310610e+02 1.053446e-01 2.395812e+00 1477010511349642 1.300415e+02 1.378526e+01 2.502323e+00 6.218785e-01 139 | L 1.320919e+02 1.450702e+01 1477010512349642 1.325304e+02 1.445798e+01 2.550277e+00 7.454300e-01 140 | R 1.332209e+02 1.078673e-01 2.602114e+00 1477010512349642 1.325304e+02 1.445798e+01 2.550277e+00 7.454300e-01 141 | L 1.350735e+02 1.504748e+01 1477010513349642 1.350660e+02 1.525130e+01 2.588654e+00 8.637952e-01 142 | R 1.359193e+02 1.080497e-01 2.575841e+00 1477010513349642 1.350660e+02 1.525130e+01 2.588654e+00 8.637952e-01 143 | L 1.375606e+02 1.621470e+01 1477010514349642 1.376394e+02 1.615922e+01 2.618214e+00 9.744419e-01 144 | R 1.386403e+02 1.194011e-01 2.882208e+00 1477010514349642 1.376394e+02 1.615922e+01 2.618214e+00 9.744419e-01 145 | L 1.403314e+02 1.700802e+01 1477010515349642 1.402424e+02 1.717333e+01 2.639944e+00 1.075029e+00 146 | R 1.413966e+02 1.243534e-01 2.863862e+00 1477010515349642 1.402424e+02 1.717333e+01 2.639944e+00 1.075029e+00 147 | L 1.428884e+02 1.799183e+01 1477010516349642 1.428679e+02 1.828295e+01 2.654969e+00 1.163464e+00 148 | R 1.437753e+02 1.265470e-01 2.833240e+00 1477010516349642 1.428679e+02 1.828295e+01 2.654969e+00 1.163464e+00 149 | L 1.453920e+02 1.916167e+01 1477010517349642 1.455099e+02 1.947543e+01 2.664454e+00 1.237952e+00 150 | R 1.470716e+02 1.321468e-01 2.905169e+00 1477010517349642 1.455099e+02 1.947543e+01 2.664454e+00 1.237952e+00 151 | L 1.482509e+02 2.047536e+01 1477010518349642 1.481635e+02 2.073641e+01 2.669511e+00 1.297019e+00 152 | R 1.496186e+02 1.404008e-01 2.754945e+00 1477010518349642 1.481635e+02 2.073641e+01 2.669511e+00 1.297019e+00 153 | L 1.506859e+02 2.211423e+01 1477010519349642 1.508248e+02 2.205016e+01 2.671106e+00 1.339530e+00 154 | R 1.522205e+02 1.438054e-01 2.969367e+00 1477010519349642 1.508248e+02 2.205016e+01 2.671106e+00 1.339530e+00 155 | L 1.534220e+02 2.349086e+01 1477010520349642 1.534907e+02 2.339992e+01 2.669994e+00 1.364696e+00 156 | R 1.551664e+02 1.481995e-01 2.797327e+00 1477010520349642 1.534907e+02 2.339992e+01 2.669994e+00 1.364696e+00 157 | L 1.560466e+02 2.480844e+01 1477010521349642 1.561589e+02 2.476822e+01 2.666656e+00 1.372076e+00 158 | R 1.580103e+02 1.593196e-01 2.643090e+00 1477010521349642 1.561589e+02 2.476822e+01 2.666656e+00 1.372076e+00 159 | L 1.589049e+02 2.603078e+01 1477010522349642 1.588271e+02 2.613723e+01 2.661274e+00 1.361574e+00 160 | R 1.611563e+02 1.632386e-01 3.010232e+00 1477010522349642 1.588271e+02 2.613723e+01 2.661274e+00 1.361574e+00 161 | L 1.614116e+02 2.742561e+01 1477010523349642 1.614933e+02 2.748911e+01 2.653713e+00 1.333437e+00 162 | R 1.639112e+02 1.707092e-01 2.719047e+00 1477010523349642 1.614933e+02 2.748911e+01 2.653713e+00 1.333437e+00 163 | L 1.636251e+02 2.876827e+01 1477010524349642 1.641551e+02 2.880636e+01 2.643541e+00 1.288250e+00 164 | R 1.667132e+02 1.767602e-01 2.800348e+00 1477010524349642 1.641551e+02 2.880636e+01 2.643541e+00 1.288250e+00 165 | L 1.668278e+02 3.020623e+01 1477010525349642 1.668094e+02 3.007213e+01 2.630062e+00 1.226937e+00 166 | R 1.693747e+02 1.763346e-01 2.783027e+00 1477010525349642 1.668094e+02 3.007213e+01 2.630062e+00 1.226937e+00 167 | L 1.690972e+02 3.137172e+01 1477010526349642 1.694525e+02 3.127061e+01 2.612376e+00 1.150751e+00 168 | R 1.721064e+02 1.793748e-01 2.783685e+00 1477010526349642 1.694525e+02 3.127061e+01 2.612376e+00 1.150751e+00 169 | L 1.721752e+02 3.234041e+01 1477010527349642 1.720795e+02 3.238732e+01 2.589450e+00 1.061263e+00 170 | R 1.752070e+02 1.875434e-01 2.809252e+00 1477010527349642 1.720795e+02 3.238732e+01 2.589450e+00 1.061263e+00 171 | L 1.746430e+02 3.346252e+01 1477010528349642 1.746846e+02 3.340945e+01 2.560210e+00 9.603409e-01 172 | R 1.777403e+02 1.919932e-01 2.623035e+00 1477010528349642 1.746846e+02 3.340945e+01 2.560210e+00 9.603409e-01 173 | L 1.770301e+02 3.420094e+01 1477010529349642 1.772606e+02 3.432617e+01 2.523629e+00 8.501189e-01 174 | R 1.804147e+02 1.887235e-01 2.511529e+00 1477010529349642 1.772606e+02 3.432617e+01 2.523629e+00 8.501189e-01 175 | L 1.801454e+02 3.514229e+01 1477010530349642 1.797995e+02 3.512887e+01 2.478827e+00 7.329486e-01 176 | R 1.830143e+02 1.950816e-01 2.477528e+00 1477010530349642 1.797995e+02 3.512887e+01 2.478827e+00 7.329486e-01 177 | L 1.825994e+02 3.575303e+01 1477010531349642 1.822925e+02 3.581136e+01 2.425154e+00 6.113383e-01 178 | R 1.856231e+02 1.966203e-01 2.441744e+00 1477010531349642 1.822925e+02 3.581136e+01 2.425154e+00 6.113383e-01 179 | L 1.847319e+02 3.651547e+01 1477010532349642 1.847302e+02 3.637004e+01 2.362264e+00 4.878767e-01 180 | R 1.883345e+02 1.931176e-01 2.201386e+00 1477010532349642 1.847302e+02 3.637004e+01 2.362264e+00 4.878767e-01 181 | L 1.869463e+02 3.694045e+01 1477010533349642 1.871027e+02 3.680395e+01 2.290172e+00 3.651451e-01 182 | R 1.909034e+02 1.947161e-01 2.410297e+00 1477010533349642 1.871027e+02 3.680395e+01 2.290172e+00 3.651451e-01 183 | L 1.894652e+02 3.740516e+01 1477010534349642 1.894007e+02 3.711471e+01 2.209278e+00 2.456228e-01 184 | R 1.933027e+02 1.923400e-01 2.217294e+00 1477010534349642 1.894007e+02 3.711471e+01 2.209278e+00 2.456228e-01 185 | L 1.917353e+02 3.756307e+01 1477010535349642 1.916151e+02 3.730640e+01 2.120375e+00 1.315915e-01 186 | R 1.952425e+02 1.912593e-01 2.103453e+00 1477010535349642 1.916151e+02 3.730640e+01 2.120375e+00 1.315915e-01 187 | L 1.934712e+02 3.727891e+01 1477010536349642 1.937378e+02 3.738535e+01 2.024621e+00 2.504525e-02 188 | R 1.971401e+02 1.909903e-01 1.968279e+00 1477010536349642 1.937378e+02 3.738535e+01 2.024621e+00 2.504525e-02 189 | L 1.959914e+02 3.739908e+01 1477010537349642 1.957622e+02 3.735980e+01 1.923487e+00 -7.238600e-02 190 | R 1.990686e+02 1.894537e-01 1.776298e+00 1477010537349642 1.957622e+02 3.735980e+01 1.923487e+00 -7.238600e-02 191 | L 1.977246e+02 3.772855e+01 1477010538349642 1.976831e+02 3.723950e+01 1.818693e+00 -1.594945e-01 192 | R 2.010726e+02 1.866010e-01 1.872312e+00 1477010538349642 1.976831e+02 3.723950e+01 1.818693e+00 -1.594945e-01 193 | L 1.992941e+02 3.728617e+01 1477010539349642 1.994972e+02 3.703531e+01 1.712115e+00 -2.355288e-01 194 | R 2.028256e+02 1.852191e-01 1.586984e+00 1477010539349642 1.994972e+02 3.703531e+01 1.712115e+00 -2.355288e-01 195 | L 2.015491e+02 3.699733e+01 1477010540349642 2.012029e+02 3.675869e+01 1.605699e+00 -3.002014e-01 196 | R 2.043960e+02 1.843601e-01 1.497659e+00 1477010540349642 2.012029e+02 3.675869e+01 1.605699e+00 -3.002014e-01 197 | L 2.029624e+02 3.645683e+01 1477010541349642 2.028011e+02 3.642125e+01 1.501370e+00 -3.536706e-01 198 | R 2.060446e+02 1.817587e-01 1.261351e+00 1477010541349642 2.028011e+02 3.642125e+01 1.501370e+00 -3.536706e-01 199 | L 2.039906e+02 3.619670e+01 1477010542349642 2.042941e+02 3.603433e+01 1.400951e+00 -3.964974e-01 200 | R 2.070150e+02 1.762321e-01 1.441483e+00 1477010542349642 2.042941e+02 3.603433e+01 1.400951e+00 -3.964974e-01 201 | -------------------------------------------------------------------------------- /results/input2.log: -------------------------------------------------------------------------------- 1 | EKF init: 0.0001 2 | 0.0001 3 | 0 4 | 0 5 | x_ = 0.000338488 6 | -0.000446911 7 | 0 8 | 0 9 | P_ = 0.155172 0.155172 0 0 10 | 0.155172 0.155172 0 0 11 | 0 0 500.225 -499.775 12 | 0 0 -499.775 500.225 13 | x_ = 1.55415 14 | -0.143754 15 | 2.01017 16 | 0.309235 17 | P_ = 0.0224163 -8.32143e-05 0.029637 0.00708695 18 | -8.32143e-05 