└── Krishnasinh_Jadeja.ipynb
/Krishnasinh_Jadeja.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "provenance": [],
7 | "collapsed_sections": []
8 | },
9 | "kernelspec": {
10 | "name": "python3",
11 | "display_name": "Python 3"
12 | },
13 | "language_info": {
14 | "name": "python"
15 | }
16 | },
17 | "cells": [
18 | {
19 | "cell_type": "code",
20 | "execution_count": null,
21 | "metadata": {
22 | "id": "mMecISboK9zi"
23 | },
24 | "outputs": [],
25 | "source": [
26 | "import numpy as np\n",
27 | "import pandas as pd\n",
28 | "import sklearn"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "source": [
34 | "from sklearn.datasets import load_boston\n",
35 | "df = load_boston()"
36 | ],
37 | "metadata": {
38 | "id": "smTCkcviLNvh"
39 | },
40 | "execution_count": null,
41 | "outputs": []
42 | },
43 | {
44 | "cell_type": "code",
45 | "source": [
46 | "df.keys()"
47 | ],
48 | "metadata": {
49 | "colab": {
50 | "base_uri": "https://localhost:8080/"
51 | },
52 | "id": "gKRPllwILuaO",
53 | "outputId": "b66d9841-58fb-4195-cd8f-f73852d930d1"
54 | },
55 | "execution_count": null,
56 | "outputs": [
57 | {
58 | "output_type": "execute_result",
59 | "data": {
60 | "text/plain": [
61 | "dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename', 'data_module'])"
62 | ]
63 | },
64 | "metadata": {},
65 | "execution_count": 4
66 | }
67 | ]
68 | },
69 | {
70 | "cell_type": "code",
71 | "source": [
72 | "boston = pd.DataFrame(df.data, columns=df.feature_names)\n",
73 | "boston.head()"
74 | ],
75 | "metadata": {
76 | "colab": {
77 | "base_uri": "https://localhost:8080/",
78 | "height": 270
79 | },
80 | "id": "2YsiIIeZLweh",
81 | "outputId": "87a52019-e382-4c08-963f-218281f6fb61"
82 | },
83 | "execution_count": null,
84 | "outputs": [
85 | {
86 | "output_type": "execute_result",
87 | "data": {
88 | "text/plain": [
89 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n",
90 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n",
91 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n",
92 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n",
93 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n",
94 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n",
95 | "\n",
96 | " PTRATIO B LSTAT \n",
97 | "0 15.3 396.90 4.98 \n",
98 | "1 17.8 396.90 9.14 \n",
99 | "2 17.8 392.83 4.03 \n",
100 | "3 18.7 394.63 2.94 \n",
101 | "4 18.7 396.90 5.33 "
102 | ],
103 | "text/html": [
104 | "\n",
105 | "
\n",
106 | "
\n",
107 | "
\n",
108 | "\n",
121 | "
\n",
122 | " \n",
123 | " \n",
124 | " | \n",
125 | " CRIM | \n",
126 | " ZN | \n",
127 | " INDUS | \n",
128 | " CHAS | \n",
129 | " NOX | \n",
130 | " RM | \n",
131 | " AGE | \n",
132 | " DIS | \n",
133 | " RAD | \n",
134 | " TAX | \n",
135 | " PTRATIO | \n",
136 | " B | \n",
137 | " LSTAT | \n",
138 | "
\n",
139 | " \n",
140 | " \n",
141 | " \n",
142 | " | 0 | \n",
143 | " 0.00632 | \n",
144 | " 18.0 | \n",
145 | " 2.31 | \n",
146 | " 0.0 | \n",
147 | " 0.538 | \n",
148 | " 6.575 | \n",
149 | " 65.2 | \n",
150 | " 4.0900 | \n",
151 | " 1.0 | \n",
