├── EUTB ├── EUTB.py ├── README.md └── data │ └── sample.txt ├── Naive_Bayesian_EM ├── 1.gif ├── 2.gif ├── README.md └── k_7_com_features.py ├── README.md ├── gSpan ├── README.md ├── data_readme.txt ├── graph.data ├── intro │ ├── 1.png │ ├── 2.png │ ├── 3.png │ ├── 4.png │ └── 5.png └── main.cpp └── ullmann ├── Q4.my ├── README.md ├── Ullmann介绍.pdf ├── main.cpp └── mygraphdb.data /EUTB/EUTB.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding:utf-8 -*- 3 | 4 | import numpy as np 5 | from scipy.stats import multivariate_normal 6 | from sklearn.mixture import GMM 7 | #from mpl_toolkits.mplot3d import Axes3D 8 | #import matplotlib as mpl 9 | #import matplotlib.pyplot as plt 10 | from sklearn.cross_validation import train_test_split 11 | from sklearn.naive_bayes import MultinomialNB 12 | from sklearn.naive_bayes import GaussianNB 13 | from sklearn.linear_model import LogisticRegression 14 | import random 15 | import math 16 | import sys 17 | 18 | # reload(sys) 19 | # sys.setdefaultencoding('utf8') 20 | 21 | # mpl.rcParams['font.sans-serif'] = [u'SimHei'] 22 | # mpl.rcParams['axes.unicode_minus'] = False 23 | 24 | 25 | class EUTB(): 26 | 27 | iter_tot = 100 28 | k1 = 10 29 | k2 = 10 30 | n = 10 # 调整权重时,滑动窗口大小 31 | lamda = 0.5 # 空间正则的占比 32 | yipu = 20 # 时间正则的占比 33 | gamma = 0.5 # 牛顿法迭代步长 34 | alpha = 1.2 # 阈值 35 | 36 | user = set() # user: name -> id 对应 37 | time = set() # time: name -> id 对应 38 | word = set() # words: name -> id 对应 39 | user_dict = dict() 40 | time_dict = dict() 41 | word_dict = dict() 42 | # M 43 | 44 | 45 | def __init__(self): 46 | with open('./data/checkins.txt') as f: 47 | self.data = f.readlines() 48 | self.data = self.data[0:50] 49 | 50 | def pre_deal_w(self): 51 | """ 52 | 预处理统计所有词汇,得到词表; 53 | 同时得到W[u,t,w]词频数据,t按照同一天的计算 54 | """ 55 | # user & time & word 56 | for line in self.data: 57 | line = line.split('\t') 58 | self.user.add(line[0]) # user 59 | self.time.add(line[4][:10]) # time 60 | line = line[6].split('|') # words 61 | for w in line: 62 | self.word.add(w) 63 | self.user_size = len(self.user) 64 | self.time_size = len(self.time) 65 | self.word_size = len(self.word) 66 | print("user_size = " + str(len(self.user))) 67 | print("time size = " + str(len(self.time))) 68 | print("word_size = " + str(len(self.word))) 69 | 70 | # 构造user/time/word下标映射 71 | i = 0 72 | for line in self.user: 73 | self.user_dict[line] = i 74 | i+=1 75 | i = 0 76 | for line in self.time: 77 | self.time_dict[line] = i 78 | i+=1 79 | i = 0 80 | for line in self.word: 81 | self.word_dict[line] = i 82 | i+=1 83 | 84 | # 构造M[u,t,w]词频数组 85 | self.M = np.array([[[0] * len(self.word)] * len(self.time)] * len(self.user)) 86 | print("M.shape = " + str(self.M.shape)) 87 | for line in self.data: 88 | line = line.split('\t') 89 | u = self.user_dict[line[0]] # user 90 | t = self.time_dict[line[4][:10]] # time 91 | line = line[6].split('|') # words 92 | for w in line: 93 | w = self.word_dict[w] 94 | self.M[u][t][w] += 1 95 | 96 | 97 | 98 | def pre_deal_data(self): 99 | """ 100 | 数据预处理: 101 | (1)分词,统计所有词汇;同时得到W[u,t,w]词频数据,t按照一天算 102 | (2)获取π(u,v) 103 | (3)get_burst_degree(),计算改进3需要的预处理内容 104 | """ 105 | print("pre_deal data...") 106 | self.pre_deal_w() 107 | self.get_pai() 108 | self.get_burst_degree() # 第三项:这个只需要计算一次,放在初始化中 109 | print("pre_deal data end!\n") 110 | 111 | def get_pai(self): 112 | # 目前没有找到社交网络上u/v之间好友信息,暂时保留不处理 113 | # deal with π(u,v) 114 | 115 | return 0 116 | 117 | def get_burst_degree(self): 118 | """ 119 | 处理第三个提升,获得burst_degree数组 120 | """ 121 | # 统计每个词在各个时刻出现的次数,把矩阵M的User积掉即可 122 | freq = np.array([[0.0]* self.time_size] * self.word_size) 123 | for i in range(self.word_size): 124 | # cnt = 0 125 | for j in range(self.time_size): 126 | tot = 0 127 | for k in range(self.user_size): 128 | tot += self.M[k][j][i] 129 | freq[i][j] = tot 130 | # cnt += tot 131 | # print(i,cnt) 132 | """ 133 | for i in range(self.time_size): 134 | cnt = 0 135 | for j in range(self.word_size): 136 | cnt += freq[j][i] 137 | print(i, cnt) 138 | print([x[10] for x in freq]) 139 | """ 140 | # 计算burst_degree 141 | self.burst_degree = np.array([[0.0] * self.time_size] * self.word_size) 142 | for i in range(self.word_size): 143 | self.burst_degree[i][0] = self.alpha # 第一个不知道应该赋值什么,先赋值为alpha吧 144 | for j in range(1, self.time_size): 145 | # 对窗口n中的数据计算 [i-n, i-1] 146 | u = 0.0 147 | for k in range(1, self.n): 148 | if j-k<0: 149 | break 150 | u += freq[i][j-k] # 这个里面大多数都是0,很有可能前面计算的均值和方差都是0,这样就没办法用 151 | u /= (float(min(self.n, j+1))) 152 | 153 | thita = 0.0 154 | for k in range(1, self.n): 155 | if j-k<0: 156 | break 157 | thita += (freq[i][j-k]-u)*(freq[i][j-k]-u) 158 | thita /= (float(min(self.n, j+1))) 159 | thita = math.sqrt(thita) 160 | 161 | # 取一个max,有超参数alpha的影响 162 | if thita==0: 163 | self.burst_degree[i][j] = self.alpha 164 | else: 165 | self.burst_degree[i][j] = max(abs(freq[i][j] - u)/thita, self.alpha) 166 | # if freq[i][j] > 0: 167 | # print(u, thita, self.burst_degree[i][j]) 168 | 169 | # 打印出burst_degree看一下 170 | # print(self.burst_degree[1]) 171 | 172 | return 1 173 | 174 | def iterator_theta(self): 175 | 176 | return 0 177 | 178 | 179 | def spatial_regularization(self): 180 | """ 181 | 第一个正则 182 | 待补充 183 | """ 184 | # theta_u_new = [[0.0]*self.user_size] * self.k1 185 | 186 | return 0 187 | 188 | def temporal_regularization(self): 189 | """ 190 | 第二个正则 191 | 处理theta_t二维数组,迭代 192 | """ 193 | gamma = self.gamma 194 | theta_t_new = np.array([[0.0]*self.k2] * self.time_size) 195 | theta_t_new2 = np.array([[0.0]*self.k2] * self.time_size) 196 | 197 | for i in range(len(self.theta_t)): 198 | for j in range(len(self.theta_t[0])): 199 | theta_t_new2[i][j] = self.theta_t[i][j] 200 | theta_t_new[i][j] = self.theta_t[i][j] 201 | expect = self.com_expect(theta_t_new2) 202 | expect2 = expect + 0.01 203 | 204 | while(expect2 > expect and (expect2-expect)>=0.001): #期望需要增加,且需要增加足够多 205 | for i in range(len(theta_t_new2)): 206 | for j in range(len(theta_t_new2[0])): 207 | theta_t_new[i][j] = theta_t_new2[i][j] 208 | expect = expect2 209 | for i in range(self.k2): 210 | theta_t_new2[0][i] = theta_t_new[0][i] 211 | theta_t_new2[self.time_size-1][i] = theta_t_new[self.time_size-1][i] 212 | for t in range(1, self.time_size-1): 213 | for i in range(self.k2): 214 | # theta_t_new2[t][i] = (1.0-gamma)*theta_t_new[t][i] + gamma*(theta_t_new[t-1][i] + theta_t_new[t+1][i])/2.0 215 | theta_t_new2[t][i] = (1.0-gamma)*theta_t_new[t][i] + gamma*(theta_t_new[t-1][i] + theta_t_new[t+1][i])/2.0 216 | 217 | # 归一化 218 | for i in range(len(theta_t_new2)): 219 | tot = 0.0 220 | for j in range(len(theta_t_new2[0])): 221 | tot += (theta_t_new2[i][j]) 222 | for j in range(len(theta_t_new2[0])): 223 | theta_t_new2[i][j] /= tot 224 | expect2 = self.com_expect(theta_t_new2) 225 | # print("E------:" + str(expect2) + "," + str(expect)) 226 | 227 | if expect > self.com_expect(self.theta_t): 228 | for i in range(len(self.theta_t)): 229 | for j in range(len(self.theta_t[0])): 230 | self.theta_t[i][j] = theta_t_new[i][j] 231 | """ 232 | # 在上面归一化过了 233 | for i in range(len(self.theta_t)): 234 | tot = 0.0 235 | for j in range(len(self.theta_t[0])): 236 | tot += (self.theta_t[i][j]) 237 | for j in range(len(self.theta_t[0])): 238 | self.theta_t[i][j] /= tot 239 | """ 240 | 241 | return 1 242 | 243 | def burst_weighted(self): 244 | """ 245 | 第三个提升 246 | 对phi_t进行权重调整,需要重新归一化 247 | """ 248 | for w in range(len(self.phi_t[0])): 249 | t1 = set() 250 | for t in range(self.time_size): 251 | if self.burst_degree[w][t]>self.alpha: 252 | t1.add(t) 253 | for k in range(len(self.phi_t)): 254 | t2 = set() 255 | maxc = -1.0 256 | for t in range(self.time_size): 257 | if self.theta_t[t][k] > maxc: 258 | maxc = self.theta_t[t][k] 259 | maxc *= 0.9 260 | for t in range(self.time_size): 261 | if self.theta_t[t][k] > maxc: 262 | t2.add(t) 263 | t = t1 & t2 # 取两个set的交集,在这些时间下的主题k,下的词w, 264 | # print(t) 265 | maxc = -1.0 266 | for j in t: 267 | if self.burst_degree[w][j] > maxc: 268 | maxc = self.burst_degree[w][j] 269 | # if math.sqrt(max(maxc, self.alpha)) > 1.0: 270 | # print(math.sqrt(max(maxc, self.alpha)), self.phi_t[k][w], self.phi_t[k][w]*math.sqrt(max(maxc, self.alpha))) 271 | self.phi_t[k][w] *= math.sqrt(max(maxc, self.alpha)) 272 | # print(math.sqrt(max(maxc, self.alpha))) 273 | # 归一化 274 | for k in range(self.k2): 275 | tot = 0.0 276 | for w in range(self.word_size): 277 | tot += self.phi_t[k][w] 278 | for w in range(self.word_size): 279 | self.phi_t[k][w] /= tot 280 | 281 | return 1 282 | 283 | def com_expect(self, theta_t_new): 284 | """ 285 | 按照输入的theta_t计算E 286 | """ 287 | E = 0.0 288 | for u in range(self.user_size): 289 | for t in range(self.time_size): 290 | for w in range(self.word_size): 291 | cnt1 = 0.0 292 | for k in range(self.k1): 293 | cnt1 += self.theta_u[u][k]*self.phi_u[k][w] 294 | cnt2 = 0.0 295 | for k in range(self.k2): 296 | cnt2 += self.theta_t[t][k]*self.phi_t[k][w] 297 | E += ((math.log(self.lamda_u * cnt1 + (1-self.lamda_u) * cnt2))*self.M[u][t][w]) 298 | 299 | # print("E:" + str(E)) 300 | 301 | # 下面计算正则 302 | # 第一项:缺少数据,暂时不加 303 | tot = 0.0 304 | 305 | # 第二项 306 | tot = 0.0 307 | for t in range(len(theta_t_new)-1): 308 | for k in range(self.k2): 309 | tot += (theta_t_new[t][k] - theta_t_new[t+1][k]) * (theta_t_new[t][k] - theta_t_new[t+1][k]) 310 | # print("err:" + str(tot)) 311 | E -= self.yipu*tot 312 | 313 | return E 314 | 315 | def EM(self): 316 | """ 317 | 开始迭代 318 | (1) 319 | (2) 320 | (3) 321 | """ 322 | print("lamda = " + str(self.lamda)) 323 | # 随机初始化theta_u/theta_t/phi_u/phi_t 324 | self.theta_u = np.random.random((self.user_size,self.k1)) 325 | self.theta_t = np.random.random((self.time_size,self.k2)) 326 | self.phi_u = np.random.random((self.k1,self.word_size)) 327 | self.phi_t = np.random.random((self.k2,self.word_size)) 328 | self.lamda_u = np.random.random(1) # 第一轮随机,之后在M步迭代计算 329 | print("lamda_u = " + str(self.lamda_u)) 330 | 331 | iter_num = 0 332 | while(iter_num < self.iter_tot): 333 | 334 | # E 335 | # print("E...") 336 | # 对每一个单词来说,计算其属于stable和temporal主题的概率分布;这里数据结构不行,最好是每个u/t下单词的数量,为第三维度的大小 337 | p_u = np.array([[[[0.0] * self.k1] * self.word_size] * self.time_size] * self.user_size) 338 | p_t = np.array([[[[0.0] * self.k2] * self.word_size] * self.time_size] * self.user_size) 339 | """ 340 | B_u = 0.0 341 | B_t = 0.0 342 | for line in self.data: 343 | line = line.split('\t') 344 | u = self.user_dict[line[0]] # user 345 | t = self.time_dict[line[4][:10]] # time 346 | line = line[6].split('|') # words 347 | for w in line: 348 | w = self.word_dict[w] 349 | for k in range(self.k1): 350 | B_u += self.theta_u[u][k]*self.phi_u[k][w] 351 | for k in range(self.k2): 352 | B_t += self.theta_t[u][k]*self.phi_t[k][w] 353 | 354 | B = self.lamda_u*B_u + (1-self.lamda_u)*B_t 355 | """ 356 | for line in self.data: 357 | line = line.split('\t') 358 | u = self.user_dict[line[0]] # user 359 | t = self.time_dict[line[4][:10]] # time 360 | line = line[6].split('|') # words 361 | words = set() 362 | for w in line: 363 | words.add(self.word_dict[w]) 364 | for w in words: 365 | # 已经是换好的序号下标了 366 | B_u = 0.0 367 | B_t = 0.0 368 | for k in range(self.k1): 369 | B_u += self.theta_u[u][k]*self.phi_u[k][w] 370 | for k in range(self.k2): 371 | B_t += self.theta_t[t][k]*self.phi_t[k][w] 372 | B = self.lamda_u*B_u + (1-self.lamda_u)*B_t 373 | 374 | #注意这里对每个单词只计算一次,没用到词频(原数据集中没进行处理,所以这里需要单独处理一下) 375 | for k in range(self.k1): 376 | p_u[u][t][w][k] += self.lamda_u * self.theta_u[u][k] * self.phi_u[k][w] / B 377 | for k in range(self.k2): 378 | p_t[u][t][w][k] += (1-self.lamda_u)*self.theta_t[t][k] * self.phi_t[k][w] / B 379 | 380 | # M 381 | # print("M...theta_u/t") 382 | # (1)正常计算 383 | self.theta_u = np.array([[0.0] *self.k1] * self.user_size) 384 | self.theta_t = np.array([[0.0] *self.k2] * self.time_size) 385 | tot_u = [0.0] * self.user_size 386 | tot_t = [0.0] * self.time_size 387 | for line in self.data: 388 | line = line.split('\t') 389 | u = self.user_dict[line[0]] # user 390 | # print(u, line[0]) 391 | t = self.time_dict[line[4][:10]] # time 392 | line = line[6].split('|') # words 393 | for w in line: 394 | w = self.word_dict[w] 395 | for k in range(self.k1): 396 | tot_u[u] += p_u[u][t][w][k] 397 | for k in range(self.k2): 398 | tot_t[t] += p_t[u][t][w][k] 399 | 400 | for line in self.data: 401 | line = line.split('\t') 402 | u = self.user_dict[line[0]] # user 403 | t = self.time_dict[line[4][:10]] # time 404 | line = line[6].split('|') # words 405 | for w in line: 406 | w = self.word_dict[w] 407 | for k in range(self.k1): 408 | self.theta_u[u][k] += p_u[u][t][w][k] 409 | for k in range(self.k2): 410 | self.theta_t[t][k] += p_t[u][t][w][k] 411 | # 归一化 412 | for i in range(len(self.theta_u)): 413 | for k in range(self.k1): 414 | self.theta_u[i][k] /= tot_u[i] 415 | for i in range(len(self.theta_t)): 416 | for k in range(self.k2): 417 | self.theta_t[i][k] /= tot_t[i] 418 | 419 | # phi_u & phi_t 420 | # print("M...phi_u/t") 421 | # self.phi_u = 0.0 422 | # self.phi_t = 0.0 423 | self.phi_u = np.array([[0.0] * self.word_size] * self.k1) 424 | self.phi_t = np.array([[0.0] * self.word_size] * self.k2) 425 | tot_u = [0.0] * self.k1 426 | tot_t = [0.0] * self.k2 427 | for line in self.data: 428 | line = line.split('\t') 429 | u = self.user_dict[line[0]] # user 430 | t = self.time_dict[line[4][:10]] # time 431 | line = line[6].split('|') # words 432 | for w in line: 433 | w = self.word_dict[w] 434 | for k in range(self.k1): 435 | tot_u[k] += p_u[u][t][w][k] 436 | for k in range(self.k2): 437 | tot_t[k] += p_t[u][t][w][k] 438 | 439 | for line in self.data: 440 | line = line.split('\t') 441 | u = self.user_dict[line[0]] # user 442 | t = self.time_dict[line[4][:10]] # time 443 | line = line[6].split('|') # words 444 | for w in line: 445 | w = self.word_dict[w] 446 | for k in range(self.k1): 447 | self.phi_u[k][w] += p_u[u][t][w][k] 448 | for k in range(self.k2): 449 | self.phi_t[k][w] += p_t[u][t][w][k] 450 | 451 | # 归一化 452 | for k in range(len(self.phi_u)): 453 | for w in range(len(self.phi_u[0])): 454 | self.phi_u[k][w] /= tot_u[k] 455 | for k in range(len(self.phi_t)): 456 | for w in range(len(self.phi_t[0])): 457 | self.phi_t[k][w] /= tot_t[k] 458 | 459 | # lamda_u 460 | tot = 0.0 461 | self.lamda_u = 0.0 462 | for line in self.data: 463 | line = line.split('\t') 464 | u = self.user_dict[line[0]] # user 465 | t = self.time_dict[line[4][:10]] # time 466 | line = line[6].split('|') # words 467 | for w in line: 468 | w = self.word_dict[w] 469 | for k in range(self.k1): 470 | self.lamda_u += p_u[u][t][w][k] 471 | tot += p_u[u][t][w][k] 472 | for k in range(self.k2): 473 | tot += p_t[u][t][w][k] 474 | self.lamda_u /= tot 475 | 476 | # (2)两个正则 477 | #self.spatial_regularization() 478 | # print("temporal_regularization...") 479 | self.temporal_regularization() 480 | 481 | # (3)词权重调整 482 | # print("burst_weighted...") 483 | # self.burst_weighted() 484 | 485 | if iter_num%1==0: 486 | # 输出生成概率,保证递增(正确性) 487 | print("iter_num = " + str(iter_num) + ", E: " + str(self.com_expect(self.theta_t))) 488 | 489 | iter_num += 1 490 | return 0 491 | 492 | def print_ans(self): 493 | """ 494 | 对temporal topics输出,输出所有topic的Top K的词来表征这个主题 495 | """ 496 | ans = self.word_dict.keys() 497 | top_num = 6 498 | 499 | for k in range(self.k2): 500 | """ 501 | maxc = -1.0 502 | flag = 0 503 | for k in range(self.k2): 504 | if self.theta_t[t][k] > maxc: 505 | maxc = self.theta_t[t][k] 506 | flag = k 507 | """ 508 | flag = k 509 | value = np.array([0.0]*top_num) #输出前top K的词 510 | words = np.array([0] * top_num) 511 | for w in range(self.word_size): 512 | # 对每一个词,查看其在当前flag主题下,是否在top 20中 513 | minc = 1000000.0 514 | wei = 0 515 | for v in range(len(value)): 516 | if(value[v] < minc): 517 | minc = value[v] 518 | wei = v 519 | if(self.phi_t[flag][w] > minc): 520 | value[wei] = self.phi_t[flag][w] 521 | words[wei] = w 522 | # 输出当前主题下top 20的单词,用来看当前主题如何(默认的时间区间为1天之内,这里查看某天主题分布情况) 523 | i = 0 524 | for w in words: 525 | print (i,ans[w],value[i]), 526 | i += 1 527 | print("\n") 528 | return 1 529 | 530 | def run(self): 531 | self.pre_deal_data() 532 | self.EM() 533 | return 0 534 | 535 | 536 | if __name__ == '__main__': 537 | eutb = EUTB() 538 | eutb.run() 539 | eutb.print_ans() 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | -------------------------------------------------------------------------------- /EUTB/README.md: -------------------------------------------------------------------------------- 1 | # 论文算法实现 2 | A Unified Model for Stable and Temporal Topic Detection from Social Media Data 3 | 4 | # 输入数据参见data/sample.txt文件 5 | 可以在任意网站下载具有相关user-time-document的数据集(主要指twitter以及微博等) 6 | 7 | # 运行环境: 8 | python 2.7 9 | 10 | # 运行: 11 | python ./EUTB.py(注意修改input文件及其对应格式) 12 | -------------------------------------------------------------------------------- /EUTB/data/sample.txt: -------------------------------------------------------------------------------- 1 | 0 0 39.497277 -76.232232 2010-08-10 14:35:18 0 coffee|espresso|rest|stop|shop|shops| 2 | 0 1 39.856301 -75.076342 2010-08-10 16:00:28 1 atm|convenience|store|gas|deli|bodega|delis|bodegas| 3 | 0 2 39.376797 -74.435366 2010-08-10 18:45:42 2 casino|concert|hall|entertainment|gambling|gym|hotel|karaoke|music|venue|nightclub|nightlife|pizza|poker|pool|shopping|slots|spa|vh1|casinos|resort|resorts|hotels| 4 | 0 3 39.376797 -74.435366 2010-08-11 00:49:08 3 borgata|noodles|pho|ramen|noodle|house|chinese|restaurant|restaurants|asian| 5 | 0 4 39.942663 -75.158286 2010-08-11 19:02:10 4 fine|employees|food|grocery|organic|shopping|total|babes|whole|foods|yummy|store|stores|deli|bodega|delis|bodegas| 6 | 0 5 39.678294 -75.654413 2010-08-11 20:42:22 5 boutiques|fashionista|photobooth|shop|mall|malls| 7 | 0 6 39.005349 -78.338016 2010-08-25 05:46:10 6 american|restaurant|restaurants| 8 | 0 7 36.632045 -82.123238 2010-08-25 13:11:39 7 coffee|shop|shops|caf|cafs| 9 | 0 8 35.900615 -84.147460 2010-08-26 01:35:03 8 neighborhood|market|supercenter|walmart|wally|world|department|store|stores|miscellaneous|shop|shops| 10 | 0 9 35.899523 -84.158567 2010-08-26 17:10:08 9 barbeque|american|restaurant|restaurants| 11 | 0 10 35.918306 -84.084710 2010-08-26 19:04:22 10 apple|cameras|electronics|geek|squad|hardware|music|phones|retail|shopping|software|stereo|tv|video|games|wifi|xbox|store|stores| 12 | 0 11 35.941971 -83.978500 2010-08-26 20:11:22 11 grocery|store|stores| 13 | 0 12 35.900662 -84.157763 2010-08-27 00:16:39 12 mexican|restaurant|restaurants| 14 | 0 13 36.042741 -83.929064 2010-08-27 10:28:20 13 coffee|doughnut|donut|shop|shops|donuts| 15 | 0 14 40.183340 -80.220848 2010-10-16 00:21:45 14 neighborhood|market|supercenter|walmart|wally|world|food|shopping|department|store|stores|miscellaneous|shop|shops|parking| 16 | 0 15 39.180610 -86.525016 2010-10-16 17:25:52 15 college|football|indiana|university|iu|sports|stadium|stadiums|field|fields| 17 | 0 16 39.166387 -86.528084 2010-10-17 03:09:07 16 bar|beer|pong|college|kok|patios|tvs|bars|sports|cocktail| 18 | 0 17 40.418201 -86.816889 2010-10-18 16:07:10 6 american|restaurant|restaurants| 19 | 0 18 41.485499 -81.799178 2010-10-21 00:56:50 17 beer|grilled|cheese|trendy|vegan|friendly|vegetarian|sandwich|place|places|sandwiches|bar|bars| 20 | 0 19 41.499593 -81.690641 2010-10-21 17:31:08 18 bodies|cleveland|exhibit|exhibition|east|4th|education|gallery|general|entertainment|college|university|colleges|universities| 21 | 0 20 41.508513 -81.695430 2010-10-21 18:27:26 19 gallery|hall|of|fame|historychannel|museum|music|venue|rock|and|roll|the|examiner|museums|venues| 22 | 0 21 40.450709 -79.985588 2010-10-21 22:45:12 20 atm|beer|bravo|cash|only|food|fries|landmark|sandwich|place|places|sandwiches|bar|bars|american|restaurant|restaurants| 23 | 0 22 39.377983 -74.433918 2010-11-02 19:27:17 2 casino|concert|hall|entertainment|gambling|gym|hotel|karaoke|music|venue|nightclub|nightlife|pizza|poker|pool|shopping|slots|spa|vh1|casinos|resort|resorts|hotels| 24 | 0 23 39.376797 -74.435366 2010-11-02 23:37:33 3 borgata|noodles|pho|ramen|noodle|house|chinese|restaurant|restaurants|asian| 25 | 0 24 38.907729 -76.864433 2010-11-16 00:51:06 21 autocross|cheerleaders|concert|cones|fedexfield|football|hot|dogs|ichsan|rachman|live|men|nfl|quad|redskins|scca|soccer|solo|stadium|stadiums| 26 | 1 25 40.555760 -105.098112 2010-08-12 02:19:06 22 billiards|classroom|dance|floor|gymnasium|hot|tub|pool|poolbilliardsclassrooms|poolpoolclassrooms|stage|swimming|gym|fitness|center|gyms|or|centers| 27 | 1 26 40.553028 -105.077815 2010-08-14 14:48:53 23 gym|yoga|college|gyms|studio|studios| 28 | 1 27 40.521793 -105.055993 2010-08-14 17:48:12 24 healthy|juice|smoothies|wheatgrass|bar|bars| 29 | 1 28 40.525619 -105.022683 2010-08-15 21:37:13 25 department|store|stores|grocery|drugstore|pharmacy|drugstores|pharmacies| 30 | 1 29 40.555760 -105.098112 2010-08-17 00:53:42 22 billiards|classroom|dance|floor|gymnasium|hot|tub|pool|poolbilliardsclassrooms|poolpoolclassrooms|stage|swimming|gym|fitness|center|gyms|or|centers| 31 | 1 30 40.555760 -105.098112 2010-08-17 00:53:43 22 billiards|classroom|dance|floor|gymnasium|hot|tub|pool|poolbilliardsclassrooms|poolpoolclassrooms|stage|swimming|gym|fitness|center|gyms|or|centers| 32 | 1 31 40.523873 -105.033801 2010-08-21 00:37:48 6 american|restaurant|restaurants| 33 | 1 32 40.553028 -105.077815 2010-08-21 16:09:55 23 gym|yoga|college|gyms|studio|studios| 34 | 1 33 40.553028 -105.077815 2010-08-21 16:09:55 23 gym|yoga|college|gyms|studio|studios| 35 | 1 34 40.585847 -105.075028 2010-08-21 17:32:55 26 theme|park|parks| 36 | 1 35 40.585048 -105.076529 2010-08-21 18:05:43 27 burgers|french|fries|burger|joint|joints|american|restaurant|restaurants| 37 | 1 36 40.585847 -105.075028 2010-08-22 16:05:38 26 theme|park|parks| 38 | 1 37 40.585847 -105.075028 2010-08-22 16:05:39 26 theme|park|parks| 39 | 1 38 39.849930 -104.673786 2010-08-24 18:17:54 28 airlines|airplane|airport|atm|concourse|den|denver|transportation|international|dia|free|wifi|gate|mile|high|planes|public|art|southwest|terminal|tourist|travel|uso|airports| 40 | 1 39 29.986869 -95.341673 2010-08-24 20:48:05 29 airplanes|airport|iah|jetsetter|people|watching|restaurants|terminal|airports| 41 | 1 40 29.726994 -95.418332 2010-08-24 22:34:16 30 barbeque|bbq|beef|brisket|catering|jalapeo|cheese|bread|mesquite|grilled|online|store|order|pecan|pie|sausage|smoked|turkey|spicy|pork|and|packages|joint|joints| 42 | 1 41 29.740865 -95.423786 2010-08-25 18:04:15 31 french|restaurant|restaurants|jazz|club|clubs|cajun|creole| 43 | 1 42 29.942585 -95.332500 2010-08-26 03:33:37 32 bar|bars| 44 | 1 43 29.986869 -95.341673 2010-08-26 15:59:23 29 airplanes|airport|iah|jetsetter|people|watching|restaurants|terminal|airports| 45 | 1 44 40.587359 -105.075352 2010-08-28 01:12:59 33 beer|billiards|brewpub|karaoke|pub|fare|pubs|pizza|place|places|brewery|breweries| 46 | 1 45 39.933364 -105.132648 2010-08-28 19:45:13 34 apple|store|cupertino|imac|ipad|iphone|ipod|macbook|pro|macintosh|steve|jobs|wifi|electronics|stores| 47 | 1 46 40.533915 -105.083181 2010-08-29 15:29:22 35 basketball|court|bbq|pits|picnic|tables|pond|public|bathroom|tennis|park|parks|playground|playgrounds|courts| 48 | 1 47 40.533915 -105.083181 2010-08-29 15:29:22 35 basketball|court|bbq|pits|picnic|tables|pond|public|bathroom|tennis|park|parks|playground|playgrounds|courts| 49 | 1 48 40.523711 -105.074283 2010-08-31 14:39:32 36 coffee|shop|shops| 50 | 1 49 40.345244 -105.530322 2010-09-05 17:46:39 37 lake|lakes|other|great|outdoors| 51 | 1 50 40.377392 -105.521514 2010-09-06 15:46:13 38 american|restaurant|restaurants|breakfast|spot|spots| 52 | 1 51 40.553028 -105.077815 2010-09-11 16:09:52 23 gym|yoga|college|gyms|studio|studios| 53 | 1 52 40.555760 -105.098112 2010-09-16 00:51:18 22 billiards|classroom|dance|floor|gymnasium|hot|tub|pool|poolbilliardsclassrooms|poolpoolclassrooms|stage|swimming|gym|fitness|center|gyms|or|centers| 54 | 1 53 40.584516 -105.077426 2010-09-26 01:02:17 39 cocktails|entertainment|jazz|lounge|lounges|hotel|bar|bars| 55 | 1 54 40.529531 -105.075331 2010-10-02 01:26:19 40 arts|crafts|store|stores| 56 | 1 55 40.528995 -105.075115 2010-10-02 01:57:19 41 thai|restaurant|restaurants| 57 | 1 56 40.549212 -105.075806 2010-10-08 00:15:27 42 indian|restaurant|restaurants| 58 | 1 57 40.565698 -105.053224 2010-10-09 22:16:49 43 basketball|disc|golf|nature|park|tennis|parks| 59 | 1 58 40.542556 -105.073462 2010-10-10 21:04:15 44 kids|store|stores| 60 | 1 59 40.524724 -105.076320 2010-10-11 23:49:00 45 drugstore|pharmacy|drugstores|pharmacies|doctors|office|offices| 61 | 1 60 40.525619 -105.022683 2010-10-12 01:09:35 7 coffee|shop|shops|caf|cafs| 62 | 1 61 40.522803 -105.064744 2010-10-21 23:45:35 46 arcade|bar|american|restaurant|restaurants|burger|joint|joints|burgers| 63 | 1 62 40.565801 -105.057262 2010-10-22 23:29:56 47 medical|center|centers| 64 | 1 63 40.479905 -104.903652 2010-10-23 17:00:46 48 bridal|shop|shops| 65 | 1 64 40.528145 -105.076396 2010-10-23 18:39:59 48 bridal|shop|shops| 66 | 1 65 40.536575 -105.076533 2010-10-23 20:01:56 49 bagels|coffee|free|wifi|bakery|deli|bodega|delis|bodegas|sandwich|place|places|sandwiches|shop|shops| 67 | 1 66 40.584007 -105.077682 2010-10-24 01:43:34 50 caf|cafs|dessert|shop|shops|desserts| 68 | 1 67 40.584516 -105.077426 2010-10-28 02:44:45 39 cocktails|entertainment|jazz|lounge|lounges|hotel|bar|bars| 69 | 1 68 40.584007 -105.077682 2010-10-28 02:45:38 50 caf|cafs|dessert|shop|shops|desserts| 70 | 1 69 40.584007 -105.077682 2010-10-28 02:45:38 50 caf|cafs|dessert|shop|shops|desserts| 