0.0224163 0.00708695 0.029637 19 | 0.029637 0.00708695 1.81921 -0.448339 20 | 0.00708695 0.029637 -0.448339 1.81921 21 | x_ = 1.62109 22 | 0.0192285 23 | 2.30043 24 | 0.494589 25 | P_ = 0.0175592 -0.00145972 0.00199299 0.0109125 26 | -0.00145972 0.0021331 -0.00047657 0.0020869 27 | 0.00199299 -0.00047657 0.0949551 0.117373 28 | 0.0109125 0.0020869 0.117373 1.58643 29 | x_ = 3.89102 30 | -0.130397 31 | 2.26271 32 | -0.525834 33 | P_ = 0.0222877 6.939e-06 0.0433337 -0.000667391 34 | 6.939e-06 0.0223688 -0.000736052 0.0354638 35 | 0.0433337 -0.000736052 0.245313 0.0694785 36 | -0.000667391 0.0354638 0.0694785 0.993706 37 | x_ = 3.96437 38 | 0.0739224 39 | 2.42288 40 | -0.197898 41 | P_ = 0.0140284 -5.71777e-05 0.00980516 -0.00498394 42 | -5.71777e-05 0.00846711 0.000773942 0.0137245 43 | 0.00980516 0.000773942 0.0662493 0.0437968 44 | -0.00498394 0.0137245 0.0437968 0.954766 45 | x_ = 6.85906 46 | 0.413143 47 | 3.33637 48 | 0.702939 49 | P_ = 0.0222866 2.58552e-06 0.0434035 -0.000260216 50 | 2.58552e-06 0.0223448 -0.000218462 0.037709 51 | 0.0434035 -0.000218462 0.239277 0.022021 52 | -0.000260216 0.037709 0.022021 0.790269 53 | x_ = 6.6903 54 | 0.432431 55 | 2.62654 56 | 0.574797 57 | P_ = 0.0140675 -0.000108183 0.0103764 -0.00761846 58 | -0.000108183 0.0146318 -0.00172699 0.0241088 59 | 0.0103764 -0.00172699 0.0652664 -0.0269811 60 | -0.00761846 0.0241088 -0.0269811 0.75254 61 | x_ = 9.07965 62 | 0.596255 63 | 2.15901 64 | -0.135533 65 | P_ = 0.0222866 -2.51812e-06 0.0433969 0.000262365 66 | -2.51812e-06 0.022336 0.000302869 0.0384516 67 | 0.0433969 0.000302869 0.240369 -0.0312751 68 | 0.000262365 0.0384516 -0.0312751 0.735372 69 | x_ = 9.09362 70 | 0.667446 71 | 2.40714 72 | 0.00382532 73 | P_ = 0.0139837 -0.000149363 0.0101177 -0.00138392 74 | -0.000149363 0.0171782 -0.00091109 0.0295058 75 | 0.0101177 -0.00091109 0.066704 -0.041996 76 | -0.00138392 0.0295058 -0.041996 0.719393 77 | x_ = 11.5747 78 | 1.65959 79 | 2.56527 80 | 1.70838 81 | P_ = 0.0222866 -3.09043e-06 0.043394 0.000309596 82 | -3.09043e-06 0.0223349 0.00031389 0.0384977 83 | 0.043394 0.00031389 0.240333 -0.0315579 84 | 0.000309596 0.0384977 -0.0315579 0.739089 85 | x_ = 11.5246 86 | 1.61821 87 | 2.36441 88 | 1.59307 89 | P_ = 0.0141775 -0.000874178 0.0113618 -0.00815145 90 | -0.000874178 0.0187395 -0.00463284 0.0309389 91 | 0.0113618 -0.00463284 0.0751627 -0.0838619 92 | -0.00815145 0.0309389 -0.0838619 0.710875 93 | x_ = 13.5952 94 | 2.31862 95 | 1.76386 96 | 0.0442223 97 | P_ = 0.0222874 -6.76596e-06 0.0433068 0.000706921 98 | -6.76596e-06 0.0223346 0.000728514 0.038515 99 | 0.0433068 0.000728514 0.250129 -0.0764812 100 | 0.000706921 0.038515 -0.0764812 0.740939 101 | x_ = 13.6906 102 | 2.29565 103 | 2.32833 104 | 0.0971446 105 | P_ = 0.0141275 -0.000908099 0.0108567 -0.00501102 106 | -0.000908099 0.0196109 -0.00371508 0.0331764 107 | 0.0108567 -0.00371508 0.0822326 -0.109843 108 | -0.00501102 0.0331764 -0.109843 0.726351 109 | x_ = 16.6395 110 | 2.89904 111 | 3.55283 112 | 0.991102 113 | P_ = 0.0222878 -8.2179e-06 0.0432724 0.000837889 114 | -8.2179e-06 0.0223356 0.000847703 0.0383944 115 | 0.0432724 0.000847703 0.253005 -0.0871101 116 | 0.000837889 0.0383944 -0.0871101 0.755687 117 | x_ = 16.4806 118 | 2.87106 119 | 2.85466 120 | 0.861002 121 | P_ = 0.0141864 -0.00115526 0.0109243 -0.00468135 122 | -0.00115526 0.0203392 -0.00455139 0.0343142 123 | 0.0109243 -0.00455139 0.0845474 -0.118226 124 | -0.00468135 0.0343142 -0.118226 0.744508 125 | x_ = 19.0137 126 | 3.70587 127 | 2.22932 128 | 0.802891 129 | P_ = 0.022288 -8.7794e-06 0.0432555 0.00090161 130 | -8.7794e-06 0.0223366 0.000901738 0.0382777 131 | 0.0432555 0.000901738 0.254817 -0.0935012 132 | 0.00090161 0.0382777 -0.0935012 0.768947 133 | x_ = 19.0872 134 | 3.72615 135 | 2.38026 136 | 0.842603 137 | P_ = 0.0142467 -0.00133941 0.0112811 -0.00603087 138 | -0.00133941 0.0206846 -0.00507344 0.0345112 139 | 0.0112811 -0.00507344 0.0893568 -0.132383 140 | -0.00603087 0.0345112 -0.132383 0.755513 141 | x_ = 21.3324 142 | 4.73093 143 | 2.12594 144 | 1.11391 145 | P_ = 0.0222884 -9.83167e-06 0.0432163 0.00100954 146 | -9.83167e-06 0.0223372 0.00101552 0.038224 147 | 0.0432163 0.00101552 0.259005 -0.105289 148 | 0.00100954 0.038224 -0.105289 0.774793 149 | x_ = 21.4286 150 | 4.75053 151 | 2.48866 152 | 1.20798 153 | P_ = 0.0143438 -0.00158072 0.0117346 -0.0071636 154 | -0.00158072 0.0208721 -0.00588046 0.0344349 155 | 0.0117346 -0.00588046 0.0967723 -0.150804 156 | -0.0071636 0.0344349 -0.150804 0.7585 157 | x_ = 24.0774 158 | 5.57241 159 | 2.77833 160 | 0.555692 161 | P_ = 0.0222889 -1.11895e-05 0.0431572 0.00115025 162 | -1.11895e-05 0.0223372 0.00115807 0.0382221 163 | 0.0431572 0.00115807 0.265277 -0.120233 164 | 0.00115025 0.0382221 -0.120233 0.775149 165 | x_ = 24.1858 166 | 5.60662 167 | 3.0073 168 | 0.624424 169 | P_ = 0.0143521 -0.00163334 0.0114903 -0.00626052 170 | -0.00163334 0.0210923 -0.00574419 0.0350451 171 | 0.0114903 -0.00574419 0.100847 -0.16044 172 | -0.00626052 0.0350451 -0.16044 0.762639 173 | x_ = 26.6104 174 | 6.95605 175 | 1.91948 176 | 1.83217 177 | P_ = 0.0222891 -1.17405e-05 0.0431362 0.00120215 178 | -1.17405e-05 0.0223374 0.00120586 0.0381941 179 | 0.0431362 0.00120586 0.267149 -0.124772 180 | 0.00120215 0.0381941 -0.124772 0.778635 181 | x_ = 26.669 182 | 6.97214 183 | 2.35329 184 | 1.98497 185 | P_ = 0.0145189 -0.00195292 0.0124556 -0.00847955 186 | -0.00195292 0.0210927 -0.00709311 0.03425 187 | 0.0124556 -0.00709311 0.109667 -0.177957 188 | -0.00847955 0.03425 -0.177957 0.75828 189 | x_ = 29.5816 190 | 8.09386 191 | 3.38012 192 | 0.541373 193 | P_ = 0.0222899 -1.31633e-05 0.043056 0.00135527 194 | -1.31633e-05 0.0223369 0.001363 0.0382476 195 | 0.043056 0.001363 0.275991 -0.141801 196 | 0.00135527 0.0382476 -0.141801 0.772767 197 | x_ = 29.5271 198 | 8.08402 199 | 3.09614 200 | 0.466634 201 | P_ = 0.014502 -0.00195209 0.0120029 -0.00730943 202 | -0.00195209 0.0212412 -0.00664522 0.0349676 203 | 0.0120029 -0.00664522 0.115059 -0.188179 204 | -0.00730943 0.0349676 -0.188179 0.757605 205 | x_ = 31.9471 206 | 9.87095 207 | 1.8757 208 | 2.6839 209 | P_ = 0.0222902 -1.37195e-05 0.0430312 0.00140413 210 | -1.37195e-05 0.0223369 0.0014092 0.0382437 211 | 0.0430312 0.0014092 0.278022 -0.145787 212 | 0.00140413 0.0382437 -0.145787 0.773906 213 | x_ = 31.9327 214 | 9.86053 215 | 1.98511 216 | 2.72836 217 | P_ = 0.0147424 -0.00232106 0.0133887 -0.00986665 218 | -0.00232106 0.0210956 -0.00827275 0.0336122 219 | 0.0133887 -0.00827275 0.126816 -0.207034 220 | -0.00986665 0.0336122 -0.207034 0.747299 221 | x_ = 34.6105 222 | 10.7121 223 | 3.18342 224 | -0.443884 225 | P_ = 0.0222912 -1.52852e-05 0.0429217 0.0015744 226 | -1.52852e-05 0.022336 0.00158296 0.0383443 227 | 0.0429217 0.00158296 0.290173 -0.164801 228 | 0.0015744 0.0383443 -0.164801 0.762793 229 | x_ = 34.6942 230 | 10.741 231 | 3.28977 232 | -0.4049 233 | P_ = 0.0146212 -0.0021695 0.0121292 -0.00730113 234 | -0.0021695 0.0212806 -0.0071494 0.0350633 235 | 0.0121292 -0.0071494 0.129371 -0.211416 236 | -0.00730113 0.0350633 -0.211416 0.747984 237 | x_ = 37.147 238 | 12.0761 239 | 1.802 240 | 2.52021 241 | P_ = 0.0222912 -1.5304e-05 0.0429338 0.00156327 242 | -1.5304e-05 0.0223362 0.00156585 0.0383127 243 | 0.0429338 0.00156585 0.287805 -0.16173 244 | 0.00156327 0.0383127 -0.16173 0.76727 245 | x_ = 37.2622 246 | 12.1165 247 | 2.20137 248 | 2.66782 249 | P_ = 0.0148061 -0.00243702 0.0132821 -0.00918254 250 | -0.00243702 0.0211541 -0.0085356 0.0339595 251 | 0.0132821 -0.0085356 0.134829 -0.219439 252 | -0.00918254 0.0339595 -0.219439 0.744276 253 | x_ = 40.3215 254 | 13.4756 255 | 3.75256 256 | 0.484602 257 | P_ = 0.0222917 -1.607e-05 0.0428714 0.00165316 258 | -1.607e-05 0.0223358 0.00165569 0.0383652 259 | 0.0428714 0.00165569 0.295113 -0.172229 260 | 0.00165316 0.0383652 -0.172229 0.761059 261 | x_ = 40.1874 262 | 13.4356 263 | 3.1988 264 | 0.302444 265 | P_ = 0.0147594 -0.00238642 0.0127817 -0.0084299 266 | -0.00238642 0.0212556 -0.00793847 0.0345827 267 | 0.0127817 -0.00793847 0.13895 -0.225412 268 | -0.0084299 0.0345827 -0.225412 0.741977 269 | x_ = 42.7713 270 | 14.8218 271 | 2.09976 272 | 2.1173 273 | P_ = 0.0222919 -1.63658e-05 0.0428563 0.0016751 274 | -1.63658e-05 0.0223357 0.00167919 0.0383689 275 | 0.0428563 0.00167919 0.296094 -0.1738 276 | 0.0016751 0.0383689 -0.1738 0.761345 277 | x_ = 42.7953 278 | 14.8338 279 | 2.36692 280 | 2.22852 281 | P_ = 0.0148852 -0.00255406 0.0134358 -0.00929495 282 | -0.00255406 0.0211656 -0.00876015 0.0339584 283 | 0.0134358 -0.00876015 0.144004 -0.232189 284 | -0.00929495 0.0339584 -0.232189 0.738022 285 | x_ = 45.3558 286 | 16.556 287 | 2.69835 288 | 1.37297 289 | P_ = 0.0222923 -1.6938e-05 0.0428078 0.0017398 290 | -1.6938e-05 0.0223353 0.00174228 0.0384112 291 | 0.0428078 0.00174228 0.301553 -0.180984 292 | 0.0017398 0.0384112 -0.180984 0.756568 293 | x_ = 45.4025 294 | 16.5716 295 | 2.77683 296 | 1.3981 297 | P_ = 0.0149396 -0.00262451 0.0136367 -0.00968915 298 | -0.00262451 0.0211446 -0.00881895 0.0338171 299 | 0.0136367 -0.00881895 0.151362 -0.241456 300 | -0.00968915 0.0338171 -0.241456 0.731408 301 | x_ = 48.1549 302 | 17.2885 303 | 2.6736 304 | 0.223198 305 | P_ = 0.0222928 -1.75891e-05 0.0427552 0.00180372 306 | -1.75891e-05 0.0223348 0.00180938 0.0384589 307 | 0.0427552 0.00180938 0.306907 -0.187636 308 | 0.00180372 0.0384589 -0.187636 0.751784 309 | x_ = 48.1527 310 | 17.2906 311 | 2.76745 312 | 0.259331 313 | P_ = 0.0148889 -0.00257017 0.0129664 -0.00834041 314 | -0.00257017 0.0212191 -0.00856517 0.0345273 315 | 0.0129664 -0.00856517 0.150667 -0.240788 316 | -0.00834041 0.0345273 -0.240788 0.733025 317 | x_ = 50.6243 318 | 19.0612 319 | 2.32289 320 | 2.83589 321 | P_ = 0.0222927 -1.74277e-05 0.0427746 0.00178476 322 | -1.74277e-05 0.022335 0.00178378 0.0384342 323 | 0.0427746 0.00178378 0.304443 -0.184779 324 | 0.00178476 0.0384342 -0.184779 0.754833 325 | x_ = 50.5741 326 | 19.0396 327 | 2.12039 328 | 2.74739 329 | P_ = 0.0150421 -0.00275015 0.0140627 -0.0101008 330 | -0.00275015 0.0210889 -0.00936843 0.0334408 331 | 0.0140627 -0.00936843 0.156632 -0.247831 332 | -0.0101008 0.0334408 -0.247831 0.727254 333 | x_ = 53.7188 334 | 19.9113 335 | 3.9236 336 | -0.398974 337 | P_ = 0.0222933 -1.80817e-05 0.0427105 0.00185762 338 | -1.80817e-05 0.0223345 0.00186125 0.0384967 339 | 0.0427105 0.00186125 0.311778 -0.193388 340 | 0.00185762 0.0384967 -0.193388 0.747681 341 | x_ = 53.6036 342 | 19.8704 343 | 3.3505 344 | -0.596477 345 | P_ = 0.0149214 -0.00261704 0.0129887 -0.00841258 346 | -0.00261704 0.0212284 -0.00859525 0.0345616 347 | 0.0129887 -0.00859525 0.155736 -0.246923 348 | -0.00841258 0.0345616 -0.246923 0.728766 349 | x_ = 56.0393 350 | 21.0797 351 | 1.74676 352 | 2.4372 353 | P_ = 0.022293 -1.78431e-05 0.0427408 0.00182535 354 | -1.78431e-05 0.0223347 0.00182536 0.0384625 355 | 0.0427408 0.00182536 0.307792 -0.188888 356 | 0.00182535 0.0384625 -0.188888 0.752109 357 | x_ = 56.0303 358 | 21.0766 359 | 1.84832 360 | 2.47996 361 | P_ = 0.0150375 -0.00275377 0.013814 -0.00955155 362 | -0.00275377 0.0211264 -0.00936689 0.0337578 363 | 0.013814 -0.00936689 0.157503 -0.249056 364 | -0.00955155 0.0337578 -0.249056 0.727499 365 | x_ = 58.6574 366 | 21.7945 367 | 3.19094 368 | -0.490703 369 | P_ = 0.0222933 -1.81198e-05 0.0427103 0.00186102 370 | -1.81198e-05 0.0223345 0.00186114 0.0384901 371 | 0.0427103 0.00186114 0.311612 -0.193354 372 | 0.00186102 0.0384901 -0.193354 0.748609 373 | x_ = 58.6557 374 | 21.7952 375 | 3.1878 376 | -0.489578 377 | P_ = 0.0149364 -0.0026402 0.0130736 -0.0085377 378 | -0.0026402 0.0212405 -0.00868534 0.0345193 379 | 0.0130736 -0.00868534 0.156161 -0.247587 380 | -0.0085377 0.0345193 -0.247587 0.729228 381 | x_ = 60.88 382 | 22.7775 383 | 1.46369 384 | 1.96475 385 | P_ = 0.0222931 -1.7898e-05 0.0427363 0.0018317 386 | -1.7898e-05 0.0223347 0.00183173 0.0384618 387 | 0.0427363 0.00183173 0.308327 -0.189628 388 | 0.0018317 0.0384618 -0.189628 0.752155 389 | x_ = 60.9212 390 | 22.7934 391 | 1.85305 392 | 2.11731 393 | P_ = 0.0150195 -0.00273851 0.013667 -0.00933322 394 | -0.00273851 0.0211677 -0.00926745 0.0339441 395 | 0.013667 -0.00926745 0.15691 -0.248521 396 | -0.00933322 0.0339441 -0.248521 0.728815 397 | x_ = 63.3777 398 | 23.4175 399 | 2.88317 400 | -0.404352 401 | P_ = 0.0222932 -1.8057e-05 0.0427177 0.00185375 402 | -1.8057e-05 0.0223346 0.00185336 0.0384783 403 | 0.0427177 0.00185336 0.310747 -0.192469 404 | 0.00185375 0.0384783 -0.192469 0.749961 405 | x_ = 63.438 406 | 23.4411 407 | 2.88902 408 | -0.396882 409 | P_ = 0.0149366 -0.00264405 0.0130892 -0.00855115 410 | -0.00264405 0.0212604 -0.00871527 0.034535 411 | 0.0130892 -0.00871527 0.155348 -0.246753 412 | -0.00855115 0.034535 -0.246753 0.730605 413 | x_ = 66.3394 414 | 23.9889 415 | 2.99152 416 | 1.23058 417 | P_ = 0.022293 -1.78416e-05 0.0427414 0.00182657 418 | -1.78416e-05 0.0223348 0.00182629 0.0384533 419 | 0.0427414 0.00182629 0.307845 -0.189137 420 | 0.00182657 0.0384533 -0.189137 0.753025 421 | x_ = 66.1698 422 | 23.928 423 | 2.27246 424 | 0.979948 425 | P_ = 0.014937 -0.00264624 0.0131291 -0.00848904 426 | -0.00264624 0.0212704 -0.00886875 0.0345165 427 | 0.0131291 -0.00886875 0.152272 -0.243171 428 | -0.00848904 0.0345165 -0.243171 0.733898 429 | x_ = 68.2641 430 | 24.3623 431 | 1.88592 432 | 0.0264649 433 | P_ = 0.0222928 -1.76068e-05 0.0427605 0.00180545 434 | -1.76068e-05 0.022335 0.00180276 0.0384327 435 | 0.0427605 0.00180276 0.306029 -0.187018 436 | 0.00180545 0.0384327 -0.187018 0.755017 437 | x_ = 68.4083 438 | 24.4139 439 | 2.41734 440 | 0.211611 441 | P_ = 0.0148986 -0.00260085 0.0130083 -0.0084242 442 | -0.00260085 0.0213144 -0.00863633 0.0346437 443 | 0.0130083 -0.00863633 0.150021 -0.240488 444 | -0.0084242 0.0346437 -0.240488 0.736352 445 | x_ = 70.8273 446 | 24.8825 447 | 2.44139 448 | 0.653677 449 | P_ = 0.0222927 -1.74031e-05 0.0427784 0.00178318 450 | -1.74031e-05 0.0223352 0.00178208 0.0384136 451 | 0.0427784 0.00178208 0.304119 -0.184722 452 | 0.00178318 0.0384136 -0.184722 0.757051 453 | x_ = 70.7719 454 | 24.8623 455 | 2.21238 456 | 0.574144 457 | P_ = 0.0148828 -0.00258256 0.0129671 -0.0083463 458 | -0.00258256 0.0213373 -0.00861026 0.034697 459 | 0.0129671 -0.00861026 0.147744 -0.237713 460 | -0.0083463 0.034697 -0.237713 0.738779 461 | x_ = 72.8937 462 | 24.7189 463 | 1.98072 464 | -0.666701 465 | P_ = 0.0222925 -1.72083e-05 0.0427943 0.00176399 466 | -1.72083e-05 0.0223354 0.00176229 0.0383967 467 | 0.0427943 0.00176229 0.302512 -0.182756 468 | 0.00176399 0.0383967 -0.182756 0.758775 469 | x_ = 72.9792 470 | 24.7486 471 | 2.30324 472 | -0.563106 473 | P_ = 0.0148101 -0.00248863 0.0125574 -0.00767165 474 | -0.00248863 0.0214154 -0.00821851 0.0351062 475 | 0.0125574 -0.00821851 0.143075 -0.231771 476 | -0.00767165 0.0351062 -0.231771 0.743397 477 | x_ = 75.0039 478 | 25.2518 479 | 1.85107 480 | 1.2463 481 | P_ = 0.0222921 -1.67335e-05 0.0428343 0.0017135 482 | -1.67335e-05 0.0223357 0.00171043 0.0383569 483 | 0.0428343 0.00171043 0.298176 -0.177201 484 | 0.0017135 0.0383569 -0.177201 0.763103 485 | x_ = 74.9802 486 | 25.2434 487 | 1.75283 488 | 1.21262 489 | P_ = 0.0148311 -0.00251835 0.0128835 -0.0082941 490 | -0.00251835 0.0213987 -0.00844673 0.0347969 491 | 0.0128835 -0.00844673 0.141457 -0.229705 492 | -0.0082941 0.0347969 -0.229705 0.745232 493 | x_ = 77.12 494 | 24.9405 495 | 2.3784 496 | -1.35949 497 | P_ = 0.0222921 -1.66529e-05 0.0428378 0.00170838 498 | -1.66529e-05 0.0223358 0.00170702 0.0383521 499 | 0.0428378 0.00170702 0.298123 -0.177162 500 | 0.00170838 0.0383521 -0.177162 0.763305 501 | x_ = 77.1134 502 | 24.9402 503 | 2.23022 504 | -1.39709 505 | P_ = 0.0147304 -0.00238024 0.0122477 -0.00721206 506 | -0.00238024 0.0215042 -0.00779001 0.0354237 507 | 0.0122477 -0.00779001 0.136704 -0.223278 508 | -0.00721206 0.0354237 -0.223278 0.749844 509 | x_ = 79.11 510 | 25.0262 511 | 1.89208 512 | 1.12899 513 | P_ = 0.0222917 -1.60982e-05 0.0428835 0.00164716 514 | -1.60982e-05 0.0223362 0.00164424 0.0383071 515 | 0.0428835 0.00164424 0.293008 -0.170213 516 | 0.00164716 0.0383071 -0.170213 0.768351 517 | x_ = 79.0734 518 | 25.0141 519 | 1.62212 520 | 1.04643 521 | P_ = 0.0147412 -0.00239754 0.0125046 -0.00766618 522 | -0.00239754 0.0214967 -0.00804042 0.0351894 523 | 0.0125046 -0.00804042 0.133547 -0.218933 524 | -0.00766618 0.0351894 -0.218933 0.753213 525 | x_ = 80.8072 526 | 24.8774 527 | 1.74951 528 | -0.9735 529 | P_ = 0.0222915 -1.58545e-05 0.0428985 0.00162639 530 | -1.58545e-05 0.0223364 0.00162357 0.0382907 531 | 0.0428985 0.00162357 0.291766 -0.168504 532 | 0.00162639 0.0382907 -0.168504 0.769748 533 | x_ = 80.8647 534 | 24.8947 535 | 1.84799 536 | -0.943153 537 | P_ = 0.0146738 -0.00229972 0.0121734 -0.00717745 538 | -0.00229972 0.0215671 -0.00755581 0.0355168 539 | 0.0121734 -0.00755581 0.130245 -0.214184 540 | -0.00717745 0.0355168 -0.214184 0.75658 541 | x_ = 82.622 542 | 24.6344 543 | 1.72251 544 | 0.219904 545 | P_ = 0.0222912 -1.54649e-05 0.042928 0.00158325 546 | -1.54649e-05 0.0223367 0.00158137 0.0382609 547 | 0.042928 0.00158137 0.288513 -0.163791 548 | 0.00158325 0.0382609 -0.163791 0.773033 549 | x_ = 82.5827 550 | 24.6234 551 | 1.52136 552 | 0.165049 553 | P_ = 0.0146524 -0.00226768 0.0121378 -0.00706413 554 | -0.00226768 0.0215917 -0.00754172 0.0355623 555 | 0.0121378 -0.00754172 0.126608 -0.208786 556 | -0.00706413 0.0355623 -0.208786 0.760292 557 | x_ = 84.1729 558 | 24.5521 559 | 1.63723 560 | -0.234727 561 | P_ = 0.022291 -1.50928e-05 0.0429527 0.00154699 562 | -1.50928e-05 0.0223369 0.00154385 0.0382356 563 | 0.0429527 0.00154385 0.28605 -0.160104 564 | 0.00154699 0.0382356 -0.160104 0.77556 565 | x_ = 84.1797 566 | 24.5533 567 | 1.63712 568 | -0.23578 569 | P_ = 0.0146188 -0.00221623 0.0120604 -0.00702015 570 | -0.00221623 0.0216275 -0.00733137 0.0356426 571 | 0.0120604 -0.00733137 0.123936 -0.204689 572 | -0.00702015 0.0356426 -0.204689 0.763072 573 | x_ = 85.6398 574 | 23.8118 575 | 1.26079 576 | -1.11328 577 | P_ = 0.0222908 -1.47978e-05 0.0429722 0.0015161 578 | -1.47978e-05 0.0223371 0.00151429 0.0382155 579 | 0.0429722 0.00151429 0.284019 -0.156964 580 | 0.0015161 0.0382155 -0.156964 0.777653 581 | x_ = 85.7256 582 | 23.8349 583 | 1.54821 584 | -1.04032 585 | P_ = 0.0145569 -0.00211377 0.0117248 -0.00629633 586 | -0.00211377 0.0216922 -0.00693695 0.0359742 587 | 0.0117248 -0.00693695 0.119301 -0.197237 588 | -0.00629633 0.0359742 -0.197237 0.767574 589 | x_ = 86.9475 590 | 23.522 591 | 0.966863 592 | 0.181192 593 | P_ = 0.0222904 -1.42184e-05 0.0430103 0.00145549 594 | -1.42184e-05 0.0223375 0.00145175 0.0381781 595 | 0.0430103 0.00145175 0.279954 -0.150367 596 | 0.00145549 0.0381781 -0.150367 0.781657 597 | x_ = 87.0599 598 | 23.5518 599 | 1.13591 600 | 0.227366 601 | P_ = 0.0145438 -0.00209322 0.0118234 -0.00657443 602 | -0.00209322 0.0217064 -0.00696562 0.0358876 603 | 0.0118234 -0.00696562 0.116249 -0.192163 604 | -0.00657443 0.0358876 -0.192163 0.770774 605 | x_ = 88.8174 606 | 22.7937 607 | 2.27202 608 | -1.41572 609 | P_ = 0.0222902 -1.38974e-05 0.0430283 0.00142473 610 | -1.38974e-05 0.0223377 0.00142209 0.0381592 611 | 0.0430283 0.00142209 0.278249 -0.147505 612 | 0.00142473 0.0381592 -0.147505 0.78346 613 | x_ = 88.6883 614 | 22.7621 615 | 1.74243 616 | -1.5345 617 | P_ = 0.0144697 -0.00195948 0.0114273 -0.00572485 618 | -0.00195948 0.0217835 -0.00637453 0.0362747 619 | 0.0114273 -0.00637453 0.111698 -0.184155 620 | -0.00572485 0.0362747 -0.184155 0.775173 621 | x_ = 89.5048 622 | 22.3009 623 | 0.0195024 624 | 0.240042 625 | P_ = 0.0222899 -1.32572e-05 0.0430673 0.0013561 626 | -1.32572e-05 0.022338 0.00135252 0.038121 627 | 0.0430673 0.00135252 0.274019 -0.139987 628 | 0.0013561 0.038121 -0.139987 0.787611 629 | x_ = 89.634 630 | 22.3336 631 | 0.577943 632 | 0.3734 633 | P_ = 0.0144668 -0.00195609 0.0115852 -0.00612679 634 | -0.00195609 0.0217865 -0.00652759 0.0361318 635 | 0.0115852 -0.00652759 0.108829 -0.178932 636 | -0.00612679 0.0361318 -0.178932 0.77823 637 | x_ = 90.511 638 | 21.675 639 | 1.09378 640 | -1.36904 641 | P_ = 0.0222897 -1.29439e-05 0.0430827 0.00132743 642 | -1.29439e-05 0.0223382 0.00132458 0.0381044 643 | 0.0430827 0.00132458 0.272632 -0.137441 644 | 0.00132743 0.0381044 -0.137441 0.789115 645 | x_ = 90.6023 646 | 21.6977 647 | 1.31756 648 | -1.31553 649 | P_ = 0.0144112 -0.0018477 0.011316 -0.00556898 650 | -0.0018477 0.0218434 -0.00602312 0.0363941 651 | 0.011316 -0.00602312 0.1057 -0.172941 652 | -0.00556898 0.0363941 -0.172941 0.781361 653 | x_ = 91.7193 654 | 21.1101 655 | 0.971842 656 | -0.086387 657 | P_ = 0.0222894 -1.2465e-05 0.0431096 0.00127543 658 | -1.2465e-05 0.0223385 0.00127303 0.0380777 659 | 0.0431096 0.00127303 0.269709 -0.131792 660 | 0.00127543 0.0380777 -0.131792 0.79203 661 | x_ = 91.7765 662 | 21.1242 663 | 0.980908 664 | -0.0793717 665 | P_ = 0.0143936 -0.00181233 0.0113081 -0.0055263 666 | -0.00181233 0.0218625 -0.00600308 0.0364106 667 | 0.0113081 -0.00600308 0.10271 -0.166989 668 | -0.0055263 0.0364106 -0.166989 0.784418 669 | x_ = 92.859 670 | 20.9543 671 | 1.1723 672 | -0.227902 673 | P_ = 0.0222892 -1.20601e-05 0.0431295 0.00123592 674 | -1.20601e-05 0.0223387 0.00123279 0.0380573 675 | 0.0431295 0.00123279 0.267741 -0.127831 676 | 0.00123592 0.0380573 -0.127831 0.79405 677 | x_ = 92.9079 678 | 20.9655 679 | 1.07757 680 | -0.245694 681 | P_ = 0.0143749 -0.00177429 0.0113035 -0.00563372 682 | -0.00177429 0.0218822 -0.00586267 0.0364174 683 | 0.0113035 -0.00586267 0.101036 -0.163543 684 | -0.00563372 0.0364174 -0.163543 0.786215 685 | x_ = 93.472 686 | 20.2194 687 | 0.0560218 688 | -1.1264 689 | P_ = 0.0222891 -1.18244e-05 0.0431408 0.00121155 690 | -1.18244e-05 0.0223388 0.00121019 0.0380454 691 | 0.0431408 0.00121019 0.266596 -0.125453 692 | 0.00121155 0.0380454 -0.125453 0.79526 693 | x_ = 93.6323 694 | 20.254 695 | 0.800877 696 | -0.98001 697 | P_ = 0.0143388 -0.0016949 0.0111102 -0.00509564 698 | -0.0016949 0.0219192 -0.00554604 0.0366074 699 | 0.0111102 -0.00554604 0.0984125 -0.15792 700 | -0.00509564 0.0366074 -0.15792 0.788803 701 | x_ = 95.3143 702 | 19.6553 703 | 2.52761 704 | -0.284208 705 | P_ = 0.0222889 -1.1386e-05 0.0431624 0.00116553 706 | -1.1386e-05 0.022339 0.00116292 0.0380239 707 | 0.0431624 0.00116292 0.264281 -0.120449 708 | 0.00116553 0.0380239 -0.120449 0.797555 