152 | " 296.0 | \n",
153 | " 15.3 | \n",
154 | " 396.90 | \n",
155 | " 4.98 | \n",
156 | "
\n",
157 | " \n",
158 | " | 1 | \n",
159 | " 0.02731 | \n",
160 | " 0.0 | \n",
161 | " 7.07 | \n",
162 | " 0.0 | \n",
163 | " 0.469 | \n",
164 | " 6.421 | \n",
165 | " 78.9 | \n",
166 | " 4.9671 | \n",
167 | " 2.0 | \n",
168 | " 242.0 | \n",
169 | " 17.8 | \n",
170 | " 396.90 | \n",
171 | " 9.14 | \n",
172 | "
\n",
173 | " \n",
174 | " | 2 | \n",
175 | " 0.02729 | \n",
176 | " 0.0 | \n",
177 | " 7.07 | \n",
178 | " 0.0 | \n",
179 | " 0.469 | \n",
180 | " 7.185 | \n",
181 | " 61.1 | \n",
182 | " 4.9671 | \n",
183 | " 2.0 | \n",
184 | " 242.0 | \n",
185 | " 17.8 | \n",
186 | " 392.83 | \n",
187 | " 4.03 | \n",
188 | "
\n",
189 | " \n",
190 | " | 3 | \n",
191 | " 0.03237 | \n",
192 | " 0.0 | \n",
193 | " 2.18 | \n",
194 | " 0.0 | \n",
195 | " 0.458 | \n",
196 | " 6.998 | \n",
197 | " 45.8 | \n",
198 | " 6.0622 | \n",
199 | " 3.0 | \n",
200 | " 222.0 | \n",
201 | " 18.7 | \n",
202 | " 394.63 | \n",
203 | " 2.94 | \n",
204 | "
\n",
205 | " \n",
206 | " | 4 | \n",
207 | " 0.06905 | \n",
208 | " 0.0 | \n",
209 | " 2.18 | \n",
210 | " 0.0 | \n",
211 | " 0.458 | \n",
212 | " 7.147 | \n",
213 | " 54.2 | \n",
214 | " 6.0622 | \n",
215 | " 3.0 | \n",
216 | " 222.0 | \n",
217 | " 18.7 | \n",
218 | " 396.90 | \n",
219 | " 5.33 | \n",
220 | "
\n",
221 | " \n",
222 | "
\n",
223 | "
\n",
224 | "
\n",
234 | " \n",
235 | " \n",
272 | "\n",
273 | " \n",
297 | "
\n",
298 | "
\n",
299 | " "
300 | ]
301 | },
302 | "metadata": {},
303 | "execution_count": 5
304 | }
305 | ]
306 | },
307 | {
308 | "cell_type": "code",
309 | "source": [
310 | "boston['MEDV'] = df.target\n",
311 | "boston.head()"
312 | ],
313 | "metadata": {
314 | "colab": {
315 | "base_uri": "https://localhost:8080/",
316 | "height": 270
317 | },
318 | "id": "zFTZlWH3MqLh",
319 | "outputId": "11cc9186-68cb-41ae-f671-73af59a1157b"
320 | },
321 | "execution_count": null,
322 | "outputs": [
323 | {
324 | "output_type": "execute_result",
325 | "data": {
326 | "text/plain": [
327 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n",
328 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n",
329 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n",
330 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n",
331 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n",
332 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n",
333 | "\n",
334 | " PTRATIO B LSTAT MEDV \n",
335 | "0 15.3 396.90 4.98 24.0 \n",
336 | "1 17.8 396.90 9.14 21.6 \n",
337 | "2 17.8 392.83 4.03 34.7 \n",
338 | "3 18.7 394.63 2.94 33.4 \n",
339 | "4 18.7 396.90 5.33 36.2 "
340 | ],
341 | "text/html": [
342 | "\n",
343 | " \n",
344 | "
\n",
345 | "
\n",
346 | "\n",
359 | "
\n",
360 | " \n",
361 | " \n",
362 | " | \n",
363 | " CRIM | \n",
364 | " ZN | \n",
365 | " INDUS | \n",
366 | " CHAS | \n",
367 | " NOX | \n",
368 | " RM | \n",
369 | " AGE | \n",
370 | " DIS | \n",
371 | " RAD | \n",
372 | " TAX | \n",
373 | " PTRATIO | \n",
374 | " B | \n",
375 | " LSTAT | \n",
376 | " MEDV | \n",