71 | 1 70 40.407394 -105.010368 2010-11-06 23:39:50 51 beer|american|restaurant|restaurants|pizza|place|places|bar|bars| 72 | 1 71 40.548627 -105.077158 2010-11-09 15:37:48 52 breakfast|spot|spots| 73 | 1 72 40.523372 -105.031509 2010-11-13 01:38:43 53 food|sweet|tea|teddy|grahams|deli|bodega|delis|bodegas| 74 | 1 73 40.500744 -105.069096 2010-11-14 17:52:33 54 pet|store|stores| 75 | 1 74 40.525450 -105.038686 2010-11-19 16:13:01 55 bakery|coffee|bagel|shop|shops|bagels| 76 | 2 75 37.803963 -122.448531 2010-04-14 16:06:20 56 chirp|developers|twitter|general|entertainment| 77 | 2 76 37.805021 -122.433450 2010-04-15 17:09:51 57 general|entertainment|event|space|spaces| 78 | 2 77 37.778048 -122.405681 2010-04-16 05:18:01 58 club|dj|live|music|red|bull|redbull|ticketweb|nightclub|nightclubs| 79 | 2 78 37.805800 -122.267000 2010-04-17 02:59:26 59 vietnamese|restaurant|restaurants| 80 | 2 79 37.807718 -122.270060 2010-04-17 03:25:41 60 bar|blak|concert|entertainment|good|times|live|music|venue|pool|table|trivia|night|venues|rock|club|clubs|movie|theater|theaters| 81 | 2 80 37.764922 -122.396415 2010-04-17 04:31:50 61 hipsters|hot|rod|live|music|patio|rock|club|clubs|venue|venues|concert|hall|halls| 82 | 2 81 36.311241 -119.348405 2010-04-18 00:19:25 11 grocery|store|stores| 83 | 2 82 36.240038 -119.766649 2010-04-18 06:39:22 62 casino|dining|hotel|hotels|casinos| 84 | 2 83 36.327917 -119.341476 2010-04-18 09:48:57 63 breakfast|spot|spots|american|restaurant|restaurants| 85 | 2 84 36.325743 -119.106264 2010-04-18 20:58:18 64 american|restaurant|restaurants|steakhouse|steakhouses| 86 | 2 85 37.755083 -122.423036 2010-04-19 03:41:19 65 japanese|mission|sashimi|sushi|restaurant|restaurants| 87 | 2 86 37.784509 -122.404274 2010-04-20 04:27:05 66 authentic|japanese|food|fresh|fish|cuisine|real|sushi|traditional|white|restaurant|restaurants| 88 | 2 87 37.785114 -122.404979 2010-04-20 04:54:51 67 bar|cocktail|lounge|cocktails|hotel|restaurant|skyline|view|bars|lounges| 89 | 2 88 37.807718 -122.270060 2010-04-21 03:58:31 60 bar|blak|concert|entertainment|good|times|live|music|venue|pool|table|trivia|night|venues|rock|club|clubs|movie|theater|theaters| 90 | 2 89 37.778481 -122.412238 2010-04-23 02:27:23 68 absinthe|agricole|rum|asian|fusion|bar|seating|charles|phan|chinese|cocktail|heaven|cocktails|happy|hour|lounge|restaurant|share|plates|slanted|door|team|small|restaurants|vietnamese|lounges| 91 | 2 90 37.776915 -122.424351 2010-04-24 01:52:49 69 gourmet|hamburgers|burger|joint|joints|burgers|food| 92 | 2 91 37.703900 -122.475000 2010-04-24 20:36:19 70 brunch|cocktails|daly|city|happy|hour|restaurant|diner|diners|caf|cafs|american|restaurants| 93 | 2 92 37.786743 -122.404531 2010-04-25 17:36:54 71 pool|swimming|bar|boxing|cafe|fitness|gym|health|club|jungshin|martial|arts|pilates|sauna|spa|spinning|steam|room|vinyasa|yoga|class|gyms|center|or|centers|pools| 94 | 2 93 37.776800 -122.424000 2010-04-25 23:47:43 72 macarons|paulette|tea|dessert|shop|shops|desserts|bakery|bakeries| 95 | 2 94 37.755083 -122.423036 2010-04-26 04:21:57 65 japanese|mission|sashimi|sushi|restaurant|restaurants| 96 | 2 95 37.786743 -122.404531 2010-04-26 14:54:14 71 pool|swimming|bar|boxing|cafe|fitness|gym|health|club|jungshin|martial|arts|pilates|sauna|spa|spinning|steam|room|vinyasa|yoga|class|gyms|center|or|centers|pools| 97 | 2 96 37.786743 -122.404531 2010-04-27 02:37:58 71 pool|swimming|bar|boxing|cafe|fitness|gym|health|club|jungshin|martial|arts|pilates|sauna|spa|spinning|steam|room|vinyasa|yoga|class|gyms|center|or|centers|pools| 98 | 2 97 37.786743 -122.404531 2010-04-28 15:13:19 71 pool|swimming|bar|boxing|cafe|fitness|gym|health|club|jungshin|martial|arts|pilates|sauna|spa|spinning|steam|room|vinyasa|yoga|class|gyms|center|or|centers|pools| 99 | 2 98 37.776611 -122.395765 2010-04-28 22:00:04 73 dentists|office|offices| 100 | 2 99 36.325743 -119.106264 2010-05-02 18:13:54 64 american|restaurant|restaurants|steakhouse|steakhouses| 101 | -------------------------------------------------------------------------------- /Naive_Bayesian_EM/1.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/Naive_Bayesian_EM/1.gif -------------------------------------------------------------------------------- /Naive_Bayesian_EM/2.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/Naive_Bayesian_EM/2.gif -------------------------------------------------------------------------------- /Naive_Bayesian_EM/README.md: -------------------------------------------------------------------------------- 1 | # 介绍 2 | 样例文件是聚类数目为7的朴素贝叶斯非监督实现,聚类主题数改变直接改变code中K即可。 3 | 4 | # 运行环境 5 | * Core: 4 * Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz 6 | * OS: Linux 4.8.4-1-ARCH #1 SMP PREEMPT x86_64 GNU/Linux 7 | * Language: Python 2.7 8 | * Data Set: Activity Recognition from a Single Chest-Mounted Accelerometer 9 | 10 | # 问题描述 11 | * 对输入数据 [X1, X2...Xn ] 进行聚类。 12 | * 每个 Xi 表示一个 L 维度的样本,样本个数为 N。使用 聚类结果与原有数据类别做比较,查看聚类效果。 13 | 14 | # 输入数据 15 | * https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single+Chest-Mounted+Accelerometer 16 | * 注:我们将数据集切分,0.8 进行训练,0.2 进行测试 17 | 18 | # 第一部分:朴素贝叶斯非监督EM算法推导 19 | 20 | ![github](https://github.com/songjs1993/model/raw/master/Naive_Bayesian_EM/1.gif)   21 | 22 | ![github](https://github.com/songjs1993/model/raw/master/Naive_Bayesian_EM/2.gif) 23 | 24 | # 第二部分:测试 25 | 26 | 1. 数据预处理 27 | • 数据集: 28 | • 取数据集中第一个文件 1.csv 作为处理数据; 29 | • 类别 0 只有一个样本,将其作为异常点删除; 30 | • 离散化处理各属性; 31 | • 划分数据为 80% 训练集,20% 验证集。 32 | 33 | 2. 实验过程 34 | 我们目标是利用 EM 算法进行样本聚类。 35 | 注:因为聚类结果没有顺序,所以对于每一个聚类类别,我们将在此聚类中出现实际类别最多的 类作为其分类;如聚类 1 中出现的实际类的个数为:1 类别 10 个,2 类别 20 个,3 类别 0 个, 4 类别 50 个,那么我们认为此聚类类别 1 代表实际类别 4。 36 | 37 | 3. 实验结果 38 | 我们采用 300 轮迭代充分收敛的聚类精度作为分析。 39 | * EM 训练集,聚类7时:73.78% 40 | * EM 测试集,聚类7时:73.75% 41 | -------------------------------------------------------------------------------- /Naive_Bayesian_EM/k_7_com_features.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding:utf-8 -*- 3 | 4 | import numpy as np 5 | from scipy.stats import multivariate_normal 6 | from sklearn.mixture import GMM 7 | #from mpl_toolkits.mplot3d import Axes3D 8 | #import matplotlib as mpl 9 | #import matplotlib.pyplot as plt 10 | from sklearn.cross_validation import train_test_split 11 | from sklearn.naive_bayes import MultinomialNB 12 | from sklearn.naive_bayes import GaussianNB 13 | from sklearn.linear_model import LogisticRegression 14 | import random 15 | import math 16 | import sys 17 | 18 | # reload(sys) 19 | # sys.setdefaultencoding('utf8') 20 | 21 | # mpl.rcParams['font.sans-serif'] = [u'SimHei'] 22 | # mpl.rcParams['axes.unicode_minus'] = False 23 | 24 | K = 7 25 | 26 | def pre_deal_data(data1,data2): 27 | # 数据离散化处理 28 | for i in range(len(data1[0])): 29 | a = np.array([x[i] for x in data1]) # 取某一列 30 | sp = np.percentile(a,[x*5 for x in range(21)]) 31 | for j in range(len(data1)): 32 | # t = data1[j][i] 33 | flag = 0 34 | for k in range(1,len(sp)): 35 | if(data1[j][i] <= sp[k]): 36 | flag = k 37 | break 38 | # data1[j][i] = k + i*100 39 | data1[j][i] = flag + i*100 40 | for j in range(len(data2)): 41 | # t = data2[j][i] 42 | flag = 0 43 | for k in range(1,len(sp)): 44 | if(data2[j][i] <= sp[k]): 45 | flag = k 46 | break 47 | # data2[j][i] = k + i*100 48 | data2[j][i] = flag + i*100 49 | 50 | 51 | def change(y_hat, y): 52 | # 聚类结果与真实值结果找对应:例如聚类类别1,可能对应真实类别3 53 | lable = np.array([[0]*(K+1)]*(K+1)) 54 | # print(lable.shape) 55 | for i in range(len(y)): 56 | lable[int(y_hat[i])][int(y[i])] += 1 57 | 58 | z = [0]*(K+1) 59 | # print(lable) 60 | # tot = 0 61 | for i in range(1,(K+1)): 62 | y_max = 0 63 | num_max = -1 64 | for j in range(1,(K+1)): 65 | if lable[i][j] > num_max: 66 | num_max = lable[i][j] 67 | y_max = j 68 | z[i] = y_max 69 | for i in range(len(y_hat)): 70 | y_hat[i] = z[y_hat[i]] 71 | 72 | 73 | # 注:数据预处理,将最后一列删掉了 74 | 75 | 76 | def pre(x_test, phi, pi): 77 | # 使用训练好的模型对测试集进行预测 78 | gamma = np.array([[0.0]*K]*len(x_test)) 79 | data = x_test 80 | for i in range(len(data)): 81 | tot = 0.0 82 | for k in range(K): 83 | # gamma[i][k] = pi[k] * (phi[0][k][data[i][0]]+lamda) * (phi[1][k][data[i][1]]+lamda) * (phi[2][k][data[i][2]]+lamda) 84 | gamma[i][k] = pi[k] * (phi[0][k][data[i][0]]) * (phi[1][k][data[i][1]]) * (phi[2][k][data[i][2]]) 85 | tot += gamma[i][k] 86 | for k in range(K): 87 | gamma[i][k] /= tot 88 | 89 | y_test_hat = [0.0]*len(data) 90 | for i in range(len(data)): 91 | maxc = gamma[i][0] 92 | lable = 0 93 | for k in range(1,K): 94 | if maxc < gamma[i][k]: 95 | maxc = gamma[i][k] 96 | lable = k 97 | y_test_hat[i] = lable + 1 98 | return np.array(y_test_hat) 99 | 100 | def print_ans(gamma, phi, pi, data, y, x_test, y_test, n_iter): 101 | # 计算预测结果并打印 102 | y_hat = [0.0]*len(data) 103 | for i in range(len(data)): 104 | maxc = gamma[i][0] 105 | lable = 0 106 | for k in range(1,K): 107 | if maxc < gamma[i][k]: 108 | maxc = gamma[i][k] 109 | lable = k 110 | y_hat[i] = lable + 1 111 | 112 | y_hat = np.array(y_hat) 113 | y_test_hat = pre(x_test, phi, pi) 114 | 115 | if n_iter % 1 ==0: 116 | x_ = np.c_[data, y_hat.reshape(len(y_hat), 1)] 117 | x_test_ = np.c_[x_test, y_test_hat.reshape(len(y_test_hat), 1)] 118 | # 朴素贝叶斯分类:多项式 119 | multinomialNB(x_,y,x_test_,y_test) 120 | # 朴素贝叶斯分类:高斯分布 121 | gaussianNB(x_,y,x_test_,y_test) 122 | logistic(x_,y,x_test_,y_test) 123 | gmm_deal(x_,y,x_test_,y_test) 124 | 125 | change(y_hat, y) 126 | change(y_test_hat, y_test) 127 | acc = np.mean(y_hat.ravel() == y.ravel()) 128 | acc_test = np.mean(y_test_hat.ravel() == y_test.ravel()) 129 | acc_str = u'EM训练集准确率:%.2f%%' % (acc * 100) 130 | acc_test_str = u'EM测试集准确率:%.2f%%' % (acc_test * 100) 131 | print(acc_str) 132 | print(acc_test_str) 133 | 134 | 135 | def gmm_deal(x,y,x_test,y_test): 136 | gmm = GMM(n_components=7, covariance_type='full', tol=0.0001, n_iter=100, random_state=0) 137 | gmm.fit(x) 138 | 139 | y_hat = gmm.predict(x) 140 | y_test_hat = gmm.predict(x_test) 141 | print(np.min(y_test_hat, axis=0)) 142 | print(np.max(y_test_hat, axis=0)) 143 | 144 | change(y_hat, y) 145 | change(y_test_hat, y_test) 146 | 147 | # 准确率计算需要改动 148 | # 对聚类结果,每一类别中实际类别占比最多的,就是当前类别取值 149 | acc = np.mean(y_hat.ravel() == y.ravel()) 150 | acc_test = np.mean(y_test_hat.ravel() == y_test.ravel()) 151 | print "GMM:" 152 | acc_str = u'训练集准确率:%.2f%%' % (acc * 100) 153 | acc_test_str = u'测试集准确率:%.2f%%' % (acc_test * 100) 154 | print acc_str 155 | print acc_test_str 156 | 157 | 158 | def multinomialNB(x,y,x_test,y_test): 159 | # 多项式分布:朴素贝叶斯 160 | #create the Multinomial Naive Bayesian Classifier 161 | clf = MultinomialNB(alpha = 0.01) 162 | clf.fit(x,y); 163 | y_hat = clf.predict(x) 164 | y_test_hat = clf.predict(x_test) 165 | 166 | acc = np.mean(y_hat.ravel() == y.ravel()) 167 | acc_test = np.mean(y_test_hat.ravel() == y_test.ravel()) 168 | 169 | print("朴素贝叶斯:多项式分布") 170 | acc_str = u'训练集准确率:%.2f%%' % (acc * 100) 171 | acc_test_str = u'测试集准确率:%.2f%%' % (acc_test * 100) 172 | print(acc_str) 173 | print(acc_test_str) 174 | 175 | def logistic(x,y,x_test,y_test): 176 | classifier = LogisticRegression() # 使用类,参数全是默认的 177 | classifier.fit(x, y) # 训练数据来学习,不需要返回值 178 | y_hat = classifier.predict(x) 179 | y_test_hat = classifier.predict(x_test) 180 | acc = np.mean(y_hat.ravel() == y.ravel()) 181 | acc_test = np.mean(y_test_hat.ravel() == y_test.ravel()) 182 | print("logistic回归:") 183 | acc_str = u'训练集准确率:%.2f%%' % (acc * 100) 184 | acc_test_str = u'测试集准确率:%.2f%%' % (acc_test * 100) 185 | print(acc_str) 186 | print(acc_test_str) 187 | 188 | def gaussianNB(x,y,x_test,y_test): 189 | # 高斯分布朴素贝叶斯 190 | #create the Multinomial Naive Bayesian Classifier 191 | clf = GaussianNB() 192 | clf.fit(x,y); 193 | y_hat = clf.predict(x) 194 | y_test_hat = clf.predict(x_test) 195 | 196 | acc = np.mean(y_hat.ravel() == y.ravel()) 197 | acc_test = np.mean(y_test_hat.ravel() == y_test.ravel()) 198 | 199 | print("朴素贝叶斯:高斯分布") 200 | acc_str = u'训练集准确率:%.2f%%' % (acc * 100) 201 | acc_test_str = u'测试集准确率:%.2f%%' % (acc_test * 100) 202 | print(acc_str) 203 | print(acc_test_str) 204 | 205 | def init_with_bayes(pi, phi, data, y): 206 | # 使用贝叶斯统计信息来初始化EM算法参数: pi / phi 207 | pi = np.array([0.0] * K) 208 | for i in range(len(data)): 209 | pi[int(y[i])-1] += 1 210 | pi = pi/sum(pi) 211 | 212 | phi = np.array([[[0.0]*21] *K] *3) 213 | print(phi.shape) 214 | for i in range(3): 215 | for j in range(len(data)): 216 | k = int(data[j][i]) 217 | lable = int(y[j])-1 218 | phi[i][lable][k] += 1 219 | for j in range(K): 220 | phi[i][j] = phi[i][j]/sum(phi[i][j]) 221 | 222 | def EM(): 223 | data = np.loadtxt('1.csv', dtype=np.float, delimiter=',', skiprows=1) 224 | # data = data[50000:70000] 225 | print(data.shape) 226 | xx, x, y = np.split(data, [1,4, ], axis=1) 227 | x, x_test, y, y_test = train_test_split(x, y, train_size=0.8, random_state=0) 228 | 229 | # gmm_deal(x,y,x_test,y_test) 230 | # 朴素贝叶斯分类:多项式 231 | # multinomialNB(x,y,x_test,y_test) 232 | # 朴素贝叶斯分类:高斯分布 233 | # gaussianNB(x,y,x_test,y_test) 234 | # logistic(x,y,x_test,y_test) 235 | 236 | 237 | # 预处理,连续数据离散化 238 | pre_deal_data(x,x_test) 239 | # 朴素贝叶斯分类:多项式 240 | # multinomialNB(x,y,x_test,y_test) 241 | # 朴素贝叶斯分类:高斯分布 242 | # gaussianNB(x,y,x_test,y_test) 243 | # logistic(x,y,x_test,y_test) 244 | # gmm_deal(x,y,x_test,y_test) 245 | 246 | # 朴素贝叶斯非监督分类 247 | x = x%100 248 | x_test = x_test%100 #对于前面的k+i*100特征进行处理 249 | data = x 250 | n, d = data.shape 251 | print(data.shape) 252 | 253 | # 初始化参数 254 | # 选择每个类别概率pi 255 | pi = abs(np.random.standard_normal(K)) # 7个类别[0-6] 256 | pi = pi/sum(pi) 257 | # 每个维度属性下:各个类别选择具体取值的多项式分布,随机初始化 258 | phi = np.array([[[0.0]*21] *K] *3) 259 | print(phi.shape) 260 | for i in range(3): 261 | for j in range(K): 262 | phi[i][j] = np.array(abs(np.random.standard_normal(21))) 263 | # print(phi[i][j]) 264 | phi[i][j] = phi[i][j]/sum(phi[i][j]) 265 | # 每个样本所属各个类别概率 266 | gamma = np.array([[0.0]*K]*len(data)) 267 | 268 | # 使用先验统计参数初始化 pi 和 phi 269 | # init_with_bayes(pi, phi, data, y) 270 | 271 | print(pi) # 查看每次是否是初始化 272 | num_iter = 300 273 | # EM 274 | for n_iter in range(num_iter): 275 | # E 276 | expect = 0.0 277 | for i in range(len(data)): 278 | tot = 0.0 279 | for k in range(K): 280 | gamma[i][k] = pi[k] * (phi[0][k][data[i][0]]) * (phi[1][k][data[i][1]]) * (phi[2][k][data[i][2]]) 281 | tot += gamma[i][k] 282 | for k in range(K): 283 | gamma[i][k] /= tot 284 | expect += tot 285 | 286 | # M 287 | # pi 288 | for k in range(K): 289 | tot = 0.0 290 | for i in range(len(data)): 291 | tot += gamma[i][k] 292 | pi[k] = tot/len(data) 293 | 294 | # phi 295 | for i in range(3): # 对于第i维数据 296 | for j in range(len(data)): 297 | lable = data[j][i] # 数据j的第i维 298 | for k in range(K): 299 | phi[i][k][lable] += gamma[j][k] 300 | for k in range(K): # 按行归一化 301 | tot = 0.0 302 | for j in range(20): 303 | tot += phi[i][k][j] 304 | for j in range(20): 305 | phi[i][k][j] /= tot 306 | 307 | if n_iter % 1 == 0: 308 | print(n_iter, ":\t", math.log(expect)) 309 | # print(pi,gamma[0]) 310 | print_ans(gamma, phi, pi, data, y, x_test, y_test, n_iter) 311 | 312 | """ 313 | # 朴素贝叶斯分类:多项式 314 | multinomialNB(x,y,x_test,y_test) 315 | # 朴素贝叶斯分类:高斯分布 316 | gaussianNB(x,y,x_test,y_test) 317 | """ 318 | 319 | 320 | if __name__ == '__main__': 321 | EM() 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 介绍 2 | 对机器学习、概率图模型、主题模型领域一些模型进行实现,主要涉及一些近年高水平会议论文中提到的算法。 3 | 4 | # Model 5 | ## 1.EUTB 6 | 挖掘stable以及temporal主题:《A Unified Model for Stable and Temporal Topic Detection from Social Media Data》 7 | 8 | 注:EM-style算法求解 9 | 10 | ## 2.Naive_Bayesian_EM 11 | 朴素贝叶斯的非监督形式实现 12 | 13 | ## 3.gSpan 14 | 频繁子图挖掘算法:《gSpan: Graph-Based Substructure Pattern Mining》 15 | 16 | ## 4.ullmann 17 | 子图同构检测算法:《An Algorithm for Subgraph Isomorphism》 18 | 19 | ## 5.机器学习_概率解释.pdf 20 | 参见:https://github.com/songjs1993/ML/ 21 | 22 | 主要介绍一些常见机器学习算法,同时从损失函数与概率的角度解释了一些机器学习领域内的基本概念。 23 | 24 | ## 6.UniWalk 25 | #### 6.1 Online SimRank:UniWalk 26 | #### 6.2《On Top-k Structural Similarity Search》- 2012 IEEE 27 | 参见:https://github.com/songjs1993/DeepSimRank 28 | 29 | ## 7. DeepLearning 30 | #### 7.1 Ordinary neural network 31 | 参见:https://github.com/songjs1993/DeepLearning 32 | #### 7.2 AutoEncoder 33 | 参见:https://github.com/songjs1993/DeepLearning 34 | 35 | ## 8. Graph Embedding 36 | #### 8.1 《node2vec: Scalable Feature Learning for Networks - 2016/08 KDD》 37 | 参见:https://github.com/songjs1993/Graph-Embedding/tree/master/node2vec 38 | #### 8.2 IsoMap:《A Global Geometric Framework for Nonlinear Dimensionality Reduction》 39 | 参见:https://github.com/songjs1993/Graph-Embedding/tree/master/isomap 40 | -------------------------------------------------------------------------------- /gSpan/README.md: -------------------------------------------------------------------------------- 1 | # 介绍 2 | 《gSpan: Graph-Based Substructure Pattern Mining》算法实现 3 | 4 | 5 | 6 | ![github](https://github.com/songjs1993/model/raw/master/gSpan/intro/1.png)   7 | 8 | ![github](https://github.com/songjs1993/model/raw/master/gSpan/intro/2.png) 9 | 10 | ![github](https://github.com/songjs1993/model/raw/master/gSpan/intro/3.png) 11 | 12 | ![github](https://github.com/songjs1993/model/raw/master/gSpan/intro/4.png) 13 | 14 | ![github](https://github.com/songjs1993/model/raw/master/gSpan/intro/5.png) 15 | 16 | -------------------------------------------------------------------------------- /gSpan/data_readme.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/gSpan/data_readme.txt -------------------------------------------------------------------------------- /gSpan/intro/1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/gSpan/intro/1.png -------------------------------------------------------------------------------- /gSpan/intro/2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/gSpan/intro/2.png -------------------------------------------------------------------------------- /gSpan/intro/3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/gSpan/intro/3.png -------------------------------------------------------------------------------- /gSpan/intro/4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/gSpan/intro/4.png -------------------------------------------------------------------------------- /gSpan/intro/5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/gSpan/intro/5.png -------------------------------------------------------------------------------- /gSpan/main.cpp: -------------------------------------------------------------------------------- 1 | // 2 | // main.cpp 3 | // gSpan 4 | // 5 | // Created by songjs on 16/10/17. 6 | // Copyright © 2016年 songjs. All rights reserved. 7 | // 8 | 9 | #include 10 | #include 11 | #include 12 | #include 13 | #include 14 | #include 15 | #include 16 | #include 17 | #include 18 | #include 19 | #include 20 | #include 21 | 22 | using namespace std; 23 | 24 | template inline void _swap(T &x, T &y){ 25 | T z = x; 26 | x = y; 27 | y = z; 28 | } 29 | struct Edge{ 30 | int from,to,elabel; // [from, to , elabel] 31 | unsigned int id; // edge id 32 | Edge(): from(0), to(0), elabel(0), id(0){}; 33 | }; 34 | 35 | class Vertex{ 36 | public: 37 | typedef vector::iterator edge_iterater; 38 | int label; 39 | vector edge; // ? 40 | void push(int from, int to, int elabel){ 41 | edge.resize(edge.size() + 1); 42 | edge[edge.size()-1].from = from; 43 | edge[edge.size()-1].to = to; 44 | edge[edge.size()-1].elabel = elabel; 45 | return ; 46 | } 47 | 48 | }; 49 | 50 | 51 | 52 | class Graph: public vector{ 53 | private: 54 | unsigned int edge_size_; 55 | public: 56 | typedef vector::iterator vertex_iterater; 57 | Graph(){} 58 | unsigned int edge_size(){ return edge_size_; } 59 | unsigned int vertex_size(){ return (unsigned int)size();} 60 | void buildEdge(){ 61 | char buf[512]; 62 | map tmp; // tmp只是临时用一下 63 | unsigned int id = 0; 64 | for(int from=0; from<(int)size(); ++from){ 65 | for(Vertex::edge_iterater it = (*this)[from].edge.begin(); it!=(*this)[from].edge.end(); it++){ 66 | if(from <= it->to) sprintf(buf, "%d %d %d", from, it->to, it->elabel); 67 | else sprintf(buf, "%d %d %d", it->to, from, it->elabel); 68 | 69 | if(tmp.find(buf) == tmp.end()){ 70 | it->id = id; 71 | tmp[buf] = id++; 72 | }else{ 73 | it->id = tmp[buf]; 74 | } 75 | } 76 | } 77 | edge_size_ = id; 78 | } 79 | 80 | }; 81 | 82 | struct PDFS{ 83 | unsigned int id; //原始输入图id 84 | Edge *edge; 85 | PDFS *prev; 86 | PDFS(): id(0), edge(0), prev(0){}; 87 | }; 88 | 89 | class Projected: public vector{ 90 | public: 91 | void push(int id, Edge *edge, PDFS *prev){ 92 | resize(size() + 1); 93 | PDFS &d = (*this)[size()-1]; 94 | d.id = id; d.edge = edge; d.prev = prev; 95 | } 96 | }; 97 | 98 | 99 | 100 | typedef vector EdgeList; 101 | 102 | bool get_forward_root(Graph &g, Vertex &v, EdgeList &result){ 103 | result.clear(); 104 | for(Vertex::edge_iterater it = v.edge.begin(); it!=v.edge.end(); it++){ 105 | assert(it->to >=0 && it->to to].label) 107 | result.push_back(&(*it)); 108 | } 109 | return (!result.empty()); 110 | } 111 | 112 | 113 | class DFS{ 114 | public: 115 | int from,to,fromlabel,elabel,tolabel; 116 | friend bool operator == (const DFS &a, const DFS &b){ 117 | return (a.from==b.from && a.to==b.to && a.fromlabel==b.fromlabel && a.tolabel==b.tolabel && a.elabel==b.elabel); 118 | } 119 | friend bool operator != (const DFS &a, const DFS &b){ return (!(a==b));} 120 | DFS(): from(0), to(0), fromlabel(0), elabel(0), tolabel(0){}; 121 | }; 122 | 123 | typedef vector RMPath; //最右路径 124 | 125 | struct DFSCode: public vector{ 126 | private: 127 | RMPath rmpath; 128 | public: 129 | const RMPath& buildRMPath(){ 130 | rmpath.clear(); 131 | int old_from = -1; 132 | 133 | for(int i=(int)size()-1 ;i>=0; i--){ 134 | // 前向边 135 | if((*this)[i].from < (*this)[i].to && (rmpath.empty() || old_from == (*this)[i].to)){ 136 | rmpath.push_back(i); 137 | old_from = (*this)[i].from; 138 | } 139 | } 140 | return rmpath; 141 | } 142 | 143 | // 将当前DFS编码转为图 144 | bool toGraph(Graph &g){ 145 | g.clear(); 146 | for(DFSCode::iterator it = begin(); it!=end(); it++){ 147 | g.resize(max(max(it->from, it->to), (int)g.size()) + 1); // a bug before. 148 | 149 | if(it->fromlabel != -1) 150 | g[it->from].label = it->fromlabel; 151 | if(it->tolabel != -1) 152 | g[it->to].label = it->tolabel; 153 | g[it->from].push(it->from, it->to, it->elabel); 154 | g[it->to].push(it->to, it->from, it->elabel); 155 | } 156 | g.buildEdge(); 157 | return true; 158 | } 159 | 160 | // 从当前图重建DFS编码 161 | bool fromGraph(Graph &g); 162 | 163 | // 返回图中节点数目 164 | unsigned int nodeCound(void){ 165 | unsigned int nodecount = 0; 166 | for(DFSCode::iterator it = begin(); it!=end(); it++) 167 | nodecount = max(nodecount, (unsigned int)(max(it->from, it->to)+1)); 168 | return nodecount; 169 | } 170 | 171 | void push(int from, int to, int fromlabel, int elabel, int tolabel){ 172 | resize(size() + 1); 173 | DFS &d = (*this)[size() - 1]; 174 | d.from = from; d.to = to; d.fromlabel=fromlabel; d.elabel = elabel; d.tolabel = tolabel; 175 | } 176 | void pop(){ 177 | resize(size() - 1); 178 | } 179 | 180 | 181 | }; 182 | 183 | class History: public vector{ 184 | private: 185 | vector edge; 186 | vector vertex; 187 | 188 | public: 189 | bool hasEdge(unsigned int id){ return (bool)edge[id];} 190 | bool hasVertex(unsigned int id){ return (bool)vertex[id];} 191 | void build(Graph &graph, PDFS *e){ 192 | clear();edge.clear(); edge.resize(graph.edge_size()); 193 | vertex.clear(); vertex.resize(graph.size()); 194 | if(e){ 195 | push_back(e->edge); 196 | edge[e->edge->id] = vertex[e->edge->from] = vertex[e->edge->to] = 1; //1 表示当前顶点或者边访问过!那么下次再继续 197 | for(PDFS *p = e->prev; p ;p=p->prev){ 198 | push_back(p->edge); 199 | edge[p->edge->id] = vertex[p->edge->from] = vertex[p->edge->to] = 1; 200 | } 201 | reverse(begin(), end()); //vector 翻转 202 | } 203 | 204 | } 205 | History(){} 206 | History(Graph &g, PDFS *p){ build(g,p);} 207 | }; 208 | 209 | Edge *get_backward(Graph &graph, Edge* e1, Edge* e2, History &history){ 210 | if(e1 == e2) return 0; 211 | 212 | for(Vertex::edge_iterater it = graph[e2->to].edge.begin(); it!=graph[e2->to].edge.end(); it++){ 213 | if(history.hasEdge(it->id)) continue; 214 | if((it->to == e1->from) && ((e1->elabel < it->elabel) || ((e1->elabel == it->elabel) && (graph[e1->to].label <= graph[e2->to].label)))){ 215 | return &(*it); 216 | } 217 | } 218 | return 0; 219 | } 220 | 221 | bool get_forward_pure(Graph &graph, Edge *e, int minlabel, History &history, EdgeList &result){ 222 | result.clear(); 223 | 224 | for(Vertex::edge_iterater it=graph[e->to].edge.begin(); it!=graph[e->to].edge.end(); it++){ 225 | assert(it->to >=0 && it->to < graph.size()); 226 | if(minlabel > graph[it->to].label || history.hasVertex(it->to)) 227 | continue; 228 | result.push_back(&(*it)); 229 | } 230 | return (!(result.empty())); 231 | } 232 | 233 | bool get_forward_rmpath(Graph &graph, Edge *e, int minlabel, History &history, EdgeList &result){ 234 | result.clear(); 235 | int tolabel = graph[e->to].label; 236 | 237 | for(Vertex::edge_iterater it=graph[e->from].edge.begin(); it!=graph[e->from].edge.end(); it++){ 238 | int tolabel2 = graph[it->to].label; 239 | if(e->to == it->to || minlabel>tolabel2 || history.hasVertex(it->to)) 240 | continue; 241 | if(e->elabel < it->elabel || (e->elabel == it->elabel && tolabel <= tolabel2)) 242 | result.push_back(&(*it)); 243 | } 244 | return (!result.empty()); 245 | } 246 | 247 | class gSpan{ 248 | private: 249 | typedef map > > Projected_map3; 250 | typedef map > Projected_map2; 251 | typedef map Projected_map1; 252 | typedef map > >::iterator Projected_iterator3; 253 | typedef map >::iterator Projected_iterator2; 254 | typedef map::iterator Projected_iterator1; 255 | typedef map > >::reverse_iterator Projected_riterator3; 256 | 257 | vector TRANS; 258 | DFSCode DFS_CODE; 259 | DFSCode DFS_CODE_IS_MIN; 260 | Graph GRAPH_IS_MIN; 261 | 262 | public: 263 | char *filename; // filename 264 | int minsup; 265 | int maxpat_max,maxpat_min; // the number of nodes in the fre.. graph. 