├── README.md
├── Web-Based Image Classification project report (1).docx
├── API-Using-Flask.py
├── python
└── w.html
/README.md:
--------------------------------------------------------------------------------
1 | # WEB-BASED-IMAGE-CLASSIFICATION
--------------------------------------------------------------------------------
/Web-Based Image Classification project report (1).docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/KEERTHIRAJENDRAN-27/WEB-BASED-IMAGE-CLASSIFICATION/HEAD/Web-Based Image Classification project report (1).docx
--------------------------------------------------------------------------------
/API-Using-Flask.py:
--------------------------------------------------------------------------------
1 | import flask
2 | from flask import request, jsonify
3 |
4 |
5 | #creating ka Flask App
6 | app =flask.Flask(__name__)
7 |
8 | phone = [
9 | {'id':0,
10 | 'name':'Samsung'},
11 | {'id':1,'name':'iphone'}
12 | ]
13 |
14 |
15 | #Home route
16 | @app.route('/', methods=['GET'])
17 | def home():
18 | return "
First App"
19 |
20 |
21 | @app.route('/phone/',methods=['GET'])
22 | def api():
23 | return jsonify(phone)
24 |
25 |
26 | @app.route('/phone/',methods=['GET'])
27 | def api_id(id):
28 | return jsonify(phone[int(id)])
29 |
30 | if __name__=='__main__':
31 | app.run(debug=True)
32 |
--------------------------------------------------------------------------------
/python:
--------------------------------------------------------------------------------
1 | from flask import Flask, render_template, request
2 | from keras.models import load_model
3 | from keras.preprocessing import image
4 | app = Flask(__name__)
5 |
6 | dic = {0 : 'Cat', 1 : 'Dog'}
7 |
8 | model = load_model('model.h5')
9 |
10 | model.make_predict_function()
11 |
12 | def predict_label(img_path):
13 | i = image.load_img(img_path, target_size=(100,100))
14 | i = image.img_to_array(i)/255.0
15 | i = i.reshape(1, 100,100,3)
16 | p = model.predict_classes(i)
17 | return dic[p[0]]
18 |
19 |
20 | # routes
21 | @app.route("/", methods=['GET', 'POST'])
22 | def main():
23 | return render_template("index.html")
24 |
25 | @app.route("/about")
26 | def about_page():
27 | return "Please subscribe Artificial Intelligence Hub..!!!"
28 |
29 | @app.route("/submit", methods = ['GET', 'POST'])
30 | def get_output():
31 | if request.method == 'POST':
32 | img = request.files['my_image']
33 |
34 | img_path = "static/" + img.filename
35 | img.save(img_path)
36 |
37 | p = predict_label(img_path)
38 |
39 | return render_template("index.html", prediction = p, img_path = img_path)
40 |
41 |
42 | if __name__ =='__main__':
43 | #app.debug = True
44 | app.run(debug = True)
45 |
--------------------------------------------------------------------------------
/w.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | IMAGE CLASSFICATION
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
26 |
27 |
28 |
29 |
30 |
31 |
IMAGE CLASSFICATION
32 |
33 |
49 | {% if prediction %}
50 |

51 |
The Prediction of image is :
52 |
53 | {% endif %}
54 |
55 |
56 |
57 |
--------------------------------------------------------------------------------