377 | "
\n",
378 | " \n",
379 | " \n",
380 | " \n",
381 | " | 0 | \n",
382 | " 0.00632 | \n",
383 | " 18.0 | \n",
384 | " 2.31 | \n",
385 | " 0.0 | \n",
386 | " 0.538 | \n",
387 | " 6.575 | \n",
388 | " 65.2 | \n",
389 | " 4.0900 | \n",
390 | " 1.0 | \n",
391 | " 296.0 | \n",
392 | " 15.3 | \n",
393 | " 396.90 | \n",
394 | " 4.98 | \n",
395 | " 24.0 | \n",
396 | "
\n",
397 | " \n",
398 | " | 1 | \n",
399 | " 0.02731 | \n",
400 | " 0.0 | \n",
401 | " 7.07 | \n",
402 | " 0.0 | \n",
403 | " 0.469 | \n",
404 | " 6.421 | \n",
405 | " 78.9 | \n",
406 | " 4.9671 | \n",
407 | " 2.0 | \n",
408 | " 242.0 | \n",
409 | " 17.8 | \n",
410 | " 396.90 | \n",
411 | " 9.14 | \n",
412 | " 21.6 | \n",
413 | "
\n",
414 | " \n",
415 | " | 2 | \n",
416 | " 0.02729 | \n",
417 | " 0.0 | \n",
418 | " 7.07 | \n",
419 | " 0.0 | \n",
420 | " 0.469 | \n",
421 | " 7.185 | \n",
422 | " 61.1 | \n",
423 | " 4.9671 | \n",
424 | " 2.0 | \n",
425 | " 242.0 | \n",
426 | " 17.8 | \n",
427 | " 392.83 | \n",
428 | " 4.03 | \n",
429 | " 34.7 | \n",
430 | "
\n",
431 | " \n",
432 | " | 3 | \n",
433 | " 0.03237 | \n",
434 | " 0.0 | \n",
435 | " 2.18 | \n",
436 | " 0.0 | \n",
437 | " 0.458 | \n",
438 | " 6.998 | \n",
439 | " 45.8 | \n",
440 | " 6.0622 | \n",
441 | " 3.0 | \n",
442 | " 222.0 | \n",
443 | " 18.7 | \n",
444 | " 394.63 | \n",
445 | " 2.94 | \n",
446 | " 33.4 | \n",
447 | "
\n",
448 | " \n",
449 | " | 4 | \n",
450 | " 0.06905 | \n",
451 | " 0.0 | \n",
452 | " 2.18 | \n",
453 | " 0.0 | \n",
454 | " 0.458 | \n",
455 | " 7.147 | \n",
456 | " 54.2 | \n",
457 | " 6.0622 | \n",
458 | " 3.0 | \n",
459 | " 222.0 | \n",
460 | " 18.7 | \n",
461 | " 396.90 | \n",
462 | " 5.33 | \n",
463 | " 36.2 | \n",
464 | "
\n",
465 | " \n",
466 | "
\n",
467 | "
\n",
468 | "
\n",
478 | " \n",
479 | " \n",
516 | "\n",
517 | " \n",
541 | "
\n",
542 | "
\n",
543 | " "
544 | ]
545 | },
546 | "metadata": {},
547 | "execution_count": 6
548 | }
549 | ]
550 | },
551 | {
552 | "cell_type": "code",
553 | "source": [
554 | " boston.isnull()"
555 | ],
556 | "metadata": {
557 | "colab": {
558 | "base_uri": "https://localhost:8080/",
559 | "height": 488
560 | },
561 | "id": "xKdtTGCvM4ML",
562 | "outputId": "668ad76d-8a0c-466b-d89b-f2854b9af33c"
563 | },
564 | "execution_count": null,
565 | "outputs": [
566 | {
567 | "output_type": "execute_result",
568 | "data": {
569 | "text/plain": [
570 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n",
571 | "0 False False False False False False False False False False \n",
572 | "1 False False False False False False False False False False \n",
573 | "2 False False False False False False False False False False \n",
574 | "3 False False False False False False False False False False \n",
575 | "4 False False False False False False False False False False \n",
576 | ".. ... ... ... ... ... ... ... ... ... ... \n",
577 | "501 False False False False False False False False False False \n",
578 | "502 False False False False False False False False False False \n",
579 | "503 False False False False False False False False False False \n",