266 | 267 | 268 | /* 269 | singular vertex. 270 | */ 271 | map > singleVertex; 272 | map singleVertexLabel; 273 | 274 | int answer_number = 0; 275 | 276 | clock_t start,end; 277 | public: 278 | 279 | gSpan(){ 280 | filename = new char[150]; 281 | 282 | 283 | } 284 | gSpan(int argc, const char * argv[]){ 285 | filename = new char[150]; 286 | cout<<"请输入图文件路径:(150字符以内)"<>filename; 288 | // cout<<"请输入最小支持度、挖掘频繁子图中最少与最多节点个数(无限制请输入-1):"<>minsup; //>>maxpat_min>>maxpat_max; 291 | if(maxpat_min == -1) maxpat_min = 0; 292 | if(maxpat_max == -1) maxpat_max = 0xffffffff; 293 | 294 | // strcpy(filename, "/Users/songjs/Desktop/workspace/gSpan/gSpan/graph.data"); 295 | start = clock(); 296 | read(); 297 | } 298 | ~gSpan(){ 299 | delete[] filename; 300 | } 301 | void read(){ 302 | ifstream in; in.open(filename); 303 | 304 | vector result; 305 | string line; Graph g; g.clear(); 306 | while(in>>line){ 307 | if(line[0]=='t'){ 308 | getline(in, line); 309 | if(!g.empty()){ 310 | // 新的一个图,加进来 311 | g.buildEdge(); // 给edge编号,赋值id 312 | TRANS.push_back(g); 313 | g.clear(); 314 | } 315 | if(line[4]=='-') break; // end of the file 316 | } 317 | else if(line[0]=='v'){ 318 | int id,label; 319 | in>>id>>label; 320 | getline(in,line); 321 | g.resize(max((int)g.size(), id+1)); 322 | g[id].label = label; 323 | }else if(line[0]=='e'){ 324 | int from,to,elabel; 325 | in>>from>>to>>elabel; 326 | g.resize(max((int)g.size(), from+1)); 327 | g.resize(max((int)g.size(), to+1)); 328 | g[from].push(from, to, elabel); 329 | g[to].push(to, from, elabel); 330 | getline(in, line); 331 | } 332 | 333 | } 334 | 335 | } 336 | unsigned int support(Projected &projected){ 337 | // 计算当前子图的频繁数 338 | unsigned int oid = 0xffffffff; 339 | unsigned int size = 0; 340 | for(Projected::iterator cur = projected.begin(); cur!=projected.end(); cur++){ 341 | if(oid != cur->id){ 342 | size++; 343 | } 344 | oid = cur->id; 345 | } 346 | return size; 347 | 348 | } 349 | bool project_is_min(Projected &projected){ 350 | // projected中有当前子图的多条边,从每一条开始尝试进行判断 351 | const RMPath & rmpath = DFS_CODE_IS_MIN.buildRMPath(); // rmpath是倒序,0的话就是min Code的搜索起始点 352 | int minlabel = DFS_CODE_IS_MIN[0].fromlabel; // 这里DFS_CODE_IS_MIN是有序的,在map中会自动按照label排序 353 | int maxtoc = DFS_CODE_IS_MIN[rmpath[0]].to; 354 | { 355 | Projected_map1 root; 356 | bool flg = false; 357 | int newto = 0; 358 | 359 | for(int i=(int)rmpath.size()-1; !flg && i>=1; i--){ // [5,4,3,0] 360 | for(unsigned int n=0;nelabel].push(0, e, cur); 366 | newto = DFS_CODE_IS_MIN[rmpath[i]].from; 367 | flg = true; 368 | } 369 | } 370 | } 371 | if(flg){ 372 | Projected_iterator1 elabel = root.begin(); 373 | DFS_CODE_IS_MIN.push(maxtoc, newto, -1, elabel->first, -1); 374 | 375 | // 剪枝,新的DFS_CODE不断增多,每次都要和MIN_CODE相同才继续向下找。 376 | if(DFS_CODE[DFS_CODE_IS_MIN.size()-1] != DFS_CODE_IS_MIN[DFS_CODE_IS_MIN.size() - 1]) return false; 377 | return project_is_min(elabel->second); 378 | } 379 | 380 | } 381 | { 382 | // 找forward 383 | bool flg = false; 384 | int newfrom = 0; 385 | Projected_map2 root; 386 | EdgeList edges; 387 | for(unsigned int n=0; nelabel][GRAPH_IS_MIN[(*it)->to].label].push(0, *it, cur); 395 | } 396 | } 397 | } 398 | for(int i=0; !flg && i<(int)rmpath.size(); i++){ 399 | for(unsigned int n=0;nelabel][GRAPH_IS_MIN[(*it)->to].label].push(0, *it, cur); 407 | } 408 | } 409 | } 410 | } 411 | if(flg){ 412 | Projected_iterator2 elabel = root.begin(); 413 | Projected_iterator1 tolabel = elabel->second.begin(); 414 | DFS_CODE_IS_MIN.push(newfrom, maxtoc+1, -1, elabel->first, tolabel->first); 415 | if(DFS_CODE[DFS_CODE_IS_MIN.size()-1] != DFS_CODE_IS_MIN[DFS_CODE_IS_MIN.size()-1]) return false; 416 | return project_is_min(tolabel->second); 417 | } 418 | } 419 | return true; 420 | } 421 | bool is_min(){ 422 | // 此函数所有操作都基于新构建的子图上,与原数据集没有联系 423 | if(DFS_CODE.size()==1) return true; 424 | DFS_CODE.toGraph(GRAPH_IS_MIN); //这里重建的图重新给边编了id,且边没有用指针 425 | DFS_CODE_IS_MIN.clear(); 426 | 427 | Projected_map3 root; 428 | EdgeList edges; 429 | for(unsigned int from = 0;fromelabel][GRAPH_IS_MIN[(*it)->to].label].push(0, *it, 0); //原图id都设为了0,这里没有现在图与原图的映射 433 | } 434 | } 435 | } 436 | 437 | Projected_iterator3 fromlabel = root.begin(); 438 | Projected_iterator2 elabel = fromlabel->second.begin(); 439 | Projected_iterator1 tolabel = elabel->second.begin(); 440 | DFS_CODE_IS_MIN.push(0, 1, fromlabel->first, elabel->first, tolabel->first); // 从每一条边开始查找? 441 | return (project_is_min(tolabel->second)); 442 | } 443 | void print(Graph &g){ 444 | // 输出当前图 445 | cout<<"t # "< maxpat_min && DFS_CODE.nodeCound()>maxpat_max) return ; 465 | 466 | // 满足两个检查,输出当前频繁集,DFS_CODE 467 | // if(DFS_CODE.nodeCound()==3) { 468 | Graph g; 469 | DFS_CODE.toGraph(g); 470 | print(g); 471 | // } 472 | 473 | // 扩展图 n -> (n+1) 474 | const RMPath &rmpath = DFS_CODE.buildRMPath(); 475 | int minlabel = DFS_CODE[0].fromlabel; 476 | int maxtoc = DFS_CODE[rmpath[0]].to; 477 | 478 | Projected_map3 new_fwd_root; //前向边 479 | Projected_map2 new_bck_root; //后向边 480 | EdgeList edges; 481 | 482 | // 枚举所有扩展边的可能 483 | for(unsigned int n=0;n=1;i--){ 490 | Edge *e = get_backward(TRANS[id], history[rmpath[i]], history[rmpath[0]], history); 491 | if(e){ 492 | new_bck_root[DFS_CODE[rmpath[i]].from][e->elabel].push(id, e, cur); 493 | } 494 | } 495 | // 最右节点扩展边 496 | if(get_forward_pure(TRANS[id], history[rmpath[0]], minlabel, history, edges)) 497 | for(EdgeList::iterator it = edges.begin(); it!=edges.end(); it++) 498 | new_fwd_root[maxtoc][(*it)->elabel][TRANS[id][(*it)->to].label].push(id, *it, cur); 499 | // 最右路径(除最右节点)扩展边 500 | for(int i=0;i<(int)rmpath.size();i++){ 501 | if(get_forward_rmpath(TRANS[id], history[rmpath[i]], minlabel, history, edges)){ 502 | for(EdgeList::iterator it = edges.begin(); it!=edges.end(); it++){ 503 | new_fwd_root[DFS_CODE[rmpath[i]].from][(*it)->elabel][TRANS[id][(*it)->to].label].push(id, *it, cur); 504 | } 505 | } 506 | } 507 | } 508 | 509 | // 测试所有扩展的子图: 510 | // backward 511 | for(Projected_iterator2 to = new_bck_root.begin(); to!=new_bck_root.end(); to++){ 512 | for(Projected_iterator1 elabel = to->second.begin(); elabel!=to->second.end(); elabel++){ 513 | DFS_CODE.push(maxtoc, to->first, -1, elabel->first, -1); 514 | project(elabel->second); 515 | DFS_CODE.pop(); 516 | } 517 | } 518 | // forward 519 | for(Projected_riterator3 from = new_fwd_root.rbegin(); from!=new_fwd_root.rend(); from++){ 520 | for(Projected_iterator2 elabel = from->second.begin(); elabel!=from->second.end(); elabel++){ 521 | for(Projected_iterator1 tolabel = elabel->second.begin(); tolabel!=elabel->second.end(); tolabel++){ 522 | DFS_CODE.push(from->first, maxtoc+1, -1, elabel->first, tolabel->first); 523 | project(tolabel->second); 524 | DFS_CODE.pop(); 525 | } 526 | } 527 | } 528 | 529 | return ; 530 | 531 | } 532 | void run(){ 533 | if(maxpat_min <= 1){ // one node subgraphs 534 | for(unsigned int id=0; id 536 | if(singleVertex[id][TRANS[id][nid].label] == 0) // the idth Graph 537 | singleVertexLabel[TRANS[id][nid].label]+=1; // all Graph vertexLabel. 538 | singleVertex[id][TRANS[id][nid].label] += 1; 539 | } 540 | } 541 | 542 | for(map::iterator it = singleVertexLabel.begin(); it!=singleVertexLabel.end(); it++){ 543 | if((*it).second < minsup) continue; 544 | unsigned int frequent_label = (*it).first; 545 | 546 | // the answer is stored in the format of graph. 547 | Graph g; 548 | g.resize(1); 549 | g[0].label = frequent_label; 550 | 551 | vector counts(TRANS.size()); 552 | for(map>::iterator it2 = singleVertex.begin(); it2!=singleVertex.end(); it2++){ 553 | counts[(*it2).first] = (*it2).second[frequent_label]; // label在图(*it2).first中出现多少次 554 | } 555 | 556 | } 557 | } 558 | EdgeList edges; 559 | Projected_map3 root; 560 | for(unsigned int id=0; idelabel][g[(*it)->to].label].push(id, *it, 0); // 将每一条边,对应图id,PDFS编码为0,放入root中 566 | } 567 | } 568 | } 569 | } 570 | for(Projected_iterator3 fromlabel=root.begin(); fromlabel!=root.end(); fromlabel++){ 571 | for(Projected_iterator2 elabel = fromlabel->second.begin(); elabel!=fromlabel->second.end(); elabel++){ 572 | for(Projected_iterator1 tolabel = elabel->second.begin(); tolabel!=elabel->second.end(); tolabel++){ 573 | // 建立初始的两节点一条边的子图 574 | DFS_CODE.push(0, 1, fromlabel->first, elabel->first, tolabel->first); 575 | 576 | // 注意一个projected中保存的是一种类型边[from_label, elabel, to_label]在各个图中出现的情况:[图1 边1][图1 边3]...[图8 边5]... 577 | // 扩展子图(增加边)的话,使用PDFS *prev指针来指向下一条边 578 | 579 | // 从每一个两节点一条边的子图进行搜索,递归树 580 | project(tolabel->second); 581 | DFS_CODE.pop(); 582 | } 583 | } 584 | } 585 | 586 | } 587 | void run_time(){ 588 | end = clock(); 589 | cout<<"run time : "<<(double)(end-start)/CLOCKS_PER_SEC<<"s."<run(); 597 | g->run_time(); 598 | 599 | return 0; 600 | } 601 | 602 | 603 | 604 | 605 | 606 | -------------------------------------------------------------------------------- /ullmann/Q4.my: -------------------------------------------------------------------------------- 1 | t # 0 2 | v 0 2 3 | v 1 2 4 | v 2 2 5 | v 3 2 6 | v 4 2 7 | e 0 1 2 8 | e 1 2 2 9 | e 2 3 2 10 | e 3 4 2 11 | t # 1 12 | v 0 5 13 | v 1 2 14 | v 2 2 15 | v 3 2 16 | v 4 5 17 | e 0 1 2 18 | e 1 2 2 19 | e 1 3 2 20 | e 3 4 2 21 | t # 2 22 | v 0 2 23 | v 1 5 24 | v 2 2 25 | v 3 2 26 | v 4 2 27 | e 0 1 2 28 | e 0 2 2 29 | e 1 4 2 30 | e 1 3 2 31 | t # 3 32 | v 0 2 33 | v 1 3 34 | v 2 2 35 | v 3 2 36 | v 4 2 37 | e 0 1 2 38 | e 1 2 2 39 | e 2 3 2 40 | e 2 4 2 41 | t # 4 42 | v 0 2 43 | v 1 6 44 | v 2 3 45 | v 3 3 46 | v 4 3 47 | e 0 1 2 48 | e 1 2 3 49 | e 1 3 3 50 | e 1 4 2 51 | t # 5 52 | v 0 2 53 | v 1 2 54 | v 2 2 55 | v 3 2 56 | v 4 3 57 | e 0 1 2 58 | e 1 3 2 59 | e 2 3 2 60 | e 3 4 2 61 | t # 6 62 | v 0 2 63 | v 1 6 64 | v 2 2 65 | v 3 3 66 | v 4 3 67 | e 0 1 2 68 | e 0 2 5 69 | e 1 3 3 70 | e 1 4 3 71 | t # 7 72 | v 0 2 73 | v 1 2 74 | v 2 2 75 | v 3 2 76 | v 4 2 77 | e 0 1 2 78 | e 1 2 2 79 | e 1 3 2 80 | e 1 4 2 81 | t # 8 82 | v 0 2 83 | v 1 3 84 | v 2 2 85 | v 3 2 86 | v 4 3 87 | e 0 2 2 88 | e 0 3 2 89 | e 1 2 2 90 | e 2 4 2 91 | t # 9 92 | v 0 2 93 | v 1 2 94 | v 2 2 95 | v 3 2 96 | v 4 2 97 | e 0 1 5 98 | e 1 2 5 99 | e 2 4 5 100 | e 3 4 5 101 | t # 10 102 | v 0 2 103 | v 1 6 104 | v 2 3 105 | v 3 3 106 | v 4 3 107 | e 0 1 2 108 | e 1 2 3 109 | e 1 3 3 110 | e 1 4 2 111 | t # 11 112 | v 0 2 113 | v 1 2 114 | v 2 2 115 | v 3 2 116 | v 4 2 117 | e 0 1 2 118 | e 1 2 5 119 | e 1 3 5 120 | e 2 4 2 121 | t # 12 122 | v 0 2 123 | v 1 2 124 | v 2 2 125 | v 3 2 126 | v 4 2 127 | e 0 1 2 128 | e 1 2 2 129 | e 2 3 2 130 | e 3 4 2 131 | t # 13 132 | v 0 2 133 | v 1 2 134 | v 2 2 135 | v 3 2 136 | v 4 2 137 | e 0 1 5 138 | e 0 2 5 139 | e 1 3 5 140 | e 1 4 5 141 | t # 14 142 | v 0 2 143 | v 1 2 144 | v 2 2 145 | v 3 2 146 | v 4 2 147 | e 0 2 2 148 | e 0 1 5 149 | e 1 3 5 150 | e 3 4 5 151 | t # 15 152 | v 0 2 153 | v 1 2 154 | v 2 2 155 | v 3 2 156 | v 4 3 157 | e 0 2 2 158 | e 0 3 5 159 | e 1 4 2 160 | e 1 3 5 161 | t # 16 162 | v 0 2 163 | v 1 2 164 | v 2 2 165 | v 3 2 166 | v 4 2 167 | e 0 1 2 168 | e 1 2 2 169 | e 2 3 3 170 | e 3 4 2 171 | t # 17 172 | v 0 2 173 | v 1 2 174 | v 2 2 175 | v 3 2 176 | v 4 2 177 | e 0 1 2 178 | e 1 2 2 179 | e 2 3 2 180 | e 3 4 2 181 | t # 18 182 | v 0 2 183 | v 1 2 184 | v 2 5 185 | v 3 2 186 | v 4 2 187 | e 0 1 5 188 | e 0 2 5 189 | e 1 3 5 190 | e 3 4 5 191 | t # 19 192 | v 0 2 193 | v 1 2 194 | v 2 2 195 | v 3 2 196 | v 4 5 197 | e 0 2 5 198 | e 1 3 5 199 | e 2 3 5 200 | e 3 4 2 201 | t # 20 202 | v 0 2 203 | v 1 2 204 | v 2 2 205 | v 3 2 206 | v 4 2 207 | e 0 2 5 208 | e 1 3 2 209 | e 1 2 5 210 | e 3 4 3 211 | t # 21 212 | v 0 2 213 | v 1 2 214 | v 2 2 215 | v 3 2 216 | v 4 3 217 | e 0 1 2 218 | e 0 2 2 219 | e 2 3 2 220 | e 3 4 2 221 | t # 22 222 | v 0 2 223 | v 1 2 224 | v 2 2 225 | v 3 2 226 | v 4 2 227 | e 0 2 5 228 | e 0 1 5 229 | e 2 4 2 230 | e 2 3 5 231 | t # 23 232 | v 0 2 233 | v 1 3 234 | v 2 3 235 | v 3 2 236 | v 4 2 237 | e 0 1 2 238 | e 0 2 3 239 | e 0 3 2 240 | e 3 4 2 241 | t # 24 242 | v 0 2 243 | v 1 2 244 | v 2 3 245 | v 3 2 246 | v 4 2 247 | e 0 2 3 248 | e 0 3 2 249 | e 1 4 5 250 | e 1 3 5 251 | t # 25 252 | v 0 2 253 | v 1 5 254 | v 2 2 255 | v 3 5 256 | v 4 5 257 | e 0 1 2 258 | e 1 2 2 259 | e 2 3 3 260 | e 2 4 2 261 | t # 26 262 | v 0 2 263 | v 1 2 264 | v 2 2 265 | v 3 2 266 | v 4 2 267 | e 0 1 2 268 | e 1 2 3 269 | e 2 3 2 270 | e 3 4 3 271 | t # 27 272 | v 0 2 273 | v 1 2 274 | v 2 2 275 | v 3 2 276 | v 4 2 277 | e 0 1 2 278 | e 1 3 2 279 | e 1 2 3 280 | e 2 4 2 281 | t # 28 282 | v 0 2 283 | v 1 2 284 | v 2 2 285 | v 3 5 286 | v 4 2 287 | e 0 1 5 288 | e 1 2 2 289 | e 2 4 2 290 | e 3 4 2 291 | t # 29 292 | v 0 3 293 | v 1 2 294 | v 2 2 295 | v 3 2 296 | v 4 3 297 | e 0 1 2 298 | e 0 3 2 299 | e 2 3 2 300 | e 3 4 2 301 | t # 30 302 | v 0 2 303 | v 1 2 304 | v 2 3 305 | v 3 3 306 | v 4 2 307 | e 0 1 2 308 | e 1 2 2 309 | e 1 3 3 310 | e 2 4 2 311 | t # 31 312 | v 0 9 313 | v 1 5 314 | v 2 2 315 | v 3 2 316 | v 4 2 317 | e 0 1 2 318 | e 1 2 5 319 | e 2 4 5 320 | e 2 3 5 321 | t # 32 322 | v 0 2 323 | v 1 2 324 | v 2 6 325 | v 3 3 326 | v 4 3 327 | e 0 1 5 328 | e 1 2 2 329 | e 2 3 3 330 | e 2 4 2 331 | t # 33 332 | v 0 2 333 | v 1 2 334 | v 2 5 335 | v 3 2 336 | v 4 3 337 | e 0 1 5 338 | e 1 2 2 339 | e 2 3 2 340 | e 3 4 3 341 | t # 34 342 | v 0 2 343 | v 1 2 344 | v 2 2 345 | v 3 2 346 | v 4 2 347 | e 0 2 2 348 | e 1 3 5 349 | e 1 4 2 350 | e 2 4 3 351 | t # 35 352 | v 0 2 353 | v 1 2 354 | v 2 2 355 | v 3 2 356 | v 4 3 357 | e 0 2 5 358 | e 1 3 5 359 | e 2 3 5 360 | e 3 4 2 361 | t # 36 362 | v 0 2 363 | v 1 2 364 | v 2 2 365 | v 3 2 366 | v 4 2 367 | e 0 1 5 368 | e 1 2 5 369 | e 1 3 2 370 | e 2 4 5 371 | t # 37 372 | v 0 2 373 | v 1 2 374 | v 2 2 375 | v 3 2 376 | v 4 2 377 | e 0 1 5 378 | e 1 2 5 379 | e 2 3 5 380 | e 2 4 5 381 | t # 38 382 | v 0 2 383 | v 1 2 384 | v 2 2 385 | v 3 2 386 | v 4 2 387 | e 0 1 5 388 | e 1 2 5 389 | e 2 4 5 390 | e 3 4 5 391 | t # 39 392 | v 0 2 393 | v 1 6 394 | v 2 3 395 | v 3 2 396 | v 4 2 397 | e 0 1 2 398 | e 1 2 3 399 | e 1 3 2 400 | e 3 4 5 401 | t # 40 402 | v 0 5 403 | v 1 2 404 | v 2 2 405 | v 3 2 406 | v 4 2 407 | e 0 1 2 408 | e 1 2 2 409 | e 2 3 2 410 | e 3 4 2 411 | t # 41 412 | v 0 2 413 | v 1 2 414 | v 2 2 415 | v 3 2 416 | v 4 2 417 | e 0 1 2 418 | e 0 2 2 419 | e 0 3 2 420 | e 3 4 5 421 | t # 42 422 | v 0 2 423 | v 1 2 424 | v 2 5 425 | v 3 2 426 | v 4 2 427 | e 0 1 2 428 | e 1 2 2 429 | e 2 3 2 430 | e 2 4 2 431 | t # 43 432 | v 0 2 433 | v 1 2 434 | v 2 2 435 | v 3 2 436 | v 4 3 437 | e 0 1 5 438 | e 1 2 5 439 | e 2 3 2 440 | e 3 4 3 441 | t # 44 442 | v 0 5 443 | v 1 5 444 | v 2 2 445 | v 3 2 446 | v 4 2 447 | e 0 1 3 448 | e 1 2 2 449 | e 2 3 5 450 | e 3 4 5 451 | t # 45 452 | v 0 2 453 | v 1 3 454 | v 2 2 455 | v 3 5 456 | v 4 2 457 | e 0 1 2 458 | e 0 2 2 459 | e 2 3 2 460 | e 3 4 2 461 | t # 46 462 | v 0 2 463 | v 1 2 464 | v 2 2 465 | v 3 2 466 | v 4 2 467 | e 0 1 2 468 | e 0 2 2 469 | e 2 3 5 470 | e 3 4 5 471 | t # 47 472 | v 0 2 473 | v 1 2 474 | v 2 2 475 | v 3 5 476 | v 4 3 477 | e 0 1 2 478 | e 0 2 2 479 | e 2 4 3 480 | e 2 3 2 481 | t # 48 482 | v 0 2 483 | v 1 2 484 | v 2 2 485 | v 3 2 486 | v 4 5 487 | e 0 1 2 488 | e 0 2 2 489 | e 1 3 2 490 | e 3 4 2 491 | t # 49 492 | v 0 5 493 | v 1 2 494 | v 2 2 495 | v 3 2 496 | v 4 2 497 | e 0 1 2 498 | e 1 2 5 499 | e 2 3 5 500 | e 3 4 5 501 | t # 50 502 | v 0 3 503 | v 1 2 504 | v 2 2 505 | v 3 2 506 | v 4 2 507 | e 0 2 2 508 | e 1 3 2 509 | e 2 4 2 510 | e 3 4 2 511 | t # 51 512 | v 0 5 513 | v 1 2 514 | v 2 2 515 | v 3 2 516 | v 4 2 517 | e 0 1 2 518 | e 1 2 5 519 | e 2 3 5 520 | e 3 4 5 521 | t # 52 522 | v 0 2 523 | v 1 2 524 | v 2 2 525 | v 3 2 526 | v 4 2 527 | e 0 1 5 528 | e 0 2 5 529 | e 1 3 5 530 | e 2 4 5 531 | t # 53 532 | v 0 2 533 | v 1 2 534 | v 2 2 535 | v 3 3 536 | v 4 2 537 | e 0 1 2 538 | e 1 3 3 539 | e 1 2 2 540 | e 2 4 2 541 | t # 54 542 | v 0 2 543 | v 1 2 544 | v 2 2 545 | v 3 5 546 | v 4 2 547 | e 0 1 5 548 | e 1 2 5 549 | e 2 4 5 550 | e 3 4 5 551 | t # 55 552 | v 0 2 553 | v 1 2 554 | v 2 2 555 | v 3 2 556 | v 4 2 557 | e 0 1 2 558 | e 1 2 2 559 | e 2 3 5 560 | e 2 4 5 561 | t # 56 562 | v 0 2 563 | v 1 5 564 | v 2 2 565 | v 3 2 566 | v 4 2 567 | e 0 1 2 568 | e 0 2 2 569 | e 1 3 2 570 | e 1 4 2 571 | t # 57 572 | v 0 2 573 | v 1 2 574 | v 2 6 575 | v 3 2 576 | v 4 3 577 | e 0 2 2 578 | e 0 1 5 579 | e 1 3 5 580 | e 2 4 3 581 | t # 58 582 | v 0 2 583 | v 1 2 584 | v 2 2 585 | v 3 2 586 | v 4 2 587 | e 0 1 5 588 | e 0 2 5 589 | e 1 3 5 590 | e 2 4 5 591 | t # 59 592 | v 0 2 593 | v 1 2 594 | v 2 5 595 | v 3 2 596 | v 4 2 597 | e 0 1 2 598 | e 1 2 2 599 | e 2 3 2 600 | e 3 4 5 601 | t # 60 602 | v 0 2 603 | v 1 2 604 | v 2 2 605 | v 3 2 606 | v 4 3 607 | e 0 1 2 608 | e 0 2 5 609 | e 2 4 2 610 | e 2 3 5 611 | t # 61 612 | v 0 6 613 | v 1 2 614 | v 2 2 615 | v 3 5 616 | v 4 2 617 | e 0 1 2 618 | e 1 2 2 619 | e 2 3 2 620 | e 3 4 2 621 | t # 62 622 | v 0 2 623 | v 1 2 624 | v 2 2 625 | v 3 2 626 | v 4 2 627 | e 0 1 2 628 | e 0 2 2 629 | e 2 4 2 630 | e 3 4 2 631 | t # 63 632 | v 0 5 633 | v 1 2 634 | v 2 2 635 | v 3 2 636 | v 4 3 637 | e 0 1 2 638 | e 1 3 2 639 | e 2 4 2 640 | e 3 4 2 641 | t # 64 642 | v 0 2 643 | v 1 2 644 | v 2 5 645 | v 3 2 646 | v 4 5 647 | e 0 1 5 648 | e 1 2 2 649 | e 1 3 5 650 | e 2 4 3 651 | t # 65 652 | v 0 2 653 | v 1 2 654 | v 2 2 655 | v 3 3 656 | v 4 2 657 | e 0 2 2 658 | e 0 3 2 659 | e 0 4 2 660 | e 1 4 2 661 | t # 66 662 | v 0 2 663 | v 1 2 664 | v 2 3 665 | v 3 2 666 | v 4 6 667 | e 0 2 2 668 | e 0 3 5 669 | e 1 4 2 670 | e 1 3 5 671 | t # 67 672 | v 0 2 673 | v 1 2 674 | v 2 2 675 | v 3 2 676 | v 4 2 677 | e 0 1 2 678 | e 1 2 2 679 | e 2 3 2 680 | e 3 4 2 681 | t # 68 682 | v 0 2 683 | v 1 2 684 | v 2 2 685 | v 3 2 686 | v 4 2 687 | e 0 2 5 688 | e 1 3 5 689 | e 2 4 5 690 | e 3 4 5 691 | t # 69 692 | v 0 2 693 | v 1 2 694 | v 2 2 695 | v 3 3 696 | v 4 2 697 | e 0 2 2 698 | e 1 3 3 699 | e 1 4 2 700 | e 2 4 5 701 | t # 70 702 | v 0 3 703 | v 1 2 704 | v 2 3 705 | v 3 2 706 | v 4 2 707 | e 0 1 2 708 | e 1 2 3 709 | e 1 3 2 710 | e 3 4 5 711 | t # 71 712 | v 0 2 713 | v 1 2 714 | v 2 3 715 | v 3 2 716 | v 4 2 717 | e 0 1 2 718 | e 1 2 3 719 | e 1 3 2 720 | e 3 4 2 721 | t # 72 722 | v 0 2 723 | v 1 2 724 | v 2 3 725 | v 3 2 726 | v 4 2 727 | e 0 1 2 728 | e 1 2 2 729 | e 1 3 2 730 | e 3 4 2 731 | t # 73 732 | v 0 2 733 | v 1 2 734 | v 2 2 735 | v 3 2 736 | v 4 2 737 | e 0 1 5 738 | e 1 2 5 739 | e 2 4 5 740 | e 3 4 5 741 | t # 74 742 | v 0 2 743 | v 1 2 744 | v 2 5 745 | v 3 2 746 | v 4 5 747 | e 0 1 5 748 | e 1 2 2 749 | e 1 3 5 750 | e 3 4 2 751 | t # 75 752 | v 0 2 753 | v 1 2 754 | v 2 2 755 | v 3 2 756 | v 4 2 757 | e 0 1 5 758 | e 1 2 5 759 | e 2 4 5 760 | e 3 4 5 761 | t # 76 762 | v 0 2 763 | v 1 2 764 | v 2 2 765 | v 3 2 766 | v 4 2 767 | e 0 1 5 768 | e 1 3 5 769 | e 1 4 5 770 | e 2 3 5 771 | t # 77 772 | v 0 2 773 | v 1 2 774 | v 2 2 775 | v 3 5 776 | v 4 2 777 | e 0 1 5 778 | e 1 2 2 779 | e 2 3 3 780 | e 3 4 2 781 | t # 78 782 | v 0 2 783 | v 1 2 784 | v 2 5 785 | v 3 2 786 | v 4 2 787 | e 0 1 2 788 | e 1 2 2 789 | e 2 4 2 790 | e 3 4 2 791 | t # 79 792 | v 0 3 793 | v 1 2 794 | v 2 2 795 | v 3 2 796 | v 4 2 797 | e 0 1 2 798 | e 0 2 2 799 | e 2 3 5 800 | e 3 4 5 801 | t # 80 802 | v 0 3 803 | v 1 2 804 | v 2 2 805 | v 3 2 806 | v 4 2 807 | e 0 1 2 808 | e 1 2 5 809 | e 1 3 5 810 | e 3 4 5 811 | t # 81 812 | v 0 2 813 | v 1 2 814 | v 2 2 815 | v 3 2 816 | v 4 2 817 | e 0 1 2 818 | e 1 2 3 819 | e 2 4 2 820 | e 2 3 2 821 | t # 82 822 | v 0 2 823 | v 1 2 824 | v 2 2 825 | v 3 5 826 | v 4 3 827 | e 0 1 5 828 | e 1 2 2 829 | e 2 3 2 830 | e 2 4 3 831 | t # 83 832 | v 0 2 833 | v 1 2 834 | v 2 2 835 | v 3 2 836 | v 4 3 837 | e 0 1 2 838 | e 0 2 5 839 | e 1 3 2 840 | e 1 4 2 841 | t # 84 842 | v 0 2 843 | v 1 2 844 | v 2 2 845 | v 3 2 846 | v 4 3 847 | e 0 2 2 848 | e 1 3 5 849 | e 1 2 2 850 | e 2 4 3 851 | t # 85 852 | v 0 2 853 | v 1 2 854 | v 2 2 855 | v 3 6 856 | v 4 2 857 | e 0 1 2 858 | e 1 2 5 859 | e 2 4 5 860 | e 2 3 2 861 | t # 86 862 | v 0 2 863 | v 1 2 864 | v 2 2 865 | v 3 2 866 | v 4 2 867 | e 0 1 5 868 | e 0 2 5 869 | e 2 3 5 870 | e 3 4 5 871 | t # 87 872 | v 0 2 873 | v 1 2 874 | v 2 2 875 | v 3 2 876 | v 4 2 877 | e 0 1 5 878 | e 1 2 5 879 | e 2 3 5 880 | e 3 4 5 881 | t # 88 882 | v 0 2 883 | v 1 2 884 | v 2 2 885 | v 3 2 886 | v 4 2 887 | e 0 1 5 888 | e 1 2 2 889 | e 2 3 2 890 | e 2 4 2 891 | t # 89 892 | v 0 2 893 | v 1 2 894 | v 2 2 895 | v 3 2 896 | v 4 2 897 | e 0 1 5 898 | e 1 2 5 899 | e 2 3 5 900 | e 3 4 5 901 | t # 90 902 | v 0 3 903 | v 1 2 904 | v 2 2 905 | v 3 2 906 | v 4 2 907 | e 0 1 2 908 | e 1 2 5 909 | e 1 3 5 910 | e 3 4 5 911 | t # 91 912 | v 0 2 913 | v 1 5 914 | v 2 2 915 | v 3 2 916 | v 4 2 917 | e 0 1 2 918 | e 1 2 2 919 | e 2 3 5 920 | e 3 4 5 921 | t # 92 922 | v 0 2 923 | v 1 2 924 | v 2 2 925 | v 3 2 926 | v 4 3 927 | e 0 1 2 928 | e 1 2 5 929 | e 1 3 5 930 | e 3 4 2 931 | t # 93 932 | v 0 2 933 | v 1 2 934 | v 2 2 935 | v 3 2 936 | v 4 2 937 | e 0 1 5 938 | e 0 2 5 939 | e 2 3 5 940 | e 3 4 5 941 | t # 94 942 | v 0 2 943 | v 1 2 944 | v 2 2 945 | v 3 3 946 | v 4 2 947 | e 0 1 5 948 | e 0 2 5 949 | e 2 3 2 950 | e 3 4 2 951 | t # 95 952 | v 0 2 953 | v 1 2 954 | v 2 2 955 | v 3 2 956 | v 4 2 957 | e 0 1 2 958 | e 0 2 5 959 | e 2 3 2 960 | e 3 4 2 961 | t # 96 962 | v 0 2 963 | v 1 2 964 | v 2 2 965 | v 3 2 966 | v 4 2 967 | e 0 1 5 968 | e 0 2 5 969 | e 1 3 5 970 | e 2 4 5 971 | t # 97 972 | v 0 2 973 | v 1 2 974 | v 2 2 975 | v 3 2 976 | v 4 6 977 | e 0 1 5 978 | e 1 3 5 979 | e 2 4 2 980 | e 2 3 5 981 | t # 98 982 | v 0 2 983 | v 1 2 984 | v 2 5 985 | v 3 3 986 | v 4 2 987 | e 0 1 2 988 | e 1 2 2 989 | e 1 3 3 990 | e 2 4 2 991 | t # 99 992 | v 0 2 993 | v 1 2 994 | v 2 2 995 | v 3 2 996 | v 4 2 997 | e 0 1 5 998 | e 0 2 5 999 | e 1 3 5 1000 | e 2 4 5 1001 | t # 100 1002 | v 0 2 1003 | v 1 2 1004 | v 2 5 1005 | v 3 2 1006 | v 4 3 1007 | e 0 1 2 1008 | e 1 2 2 1009 | e 2 3 2 1010 | e 3 4 3 1011 | t # 101 1012 | v 0 2 1013 | v 1 2 1014 | v 2 6 1015 | v 3 3 1016 | v 4 3 1017 | e 0 1 5 1018 | e 1 2 2 1019 | e 2 3 3 1020 | e 2 4 3 1021 | t # 102 1022 | v 0 5 1023 | v 1 2 1024 | v 2 2 1025 | v 3 2 1026 | v 4 2 1027 | e 0 1 2 1028 | e 1 2 5 1029 | e 1 3 5 1030 | e 3 4 5 1031 | t # 103 1032 | v 0 2 1033 | v 1 2 1034 | v 2 2 1035 | v 3 2 1036 | v 4 2 1037 | e 0 1 5 1038 | e 0 2 5 1039 | e 1 3 5 1040 | e 2 4 5 1041 | t # 104 1042 | v 0 2 1043 | v 1 2 1044 | v 2 2 1045 | v 3 2 1046 | v 4 2 1047 | e 0 2 2 1048 | e 1 3 2 1049 | e 1 4 2 1050 | e 2 4 3 1051 | t # 105 1052 | v 0 2 1053 | v 1 2 1054 | v 2 2 1055 | v 3 5 1056 | v 4 2 1057 | e 0 1 5 1058 | e 1 2 5 1059 | e 2 3 2 1060 | e 3 4 2 1061 | t # 106 1062 | v 0 2 1063 | v 1 2 1064 | v 2 2 1065 | v 3 2 1066 | v 4 2 1067 | e 0 1 2 1068 | e 1 2 2 1069 | e 2 3 2 1070 | e 3 4 2 1071 | t # 107 1072 | v 0 2 1073 | v 1 2 1074 | v 2 2 1075 | v 3 2 1076 | v 4 2 1077 | e 0 2 2 1078 | e 0 3 5 1079 | e 1 4 2 1080 | e 1 3 5 1081 | t # 108 1082 | v 0 2 1083 | v 1 2 1084 | v 2 23 1085 | v 3 23 1086 | v 4 23 1087 | e 0 1 2 1088 | e 0 2 2 1089 | e 1 3 2 1090 | e 1 4 2 1091 | t # 109 1092 | v 0 2 1093 | v 1 2 1094 | v 2 2 1095 | v 3 2 1096 | v 4 3 1097 | e 0 1 5 1098 | e 0 2 5 1099 | e 1 3 5 1100 | e 3 4 2 1101 | t # 110 1102 | v 0 2 1103 | v 1 2 1104 | v 2 2 1105 | v 3 2 1106 | v 4 3 1107 | e 0 1 2 1108 | e 1 2 5 1109 | e 2 3 5 1110 | e 3 4 2 1111 | t # 111 1112 | v 0 2 1113 | v 1 5 1114 | v 2 2 1115 | v 3 2 1116 | v 4 2 1117 | e 0 2 5 1118 | e 1 3 5 1119 | e 2 4 5 1120 | e 3 4 5 1121 | t # 112 1122 | v 0 2 1123 | v 1 2 1124 | v 2 3 1125 | v 3 3 1126 | v 4 2 1127 | e 0 2 2 1128 | e 0 1 5 1129 | e 1 3 2 1130 | e 2 4 2 1131 | t # 113 1132 | v 0 2 1133 | v 1 2 1134 | v 2 2 1135 | v 3 2 1136 | v 4 2 1137 | e 0 1 5 1138 | e 1 2 5 1139 | e 2 3 2 1140 | e 3 4 2 1141 | t # 114 1142 | v 0 2 1143 | v 1 2 1144 | v 2 2 1145 | v 3 2 1146 | v 4 2 1147 | e 0 1 2 1148 | e 0 2 2 1149 | e 0 3 2 1150 | e 2 4 2 1151 | t # 115 1152 | v 0 2 1153 | v 1 2 1154 | v 2 2 1155 | v 3 2 1156 | v 4 2 1157 | e 0 1 2 1158 | e 1 2 2 1159 | e 2 3 2 1160 | e 3 4 2 1161 | t # 116 1162 | v 0 2 1163 | v 1 2 1164 | v 2 2 1165 | v 3 2 1166 | v 4 2 1167 | e 0 1 2 1168 | e 1 2 2 1169 | e 2 3 2 1170 | e 3 4 2 1171 | t # 117 1172 | v 0 5 1173 | v 1 5 1174 | v 2 2 1175 | v 3 6 1176 | v 4 5 1177 | e 0 1 2 1178 | e 1 2 2 1179 | e 2 3 3 1180 | e 2 4 2 1181 | t # 118 1182 | v 0 2 1183 | v 1 2 1184 | v 2 2 1185 | v 3 5 1186 | v 4 2 1187 | e 0 1 2 1188 | e 0 2 5 1189 | e 1 3 2 1190 | e 2 4 2 1191 | t # 119 1192 | v 0 2 1193 | v 1 2 1194 | v 2 3 1195 | v 3 2 1196 | v 4 3 1197 | e 0 1 5 1198 | e 1 2 2 1199 | e 1 3 5 1200 | e 3 4 2 1201 | t # 120 1202 | v 0 2 1203 | v 1 2 1204 | v 2 3 1205 | v 3 2 1206 | v 4 3 1207 | e 0 1 2 1208 | e 1 2 2 1209 | e 1 3 2 1210 | e 3 4 2 1211 | t # 121 1212 | v 0 3 1213 | v 1 2 1214 | v 2 2 1215 | v 3 3 1216 | v 4 2 1217 | e 0 1 2 1218 | e 1 2 5 1219 | e 2 3 2 1220 | e 2 4 5 1221 | t # 122 1222 | v 0 2 1223 | v 1 5 1224 | v 2 3 1225 | v 3 2 1226 | v 4 2 1227 | e 0 1 2 1228 | e 0 2 3 1229 | e 1 3 2 1230 | e 3 4 2 1231 | t # 123 1232 | v 0 2 1233 | v 1 5 1234 | v 2 2 1235 | v 3 5 1236 | v 4 3 1237 | e 0 1 2 1238 | e 1 2 2 1239 | e 2 3 2 1240 | e 2 4 3 1241 | t # 124 1242 | v 0 2 1243 | v 1 5 1244 | v 2 2 1245 | v 3 2 1246 | v 4 2 1247 | e 0 1 2 1248 | e 1 3 2 1249 | e 2 4 2 1250 | e 3 4 2 1251 | t # 125 