709 | x_ = 95.0094 710 | 19.5941 711 | 1.23197 712 | -0.524167 713 | P_ = 0.0143105 -0.00163008 0.0110196 -0.00484238 714 | -0.00163008 0.0219497 -0.00535277 0.0367029 715 | 0.0110196 -0.00535277 0.0954769 -0.151339 716 | -0.00484238 0.0367029 -0.151339 0.791719 717 | x_ = 95.5105 718 | 19.6943 719 | -0.152303 720 | 0.500752 721 | P_ = 0.0222887 -1.09117e-05 0.0431838 0.00111739 722 | -1.09117e-05 0.0223392 0.00111423 0.0380025 723 | 0.0431838 0.00111423 0.262079 -0.115453 724 | 0.00111739 0.0380025 -0.115453 0.799765 725 | x_ = 95.6121 726 | 19.7152 727 | 0.430349 728 | 0.621647 729 | P_ = 0.0143206 -0.00165506 0.0112066 -0.00551369 730 | -0.00165506 0.0219393 -0.0055427 0.0365194 731 | 0.0112066 -0.0055427 0.0949914 -0.150238 732 | -0.00551369 0.0365194 -0.150238 0.79235 733 | x_ = 96.2625 734 | 19.168 735 | 0.797252 736 | -1.35544 737 | P_ = 0.0222887 -1.08968e-05 0.043183 0.00111807 738 | -1.08968e-05 0.0223392 0.00111765 0.0380026 739 | 0.043183 0.00111765 0.262317 -0.116015 740 | 0.00111807 0.0380026 -0.116015 0.7996 741 | x_ = 96.3223 742 | 19.1789 743 | 0.97708 744 | -1.32316 745 | P_ = 0.0142813 -0.00156063 0.0109467 -0.00474743 746 | -0.00156063 0.0219796 -0.00506988 0.036775 747 | 0.0109467 -0.00506988 0.0932824 -0.146195 748 | -0.00474743 0.036775 -0.146195 0.794034 749 | x_ = 97.5261 750 | 18.7206 751 | 1.45885 752 | 0.158666 753 | P_ = 0.0222885 -1.05374e-05 0.0432001 0.001078 754 | -1.05374e-05 0.0223394 0.00107642 0.0379857 755 | 0.0432001 0.00107642 0.26038 -0.111415 756 | 0.001078 0.0379857 -0.111415 0.80152 757 | x_ = 97.4439 758 | 18.7035 759 | 1.01503 760 | 0.077536 761 | P_ = 0.0142726 -0.00153927 0.0109527 -0.00472436 762 | -0.00153927 0.0219897 -0.00510094 0.0367761 763 | 0.0109527 -0.00510094 0.0913319 -0.141443 764 | -0.00472436 0.0367761 -0.141443 0.796017 765 | x_ = 98.213 766 | 18.3769 767 | 0.518857 768 | -0.621104 769 | P_ = 0.0222884 -1.02186e-05 0.0432128 0.00104739 770 | -1.02186e-05 0.0223395 0.00104486 0.0379727 771 | 0.0432128 0.00104486 0.259139 -0.108364 772 | 0.00104739 0.0379727 -0.108364 0.802794 773 | x_ = 98.2756 774 | 18.3879 775 | 0.779833 776 | -0.57614 777 | P_ = 0.0142526 -0.00148879 0.0108992 -0.00464888 778 | -0.00148879 0.0220101 -0.0048907 0.0368293 779 | 0.0108992 -0.0048907 0.0899105 -0.137853 780 | -0.00464888 0.0368293 -0.137853 0.797489 781 | x_ = 99.0367 782 | 17.3602 783 | 0.722475 784 | -1.34425 785 | P_ = 0.0222883 -9.95584e-06 0.0432235 0.00101961 786 | -9.95584e-06 0.0223396 0.00101825 0.0379618 787 | 0.0432235 0.00101825 0.258018 -0.105509 788 | 0.00101961 0.0379618 -0.105509 0.80394 789 | x_ = 99.0751 790 | 17.3664 791 | 1.02804 792 | -1.30161 793 | P_ = 0.0142157 -0.00138641 0.010691 -0.00390319 794 | -0.00138641 0.0220485 -0.00448333 0.0370328 795 | 0.010691 -0.00448333 0.0871404 -0.130494 796 | -0.00390319 0.0370328 -0.130494 0.80011 797 | x_ = 99.9975 798 | 16.9817 799 | 0.863034 800 | 0.250894 801 | P_ = 0.0222881 -9.38027e-06 0.0432463 0.000959297 802 | -9.38027e-06 0.0223398 0.00095592 0.0379396 803 | 0.0432463 0.00095592 0.255568 -0.0989247 804 | 0.000959297 0.0379396 -0.0989247 0.806315 805 | x_ = 100.056 806 | 16.9914 807 | 0.862789 808 | 0.252413 809 | P_ = 0.0142116 -0.00137721 0.0107785 -0.00427183 810 | -0.00137721 0.0220528 -0.00457719 0.0369548 811 | 0.0107785 -0.00457719 0.0855334 -0.126043 812 | -0.00427183 0.0369548 -0.126043 0.80183 813 | x_ = 101.201 814 | 16.5418 815 | 1.38105 816 | -0.927518 817 | P_ = 0.022288 -9.11256e-06 0.0432551 0.00093435 818 | -9.11256e-06 0.0223399 0.000932213 0.0379302 819 | 0.0432551 0.000932213 0.254779 -0.0967141 820 | 0.00093435 0.0379302 -0.0967141 0.807178 821 | x_ = 101.157 822 | 16.5345 823 | 1.13968 824 | -0.963097 825 | P_ = 0.0141858 -0.00130114 0.0106618 -0.0039198 826 | -0.00130114 0.0220798 -0.00422989 0.0370696 827 | 0.0106618 -0.00422989 0.0840157 -0.121641 828 | -0.0039198 0.0370696 -0.121641 0.80338 829 | x_ = 102.386 830 | 16.3933 831 | 1.34601 832 | 0.435614 833 | P_ = 0.0222879 -8.7662e-06 0.0432678 0.000896953 834 | -8.7662e-06 0.02234 0.00089529 0.0379174 835 | 0.0432678 0.00089529 0.253403 -0.0926864 836 | 0.000896953 0.0379174 -0.0926864 0.808568 837 | x_ = 102.277 838 | 16.3746 839 | 0.987376 840 | 0.377426 841 | P_ = 0.0141866 -0.00130453 0.0107222 -0.00415687 842 | -0.00130453 0.02208 -0.00434586 0.0370144 843 | 0.0107222 -0.00434586 0.083128 -0.118998 844 | -0.00415687 0.0370144 -0.118998 0.804351 845 | x_ = 103.006 846 | 15.3631 847 | 0.431207 848 | -1.99018 849 | P_ = 0.0222878 -8.61308e-06 0.0432723 0.000883356 850 | -8.61308e-06 0.0223401 0.000881973 0.0379124 851 | 0.0432723 0.000881973 0.253013 -0.0915199 852 | 0.000883356 0.0379124 -0.0915199 0.809011 853 | x_ = 103.065 854 | 15.3701 855 | 1.03393 856 | -1.92442 857 | P_ = 0.0141465 -0.00117339 0.0104795 -0.00320465 858 | -0.00117339 0.0221211 -0.00372926 0.0372474 859 | 0.0104795 -0.00372926 0.0809247 -0.112061 860 | -0.00320465 0.0372474 -0.112061 0.806393 861 | x_ = 104.114 862 | 15.2579 863 | 1.13046 864 | 1.14999 865 | P_ = 0.0222876 -8.03598e-06 0.0432923 0.000820629 866 | -8.03598e-06 0.0223403 0.000817846 0.0378933 867 | 0.0432923 0.000817846 0.25081 -0.0845127 868 | 0.000820629 0.0378933 -0.0845127 0.811122 869 | x_ = 104.057 870 | 15.2486 871 | 1.01316 872 | 1.13102 873 | P_ = 0.0141584 -0.00121603 0.0106488 -0.00392783 874 | -0.00121603 0.0221096 -0.00410667 0.0370907 875 | 0.0106488 -0.00410667 0.080089 -0.109354 876 | -0.00392783 0.0370907 -0.109354 0.807362 877 | x_ = 105.537 878 | 14.4548 879 | 1.84801 880 | -2.1162 881 | P_ = 0.0222876 -7.93101e-06 0.043294 0.000814546 882 | -7.93101e-06 0.0223403 0.000812933 0.0378907 883 | 0.043294 0.000812933 0.250793 -0.0844766 884 | 0.000814546 0.0378907 -0.0844766 0.811228 885 | x_ = 105.451 886 | 14.4425 887 | 1.54307 888 | -2.15345 889 | P_ = 0.0141177 -0.00107151 0.0104009 -0.00292218 890 | -0.00107151 0.0221519 -0.00337047 0.0373293 891 | 0.0104009 -0.00337047 0.0783047 -0.103197 892 | -0.00292218 0.0373293 -0.103197 0.80904 893 | x_ = 106.832 894 | 14.0358 895 | 1.28789 896 | 0.802138 897 | P_ = 0.0222875 -7.39342e-06 0.0433114 0.000754364 898 | -7.39342e-06 0.0223405 0.00075221 0.037874 899 | 0.0433114 0.00075221 0.248835 -0.0776603 900 | 0.000754364 0.037874 -0.0776603 0.813124 901 | x_ = 106.776 902 | 14.029 903 | 1.24487 904 | 0.796471 905 | P_ = 0.0141224 -0.00109103 0.010501 -0.00333484 906 | -0.00109103 0.0221481 -0.00365766 0.0372427 907 | 0.010501 -0.00365766 0.0770903 -0.0988381 908 | -0.00333484 0.0372427 -0.0988381 0.810373 909 | x_ = 108.083 910 | 13.6686 911 | 1.3283 912 | -1.16224 913 | P_ = 0.0222874 -7.14974e-06 0.0433171 0.000733823 914 | -7.14974e-06 0.0223405 0.000731367 0.0378675 915 | 0.0433171 0.000731367 0.248364 -0.0759593 916 | 0.000733823 0.0378675 -0.0759593 0.813679 917 | x_ = 108.126 918 | 13.6738 919 | 1.55755 920 | -1.13673 921 | P_ = 0.0141012 -0.00100962 0.0104076 -0.0030142 922 | -0.00100962 0.0221703 -0.00324941 0.0373334 923 | 0.0104076 -0.00324941 0.0761103 -0.0951232 924 | -0.0030142 0.0373334 -0.0951232 0.811407 925 | x_ = 109.535 926 | 13.5641 927 | 1.30224 928 | 0.59887 929 | P_ = 0.0222873 -6.84703e-06 0.0433258 0.000700008 930 | -6.84703e-06 0.0223406 0.000698901 0.0378585 931 | 0.0433258 0.000698901 0.247406 -0.0722946 932 | 0.000700008 0.0378585 -0.0722946 0.81466 933 | x_ = 109.514 934 | 13.5607 935 | 1.33611 936 | 0.601308 937 | P_ = 0.014105 -0.00102546 0.0104649 -0.00327464 938 | -0.00102546 0.0221677 -0.00343106 0.0372811 939 | 0.0104649 -0.00343106 0.0755649 -0.0930053 940 | -0.00327464 0.0372811 -0.0930053 0.812032 941 | x_ = 111.061 942 | 12.5925 943 | 1.69752 944 | -2.05147 945 | P_ = 0.0222873 -6.73584e-06 0.0433281 0.000691184 946 | -6.73584e-06 0.0223407 0.000689947 0.0378558 947 | 0.0433281 0.000689947 0.247236 -0.0716326 948 | 0.000691184 0.0378558 -0.0716326 0.81488 949 | x_ = 111.143 950 | 12.6024 951 | 1.86465 952 | -2.03162 953 | P_ = 0.0140737 -0.000889853 0.0102703 -0.00227295 954 | -0.000889853 0.0222006 -0.00277497 0.0374671 955 | 0.0102703 -0.00277497 0.0739378 -0.0862626 956 | -0.00227295 0.0374671 -0.0862626 0.813501 957 | x_ = 112.913 958 | 12.4742 959 | 1.73515 960 | 1.18981 961 | P_ = 0.0222871 -6.1654e-06 0.0433432 0.000628694 962 | -6.1654e-06 0.0223408 0.000626085 0.0378415 963 | 0.0433432 0.000626085 0.245561 -0.0646069 964 | 0.000628694 0.0378415 -0.0646069 0.81647 965 | x_ = 112.89 966 | 12.4723 967 | 1.65476 968 | 1.18219 969 | P_ = 0.014082 -0.000930772 0.010394 -0.00295986 970 | -0.000930772 0.0221931 -0.00315196 0.0373567 971 | 0.010394 -0.00315196 0.0732589 -0.0833397 972 | -0.00295986 0.0373567 -0.0833397 0.81431 973 | x_ = 114.799 974 | 12.5583 975 | 2.11831 976 | -0.66721 977 | P_ = 0.0222871 -6.04353e-06 0.0433449 0.000620943 978 | -6.04353e-06 0.0223408 0.000619261 0.037839 979 | 0.0433449 0.000619261 0.245504 -0.064381 980 | 0.000620943 0.037839 -0.064381 0.816617 981 | x_ = 114.788 982 | 12.5567 983 | 1.96667 984 | -0.683374 985 | P_ = 0.0140711 -0.000882035 0.0103475 -0.00282498 986 | -0.000882035 0.0222054 -0.00286668 0.0374038 987 | 0.0103475 -0.00286668 0.0730107 -0.0822338 988 | -0.00282498 0.0374038 -0.0822338 0.814649 989 | x_ = 116.688 990 | 12.1019 991 | 1.84354 992 | -0.29812 993 | P_ = 0.0222871 -5.93806e-06 0.0433477 0.000607608 994 | -5.93806e-06 0.0223408 0.000607645 0.0378357 995 | 0.0433477 0.000607645 0.245174 -0.0629025 996 | 0.000607608 0.0378357 -0.0629025 0.816994 997 | x_ = 116.749 998 | 12.1081 999 | 2.07684 1000 | -0.276336 1001 | P_ = 0.014064 -0.000847473 0.0103008 -0.0024769 1002 | -0.000847473 0.0222141 -0.00276751 0.0374519 1003 | 0.0103008 -0.00276751 0.0722359 -0.0786601 1004 | -0.0024769 0.0374519 -0.0786601 0.815439 1005 | x_ = 118.952 1006 | 11.9997 1007 | 2.3262 1008 | 0.0113285 1009 | P_ = 0.022287 -5.66685e-06 0.0433538 0.000580207 1010 | -5.66685e-06 0.0223409 0.000578388 0.0378295 1011 | 0.0433538 0.000578388 0.244534 -0.0599246 1012 | 0.000580207 0.0378295 -0.0599246 0.817648 1013 | x_ = 118.92 1014 | 11.9973 1015 | 2.18003 1016 | -0.00132765 1017 | P_ = 0.0140599 -0.000828722 0.0103084 -0.00257574 1018 | -0.000828722 0.0222194 -0.00272979 0.0374474 1019 | 0.0103084 -0.00272979 0.0717309 -0.0762413 1020 | -0.00257574 0.0374474 -0.0762413 0.815995 1021 | x_ = 120.699 1022 | 12.2898 1023 | 1.40639 1024 | 0.485827 1025 | P_ = 0.022287 -5.50785e-06 0.043357 0.000564358 1026 | -5.50785e-06 0.0223409 0.000563379 0.037826 1027 | 0.043357 0.000563379 0.244221 -0.0584079 1028 | 0.000564358 0.037826 -0.0584079 0.817996 1029 | x_ = 120.812 1030 | 12.3012 1031 | 1.929 1032 | 0.540118 1033 | P_ = 0.0140633 -0.000845414 0.010349 -0.00286981 1034 | -0.000845414 0.0222171 -0.00283166 0.0374085 1035 | 0.010349 -0.00283166 0.0717767 -0.076467 1036 | -0.00286981 0.0374085 -0.076467 0.815996 1037 | x_ = 123.56 1038 | 12.8296 1039 | 3.52325 1040 | 0.541531 1041 | P_ = 0.022287 -5.55045e-06 0.0433558 0.000569593 1042 | -5.55045e-06 0.0223409 0.000569737 0.0378269 1043 | 0.0433558 0.000569737 0.244372 -0.059148 1044 | 0.000569593 0.0378269 -0.059148 0.817873 1045 | x_ = 123.356 1046 | 12.8083 1047 | 2.59162 1048 | 0.440987 1049 | P_ = 0.0140659 -0.00085781 0.010363 -0.00296879 1050 | -0.00085781 0.0222163 -0.00286464 0.0373973 1051 | 0.010363 -0.00286464 0.0720519 -0.077796 1052 | -0.00296879 0.0373973 -0.077796 0.815751 1053 | x_ = 124.904 1054 | 12.7779 1055 | 0.548536 1056 | -0.384718 1057 | P_ = 0.022287 -5.64889e-06 0.0433537 0.000579507 1058 | -5.64889e-06 0.0223409 0.000580163 0.0378289 1059 | 0.0433537 0.000580163 0.244592 -0.0602068 1060 | 0.000579507 0.0378289 -0.0602068 0.817678 1061 | x_ = 125.208 1062 | 12.8089 1063 | 2.05789 1064 | -0.236286 1065 | P_ = 0.0140613 -0.00083583 0.0103199 -0.00267547 1066 | -0.00083583 0.0222216 -0.00274401 0.0374413 1067 | 0.0103199 -0.00274401 0.0719072 -0.0771016 1068 | -0.00267547 0.0374413 -0.0771016 0.815923 1069 | x_ = 127.847 1070 | 13.3218 1071 | 3.20799 1072 | 1.04732 1073 | P_ = 0.022287 -5.57326e-06 0.0433556 0.000570861 1074 | -5.57326e-06 0.0223409 0.000570538 0.0378268 1075 | 0.0433556 0.000570538 0.244367 -0.0591244 1076 | 0.000570861 0.0378268 -0.0591244 0.81792 1077 | x_ = 127.707 1078 | 13.3068 1079 | 2.62711 1080 | 0.983489 1081 | P_ = 0.0140686 -0.000870903 0.0103765 -0.00302278 1082 | -0.000870903 0.0222159 -0.0029392 0.0373869 1083 | 0.0103765 -0.0029392 0.0721179 -0.0781109 1084 | -0.00302278 0.0373869 -0.0781109 0.81573 1085 | x_ = 129.951 1086 | 13.7006 1087 | 1.86588 1088 | -0.0251618 1089 | P_ = 0.022287 -5.67932e-06 0.0433529 0.000583271 1090 | -5.67932e-06 0.0223409 0.000583613 0.0378293 1091 | 0.0433529 0.000583613 0.244682 -0.0606338 1092 | 0.000583271 0.0378293 -0.0606338 0.817622 1093 | x_ = 130.072 1094 | 13.7133 1095 | 2.29301 1096 | 0.0204279 1097 | P_ = 0.0140672 -0.000864098 0.0103584 -0.00293067 1098 | -0.000864098 0.0222185 -0.00285873 0.0374073 1099 | 0.0103584 -0.00285873 0.0723184 -0.0790629 1100 | -0.00293067 0.0374073 -0.0790629 0.815558 1101 | x_ = 132.094 1102 | 14.5016 1103 | 1.7878 1104 | 1.31347 1105 | P_ = 0.022287 -5.73091e-06 0.043352 0.000587408 1106 | -5.73091e-06 0.0223409 0.000587972 0.03783 1107 | 0.043352 0.000587972 0.244752 -0.0609653 1108 | 0.000587408 0.03783 -0.0609653 0.817574 1109 | x_ = 132.221 1110 | 14.5156 1111 | 2.30611 1112 | 1.37509 1113 | P_ = 0.0140798 -0.000921356 0.0104344 -0.00334463 1114 | -0.000921356 0.022207 -0.00313462 0.0373312 1115 | 0.0104344 -0.00313462 0.0729353 -0.0819018 1116 | -0.00334463 0.0373312 -0.0819018 0.814929 1117 | x_ = 135.069 1118 | 15.0533 1119 | 3.33499 1120 | -0.0279259 1121 | P_ = 0.0222871 -5.97069e-06 0.0433463 0.000613678 1122 | -5.97069e-06 0.0223408 0.000614768 0.0378359 1123 | 0.0433463 0.000614768 0.245397 -0.0639145 1124 | 0.000613678 0.0378359 -0.0639145 0.816927 1125 | x_ = 134.989 1126 | 15.0441 1127 | 2.81698 1128 | -0.0876768 1129 | P_ = 0.014077 -0.000909595 0.010393 -0.0031033 1130 | -0.000909595 0.022211 -0.00300095 0.0373767 1131 | 0.010393 -0.00300095 0.0732704 -0.0834136 1132 | -0.0031033 0.0373767 -0.0834136 0.814632 1133 | x_ = 137.563 1134 | 16.2059 1135 | 2.37858 1136 | 2.02155 1137 | P_ = 0.0222871 -6.04582e-06 0.043345 0.000619524 1138 | -6.04582e-06 0.0223408 0.000620348 0.0378369 1139 | 0.043345 0.000620348 0.245483 -0.0643041 1140 | 0.000619524 0.0378369 -0.0643041 0.816871 1141 | x_ = 137.613 1142 | 16.2124 1143 | 2.59233 1144 | 2.05063 1145 | P_ = 0.0140973 -0.000994529 0.0105142 -0.00371863 1146 | -0.000994529 0.0221921 -0.00341329 0.0372534 1147 | 0.0105142 -0.00341329 0.0742248 -0.0875303 1148 | -0.00371863 0.0372534 -0.0875303 0.813631 1149 | x_ = 140.331 1150 | 17.0169 1151 | 2.7975 1152 | -0.0567298 1153 | P_ = 0.0222872 -6.39554e-06 0.0433359 0.00065795 1154 | -6.39554e-06 0.0223408 0.000659521 0.0378461 1155 | 0.0433359 0.000659521 0.246493 -0.0686265 1156 | 0.00065795 0.0378461 -0.0686265 0.81584 1157 | x_ = 140.347 1158 | 17.0195 1159 | 2.86758 1160 | -0.0468062 1161 | P_ = 0.0140953 -0.000987754 0.0104673 -0.00346442 1162 | -0.000987754 0.0221951 -0.00326536 0.0373064 1163 | 0.0104673 -0.00326536 0.0748986 -0.0903451 1164 | -0.00346442 0.0373064 -0.0903451 0.81301 1165 | x_ = 142.891 1166 | 17.9847 1167 | 2.2704 1168 | 1.65791 1169 | P_ = 0.0222872 -6.55626e-06 0.0433326 0.00067195 1170 | -6.55626e-06 0.0223407 0.000673431 0.0378491 1171 | 0.0433326 0.000673431 0.246779 -0.0698144 1172 | 0.00067195 0.0378491 -0.0698144 0.815593 1173 | x_ = 142.895 1174 | 17.9857 1175 | 2.50637 1176 | 1.69291 1177 | P_ = 0.0141118 -0.00105276 0.01055 -0.00380075 1178 | -0.00105276 0.0221796 -0.00357762 0.0372227 1179 | 0.01055 -0.00357762 0.0757124 -0.0936011 1180 | -0.00380075 0.0372227 -0.0936011 0.812205 1181 | x_ = 145.392 1182 | 19.1653 1183 | 2.47212 1184 | 0.82285 1185 | P_ = 0.0222873 -6.82164e-06 0.0433253 0.000701105 1186 | -6.82164e-06 0.0223406 0.000702239 0.0378564 1187 | 0.0433253 0.000702239 0.247583 -0.0730062 1188 | 0.000701105 0.0378564 -0.0730062 0.814795 1189 | x_ = 145.496 1190 | 19.1792 1191 | 2.76299 1192 | 0.863239 1193 | P_ = 0.0141204 -0.00108501 0.0105806 -0.00395148 1194 | -0.00108501 0.0221721 -0.00364009 0.0371949 1195 | 0.0105806 -0.00364009 0.0767808 -0.0977126 1196 | -0.00395148 0.0371949 -0.0977126 0.811143 1197 | x_ = 148.251 1198 | 20.4723 1199 | 2.76243 1200 | 1.5916 1201 | P_ = 0.0222874 -7.11291e-06 0.0433176 0.000730062 1202 | -7.11291e-06 0.0223406 0.000732056 0.037864 1203 | 0.0433176 0.000732056 0.248369 -0.0759988 1204 | 0.000730062 0.037864 -0.0759988 0.814021 1205 | x_ = 148.223 1206 | 20.4689 1207 | 2.61793 1208 | 1.57028 1209 | P_ = 0.0141372 -0.00114535 0.0106495 -0.00419369 1210 | -0.00114535 0.0221564 -0.00387588 0.0371263 1211 | 0.0106495 -0.00387588 0.078007 -0.102205 1212 | -0.00419369 0.0371263 -0.102205 0.809913 1213 | x_ = 150.687 1214 | 22.1137 1215 | 2.32262 1216 | 1.69142 1217 | P_ = 0.0222875 -7.44927e-06 0.0433079 0.00076528 1218 | -7.44927e-06 0.0223405 0.000767124 0.0378737 1219 | 0.0433079 0.000767124 0.249394 -0.079713 1220 | 0.00076528 0.0378737 -0.079713 0.812998 1221 | x_ = 150.722 1222 | 22.1187 1223 | 2.61229 1224 | 1.74079 1225 | P_ = 0.0141576 -0.00121383 0.0107414 -0.00455258 1226 | -0.00121383 0.022137 -0.00411249 0.0370348 1227 | 0.0107414 -0.00411249 0.079708 -0.108105 1228 | -0.00455258 0.0370348 -0.108105 0.808169 1229 | x_ = 153.421 1230 | 23.4934 1231 | 2.76778 1232 | 1.12316 1233 | P_ = 0.0222876 -7.88821e-06 0.0432946 0.000810469 1234 | -7.88821e-06 0.0223404 0.000813119 0.0378871 1235 | 0.0432946 0.000813119 0.250792 -0.0844969 1236 | 0.000810469 0.0378871 -0.0844969 0.811585 1237 | x_ = 153.403 1238 | 23.49 1239 | 2.68699 1240 | 1.10874 1241 | P_ = 0.0141701 -0.00125486 0.0107598 -0.00454529 1242 | -0.00125486 0.0221252 -0.00421002 0.0370202 1243 | 0.0107598 -0.00421002 0.0811647 -0.112905 1244 | -0.00454529 0.0370202 -0.112905 0.806756 1245 | x_ = 156.047 1246 | 24.807 1247 | 2.61185 1248 | 1.46035 1249 | P_ = 0.0222877 -8.2178e-06 0.0432846 0.000843524 1250 | -8.2178e-06 0.0223403 0.000845637 0.0378969 1251 | 0.0432846 0.000845637 0.251806 -0.0877982 1252 | 0.000843524 0.0378969 -0.0877982 0.8106 1253 | x_ = 156.029 1254 | 24.8044 1255 | 2.49616 1256 | 1.44054 1257 | P_ = 0.0141863 -0.0013054 0.0108149 -0.00468872 1258 | -0.0013054 0.0221098 -0.00439135 0.0369657 1259 | 0.0108149 -0.00439135 0.0825039 -0.117124 1260 | -0.00468872 0.0369657 -0.117124 0.805451 1261 | x_ = 158.901 1262 | 26.0322 1263 | 3.21775 1264 | 1.09458 1265 | P_ = 0.0222878 -8.52484e-06 0.0432745 0.000875304 1266 | -8.52484e-06 0.0223402 0.000877069 0.0379068 1267 | 0.0432745 0.000877069 0.252862 -0.0910923 1268 | 0.000875304 0.0379068 -0.0910923 0.809564 1269 | x_ = 158.885 1270 | 26.0295 1271 | 2.99321 1272 | 1.0546 1273 | P_ = 0.0141966 -0.00133648 0.0108355 -0.00472139 1274 | -0.00133648 0.0221003 -0.00446865 0.0369473 1275 | 0.0108355 -0.00446865 0.0836659 -0.120657 1276 | -0.00472139 0.0369473 -0.120657 0.804332 1277 | x_ = 161.416 1278 | 27.4234 1279 | 2.11036 1280 | 1.61147 1281 | P_ = 0.0222879 -8.77034e-06 0.0432663 0.000899975 1282 | -8.77034e-06 0.0223401 0.000901563 0.0379147 1283 | 0.0432663 0.000901563 0.253689 -0.093583 1284 | 0.000899975 0.0379147 -0.093583 0.808764 1285 | x_ = 161.484 1286 | 27.4355 1287 | 2.38818 1288 | 1.66276 1289 | P_ = 0.0142158 -0.00139184 0.0109208 -0.00498696 1290 | -0.00139184 0.0220818 -0.00468406 0.0368617 1291 | 0.0109208 -0.00468406 0.0850724 -0.124776 1292 | -0.00498696 0.0368617 -0.124776 0.802928 1293 | x_ = 163.628 1294 | 28.7707 1295 | 1.89893 1296 | 1.09629 1297 | P_ = 0.022288 -9.08156e-06 0.0432551 0.000932536 1298 | -9.08156e-06 0.02234 0.000934297 0.0379259 1299 | 0.0432551 0.000934297 0.254881 -0.0970444 1300 | 0.000932536 0.0379259 -0.0970444 0.807575 1301 | x_ = 163.797 1302 | 28.801 1303 | 2.47969 1304 | 1.20438 1305 | P_ = 0.0142296 -0.00143036 0.0109613 -0.00509341 1306 | -0.00143036 0.0220686 -0.00478784 0.0368229 1307 | 0.0109613 -0.00478784 0.0865351 -0.12891 1308 | -0.00509341 0.0368229 -0.12891 0.80148 1309 | x_ = 166.823 1310 | 30.2046 1311 | 3.54767 1312 | 1.56655 1313 | P_ = 0.0222881 -9.37452e-06 0.0432446 0.000962105 1314 | -9.37452e-06 0.0223399 0.00096401 0.0379364 1315 | 0.0432446 0.00096401 0.255963 -0.100077 1316 | 0.000962105 0.0379364 -0.100077 0.806505 1317 | x_ = 166.69 1318 | 30.1798 1319 | 2.84112 1320 | 1.4289 1321 | P_ = 0.0142452 -0.00147244 0.0110097 -0.00519804 1322 | -0.00147244 0.0220538 -0.00493178 0.0367757 1323 | 0.0110097 -0.00493178 0.0878936 -0.132618 1324 | -0.00519804 0.0367757 -0.132618 0.800144 1325 | x_ = 169.101 1326 | 31.3736 1327 | 1.99744 1328 | 1.01011 1329 | P_ = 0.0222882 -9.64181e-06 0.0432345 0.000989618 1330 | -9.64181e-06 0.0223398 0.000991219 0.0379463 1331 | 0.0432345 0.000991219 0.257011 -0.102913 1332 | 0.000989618 0.0379463 -0.102913 0.805472 1333 | x_ = 169.189 1334 | 31.3895 1335 | 2.45422 1336 | 1.09854 1337 | P_ = 0.0142567 -0.00150283 0.0110374 -0.00524719 1338 | -0.00150283 0.0220428 -0.00501798 0.0367494 1339 | 0.0110374 -0.00501798 0.0890893 -0.13579 1340 | -0.00524719 0.0367494 -0.13579 0.798978 1341 | x_ = 172.17 1342 | 32.3412 1343 | 3.4687 1344 | 0.873502 1345 | P_ = 0.0222883 -9.86482e-06 0.043226 0.0010122 1346 | -9.86482e-06 0.0223397 0.00101362 0.0379547 1347 | 0.043226 0.00101362 0.257883 -0.105209 1348 | 0.0010122 0.0379547 -0.105209 0.804618 1349 | x_ = 172.091 1350 | 32.3265 1351 | 2.94005 1352 | 0.771587 1353 | P_ = 0.0142617 -0.00151603 0.0110264 -0.00516368 1354 | -0.00151603 0.0220384 -0.00504049 0.0367619 1355 | 0.0110264 -0.00504049 0.0897975 -0.137632 1356 | -0.00516368 0.0367619 -0.137632 0.79831 1357 | x_ = 174.646 1358 | 33.4601 1359 | 2.21206 1360 | 1.36879 1361 | P_ = 0.0222883 -9.98462e-06 0.0432215 0.00102407 1362 | -9.98462e-06 0.0223396 0.00102486 0.0379589 1363 | 0.0432215 0.00102486 0.258318 -0.106337 1364 | 0.00102407 0.0379589 -0.106337 0.804207 1365 | x_ = 174.655 1366 | 33.4622 1367 | 2.33731 1368 | 1.39513 1369 | P_ = 0.0142761 -0.00155245 0.0110987 -0.00537497 1370 | -0.00155245 0.0220245 -0.00519215 0.0366895 1371 | 0.0110987 -0.00519215 0.090744 -0.140043 1372 | -0.00537497 0.0366895 -0.140043 0.797373 1373 | x_ = 177.03 1374 | 34.2056 1375 | 2.37946 1376 | 0.289327 1377 | P_ = 0.0222884 -1.01725e-05 0.0432136 0.00104396 1378 | -1.01725e-05 0.0223396 0.001045 0.0379667 1379 | 0.0432136 0.001045 0.259167 -0.108489 1380 | 0.00104396 0.0379667 -0.108489 0.803364 1381 | x_ = 177.06 1382 | 34.2111 1383 | 2.47569 1384 | 0.307569 1385 | P_ = 0.0142758 -0.00155193 0.011061 -0.00523423 1386 | -0.00155193 0.0220252 -0.00514189 0.0367288 1387 | 0.011061 -0.00514189 0.0912753 -0.141381 1388 | -0.00523423 0.0367288 -0.141381 0.79687 1389 | x_ = 180.139 1390 | 35.1376 1391 | 3.67553 1392 | 1.3884 1393 | P_ = 0.0222884 -1.0249e-05 0.043211 0.00105083 1394 | -1.0249e-05 0.0223395 0.0010515 0.0379692 1395 | 0.043211 0.0010515 0.259396 -0.109067 1396 | 0.00105083 0.0379692 -0.109067 0.803152 1397 | x_ = 179.907 1398 | 35.0923 1399 | 2.64508 1400 | 1.18316 1401 | P_ = 0.0142855 -0.00157587 0.011106 -0.00534279 1402 | -0.00157587 0.0220162 -0.00525488 0.0366844 1403 | 0.011106 -0.00525488 0.0917791 -0.142632 1404 | -0.00534279 0.0366844 -0.142632 0.796381 1405 | x_ = 182.599 1406 | 35.7567 1407 | 2.7111 1408 | 0.303646 1409 | P_ = 0.0222885 -1.0349e-05 0.0432066 0.00106177 1410 | -1.0349e-05 0.0223395 0.00106223 0.0379735 1411 | 0.0432066 0.00106223 0.259875 -0.110251 1412 | 0.00106177 0.0379735 -0.110251 0.802684 1413 | x_ = 182.501 1414 | 35.738 1415 | 2.46886 1416 | 0.256896 1417 | P_ = 0.0142836 -0.0015714 0.0110763 -0.00524812 1418 | -0.0015714 0.0220185 -0.00520303 0.036715 1419 | 0.0110763 -0.00520303 0.0920335 -0.143261 1420 | -0.00524812 0.036715 -0.143261 0.796144 1421 | x_ = 184.734 1422 | 36.5119 1423 | 2.03648 1424 | 1.12429 1425 | P_ = 0.0222885 -1.03809e-05 0.0432056 0.0010643 1426 | -1.03809e-05 0.0223395 0.00106466 0.0379744 1427 | 0.0432056 0.00106466 0.259946 -0.110428 1428 | 0.0010643 0.0379744 -0.110428 0.802624 1429 | x_ = 184.736 1430 | 36.5121 1431 | 2.02947 1432 | 1.12235 1433 | P_ = 0.0142936 -0.00159568 0.0111331 -0.00540657 1434 | -0.00159568 0.0220089 -0.00532135 0.0366584 1435 | 0.0111331 -0.00532135 0.0924974 -0.144396 1436 | -0.00540657 0.0366584 -0.144396 0.795686 1437 | x_ = 186.945 1438 | 36.9453 1439 | 2.3426 1440 | -0.0404633 1441 | P_ = 0.0222885 -1.04769e-05 0.0432012 0.00107491 1442 | -1.04769e-05 0.0223395 0.00107534 0.0379787 1443 | 0.0432012 0.00107534 0.260431 -0.111614 1444 | 0.00107491 0.0379787 -0.111614 0.802143 1445 | x_ = 187.01 1446 | 36.9582 1447 | 2.46388 1448 | -0.01657 1449 | P_ = 0.014288 -0.00158225 0.0110787 -0.00523613 1450 | -0.00158225 0.0220148 -0.00522753 0.0367136 1451 | 0.0110787 -0.00522753 0.09257 -0.144574 1452 | -0.00523613 0.0367136 -0.144574 0.795625 1453 | x_ = 189.465 1454 | 37.4019 1455 | 2.46873 1456 | 0.765419 1457 | P_ = 0.0222885 -1.04702e-05 0.043202 0.00107323 1458 | -1.04702e-05 0.0223395 0.0010734 0.0379779 1459 | 0.043202 0.0010734 0.260307 -0.111312 1460 | 0.00107323 0.0379779 -0.111312 0.802275 1461 | x_ = 189.454 1462 | 37.3993 1463 | 2.24249 1464 | 0.720097 1465 | P_ = 0.0142911 -0.00158984 0.0110963 -0.00526723 1466 | -0.00158984 0.0220121 -0.00528218 0.0366967 1467 | 0.0110963 -0.00528218 0.0925277 -0.144472 1468 | -0.00526723 0.0366967 -0.144472 0.795677 1469 | x_ = 191.735 1470 | 37.567 1471 | 2.29034 1472 | -0.217098 1473 | P_ = 0.0222885 -1.04696e-05 0.0432018 0.00107376 1474 | -1.04696e-05 0.0223395 0.0010736 0.037978 1475 | 0.0432018 0.0010736 0.260342 -0.111398 1476 | 0.00107376 0.037978 -0.111398 0.802248 1477 | x_ = 191.703 1478 | 37.5604 1479 | 2.20377 1480 | -0.234389 1481 | P_ = 0.0142825 -0.00156885 0.0110421 -0.00510812 1482 | -0.00156885 0.022021 -0.00517563 0.0367512 1483 | 0.0110421 -0.00517563 0.0921718 -0.143603 1484 | -0.00510812 0.0367512 -0.143603 0.796037 1485 | x_ = 193.475 1486 | 37.2794 1487 | 1.36525 1488 | -0.334537 1489 | P_ = 0.0222885 -1.03923e-05 0.0432054 0.0010651 1490 | -1.03923e-05 0.0223395 0.00106477 0.0379744 1491 | 0.0432054 0.00106477 0.259936 -0.110407 1492 | 0.0010651 0.0379744 -0.110407 0.802656 1493 | x_ = 193.567 1494 | 37.2971 1495 | 1.86005 1496 | -0.242849 1497 | P_ = 0.0142735 -0.00154639 0.0109938 -0.00494013 1498 | -0.00154639 0.0220303 -0.00510172 0.0367997 1499 | 0.0109938 -0.00510172 0.0913655 -0.14161 1500 | -0.00494013 0.0367997 -0.14161 0.796837 1501 | x_ = 195.986 1502 | 37.3964 1503 | 2.95945 1504 | 0.365282 1505 | P_ = 0.0222884 -1.02414e-05 0.0432118 0.00104964 1506 | -1.02414e-05 0.0223395 0.00104866 0.0379681 1507 | 0.0432118 0.00104866 0.259265 -0.108741 1508 | 0.00104964 0.0379681 -0.108741 0.803327 1509 | x_ = 195.785 1510 | 37.3582 1511 | 2.07145 1512 | 0.199258 1513 | P_ = 0.0142695 -0.00153629 0.0109998 -0.00498537 1514 | -0.00153629 0.0220347 -0.00508443 0.0367946 1515 | 0.0109998 -0.00508443 0.0907974 -0.140189 1516 | -0.00498537 0.0367946 -0.140189 0.797415 1517 | x_ = 197.726 1518 | 37.7274 1519 | 1.82572 1520 | 0.481806 1521 | P_ = 0.0222884 -1.01475e-05 0.0432154 0.00104034 1522 | -1.01475e-05 0.0223396 0.00103971 0.0379644 1523 | 0.0432154 0.00103971 0.258907 -0.107844 1524 | 0.00104034 0.0379644 -0.107844 0.803691 1525 | x_ = 197.691 1526 | 37.7205 1527 | 1.79369 1528 | 0.475296 1529 | P_ = 0.0142705 -0.00153901 0.0110278 -0.00510297 1530 | -0.00153901 0.0220339 -0.00510776 0.0367671 1531 | 0.0110278 -0.00510776 0.0907096 -0.139968 1532 | -0.00510297 0.0367671 -0.139968 0.797515 1533 | x_ = 199.296 1534 | 37.2927 1535 | 1.38567 1536 | -1.06834 1537 | P_ = 0.0222884 -1.01424e-05 0.0432154 0.0010401 1538 | -1.01424e-05 0.0223396 0.00104004 0.0379643 1539 | 0.0432154 0.00104004 0.258931 -0.107905 1540 | 0.0010401 0.0379643 -0.107905 0.803675 1541 | x_ = 199.353 1542 | 37.3033 1543 | 1.68851 1544 | -1.01466 1545 | P_ = 0.0142543 -0.00149716 0.0109184 -0.00473832 1546 | -0.00149716 0.0220504 -0.00491124 0.0368757 1547 | 0.0109184 -0.00491124 0.0898796 -0.13785 1548 | -0.00473832 0.0368757 -0.13785 0.798329 1549 | x_ = 201.544 1550 | 36.9921 1551 | 2.69514 1552 | 0.203906 1553 | P_ = 0.0222883 -9.96053e-06 0.0432233 0.0010203 1554 | -9.96053e-06 0.0223397 0.00101938 0.0379565 1555 | 0.0432233 0.00101938 0.258049 -0.105649 1556 | 0.0010203 0.0379565 -0.105649 0.804549 1557 | x_ = 201.335 1558 | 36.954 1559 | 1.80514 1560 | 0.0468283 1561 | P_ = 0.0142483 -0.00148169 0.0109115 -0.00471053 1562 | -0.00148169 0.0220566 -0.00489754 0.036884 1563 | 0.0109115 -0.00489754 0.0889412 -0.135416 1564 | -0.00471053 0.036884 -0.135416 0.799269 1565 | x_ = 202.964 1566 | 36.4608 1567 | 1.44018 1568 | -0.878651 1569 | P_ = 0.0222882 -9.79399e-06 0.0432296 0.00100399 1570 | -9.79399e-06 0.0223397 0.00100276 0.0379501 1571 | 0.0432296 0.00100276 0.257419 -0.104006 1572 | 0.00100399 0.0379501 -0.104006 0.805184 1573 | x_ = 202.938 1574 | 36.4566 1575 | 1.42104 1576 | -0.881796 1577 | P_ = 0.014234 -0.00144313 0.0108519 -0.00454567 1578 | -0.00144313 0.0220712 -0.00473842 0.0369431 1579 | 0.0108519 -0.00473842 0.0879367 -0.13275 1580 | -0.00454567 0.0369431 -0.13275 0.800268 1581 | x_ = 203.994 1582 | 36.1924 1583 | 0.739444 1584 | 0.150829 1585 | P_ = 0.0222882 -9.59151e-06 0.0432376 0.0009826 1586 | -9.59151e-06 0.0223398 0.000981505 0.0379421 1587 | 0.0432376 0.000981505 0.256568 -0.101735 1588 | 0.0009826 0.0379421 -0.101735 0.806032 1589 | x_ = 204.044 1590 | 36.2015 1591 | 1.20283 1592 | 0.230669 1593 | P_ = 0.014232 -0.00143803 0.0108757 -0.00464399 1594 | -0.00143803 0.0220732 -0.00476535 0.0369205 1595 | 0.0108757 -0.00476535 0.087303 -0.131041 1596 | -0.00464399 0.0369205 -0.131041 0.80092 1597 | Accuracy - RMSE: 1598 | 0.18566 1599 | 0.190271 1600 | 0.474522 1601 | 0.811142 1602 | --------------------------------------------------------------------------------