580 | "504 False False False False False False False False False False \n",
581 | "505 False False False False False False False False False False \n",
582 | "\n",
583 | " PTRATIO B LSTAT MEDV \n",
584 | "0 False False False False \n",
585 | "1 False False False False \n",
586 | "2 False False False False \n",
587 | "3 False False False False \n",
588 | "4 False False False False \n",
589 | ".. ... ... ... ... \n",
590 | "501 False False False False \n",
591 | "502 False False False False \n",
592 | "503 False False False False \n",
593 | "504 False False False False \n",
594 | "505 False False False False \n",
595 | "\n",
596 | "[506 rows x 14 columns]"
597 | ],
598 | "text/html": [
599 | "\n",
600 | " \n",
601 | "
\n",
602 | "
\n",
603 | "\n",
616 | "
\n",
617 | " \n",
618 | " \n",
619 | " | \n",
620 | " CRIM | \n",
621 | " ZN | \n",
622 | " INDUS | \n",
623 | " CHAS | \n",
624 | " NOX | \n",
625 | " RM | \n",
626 | " AGE | \n",
627 | " DIS | \n",
628 | " RAD | \n",
629 | " TAX | \n",
630 | " PTRATIO | \n",
631 | " B | \n",
632 | " LSTAT | \n",
633 | " MEDV | \n",
634 | "
\n",
635 | " \n",
636 | " \n",
637 | " \n",
638 | " | 0 | \n",
639 | " False | \n",
640 | " False | \n",
641 | " False | \n",
642 | " False | \n",
643 | " False | \n",
644 | " False | \n",
645 | " False | \n",
646 | " False | \n",
647 | " False | \n",
648 | " False | \n",
649 | " False | \n",
650 | " False | \n",
651 | " False | \n",
652 | " False | \n",
653 | "
\n",
654 | " \n",
655 | " | 1 | \n",
656 | " False | \n",
657 | " False | \n",
658 | " False | \n",
659 | " False | \n",
660 | " False | \n",
661 | " False | \n",
662 | " False | \n",
663 | " False | \n",
664 | " False | \n",
665 | " False | \n",
666 | " False | \n",
667 | " False | \n",
668 | " False | \n",
669 | " False | \n",
670 | "
\n",
671 | " \n",
672 | " | 2 | \n",
673 | " False | \n",
674 | " False | \n",
675 | " False | \n",
676 | " False | \n",
677 | " False | \n",
678 | " False | \n",
679 | " False | \n",
680 | " False | \n",
681 | " False | \n",
682 | " False | \n",
683 | " False | \n",
684 | " False | \n",
685 | " False | \n",
686 | " False | \n",
687 | "
\n",
688 | " \n",
689 | " | 3 | \n",
690 | " False | \n",
691 | " False | \n",
692 | " False | \n",
693 | " False | \n",
694 | " False | \n",
695 | " False | \n",
696 | " False | \n",
697 | " False | \n",
698 | " False | \n",
699 | " False | \n",
700 | " False | \n",
701 | " False | \n",
702 | " False | \n",
703 | " False | \n",
704 | "
\n",
705 | " \n",
706 | " | 4 | \n",
707 | " False | \n",
708 | " False | \n",
709 | " False | \n",
710 | " False | \n",
711 | " False | \n",
712 | " False | \n",
713 | " False | \n",
714 | " False | \n",
715 | " False | \n",
716 | " False | \n",
717 | " False | \n",
718 | " False | \n",
719 | " False | \n",
720 | " False | \n",
721 | "
\n",
722 | " \n",
723 | " | ... | \n",
724 | " ... | \n",
725 | " ... | \n",
726 | " ... | \n",
727 | " ... | \n",
728 | " ... | \n",
729 | " ... | \n",
730 | " ... | \n",
731 | " ... | \n",
732 | " ... | \n",