1252 | v 0 2 1253 | v 1 3 1254 | v 2 2 1255 | v 3 2 1256 | v 4 2 1257 | e 0 1 3 1258 | e 0 2 2 1259 | e 2 3 2 1260 | e 2 4 2 1261 | t # 126 1262 | v 0 2 1263 | v 1 2 1264 | v 2 2 1265 | v 3 2 1266 | v 4 5 1267 | e 0 3 5 1268 | e 1 2 5 1269 | e 1 4 2 1270 | e 2 3 5 1271 | t # 127 1272 | v 0 2 1273 | v 1 5 1274 | v 2 2 1275 | v 3 2 1276 | v 4 2 1277 | e 0 1 2 1278 | e 1 2 2 1279 | e 2 3 2 1280 | e 3 4 2 1281 | t # 128 1282 | v 0 2 1283 | v 1 2 1284 | v 2 2 1285 | v 3 2 1286 | v 4 3 1287 | e 0 1 5 1288 | e 1 2 5 1289 | e 1 4 2 1290 | e 2 3 5 1291 | t # 129 1292 | v 0 2 1293 | v 1 3 1294 | v 2 3 1295 | v 3 2 1296 | v 4 2 1297 | e 0 1 2 1298 | e 0 2 3 1299 | e 0 3 2 1300 | e 1 4 2 1301 | t # 130 1302 | v 0 2 1303 | v 1 2 1304 | v 2 2 1305 | v 3 2 1306 | v 4 2 1307 | e 0 1 2 1308 | e 0 2 2 1309 | e 1 3 5 1310 | e 1 4 5 1311 | t # 131 1312 | v 0 2 1313 | v 1 2 1314 | v 2 2 1315 | v 3 2 1316 | v 4 2 1317 | e 0 1 5 1318 | e 1 3 5 1319 | e 2 4 5 1320 | e 3 4 5 1321 | t # 132 1322 | v 0 2 1323 | v 1 2 1324 | v 2 3 1325 | v 3 2 1326 | v 4 2 1327 | e 0 1 5 1328 | e 1 2 2 1329 | e 2 3 2 1330 | e 3 4 5 1331 | t # 133 1332 | v 0 2 1333 | v 1 2 1334 | v 2 2 1335 | v 3 2 1336 | v 4 2 1337 | e 0 1 5 1338 | e 0 2 2 1339 | e 2 3 2 1340 | e 3 4 2 1341 | t # 134 1342 | v 0 2 1343 | v 1 2 1344 | v 2 5 1345 | v 3 2 1346 | v 4 2 1347 | e 0 1 2 1348 | e 1 2 2 1349 | e 1 3 2 1350 | e 3 4 2 1351 | t # 135 1352 | v 0 2 1353 | v 1 2 1354 | v 2 3 1355 | v 3 5 1356 | v 4 2 1357 | e 0 1 2 1358 | e 0 2 3 1359 | e 1 3 2 1360 | e 3 4 2 1361 | t # 136 1362 | v 0 2 1363 | v 1 2 1364 | v 2 5 1365 | v 3 2 1366 | v 4 3 1367 | e 0 1 5 1368 | e 1 2 2 1369 | e 2 3 2 1370 | e 3 4 3 1371 | t # 137 1372 | v 0 2 1373 | v 1 2 1374 | v 2 5 1375 | v 3 2 1376 | v 4 3 1377 | e 0 1 2 1378 | e 1 2 2 1379 | e 2 3 2 1380 | e 3 4 3 1381 | t # 138 1382 | v 0 2 1383 | v 1 5 1384 | v 2 3 1385 | v 3 2 1386 | v 4 2 1387 | e 0 1 2 1388 | e 0 2 3 1389 | e 1 3 2 1390 | e 3 4 2 1391 | t # 139 1392 | v 0 2 1393 | v 1 2 1394 | v 2 2 1395 | v 3 2 1396 | v 4 5 1397 | e 0 1 2 1398 | e 1 2 2 1399 | e 2 3 2 1400 | e 3 4 2 1401 | t # 140 1402 | v 0 2 1403 | v 1 2 1404 | v 2 2 1405 | v 3 3 1406 | v 4 2 1407 | e 0 1 5 1408 | e 1 2 5 1409 | e 2 3 2 1410 | e 3 4 2 1411 | t # 141 1412 | v 0 5 1413 | v 1 2 1414 | v 2 2 1415 | v 3 2 1416 | v 4 3 1417 | e 0 1 2 1418 | e 0 2 2 1419 | e 1 3 2 1420 | e 1 4 3 1421 | t # 142 1422 | v 0 2 1423 | v 1 2 1424 | v 2 2 1425 | v 3 2 1426 | v 4 3 1427 | e 0 1 5 1428 | e 1 2 5 1429 | e 1 3 5 1430 | e 3 4 2 1431 | t # 143 1432 | v 0 2 1433 | v 1 2 1434 | v 2 2 1435 | v 3 3 1436 | v 4 2 1437 | e 0 2 5 1438 | e 1 2 5 1439 | e 2 3 2 1440 | e 3 4 2 1441 | t # 144 1442 | v 0 2 1443 | v 1 2 1444 | v 2 2 1445 | v 3 2 1446 | v 4 3 1447 | e 0 1 5 1448 | e 0 2 5 1449 | e 1 3 5 1450 | e 3 4 2 1451 | t # 145 1452 | v 0 2 1453 | v 1 2 1454 | v 2 2 1455 | v 3 2 1456 | v 4 2 1457 | e 0 1 5 1458 | e 1 2 2 1459 | e 1 3 5 1460 | e 3 4 5 1461 | t # 146 1462 | v 0 2 1463 | v 1 2 1464 | v 2 2 1465 | v 3 2 1466 | v 4 3 1467 | e 0 1 2 1468 | e 0 2 2 1469 | e 2 3 3 1470 | e 3 4 2 1471 | t # 147 1472 | v 0 2 1473 | v 1 2 1474 | v 2 2 1475 | v 3 2 1476 | v 4 2 1477 | e 0 1 5 1478 | e 1 2 5 1479 | e 2 4 5 1480 | e 3 4 5 1481 | t # 148 1482 | v 0 2 1483 | v 1 2 1484 | v 2 2 1485 | v 3 2 1486 | v 4 2 1487 | e 0 1 2 1488 | e 0 2 2 1489 | e 1 3 2 1490 | e 3 4 2 1491 | t # 149 1492 | v 0 2 1493 | v 1 2 1494 | v 2 5 1495 | v 3 2 1496 | v 4 3 1497 | e 0 1 2 1498 | e 0 2 2 1499 | e 2 3 2 1500 | e 3 4 3 1501 | t # 150 1502 | v 0 27 1503 | v 1 5 1504 | v 2 5 1505 | v 3 5 1506 | v 4 2 1507 | e 0 1 2 1508 | e 0 2 2 1509 | e 0 3 2 1510 | e 3 4 5 1511 | t # 151 1512 | v 0 2 1513 | v 1 3 1514 | v 2 2 1515 | v 3 2 1516 | v 4 6 1517 | e 0 1 2 1518 | e 1 2 2 1519 | e 2 3 2 1520 | e 3 4 5 1521 | t # 152 1522 | v 0 2 1523 | v 1 2 1524 | v 2 2 1525 | v 3 2 1526 | v 4 2 1527 | e 0 2 5 1528 | e 1 3 5 1529 | e 2 4 5 1530 | e 3 4 5 1531 | t # 153 1532 | v 0 2 1533 | v 1 2 1534 | v 2 2 1535 | v 3 2 1536 | v 4 2 1537 | e 0 1 2 1538 | e 1 2 2 1539 | e 1 3 2 1540 | e 3 4 2 1541 | t # 154 1542 | v 0 2 1543 | v 1 3 1544 | v 2 2 1545 | v 3 2 1546 | v 4 3 1547 | e 0 1 2 1548 | e 1 2 2 1549 | e 2 3 2 1550 | e 2 4 3 1551 | t # 155 1552 | v 0 7 1553 | v 1 2 1554 | v 2 2 1555 | v 3 2 1556 | v 4 2 1557 | e 0 1 2 1558 | e 1 2 5 1559 | e 2 3 5 1560 | e 3 4 5 1561 | t # 156 1562 | v 0 2 1563 | v 1 5 1564 | v 2 5 1565 | v 3 2 1566 | v 4 2 1567 | e 0 1 2 1568 | e 0 2 2 1569 | e 2 3 2 1570 | e 3 4 2 1571 | t # 157 1572 | v 0 5 1573 | v 1 2 1574 | v 2 2 1575 | v 3 2 1576 | v 4 3 1577 | e 0 1 2 1578 | e 1 2 2 1579 | e 1 3 2 1580 | e 2 4 3 1581 | t # 158 1582 | v 0 2 1583 | v 1 2 1584 | v 2 2 1585 | v 3 2 1586 | v 4 2 1587 | e 0 2 5 1588 | e 1 3 5 1589 | e 2 4 5 1590 | e 3 4 5 1591 | t # 159 1592 | v 0 2 1593 | v 1 2 1594 | v 2 2 1595 | v 3 2 1596 | v 4 2 1597 | e 0 1 2 1598 | e 1 2 5 1599 | e 1 3 5 1600 | e 2 4 5 1601 | t # 160 1602 | v 0 2 1603 | v 1 2 1604 | v 2 5 1605 | v 3 2 1606 | v 4 2 1607 | e 0 1 2 1608 | e 1 2 2 1609 | e 2 3 2 1610 | e 3 4 2 1611 | t # 161 1612 | v 0 2 1613 | v 1 3 1614 | v 2 2 1615 | v 3 2 1616 | v 4 3 1617 | e 0 1 2 1618 | e 1 2 2 1619 | e 2 3 2 1620 | e 2 4 3 1621 | t # 162 1622 | v 0 2 1623 | v 1 2 1624 | v 2 2 1625 | v 3 2 1626 | v 4 3 1627 | e 0 1 2 1628 | e 1 2 2 1629 | e 2 3 2 1630 | e 3 4 2 1631 | t # 163 1632 | v 0 2 1633 | v 1 2 1634 | v 2 2 1635 | v 3 2 1636 | v 4 2 1637 | e 0 2 2 1638 | e 0 3 5 1639 | e 1 2 2 1640 | e 3 4 5 1641 | t # 164 1642 | v 0 2 1643 | v 1 2 1644 | v 2 5 1645 | v 3 5 1646 | v 4 2 1647 | e 0 1 2 1648 | e 1 2 3 1649 | e 2 3 2 1650 | e 3 4 2 1651 | t # 165 1652 | v 0 2 1653 | v 1 2 1654 | v 2 2 1655 | v 3 2 1656 | v 4 2 1657 | e 0 1 2 1658 | e 1 2 2 1659 | e 2 3 2 1660 | e 3 4 2 1661 | t # 166 1662 | v 0 2 1663 | v 1 2 1664 | v 2 2 1665 | v 3 2 1666 | v 4 2 1667 | e 0 1 5 1668 | e 1 3 5 1669 | e 2 4 5 1670 | e 3 4 5 1671 | t # 167 1672 | v 0 2 1673 | v 1 3 1674 | v 2 3 1675 | v 3 2 1676 | v 4 3 1677 | e 0 2 3 1678 | e 0 3 2 1679 | e 1 3 2 1680 | e 3 4 2 1681 | t # 168 1682 | v 0 2 1683 | v 1 2 1684 | v 2 3 1685 | v 3 2 1686 | v 4 2 1687 | e 0 1 2 1688 | e 1 2 2 1689 | e 1 3 2 1690 | e 2 4 2 1691 | t # 169 1692 | v 0 2 1693 | v 1 2 1694 | v 2 2 1695 | v 3 3 1696 | v 4 2 1697 | e 0 1 2 1698 | e 1 2 2 1699 | e 2 3 2 1700 | e 2 4 2 1701 | t # 170 1702 | v 0 2 1703 | v 1 2 1704 | v 2 2 1705 | v 3 3 1706 | v 4 2 1707 | e 0 1 2 1708 | e 1 2 2 1709 | e 2 3 2 1710 | e 2 4 2 1711 | t # 171 1712 | v 0 2 1713 | v 1 3 1714 | v 2 2 1715 | v 3 2 1716 | v 4 3 1717 | e 0 1 2 1718 | e 1 2 2 1719 | e 2 3 2 1720 | e 2 4 3 1721 | t # 172 1722 | v 0 2 1723 | v 1 3 1724 | v 2 2 1725 | v 3 2 1726 | v 4 2 1727 | e 0 1 2 1728 | e 0 2 2 1729 | e 2 3 2 1730 | e 2 4 2 1731 | t # 173 1732 | v 0 2 1733 | v 1 2 1734 | v 2 2 1735 | v 3 2 1736 | v 4 2 1737 | e 0 1 5 1738 | e 1 3 5 1739 | e 2 3 5 1740 | e 3 4 2 1741 | t # 174 1742 | v 0 2 1743 | v 1 5 1744 | v 2 2 1745 | v 3 2 1746 | v 4 2 1747 | e 0 1 2 1748 | e 1 2 2 1749 | e 2 3 2 1750 | e 3 4 2 1751 | t # 175 1752 | v 0 2 1753 | v 1 2 1754 | v 2 2 1755 | v 3 2 1756 | v 4 3 1757 | e 0 2 2 1758 | e 1 3 2 1759 | e 1 2 2 1760 | e 2 4 2 1761 | t # 176 1762 | v 0 2 1763 | v 1 2 1764 | v 2 2 1765 | v 3 5 1766 | v 4 3 1767 | e 0 2 5 1768 | e 1 3 2 1769 | e 1 2 5 1770 | e 2 4 2 1771 | t # 177 1772 | v 0 2 1773 | v 1 2 1774 | v 2 2 1775 | v 3 2 1776 | v 4 3 1777 | e 0 1 2 1778 | e 1 2 2 1779 | e 1 3 2 1780 | e 3 4 2 1781 | t # 178 1782 | v 0 2 1783 | v 1 2 1784 | v 2 3 1785 | v 3 2 1786 | v 4 2 1787 | e 0 2 2 1788 | e 1 3 2 1789 | e 2 3 2 1790 | e 3 4 2 1791 | t # 179 1792 | v 0 2 1793 | v 1 2 1794 | v 2 2 1795 | v 3 3 1796 | v 4 2 1797 | e 0 2 5 1798 | e 1 3 2 1799 | e 1 2 5 1800 | e 2 4 2 1801 | t # 180 1802 | v 0 2 1803 | v 1 2 1804 | v 2 5 1805 | v 3 3 1806 | v 4 2 1807 | e 0 1 2 1808 | e 1 2 2 1809 | e 1 3 3 1810 | e 2 4 2 1811 | t # 181 1812 | v 0 3 1813 | v 1 2 1814 | v 2 2 1815 | v 3 2 1816 | v 4 2 1817 | e 0 1 2 1818 | e 0 2 2 1819 | e 2 3 5 1820 | e 3 4 5 1821 | t # 182 1822 | v 0 2 1823 | v 1 2 1824 | v 2 2 1825 | v 3 2 1826 | v 4 2 1827 | e 0 1 2 1828 | e 1 2 2 1829 | e 2 3 2 1830 | e 3 4 2 1831 | t # 183 1832 | v 0 2 1833 | v 1 2 1834 | v 2 2 1835 | v 3 2 1836 | v 4 3 1837 | e 0 1 5 1838 | e 1 3 5 1839 | e 2 3 5 1840 | e 3 4 2 1841 | t # 184 1842 | v 0 2 1843 | v 1 2 1844 | v 2 2 1845 | v 3 2 1846 | v 4 3 1847 | e 0 2 2 1848 | e 1 3 2 1849 | e 1 2 2 1850 | e 2 4 2 1851 | t # 185 1852 | v 0 2 1853 | v 1 2 1854 | v 2 3 1855 | v 3 2 1856 | v 4 2 1857 | e 0 1 2 1858 | e 0 2 2 1859 | e 2 3 2 1860 | e 3 4 3 1861 | t # 186 1862 | v 0 2 1863 | v 1 2 1864 | v 2 2 1865 | v 3 2 1866 | v 4 3 1867 | e 0 2 5 1868 | e 1 3 5 1869 | e 2 3 5 1870 | e 3 4 2 1871 | t # 187 1872 | v 0 2 1873 | v 1 2 1874 | v 2 2 1875 | v 3 2 1876 | v 4 3 1877 | e 0 2 5 1878 | e 1 3 5 1879 | e 2 4 2 1880 | e 2 3 5 1881 | t # 188 1882 | v 0 2 1883 | v 1 3 1884 | v 2 2 1885 | v 3 2 1886 | v 4 3 1887 | e 0 1 2 1888 | e 1 2 2 1889 | e 2 3 2 1890 | e 2 4 3 1891 | t # 189 1892 | v 0 2 1893 | v 1 2 1894 | v 2 2 1895 | v 3 5 1896 | v 4 2 1897 | e 0 1 5 1898 | e 1 2 5 1899 | e 2 3 2 1900 | e 3 4 2 1901 | t # 190 1902 | v 0 2 1903 | v 1 2 1904 | v 2 3 1905 | v 3 2 1906 | v 4 2 1907 | e 0 1 2 1908 | e 1 2 2 1909 | e 1 3 2 1910 | e 3 4 2 1911 | t # 191 1912 | v 0 2 1913 | v 1 2 1914 | v 2 2 1915 | v 3 2 1916 | v 4 3 1917 | e 0 1 2 1918 | e 0 2 2 1919 | e 2 4 2 1920 | e 3 4 2 1921 | t # 192 1922 | v 0 2 1923 | v 1 2 1924 | v 2 2 1925 | v 3 2 1926 | v 4 3 1927 | e 0 2 5 1928 | e 1 3 5 1929 | e 2 3 5 1930 | e 3 4 2 1931 | t # 193 1932 | v 0 2 1933 | v 1 2 1934 | v 2 2 1935 | v 3 2 1936 | v 4 2 1937 | e 0 1 2 1938 | e 0 2 3 1939 | e 2 3 2 1940 | e 3 4 3 1941 | t # 194 1942 | v 0 2 1943 | v 1 2 1944 | v 2 3 1945 | v 3 2 1946 | v 4 2 1947 | e 0 1 2 1948 | e 1 2 2 1949 | e 1 3 2 1950 | e 3 4 2 1951 | t # 195 1952 | v 0 3 1953 | v 1 2 1954 | v 2 2 1955 | v 3 2 1956 | v 4 5 1957 | e 0 1 2 1958 | e 1 2 5 1959 | e 2 3 2 1960 | e 3 4 3 1961 | t # 196 1962 | v 0 2 1963 | v 1 2 1964 | v 2 2 1965 | v 3 2 1966 | v 4 3 1967 | e 0 1 2 1968 | e 1 2 2 1969 | e 1 3 2 1970 | e 3 4 2 1971 | t # 197 1972 | v 0 2 1973 | v 1 2 1974 | v 2 3 1975 | v 3 2 1976 | v 4 3 1977 | e 0 1 2 1978 | e 1 2 3 1979 | e 1 3 2 1980 | e 3 4 2 1981 | t # 198 1982 | v 0 2 1983 | v 1 2 1984 | v 2 2 1985 | v 3 2 1986 | v 4 2 1987 | e 0 1 3 1988 | e 1 2 2 1989 | e 2 3 2 1990 | e 2 4 2 1991 | t # 199 1992 | v 0 2 1993 | v 1 2 1994 | v 2 2 1995 | v 3 3 1996 | v 4 2 1997 | e 0 1 5 1998 | e 1 2 2 1999 | e 2 3 3 2000 | e 2 4 2 2001 | t # 200 2002 | v 0 2 2003 | v 1 3 2004 | v 2 2 2005 | v 3 2 2006 | v 4 2 2007 | e 0 1 2 2008 | e 1 2 2 2009 | e 2 3 3 2010 | e 3 4 2 2011 | t # 201 2012 | v 0 2 2013 | v 1 2 2014 | v 2 2 2015 | v 3 2 2016 | v 4 2 2017 | e 0 1 5 2018 | e 0 2 5 2019 | e 2 3 5 2020 | e 3 4 5 2021 | t # 202 2022 | v 0 2 2023 | v 1 2 2024 | v 2 2 2025 | v 3 3 2026 | v 4 2 2027 | e 0 1 5 2028 | e 1 3 2 2029 | e 2 4 2 2030 | e 3 4 2 2031 | t # 203 2032 | v 0 2 2033 | v 1 2 2034 | v 2 2 2035 | v 3 2 2036 | v 4 2 2037 | e 0 1 5 2038 | e 1 2 5 2039 | e 2 3 5 2040 | e 2 4 2 2041 | t # 204 2042 | v 0 2 2043 | v 1 2 2044 | v 2 2 2045 | v 3 2 2046 | v 4 5 2047 | e 0 2 5 2048 | e 1 3 5 2049 | e 2 4 2 2050 | e 2 3 5 2051 | t # 205 2052 | v 0 2 2053 | v 1 2 2054 | v 2 2 2055 | v 3 2 2056 | v 4 2 2057 | e 0 1 2 2058 | e 1 2 3 2059 | e 2 3 2 2060 | e 3 4 2 2061 | t # 206 2062 | v 0 2 2063 | v 1 2 2064 | v 2 2 2065 | v 3 5 2066 | v 4 3 2067 | e 0 1 5 2068 | e 1 2 2 2069 | e 2 3 3 2070 | e 3 4 2 2071 | t # 207 2072 | v 0 2 2073 | v 1 2 2074 | v 2 3 2075 | v 3 2 2076 | v 4 2 2077 | e 0 1 5 2078 | e 1 2 2 2079 | e 1 3 5 2080 | e 3 4 2 2081 | t # 208 2082 | v 0 2 2083 | v 1 2 2084 | v 2 2 2085 | v 3 3 2086 | v 4 2 2087 | e 0 1 2 2088 | e 0 2 2 2089 | e 2 3 2 2090 | e 2 4 2 2091 | t # 209 2092 | v 0 2 2093 | v 1 2 2094 | v 2 2 2095 | v 3 3 2096 | v 4 2 2097 | e 0 1 5 2098 | e 1 3 2 2099 | e 1 2 5 2100 | e 2 4 2 2101 | t # 210 2102 | v 0 2 2103 | v 1 3 2104 | v 2 2 2105 | v 3 2 2106 | v 4 2 2107 | e 0 1 2 2108 | e 0 2 2 2109 | e 1 3 2 2110 | e 3 4 2 2111 | t # 211 2112 | v 0 2 2113 | v 1 3 2114 | v 2 2 2115 | v 3 2 2116 | v 4 3 2117 | e 0 1 2 2118 | e 1 2 2 2119 | e 2 3 2 2120 | e 2 4 2 2121 | t # 212 2122 | v 0 2 2123 | v 1 2 2124 | v 2 2 2125 | v 3 2 2126 | v 4 3 2127 | e 0 1 5 2128 | e 0 2 5 2129 | e 2 4 2 2130 | e 2 3 5 2131 | t # 213 2132 | v 0 3 2133 | v 1 2 2134 | v 2 2 2135 | v 3 2 2136 | v 4 2 2137 | e 0 1 2 2138 | e 1 2 5 2139 | e 2 3 5 2140 | e 3 4 5 2141 | t # 214 2142 | v 0 2 2143 | v 1 2 2144 | v 2 5 2145 | v 3 2 2146 | v 4 3 2147 | e 0 1 5 2148 | e 1 2 2 2149 | e 1 3 5 2150 | e 2 4 3 2151 | t # 215 2152 | v 0 2 2153 | v 1 2 2154 | v 2 3 2155 | v 3 2 2156 | v 4 2 2157 | e 0 1 2 2158 | e 0 2 2 2159 | e 2 3 2 2160 | e 3 4 3 2161 | t # 216 2162 | v 0 2 2163 | v 1 2 2164 | v 2 3 2165 | v 3 2 2166 | v 4 2 2167 | e 0 1 2 2168 | e 1 2 3 2169 | e 1 3 2 2170 | e 3 4 3 2171 | t # 217 2172 | v 0 2 2173 | v 1 2 2174 | v 2 2 2175 | v 3 2 2176 | v 4 2 2177 | e 0 1 2 2178 | e 0 2 2 2179 | e 0 3 2 2180 | e 1 4 2 2181 | t # 218 2182 | v 0 2 2183 | v 1 2 2184 | v 2 2 2185 | v 3 2 2186 | v 4 2 2187 | e 0 1 2 2188 | e 0 2 2 2189 | e 1 3 5 2190 | e 2 4 2 2191 | t # 219 2192 | v 0 2 2193 | v 1 2 2194 | v 2 2 2195 | v 3 2 2196 | v 4 2 2197 | e 0 1 5 2198 | e 1 2 5 2199 | e 2 4 5 2200 | e 3 4 5 2201 | t # 220 2202 | v 0 2 2203 | v 1 2 2204 | v 2 3 2205 | v 3 2 2206 | v 4 2 2207 | e 0 1 2 2208 | e 1 2 2 2209 | e 1 3 2 2210 | e 3 4 2 2211 | t # 221 2212 | v 0 2 2213 | v 1 2 2214 | v 2 2 2215 | v 3 2 2216 | v 4 3 2217 | e 0 1 5 2218 | e 1 2 5 2219 | e 1 3 5 2220 | e 2 4 2 2221 | t # 222 2222 | v 0 2 2223 | v 1 2 2224 | v 2 2 2225 | v 3 2 2226 | v 4 2 2227 | e 0 1 5 2228 | e 0 2 5 2229 | e 1 3 2 2230 | e 3 4 2 2231 | t # 223 2232 | v 0 2 2233 | v 1 2 2234 | v 2 2 2235 | v 3 2 2236 | v 4 3 2237 | e 0 1 2 2238 | e 1 3 2 2239 | e 2 3 2 2240 | e 3 4 2 2241 | t # 224 2242 | v 0 2 2243 | v 1 2 2244 | v 2 2 2245 | v 3 3 2246 | v 4 3 2247 | e 0 2 5 2248 | e 1 3 2 2249 | e 1 2 5 2250 | e 2 4 2 2251 | t # 225 2252 | v 0 2 2253 | v 1 3 2254 | v 2 2 2255 | v 3 5 2256 | v 4 3 2257 | e 0 1 2 2258 | e 1 2 2 2259 | e 2 3 2 2260 | e 2 4 3 2261 | t # 226 2262 | v 0 2 2263 | v 1 2 2264 | v 2 2 2265 | v 3 3 2266 | v 4 2 2267 | e 0 1 2 2268 | e 1 2 2 2269 | e 2 3 2 2270 | e 2 4 2 2271 | t # 227 2272 | v 0 2 2273 | v 1 2 2274 | v 2 3 2275 | v 3 2 2276 | v 4 3 2277 | e 0 1 2 2278 | e 0 2 2 2279 | e 1 3 2 2280 | e 3 4 2 2281 | t # 228 2282 | v 0 2 2283 | v 1 5 2284 | v 2 2 2285 | v 3 2 2286 | v 4 2 2287 | e 0 1 2 2288 | e 1 2 2 2289 | e 1 3 2 2290 | e 2 4 2 2291 | t # 229 2292 | v 0 2 2293 | v 1 2 2294 | v 2 2 2295 | v 3 3 2296 | v 4 2 2297 | e 0 1 2 2298 | e 1 3 2 2299 | e 1 2 2 2300 | e 2 4 2 2301 | t # 230 2302 | v 0 2 2303 | v 1 2 2304 | v 2 2 2305 | v 3 2 2306 | v 4 2 2307 | e 0 1 2 2308 | e 1 2 5 2309 | e 1 3 5 2310 | e 2 4 5 2311 | t # 231 2312 | v 0 2 2313 | v 1 2 2314 | v 2 2 2315 | v 3 2 2316 | v 4 3 2317 | e 0 1 5 2318 | e 0 2 2 2319 | e 1 3 5 2320 | e 3 4 2 2321 | t # 232 2322 | v 0 2 2323 | v 1 2 2324 | v 2 2 2325 | v 3 2 2326 | v 4 3 2327 | e 0 1 5 2328 | e 1 3 5 2329 | e 2 4 2 2330 | e 2 3 5 2331 | t # 233 2332 | v 0 2 2333 | v 1 2 2334 | v 2 2 2335 | v 3 2 2336 | v 4 2 2337 | e 0 1 2 2338 | e 1 2 2 2339 | e 2 3 2 2340 | e 3 4 2 2341 | t # 234 2342 | v 0 2 2343 | v 1 2 2344 | v 2 2 2345 | v 3 2 2346 | v 4 3 2347 | e 0 1 5 2348 | e 0 2 5 2349 | e 2 3 5 2350 | e 3 4 2 2351 | t # 235 2352 | v 0 2 2353 | v 1 2 2354 | v 2 2 2355 | v 3 3 2356 | v 4 2 2357 | e 0 1 3 2358 | e 1 2 2 2359 | e 2 3 2 2360 | e 3 4 2 2361 | t # 236 2362 | v 0 2 2363 | v 1 5 2364 | v 2 3 2365 | v 3 2 2366 | v 4 2 2367 | e 0 1 3 2368 | e 1 2 2 2369 | e 2 3 2 2370 | e 3 4 2 2371 | t # 237 2372 | v 0 2 2373 | v 1 2 2374 | v 2 2 2375 | v 3 2 2376 | v 4 2 2377 | e 0 1 2 2378 | e 1 2 2 2379 | e 2 3 2 2380 | e 3 4 2 2381 | t # 238 2382 | v 0 2 2383 | v 1 2 2384 | v 2 3 2385 | v 3 2 2386 | v 4 2 2387 | e 0 1 2 2388 | e 1 2 2 2389 | e 2 3 2 2390 | e 3 4 2 2391 | t # 239 2392 | v 0 2 2393 | v 1 2 2394 | v 2 2 2395 | v 3 5 2396 | v 4 5 2397 | e 0 1 2 2398 | e 0 2 5 2399 | e 1 3 3 2400 | e 2 4 2 2401 | t # 240 2402 | v 0 2 2403 | v 1 2 2404 | v 2 2 2405 | v 3 2 2406 | v 4 2 2407 | e 0 1 2 2408 | e 1 2 5 2409 | e 1 3 5 2410 | e 3 4 5 2411 | t # 241 2412 | v 0 2 2413 | v 1 3 2414 | v 2 2 2415 | v 3 2 2416 | v 4 3 2417 | e 0 1 2 2418 | e 1 2 2 2419 | e 2 3 2 2420 | e 2 4 3 2421 | t # 242 2422 | v 0 2 2423 | v 1 2 2424 | v 2 2 2425 | v 3 3 2426 | v 4 2 2427 | e 0 2 2 2428 | e 1 3 2 2429 | e 2 4 2 2430 | e 3 4 2 2431 | t # 243 2432 | v 0 2 2433 | v 1 2 2434 | v 2 2 2435 | v 3 2 2436 | v 4 2 2437 | e 0 1 5 2438 | e 1 3 5 2439 | e 2 3 5 2440 | e 3 4 2 2441 | t # 244 2442 | v 0 2 2443 | v 1 2 2444 | v 2 3 2445 | v 3 2 2446 | v 4 3 2447 | e 0 1 2 2448 | e 1 2 3 2449 | e 1 3 2 2450 | e 3 4 2 2451 | t # 245 2452 | v 0 2 2453 | v 1 2 2454 | v 2 2 2455 | v 3 3 2456 | v 4 2 2457 | e 0 1 5 2458 | e 0 2 2 2459 | e 1 3 2 2460 | e 3 4 2 2461 | t # 246 2462 | v 0 2 2463 | v 1 3 2464 | v 2 2 2465 | v 3 2 2466 | v 4 3 2467 | e 0 1 2 2468 | e 1 2 2 2469 | e 2 3 2 2470 | e 3 4 2 2471 | t # 247 2472 | v 0 2 2473 | v 1 2 2474 | v 2 3 2475 | v 3 2 2476 | v 4 3 2477 | e 0 2 2 2478 | e 1 3 2 2479 | e 2 3 2 2480 | e 3 4 2 2481 | t # 248 2482 | v 0 3 2483 | v 1 2 2484 | v 2 2 2485 | v 3 2 2486 | v 4 5 2487 | e 0 1 2 2488 | e 1 2 5 2489 | e 2 3 2 2490 | e 3 4 2 2491 | t # 249 2492 | v 0 2 2493 | v 1 2 2494 | v 2 2 2495 | v 3 2 2496 | v 4 3 2497 | e 0 1 2 2498 | e 1 2 2 2499 | e 1 3 2 2500 | e 3 4 2 2501 | t # 250 2502 | v 0 2 2503 | v 1 2 2504 | v 2 2 2505 | v 3 2 2506 | v 4 3 2507 | e 0 2 2 2508 | e 0 3 2 2509 | e 1 3 2 2510 | e 3 4 2 2511 | t # 251 2512 | v 0 2 2513 | v 1 3 2514 | v 2 2 2515 | v 3 3 2516 | v 4 2 2517 | e 0 1 3 2518 | e 0 2 2 2519 | e 2 3 2 2520 | e 3 4 2 2521 | t # 252 2522 | v 0 2 2523 | v 1 2 2524 | v 2 2 2525 | v 3 2 2526 | v 4 3 2527 | e 0 1 3 2528 | e 1 2 2 2529 | e 2 3 2 2530 | e 3 4 2 2531 | t # 253 2532 | v 0 2 2533 | v 1 2 2534 | v 2 2 2535 | v 3 2 2536 | v 4 3 2537 | e 0 1 2 2538 | e 1 3 2 2539 | e 1 2 2 2540 | e 2 4 2 2541 | t # 254 2542 | v 0 2 2543 | v 1 2 2544 | v 2 2 2545 | v 3 2 2546 | v 4 2 2547 | e 0 2 2 2548 | e 0 1 5 2549 | e 1 3 2 2550 | e 2 4 3 2551 | t # 255 2552 | v 0 2 2553 | v 1 2 2554 | v 2 3 2555 | v 3 3 2556 | v 4 3 2557 | e 0 1 2 2558 | e 0 2 2 2559 | e 1 3 2 2560 | e 1 4 3 2561 | t # 256 2562 | v 0 3 2563 | v 1 2 2564 | v 2 2 2565 | v 3 2 2566 | v 4 2 2567 | e 0 1 2 2568 | e 1 2 3 2569 | e 1 3 2 2570 | e 2 4 2 2571 | t # 257 2572 | v 0 5 2573 | v 1 2 2574 | v 2 2 2575 | v 3 2 2576 | v 4 2 2577 | e 0 1 2 2578 | e 1 2 2 2579 | e 2 3 2 2580 | e 2 4 3 2581 | t # 258 2582 | v 0 3 2583 | v 1 2 2584 | v 2 2 2585 | v 3 2 2586 | v 4 2 2587 | e 0 1 2 2588 | e 1 2 5 2589 | e 2 3 5 2590 | e 3 4 5 2591 | t # 259 2592 | v 0 2 2593 | v 1 2 2594 | v 2 3 2595 | v 3 2 2596 | v 4 2 2597 | e 0 1 2 2598 | e 1 2 2 2599 | e 1 3 2 2600 | e 3 4 2 2601 | t # 260 2602 | v 0 2 2603 | v 1 5 2604 | v 2 2 2605 | v 3 3 2606 | v 4 2 2607 | e 0 1 2 2608 | e 1 2 2 2609 | e 2 3 3 2610 | e 2 4 2 2611 | t # 261 2612 | v 0 2 2613 | v 1 2 2614 | v 2 2 2615 | v 3 2 2616 | v 4 2 2617 | e 0 1 2 2618 | e 1 2 2 2619 | e 1 3 3 2620 | e 3 4 2 2621 | t # 262 2622 | v 0 2 2623 | v 1 2 2624 | v 2 2 2625 | v 3 2 2626 | v 4 3 2627 | e 0 2 2 2628 | e 0 3 2 2629 | e 1 3 2 2630 | e 3 4 2 2631 | t # 263 2632 | v 0 2 2633 | v 1 2 2634 | v 2 2 2635 | v 3 2 2636 | v 4 3 2637 | e 0 2 2 2638 | e 1 3 2 2639 | e 2 3 2 2640 | e 3 4 2 2641 | t # 264 2642 | v 0 2 2643 | v 1 2 2644 | v 2 2 2645 | v 3 2 2646 | v 4 2 2647 | e 0 1 2 2648 | e 0 2 2 2649 | e 2 3 2 2650 | e 3 4 2 2651 | t # 265 2652 | v 0 2 2653 | v 1 2 2654 | v 2 2 2655 | v 3 5 2656 | v 4 2 2657 | e 0 2 2 2658 | e 1 3 2 2659 | e 2 3 2 2660 | e 3 4 2 2661 | t # 266 2662 | v 0 3 2663 | v 1 2 2664 | v 2 3 2665 | v 3 2 2666 | v 4 2 2667 | e 0 1 2 2668 | e 1 2 2 2669 | e 2 3 2 2670 | e 3 4 3 2671 | t # 267 2672 | v 0 2 2673 | v 1 2 2674 | v 2 3 2675 | v 3 2 2676 | v 4 2 2677 | e 0 2 2 2678 | e 0 3 2 2679 | e 1 4 2 2680 | e 3 4 2 2681 | t # 268 2682 | v 0 2 2683 | v 1 3 2684 | v 2 2 2685 | v 3 2 2686 | v 4 2 2687 | e 0 1 2 2688 | e 0 2 2 2689 | e 1 3 2 2690 | e 2 4 2 2691 | t # 269 2692 | v 0 2 2693 | v 1 2 2694 | v 2 2 2695 | v 3 2 2696 | v 4 5 2697 | e 0 2 5 2698 | e 1 3 5 2699 | e 2 4 2 2700 | e 2 3 5 2701 | t # 270 2702 | v 0 2 2703 | v 1 2 2704 | v 2 2 2705 | v 3 5 2706 | v 4 2 2707 | e 0 1 2 2708 | e 0 2 5 2709 | e 2 3 2 2710 | e 3 4 2 2711 | t # 271 2712 | v 0 6 2713 | v 1 2 2714 | v 2 2 2715 | v 3 2 2716 | v 4 2 2717 | e 0 1 2 2718 | e 1 2 2 2719 | e 1 3 2 2720 | e 3 4 2 2721 | t # 272 2722 | v 0 5 2723 | v 1 2 2724 | v 2 2 2725 | v 3 5 2726 | v 4 6 2727 | e 0 1 2 2728 | e 1 2 2 2729 | e 1 3 3 2730 | e 2 4 2 2731 | t # 273 2732 | v 0 2 2733 | v 1 2 2734 | v 2 2 2735 | v 3 2 2736 | v 4 2 2737 | e 0 2 2 2738 | e 1 2 2 2739 | e 2 4 2 2740 | e 3 4 2 2741 | t # 274 2742 | v 0 2 2743 | v 1 2 2744 | v 2 2 2745 | v 3 2 2746 | v 4 2 2747 | e 0 1 2 2748 | e 1 2 2 2749 | e 1 3 2 2750 | e 3 4 2 2751 | t # 275 2752 | v 0 2 2753 | v 1 2 2754 | v 2 2 2755 | v 3 3 2756 | v 4 2 2757 | e 0 1 3 2758 | e 1 2 2 2759 | e 2 3 2 2760 | e 2 4 2 2761 | t # 276 2762 | v 0 2 2763 | v 1 2 2764 | v 2 2 2765 | v 3 3 2766 | v 4 3 2767 | e 0 1 2 2768 | e 1 2 2 2769 | e 2 3 2 2770 | e 2 4 3 2771 | t # 277 2772 | v 0 5 2773 | v 1 2 2774 | v 2 2 2775 | v 3 2 2776 | v 4 2 2777 | e 0 1 2 2778 | e 0 2 2 2779 | e 2 3 2 2780 | e 3 4 2 2781 | t # 278 2782 | v 0 3 2783 | v 1 2 2784 | v 2 2 2785 | v 3 2 2786 | v 4 2 2787 | e 0 1 2 2788 | e 1 2 5 2789 | e 1 3 5 2790 | e 2 4 5 2791 | t # 279 2792 | v 0 3 2793 | v 1 2 2794 | v 2 2 2795 | v 3 2 2796 | v 4 5 2797 | e 0 1 2 2798 | e 1 2 5 2799 | e 2 3 2 2800 | e 3 4 3 2801 | t # 280 2802 | v 0 5 2803 | v 1 5 2804 | v 2 2 2805 | v 3 2 2806 | v 4 2 2807 | e 0 1 2 2808 | e 1 2 2 2809 | e 1 3 2 2810 | e 3 4 2 2811 | t # 281 2812 | v 0 5 2813 | v 1 2 2814 | v 2 2 2815 | v 3 2 2816 | v 4 2 2817 | e 0 2 2 2818 | e 1 3 5 2819 | e 1 4 2 2820 | e 2 4 2 2821 | t # 282 2822 | v 0 5 2823 | v 1 2 2824 | v 2 2 2825 | v 3 2 2826 | v 4 2 2827 | e 0 1 2 2828 | e 1 2 2 2829 | e 2 3 2 2830 | e 2 4 3 2831 | t # 283 2832 | v 0 5 2833 | v 1 5 2834 | v 2 2 2835 | v 3 2 2836 | v 4 2 2837 | e 0 1 2 2838 | e 1 2 2 2839 | e 2 3 2 2840 | e 3 4 2 2841 | t # 284 2842 | v 0 2 2843 | v 1 2 2844 | v 2 2 2845 | v 3 2 2846 | v 4 3 2847 | e 0 1 5 2848 | e 1 2 5 2849 | e 2 3 5 2850 | e 3 4 2 2851 | t # 285 2852 | v 0 2 2853 | v 1 2 2854 | v 2 2 2855 | v 3 5 2856 | v 4 2 2857 | e 0 2 2 2858 | e 0 3 2 2859 | e 1 3 2 2860 | e 3 4 2 2861 | t # 286 2862 | v 0 5 2863 | v 1 2 2864 | v 2 3 2865 | v 3 2 2866 | v 4 2 2867 | e 0 1 2 2868 | e 1 2 3 2869 | e 1 3 2 2870 | e 3 4 3 2871 | t # 287 2872 | v 0 2 2873 | v 1 2 2874 | v 2 3 2875 | v 3 2 2876 | v 4 3 2877 | e 0 1 2 2878 | e 1 3 2 2879 | e 2 3 2 2880 | e 3 4 2 2881 | t # 288 2882 | v 0 2 2883 | v 1 3 2884 | v 2 2 2885 | v 3 2 2886 | v 4 3 2887 | e 0 1 2 2888 | e 1 2 2 2889 | e 2 3 2 2890 | e 2 4 3 2891 | t # 289 2892 | v 0 2 2893 | v 1 3 2894 | v 2 2 2895 | v 3 2 2896 | v 4 2 2897 | e 0 1 3 2898 | e 0 2 2 2899 | e 2 3 3 2900 | e 3 4 2 2901 | t # 290 2902 | v 0 5 2903 | v 1 2 2904 | v 2 5 2905 | v 3 2 2906 | v 4 2 2907 | e 0 1 2 2908 | e 0 2 2 2909 | e 1 3 2 2910 | e 3 4 5 2911 | t # 291 2912 | v 0 2 2913 | v 1 2 2914 | v 2 2 2915 | v 3 2 2916 | v 4 3 2917 | e 0 1 2 2918 | e 1 2 2 2919 | e 2 3 2 2920 | e 2 4 2 2921 | t # 292 2922 | v 0 2 2923 | v 1 3 2924 | v 2 2 2925 | v 3 2 2926 | v 4 2 2927 | e 0 1 2 2928 | e 0 2 2 2929 | e 2 3 3 2930 | e 3 4 2 2931 | t # 293 2932 | v 0 5 2933 | v 1 2 2934 | v 2 2 2935 | v 3 2 2936 | v 4 2 2937 | e 0 1 2 2938 | e 0 2 2 2939 | e 1 3 2 2940 | e 3 4 2 2941 | t # 294 2942 | v 0 2 2943 | v 1 2 2944 | v 2 2 2945 | v 3 2 2946 | v 4 2 2947 | e 0 1 5 2948 | e 1 3 5 2949 | e 1 4 5 2950 | e 2 3 5 2951 | t # 295 2952 | v 0 2 2953 | v 1 3 2954 | v 2 2 2955 | v 3 2 2956 | v 4 2 2957 | e 0 1 3 2958 | e 0 2 5 2959 | e 2 3 5 2960 | e 2 4 5 2961 | t # 296 2962 | v 0 3 2963 | v 1 2 2964 | v 2 2 2965 | v 3 5 2966 | v 4 2 2967 | e 0 1 2 2968 | e 1 2 5 2969 | e 2 3 2 2970 | e 3 4 2 2971 | t # 297 2972 | v 0 2 2973 | v 1 2 2974 | v 2 2 2975 | v 3 3 2976 | v 4 3 2977 | e 0 1 2 2978 | e 1 2 2 2979 | e 2 3 3 2980 | e 2 4 2 2981 | t # 298 2982 | v 0 5 2983 | v 1 2 2984 | v 2 2 2985 | v 3 2 2986 | v 4 2 2987 | e 0 1 2 2988 | e 1 2 2 2989 | e 2 3 5 2990 | e 3 4 5 2991 | t # 299 2992 | v 0 2 2993 | v 1 3 2994 | v 2 2 2995 | v 3 2 2996 | v 4 2 2997 | e 0 1 2 2998 | e 0 2 2 2999 | e 1 3 2 3000 | e 3 4 2 3001 | t # 300 3002 | v 0 2 3003 | v 1 2 3004 | v 2 2 3005 | v 3 2 3006 | v 4 3 3007 | e 0 1 2 3008 | e 1 2 2 3009 | e 1 3 2 3010 | e 3 4 2 3011 | t # 301 3012 | v 0 2 3013 | v 1 2 3014 | v 2 2 3015 | v 3 2 3016 | v 4 3 3017 | e 0 2 5 3018 | e 1 3 2 3019 | e 1 2 5 3020 | e 2 4 2 3021 | t # 302 3022 | v 0 2 3023 | v 1 2 3024 | v 2 2 3025 | v 3 2 3026 | v 4 2 3027 | e 0 1 3 3028 | e 1 3 2 3029 | e 2 3 2 3030 | e 3 4 2 3031 | t # 303 3032 | v 0 2 3033 | v 1 3 3034 | v 2 2 3035 | v 3 2 3036 | v 4 3 3037 | e 0 1 2 3038 | e 1 2 2 3039 | e 2 3 2 3040 | e 2 4 3 3041 | t # 304 3042 | v 0 2 3043 | v 1 3 3044 | v 2 2 3045 | v 3 2 3046 | v 4 3 3047 | e 0 1 2 3048 | e 1 2 2 3049 | e 2 3 2 3050 | e 2 4 3 3051 | t # 305 3052 | v 0 5 3053 | v 1 2 3054 | v 2 2 3055 | v 3 5 3056 | v 4 2 3057 | e 0 1 2 3058 | e 1 2 2 3059 | e 2 3 2 3060 | e 3 4 2 3061 | t # 306 3062 | v 0 2 3063 | v 1 2 3064 | v 2 5 3065 | v 3 2 3066 | v 4 2 3067 | e 0 1 2 3068 | e 1 2 2 3069 | e 2 3 2 3070 | e 3 4 2 3071 | t # 307 3072 | v 0 2 3073 | v 1 2 3074 | v 2 3 3075 | v 3 2 3076 | v 4 2 3077 | e 0 2 2 3078 | e 0 3 5 3079 | e 1 3 5 3080 | e 3 4 2 3081 | t # 308 3082 | v 0 2 3083 | v 1 3 3084 | v 2 2 3085 | v 3 3 3086 | v 4 2 3087 | e 0 1 2 3088 | e 1 2 2 3089 | e 2 3 2 3090 | e 2 4 2 3091 | t # 309 3092 | v 0 2 3093 | v 1 2 3094 | v 2 2 3095 | v 3 2 3096 | v 4 3 3097 | e 0 2 2 3098 | e 1 2 5 3099 | e 2 3 5 3100 | e 3 4 2 3101 | t # 310 3102 | v 0 2 3103 | v 1 2 3104 | v 2 2 3105 | v 3 2 3106 | v 4 2 3107 | e 0 1 3 3108 | e 1 2 2 3109 | e 2 3 2 3110 | e 3 4 2 3111 | t # 311 3112 | v 0 5 3113 | v 1 2 3114 | v 2 3 3115 | v 3 2 3116 | v 4 2 3117 | e 0 1 2 3118 | e 1 2 3 3119 | e 1 3 2 3120 | e 3 4 2 3121 | t # 312 3122 | v 0 2 3123 | v 1 2 3124 | v 2 2 3125 | v 3 2 3126 | v 4 2 3127 | e 0 1 3 3128 | e 1 2 2 3129 | e 2 3 3 3130 | e 3 4 2 3131 | t # 313 3132 | v 0 2 3133 | v 1 2 3134 | v 2 2 3135 | v 3 3 3136 | v 4 2 3137 | e 0 1 5 3138 | e 0 2 2 3139 | e 1 3 2 3140 | e 3 4 2 3141 | t # 314 3142 | v 0 3 3143 | v 1 2 3144 | v 2 2 3145 | v 3 2 3146 | v 4 2 3147 | e 0 1 2 3148 | e 1 2 5 3149 | e 2 3 5 3150 | e 3 4 5 3151 | t # 315 3152 | v 0 2 3153 | v 1 2 3154 | v 2 2 3155 | v 3 2 3156 | v 4 5 3157 | e 0 1 5 3158 | e 1 2 2 3159 | e 1 3 5 3160 | e 2 4 3 3161 | t # 316 3162 | v 0 2 3163 | v 1 5 3164 | v 2 2 3165 | v 3 2 3166 | v 4 2 3167 | e 0 1 2 3168 | e 1 2 2 3169 | e 1 3 2 3170 | e 1 4 2 3171 | t # 317 3172 | v 0 2 3173 | v 1 2 3174 | v 2 2 3175 | v 3 2 3176 | v 4 2 3177 | e 0 1 2 3178 | e 1 2 5 3179 | e 1 3 5 3180 | e 2 4 5 3181 | t # 318 3182 | v 0 2 3183 | v 1 2 3184 | v 2 2 3185 | v 3 2 3186 | v 4 2 3187 | e 0 1 2 3188 | e 1 2 5 3189 | e 2 3 5 3190 | e 3 4 5 3191 | t # 319 3192 | v 0 3 3193 | v 1 2 3194 | v 2 2 3195 | v 3 2 3196 | v 4 2 3197 | e 0 1 2 3198 | e 1 2 3 3199 | e 2 3 2 3200 | e 3 4 2 3201 | t # 320 3202 | v 0 2 3203 | v 1 2 3204 | v 2 3 3205 | v 3 2 3206 | v 4 2 3207 | e 0 1 5 3208 | e 0 2 2 3209 | e 2 3 2 3210 | e 3 4 5 3211 | t # 321 3212 | v 0 2 3213 | v 1 5 3214 | v 2 2 3215 | v 3 3 3216 | v 4 2 3217 | e 0 1 2 3218 | e 1 2 3 3219 | e 2 3 2 3220 | e 2 4 2 3221 | t # 322 3222 | v 0 2 3223 | v 1 2 3224 | v 2 2 3225 | v 3 3 3226 | v 4 2 3227 | e 0 1 3 3228 | e 1 2 2 3229 | e 2 3 2 3230 | e 2 4 2 3231 | t # 323 3232 | v 0 2 3233 | v 1 2 3234 | v 2 2 3235 | v 3 2 3236 | v 4 2 3237 | e 0 1 2 3238 | e 1 2 5 3239 | e 2 3 5 3240 | e 3 4 5 3241 | t # 324 3242 | v 0 2 3243 | v 1 5 3244 | v 2 2 3245 | v 3 3 3246 | v 4 2 3247 | e 0 1 2 3248 | e 1 2 2 3249 | e 2 3 3 3250 | e 2 4 2 3251 | t # 325 3252 | v 0 2 3253 | v 1 2 3254 | v 2 2 3255 | v 3 2 3256 | v 4 3 3257 | e 0 1 5 3258 | e 0 2 5 3259 | e 2 3 5 3260 | e 3 4 2 3261 | t # 326 3262 | v 0 2 3263 | v 1 3 3264 | v 2 2 3265 | v 3 2 3266 | v 4 2 3267 | e 0 1 2 3268 | e 0 2 2 3269 | e 2 3 2 3270 | e 2 4 2 3271 | t # 327 3272 | v 0 2 3273 | v 1 2 3274 | v 2 3 3275 | v 3 2 3276 | v 4 2 3277 | e 0 1 2 3278 | e 1 2 2 3279 | e 1 3 2 3280 | e 3 4 2 3281 | t # 328 3282 | v 0 5 3283 | v 1 2 3284 | v 2 5 3285 | v 3 5 3286 | v 4 2 3287 | e 0 1 2 3288 | e 1 2 2 3289 | e 2 3 2 3290 | e 2 4 2 3291 | t # 329 3292 | v 0 2 3293 | v 1 3 3294 | v 2 2 3295 | v 3 2 3296 | v 4 3 3297 | e 0 2 2 3298 | e 0 1 2 3299 | e 2 4 2 3300 | e 2 3 2 3301 | t # 330 3302 | v 0 2 3303 | v 1 2 3304 | v 2 2 3305 | v 3 2 3306 | v 4 2 3307 | e 0 1 2 3308 | e 0 2 2 3309 | e 1 3 5 3310 | e 3 4 2 3311 | t # 331 3312 | v 0 2 3313 | v 1 2 3314 | v 2 2 3315 | v 3 2 3316 | v 4 2 3317 | e 0 1 5 3318 | e 1 2 2 3319 | e 2 3 2 3320 | e 3 4 2 3321 | t # 332 3322 | v 0 2 3323 | v 1 2 3324 | v 2 3 3325 | v 3 2 3326 | v 4 5 3327 | e 0 2 3 3328 | e 0 3 2 3329 | e 1 3 3 3330 | e 3 4 2 3331 | t # 333 3332 | v 0 2 3333 | v 1 2 3334 | v 2 2 3335 | v 3 3 3336 | v 4 2 3337 | e 0 1 5 3338 | e 1 3 2 3339 | e 1 4 5 3340 | e 2 4 5 3341 | t # 334 3342 | v 0 2 3343 | v 1 2 3344 | v 2 2 3345 | v 3 2 3346 | v 4 2 3347 | e 0 2 5 3348 | e 1 3 5 3349 | e 2 4 2 3350 | e 2 3 5 3351 | t # 335 3352 | v 0 2 3353 | v 1 2 3354 | v 2 3 3355 | v 3 2 3356 | v 4 2 3357 | e 0 1 2 3358 | e 1 2 2 3359 | e 2 3 2 3360 | e 3 4 2 3361 | t # 336 3362 | v 0 2 3363 | v 1 2 3364 | v 2 2 3365 | v 3 2 3366 | v 4 3 3367 | e 0 1 2 3368 | e 1 2 2 3369 | e 2 3 2 3370 | e 3 4 2 3371 | t # 337 3372 | v 0 2 3373 | v 1 2 3374 | v 2 2 3375 | v 3 8 3376 | v 4 2 3377 | e 0 2 5 3378 | e 1 3 2 3379 | e 1 4 5 3380 | e 2 4 5 3381 | t # 338 3382 | v 0 2 3383 | v 1 2 3384 | v 2 3 3385 | v 3 3 3386 | v 4 2 3387 | e 0 2 2 3388 | e 0 1 5 3389 | e 1 3 2 3390 | e 3 4 2 3391 | t # 339 3392 | v 0 2 3393 | v 1 2 3394 | v 2 2 3395 | v 3 2 3396 | v 4 3 3397 | e 0 1 2 3398 | e 1 2 2 3399 | e 1 3 2 3400 | e 3 4 2 3401 | t # 340 3402 | v 0 2 3403 | v 1 2 3404 | v 2 2 3405 | v 3 3 3406 | v 4 2 3407 | e 0 1 5 3408 | e 1 3 2 3409 | e 1 2 5 3410 | e 3 4 2 3411 | t # 341 3412 | v 0 2 3413 | v 1 2 3414 | v 2 2 3415 | v 3 5 3416 | v 4 5 3417 | e 0 2 5 3418 | e 1 3 5 3419 | e 2 4 2 3420 | e 2 3 5 3421 | t # 342 3422 | v 0 2 3423 | v 1 3 3424 | v 2 2 3425 | v 3 3 3426 | v 4 2 3427 | e 0 1 2 3428 | e 1 2 2 3429 | e 2 3 2 3430 | e 3 4 2 3431 | t # 343 3432 | v 0 2 3433 | v 1 2 3434 | v 2 2 3435 | v 3 2 3436 | v 4 2 3437 | e 0 1 5 3438 | e 1 3 5 3439 | e 2 4 5 3440 | e 3 4 5 3441 | t # 344 3442 | v 0 2 3443 | v 1 2 3444 | v 2 3 3445 | v 3 3 3446 | v 4 2 3447 | e 0 1 2 3448 | e 1 2 2 3449 | e 1 3 3 3450 | e 2 4 2 3451 | t # 345 3452 | v 0 2 3453 | v 1 2 3454 | v 2 2 3455 | v 3 2 3456 | v 4 2 3457 | e 0 1 2 3458 | e 0 2 2 3459 | e 2 3 5 3460 | e 3 4 5 3461 | t # 346 3462 | v 0 3 3463 | v 1 2 3464 | v 2 5 3465 | v 3 2 3466 | v 4 2 3467 | e 0 1 3 3468 | e 1 2 2 3469 | e 1 3 2 3470 | e 2 4 2 3471 | t # 347 3472 | v 0 5 3473 | v 1 2 3474 | v 2 2 3475 | v 3 2 3476 | v 4 2 3477 | e 0 2 5 3478 | e 1 2 5 3479 | e 2 3 5 3480 | e 3 4 5 3481 | t # 348 3482 | v 0 2 3483 | v 1 2 3484 | v 2 2 3485 | v 3 2 3486 | v 4 2 3487 | e 0 1 2 3488 | e 1 2 5 3489 | e 2 3 5 3490 | e 3 4 5 3491 | t # 349 3492 | v 0 2 3493 | v 1 2 3494 | v 2 2 3495 | v 3 2 3496 | v 4 2 3497 | e 0 1 2 3498 | e 1 2 2 3499 | e 2 3 2 3500 | e 3 4 2 3501 | t # 350 3502 | v 0 2 3503 | v 1 2 3504 | v 2 2 3505 | v 3 2 3506 | v 4 2 3507 | e 0 1 2 3508 | e 0 2 5 3509 | e 1 3 2 3510 | e 3 4 2 3511 | t # 351 3512 | v 0 2 3513 | v 1 3 3514 | v 2 2 3515 | v 3 2 3516 | v 4 2 3517 | e 0 2 2 3518 | e 0 1 2 3519 | e 2 3 5 3520 | e 3 4 5 3521 | t # 352 3522 | v 0 2 3523 | v 1 2 3524 | v 2 2 3525 | v 3 2 3526 | v 4 2 3527 | e 0 2 2 3528 | e 0 3 2 3529 | e 0 4 2 3530 | e 1 3 2 3531 | t # 353 3532 | v 0 3 3533 | v 1 2 3534 | v 2 2 3535 | v 3 2 3536 | v 4 3 3537 | e 0 1 2 3538 | e 1 3 2 3539 | e 1 2 2 3540 | e 2 4 2 3541 | t # 354 3542 | v 0 2 3543 | v 1 3 3544 | v 2 2 3545 | v 3 2 3546 | v 4 2 3547 | e 0 1 2 3548 | e 1 2 2 3549 | e 2 3 2 3550 | e 3 4 2 3551 | t # 355 3552 | v 0 2 3553 | v 1 2 3554 | v 2 3 3555 | v 3 2 3556 | v 4 2 3557 | e 0 1 5 3558 | e 1 2 2 3559 | e 1 3 5 3560 | e 2 4 2 3561 | t # 356 3562 | v 0 3 3563 | v 1 2 3564 | v 2 2 3565 | v 3 2 3566 | v 4 2 3567 | e 0 1 2 3568 | e 1 2 5 3569 | e 1 3 5 3570 | e 2 4 2 3571 | t # 357 3572 | v 0 2 3573 | v 1 2 3574 | v 2 2 3575 | v 3 2 3576 | v 4 2 3577 | e 0 1 5 3578 | e 1 2 5 3579 | e 2 3 2 3580 | e 2 4 5 3581 | t # 358 3582 | v 0 2 3583 | v 1 3 3584 | v 2 2 3585 | v 3 2 3586 | v 4 3 3587 | e 0 1 2 3588 | e 0 2 2 3589 | e 2 4 2 3590 | e 2 3 2 3591 | t # 359 3592 | v 0 2 3593 | v 1 2 3594 | v 2 2 3595 | v 3 2 3596 | v 4 2 3597 | e 0 1 5 3598 | e 1 3 5 3599 | e 2 4 5 3600 | e 3 4 5 3601 | t # 360 3602 | v 0 2 3603 | v 1 2 3604 | v 2 2 3605 | v 3 2 3606 | v 4 2 3607 | e 0 1 3 3608 | e 1 2 3 3609 | e 2 3 3 3610 | e 3 4 2 3611 | t # 361 3612 | v 0 2 3613 | v 1 5 3614 | v 2 2 3615 | v 3 2 3616 | v 4 2 3617 | e 0 1 5 3618 | e 1 2 5 3619 | e 2 4 5 3620 | e 2 3 5 3621 | t # 362 3622 | v 0 2 3623 | v 1 2 3624 | v 2 2 3625 | v 3 3 3626 | v 4 2 3627 | e 0 2 2 3628 | e 0 1 5 3629 | e 1 3 2 3630 | e 2 4 2 3631 | t # 363 3632 | v 0 2 3633 | v 1 2 3634 | v 2 3 3635 | v 3 2 3636 | v 4 2 3637 | e 0 1 2 3638 | e 0 2 2 3639 | e 1 3 2 3640 | e 2 4 2 3641 | t # 364 3642 | v 0 2 3643 | v 1 2 3644 | v 2 2 3645 | v 3 5 3646 | v 4 6 3647 | e 0 2 2 3648 | e 1 3 2 3649 | e 2 3 2 3650 | e 3 4 2 3651 | t # 365 3652 | v 0 2 3653 | v 1 2 3654 | v 2 2 3655 | v 3 6 3656 | v 4 2 3657 | e 0 2 5 3658 | e 1 3 5 3659 | e 2 4 5 3660 | e 2 3 5 3661 | t # 366 3662 | v 0 2 3663 | v 1 2 3664 | v 2 2 3665 | v 3 2 3666 | v 4 2 3667 | e 0 1 5 3668 | e 0 2 5 3669 | e 2 3 5 3670 | e 3 4 5 3671 | t # 367 3672 | v 0 2 3673 | v 1 2 3674 | v 2 2 3675 | v 3 2 3676 | v 4 2 3677 | e 0 1 2 3678 | e 1 2 5 3679 | e 2 3 5 3680 | e 3 4 5 3681 | t # 368 3682 | v 0 2 3683 | v 1 2 3684 | v 2 3 3685 | v 3 2 3686 | v 4 2 3687 | e 0 1 2 3688 | e 0 2 2 3689 | e 1 3 2 3690 | e 3 4 2 3691 | t # 369 3692 | v 0 2 3693 | v 1 2 3694 | v 2 2 3695 | v 3 2 3696 | v 4 3 3697 | e 0 1 2 3698 | e 1 2 3 3699 | e 2 3 2 3700 | e 3 4 3 3701 | t # 370 3702 | v 0 2 3703 | v 1 2 3704 | v 2 2 3705 | v 3 2 3706 | v 4 3 3707 | e 0 2 5 3708 | e 1 3 5 3709 | e 2 3 5 3710 | e 3 4 2 3711 | t # 371 3712 | v 0 5 3713 | v 1 6 3714 | v 2 5 3715 | v 3 2 3716 | v 4 2 3717 | e 0 2 5 3718 | e 1 3 5 3719 | e 2 3 5 3720 | e 3 4 2 3721 | t # 372 3722 | v 0 2 3723 | v 1 5 3724 | v 2 2 3725 | v 3 2 3726 | v 4 2 3727 | e 0 1 5 3728 | e 1 3 5 3729 | e 2 4 5 3730 | e 3 4 5 3731 | t # 373 3732 | v 0 2 3733 | v 1 2 3734 | v 2 2 3735 | v 3 2 3736 | v 4 3 3737 | e 0 1 5 3738 | e 0 2 5 3739 | e 1 3 5 3740 | e 3 4 5 3741 | t # 374 3742 | v 0 2 3743 | v 1 2 3744 | v 2 2 3745 | v 3 2 3746 | v 4 2 3747 | e 0 1 5 3748 | e 1 2 5 3749 | e 2 3 2 3750 | e 2 4 5 3751 | t # 375 3752 | v 0 2 3753 | v 1 2 3754 | v 2 3 3755 | v 3 2 3756 | v 4 2 3757 | e 0 1 2 3758 | e 0 2 3 3759 | e 1 3 2 3760 | e 1 4 2 3761 | t # 376 3762 | v 0 2 3763 | v 1 2 3764 | v 2 2 3765 | v 3 2 3766 | v 4 5 3767 | e 0 1 2 3768 | e 0 2 2 3769 | e 1 3 2 3770 | e 1 4 2 3771 | t # 377 3772 | v 0 2 3773 | v 1 2 3774 | v 2 2 3775 | v 3 2 3776 | v 4 2 3777 | e 0 1 2 3778 | e 1 2 5 3779 | e 2 3 5 3780 | e 3 4 5 3781 | t # 378 3782 | v 0 2 3783 | v 1 2 3784 | v 2 2 3785 | v 3 2 3786 | v 4 2 3787 | e 0 2 5 3788 | e 1 3 5 3789 | e 2 4 5 3790 | e 3 4 5 3791 | t # 379 3792 | v 0 2 3793 | v 1 7 3794 | v 2 2 3795 | v 3 2 3796 | v 4 2 3797 | e 0 1 2 3798 | e 1 2 2 3799 | e 2 3 5 3800 | e 2 4 5 3801 | t # 380 3802 | v 0 7 3803 | v 1 3 3804 | v 2 2 3805 | v 3 2 3806 | v 4 2 3807 | e 0 1 2 3808 | e 0 2 2 3809 | e 1 3 2 3810 | e 3 4 2 3811 | t # 381 3812 | v 0 2 3813 | v 1 2 3814 | v 2 2 3815 | v 3 2 3816 | v 4 2 3817 | e 0 1 2 3818 | e 0 2 2 3819 | e 1 3 2 3820 | e 2 4 2 3821 | t # 382 3822 | v 0 2 3823 | v 1 2 3824 | v 2 2 3825 | v 3 5 3826 | v 4 5 3827 | e 0 2 5 3828 | e 0 4 2 3829 | e 1 2 5 3830 | e 2 3 5 3831 | t # 383 3832 | v 0 2 3833 | v 1 3 3834 | v 2 2 3835 | v 3 2 3836 | v 4 2 3837 | e 0 1 2 3838 | e 1 2 2 3839 | e 2 3 2 3840 | e 3 4 5 3841 | t # 384 3842 | v 0 2 3843 | v 1 2 3844 | v 2 2 3845 | v 3 2 3846 | v 4 3 3847 | e 0 1 5 3848 | e 1 2 5 3849 | e 2 4 5 3850 | e 2 3 5 3851 | t # 385 3852 | v 0 10 3853 | v 1 3 3854 | v 2 3 3855 | v 3 2 3856 | v 4 2 3857 | e 0 1 2 3858 | e 0 2 2 3859 | e 2 3 2 3860 | e 3 4 2 3861 | t # 386 3862 | v 0 2 3863 | v 1 2 3864 | v 2 2 3865 | v 3 2 3866 | v 4 8 3867 | e 0 1 5 3868 | e 1 3 5 3869 | e 2 3 5 3870 | e 3 4 2 3871 | t # 387 3872 | v 0 5 3873 | v 1 10 3874 | v 2 3 3875 | v 3 2 3876 | v 4 2 3877 | e 0 1 2 3878 | e 1 2 2 3879 | e 1 3 2 3880 | e 3 4 5 3881 | t # 388 3882 | v 0 2 3883 | v 1 5 3884 | v 2 2 3885 | v 3 2 3886 | v 4 2 3887 | e 0 1 2 3888 | e 1 2 2 3889 | e 1 3 2 3890 | e 2 4 2 3891 | t # 389 3892 | v 0 2 3893 | v 1 3 3894 | v 2 2 3895 | v 3 2 3896 | v 4 2 3897 | e 0 1 3 3898 | e 0 2 2 3899 | e 2 4 2 3900 | e 3 4 2 3901 | t # 390 3902 | v 0 2 3903 | v 1 2 3904 | v 2 2 3905 | v 3 2 3906 | v 4 2 3907 | e 0 1 2 3908 | e 1 3 5 3909 | e 1 2 5 3910 | e 3 4 5 3911 | t # 391 3912 | v 0 2 3913 | v 1 5 3914 | v 2 2 3915 | v 3 2 3916 | v 4 2 3917 | e 0 1 2 3918 | e 1 2 2 3919 | e 2 3 2 3920 | e 3 4 2 3921 | t # 392 3922 | v 0 5 3923 | v 1 10 3924 | v 2 2 3925 | v 3 2 3926 | v 4 2 3927 | e 0 1 2 3928 | e 0 2 2 3929 | e 1 3 2 3930 | e 3 4 5 3931 | t # 393 3932 | v 0 2 3933 | v 1 2 3934 | v 2 2 3935 | v 3 2 3936 | v 4 2 3937 | e 0 1 2 3938 | e 1 2 5 3939 | e 2 4 5 3940 | e 3 4 5 3941 | t # 394 3942 | v 0 2 3943 | v 1 2 3944 | v 2 2 3945 | v 3 5 3946 | v 4 2 3947 | e 0 1 5 3948 | e 0 2 5 3949 | e 2 3 5 3950 | e 3 4 5 3951 | t # 395 3952 | v 0 2 3953 | v 1 2 3954 | v 2 2 3955 | v 3 2 3956 | v 4 2 3957 | e 0 1 2 3958 | e 0 2 2 3959 | e 1 4 2 3960 | e 2 3 3 3961 | t # 396 3962 | v 0 2 3963 | v 1 3 3964 | v 2 2 3965 | v 3 2 3966 | v 4 3 3967 | e 0 1 2 3968 | e 0 3 2 3969 | e 1 2 2 3970 | e 2 4 2 3971 | t # 397 3972 | v 0 2 3973 | v 1 2 3974 | v 2 2 3975 | v 3 2 3976 | v 4 3 3977 | e 0 1 2 3978 | e 1 2 2 3979 | e 2 4 2 3980 | e 2 3 2 3981 | t # 398 3982 | v 0 7 3983 | v 1 5 3984 | v 2 5 3985 | v 3 7 3986 | v 4 5 3987 | e 0 1 3 3988 | e 0 2 2 3989 | e 1 3 2 3990 | e 2 4 5 3991 | t # 399 3992 | v 0 2 3993 | v 1 2 3994 | v 2 2 3995 | v 3 2 3996 | v 4 2 3997 | e 0 2 2 3998 | e 1 3 2 3999 | e 2 3 2 4000 | e 3 4 2 4001 | t # 400 4002 | v 0 2 4003 | v 1 2 4004 | v 2 5 4005 | v 3 2 4006 | v 4 5 4007 | e 0 1 5 4008 | e 0 2 2 4009 | e 2 3 2 4010 | e 3 4 5 4011 | t # 401 4012 | v 0 2 4013 | v 1 5 4014 | v 2 2 4015 | v 3 3 4016 | v 4 2 4017 | e 0 1 2 4018 | e 1 2 2 4019 | e 2 3 3 4020 | e 2 4 2 4021 | t # 402 4022 | v 0 2 4023 | v 1 2 4024 | v 2 2 4025 | v 3 3 4026 | v 4 2 4027 | e 0 1 2 4028 | e 1 2 2 4029 | e 2 3 2 4030 | e 3 4 2 4031 | t # 403 4032 | v 0 2 4033 | v 1 2 4034 | v 2 2 4035 | v 3 2 4036 | v 4 2 4037 | e 0 1 5 4038 | e 1 3 5 4039 | e 2 4 5 4040 | e 3 4 5 4041 | t # 404 4042 | v 0 2 4043 | v 1 2 4044 | v 2 2 4045 | v 3 2 4046 | v 4 3 4047 | e 0 2 2 4048 | e 1 3 2 4049 | e 1 2 2 4050 | e 2 4 2 4051 | t # 405 4052 | v 0 5 4053 | v 1 2 4054 | v 2 2 4055 | v 3 2 4056 | v 4 2 4057 | e 0 1 5 4058 | e 1 2 5 4059 | e 2 3 5 4060 | e 3 4 5 4061 | t # 406 4062 | v 0 2 4063 | v 1 2 4064 | v 2 2 4065 | v 3 2 4066 | v 4 3 4067 | e 0 2 2 4068 | e 1 2 2 4069 | e 2 3 2 4070 | e 2 4 2 4071 | t # 407 4072 | v 0 2 4073 | v 1 2 4074 | v 2 2 4075 | v 3 2 4076 | v 4 2 4077 | e 0 1 5 4078 | e 1 3 5 4079 | e 2 3 5 4080 | e 3 4 2 4081 | t # 408 4082 | v 0 6 4083 | v 1 2 4084 | v 2 2 4085 | v 3 2 4086 | v 4 2 4087 | e 0 1 2 4088 | e 1 2 5 4089 | e 1 3 5 4090 | e 2 4 5 4091 | t # 409 4092 | v 0 2 4093 | v 1 2 4094 | v 2 2 4095 | v 3 5 4096 | v 4 2 4097 | e 0 1 2 4098 | e 1 2 5 4099 | e 1 3 5 4100 | e 3 4 5 4101 | t # 410 4102 | v 0 2 4103 | v 1 2 4104 | v 2 2 4105 | v 3 2 4106 | v 4 2 4107 | e 0 1 2 4108 | e 1 2 5 4109 | e 1 3 5 4110 | e 2 4 5 4111 | t # 411 4112 | v 0 2 4113 | v 1 2 4114 | v 2 2 4115 | v 3 2 4116 | v 4 2 4117 | e 0 2 2 4118 | e 0 3 2 4119 | e 1 4 2 4120 | e 3 4 2 4121 | t # 412 4122 | v 0 2 4123 | v 1 2 4124 | v 2 3 4125 | v 3 5 4126 | v 4 2 4127 | e 0 1 2 4128 | e 0 2 3 4129 | e 0 3 2 4130 | e 1 4 2 4131 | t # 413 4132 | v 0 6 4133 | v 1 3 4134 | v 2 2 4135 | v 3 2 4136 | v 4 2 4137 | e 0 1 3 4138 | e 0 2 2 4139 | e 2 3 5 4140 | e 3 4 5 4141 | t # 414 4142 | v 0 2 4143 | v 1 2 4144 | v 2 2 4145 | v 3 2 4146 | v 4 5 4147 | e 0 1 5 4148 | e 1 2 5 4149 | e 2 3 2 4150 | e 3 4 3 4151 | t # 415 4152 | v 0 2 4153 | v 1 2 4154 | v 2 2 4155 | v 3 2 4156 | v 4 2 4157 | e 0 1 2 4158 | e 1 2 2 4159 | e 1 3 2 4160 | e 3 4 2 4161 | t # 416 4162 | v 0 2 4163 | v 1 2 4164 | v 2 2 4165 | v 3 3 4166 | v 4 3 4167 | e 0 1 2 4168 | e 1 3 2 4169 | e 1 2 2 4170 | e 2 4 2 4171 | t # 417 4172 | v 0 2 4173 | v 1 2 4174 | v 2 2 4175 | v 3 2 4176 | v 4 2 4177 | e 0 1 2 4178 | e 1 2 2 4179 | e 2 3 5 4180 | e 3 4 5 4181 | t # 418 4182 | v 0 2 4183 | v 1 2 4184 | v 2 2 4185 | v 3 2 4186 | v 4 2 4187 | e 0 1 5 4188 | e 1 3 5 4189 | e 2 3 5 4190 | e 3 4 2 4191 | t # 419 4192 | v 0 2 4193 | v 1 3 4194 | v 2 2 4195 | v 3 2 4196 | v 4 2 4197 | e 0 1 2 4198 | e 1 2 2 4199 | e 2 3 5 4200 | e 2 4 5 4201 | t # 420 4202 | v 0 2 4203 | v 1 2 4204 | v 2 5 4205 | v 3 5 4206 | v 4 2 4207 | e 0 1 5 4208 | e 0 2 5 4209 | e 1 3 5 4210 | e 3 4 5 4211 | t # 421 4212 | v 0 2 4213 | v 1 5 4214 | v 2 2 4215 | v 3 2 4216 | v 4 2 4217 | e 0 1 5 4218 | e 0 2 5 4219 | e 1 3 5 4220 | e 2 4 5 4221 | t # 422 4222 | v 0 2 4223 | v 1 2 4224 | v 2 2 4225 | v 3 3 4226 | v 4 3 4227 | e 0 2 2 4228 | e 1 3 2 4229 | e 1 2 2 4230 | e 2 4 2 4231 | t # 423 4232 | v 0 2 4233 | v 1 2 4234 | v 2 2 4235 | v 3 2 4236 | v 4 2 4237 | e 0 1 2 4238 | e 0 2 2 4239 | e 2 3 5 4240 | e 3 4 5 4241 | t # 424 4242 | v 0 2 4243 | v 1 2 4244 | v 2 2 4245 | v 3 2 4246 | v 4 2 4247 | e 0 1 5 4248 | e 1 2 5 4249 | e 2 3 5 4250 | e 3 4 5 4251 | t # 425 4252 | v 0 2 4253 | v 1 2 4254 | v 2 2 4255 | v 3 2 4256 | v 4 2 4257 | e 0 2 5 4258 | e 0 3 5 4259 | e 1 2 5 4260 | e 2 4 5 4261 | t # 426 4262 | v 0 2 4263 | v 1 2 4264 | v 2 2 4265 | v 3 3 4266 | v 4 2 4267 | e 0 1 5 4268 | e 1 2 5 4269 | e 2 3 2 4270 | e 2 4 5 4271 | t # 427 4272 | v 0 2 4273 | v 1 3 4274 | v 2 2 4275 | v 3 2 4276 | v 4 5 4277 | e 0 1 3 4278 | e 0 2 2 4279 | e 2 3 2 4280 | e 2 4 2 4281 | t # 428 4282 | v 0 2 4283 | v 1 2 4284 | v 2 2 4285 | v 3 2 4286 | v 4 2 4287 | e 0 1 2 4288 | e 1 2 2 4289 | e 2 3 3 4290 | e 3 4 2 4291 | t # 429 4292 | v 0 2 4293 | v 1 2 4294 | v 2 5 4295 | v 3 3 4296 | v 4 3 4297 | e 0 1 5 4298 | e 1 2 2 4299 | e 2 3 3 4300 | e 2 4 2 4301 | t # 430 4302 | v 0 2 4303 | v 1 2 4304 | v 2 2 4305 | v 3 3 4306 | v 4 3 4307 | e 0 2 2 4308 | e 0 4 2 4309 | e 1 2 2 4310 | e 2 3 2 4311 | t # 431 4312 | v 0 2 4313 | v 1 2 4314 | v 2 2 4315 | v 3 2 4316 | v 4 3 4317 | e 0 3 5 4318 | e 1 2 5 4319 | e 1 4 2 4320 | e 2 3 5 4321 | t # 432 4322 | v 0 2 4323 | v 1 2 4324 | v 2 5 4325 | v 3 2 4326 | v 4 2 4327 | e 0 1 2 4328 | e 1 2 2 4329 | e 2 4 2 4330 | e 2 3 2 4331 | t # 433 4332 | v 0 2 4333 | v 1 2 4334 | v 2 2 4335 | v 3 2 4336 | v 4 2 4337 | e 0 1 5 4338 | e 1 2 5 4339 | e 1 4 5 4340 | e 2 3 5 4341 | t # 434 4342 | v 0 6 4343 | v 1 2 4344 | v 2 2 4345 | v 3 2 4346 | v 4 2 4347 | e 0 1 2 4348 | e 1 4 2 4349 | e 2 3 2 4350 | e 2 4 2 4351 | t # 435 4352 | v 0 2 4353 | v 1 2 4354 | v 2 2 4355 | v 3 2 4356 | v 4 5 4357 | e 0 1 2 4358 | e 1 2 2 4359 | e 2 3 2 4360 | e 3 4 2 4361 | t # 436 4362 | v 0 2 4363 | v 1 2 4364 | v 2 2 4365 | v 3 2 4366 | v 4 2 4367 | e 0 3 2 4368 | e 1 2 2 4369 | e 2 3 2 4370 | e 3 4 2 4371 | t # 437 4372 | v 0 2 4373 | v 1 2 4374 | v 2 2 4375 | v 3 3 4376 | v 4 3 4377 | e 0 1 2 4378 | e 0 3 2 4379 | e 1 4 2 4380 | e 2 3 2 4381 | t # 438 4382 | v 0 2 4383 | v 1 6 4384 | v 2 2 4385 | v 3 2 4386 | v 4 2 4387 | e 0 1 5 4388 | e 1 2 5 4389 | e 2 3 5 4390 | e 2 4 5 4391 | t # 439 4392 | v 0 2 4393 | v 1 2 4394 | v 2 2 4395 | v 3 6 4396 | v 4 2 4397 | e 0 1 5 4398 | e 0 4 2 4399 | e 1 3 5 4400 | e 2 3 5 4401 | t # 440 4402 | v 0 2 4403 | v 1 2 4404 | v 2 2 4405 | v 3 3 4406 | v 4 2 4407 | e 0 1 2 4408 | e 1 2 2 4409 | e 1 3 3 4410 | e 2 4 2 4411 | t # 441 4412 | v 0 2 4413 | v 1 2 4414 | v 2 2 4415 | v 3 2 4416 | v 4 2 4417 | e 0 1 2 4418 | e 1 2 2 4419 | e 2 3 2 4420 | e 3 4 2 4421 | t # 442 4422 | v 0 2 4423 | v 1 2 4424 | v 2 2 4425 | v 3 2 4426 | v 4 2 4427 | e 0 1 2 4428 | e 0 4 2 4429 | e 1 2 2 4430 | e 2 3 2 4431 | t # 443 4432 | v 0 2 4433 | v 1 3 4434 | v 2 2 4435 | v 3 3 4436 | v 4 2 4437 | e 0 1 2 4438 | e 0 2 2 4439 | e 2 3 2 4440 | e 2 4 2 4441 | t # 444 4442 | v 0 2 4443 | v 1 2 4444 | v 2 2 4445 | v 3 5 4446 | v 4 5 4447 | e 0 3 2 4448 | e 1 2 5 4449 | e 2 4 2 4450 | e 3 4 3 4451 | t # 445 4452 | v 0 2 4453 | v 1 2 4454 | v 2 2 4455 | v 3 3 4456 | v 4 5 4457 | e 0 1 5 4458 | e 0 2 2 4459 | e 2 3 3 4460 | e 2 4 2 4461 | t # 446 4462 | v 0 2 4463 | v 1 2 4464 | v 2 2 4465 | v 3 2 4466 | v 4 2 4467 | e 0 1 2 4468 | e 0 3 2 4469 | e 1 2 5 4470 | e 3 4 5 4471 | t # 447 4472 | v 0 2 4473 | v 1 2 4474 | v 2 5 4475 | v 3 2 4476 | v 4 3 4477 | e 0 1 2 4478 | e 0 4 3 4479 | e 1 2 2 4480 | e 2 3 2 4481 | t # 448 4482 | v 0 2 4483 | v 1 2 4484 | v 2 2 4485 | v 3 2 4486 | v 4 2 4487 | e 0 1 5 4488 | e 0 4 5 4489 | e 1 2 5 4490 | e 3 4 5 4491 | t # 449 4492 | v 0 2 4493 | v 1 2 4494 | v 2 2 4495 | v 3 6 4496 | v 4 3 4497 | e 0 2 5 4498 | e 0 3 2 4499 | e 1 2 5 4500 | e 3 4 3 4501 | t # 450 4502 | v 0 5 4503 | v 1 2 4504 | v 2 3 4505 | v 3 2 4506 | v 4 2 4507 | e 0 1 2 4508 | e 1 2 3 4509 | e 1 3 2 4510 | e 3 4 5 4511 | t # 451 4512 | v 0 2 4513 | v 1 2 4514 | v 2 2 4515 | v 3 2 4516 | v 4 3 4517 | e 0 1 2 4518 | e 0 3 2 4519 | e 1 2 2 4520 | e 1 4 2 4521 | t # 452 4522 | v 0 2 4523 | v 1 2 4524 | v 2 2 4525 | v 3 5 4526 | v 4 2 4527 | e 0 1 5 4528 | e 1 2 5 4529 | e 1 4 2 4530 | e 2 3 5 4531 | t # 453 4532 | v 0 2 4533 | v 1 2 4534 | v 2 2 4535 | v 3 2 4536 | v 4 3 4537 | e 0 1 2 4538 | e 1 2 2 4539 | e 2 4 2 4540 | e 2 3 2 4541 | t # 454 4542 | v 0 2 4543 | v 1 2 4544 | v 2 2 4545 | v 3 2 4546 | v 4 2 4547 | e 0 1 5 4548 | e 1 2 5 4549 | e 1 3 2 4550 | e 2 4 2 4551 | t # 455 4552 | v 0 2 4553 | v 1 2 4554 | v 2 2 4555 | v 3 5 4556 | v 4 3 4557 | e 0 2 2 4558 | e 0 4 2 4559 | e 1 2 2 4560 | e 2 3 2 4561 | t # 456 4562 | v 0 2 4563 | v 1 2 4564 | v 2 2 4565 | v 3 2 4566 | v 4 2 4567 | e 0 1 5 4568 | e 0 2 5 4569 | e 1 4 5 4570 | e 3 4 5 4571 | t # 457 4572 | v 0 2 4573 | v 1 2 4574 | v 2 2 4575 | v 3 2 4576 | v 4 2 4577 | e 0 1 5 4578 | e 1 4 5 4579 | e 2 3 5 4580 | e 3 4 5 4581 | t # 458 4582 | v 0 2 4583 | v 1 2 4584 | v 2 3 4585 | v 3 2 4586 | v 4 5 4587 | e 0 1 2 4588 | e 0 3 2 4589 | e 1 2 2 4590 | e 3 4 2 4591 | t # 459 4592 | v 0 2 4593 | v 1 2 4594 | v 2 2 4595 | v 3 2 4596 | v 4 2 4597 | e 0 1 2 4598 | e 1 2 2 4599 | e 2 3 2 4600 | e 3 4 2 4601 | t # 460 4602 | v 0 5 4603 | v 1 2 4604 | v 2 2 4605 | v 3 3 4606 | v 4 5 4607 | e 0 1 2 4608 | e 1 2 2 4609 | e 2 3 3 4610 | e 2 4 2 4611 | t # 461 4612 | v 0 2 4613 | v 1 2 4614 | v 2 2 4615 | v 3 3 4616 | v 4 3 4617 | e 0 1 2 4618 | e 1 2 2 4619 | e 2 3 3 4620 | e 2 4 2 4621 | t # 462 4622 | v 0 2 4623 | v 1 2 4624 | v 2 2 4625 | v 3 2 4626 | v 4 2 4627 | e 0 2 5 4628 | e 1 2 5 4629 | e 2 3 5 4630 | e 3 4 5 4631 | t # 463 4632 | v 0 5 4633 | v 1 2 4634 | v 2 2 4635 | v 3 2 4636 | v 4 3 4637 | e 0 1 2 4638 | e 1 2 2 4639 | e 1 3 2 4640 | e 3 4 3 4641 | t # 464 4642 | v 0 2 4643 | v 1 2 4644 | v 2 2 4645 | v 3 2 4646 | v 4 2 4647 | e 0 1 2 4648 | e 1 2 2 4649 | e 2 3 2 4650 | e 2 4 2 4651 | t # 465 4652 | v 0 2 4653 | v 1 3 4654 | v 2 2 4655 | v 3 2 4656 | v 4 5 4657 | e 0 1 2 4658 | e 0 3 2 4659 | e 1 2 2 4660 | e 2 4 2 4661 | t # 466 4662 | v 0 2 4663 | v 1 2 4664 | v 2 5 4665 | v 3 3 4666 | v 4 2 4667 | e 0 1 2 4668 | e 1 2 2 4669 | e 1 3 3 4670 | e 2 4 2 4671 | t # 467 4672 | v 0 2 4673 | v 1 2 4674 | v 2 2 4675 | v 3 2 4676 | v 4 2 4677 | e 0 1 2 4678 | e 1 2 2 4679 | e 2 3 5 4680 | e 2 4 5 4681 | t # 468 4682 | v 0 2 4683 | v 1 2 4684 | v 2 2 4685 | v 3 2 4686 | v 4 2 4687 | e 0 1 2 4688 | e 1 2 2 4689 | e 2 3 2 4690 | e 3 4 2 4691 | t # 469 4692 | v 0 3 4693 | v 1 2 4694 | v 2 2 4695 | v 3 5 4696 | v 4 2 4697 | e 0 2 2 4698 | e 1 2 2 4699 | e 2 3 2 4700 | e 3 4 5 4701 | t # 470 4702 | v 0 2 4703 | v 1 2 4704 | v 2 2 4705 | v 3 5 4706 | v 4 2 4707 | e 0 1 2 4708 | e 1 2 2 4709 | e 2 3 2 4710 | e 3 4 2 4711 | t # 471 4712 | v 0 2 4713 | v 1 3 4714 | v 2 7 4715 | v 3 3 4716 | v 4 3 4717 | e 0 1 2 4718 | e 1 2 2 4719 | e 2 3 3 4720 | e 2 4 2 4721 | t # 472 4722 | v 0 2 4723 | v 1 2 4724 | v 2 5 4725 | v 3 2 4726 | v 4 5 4727 | e 0 1 2 4728 | e 1 2 2 4729 | e 1 3 2 4730 | e 3 4 2 4731 | t # 473 4732 | v 0 5 4733 | v 1 2 4734 | v 2 2 4735 | v 3 3 4736 | v 4 2 4737 | e 0 1 2 4738 | e 1 2 2 4739 | e 1 4 2 4740 | e 2 3 3 4741 | t # 474 4742 | v 0 2 4743 | v 1 2 4744 | v 2 2 4745 | v 3 2 4746 | v 4 2 4747 | e 0 1 5 4748 | e 0 4 5 4749 | e 1 2 5 4750 | e 2 3 5 4751 | t # 475 4752 | v 0 2 4753 | v 1 2 4754 | v 2 3 4755 | v 3 3 4756 | v 4 2 4757 | e 0 4 2 4758 | e 1 2 2 4759 | e 2 4 2 4760 | e 3 4 3 4761 | t # 476 4762 | v 0 2 4763 | v 1 2 4764 | v 2 2 4765 | v 3 2 4766 | v 4 3 4767 | e 0 1 5 4768 | e 1 2 5 4769 | e 1 4 2 4770 | e 2 3 5 4771 | t # 477 4772 | v 0 2 4773 | v 1 2 4774 | v 2 3 4775 | v 3 3 4776 | v 4 2 4777 | e 0 4 2 4778 | e 1 2 2 4779 | e 2 4 2 4780 | e 3 4 3 4781 | t # 478 4782 | v 0 5 4783 | v 1 2 4784 | v 2 5 4785 | v 3 2 4786 | v 4 6 4787 | e 0 1 2 4788 | e 1 2 5 4789 | e 1 4 5 4790 | e 2 3 5 4791 | t # 479 4792 | v 0 2 4793 | v 1 2 4794 | v 2 2 4795 | v 3 2 4796 | v 4 2 4797 | e 0 1 2 4798 | e 0 2 2 4799 | e 1 3 2 4800 | e 1 4 2 4801 | t # 480 4802 | v 0 2 4803 | v 1 2 4804 | v 2 2 4805 | v 3 3 4806 | v 4 5 4807 | e 0 1 2 4808 | e 0 2 2 4809 | e 2 3 3 4810 | e 2 4 2 4811 | t # 481 4812 | v 0 2 4813 | v 1 2 4814 | v 2 2 4815 | v 3 2 4816 | v 4 2 4817 | e 0 1 5 4818 | e 0 4 5 4819 | e 2 3 5 4820 | e 3 4 5 4821 | t # 482 4822 | v 0 2 4823 | v 1 2 4824 | v 2 6 4825 | v 3 3 4826 | v 4 3 4827 | e 0 1 5 4828 | e 1 2 2 4829 | e 2 3 3 4830 | e 2 4 3 4831 | t # 483 4832 | v 0 5 4833 | v 1 2 4834 | v 2 2 4835 | v 3 2 4836 | v 4 2 4837 | e 0 2 2 4838 | e 1 4 2 4839 | e 1 2 5 4840 | e 2 3 5 4841 | t # 484 4842 | v 0 2 4843 | v 1 2 4844 | v 2 2 4845 | v 3 2 4846 | v 4 2 4847 | e 0 1 2 4848 | e 1 2 5 4849 | e 1 4 5 4850 | e 3 4 5 4851 | t # 485 4852 | v 0 2 4853 | v 1 2 4854 | v 2 2 4855 | v 3 2 4856 | v 4 2 4857 | e 0 1 5 4858 | e 0 2 2 4859 | e 1 3 5 4860 | e 2 4 2 4861 | t # 486 4862 | v 0 2 4863 | v 1 2 4864 | v 2 2 4865 | v 3 2 4866 | v 4 2 4867 | e 0 1 2 4868 | e 0 3 2 4869 | e 1 4 2 4870 | e 2 3 2 4871 | t # 487 4872 | v 0 3 4873 | v 1 7 4874 | v 2 3 4875 | v 3 3 4876 | v 4 2 4877 | e 0 1 3 4878 | e 1 2 2 4879 | e 1 3 2 4880 | e 1 4 2 4881 | t # 488 4882 | v 0 2 4883 | v 1 5 4884 | v 2 2 4885 | v 3 2 4886 | v 4 2 4887 | e 0 1 2 4888 | e 0 2 3 4889 | e 2 3 2 4890 | e 3 4 5 4891 | t # 489 4892 | v 0 2 4893 | v 1 2 4894 | v 2 2 4895 | v 3 2 4896 | v 4 2 4897 | e 0 3 5 4898 | e 1 2 5 4899 | e 1 4 2 4900 | e 2 3 5 4901 | t # 490 4902 | v 0 2 4903 | v 1 2 4904 | v 2 2 4905 | v 3 2 4906 | v 4 2 4907 | e 0 1 5 4908 | e 1 2 5 4909 | e 1 4 5 4910 | e 2 3 5 4911 | t # 491 4912 | v 0 2 4913 | v 1 2 4914 | v 2 2 4915 | v 3 2 4916 | v 4 2 4917 | e 0 4 5 4918 | e 0 1 5 4919 | e 1 2 5 4920 | e 2 3 5 4921 | t # 492 4922 | v 0 2 4923 | v 1 2 4924 | v 2 2 4925 | v 3 2 4926 | v 4 5 4927 | e 0 1 3 4928 | e 0 4 2 4929 | e 1 2 2 4930 | e 2 3 5 4931 | t # 493 4932 | v 0 2 4933 | v 1 2 4934 | v 2 5 4935 | v 3 3 4936 | v 4 2 4937 | e 0 4 5 4938 | e 1 2 2 4939 | e 1 4 5 4940 | e 2 3 3 4941 | t # 494 4942 | v 0 5 4943 | v 1 2 4944 | v 2 3 4945 | v 3 2 4946 | v 4 2 4947 | e 0 1 2 4948 | e 1 2 3 4949 | e 1 3 2 4950 | e 3 4 5 4951 | t # 495 4952 | v 0 2 4953 | v 1 2 4954 | v 2 2 4955 | v 3 2 4956 | v 4 2 4957 | e 0 1 2 4958 | e 1 2 2 4959 | e 2 3 5 4960 | e 2 4 5 4961 | t # 496 4962 | v 0 2 4963 | v 1 3 4964 | v 2 2 4965 | v 3 2 4966 | v 4 2 4967 | e 0 1 2 4968 | e 1 3 2 4969 | e 2 3 2 4970 | e 3 4 2 4971 | t # 497 4972 | v 0 2 4973 | v 1 5 4974 | v 2 2 4975 | v 3 3 4976 | v 4 2 4977 | e 0 1 2 4978 | e 1 2 2 4979 | e 2 3 3 4980 | e 2 4 2 4981 | t # 498 4982 | v 0 2 4983 | v 1 2 4984 | v 2 3 4985 | v 3 2 4986 | v 4 2 4987 | e 0 1 2 4988 | e 1 2 2 4989 | e 1 4 2 4990 | e 2 3 2 4991 | t # 499 4992 | v 0 5 4993 | v 1 5 4994 | v 2 2 4995 | v 3 3 4996 | v 4 4 4997 | e 0 4 2 4998 | e 1 2 5 4999 | e 1 4 2 5000 | e 3 4 2 5001 | t # 500 5002 | v 0 2 5003 | v 1 2 5004 | v 2 2 5005 | v 3 2 5006 | v 4 2 5007 | e 0 1 2 5008 | e 1 2 2 5009 | e 1 4 2 5010 | e 2 3 2 5011 | t # 501 5012 | v 0 2 5013 | v 1 2 5014 | v 2 2 5015 | v 3 2 5016 | v 4 2 5017 | e 0 1 2 5018 | e 0 4 2 5019 | e 1 2 2 5020 | e 3 4 2 5021 | t # 502 5022 | v 0 2 5023 | v 1 2 5024 | v 2 2 5025 | v 3 2 5026 | v 4 5 5027 | e 0 1 2 5028 | e 1 2 2 5029 | e 1 3 2 5030 | e 3 4 2 5031 | t # 503 5032 | v 0 2 5033 | v 1 2 5034 | v 2 2 5035 | v 3 2 5036 | v 4 3 5037 | e 0 1 2 5038 | e 1 2 2 5039 | e 1 4 2 5040 | e 2 3 2 5041 | t # 504 5042 | v 0 2 5043 | v 1 2 5044 | v 2 2 5045 | v 3 2 5046 | v 4 2 5047 | e 0 1 5 5048 | e 0 4 5 5049 | e 2 3 5 5050 | e 3 4 5 5051 | t # 505 5052 | v 0 2 5053 | v 1 2 5054 | v 2 5 5055 | v 3 2 5056 | v 4 3 5057 | e 0 1 2 5058 | e 1 2 2 5059 | e 2 3 2 5060 | e 3 4 2 5061 | t # 506 5062 | v 0 2 5063 | v 1 2 5064 | v 2 6 5065 | v 3 3 5066 | v 4 3 5067 | e 0 1 5 5068 | e 1 2 2 5069 | e 2 3 3 5070 | e 2 4 3 5071 | t # 507 5072 | v 0 2 5073 | v 1 2 5074 | v 2 2 5075 | v 3 3 5076 | v 4 2 5077 | e 0 2 3 5078 | e 0 1 2 5079 | e 1 4 2 5080 | e 2 3 2 5081 | t # 508 5082 | v 0 2 5083 | v 1 2 5084 | v 2 2 5085 | v 3 2 5086 | v 4 2 5087 | e 0 1 2 5088 | e 1 2 5 5089 | e 1 4 5 5090 | e 2 3 5 5091 | t # 509 5092 | v 0 2 5093 | v 1 7 5094 | v 2 2 5095 | v 3 2 5096 | v 4 2 5097 | e 0 1 3 5098 | e 1 2 2 5099 | e 2 4 5 5100 | e 3 4 5 5101 | t # 510 5102 | v 0 2 5103 | v 1 2 5104 | v 2 2 5105 | v 3 2 5106 | v 4 2 5107 | e 0 1 5 5108 | e 1 2 5 5109 | e 2 3 5 5110 | e 3 4 5 5111 | t # 511 5112 | v 0 5 5113 | v 1 2 5114 | v 2 2 5115 | v 3 5 5116 | v 4 2 5117 | e 0 1 2 5118 | e 1 2 2 5119 | e 2 3 2 5120 | e 3 4 5 5121 | t # 512 5122 | v 0 2 5123 | v 1 2 5124 | v 2 3 5125 | v 3 2 5126 | v 4 5 5127 | e 0 1 5 5128 | e 0 3 2 5129 | e 1 2 3 5130 | e 3 4 2 5131 | t # 513 5132 | v 0 5 5133 | v 1 2 5134 | v 2 35 5135 | v 3 8 5136 | v 4 8 5137 | e 0 1 2 5138 | e 0 2 2 5139 | e 2 3 2 5140 | e 2 4 2 5141 | t # 514 5142 | v 0 2 5143 | v 1 2 5144 | v 2 2 5145 | v 3 2 5146 | v 4 2 5147 | e 0 1 5 5148 | e 1 4 5 5149 | e 2 3 2 5150 | e 2 4 5 5151 | t # 515 5152 | v 0 2 5153 | v 1 2 5154 | v 2 2 5155 | v 3 2 5156 | v 4 2 5157 | e 0 3 2 5158 | e 1 2 2 5159 | e 2 4 2 5160 | e 3 4 2 5161 | t # 516 5162 | v 0 3 5163 | v 1 2 5164 | v 2 2 5165 | v 3 3 5166 | v 4 2 5167 | e 0 2 2 5168 | e 1 4 2 5169 | e 2 3 3 5170 | e 2 4 2 5171 | t # 517 5172 | v 0 2 5173 | v 1 2 5174 | v 2 2 5175 | v 3 2 5176 | v 4 2 5177 | e 0 1 2 5178 | e 1 2 2 5179 | e 2 3 2 5180 | e 3 4 2 5181 | t # 518 5182 | v 0 2 5183 | v 1 3 5184 | v 2 3 5185 | v 3 7 5186 | v 4 2 5187 | e 0 1 2 5188 | e 0 4 2 5189 | e 2 3 2 5190 | e 2 4 2 5191 | t # 519 5192 | v 0 3 5193 | v 1 2 5194 | v 2 2 5195 | v 3 2 5196 | v 4 2 5197 | e 0 1 2 5198 | e 1 2 2 5199 | e 2 3 2 5200 | e 3 4 2 5201 | t # 520 5202 | v 0 3 5203 | v 1 2 5204 | v 2 3 5205 | v 3 2 5206 | v 4 2 5207 | e 0 1 2 5208 | e 1 2 3 5209 | e 1 3 2 5210 | e 3 4 2 5211 | t # 521 5212 | v 0 2 5213 | v 1 2 5214 | v 2 2 5215 | v 3 2 5216 | v 4 2 5217 | e 0 1 2 5218 | e 1 2 2 5219 | e 2 3 2 5220 | e 3 4 2 5221 | t # 522 5222 | v 0 2 5223 | v 1 2 5224 | v 2 2 5225 | v 3 5 5226 | v 4 2 5227 | e 0 1 2 5228 | e 1 2 2 5229 | e 2 3 2 5230 | e 3 4 2 5231 | t # 523 5232 | v 0 3 5233 | v 1 2 5234 | v 2 2 5235 | v 3 2 5236 | v 4 2 5237 | e 0 1 2 5238 | e 1 2 5 5239 | e 2 3 5 5240 | e 3 4 5 5241 | t # 524 5242 | v 0 5 5243 | v 1 2 5244 | v 2 3 5245 | v 3 3 5246 | v 4 2 5247 | e 0 1 2 5248 | e 1 2 3 5249 | e 1 3 2 5250 | e 3 4 2 5251 | t # 525 5252 | v 0 2 5253 | v 1 2 5254 | v 2 2 5255 | v 3 2 5256 | v 4 3 5257 | e 0 1 2 5258 | e 1 2 2 5259 | e 2 3 2 5260 | e 3 4 3 5261 | t # 526 5262 | v 0 5 5263 | v 1 2 5264 | v 2 2 5265 | v 3 2 5266 | v 4 2 5267 | e 0 1 2 5268 | e 0 3 2 5269 | e 1 2 2 5270 | e 3 4 2 5271 | t # 527 5272 | v 0 2 5273 | v 1 5 5274 | v 2 2 5275 | v 3 5 5276 | v 4 3 5277 | e 0 1 5 5278 | e 0 3 5 5279 | e 0 4 3 5280 | e 1 2 5 5281 | t # 528 5282 | v 0 2 5283 | v 1 2 5284 | v 2 2 5285 | v 3 2 5286 | v 4 2 5287 | e 0 1 2 5288 | e 1 2 2 5289 | e 2 3 2 5290 | e 2 4 2 5291 | t # 529 5292 | v 0 2 5293 | v 1 2 5294 | v 2 2 5295 | v 3 2 5296 | v 4 2 5297 | e 0 1 2 5298 | e 1 2 3 5299 | e 2 3 2 5300 | e 3 4 2 5301 | t # 530 5302 | v 0 2 5303 | v 1 2 5304 | v 2 2 5305 | v 3 2 5306 | v 4 2 5307 | e 0 1 2 5308 | e 1 2 2 5309 | e 2 3 2 5310 | e 3 4 2 5311 | t # 531 5312 | v 0 2 5313 | v 1 2 5314 | v 2 2 5315 | v 3 2 5316 | v 4 2 5317 | e 0 4 5 5318 | e 1 2 5 5319 | e 2 3 5 5320 | e 3 4 5 5321 | t # 532 5322 | v 0 2 5323 | v 1 2 5324 | v 2 2 5325 | v 3 2 5326 | v 4 2 5327 | e 0 1 2 5328 | e 1 2 2 5329 | e 2 3 2 5330 | e 3 4 5 5331 | t # 533 5332 | v 0 5 5333 | v 1 2 5334 | v 2 3 5335 | v 3 5 5336 | v 4 2 5337 | e 0 1 2 5338 | e 0 4 5 5339 | e 1 2 3 5340 | e 3 4 5 5341 | t # 534 5342 | v 0 5 5343 | v 1 2 5344 | v 2 2 5345 | v 3 5 5346 | v 4 2 5347 | e 0 1 2 5348 | e 0 4 5 5349 | e 2 3 3 5350 | e 3 4 2 5351 | t # 535 5352 | v 0 2 5353 | v 1 2 5354 | v 2 2 5355 | v 3 3 5356 | v 4 2 5357 | e 0 1 5 5358 | e 0 3 2 5359 | e 1 2 5 5360 | e 3 4 2 5361 | t # 536 5362 | v 0 2 5363 | v 1 2 5364 | v 2 2 5365 | v 3 2 5366 | v 4 3 5367 | e 0 1 2 5368 | e 0 3 2 5369 | e 1 2 2 5370 | e 3 4 2 5371 | t # 537 5372 | v 0 2 5373 | v 1 2 5374 | v 2 5 5375 | v 3 2 5376 | v 4 3 5377 | e 0 1 2 5378 | e 1 3 2 5379 | e 2 3 2 5380 | e 3 4 3 5381 | t # 538 5382 | v 0 2 5383 | v 1 2 5384 | v 2 2 5385 | v 3 2 5386 | v 4 3 5387 | e 0 2 2 5388 | e 1 2 2 5389 | e 2 3 2 5390 | e 3 4 3 5391 | t # 539 5392 | v 0 2 5393 | v 1 3 5394 | v 2 2 5395 | v 3 2 5396 | v 4 3 5397 | e 0 1 2 5398 | e 0 3 2 5399 | e 2 3 2 5400 | e 3 4 2 5401 | t # 540 5402 | v 0 2 5403 | v 1 3 5404 | v 2 2 5405 | v 3 5 5406 | v 4 2 5407 | e 0 1 3 5408 | e 0 2 2 5409 | e 2 3 2 5410 | e 3 4 5 5411 | t # 541 5412 | v 0 5 5413 | v 1 2 5414 | v 2 2 5415 | v 3 2 5416 | v 4 3 5417 | e 0 2 2 5418 | e 0 1 5 5419 | e 2 3 2 5420 | e 3 4 3 5421 | t # 542 5422 | v 0 2 5423 | v 1 2 5424 | v 2 2 5425 | v 3 2 5426 | v 4 2 5427 | e 0 1 2 5428 | e 1 2 2 5429 | e 2 3 2 5430 | e 3 4 2 5431 | t # 543 5432 | v 0 2 5433 | v 1 2 5434 | v 2 2 5435 | v 3 3 5436 | v 4 2 5437 | e 0 1 5 5438 | e 1 2 5 5439 | e 1 3 2 5440 | e 3 4 2 5441 | t # 544 5442 | v 0 2 5443 | v 1 2 5444 | v 2 2 5445 | v 3 2 5446 | v 4 2 5447 | e 0 1 2 5448 | e 1 3 2 5449 | e 2 3 5 5450 | e 3 4 5 5451 | t # 545 5452 | v 0 2 5453 | v 1 2 5454 | v 2 2 5455 | v 3 2 5456 | v 4 2 5457 | e 0 1 5 5458 | e 1 2 5 5459 | e 2 3 5 5460 | e 3 4 5 5461 | t # 546 5462 | v 0 2 5463 | v 1 2 5464 | v 2 2 5465 | v 3 2 5466 | v 4 3 5467 | e 0 3 5 5468 | e 0 1 5 5469 | e 2 3 5 5470 | e 3 4 2 5471 | t # 547 5472 | v 0 2 5473 | v 1 2 5474 | v 2 2 5475 | v 3 2 5476 | v 4 3 5477 | e 0 3 5 5478 | e 1 2 5 5479 | e 2 4 2 5480 | e 2 3 5 5481 | t # 548 5482 | v 0 2 5483 | v 1 2 5484 | v 2 2 5485 | v 3 3 5486 | v 4 2 5487 | e 0 1 5 5488 | e 1 2 5 5489 | e 2 3 2 5490 | e 3 4 2 5491 | t # 549 5492 | v 0 2 5493 | v 1 2 5494 | v 2 2 5495 | v 3 2 5496 | v 4 3 5497 | e 0 1 5 5498 | e 1 2 5 5499 | e 2 4 2 5500 | e 2 3 5 5501 | t # 550 5502 | v 0 2 5503 | v 1 2 5504 | v 2 2 5505 | v 3 2 5506 | v 4 3 5507 | e 0 1 5 5508 | e 1 2 5 5509 | e 1 4 2 5510 | e 3 4 2 5511 | t # 551 5512 | v 0 2 5513 | v 1 2 5514 | v 2 2 5515 | v 3 2 5516 | v 4 3 5517 | e 0 1 5 5518 | e 1 4 2 5519 | e 2 3 5 5520 | e 3 4 2 5521 | t # 552 5522 | v 0 2 5523 | v 1 2 5524 | v 2 2 5525 | v 3 2 5526 | v 4 2 5527 | e 0 1 2 5528 | e 1 2 5 5529 | e 2 3 5 5530 | e 3 4 5 5531 | t # 553 5532 | v 0 2 5533 | v 1 2 5534 | v 2 2 5535 | v 3 2 5536 | v 4 3 5537 | e 0 1 5 5538 | e 1 4 2 5539 | e 2 3 5 5540 | e 3 4 2 5541 | t # 554 5542 | v 0 2 5543 | v 1 2 5544 | v 2 2 5545 | v 3 2 5546 | v 4 3 5547 | e 0 2 5 5548 | e 0 1 5 5549 | e 2 3 5 5550 | e 3 4 3 5551 | t # 555 5552 | v 0 2 5553 | v 1 3 5554 | v 2 2 5555 | v 3 2 5556 | v 4 2 5557 | e 0 1 2 5558 | e 0 2 5 5559 | e 2 3 5 5560 | e 3 4 2 5561 | t # 556 5562 | v 0 2 5563 | v 1 2 5564 | v 2 2 5565 | v 3 3 5566 | v 4 2 5567 | e 0 1 5 5568 | e 0 4 2 5569 | e 1 2 5 5570 | e 1 3 2 5571 | t # 557 5572 | v 0 2 5573 | v 1 2 5574 | v 2 2 5575 | v 3 3 5576 | v 4 3 5577 | e 0 3 2 5578 | e 1 2 5 5579 | e 1 4 2 5580 | e 2 3 2 5581 | t # 558 5582 | v 0 2 5583 | v 1 3 5584 | v 2 3 5585 | v 3 3 5586 | v 4 15 5587 | e 0 1 3 5588 | e 1 4 2 5589 | e 2 4 2 5590 | e 3 4 2 5591 | t # 559 5592 | v 0 2 5593 | v 1 2 5594 | v 2 2 5595 | v 3 2 5596 | v 4 2 5597 | e 0 1 2 5598 | e 0 4 2 5599 | e 2 3 2 5600 | e 3 4 2 5601 | t # 560 5602 | v 0 3 5603 | v 1 2 5604 | v 2 2 5605 | v 3 2 5606 | v 4 2 5607 | e 0 1 2 5608 | e 1 2 2 5609 | e 2 4 5 5610 | e 3 4 5 5611 | t # 561 5612 | v 0 2 5613 | v 1 5 5614 | v 2 5 5615 | v 3 2 5616 | v 4 2 5617 | e 0 3 5 5618 | e 1 2 5 5619 | e 2 4 5 5620 | e 2 3 5 5621 | t # 562 5622 | v 0 2 5623 | v 1 3 5624 | v 2 2 5625 | v 3 2 5626 | v 4 3 5627 | e 0 1 2 5628 | e 1 2 2 5629 | e 2 3 2 5630 | e 2 4 3 5631 | t # 563 5632 | v 0 2 5633 | v 1 2 5634 | v 2 2 5635 | v 3 2 5636 | v 4 2 5637 | e 0 1 2 5638 | e 0 3 2 5639 | e 1 2 2 5640 | e 3 4 2 5641 | t # 564 5642 | v 0 2 5643 | v 1 5 5644 | v 2 2 5645 | v 3 2 5646 | v 4 2 5647 | e 0 1 2 5648 | e 1 2 2 5649 | e 1 4 2 5650 | e 2 3 2 5651 | t # 565 5652 | v 0 2 5653 | v 1 3 5654 | v 2 2 5655 | v 3 2 5656 | v 4 2 5657 | e 0 1 2 5658 | e 1 2 2 5659 | e 2 3 2 5660 | e 2 4 2 5661 | t # 566 5662 | v 0 2 5663 | v 1 3 5664 | v 2 3 5665 | v 3 2 5666 | v 4 2 5667 | e 0 1 3 5668 | e 0 2 2 5669 | e 2 3 2 5670 | e 3 4 2 5671 | t # 567 5672 | v 0 2 5673 | v 1 3 5674 | v 2 3 5675 | v 3 2 5676 | v 4 2 5677 | e 0 1 3 5678 | e 0 2 2 5679 | e 2 3 2 5680 | e 3 4 2 5681 | t # 568 5682 | v 0 2 5683 | v 1 2 5684 | v 2 2 5685 | v 3 2 5686 | v 4 2 5687 | e 0 1 5 5688 | e 0 2 5 5689 | e 1 3 5 5690 | e 3 4 5 5691 | t # 569 5692 | v 0 2 5693 | v 1 2 5694 | v 2 2 5695 | v 3 2 5696 | v 4 3 5697 | e 0 1 5 5698 | e 1 2 5 5699 | e 2 3 5 5700 | e 2 4 2 5701 | t # 570 5702 | v 0 2 5703 | v 1 2 5704 | v 2 2 5705 | v 3 2 5706 | v 4 2 5707 | e 0 1 2 5708 | e 1 2 2 5709 | e 2 3 5 5710 | e 3 4 5 5711 | t # 571 5712 | v 0 2 5713 | v 1 2 5714 | v 2 2 5715 | v 3 2 5716 | v 4 2 5717 | e 0 1 5 5718 | e 0 4 5 5719 | e 1 2 5 5720 | e 2 3 5 5721 | t # 572 5722 | v 0 2 5723 | v 1 2 5724 | v 2 2 5725 | v 3 2 5726 | v 4 2 5727 | e 0 4 5 5728 | e 1 2 5 5729 | e 2 3 5 5730 | e 3 4 5 5731 | t # 573 5732 | v 0 2 5733 | v 1 2 5734 | v 2 2 5735 | v 3 2 5736 | v 4 2 5737 | e 0 1 5 5738 | e 1 2 5 5739 | e 2 4 5 5740 | e 3 4 5 5741 | t # 574 5742 | v 0 2 5743 | v 1 2 5744 | v 2 2 5745 | v 3 2 5746 | v 4 2 5747 | e 0 4 5 5748 | e 1 2 5 5749 | e 2 3 5 5750 | e 3 4 5 5751 | t # 575 5752 | v 0 2 5753 | v 1 2 5754 | v 2 2 5755 | v 3 3 5756 | v 4 2 5757 | e 0 1 5 5758 | e 0 4 5 5759 | e 1 2 5 5760 | e 2 3 2 5761 | t # 576 5762 | v 0 2 5763 | v 1 2 5764 | v 2 5 5765 | v 3 2 5766 | v 4 2 5767 | e 0 1 5 5768 | e 0 2 5 5769 | e 1 3 5 5770 | e 3 4 5 5771 | t # 577 5772 | v 0 5 5773 | v 1 2 5774 | v 2 2 5775 | v 3 2 5776 | v 4 2 5777 | e 0 1 2 5778 | e 1 2 2 5779 | e 2 3 3 5780 | e 2 4 2 5781 | t # 578 5782 | v 0 3 5783 | v 1 2 5784 | v 2 2 5785 | v 3 3 5786 | v 4 2 5787 | e 0 1 2 5788 | e 1 2 2 5789 | e 2 3 2 5790 | e 3 4 2 5791 | t # 579 5792 | v 0 2 5793 | v 1 2 5794 | v 2 3 5795 | v 3 2 5796 | v 4 3 5797 | e 0 1 2 5798 | e 0 4 2 5799 | e 1 2 2 5800 | e 1 3 2 5801 | t # 580 5802 | v 0 2 5803 | v 1 2 5804 | v 2 2 5805 | v 3 2 5806 | v 4 2 5807 | e 0 2 2 5808 | e 0 4 2 5809 | e 1 4 2 5810 | e 2 3 3 5811 | t # 581 5812 | v 0 2 5813 | v 1 5 5814 | v 2 2 5815 | v 3 2 5816 | v 4 5 5817 | e 0 1 2 5818 | e 1 2 2 5819 | e 2 3 2 5820 | e 3 4 2 5821 | t # 582 5822 | v 0 2 5823 | v 1 2 5824 | v 2 2 5825 | v 3 2 5826 | v 4 2 5827 | e 0 2 2 5828 | e 0 3 2 5829 | e 1 3 2 5830 | e 3 4 2 5831 | t # 583 5832 | v 0 2 5833 | v 1 2 5834 | v 2 2 5835 | v 3 5 5836 | v 4 2 5837 | e 0 1 2 5838 | e 1 2 2 5839 | e 2 3 2 5840 | e 3 4 2 5841 | t # 584 5842 | v 0 2 5843 | v 1 3 5844 | v 2 2 5845 | v 3 2 5846 | v 4 3 5847 | e 0 1 2 5848 | e 1 2 2 5849 | e 2 3 2 5850 | e 2 4 3 5851 | t # 585 5852 | v 0 2 5853 | v 1 2 5854 | v 2 2 5855 | v 3 2 5856 | v 4 3 5857 | e 0 2 3 5858 | e 1 4 2 5859 | e 1 2 2 5860 | e 2 3 2 5861 | t # 586 5862 | v 0 2 5863 | v 1 2 5864 | v 2 3 5865 | v 3 2 5866 | v 4 3 5867 | e 0 1 2 5868 | e 1 2 2 5869 | e 2 3 2 5870 | e 3 4 3 5871 | t # 587 5872 | v 0 2 5873 | v 1 2 5874 | v 2 2 5875 | v 3 3 5876 | v 4 3 5877 | e 0 2 2 5878 | e 0 3 2 5879 | e 1 2 2 5880 | e 2 4 2 5881 | t # 588 5882 | v 0 2 5883 | v 1 2 5884 | v 2 3 5885 | v 3 2 5886 | v 4 3 5887 | e 0 1 2 5888 | e 1 2 2 5889 | e 2 3 2 5890 | e 3 4 3 5891 | t # 589 5892 | v 0 5 5893 | v 1 2 5894 | v 2 2 5895 | v 3 2 5896 | v 4 3 5897 | e 0 1 2 5898 | e 1 2 2 5899 | e 1 3 2 5900 | e 3 4 2 5901 | t # 590 5902 | v 0 5 5903 | v 1 2 5904 | v 2 2 5905 | v 3 3 5906 | v 4 5 5907 | e 0 1 2 5908 | e 1 2 2 5909 | e 2 3 3 5910 | e 2 4 2 5911 | t # 591 5912 | v 0 2 5913 | v 1 2 5914 | v 2 2 5915 | v 3 2 5916 | v 4 5 5917 | e 0 1 2 5918 | e 1 2 2 5919 | e 2 3 5 5920 | e 2 4 5 5921 | t # 592 5922 | v 0 2 5923 | v 1 2 5924 | v 2 5 5925 | v 3 2 5926 | v 4 5 5927 | e 0 1 2 5928 | e 1 2 5 5929 | e 2 3 5 5930 | e 3 4 5 5931 | t # 593 5932 | v 0 5 5933 | v 1 2 5934 | v 2 3 5935 | v 3 2 5936 | v 4 2 5937 | e 0 1 2 5938 | e 1 2 3 5939 | e 1 3 2 5940 | e 3 4 5 5941 | t # 594 5942 | v 0 5 5943 | v 1 2 5944 | v 2 2 5945 | v 3 3 5946 | v 4 5 5947 | e 0 1 5 5948 | e 1 2 5 5949 | e 1 3 2 5950 | e 2 4 2 5951 | t # 595 5952 | v 0 2 5953 | v 1 2 5954 | v 2 5 5955 | v 3 2 5956 | v 4 2 5957 | e 0 1 5 5958 | e 1 2 2 5959 | e 2 3 3 5960 | e 3 4 2 5961 | t # 596 5962 | v 0 2 5963 | v 1 3 5964 | v 2 2 5965 | v 3 3 5966 | v 4 2 5967 | e 0 1 2 5968 | e 1 2 2 5969 | e 2 3 3 5970 | e 2 4 2 5971 | t # 597 5972 | v 0 2 5973 | v 1 2 5974 | v 2 5 5975 | v 3 5 5976 | v 4 2 5977 | e 0 3 2 5978 | e 0 1 5 5979 | e 1 2 2 5980 | e 3 4 3 5981 | t # 598 5982 | v 0 5 5983 | v 1 2 5984 | v 2 3 5985 | v 3 2 5986 | v 4 2 5987 | e 0 1 2 5988 | e 1 3 2 5989 | e 2 3 2 5990 | e 3 4 2 5991 | t # 599 5992 | v 0 2 5993 | v 1 2 5994 | v 2 2 5995 | v 3 5 5996 | v 4 2 5997 | e 0 1 5 5998 | e 0 3 5 5999 | e 1 2 5 6000 | e 3 4 2 6001 | t # 600 6002 | v 0 2 6003 | v 1 5 6004 | v 2 3 6005 | v 3 2 6006 | v 4 2 6007 | e 0 1 2 6008 | e 0 2 3 6009 | e 1 3 2 6010 | e 3 4 2 6011 | t # 601 6012 | v 0 2 6013 | v 1 2 6014 | v 2 2 6015 | v 3 2 6016 | v 4 2 6017 | e 0 1 5 6018 | e 0 4 5 6019 | e 1 2 5 6020 | e 3 4 5 6021 | t # 602 6022 | v 0 2 6023 | v 1 2 6024 | v 2 2 6025 | v 3 3 6026 | v 4 2 6027 | e 0 2 2 6028 | e 0 4 2 6029 | e 1 2 2 6030 | e 3 4 2 6031 | t # 603 6032 | v 0 2 6033 | v 1 2 6034 | v 2 5 6035 | v 3 2 6036 | v 4 2 6037 | e 0 1 2 6038 | e 1 2 2 6039 | e 2 3 2 6040 | e 3 4 2 6041 | t # 604 6042 | v 0 2 6043 | v 1 2 6044 | v 2 2 6045 | v 3 2 6046 | v 4 2 6047 | e 0 1 2 6048 | e 1 2 2 6049 | e 2 3 2 6050 | e 3 4 2 6051 | t # 605 6052 | v 0 5 6053 | v 1 2 6054 | v 2 2 6055 | v 3 6 6056 | v 4 3 6057 | e 0 1 2 6058 | e 1 2 2 6059 | e 1 4 3 6060 | e 2 3 2 6061 | t # 606 6062 | v 0 2 6063 | v 1 2 6064 | v 2 2 6065 | v 3 2 6066 | v 4 3 6067 | e 0 4 2 6068 | e 0 1 5 6069 | e 2 3 5 6070 | e 2 4 2 6071 | t # 607 6072 | v 0 2 6073 | v 1 2 6074 | v 2 2 6075 | v 3 2 6076 | v 4 2 6077 | e 0 1 2 6078 | e 1 2 5 6079 | e 2 4 5 6080 | e 2 3 2 6081 | t # 608 6082 | v 0 2 6083 | v 1 2 6084 | v 2 3 6085 | v 3 2 6086 | v 4 3 6087 | e 0 1 5 6088 | e 1 4 2 6089 | e 2 3 2 6090 | e 3 4 2 6091 | t # 609 6092 | v 0 2 6093 | v 1 2 6094 | v 2 2 6095 | v 3 3 6096 | v 4 3 6097 | e 0 1 5 6098 | e 0 3 2 6099 | e 1 4 2 6100 | e 1 2 5 6101 | t # 610 6102 | v 0 2 6103 | v 1 2 6104 | v 2 3 6105 | v 3 2 6106 | v 4 2 6107 | e 0 4 2 6108 | e 0 1 2 6109 | e 2 4 2 6110 | e 3 4 2 6111 | t # 611 6112 | v 0 2 6113 | v 1 2 6114 | v 2 2 6115 | v 3 2 6116 | v 4 2 6117 | e 0 1 5 6118 | e 0 4 5 6119 | e 2 3 5 6120 | e 3 4 5 6121 | t # 612 6122 | v 0 5 6123 | v 1 2 6124 | v 2 2 6125 | v 3 2 6126 | v 4 5 6127 | e 0 1 5 6128 | e 1 3 5 6129 | e 1 2 5 6130 | e 3 4 2 6131 | t # 613 6132 | v 0 2 6133 | v 1 2 6134 | v 2 2 6135 | v 3 2 6136 | v 4 2 6137 | e 0 1 2 6138 | e 1 2 2 6139 | e 1 3 2 6140 | e 3 4 2 6141 | t # 614 6142 | v 0 5 6143 | v 1 2 6144 | v 2 2 6145 | v 3 2 6146 | v 4 2 6147 | e 0 1 2 6148 | e 1 2 5 6149 | e 2 3 5 6150 | e 3 4 5 6151 | t # 615 6152 | v 0 21 6153 | v 1 5 6154 | v 2 2 6155 | v 3 6 6156 | v 4 6 6157 | e 0 1 2 6158 | e 0 2 2 6159 | e 0 3 2 6160 | e 0 4 2 6161 | t # 616 6162 | v 0 2 6163 | v 1 2 6164 | v 2 2 6165 | v 3 2 6166 | v 4 3 6167 | e 0 1 2 6168 | e 1 2 5 6169 | e 1 4 5 6170 | e 2 3 5 6171 | t # 617 6172 | v 0 2 6173 | v 1 5 6174 | v 2 2 6175 | v 3 2 6176 | v 4 2 6177 | e 0 1 2 6178 | e 1 2 2 6179 | e 1 3 2 6180 | e 1 4 2 6181 | t # 618 6182 | v 0 2 6183 | v 1 2 6184 | v 2 5 6185 | v 3 2 6186 | v 4 3 6187 | e 0 1 5 6188 | e 1 2 5 6189 | e 1 4 3 6190 | e 2 3 5 6191 | t # 619 6192 | v 0 5 6193 | v 1 2 6194 | v 2 3 6195 | v 3 2 6196 | v 4 2 6197 | e 0 1 2 6198 | e 1 2 2 6199 | e 2 3 2 6200 | e 3 4 2 6201 | t # 620 6202 | v 0 2 6203 | v 1 3 6204 | v 2 2 6205 | v 3 2 6206 | v 4 2 6207 | e 0 1 2 6208 | e 1 4 2 6209 | e 2 3 2 6210 | e 3 4 2 6211 | t # 621 6212 | v 0 2 6213 | v 1 3 6214 | v 2 3 6215 | v 3 2 6216 | v 4 2 6217 | e 0 1 3 6218 | e 0 2 2 6219 | e 2 3 2 6220 | e 3 4 2 6221 | t # 622 6222 | v 0 5 6223 | v 1 2 6224 | v 2 2 6225 | v 3 2 6226 | v 4 3 6227 | e 0 1 2 6228 | e 1 2 2 6229 | e 1 3 2 6230 | e 3 4 3 6231 | t # 623 6232 | v 0 2 6233 | v 1 2 6234 | v 2 2 6235 | v 3 2 6236 | v 4 5 6237 | e 0 1 5 6238 | e 1 4 5 6239 | e 1 2 5 6240 | e 3 4 5 6241 | t # 624 6242 | v 0 5 6243 | v 1 2 6244 | v 2 2 6245 | v 3 2 6246 | v 4 3 6247 | e 0 1 2 6248 | e 1 2 2 6249 | e 1 3 2 6250 | e 3 4 3 6251 | t # 625 6252 | v 0 44 6253 | v 1 2 6254 | v 2 2 6255 | v 3 3 6256 | v 4 3 6257 | e 0 1 2 6258 | e 1 2 2 6259 | e 2 3 3 6260 | e 2 4 2 6261 | t # 626 6262 | v 0 2 6263 | v 1 2 6264 | v 2 2 6265 | v 3 2 6266 | v 4 2 6267 | e 0 1 5 6268 | e 1 2 5 6269 | e 2 3 5 6270 | e 3 4 5 6271 | t # 627 6272 | v 0 2 6273 | v 1 2 6274 | v 2 2 6275 | v 3 2 6276 | v 4 2 6277 | e 0 4 5 6278 | e 1 2 5 6279 | e 2 3 5 6280 | e 3 4 5 6281 | t # 628 6282 | v 0 2 6283 | v 1 2 6284 | v 2 2 6285 | v 3 5 6286 | v 4 2 6287 | e 0 1 5 6288 | e 0 4 2 6289 | e 1 2 5 6290 | e 2 3 2 6291 | t # 629 6292 | v 0 2 6293 | v 1 2 6294 | v 2 2 6295 | v 3 2 6296 | v 4 2 6297 | e 0 1 3 6298 | e 1 3 2 6299 | e 2 3 5 6300 | e 3 4 5 6301 | t # 630 6302 | v 0 2 6303 | v 1 3 6304 | v 2 7 6305 | v 3 3 6306 | v 4 3 6307 | e 0 1 2 6308 | e 1 2 2 6309 | e 2 3 3 6310 | e 2 4 2 6311 | t # 631 6312 | v 0 2 6313 | v 1 2 6314 | v 2 2 6315 | v 3 2 6316 | v 4 2 6317 | e 0 1 2 6318 | e 1 2 2 6319 | e 1 3 2 6320 | e 3 4 2 6321 | t # 632 6322 | v 0 2 6323 | v 1 2 6324 | v 2 2 6325 | v 3 2 6326 | v 4 2 6327 | e 0 1 2 6328 | e 0 2 2 6329 | e 0 3 2 6330 | e 3 4 2 6331 | t # 633 6332 | v 0 5 6333 | v 1 2 6334 | v 2 2 6335 | v 3 2 6336 | v 4 3 6337 | e 0 1 2 6338 | e 1 2 2 6339 | e 1 3 2 6340 | e 3 4 3 6341 | t # 634 6342 | v 0 2 6343 | v 1 2 6344 | v 2 3 6345 | v 3 2 6346 | v 4 2 6347 | e 0 1 2 6348 | e 0 3 2 6349 | e 1 2 3 6350 | e 3 4 2 6351 | t # 635 6352 | v 0 5 6353 | v 1 2 6354 | v 2 2 6355 | v 3 2 6356 | v 4 3 6357 | e 0 1 2 6358 | e 1 2 2 6359 | e 1 3 2 6360 | e 3 4 3 6361 | t # 636 6362 | v 0 2 6363 | v 1 2 6364 | v 2 2 6365 | v 3 2 6366 | v 4 2 6367 | e 0 1 2 6368 | e 1 2 2 6369 | e 2 3 2 6370 | e 2 4 2 6371 | t # 637 6372 | v 0 2 6373 | v 1 2 6374 | v 2 3 6375 | v 3 5 6376 | v 4 2 6377 | e 0 1 2 6378 | e 1 2 3 6379 | e 1 3 2 6380 | e 3 4 2 6381 | t # 638 6382 | v 0 2 6383 | v 1 2 6384 | v 2 2 6385 | v 3 3 6386 | v 4 5 6387 | e 0 1 2 6388 | e 0 2 2 6389 | e 2 3 3 6390 | e 2 4 2 6391 | t # 639 6392 | v 0 5 6393 | v 1 2 6394 | v 2 2 6395 | v 3 2 6396 | v 4 3 6397 | e 0 1 2 6398 | e 1 2 2 6399 | e 1 3 2 6400 | e 3 4 3 6401 | t # 640 6402 | v 0 2 6403 | v 1 2 6404 | v 2 2 6405 | v 3 3 6406 | v 4 5 6407 | e 0 1 2 6408 | e 0 2 2 6409 | e 2 3 3 6410 | e 2 4 2 6411 | t # 641 6412 | v 0 2 6413 | v 1 2 6414 | v 2 2 6415 | v 3 2 6416 | v 4 2 6417 | e 0 1 2 6418 | e 0 2 2 6419 | e 2 3 2 6420 | e 3 4 2 6421 | t # 642 6422 | v 0 2 6423 | v 1 2 6424 | v 2 5 6425 | v 3 2 6426 | v 4 2 6427 | e 0 1 2 6428 | e 1 2 2 6429 | e 2 3 2 6430 | e 3 4 2 6431 | t # 643 6432 | v 0 5 6433 | v 1 2 6434 | v 2 2 6435 | v 3 3 6436 | v 4 5 6437 | e 0 1 2 6438 | e 1 2 2 6439 | e 2 3 3 6440 | e 2 4 2 6441 | t # 644 6442 | v 0 2 6443 | v 1 2 6444 | v 2 5 6445 | v 3 2 6446 | v 4 2 6447 | e 0 1 2 6448 | e 0 3 2 6449 | e 1 2 2 6450 | e 3 4 2 6451 | t # 645 6452 | v 0 2 6453 | v 1 2 6454 | v 2 2 6455 | v 3 2 6456 | v 4 2 6457 | e 0 1 5 6458 | e 1 2 5 6459 | e 2 3 5 6460 | e 3 4 5 6461 | t # 646 6462 | v 0 2 6463 | v 1 5 6464 | v 2 2 6465 | v 3 2 6466 | v 4 3 6467 | e 0 1 2 6468 | e 1 2 2 6469 | e 2 3 2 6470 | e 3 4 3 6471 | t # 647 6472 | v 0 2 6473 | v 1 5 6474 | v 2 2 6475 | v 3 2 6476 | v 4 2 6477 | e 0 1 2 6478 | e 1 2 2 6479 | e 2 3 2 6480 | e 3 4 2 6481 | t # 648 6482 | v 0 5 6483 | v 1 2 6484 | v 2 2 6485 | v 3 3 6486 | v 4 3 6487 | e 0 1 2 6488 | e 1 2 2 6489 | e 2 3 3 6490 | e 2 4 2 6491 | t # 649 6492 | v 0 2 6493 | v 1 3 6494 | v 2 2 6495 | v 3 3 6496 | v 4 2 6497 | e 0 1 2 6498 | e 1 2 2 6499 | e 2 3 3 6500 | e 2 4 2 6501 | t # 650 6502 | v 0 2 6503 | v 1 5 6504 | v 2 5 6505 | v 3 2 6506 | v 4 2 6507 | e 0 1 2 6508 | e 1 2 3 6509 | e 2 3 2 6510 | e 3 4 5 6511 | t # 651 6512 | v 0 5 6513 | v 1 5 6514 | v 2 2 6515 | v 3 6 6516 | v 4 5 6517 | e 0 1 2 6518 | e 1 2 2 6519 | e 2 3 3 6520 | e 2 4 2 6521 | t # 652 6522 | v 0 2 6523 | v 1 2 6524 | v 2 2 6525 | v 3 2 6526 | v 4 2 6527 | e 0 1 5 6528 | e 1 2 5 6529 | e 1 3 2 6530 | e 2 4 2 6531 | t # 653 6532 | v 0 2 6533 | v 1 2 6534 | v 2 2 6535 | v 3 3 6536 | v 4 3 6537 | e 0 3 2 6538 | e 1 2 5 6539 | e 1 4 2 6540 | e 2 3 2 6541 | t # 654 6542 | v 0 5 6543 | v 1 2 6544 | v 2 2 6545 | v 3 2 6546 | v 4 2 6547 | e 0 1 2 6548 | e 1 2 5 6549 | e 1 3 5 6550 | e 2 4 5 6551 | t # 655 6552 | v 0 2 6553 | v 1 2 6554 | v 2 2 6555 | v 3 5 6556 | v 4 2 6557 | e 0 1 5 6558 | e 0 4 2 6559 | e 1 2 5 6560 | e 2 3 5 6561 | t # 656 6562 | v 0 5 6563 | v 1 2 6564 | v 2 2 6565 | v 3 2 6566 | v 4 2 6567 | e 0 4 2 6568 | e 1 2 5 6569 | e 2 3 5 6570 | e 3 4 5 6571 | t # 657 6572 | v 0 2 6573 | v 1 2 6574 | v 2 5 6575 | v 3 2 6576 | v 4 2 6577 | e 0 2 5 6578 | e 1 3 5 6579 | e 1 2 5 6580 | e 3 4 2 6581 | t # 658 6582 | v 0 2 6583 | v 1 6 6584 | v 2 3 6585 | v 3 3 6586 | v 4 5 6587 | e 0 1 2 6588 | e 1 2 3 6589 | e 1 3 3 6590 | e 1 4 2 6591 | t # 659 6592 | v 0 2 6593 | v 1 2 6594 | v 2 2 6595 | v 3 2 6596 | v 4 2 6597 | e 0 1 5 6598 | e 0 4 5 6599 | e 1 2 5 6600 | e 3 4 5 6601 | t # 660 6602 | v 0 2 6603 | v 1 2 6604 | v 2 2 6605 | v 3 2 6606 | v 4 2 6607 | e 0 1 5 6608 | e 0 4 5 6609 | e 2 3 5 6610 | e 3 4 5 6611 | t # 661 6612 | v 0 2 6613 | v 1 2 6614 | v 2 6 6615 | v 3 3 6616 | v 4 5 6617 | e 0 1 5 6618 | e 1 2 2 6619 | e 2 3 3 6620 | e 2 4 2 6621 | t # 662 6622 | v 0 2 6623 | v 1 2 6624 | v 2 2 6625 | v 3 2 6626 | v 4 2 6627 | e 0 1 5 6628 | e 0 2 5 6629 | e 1 4 5 6630 | e 3 4 5 6631 | t # 663 6632 | v 0 2 6633 | v 1 2 6634 | v 2 2 6635 | v 3 2 6636 | v 4 5 6637 | e 0 3 5 6638 | e 1 2 5 6639 | e 1 4 5 6640 | e 2 3 5 6641 | t # 664 6642 | v 0 2 6643 | v 1 2 6644 | v 2 2 6645 | v 3 2 6646 | v 4 5 6647 | e 0 1 5 6648 | e 0 4 5 6649 | e 2 3 5 6650 | e 3 4 5 6651 | t # 665 6652 | v 0 2 6653 | v 1 2 6654 | v 2 2 6655 | v 3 2 6656 | v 4 2 6657 | e 0 1 5 6658 | e 1 2 5 6659 | e 2 3 5 6660 | e 3 4 5 6661 | t # 666 6662 | v 0 2 6663 | v 1 2 6664 | v 2 5 6665 | v 3 2 6666 | v 4 2 6667 | e 0 1 5 6668 | e 1 2 2 6669 | e 2 4 2 6670 | e 3 4 5 6671 | t # 667 6672 | v 0 2 6673 | v 1 2 6674 | v 2 2 6675 | v 3 2 6676 | v 4 5 6677 | e 0 3 5 6678 | e 1 2 5 6679 | e 1 4 5 6680 | e 2 3 5 6681 | t # 668 6682 | v 0 2 6683 | v 1 5 6684 | v 2 3 6685 | v 3 2 6686 | v 4 2 6687 | e 0 1 5 6688 | e 0 4 5 6689 | e 1 2 5 6690 | e 3 4 5 6691 | t # 669 6692 | v 0 2 6693 | v 1 2 6694 | v 2 2 6695 | v 3 2 6696 | v 4 2 6697 | e 0 1 5 6698 | e 0 4 5 6699 | e 1 2 5 6700 | e 3 4 5 6701 | t # 670 6702 | v 0 2 6703 | v 1 2 6704 | v 2 2 6705 | v 3 2 6706 | v 4 2 6707 | e 0 1 5 6708 | e 0 2 5 6709 | e 1 3 5 6710 | e 2 4 5 6711 | t # 671 6712 | v 0 2 6713 | v 1 2 6714 | v 2 2 6715 | v 3 2 6716 | v 4 5 6717 | e 0 3 5 6718 | e 1 2 5 6719 | e 1 4 5 6720 | e 2 3 5 6721 | t # 672 6722 | v 0 2 6723 | v 1 2 6724 | v 2 2 6725 | v 3 2 6726 | v 4 2 6727 | e 0 1 5 6728 | e 1 2 5 6729 | e 2 3 5 6730 | e 3 4 5 6731 | t # 673 6732 | v 0 6 6733 | v 1 3 6734 | v 2 3 6735 | v 3 5 6736 | v 4 2 6737 | e 0 1 3 6738 | e 0 2 3 6739 | e 0 3 2 6740 | e 3 4 2 6741 | t # 674 6742 | v 0 5 6743 | v 1 2 6744 | v 2 2 6745 | v 3 2 6746 | v 4 2 6747 | e 0 1 2 6748 | e 1 4 5 6749 | e 2 3 5 6750 | e 3 4 5 6751 | t # 675 6752 | v 0 2 6753 | v 1 2 6754 | v 2 2 6755 | v 3 2 6756 | v 4 2 6757 | e 0 1 5 6758 | e 0 4 5 6759 | e 2 3 5 6760 | e 3 4 5 6761 | t # 676 6762 | v 0 2 6763 | v 1 2 6764 | v 2 2 6765 | v 3 2 6766 | v 4 5 6767 | e 0 1 5 6768 | e 0 2 5 6769 | e 2 3 5 6770 | e 3 4 2 6771 | t # 677 6772 | v 0 2 6773 | v 1 2 6774 | v 2 2 6775 | v 3 2 6776 | v 4 2 6777 | e 0 1 2 6778 | e 1 2 2 6779 | e 2 3 2 6780 | e 3 4 2 6781 | t # 678 6782 | v 0 5 6783 | v 1 2 6784 | v 2 3 6785 | v 3 3 6786 | v 4 2 6787 | e 0 1 2 6788 | e 1 2 3 6789 | e 1 3 2 6790 | e 3 4 2 6791 | t # 679 6792 | v 0 2 6793 | v 1 5 6794 | v 2 2 6795 | v 3 2 6796 | v 4 2 6797 | e 0 1 2 6798 | e 1 4 5 6799 | e 2 3 5 6800 | e 3 4 5 6801 | t # 680 6802 | v 0 2 6803 | v 1 2 6804 | v 2 2 6805 | v 3 2 6806 | v 4 2 6807 | e 0 1 2 6808 | e 1 2 2 6809 | e 2 3 2 6810 | e 3 4 2 6811 | t # 681 6812 | v 0 5 6813 | v 1 2 6814 | v 2 2 6815 | v 3 2 6816 | v 4 23 6817 | e 0 3 5 6818 | e 1 2 5 6819 | e 2 4 2 6820 | e 2 3 5 6821 | t # 682 6822 | v 0 2 6823 | v 1 2 6824 | v 2 2 6825 | v 3 2 6826 | v 4 2 6827 | e 0 4 5 6828 | e 1 2 5 6829 | e 2 3 5 6830 | e 3 4 5 6831 | t # 683 6832 | v 0 5 6833 | v 1 2 6834 | v 2 2 6835 | v 3 2 6836 | v 4 3 6837 | e 0 1 2 6838 | e 1 2 2 6839 | e 2 3 2 6840 | e 2 4 2 6841 | t # 684 6842 | v 0 2 6843 | v 1 5 6844 | v 2 2 6845 | v 3 2 6846 | v 4 2 6847 | e 0 1 2 6848 | e 1 2 2 6849 | e 2 3 2 6850 | e 3 4 2 6851 | t # 685 6852 | v 0 2 6853 | v 1 2 6854 | v 2 2 6855 | v 3 2 6856 | v 4 3 6857 | e 0 1 5 6858 | e 1 2 5 6859 | e 2 3 5 6860 | e 2 4 2 6861 | t # 686 6862 | v 0 2 6863 | v 1 2 6864 | v 2 2 6865 | v 3 2 6866 | v 4 5 6867 | e 0 1 2 6868 | e 1 2 2 6869 | e 2 3 2 6870 | e 3 4 2 6871 | t # 687 6872 | v 0 5 6873 | v 1 2 6874 | v 2 2 6875 | v 3 2 6876 | v 4 5 6877 | e 0 1 2 6878 | e 1 2 2 6879 | e 1 3 2 6880 | e 3 4 2 6881 | t # 688 6882 | v 0 2 6883 | v 1 2 6884 | v 2 5 6885 | v 3 2 6886 | v 4 5 6887 | e 0 1 5 6888 | e 0 4 5 6889 | e 1 2 5 6890 | e 3 4 5 6891 | t # 689 6892 | v 0 2 6893 | v 1 2 6894 | v 2 2 6895 | v 3 3 6896 | v 4 5 6897 | e 0 1 2 6898 | e 1 2 2 6899 | e 2 3 3 6900 | e 2 4 2 6901 | t # 690 6902 | v 0 2 6903 | v 1 2 6904 | v 2 2 6905 | v 3 5 6906 | v 4 2 6907 | e 0 1 2 6908 | e 1 2 2 6909 | e 2 3 5 6910 | e 2 4 5 6911 | t # 691 6912 | v 0 2 6913 | v 1 2 6914 | v 2 2 6915 | v 3 2 6916 | v 4 2 6917 | e 0 1 2 6918 | e 0 2 2 6919 | e 2 3 2 6920 | e 3 4 5 6921 | t # 692 6922 | v 0 2 6923 | v 1 5 6924 | v 2 2 6925 | v 3 2 6926 | v 4 3 6927 | e 0 1 2 6928 | e 1 2 2 6929 | e 2 3 2 6930 | e 3 4 3 6931 | t # 693 6932 | v 0 5 6933 | v 1 2 6934 | v 2 2 6935 | v 3 2 6936 | v 4 3 6937 | e 0 1 2 6938 | e 1 2 2 6939 | e 1 3 2 6940 | e 3 4 3 6941 | t # 694 6942 | v 0 2 6943 | v 1 5 6944 | v 2 2 6945 | v 3 2 6946 | v 4 2 6947 | e 0 1 2 6948 | e 1 2 2 6949 | e 2 3 2 6950 | e 3 4 2 6951 | t # 695 6952 | v 0 2 6953 | v 1 2 6954 | v 2 5 6955 | v 3 2 6956 | v 4 2 6957 | e 0 1 2 6958 | e 1 2 2 6959 | e 2 3 2 6960 | e 3 4 2 6961 | t # 696 6962 | v 0 5 6963 | v 1 2 6964 | v 2 2 6965 | v 3 2 6966 | v 4 2 6967 | e 0 1 2 6968 | e 1 2 2 6969 | e 2 3 2 6970 | e 3 4 2 6971 | t # 697 6972 | v 0 2 6973 | v 1 2 6974 | v 2 3 6975 | v 3 5 6976 | v 4 2 6977 | e 0 1 2 6978 | e 1 2 3 6979 | e 1 3 2 6980 | e 3 4 2 6981 | t # 698 6982 | v 0 2 6983 | v 1 5 6984 | v 2 2 6985 | v 3 2 6986 | v 4 3 6987 | e 0 1 2 6988 | e 0 2 2 6989 | e 1 3 2 6990 | e 3 4 3 6991 | t # 699 6992 | v 0 2 6993 | v 1 3 6994 | v 2 2 6995 | v 3 5 6996 | v 4 2 6997 | e 0 1 3 6998 | e 0 2 2 6999 | e 2 3 2 7000 | e 2 4 2 7001 | t # 700 7002 | v 0 2 7003 | v 1 2 7004 | v 2 2 7005 | v 3 2 7006 | v 4 5 7007 | e 0 1 5 7008 | e 0 4 2 7009 | e 1 2 5 7010 | e 2 3 5 7011 | t # 701 7012 | v 0 2 7013 | v 1 2 7014 | v 2 2 7015 | v 3 2 7016 | v 4 2 7017 | e 0 1 5 7018 | e 0 4 5 7019 | e 2 3 5 7020 | e 3 4 5 7021 | t # 702 7022 | v 0 2 7023 | v 1 2 7024 | v 2 2 7025 | v 3 2 7026 | v 4 2 7027 | e 0 1 2 7028 | e 1 2 2 7029 | e 2 3 2 7030 | e 3 4 2 7031 | t # 703 7032 | v 0 2 7033 | v 1 2 7034 | v 2 2 7035 | v 3 2 7036 | v 4 2 7037 | e 0 2 5 7038 | e 1 2 5 7039 | e 2 3 5 7040 | e 3 4 5 7041 | t # 704 7042 | v 0 2 7043 | v 1 2 7044 | v 2 2 7045 | v 3 2 7046 | v 4 2 7047 | e 0 1 5 7048 | e 0 4 5 7049 | e 1 2 5 7050 | e 3 4 5 7051 | t # 705 7052 | v 0 2 7053 | v 1 2 7054 | v 2 2 7055 | v 3 2 7056 | v 4 2 7057 | e 0 1 5 7058 | e 1 2 5 7059 | e 2 3 5 7060 | e 2 4 2 7061 | t # 706 7062 | v 0 2 7063 | v 1 2 7064 | v 2 2 7065 | v 3 2 7066 | v 4 2 7067 | e 0 1 5 7068 | e 1 2 5 7069 | e 2 3 5 7070 | e 3 4 5 7071 | t # 707 7072 | v 0 2 7073 | v 1 2 7074 | v 2 2 7075 | v 3 2 7076 | v 4 2 7077 | e 0 1 2 7078 | e 1 2 2 7079 | e 2 4 2 7080 | e 2 3 3 7081 | t # 708 7082 | v 0 2 7083 | v 1 2 7084 | v 2 2 7085 | v 3 2 7086 | v 4 2 7087 | e 0 1 5 7088 | e 0 4 5 7089 | e 2 3 5 7090 | e 3 4 5 7091 | t # 709 7092 | v 0 2 7093 | v 1 2 7094 | v 2 2 7095 | v 3 2 7096 | v 4 2 7097 | e 0 1 5 7098 | e 1 2 5 7099 | e 2 3 5 7100 | e 3 4 5 7101 | t # 710 7102 | v 0 2 7103 | v 1 2 7104 | v 2 2 7105 | v 3 2 7106 | v 4 2 7107 | e 0 1 5 7108 | e 1 2 5 7109 | e 2 3 5 7110 | e 3 4 5 7111 | t # 711 7112 | v 0 7 7113 | v 1 2 7114 | v 2 2 7115 | v 3 2 7116 | v 4 2 7117 | e 0 1 2 7118 | e 1 2 5 7119 | e 1 4 5 7120 | e 2 3 5 7121 | t # 712 7122 | v 0 2 7123 | v 1 2 7124 | v 2 2 7125 | v 3 2 7126 | v 4 2 7127 | e 0 1 5 7128 | e 1 2 5 7129 | e 2 3 5 7130 | e 3 4 5 7131 | t # 713 7132 | v 0 7 7133 | v 1 2 7134 | v 2 2 7135 | v 3 2 7136 | v 4 2 7137 | e 0 1 2 7138 | e 1 2 5 7139 | e 2 3 5 7140 | e 3 4 5 7141 | t # 714 7142 | v 0 7 7143 | v 1 2 7144 | v 2 2 7145 | v 3 2 7146 | v 4 50 7147 | e 0 1 2 7148 | e 0 4 2 7149 | e 1 2 5 7150 | e 2 3 5 7151 | t # 715 7152 | v 0 2 7153 | v 1 2 7154 | v 2 2 7155 | v 3 2 7156 | v 4 2 7157 | e 0 1 2 7158 | e 1 3 5 7159 | e 2 4 5 7160 | e 3 4 5 7161 | t # 716 7162 | v 0 2 7163 | v 1 5 7164 | v 2 2 7165 | v 3 2 7166 | v 4 2 7167 | e 0 4 2 7168 | e 1 2 2 7169 | e 1 3 2 7170 | e 2 4 2 7171 | t # 717 7172 | v 0 5 7173 | v 1 2 7174 | v 2 3 7175 | v 3 2 7176 | v 4 2 7177 | e 0 1 2 7178 | e 0 3 2 7179 | e 1 2 3 7180 | e 1 4 2 7181 | t # 718 7182 | v 0 37 7183 | v 1 3 7184 | v 2 2 7185 | v 3 3 7186 | v 4 5 7187 | e 0 1 2 7188 | e 0 3 2 7189 | e 0 4 2 7190 | e 2 4 2 7191 | t # 719 7192 | v 0 7 7193 | v 1 2 7194 | v 2 2 7195 | v 3 2 7196 | v 4 2 7197 | e 0 1 2 7198 | e 1 2 5 7199 | e 0 3 2 7200 | e 3 4 5 7201 | t # 720 7202 | v 0 27 7203 | v 1 2 7204 | v 2 2 7205 | v 3 2 7206 | e 0 1 2 7207 | e 0 2 2 7208 | e 0 3 2 7209 | e 1 2 2 7210 | t # 721 7211 | v 0 27 7212 | v 1 2 7213 | v 2 2 7214 | v 3 2 7215 | v 4 2 7216 | e 0 2 2 7217 | e 1 3 2 7218 | e 2 4 2 7219 | e 1 2 3 7220 | t # 722 7221 | v 0 2 7222 | v 1 2 7223 | v 2 5 7224 | v 3 2 7225 | v 4 5 7226 | e 0 1 5 7227 | e 0 2 5 7228 | e 2 3 5 7229 | e 3 4 5 7230 | t # 723 7231 | v 0 2 7232 | v 1 2 7233 | v 2 2 7234 | v 3 2 7235 | v 4 2 7236 | e 0 1 2 7237 | e 1 4 5 7238 | e 2 3 5 7239 | e 3 4 5 7240 | t # 724 7241 | v 0 2 7242 | v 1 2 7243 | v 2 2 7244 | v 3 2 7245 | v 4 2 7246 | e 0 1 5 7247 | e 1 2 5 7248 | e 2 3 5 7249 | e 3 4 2 7250 | t # 725 7251 | v 0 2 7252 | v 1 2 7253 | v 2 2 7254 | v 3 2 7255 | v 4 2 7256 | e 0 1 5 7257 | e 1 2 5 7258 | e 2 3 5 7259 | e 3 4 5 7260 | t # 726 7261 | v 0 2 7262 | v 1 2 7263 | v 2 2 7264 | v 3 2 7265 | v 4 2 7266 | e 0 1 5 7267 | e 1 2 5 7268 | e 2 3 5 7269 | e 3 4 5 7270 | t # 727 7271 | v 0 2 7272 | v 1 2 7273 | v 2 2 7274 | v 3 2 7275 | v 4 2 7276 | e 0 4 5 7277 | e 1 2 5 7278 | e 2 3 5 7279 | e 3 4 5 7280 | t # 728 7281 | v 0 5 7282 | v 1 2 7283 | v 2 3 7284 | v 3 2 7285 | v 4 2 7286 | e 0 1 2 7287 | e 1 2 3 7288 | e 1 3 2 7289 | e 3 4 2 7290 | t # 729 7291 | v 0 2 7292 | v 1 2 7293 | v 2 35 7294 | v 3 35 7295 | v 4 2 7296 | e 0 2 2 7297 | e 2 4 2 7298 | e 1 3 2 7299 | e 2 3 2 7300 | t # 730 7301 | v 0 7 7302 | v 1 2 7303 | v 2 2 7304 | v 3 2 7305 | v 4 2 7306 | e 2 3 5 7307 | e 0 4 2 7308 | e 0 1 2 7309 | e 3 4 5 7310 | t # 731 7311 | v 0 2 7312 | v 1 2 7313 | v 2 2 7314 | v 3 2 7315 | v 4 2 7316 | e 1 2 5 7317 | e 2 3 5 7318 | e 0 4 5 7319 | e 3 4 5 7320 | t # 732 7321 | v 0 2 7322 | v 1 2 7323 | v 2 2 7324 | v 3 2 7325 | v 4 2 7326 | e 0 1 5 7327 | e 1 2 5 7328 | e 2 3 5 7329 | e 3 4 5 7330 | t # 733 7331 | v 0 2 7332 | v 1 14 7333 | v 2 2 7334 | v 3 2 7335 | v 4 2 7336 | e 0 1 2 7337 | e 1 2 2 7338 | e 2 3 5 7339 | e 2 4 5 7340 | t # 734 7341 | v 0 2 7342 | v 1 2 7343 | v 2 2 7344 | v 3 2 7345 | v 4 12 7346 | e 0 1 3 7347 | e 1 2 2 7348 | e 3 4 2 7349 | e 2 4 2 7350 | t # 735 7351 | v 0 2 7352 | v 1 2 7353 | v 2 23 7354 | v 3 23 7355 | v 4 23 7356 | e 0 1 2 7357 | e 1 2 2 7358 | e 1 3 2 7359 | e 0 4 2 7360 | t # 736 7361 | v 0 2 7362 | v 1 2 7363 | v 2 12 7364 | v 3 7 7365 | v 4 7 7366 | e 2 3 2 7367 | e 2 4 2 7368 | e 0 1 3 7369 | e 0 2 2 7370 | t # 737 7371 | v 0 2 7372 | v 1 2 7373 | v 2 12 7374 | v 3 7 7375 | e 0 1 2 7376 | e 0 2 2 7377 | e 2 3 2 7378 | e 1 2 2 7379 | t # 738 7380 | v 0 2 7381 | v 1 2 7382 | v 2 23 7383 | v 3 2 7384 | v 4 23 7385 | e 0 1 2 7386 | e 1 2 2 7387 | e 0 3 2 7388 | e 3 4 2 7389 | t # 739 7390 | v 0 2 7391 | v 1 2 7392 | v 2 2 7393 | v 3 2 7394 | v 4 27 7395 | e 0 3 2 7396 | e 0 4 2 7397 | e 2 3 3 7398 | e 1 4 2 7399 | t # 740 7400 | v 0 7 7401 | v 1 2 7402 | v 2 2 7403 | v 3 2 7404 | v 4 2 7405 | e 0 1 2 7406 | e 1 2 5 7407 | e 0 3 2 7408 | e 3 4 5 7409 | t # 741 7410 | v 0 2 7411 | v 1 23 7412 | v 2 2 7413 | v 3 23 7414 | v 4 23 7415 | e 0 1 2 7416 | e 0 2 2 7417 | e 2 3 2 7418 | e 2 4 2 7419 | t # 742 7420 | v 0 2 7421 | v 1 2 7422 | v 2 2 7423 | v 3 2 7424 | v 4 2 7425 | e 0 1 5 7426 | e 0 4 5 7427 | e 2 3 5 7428 | e 3 4 5 7429 | t # 743 7430 | v 0 37 7431 | v 1 8 7432 | v 2 7 7433 | v 3 2 7434 | v 4 7 7435 | e 0 1 2 7436 | e 0 2 2 7437 | e 0 4 2 7438 | e 2 3 2 7439 | t # 744 7440 | v 0 7 7441 | v 1 2 7442 | v 2 2 7443 | v 3 2 7444 | v 4 2 7445 | e 0 2 2 7446 | e 0 4 2 7447 | e 1 2 5 7448 | e 2 3 5 7449 | t # 745 7450 | v 0 7 7451 | v 1 23 7452 | v 2 23 7453 | v 3 23 7454 | v 4 23 7455 | e 0 1 2 7456 | e 0 2 2 7457 | e 0 3 2 7458 | e 0 4 2 7459 | t # 746 7460 | v 0 2 7461 | v 1 2 7462 | v 2 2 7463 | v 3 2 7464 | v 4 2 7465 | e 0 1 5 7466 | e 1 2 5 7467 | e 2 3 5 7468 | e 3 4 5 7469 | t # 747 7470 | v 0 7 7471 | v 1 2 7472 | v 2 2 7473 | v 3 2 7474 | v 4 2 7475 | e 0 4 2 7476 | e 1 2 5 7477 | e 2 3 5 7478 | e 3 4 5 7479 | t # 748 7480 | v 0 2 7481 | v 1 7 7482 | v 2 2 7483 | v 3 50 7484 | v 4 2 7485 | e 0 1 2 7486 | e 1 2 2 7487 | e 1 3 2 7488 | e 3 4 2 7489 | t # 749 7490 | v 0 2 7491 | v 1 2 7492 | v 2 2 7493 | v 3 2 7494 | v 4 2 7495 | e 0 4 5 7496 | e 1 2 5 7497 | e 2 3 5 7498 | e 3 4 5 7499 | t # 750 7500 | v 0 2 7501 | v 1 2 7502 | v 2 2 7503 | v 3 2 7504 | v 4 2 7505 | e 0 1 5 7506 | e 1 2 5 7507 | e 2 3 5 7508 | e 3 4 5 7509 | t # 751 7510 | v 0 2 7511 | v 1 2 7512 | v 2 2 7513 | v 3 2 7514 | v 4 2 7515 | e 0 1 5 7516 | e 1 2 5 7517 | e 2 3 5 7518 | e 3 4 5 7519 | t # 752 7520 | v 0 2 7521 | v 1 2 7522 | v 2 2 7523 | v 3 12 7524 | e 0 2 2 7525 | e 1 2 3 7526 | e 1 3 2 7527 | e 2 3 2 7528 | t # 753 7529 | v 0 2 7530 | v 1 7 7531 | v 2 2 7532 | v 3 2 7533 | v 4 2 7534 | e 0 3 2 7535 | e 1 4 2 7536 | e 1 2 2 7537 | e 1 3 2 7538 | t # 754 7539 | v 0 7 7540 | v 1 2 7541 | v 2 2 7542 | v 3 7 7543 | v 4 2 7544 | e 0 1 2 7545 | e 0 2 2 7546 | e 1 4 2 7547 | e 3 4 2 7548 | t # 755 7549 | v 0 7 7550 | v 1 2 7551 | v 2 2 7552 | v 3 2 7553 | v 4 7 7554 | e 0 1 2 7555 | e 0 2 2 7556 | e 2 3 2 7557 | e 3 4 2 7558 | t # 756 7559 | v 0 51 7560 | v 1 7 7561 | v 2 7 7562 | v 3 2 7563 | v 4 2 7564 | e 0 1 2 7565 | e 0 2 2 7566 | e 2 3 2 7567 | e 2 4 2 7568 | t # 757 7569 | v 0 2 7570 | v 1 2 7571 | v 2 3 7572 | v 3 2 7573 | v 4 2 7574 | e 0 3 2 7575 | e 0 1 2 7576 | e 1 2 3 7577 | e 3 4 5 7578 | t # 758 7579 | v 0 2 7580 | v 1 2 7581 | v 2 3 7582 | v 3 2 7583 | v 4 2 7584 | e 0 1 2 7585 | e 0 3 2 7586 | e 1 2 3 7587 | e 3 4 5 7588 | t # 759 7589 | v 0 2 7590 | v 1 2 7591 | v 2 2 7592 | v 3 2 7593 | v 4 2 7594 | e 0 2 2 7595 | e 0 1 2 7596 | e 2 3 5 7597 | e 3 4 5 7598 | t # 760 7599 | v 0 2 7600 | v 1 18 7601 | v 2 2 7602 | v 3 2 7603 | v 4 2 7604 | e 0 1 2 7605 | e 1 2 2 7606 | e 2 3 3 7607 | e 2 4 2 7608 | t # 761 7609 | v 0 2 7610 | v 1 2 7611 | v 2 2 7612 | v 3 2 7613 | v 4 2 7614 | e 0 1 2 7615 | e 1 2 5 7616 | e 2 3 5 7617 | e 3 4 5 7618 | t # 762 7619 | v 0 2 7620 | v 1 2 7621 | v 2 2 7622 | v 3 2 7623 | v 4 2 7624 | e 0 1 5 7625 | e 0 3 2 7626 | e 1 2 5 7627 | e 3 4 2 7628 | t # 763 7629 | v 0 3 7630 | v 1 2 7631 | v 2 2 7632 | v 3 2 7633 | v 4 2 7634 | e 0 1 2 7635 | e 1 2 5 7636 | e 1 4 5 7637 | e 3 4 5 7638 | t # 764 7639 | v 0 3 7640 | v 1 2 7641 | v 2 2 7642 | v 3 2 7643 | v 4 2 7644 | e 0 1 2 7645 | e 1 2 5 7646 | e 2 3 5 7647 | e 3 4 5 7648 | t # 765 7649 | v 0 2 7650 | v 1 2 7651 | v 2 2 7652 | v 3 2 7653 | v 4 2 7654 | e 0 1 5 7655 | e 1 2 5 7656 | e 1 3 2 7657 | e 3 4 2 7658 | t # 766 7659 | v 0 2 7660 | v 1 2 7661 | v 2 2 7662 | v 3 2 7663 | v 4 2 7664 | e 0 1 2 7665 | e 1 2 2 7666 | e 1 3 2 7667 | e 3 4 2 7668 | t # 767 7669 | v 0 2 7670 | v 1 2 7671 | v 2 2 7672 | v 3 2 7673 | v 4 3 7674 | e 0 2 2 7675 | e 1 2 2 7676 | e 2 3 2 7677 | e 3 4 2 7678 | t # 768 7679 | v 0 3 7680 | v 1 2 7681 | v 2 2 7682 | v 3 2 7683 | v 4 2 7684 | e 0 1 2 7685 | e 1 2 2 7686 | e 1 3 2 7687 | e 1 4 2 7688 | t # 769 7689 | v 0 2 7690 | v 1 2 7691 | v 2 2 7692 | v 3 2 7693 | v 4 3 7694 | e 0 1 5 7695 | e 1 2 5 7696 | e 1 4 2 7697 | e 2 3 5 7698 | t # 770 7699 | v 0 2 7700 | v 1 2 7701 | v 2 2 7702 | v 3 2 7703 | v 4 2 7704 | e 0 4 5 7705 | e 1 2 5 7706 | e 2 3 5 7707 | e 3 4 5 7708 | t # 771 7709 | v 0 2 7710 | v 1 2 7711 | v 2 2 7712 | v 3 2 7713 | v 4 3 7714 | e 0 3 2 7715 | e 1 2 5 7716 | e 2 4 2 7717 | e 2 3 5 7718 | t # 772 7719 | v 0 2 7720 | v 1 2 7721 | v 2 2 7722 | v 3 2 7723 | v 4 2 7724 | e 0 1 2 7725 | e 1 2 2 7726 | e 1 3 2 7727 | e 1 4 2 7728 | t # 773 7729 | v 0 53 7730 | v 1 5 7731 | v 2 2 7732 | v 3 2 7733 | v 4 2 7734 | e 0 1 2 7735 | e 0 2 2 7736 | e 1 3 4 7737 | e 3 4 2 7738 | t # 774 7739 | v 0 2 7740 | v 1 2 7741 | v 2 2 7742 | v 3 2 7743 | v 4 2 7744 | e 0 1 2 7745 | e 1 2 2 7746 | e 2 3 3 7747 | e 3 4 2 7748 | t # 775 7749 | v 0 2 7750 | v 1 2 7751 | v 2 2 7752 | v 3 5 7753 | v 4 5 7754 | e 0 1 2 7755 | e 0 2 2 7756 | e 0 4 2 7757 | e 2 3 2 7758 | t # 776 7759 | v 0 2 7760 | v 1 2 7761 | v 2 2 7762 | v 3 2 7763 | v 4 2 7764 | e 0 1 2 7765 | e 1 2 2 7766 | e 1 3 2 7767 | e 3 4 2 7768 | t # 777 7769 | v 0 2 7770 | v 1 5 7771 | v 2 2 7772 | v 3 2 7773 | v 4 2 7774 | e 0 1 2 7775 | e 1 2 2 7776 | e 2 3 2 7777 | e 2 4 2 7778 | t # 778 7779 | v 0 2 7780 | v 1 2 7781 | v 2 2 7782 | v 3 2 7783 | v 4 2 7784 | e 0 1 2 7785 | e 1 2 2 7786 | e 2 3 2 7787 | e 2 4 2 7788 | t # 779 7789 | v 0 2 7790 | v 1 3 7791 | v 2 5 7792 | v 3 2 7793 | v 4 2 7794 | e 0 1 3 7795 | e 0 2 2 7796 | e 2 3 2 7797 | e 3 4 2 7798 | t # 780 7799 | v 0 2 7800 | v 1 2 7801 | v 2 2 7802 | v 3 2 7803 | v 4 5 7804 | e 0 1 2 7805 | e 1 2 2 7806 | e 2 3 2 7807 | e 3 4 2 7808 | t # 781 7809 | v 0 2 7810 | v 1 2 7811 | v 2 2 7812 | v 3 3 7813 | v 4 3 7814 | e 0 1 2 7815 | e 1 2 2 7816 | e 2 3 3 7817 | e 2 4 2 7818 | t # 782 7819 | v 0 2 7820 | v 1 2 7821 | v 2 2 7822 | v 3 2 7823 | v 4 2 7824 | e 0 1 2 7825 | e 1 2 2 7826 | e 2 4 5 7827 | e 3 4 5 7828 | t # 783 7829 | v 0 2 7830 | v 1 3 7831 | v 2 2 7832 | v 3 2 7833 | v 4 2 7834 | e 0 1 2 7835 | e 0 2 2 7836 | e 2 3 2 7837 | e 3 4 2 7838 | t # 784 7839 | v 0 2 7840 | v 1 2 7841 | v 2 5 7842 | v 3 2 7843 | v 4 2 7844 | e 0 2 2 7845 | e 0 3 2 7846 | e 1 4 2 7847 | e 1 2 2 7848 | t # 785 7849 | v 0 7 7850 | v 1 51 7851 | v 2 8 7852 | v 3 2 7853 | v 4 2 7854 | e 0 3 2 7855 | e 0 1 2 7856 | e 1 2 2 7857 | e 3 4 2 7858 | t # 786 7859 | v 0 7 7860 | v 1 2 7861 | v 2 2 7862 | v 3 12 7863 | v 4 2 7864 | e 0 1 2 7865 | e 0 2 2 7866 | e 0 4 2 7867 | e 0 3 2 7868 | t # 787 7869 | v 0 7 7870 | v 1 2 7871 | v 2 2 7872 | v 3 2 7873 | v 4 2 7874 | e 0 1 2 7875 | e 1 2 5 7876 | e 2 3 5 7877 | e 3 4 5 7878 | t # 788 7879 | v 0 2 7880 | v 1 2 7881 | v 2 2 7882 | v 3 2 7883 | v 4 2 7884 | e 0 1 5 7885 | e 0 4 5 7886 | e 2 3 5 7887 | e 3 4 5 7888 | t # 789 7889 | v 0 2 7890 | v 1 2 7891 | v 2 2 7892 | v 3 2 7893 | v 4 2 7894 | e 0 1 5 7895 | e 0 4 5 7896 | e 1 2 5 7897 | e 2 3 5 7898 | t # 790 7899 | v 0 7 7900 | v 1 13 7901 | v 2 2 7902 | v 3 13 7903 | v 4 2 7904 | e 1 2 2 7905 | e 0 3 2 7906 | e 0 4 2 7907 | e 1 3 2 7908 | t # 791 7909 | v 0 7 7910 | v 1 2 7911 | v 2 2 7912 | v 3 2 7913 | v 4 2 7914 | e 0 1 2 7915 | e 1 2 5 7916 | e 1 4 5 7917 | e 3 4 5 7918 | t # 792 7919 | v 0 2 7920 | v 1 7 7921 | v 2 2 7922 | v 3 2 7923 | v 4 13 7924 | e 0 3 2 7925 | e 1 2 2 7926 | e 1 3 2 7927 | e 1 4 2 7928 | t # 793 7929 | v 0 7 7930 | v 1 2 7931 | v 2 2 7932 | v 3 2 7933 | v 4 2 7934 | e 0 1 2 7935 | e 1 2 5 7936 | e 2 3 5 7937 | e 3 4 5 7938 | t # 794 7939 | v 0 2 7940 | v 1 2 7941 | v 2 16 7942 | v 3 16 7943 | v 4 2 7944 | e 0 3 2 7945 | e 3 4 2 7946 | e 2 3 2 7947 | e 1 3 2 7948 | t # 795 7949 | v 0 16 7950 | v 1 16 7951 | v 2 2 7952 | v 3 2 7953 | e 1 2 2 7954 | e 1 3 2 7955 | e 0 1 2 7956 | e 2 3 3 7957 | t # 796 7958 | v 0 2 7959 | v 1 16 7960 | v 2 2 7961 | v 3 2 7962 | e 0 1 2 7963 | e 1 2 2 7964 | e 1 3 2 7965 | e 2 3 2 7966 | t # 797 7967 | v 0 7 7968 | v 1 12 7969 | v 2 2 7970 | v 3 5 7971 | v 4 2 7972 | e 0 1 2 7973 | e 1 2 2 7974 | e 1 4 2 7975 | e 2 3 4 7976 | t # 798 7977 | v 0 2 7978 | v 1 2 7979 | v 2 2 7980 | v 3 2 7981 | v 4 5 7982 | e 0 4 4 7983 | e 1 2 2 7984 | e 1 3 2 7985 | e 1 4 2 7986 | t # 799 7987 | v 0 2 7988 | v 1 2 7989 | v 2 2 7990 | v 3 2 7991 | v 4 2 7992 | e 0 1 2 7993 | e 1 2 2 7994 | e 2 3 2 7995 | e 3 4 2 7996 | t # 800 7997 | v 0 12 7998 | v 1 2 7999 | v 2 2 8000 | v 3 5 8001 | v 4 2 8002 | e 0 1 2 8003 | e 1 3 4 8004 | e 0 4 2 8005 | e 2 3 2 8006 | t # 801 8007 | v 0 4 8008 | v 1 7 8009 | v 2 7 8010 | v 3 2 8011 | v 4 2 8012 | e 0 1 2 8013 | e 0 2 2 8014 | e 2 3 2 8015 | e 2 4 2 8016 | t # 802 8017 | v 0 2 8018 | v 1 2 8019 | v 2 2 8020 | v 3 2 8021 | v 4 2 8022 | e 0 4 5 8023 | e 1 2 5 8024 | e 2 3 5 8025 | e 3 4 5 8026 | t # 803 8027 | v 0 2 8028 | v 1 2 8029 | v 2 2 8030 | v 3 2 8031 | v 4 2 8032 | e 0 1 5 8033 | e 2 3 5 8034 | e 1 4 5 8035 | e 0 2 5 8036 | t # 804 8037 | v 0 2 8038 | v 1 2 8039 | v 2 2 8040 | v 3 2 8041 | v 4 2 8042 | e 0 1 2 8043 | e 1 2 2 8044 | e 2 3 2 8045 | e 3 4 2 8046 | t # 805 8047 | v 0 7 8048 | v 1 2 8049 | v 2 2 8050 | v 3 12 8051 | v 4 2 8052 | e 0 1 2 8053 | e 0 2 2 8054 | e 0 3 2 8055 | e 3 4 2 8056 | t # 806 8057 | v 0 2 8058 | v 1 2 8059 | v 2 2 8060 | v 3 2 8061 | v 4 2 8062 | e 0 4 5 8063 | e 1 2 5 8064 | e 2 3 5 8065 | e 3 4 5 8066 | t # 807 8067 | v 0 2 8068 | v 1 2 8069 | v 2 2 8070 | v 3 2 8071 | v 4 2 8072 | e 0 1 5 8073 | e 0 4 5 8074 | e 1 2 5 8075 | e 2 3 5 8076 | t # 808 8077 | v 0 7 8078 | v 1 2 8079 | v 2 2 8080 | v 3 2 8081 | v 4 2 8082 | e 0 1 2 8083 | e 0 2 2 8084 | e 2 3 5 8085 | e 2 4 5 8086 | t # 809 8087 | v 0 27 8088 | v 1 7 8089 | v 2 2 8090 | v 3 7 8091 | v 4 2 8092 | e 0 1 2 8093 | e 0 3 2 8094 | e 1 2 2 8095 | e 1 4 2 8096 | t # 810 8097 | v 0 13 8098 | v 1 2 8099 | v 2 7 8100 | v 3 2 8101 | v 4 2 8102 | e 0 1 2 8103 | e 0 2 2 8104 | e 2 3 2 8105 | e 3 4 5 8106 | t # 811 8107 | v 0 2 8108 | v 1 2 8109 | v 2 2 8110 | v 3 2 8111 | v 4 2 8112 | e 0 1 5 8113 | e 1 2 5 8114 | e 2 3 5 8115 | e 0 4 5 8116 | t # 812 8117 | v 0 7 8118 | v 1 2 8119 | v 2 2 8120 | v 3 2 8121 | v 4 2 8122 | e 0 1 2 8123 | e 0 3 2 8124 | e 1 2 5 8125 | e 3 4 2 8126 | t # 813 8127 | v 0 2 8128 | v 1 2 8129 | v 2 2 8130 | v 3 2 8131 | v 4 2 8132 | e 1 2 5 8133 | e 2 3 5 8134 | e 0 4 5 8135 | e 3 4 5 8136 | t # 814 8137 | v 0 2 8138 | v 1 2 8139 | v 2 7 8140 | v 3 2 8141 | v 4 7 8142 | e 0 1 2 8143 | e 0 4 2 8144 | e 1 2 2 8145 | e 2 3 2 8146 | t # 815 8147 | v 0 2 8148 | v 1 2 8149 | v 2 2 8150 | v 3 2 8151 | v 4 2 8152 | e 0 1 5 8153 | e 0 4 5 8154 | e 1 2 5 8155 | e 2 3 5 8156 | t # 816 8157 | v 0 7 8158 | v 1 35 8159 | v 2 2 8160 | v 3 2 8161 | v 4 7 8162 | e 0 1 2 8163 | e 0 2 2 8164 | e 1 4 2 8165 | e 3 4 2 8166 | t # 817 8167 | v 0 2 8168 | v 1 2 8169 | v 2 2 8170 | v 3 2 8171 | v 4 2 8172 | e 0 1 5 8173 | e 1 2 5 8174 | e 2 3 5 8175 | e 3 4 5 8176 | t # 818 8177 | v 0 7 8178 | v 1 2 8179 | v 2 2 8180 | v 3 2 8181 | v 4 2 8182 | e 0 1 2 8183 | e 0 2 2 8184 | e 0 4 2 8185 | e 2 3 5 8186 | t # 819 8187 | v 0 2 8188 | v 1 2 8189 | v 2 2 8190 | v 3 2 8191 | v 4 2 8192 | e 0 4 5 8193 | e 1 2 5 8194 | e 2 3 5 8195 | e 3 4 5 8196 | t # 820 8197 | v 0 2 8198 | v 1 2 8199 | v 2 2 8200 | v 3 2 8201 | v 4 2 8202 | e 0 1 5 8203 | e 1 2 5 8204 | e 2 3 5 8205 | e 3 4 5 8206 | t # 821 8207 | v 0 2 8208 | v 1 2 8209 | v 2 2 8210 | v 3 2 8211 | v 4 2 8212 | e 0 1 5 8213 | e 2 3 5 8214 | e 0 4 5 8215 | e 3 4 5 8216 | t # 822 8217 | v 0 50 8218 | v 1 2 8219 | v 2 2 8220 | v 3 2 8221 | v 4 2 8222 | e 0 1 2 8223 | e 0 2 2 8224 | e 0 3 2 8225 | e 0 4 2 8226 | t # 823 8227 | v 0 2 8228 | v 1 2 8229 | v 2 2 8230 | v 3 50 8231 | e 0 1 3 8232 | e 1 2 2 8233 | e 2 3 2 8234 | e 0 3 2 8235 | t # 824 8236 | v 0 2 8237 | v 1 2 8238 | v 2 2 8239 | v 3 5 8240 | v 4 2 8241 | e 0 2 2 8242 | e 0 1 5 8243 | e 2 3 2 8244 | e 3 4 2 8245 | t # 825 8246 | v 0 2 8247 | v 1 2 8248 | v 2 2 8249 | v 3 2 8250 | v 4 2 8251 | e 0 1 2 8252 | e 1 2 2 8253 | e 1 3 2 8254 | e 1 4 2 8255 | t # 826 8256 | v 0 7 8257 | v 1 23 8258 | v 2 23 8259 | v 3 23 8260 | v 4 23 8261 | e 0 1 2 8262 | e 0 2 2 8263 | e 0 3 2 8264 | e 0 4 2 8265 | t # 827 8266 | v 0 16 8267 | v 1 2 8268 | v 2 16 8269 | v 3 2 8270 | v 4 2 8271 | e 0 1 2 8272 | e 0 2 2 8273 | e 2 3 2 8274 | e 3 4 2 8275 | t # 828 8276 | v 0 35 8277 | v 1 7 8278 | v 2 2 8279 | v 3 2 8280 | v 4 2 8281 | e 0 1 2 8282 | e 1 2 2 8283 | e 1 3 2 8284 | e 3 4 2 8285 | t # 829 8286 | v 0 2 8287 | v 1 2 8288 | v 2 2 8289 | v 3 2 8290 | v 4 2 8291 | e 0 1 3 8292 | e 1 2 2 8293 | e 2 4 2 8294 | e 3 4 2 8295 | t # 830 8296 | v 0 2 8297 | v 1 2 8298 | v 2 2 8299 | v 3 5 8300 | v 4 2 8301 | e 0 1 5 8302 | e 1 3 2 8303 | e 2 4 2 8304 | e 2 3 2 8305 | t # 831 8306 | v 0 2 8307 | v 1 2 8308 | v 2 2 8309 | v 3 2 8310 | v 4 2 8311 | e 0 1 5 8312 | e 0 2 5 8313 | e 2 3 5 8314 | e 1 4 5 8315 | t # 832 8316 | v 0 2 8317 | v 1 3 8318 | v 2 2 8319 | v 3 2 8320 | v 4 2 8321 | e 0 3 5 8322 | e 1 2 5 8323 | e 1 3 5 8324 | e 3 4 5 8325 | t # 833 8326 | v 0 2 8327 | v 1 5 8328 | v 2 2 8329 | v 3 2 8330 | v 4 5 8331 | e 0 2 5 8332 | e 1 2 5 8333 | e 2 3 5 8334 | e 3 4 5 8335 | t # 834 8336 | v 0 2 8337 | v 1 2 8338 | v 2 2 8339 | v 3 2 8340 | v 4 2 8341 | e 0 1 5 8342 | e 0 4 5 8343 | e 1 2 5 8344 | e 3 4 5 8345 | t # 835 8346 | v 0 2 8347 | v 1 7 8348 | v 2 2 8349 | v 3 2 8350 | v 4 2 8351 | e 0 1 2 8352 | e 1 2 2 8353 | e 2 3 5 8354 | e 3 4 5 8355 | t # 836 8356 | v 0 2 8357 | v 1 2 8358 | v 2 2 8359 | v 3 2 8360 | v 4 3 8361 | e 0 1 2 8362 | e 0 2 2 8363 | e 2 3 2 8364 | e 3 4 2 8365 | t # 837 8366 | v 0 5 8367 | v 1 2 8368 | v 2 2 8369 | v 3 2 8370 | v 4 2 8371 | e 0 1 5 8372 | e 0 3 2 8373 | e 1 2 5 8374 | e 3 4 2 8375 | t # 838 8376 | v 0 5 8377 | v 1 2 8378 | v 2 2 8379 | v 3 5 8380 | v 4 3 8381 | e 0 1 2 8382 | e 1 2 5 8383 | e 2 3 2 8384 | e 3 4 2 8385 | t # 839 8386 | v 0 2 8387 | v 1 2 8388 | v 2 2 8389 | v 3 3 8390 | v 4 2 8391 | e 0 1 5 8392 | e 1 2 5 8393 | e 2 3 2 8394 | e 3 4 2 8395 | t # 840 8396 | v 0 2 8397 | v 1 2 8398 | v 2 2 8399 | v 3 5 8400 | v 4 2 8401 | e 0 1 2 8402 | e 1 4 2 8403 | e 2 3 3 8404 | e 2 4 2 8405 | t # 841 8406 | v 0 5 8407 | v 1 2 8408 | v 2 2 8409 | v 3 2 8410 | v 4 2 8411 | e 0 1 2 8412 | e 1 2 2 8413 | e 2 3 5 8414 | e 3 4 5 8415 | t # 842 8416 | v 0 2 8417 | v 1 2 8418 | v 2 2 8419 | v 3 2 8420 | v 4 5 8421 | e 0 1 5 8422 | e 0 2 2 8423 | e 0 3 5 8424 | e 3 4 5 8425 | t # 843 8426 | v 0 2 8427 | v 1 2 8428 | v 2 2 8429 | v 3 2 8430 | v 4 2 8431 | e 0 1 2 8432 | e 1 4 5 8433 | e 2 3 5 8434 | e 3 4 5 8435 | t # 844 8436 | v 0 2 8437 | v 1 5 8438 | v 2 3 8439 | v 3 60 8440 | v 4 2 8441 | e 1 3 2 8442 | e 0 4 2 8443 | e 2 3 2 8444 | e 1 4 3 8445 | t # 845 8446 | v 0 2 8447 | v 1 2 8448 | v 2 2 8449 | v 3 2 8450 | v 4 6 8451 | e 0 2 5 8452 | e 1 2 5 8453 | e 2 3 5 8454 | e 3 4 2 8455 | t # 846 8456 | v 0 3 8457 | v 1 2 8458 | v 2 2 8459 | v 3 2 8460 | v 4 5 8461 | e 0 2 2 8462 | e 1 2 5 8463 | e 2 3 5 8464 | e 3 4 5 8465 | t # 847 8466 | v 0 2 8467 | v 1 2 8468 | v 2 5 8469 | v 3 5 8470 | v 4 5 8471 | e 0 1 5 8472 | e 0 3 2 8473 | e 1 4 2 8474 | e 2 3 3 8475 | t # 848 8476 | v 0 2 8477 | v 1 2 8478 | v 2 2 8479 | v 3 2 8480 | v 4 2 8481 | e 0 1 5 8482 | e 0 3 5 8483 | e 1 2 5 8484 | e 3 4 5 8485 | t # 849 8486 | v 0 2 8487 | v 1 2 8488 | v 2 2 8489 | v 3 2 8490 | v 4 3 8491 | e 0 2 5 8492 | e 1 3 2 8493 | e 1 2 5 8494 | e 3 4 2 8495 | t # 850 8496 | v 0 2 8497 | v 1 2 8498 | v 2 2 8499 | v 3 2 8500 | v 4 3 8501 | e 0 1 2 8502 | e 1 2 2 8503 | e 2 4 2 8504 | e 2 3 2 8505 | t # 851 8506 | v 0 2 8507 | v 1 3 8508 | v 2 2 8509 | v 3 3 8510 | v 4 2 8511 | e 0 1 2 8512 | e 1 2 2 8513 | e 2 3 3 8514 | e 2 4 2 8515 | t # 852 8516 | v 0 2 8517 | v 1 3 8518 | v 2 2 8519 | v 3 2 8520 | v 4 2 8521 | e 0 1 2 8522 | e 0 3 2 8523 | e 1 2 2 8524 | e 3 4 2 8525 | t # 853 8526 | v 0 2 8527 | v 1 2 8528 | v 2 2 8529 | v 3 3 8530 | v 4 3 8531 | e 0 1 5 8532 | e 0 2 2 8533 | e 2 3 3 8534 | e 2 4 2 8535 | t # 854 8536 | v 0 2 8537 | v 1 2 8538 | v 2 3 8539 | v 3 2 8540 | v 4 3 8541 | e 0 1 2 8542 | e 1 2 2 8543 | e 1 3 2 