733 | " ... | \n",
734 | " ... | \n",
735 | " ... | \n",
736 | " ... | \n",
737 | " ... | \n",
738 | "
\n",
739 | " \n",
740 | " | 501 | \n",
741 | " False | \n",
742 | " False | \n",
743 | " False | \n",
744 | " False | \n",
745 | " False | \n",
746 | " False | \n",
747 | " False | \n",
748 | " False | \n",
749 | " False | \n",
750 | " False | \n",
751 | " False | \n",
752 | " False | \n",
753 | " False | \n",
754 | " False | \n",
755 | "
\n",
756 | " \n",
757 | " | 502 | \n",
758 | " False | \n",
759 | " False | \n",
760 | " False | \n",
761 | " False | \n",
762 | " False | \n",
763 | " False | \n",
764 | " False | \n",
765 | " False | \n",
766 | " False | \n",
767 | " False | \n",
768 | " False | \n",
769 | " False | \n",
770 | " False | \n",
771 | " False | \n",
772 | "
\n",
773 | " \n",
774 | " | 503 | \n",
775 | " False | \n",
776 | " False | \n",
777 | " False | \n",
778 | " False | \n",
779 | " False | \n",
780 | " False | \n",
781 | " False | \n",
782 | " False | \n",
783 | " False | \n",
784 | " False | \n",
785 | " False | \n",
786 | " False | \n",
787 | " False | \n",
788 | " False | \n",
789 | "
\n",
790 | " \n",
791 | " | 504 | \n",
792 | " False | \n",
793 | " False | \n",
794 | " False | \n",
795 | " False | \n",
796 | " False | \n",
797 | " False | \n",
798 | " False | \n",
799 | " False | \n",
800 | " False | \n",
801 | " False | \n",
802 | " False | \n",
803 | " False | \n",
804 | " False | \n",
805 | " False | \n",
806 | "
\n",
807 | " \n",
808 | " | 505 | \n",
809 | " False | \n",
810 | " False | \n",
811 | " False | \n",
812 | " False | \n",
813 | " False | \n",
814 | " False | \n",
815 | " False | \n",
816 | " False | \n",
817 | " False | \n",
818 | " False | \n",
819 | " False | \n",
820 | " False | \n",
821 | " False | \n",
822 | " False | \n",
823 | "
\n",
824 | " \n",
825 | "
\n",
826 | "
506 rows × 14 columns
\n",
827 | "
\n",
828 | "
\n",
838 | " \n",
839 | " \n",
876 | "\n",
877 | " \n",
901 | "
\n",
902 | "
\n",
903 | " "
904 | ]
905 | },
906 | "metadata": {},
907 | "execution_count": 7
908 | }
909 | ]
910 | },
911 | {
912 | "cell_type": "code",
913 | "source": [
914 | "boston.isnull().sum()"
915 | ],
916 | "metadata": {
917 | "colab": {
918 | "base_uri": "https://localhost:8080/"
919 | },
920 | "id": "CUF2gciXNIh6",
921 | "outputId": "6bb7f1fa-c7a4-42a9-f782-1c7a179e65f0"
922 | },
923 | "execution_count": null,
924 | "outputs": [
925 | {
926 | "output_type": "execute_result",
927 | "data": {
928 | "text/plain": [
929 | "CRIM 0\n",
930 | "ZN 0\n",
931 | "INDUS 0\n",
932 | "CHAS 0\n",
933 | "NOX 0\n",
934 | "RM 0\n",
935 | "AGE 0\n",
936 | "DIS 0\n",
937 | "RAD 0\n",
938 | "TAX 0\n",
939 | "PTRATIO 0\n",
940 | "B 0\n",
941 | "LSTAT 0\n",
942 | "MEDV 0\n",
943 | "dtype: int64"
944 | ]
945 | },
946 | "metadata": {},
947 | "execution_count": 8
948 | }
949 | ]
950 | },
951 | {
952 | "cell_type": "code",
953 | "source": [
954 | "from sklearn.model_selection import train_test_split\n",
955 | "\n",
956 | "X = boston.drop('MEDV', axis=1)\n",