8544 | e 3 4 2 8545 | t # 855 8546 | v 0 2 8547 | v 1 2 8548 | v 2 2 8549 | v 3 3 8550 | v 4 2 8551 | e 0 1 2 8552 | e 0 2 2 8553 | e 0 3 2 8554 | e 3 4 2 8555 | t # 856 8556 | v 0 2 8557 | v 1 2 8558 | v 2 2 8559 | v 3 2 8560 | v 4 2 8561 | e 0 1 2 8562 | e 1 2 2 8563 | e 2 3 2 8564 | e 3 4 2 8565 | t # 857 8566 | v 0 2 8567 | v 1 2 8568 | v 2 3 8569 | v 3 2 8570 | v 4 2 8571 | e 0 2 2 8572 | e 0 1 2 8573 | e 2 3 2 8574 | e 3 4 2 8575 | t # 858 8576 | v 0 2 8577 | v 1 2 8578 | v 2 2 8579 | v 3 2 8580 | v 4 2 8581 | e 0 1 2 8582 | e 1 2 2 8583 | e 2 3 2 8584 | e 3 4 2 8585 | t # 859 8586 | v 0 2 8587 | v 1 2 8588 | v 2 2 8589 | v 3 2 8590 | v 4 2 8591 | e 0 1 2 8592 | e 1 2 2 8593 | e 2 3 2 8594 | e 3 4 2 8595 | t # 860 8596 | v 0 2 8597 | v 1 3 8598 | v 2 2 8599 | v 3 3 8600 | v 4 2 8601 | e 0 1 2 8602 | e 0 2 2 8603 | e 2 3 2 8604 | e 3 4 2 8605 | t # 861 8606 | v 0 2 8607 | v 1 2 8608 | v 2 2 8609 | v 3 2 8610 | v 4 2 8611 | e 0 1 2 8612 | e 1 2 2 8613 | e 2 3 2 8614 | e 3 4 2 8615 | t # 862 8616 | v 0 2 8617 | v 1 2 8618 | v 2 5 8619 | v 3 2 8620 | v 4 3 8621 | e 0 1 5 8622 | e 1 2 5 8623 | e 2 3 5 8624 | e 3 4 3 8625 | t # 863 8626 | v 0 2 8627 | v 1 3 8628 | v 2 2 8629 | v 3 2 8630 | v 4 3 8631 | e 0 1 2 8632 | e 1 2 2 8633 | e 2 3 2 8634 | e 3 4 2 8635 | t # 864 8636 | v 0 2 8637 | v 1 5 8638 | v 2 2 8639 | v 3 2 8640 | v 4 2 8641 | e 0 1 2 8642 | e 1 2 5 8643 | e 2 4 5 8644 | e 3 4 5 8645 | t # 865 8646 | v 0 2 8647 | v 1 2 8648 | v 2 3 8649 | v 3 2 8650 | v 4 2 8651 | e 0 1 2 8652 | e 1 2 2 8653 | e 2 3 2 8654 | e 3 4 2 8655 | t # 866 8656 | v 0 5 8657 | v 1 2 8658 | v 2 2 8659 | v 3 5 8660 | v 4 2 8661 | e 0 1 5 8662 | e 1 4 5 8663 | e 2 3 5 8664 | e 3 4 5 8665 | t # 867 8666 | v 0 2 8667 | v 1 2 8668 | v 2 2 8669 | v 3 2 8670 | v 4 2 8671 | e 0 4 2 8672 | e 1 4 5 8673 | e 2 3 5 8674 | e 3 4 5 8675 | t # 868 8676 | v 0 6 8677 | v 1 2 8678 | v 2 6 8679 | v 3 2 8680 | v 4 2 8681 | e 0 1 2 8682 | e 1 3 3 8683 | e 1 2 2 8684 | e 3 4 2 8685 | t # 869 8686 | v 0 2 8687 | v 1 2 8688 | v 2 2 8689 | v 3 2 8690 | v 4 2 8691 | e 0 1 5 8692 | e 1 3 5 8693 | e 2 3 5 8694 | e 3 4 2 8695 | t # 870 8696 | v 0 2 8697 | v 1 2 8698 | v 2 3 8699 | v 3 2 8700 | v 4 3 8701 | e 0 1 5 8702 | e 0 2 5 8703 | e 2 3 5 8704 | e 3 4 3 8705 | t # 871 8706 | v 0 2 8707 | v 1 2 8708 | v 2 2 8709 | v 3 3 8710 | v 4 5 8711 | e 0 1 2 8712 | e 1 2 2 8713 | e 2 3 3 8714 | e 2 4 2 8715 | t # 872 8716 | v 0 2 8717 | v 1 2 8718 | v 2 2 8719 | v 3 5 8720 | v 4 2 8721 | e 0 1 2 8722 | e 0 2 2 8723 | e 2 3 2 8724 | e 3 4 2 8725 | t # 873 8726 | v 0 2 8727 | v 1 2 8728 | v 2 2 8729 | v 3 2 8730 | v 4 2 8731 | e 0 1 2 8732 | e 1 2 2 8733 | e 2 3 2 8734 | e 2 4 2 8735 | t # 874 8736 | v 0 5 8737 | v 1 2 8738 | v 2 2 8739 | v 3 2 8740 | v 4 2 8741 | e 0 1 2 8742 | e 1 2 2 8743 | e 1 4 2 8744 | e 2 3 2 8745 | t # 875 8746 | v 0 2 8747 | v 1 2 8748 | v 2 2 8749 | v 3 2 8750 | v 4 2 8751 | e 0 1 5 8752 | e 1 2 5 8753 | e 1 3 5 8754 | e 3 4 5 8755 | t # 876 8756 | v 0 2 8757 | v 1 2 8758 | v 2 2 8759 | v 3 2 8760 | v 4 2 8761 | e 0 1 5 8762 | e 0 2 5 8763 | e 2 3 5 8764 | e 3 4 5 8765 | t # 877 8766 | v 0 2 8767 | v 1 2 8768 | v 2 2 8769 | v 3 5 8770 | v 4 2 8771 | e 0 1 5 8772 | e 0 2 5 8773 | e 1 3 5 8774 | e 3 4 5 8775 | t # 878 8776 | v 0 5 8777 | v 1 2 8778 | v 2 2 8779 | v 3 2 8780 | v 4 2 8781 | e 0 1 5 8782 | e 1 2 5 8783 | e 2 3 5 8784 | e 2 4 5 8785 | t # 879 8786 | v 0 2 8787 | v 1 2 8788 | v 2 2 8789 | v 3 2 8790 | v 4 2 8791 | e 0 4 5 8792 | e 1 2 5 8793 | e 2 3 5 8794 | e 3 4 5 8795 | t # 880 8796 | v 0 2 8797 | v 1 2 8798 | v 2 2 8799 | v 3 2 8800 | v 4 2 8801 | e 0 1 5 8802 | e 0 4 5 8803 | e 1 2 5 8804 | e 3 4 5 8805 | t # 881 8806 | v 0 2 8807 | v 1 2 8808 | v 2 2 8809 | v 3 2 8810 | v 4 2 8811 | e 0 1 5 8812 | e 1 2 5 8813 | e 2 3 5 8814 | e 3 4 5 8815 | t # 882 8816 | v 0 2 8817 | v 1 2 8818 | v 2 2 8819 | v 3 2 8820 | v 4 3 8821 | e 0 1 2 8822 | e 0 3 2 8823 | e 1 2 2 8824 | e 2 4 3 8825 | t # 883 8826 | v 0 2 8827 | v 1 2 8828 | v 2 2 8829 | v 3 2 8830 | v 4 2 8831 | e 0 1 5 8832 | e 1 2 5 8833 | e 2 3 5 8834 | e 3 4 5 8835 | t # 884 8836 | v 0 5 8837 | v 1 2 8838 | v 2 2 8839 | v 3 2 8840 | v 4 2 8841 | e 0 1 2 8842 | e 1 2 5 8843 | e 2 3 5 8844 | e 3 4 5 8845 | t # 885 8846 | v 0 2 8847 | v 1 2 8848 | v 2 2 8849 | v 3 2 8850 | v 4 2 8851 | e 0 1 5 8852 | e 1 2 5 8853 | e 2 3 5 8854 | e 2 4 2 8855 | t # 886 8856 | v 0 2 8857 | v 1 5 8858 | v 2 2 8859 | v 3 3 8860 | v 4 2 8861 | e 0 1 2 8862 | e 0 3 3 8863 | e 1 4 2 8864 | e 1 2 2 8865 | t # 887 8866 | v 0 2 8867 | v 1 2 8868 | v 2 2 8869 | v 3 2 8870 | v 4 2 8871 | e 0 1 2 8872 | e 1 2 5 8873 | e 2 3 5 8874 | e 2 4 2 8875 | t # 888 8876 | v 0 2 8877 | v 1 2 8878 | v 2 2 8879 | v 3 2 8880 | v 4 2 8881 | e 0 1 5 8882 | e 1 2 5 8883 | e 2 3 5 8884 | e 3 4 5 8885 | t # 889 8886 | v 0 2 8887 | v 1 2 8888 | v 2 2 8889 | v 3 3 8890 | v 4 2 8891 | e 0 1 2 8892 | e 0 3 2 8893 | e 1 2 2 8894 | e 1 4 2 8895 | t # 890 8896 | v 0 2 8897 | v 1 2 8898 | v 2 2 8899 | v 3 2 8900 | v 4 2 8901 | e 0 1 2 8902 | e 1 2 5 8903 | e 2 3 5 8904 | e 3 4 5 8905 | t # 891 8906 | v 0 2 8907 | v 1 5 8908 | v 2 2 8909 | v 3 2 8910 | v 4 2 8911 | e 0 1 2 8912 | e 1 2 2 8913 | e 2 4 5 8914 | e 3 4 5 8915 | t # 892 8916 | v 0 2 8917 | v 1 5 8918 | v 2 3 8919 | v 3 2 8920 | v 4 2 8921 | e 0 1 2 8922 | e 0 2 3 8923 | e 1 3 2 8924 | e 3 4 5 8925 | t # 893 8926 | v 0 2 8927 | v 1 2 8928 | v 2 3 8929 | v 3 2 8930 | v 4 2 8931 | e 0 1 2 8932 | e 0 2 2 8933 | e 1 3 2 8934 | e 3 4 2 8935 | t # 894 8936 | v 0 5 8937 | v 1 2 8938 | v 2 2 8939 | v 3 2 8940 | v 4 2 8941 | e 0 2 2 8942 | e 0 1 2 8943 | e 2 3 5 8944 | e 3 4 5 8945 | t # 895 8946 | v 0 2 8947 | v 1 2 8948 | v 2 2 8949 | v 3 2 8950 | v 4 2 8951 | e 0 1 5 8952 | e 1 2 5 8953 | e 2 3 5 8954 | e 3 4 5 8955 | t # 896 8956 | v 0 5 8957 | v 1 2 8958 | v 2 2 8959 | v 3 2 8960 | v 4 2 8961 | e 0 2 2 8962 | e 1 4 5 8963 | e 1 2 5 8964 | e 3 4 5 8965 | t # 897 8966 | v 0 2 8967 | v 1 2 8968 | v 2 2 8969 | v 3 5 8970 | v 4 2 8971 | e 0 1 2 8972 | e 1 2 2 8973 | e 1 4 2 8974 | e 3 4 2 8975 | t # 898 8976 | v 0 2 8977 | v 1 2 8978 | v 2 2 8979 | v 3 2 8980 | v 4 2 8981 | e 0 1 5 8982 | e 0 4 5 8983 | e 1 2 5 8984 | e 2 3 5 8985 | t # 899 8986 | v 0 2 8987 | v 1 2 8988 | v 2 2 8989 | v 3 2 8990 | v 4 2 8991 | e 0 1 5 8992 | e 1 2 5 8993 | e 2 3 5 8994 | e 2 4 2 8995 | t # 900 8996 | v 0 2 8997 | v 1 2 8998 | v 2 5 8999 | v 3 3 9000 | v 4 3 9001 | e 0 1 5 9002 | e 1 2 2 9003 | e 2 3 3 9004 | e 2 4 2 9005 | t # 901 9006 | v 0 2 9007 | v 1 2 9008 | v 2 2 9009 | v 3 2 9010 | v 4 2 9011 | e 0 1 5 9012 | e 0 4 5 9013 | e 1 2 5 9014 | e 2 3 5 9015 | t # 902 9016 | v 0 2 9017 | v 1 5 9018 | v 2 2 9019 | v 3 2 9020 | v 4 2 9021 | e 0 2 2 9022 | e 1 2 2 9023 | e 2 3 2 9024 | e 3 4 5 9025 | t # 903 9026 | v 0 2 9027 | v 1 2 9028 | v 2 2 9029 | v 3 2 9030 | v 4 8 9031 | e 0 1 5 9032 | e 1 2 5 9033 | e 2 3 5 9034 | e 3 4 2 9035 | t # 904 9036 | v 0 2 9037 | v 1 5 9038 | v 2 2 9039 | v 3 3 9040 | v 4 5 9041 | e 0 2 2 9042 | e 0 3 2 9043 | e 1 2 2 9044 | e 3 4 2 9045 | t # 905 9046 | v 0 3 9047 | v 1 5 9048 | v 2 2 9049 | v 3 2 9050 | v 4 2 9051 | e 0 1 2 9052 | e 1 2 2 9053 | e 2 3 5 9054 | e 2 4 5 9055 | t # 906 9056 | v 0 2 9057 | v 1 2 9058 | v 2 2 9059 | v 3 2 9060 | v 4 2 9061 | e 0 1 2 9062 | e 0 3 2 9063 | e 1 2 2 9064 | e 1 4 2 9065 | t # 907 9066 | v 0 2 9067 | v 1 5 9068 | v 2 2 9069 | v 3 3 9070 | v 4 3 9071 | e 0 2 2 9072 | e 0 4 2 9073 | e 1 2 2 9074 | e 2 3 3 9075 | t # 908 9076 | v 0 5 9077 | v 1 2 9078 | v 2 2 9079 | v 3 2 9080 | v 4 2 9081 | e 0 1 2 9082 | e 1 2 2 9083 | e 2 4 5 9084 | e 3 4 5 9085 | t # 909 9086 | v 0 6 9087 | v 1 2 9088 | v 2 5 9089 | v 3 5 9090 | v 4 2 9091 | e 0 1 5 9092 | e 1 2 5 9093 | e 1 3 2 9094 | e 3 4 2 9095 | t # 910 9096 | v 0 3 9097 | v 1 2 9098 | v 2 2 9099 | v 3 2 9100 | v 4 2 9101 | e 0 1 2 9102 | e 1 2 2 9103 | e 2 3 2 9104 | e 3 4 2 9105 | t # 911 9106 | v 0 2 9107 | v 1 2 9108 | v 2 2 9109 | v 3 2 9110 | v 4 3 9111 | e 0 2 2 9112 | e 1 4 2 9113 | e 1 2 2 9114 | e 2 3 2 9115 | t # 912 9116 | v 0 2 9117 | v 1 2 9118 | v 2 3 9119 | v 3 2 9120 | v 4 3 9121 | e 0 1 2 9122 | e 1 2 2 9123 | e 2 3 2 9124 | e 3 4 3 9125 | t # 913 9126 | v 0 2 9127 | v 1 2 9128 | v 2 2 9129 | v 3 2 9130 | v 4 2 9131 | e 0 1 5 9132 | e 1 2 5 9133 | e 2 3 5 9134 | e 3 4 5 9135 | t # 914 9136 | v 0 5 9137 | v 1 2 9138 | v 2 5 9139 | v 3 2 9140 | v 4 2 9141 | e 0 1 5 9142 | e 1 2 5 9143 | e 2 3 5 9144 | e 3 4 5 9145 | t # 915 9146 | v 0 2 9147 | v 1 6 9148 | v 2 5 9149 | v 3 2 9150 | v 4 2 9151 | e 0 1 3 9152 | e 0 2 2 9153 | e 2 3 2 9154 | e 3 4 5 9155 | t # 916 9156 | v 0 2 9157 | v 1 2 9158 | v 2 2 9159 | v 3 2 9160 | v 4 8 9161 | e 0 1 5 9162 | e 1 2 5 9163 | e 1 4 2 9164 | e 2 3 5 9165 | t # 917 9166 | v 0 2 9167 | v 1 2 9168 | v 2 2 9169 | v 3 2 9170 | v 4 3 9171 | e 0 1 5 9172 | e 1 2 5 9173 | e 2 3 2 9174 | e 3 4 2 9175 | t # 918 9176 | v 0 2 9177 | v 1 2 9178 | v 2 3 9179 | v 3 2 9180 | v 4 2 9181 | e 0 1 2 9182 | e 1 3 2 9183 | e 1 4 2 9184 | e 2 3 2 9185 | t # 919 9186 | v 0 2 9187 | v 1 2 9188 | v 2 2 9189 | v 3 2 9190 | v 4 2 9191 | e 0 1 2 9192 | e 1 2 2 9193 | e 2 3 2 9194 | e 3 4 2 9195 | t # 920 9196 | v 0 2 9197 | v 1 2 9198 | v 2 2 9199 | v 3 2 9200 | v 4 2 9201 | e 0 1 5 9202 | e 0 4 5 9203 | e 2 3 5 9204 | e 3 4 5 9205 | t # 921 9206 | v 0 2 9207 | v 1 2 9208 | v 2 2 9209 | v 3 3 9210 | v 4 5 9211 | e 0 1 5 9212 | e 1 2 2 9213 | e 2 3 3 9214 | e 2 4 2 9215 | t # 922 9216 | v 0 2 9217 | v 1 2 9218 | v 2 2 9219 | v 3 2 9220 | v 4 5 9221 | e 0 1 5 9222 | e 1 4 5 9223 | e 2 3 5 9224 | e 2 4 5 9225 | t # 923 9226 | v 0 2 9227 | v 1 5 9228 | v 2 5 9229 | v 3 2 9230 | v 4 5 9231 | e 0 1 2 9232 | e 0 3 2 9233 | e 2 4 2 9234 | e 2 3 2 9235 | t # 924 9236 | v 0 7 9237 | v 1 2 9238 | v 2 2 9239 | v 3 2 9240 | v 4 2 9241 | e 0 1 2 9242 | e 1 2 5 9243 | e 1 4 5 9244 | e 3 4 5 9245 | t # 925 9246 | v 0 2 9247 | v 1 2 9248 | v 2 2 9249 | v 3 2 9250 | v 4 2 9251 | e 0 1 2 9252 | e 1 2 2 9253 | e 2 3 2 9254 | e 3 4 2 9255 | t # 926 9256 | v 0 2 9257 | v 1 2 9258 | v 2 2 9259 | v 3 2 9260 | v 4 2 9261 | e 0 1 5 9262 | e 0 2 2 9263 | e 2 3 2 9264 | e 2 4 2 9265 | t # 927 9266 | v 0 5 9267 | v 1 5 9268 | v 2 2 9269 | v 3 3 9270 | v 4 2 9271 | e 0 1 2 9272 | e 1 2 2 9273 | e 2 3 3 9274 | e 2 4 2 9275 | t # 928 9276 | v 0 2 9277 | v 1 2 9278 | v 2 2 9279 | v 3 3 9280 | v 4 3 9281 | e 0 1 2 9282 | e 1 2 2 9283 | e 1 3 2 9284 | e 2 4 2 9285 | t # 929 9286 | v 0 3 9287 | v 1 2 9288 | v 2 2 9289 | v 3 2 9290 | v 4 2 9291 | e 0 1 2 9292 | e 1 2 2 9293 | e 1 4 2 9294 | e 2 3 2 9295 | t # 930 9296 | v 0 2 9297 | v 1 2 9298 | v 2 5 9299 | v 3 2 9300 | v 4 2 9301 | e 0 1 2 9302 | e 1 2 2 9303 | e 2 3 2 9304 | e 3 4 2 9305 | t # 931 9306 | v 0 2 9307 | v 1 2 9308 | v 2 2 9309 | v 3 2 9310 | v 4 8 9311 | e 0 3 5 9312 | e 1 2 5 9313 | e 2 3 5 9314 | e 3 4 2 9315 | t # 932 9316 | v 0 2 9317 | v 1 6 9318 | v 2 2 9319 | v 3 2 9320 | v 4 2 9321 | e 0 2 2 9322 | e 1 2 2 9323 | e 2 3 3 9324 | e 3 4 2 9325 | t # 933 9326 | v 0 2 9327 | v 1 2 9328 | v 2 8 9329 | v 3 3 9330 | v 4 2 9331 | e 0 3 2 9332 | e 0 1 5 9333 | e 1 2 2 9334 | e 3 4 2 9335 | t # 934 9336 | v 0 2 9337 | v 1 2 9338 | v 2 3 9339 | v 3 2 9340 | v 4 2 9341 | e 0 1 2 9342 | e 1 2 3 9343 | e 1 3 2 9344 | e 3 4 5 9345 | t # 935 9346 | v 0 2 9347 | v 1 2 9348 | v 2 2 9349 | v 3 2 9350 | v 4 8 9351 | e 0 1 5 9352 | e 0 4 2 9353 | e 1 2 5 9354 | e 2 3 5 9355 | t # 936 9356 | v 0 2 9357 | v 1 2 9358 | v 2 2 9359 | v 3 8 9360 | v 4 2 9361 | e 0 1 5 9362 | e 1 4 5 9363 | e 2 3 2 9364 | e 2 4 5 9365 | t # 937 9366 | v 0 2 9367 | v 1 2 9368 | v 2 2 9369 | v 3 5 9370 | v 4 3 9371 | e 0 2 5 9372 | e 1 3 2 9373 | e 3 4 3 9374 | e 1 2 5 9375 | t # 938 9376 | v 0 2 9377 | v 1 2 9378 | v 2 2 9379 | v 3 2 9380 | v 4 2 9381 | e 0 1 2 9382 | e 0 4 2 9383 | e 1 2 2 9384 | e 2 3 2 9385 | t # 939 9386 | v 0 5 9387 | v 1 2 9388 | v 2 2 9389 | v 3 2 9390 | v 4 2 9391 | e 0 1 2 9392 | e 0 2 2 9393 | e 2 3 2 9394 | e 2 4 2 9395 | t # 940 9396 | v 0 5 9397 | v 1 2 9398 | v 2 2 9399 | v 3 2 9400 | v 4 2 9401 | e 0 1 2 9402 | e 0 2 2 9403 | e 2 3 2 9404 | e 2 4 2 9405 | t # 941 9406 | v 0 2 9407 | v 1 2 9408 | v 2 2 9409 | v 3 2 9410 | v 4 2 9411 | e 0 1 2 9412 | e 1 2 2 9413 | e 2 3 2 9414 | e 3 4 2 9415 | t # 942 9416 | v 0 2 9417 | v 1 2 9418 | v 2 2 9419 | v 3 2 9420 | v 4 2 9421 | e 0 1 5 9422 | e 1 2 5 9423 | e 2 3 5 9424 | e 3 4 5 9425 | t # 943 9426 | v 0 2 9427 | v 1 2 9428 | v 2 2 9429 | v 3 2 9430 | v 4 5 9431 | e 0 3 5 9432 | e 1 2 5 9433 | e 2 4 5 9434 | e 2 3 5 9435 | t # 944 9436 | v 0 2 9437 | v 1 3 9438 | v 2 2 9439 | v 3 3 9440 | v 4 2 9441 | e 0 4 2 9442 | e 1 2 2 9443 | e 1 4 2 9444 | e 2 3 3 9445 | t # 945 9446 | v 0 2 9447 | v 1 2 9448 | v 2 5 9449 | v 3 2 9450 | v 4 3 9451 | e 0 1 5 9452 | e 1 2 5 9453 | e 2 3 5 9454 | e 3 4 3 9455 | t # 946 9456 | v 0 2 9457 | v 1 2 9458 | v 2 2 9459 | v 3 2 9460 | v 4 2 9461 | e 0 1 2 9462 | e 1 2 2 9463 | e 2 3 2 9464 | e 3 4 2 9465 | t # 947 9466 | v 0 5 9467 | v 1 2 9468 | v 2 3 9469 | v 3 5 9470 | v 4 2 9471 | e 0 1 2 9472 | e 1 2 3 9473 | e 1 3 2 9474 | e 3 4 2 9475 | t # 948 9476 | v 0 2 9477 | v 1 2 9478 | v 2 5 9479 | v 3 2 9480 | v 4 3 9481 | e 0 1 2 9482 | e 1 3 5 9483 | e 2 3 5 9484 | e 3 4 3 9485 | t # 949 9486 | v 0 2 9487 | v 1 2 9488 | v 2 2 9489 | v 3 2 9490 | v 4 2 9491 | e 0 1 5 9492 | e 0 2 5 9493 | e 1 4 5 9494 | e 3 4 5 9495 | t # 950 9496 | v 0 2 9497 | v 1 2 9498 | v 2 2 9499 | v 3 2 9500 | v 4 3 9501 | e 0 1 5 9502 | e 1 2 5 9503 | e 1 4 2 9504 | e 3 4 2 9505 | t # 951 9506 | v 0 2 9507 | v 1 2 9508 | v 2 2 9509 | v 3 2 9510 | v 4 5 9511 | e 0 1 5 9512 | e 1 2 5 9513 | e 1 4 2 9514 | e 2 3 5 9515 | t # 952 9516 | v 0 2 9517 | v 1 2 9518 | v 2 8 9519 | v 3 2 9520 | v 4 2 9521 | e 0 1 5 9522 | e 0 4 5 9523 | e 1 2 2 9524 | e 3 4 5 9525 | t # 953 9526 | v 0 2 9527 | v 1 2 9528 | v 2 2 9529 | v 3 2 9530 | v 4 2 9531 | e 0 1 5 9532 | e 1 2 5 9533 | e 2 3 5 9534 | e 2 4 5 9535 | t # 954 9536 | v 0 2 9537 | v 1 2 9538 | v 2 3 9539 | v 3 2 9540 | v 4 2 9541 | e 0 1 2 9542 | e 1 2 2 9543 | e 2 3 2 9544 | e 3 4 2 9545 | t # 955 9546 | v 0 2 9547 | v 1 2 9548 | v 2 2 9549 | v 3 2 9550 | v 4 2 9551 | e 0 4 5 9552 | e 1 2 5 9553 | e 2 3 5 9554 | e 3 4 5 9555 | t # 956 9556 | v 0 2 9557 | v 1 2 9558 | v 2 2 9559 | v 3 2 9560 | v 4 2 9561 | e 0 4 5 9562 | e 1 4 5 9563 | e 2 3 5 9564 | e 3 4 5 9565 | t # 957 9566 | v 0 2 9567 | v 1 5 9568 | v 2 5 9569 | v 3 2 9570 | v 4 2 9571 | e 0 1 3 9572 | e 1 2 2 9573 | e 2 3 2 9574 | e 3 4 2 9575 | t # 958 9576 | v 0 2 9577 | v 1 2 9578 | v 2 2 9579 | v 3 2 9580 | v 4 2 9581 | e 0 3 5 9582 | e 1 2 5 9583 | e 1 4 2 9584 | e 2 3 5 9585 | t # 959 9586 | v 0 2 9587 | v 1 2 9588 | v 2 2 9589 | v 3 2 9590 | v 4 3 9591 | e 0 1 5 9592 | e 0 2 5 9593 | e 0 3 2 9594 | e 2 4 2 9595 | t # 960 9596 | v 0 2 9597 | v 1 2 9598 | v 2 2 9599 | v 3 5 9600 | v 4 5 9601 | e 0 1 5 9602 | e 0 3 2 9603 | e 1 2 5 9604 | e 3 4 3 9605 | t # 961 9606 | v 0 2 9607 | v 1 2 9608 | v 2 2 9609 | v 3 2 9610 | v 4 2 9611 | e 0 1 5 9612 | e 0 4 5 9613 | e 2 3 5 9614 | e 3 4 5 9615 | t # 962 9616 | v 0 2 9617 | v 1 2 9618 | v 2 6 9619 | v 3 3 9620 | v 4 2 9621 | e 0 2 2 9622 | e 0 1 5 9623 | e 2 3 3 9624 | e 2 4 2 9625 | t # 963 9626 | v 0 2 9627 | v 1 2 9628 | v 2 2 9629 | v 3 2 9630 | v 4 2 9631 | e 0 1 5 9632 | e 1 2 5 9633 | e 2 3 5 9634 | e 3 4 5 9635 | t # 964 9636 | v 0 2 9637 | v 1 3 9638 | v 2 2 9639 | v 3 2 9640 | v 4 5 9641 | e 0 4 2 9642 | e 1 2 2 9643 | e 2 3 2 9644 | e 3 4 2 9645 | t # 965 9646 | v 0 2 9647 | v 1 3 9648 | v 2 3 9649 | v 3 2 9650 | v 4 2 9651 | e 0 1 2 9652 | e 1 4 2 9653 | e 2 3 2 9654 | e 3 4 2 9655 | t # 966 9656 | v 0 2 9657 | v 1 3 9658 | v 2 2 9659 | v 3 2 9660 | v 4 3 9661 | e 0 1 2 9662 | e 1 3 2 9663 | e 2 3 2 9664 | e 3 4 3 9665 | t # 967 9666 | v 0 2 9667 | v 1 2 9668 | v 2 2 9669 | v 3 2 9670 | v 4 3 9671 | e 0 1 5 9672 | e 1 4 2 9673 | e 1 2 5 9674 | e 2 3 2 9675 | t # 968 9676 | v 0 2 9677 | v 1 2 9678 | v 2 5 9679 | v 3 2 9680 | v 4 2 9681 | e 0 1 2 9682 | e 0 2 2 9683 | e 2 3 2 9684 | e 3 4 2 9685 | t # 969 9686 | v 0 5 9687 | v 1 2 9688 | v 2 2 9689 | v 3 2 9690 | v 4 2 9691 | e 0 1 2 9692 | e 0 3 2 9693 | e 1 2 2 9694 | e 3 4 2 9695 | t # 970 9696 | v 0 2 9697 | v 1 2 9698 | v 2 2 9699 | v 3 2 9700 | v 4 2 9701 | e 0 1 5 9702 | e 0 4 5 9703 | e 2 3 5 9704 | e 3 4 5 9705 | t # 971 9706 | v 0 21 9707 | v 1 2 9708 | v 2 2 9709 | v 3 2 9710 | v 4 2 9711 | e 0 1 2 9712 | e 1 2 2 9713 | e 2 3 2 9714 | e 3 4 2 9715 | t # 972 9716 | v 0 2 9717 | v 1 2 9718 | v 2 2 9719 | v 3 2 9720 | v 4 2 9721 | e 0 1 5 9722 | e 0 4 5 9723 | e 2 3 5 9724 | e 3 4 5 9725 | t # 973 9726 | v 0 2 9727 | v 1 2 9728 | v 2 2 9729 | v 3 3 9730 | v 4 2 9731 | e 0 1 2 9732 | e 0 2 2 9733 | e 2 3 2 9734 | e 3 4 2 9735 | t # 974 9736 | v 0 2 9737 | v 1 3 9738 | v 2 6 9739 | v 3 3 9740 | v 4 2 9741 | e 0 1 2 9742 | e 1 2 2 9743 | e 2 3 3 9744 | e 2 4 2 9745 | t # 975 9746 | v 0 2 9747 | v 1 2 9748 | v 2 3 9749 | v 3 5 9750 | v 4 2 9751 | e 0 1 2 9752 | e 1 2 3 9753 | e 1 3 2 9754 | e 3 4 2 9755 | t # 976 9756 | v 0 2 9757 | v 1 2 9758 | v 2 2 9759 | v 3 2 9760 | v 4 5 9761 | e 0 1 5 9762 | e 0 3 5 9763 | e 2 4 5 9764 | e 2 3 5 9765 | t # 977 9766 | v 0 2 9767 | v 1 5 9768 | v 2 2 9769 | v 3 2 9770 | v 4 2 9771 | e 0 1 2 9772 | e 1 2 2 9773 | e 1 4 2 9774 | e 3 4 2 9775 | t # 978 9776 | v 0 2 9777 | v 1 2 9778 | v 2 2 9779 | v 3 2 9780 | v 4 2 9781 | e 0 1 5 9782 | e 0 4 5 9783 | e 2 3 5 9784 | e 2 4 5 9785 | t # 979 9786 | v 0 2 9787 | v 1 2 9788 | v 2 2 9789 | v 3 2 9790 | v 4 2 9791 | e 0 1 5 9792 | e 1 2 5 9793 | e 2 3 5 9794 | e 3 4 5 9795 | t # 980 9796 | v 0 2 9797 | v 1 2 9798 | v 2 5 9799 | v 3 3 9800 | v 4 3 9801 | e 0 1 5 9802 | e 1 2 2 9803 | e 2 3 3 9804 | e 2 4 2 9805 | t # 981 9806 | v 0 2 9807 | v 1 2 9808 | v 2 2 9809 | v 3 2 9810 | v 4 2 9811 | e 0 1 5 9812 | e 0 4 5 9813 | e 1 2 5 9814 | e 2 3 5 9815 | t # 982 9816 | v 0 2 9817 | v 1 2 9818 | v 2 2 9819 | v 3 2 9820 | v 4 2 9821 | e 0 1 5 9822 | e 1 2 5 9823 | e 2 3 5 9824 | e 3 4 5 9825 | t # 983 9826 | v 0 2 9827 | v 1 2 9828 | v 2 5 9829 | v 3 3 9830 | v 4 2 9831 | e 0 1 5 9832 | e 1 2 2 9833 | e 2 4 2 9834 | e 3 4 3 9835 | t # 984 9836 | v 0 2 9837 | v 1 5 9838 | v 2 2 9839 | v 3 2 9840 | v 4 6 9841 | e 0 3 5 9842 | e 0 4 3 9843 | e 1 2 5 9844 | e 2 3 5 9845 | t # 985 9846 | v 0 2 9847 | v 1 2 9848 | v 2 5 9849 | v 3 2 9850 | v 4 2 9851 | e 0 1 5 9852 | e 0 3 5 9853 | e 1 2 5 9854 | e 1 4 5 9855 | t # 986 9856 | v 0 2 9857 | v 1 2 9858 | v 2 5 9859 | v 3 2 9860 | v 4 2 9861 | e 0 1 2 9862 | e 1 2 2 9863 | e 2 3 2 9864 | e 3 4 2 9865 | t # 987 9866 | v 0 2 9867 | v 1 2 9868 | v 2 2 9869 | v 3 2 9870 | v 4 6 9871 | e 0 1 5 9872 | e 0 4 2 9873 | e 1 2 5 9874 | e 2 3 5 9875 | t # 988 9876 | v 0 2 9877 | v 1 2 9878 | v 2 2 9879 | v 3 2 9880 | v 4 2 9881 | e 0 1 5 9882 | e 1 2 5 9883 | e 2 3 5 9884 | e 3 4 5 9885 | t # 989 9886 | v 0 2 9887 | v 1 2 9888 | v 2 5 9889 | v 3 2 9890 | v 4 2 9891 | e 0 1 5 9892 | e 0 2 2 9893 | e 2 3 2 9894 | e 3 4 5 9895 | t # 990 9896 | v 0 2 9897 | v 1 2 9898 | v 2 2 9899 | v 3 2 9900 | v 4 8 9901 | e 0 3 5 9902 | e 1 2 5 9903 | e 2 4 2 9904 | e 2 3 5 9905 | t # 991 9906 | v 0 6 9907 | v 1 2 9908 | v 2 2 9909 | v 3 2 9910 | v 4 2 9911 | e 0 1 2 9912 | e 1 2 5 9913 | e 1 4 5 9914 | e 3 4 5 9915 | t # 992 9916 | v 0 2 9917 | v 1 2 9918 | v 2 2 9919 | v 3 2 9920 | v 4 2 9921 | e 0 1 2 9922 | e 1 2 2 9923 | e 2 3 2 9924 | e 3 4 2 9925 | t # 993 9926 | v 0 2 9927 | v 1 2 9928 | v 2 2 9929 | v 3 2 9930 | v 4 2 9931 | e 0 1 5 9932 | e 1 2 5 9933 | e 2 3 5 9934 | e 3 4 5 9935 | t # 994 9936 | v 0 2 9937 | v 1 2 9938 | v 2 2 9939 | v 3 2 9940 | v 4 2 9941 | e 0 1 2 9942 | e 1 2 5 9943 | e 1 4 5 9944 | e 3 4 5 9945 | t # 995 9946 | v 0 2 9947 | v 1 5 9948 | v 2 2 9949 | v 3 2 9950 | v 4 2 9951 | e 0 1 5 9952 | e 1 2 5 9953 | e 2 3 5 9954 | e 3 4 5 9955 | t # 996 9956 | v 0 2 9957 | v 1 3 9958 | v 2 2 9959 | v 3 2 9960 | v 4 2 9961 | e 0 1 2 9962 | e 1 2 2 9963 | e 2 3 5 9964 | e 2 4 5 9965 | t # 997 9966 | v 0 2 9967 | v 1 2 9968 | v 2 2 9969 | v 3 2 9970 | v 4 2 9971 | e 0 1 5 9972 | e 0 4 5 9973 | e 1 2 5 9974 | e 2 3 5 9975 | t # 998 9976 | v 0 2 9977 | v 1 2 9978 | v 2 2 9979 | v 3 3 9980 | v 4 3 9981 | e 0 1 2 9982 | e 1 3 2 9983 | e 1 2 2 9984 | e 2 4 2 9985 | t # 999 9986 | v 0 2 9987 | v 1 2 9988 | v 2 2 9989 | v 3 2 9990 | v 4 2 9991 | e 0 1 2 9992 | e 1 2 2 9993 | e 2 3 2 9994 | e 2 4 2 9995 | t # -1 -------------------------------------------------------------------------------- /ullmann/README.md: -------------------------------------------------------------------------------- 1 | # Ullmann 子图同构算法原理与实现 2 | 具体参考 Ullmann介绍.pdf 3 | -------------------------------------------------------------------------------- /ullmann/Ullmann介绍.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Junshuai-Song/Model-Alan/bdb32d0837cddfcd8766525d95c53193a27dc61c/ullmann/Ullmann介绍.pdf -------------------------------------------------------------------------------- /ullmann/main.cpp: -------------------------------------------------------------------------------- 1 | // 2 | // main.cpp 3 | // ullmann 4 | // 5 | // Created by songjs on 16/10/29. 6 | // Copyright © 2016年 songjs. All rights reserved. 7 | // 8 | 9 | #include 10 | #include 11 | #include 12 | #include 13 | #include 14 | #include 15 | #include 16 | #include 17 | #include 18 | #include 19 | #include 20 | 21 | using namespace std; 22 | 23 | typedef struct Edge{ 24 | int from,to,elabel; 25 | }Edge; 26 | 27 | typedef struct Vertex{ 28 | int id,label; 29 | vector edge; 30 | void push(int from,int to,int elabel){ 31 | edge.resize(edge.size() + 1); 32 | edge[edge.size() - 1].from = from; 33 | edge[edge.size() - 1].to = to; 34 | edge[edge.size() - 1].elabel = elabel; 35 | return ; 36 | } 37 | 38 | }Vector; 39 | 40 | class Graph: public vector{ 41 | private: 42 | unsigned int edge_size_; 43 | 44 | public: 45 | int id; 46 | typedef vector::iterator vertex_iterater; 47 | unsigned int edge_size(){ return edge_size_; } 48 | unsigned int vertex_size(){ return (unsigned int)size();} 49 | int **M; 50 | 51 | void build(){ 52 | // 邻接矩阵 53 | // cout<<"vertex_size="<::iterator iter2 = (*iter).edge.begin(); iter2!=(*iter).edge.end(); iter2++){ 60 | M[(*iter2).from][(*iter2).to] = 1; //无向图 61 | M[(*iter2).to][(*iter2).from] = 1; 62 | } 63 | } 64 | } 65 | int find_label(int n){ 66 | // 找到顶点n的label 67 | return (*this)[n].label; 68 | } 69 | int count(int n){ 70 | return (int)(*this)[n].edge.size(); 71 | } 72 | void print(){ 73 | for(vertex_iterater iter = (*this).begin(); iter!=(*this).end(); iter++){ 74 | for(vector::iterator iter2 = (*iter).edge.begin(); iter2!=(*iter).edge.end(); iter2++){ 75 | cout<<(*iter2).from<<" "<<(*iter2).to< graph; 84 | vector query_graph; 85 | 86 | public: 87 | char *filename1,*filename2; 88 | int answer_number; 89 | clock_t start,end; 90 | int **MA,**MB,**M,**M_,**MC; 91 | int *vis; 92 | 93 | void read(char filename[], vector &graph_){ 94 | ifstream in; in.open(filename); 95 | string line; Graph g; g.clear(); int id=0; 96 | while(in>>line){ 97 | if(line[0]=='t'){ 98 | getline(in, line); 99 | if(!g.empty()){ 100 | // 新的一个图,加进来 101 | g.build(); //构建邻接矩阵 102 | g.id = id++; 103 | // cout<>id_>>label; 112 | getline(in,line); 113 | g.resize(max((int)g.size(), id_+1)); 114 | g[id_].label = label; 115 | }else if(line[0]=='e'){ 116 | int from,to,elabel; 117 | in>>from>>to>>elabel; 118 | g.resize(max((int)g.size(), from+1)); 119 | g.resize(max((int)g.size(), to+1)); 120 | g[from].push(from, to, elabel); 121 | g[to].push(to, from, elabel); 122 | getline(in, line); 123 | } 124 | } 125 | in.close(); 126 | } 127 | 128 | void pre_check(Graph &Q, Graph &G){ 129 | MA = Q.M; MB = G.M; 130 | // 构建M和M_ 131 | M = new int*[Q.vertex_size()]; 132 | M_ = new int*[Q.vertex_size()]; 133 | MC = new int*[Q.vertex_size()]; 134 | for(int i=0;i G.count(j)){ M[i][j] = 0;continue; } 146 | } 147 | } 148 | int num = 1; 149 | while(num>0){ //这个过程迭代进行 150 | num = 0; 151 | for(int i=0;i0) break; 196 | } 197 | M__[i][j] = tot; 198 | } 199 | } 200 | for(int i=0;i0) break; 206 | } 207 | MC[i][j] = tot; 208 | } 209 | } 210 | for(int i=0;i::iterator iter = Q[i].edge.begin(); iter!=Q[i].edge.end(); iter++){ 249 | if((*iter).to==j){ 250 | lable = (*iter).elabel; 251 | break; 252 | } 253 | } 254 | int lable_ = -1; 255 | for(vector::iterator iter = G[v[i]].edge.begin(); iter!=G[v[i]].edge.end(); iter++){ 256 | if((*iter).to==v[j]){ 257 | lable_ = (*iter).elabel; 258 | break; 259 | } 260 | } 261 | if(lable == lable_) continue; 262 | else{ 263 | flag=0; 264 | i = Q.vertex_size(); 265 | break; 266 | } 267 | } 268 | } 269 | } 270 | if(flag==0) return false; //当前映射,边lable不对应,不输出 271 | 272 | cout<<"查询图id #"< "< G.edge_size()) return ; 299 | pre_check(Q,G); //使用顶点 & refinement规则尽可能减少M矩阵中的 300 | 301 | int flag=1; 302 | for(int i=0;i::iterator iter = query_graph.begin(); iter!=query_graph.end(); iter++){ 326 | Graph Q = (*iter); 327 | int number = 0; 328 | for(vector::iterator iter2 = graph.begin(); iter2!=graph.end(); iter2++){ 329 | Graph G = (*iter2); 330 | // 保证Q是小图,进行同构匹配 331 | if(Q.vertex_size() > G.vertex_size()) continue; 332 | check(Q,G); 333 | number++; 334 | if(number%1==0) 335 | cout<<"G_number="<>filename2; 349 | strcpy(filename1, "/Users/songjs/Desktop/workspace/ullmann/ullmann/mygraphdb.data"); 350 | strcpy(filename2, "/Users/songjs/Desktop/workspace/ullmann/ullmann/Q4.my"); 351 | // strcpy(filename1, "/home/songjunshuai/workspace/ullmann/mygraphdb.data"); 352 | // strcpy(filename2, "/home/songjunshuai/workspace/ullmann/Q8.my"); 353 | read(filename1, graph); 354 | read(filename2, query_graph); 355 | cout<