957 | "Y = boston['MEDV']\n",
958 | "\n",
959 | "X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.15, random_state=5)\n",
960 | "\n",
961 | "print(X_train.shape)\n",
962 | "print(X_test.shape)\n",
963 | "print(Y_train.shape)\n",
964 | "print(Y_test.shape)\n"
965 | ],
966 | "metadata": {
967 | "colab": {
968 | "base_uri": "https://localhost:8080/"
969 | },
970 | "id": "2QWs8y2gNTcw",
971 | "outputId": "635fe221-7b8d-4433-e945-bc6a873b66a8"
972 | },
973 | "execution_count": null,
974 | "outputs": [
975 | {
976 | "output_type": "stream",
977 | "name": "stdout",
978 | "text": [
979 | "(430, 13)\n",
980 | "(76, 13)\n",
981 | "(430,)\n",
982 | "(76,)\n"
983 | ]
984 | }
985 | ]
986 | },
987 | {
988 | "cell_type": "code",
989 | "source": [
990 | "from sklearn.linear_model import LinearRegression\n",
991 | "from sklearn.metrics import mean_squared_error"
992 | ],
993 | "metadata": {
994 | "id": "1kechGAXQrBm"
995 | },
996 | "execution_count": null,
997 | "outputs": []
998 | },
999 | {
1000 | "cell_type": "code",
1001 | "source": [
1002 | "lin_model = LinearRegression()\n",
1003 | "\n",
1004 | "lin_model.fit(X_train, Y_train)"
1005 | ],
1006 | "metadata": {
1007 | "colab": {
1008 | "base_uri": "https://localhost:8080/"
1009 | },
1010 | "id": "Ve9Ify57Rf6I",
1011 | "outputId": "3df48a70-56f7-4c75-ff46-37fcc86ae523"
1012 | },
1013 | "execution_count": null,
1014 | "outputs": [
1015 | {
1016 | "output_type": "execute_result",
1017 | "data": {
1018 | "text/plain": [
1019 | "LinearRegression()"
1020 | ]
1021 | },
1022 | "metadata": {},
1023 | "execution_count": 15
1024 | }
1025 | ]
1026 | },
1027 | {
1028 | "cell_type": "code",
1029 | "source": [
1030 | "y_train_predict = lin_model.predict(X_train)\n",
1031 | "rmse = (np.sqrt(mean_squared_error(Y_train, y_train_predict)))\n",
1032 | "\n",
1033 | "print(\"The model performance for training set\")\n",
1034 | "print('RMSE is {}'.format(rmse))\n",
1035 | "print(\"\\n\")\n",
1036 | "\n",
1037 | "y_test_predict = lin_model.predict(X_test)\n",
1038 | "rmse = (np.sqrt(mean_squared_error(Y_test, y_test_predict)))\n",
1039 | "\n",
1040 | "print(\"The model performance for testing set\")\n",
1041 | "print('RMSE is {}'.format(rmse))\n"
1042 | ],
1043 | "metadata": {
1044 | "colab": {
1045 | "base_uri": "https://localhost:8080/"
1046 | },
1047 | "id": "SyMGsv20SJLn",
1048 | "outputId": "751c44aa-af9c-475b-ed4c-cb043c86c0f4"
1049 | },
1050 | "execution_count": null,
1051 | "outputs": [
1052 | {
1053 | "output_type": "stream",
1054 | "name": "stdout",
1055 | "text": [
1056 | "The model performance for training set\n",
1057 | "RMSE is 4.710901797319796\n",
1058 | "\n",
1059 | "\n",
1060 | "The model performance for testing set\n",
1061 | "RMSE is 4.687543527902972\n"
1062 | ]
1063 | }
1064 | ]
1065 | },
1066 | {
1067 | "cell_type": "code",
1068 | "source": [],
1069 | "metadata": {
1070 | "id": "_Ufz7oaIVIgM"
1071 | },
1072 | "execution_count": null,
1073 | "outputs": []
1074 | }
1075 | ]
1076 | }
--------------------------------------------------------------------------------