├── .gitignore
├── LICENSE
├── README.md
├── demo.py
├── images
├── React.png
├── Tiny_Agent.jpg
└── example.gif
├── requirements.txt
└── src
├── __init__.py
├── core.py
├── tools.py
└── utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | # Editors
2 | .vscode/
3 | .idea/
4 |
5 | # Vagrant
6 | .vagrant/
7 |
8 | # Mac/OSX
9 | .DS_Store
10 |
11 | # Windows
12 | Thumbs.db
13 |
14 | # Source for the following rules: https://raw.githubusercontent.com/github/gitignore/master/Python.gitignore
15 | # Byte-compiled / optimized / DLL files
16 | __pycache__/
17 | *.py[cod]
18 | *$py.class
19 |
20 | # C extensions
21 | *.so
22 |
23 | # Distribution / packaging
24 | .Python
25 | build/
26 | develop-eggs/
27 | dist/
28 | downloads/
29 | eggs/
30 | .eggs/
31 | lib/
32 | lib64/
33 | parts/
34 | sdist/
35 | var/
36 | wheels/
37 | *.egg-info/
38 | .installed.cfg
39 | *.egg
40 | MANIFEST
41 |
42 | # PyInstaller
43 | # Usually these files are written by a python script from a template
44 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
45 | *.manifest
46 | *.spec
47 |
48 | # Installer logs
49 | pip-log.txt
50 | pip-delete-this-directory.txt
51 |
52 | # Unit test / coverage reports
53 | htmlcov/
54 | .tox/
55 | .nox/
56 | .coverage
57 | .coverage.*
58 | .cache
59 | nosetests.xml
60 | coverage.xml
61 | *.cover
62 | .hypothesis/
63 | .pytest_cache/
64 |
65 | # Translations
66 | *.mo
67 | *.pot
68 |
69 | # Django stuff:
70 | *.log
71 | local_settings.py
72 | db.sqlite3
73 |
74 | # Flask stuff:
75 | instance/
76 | .webassets-cache
77 |
78 | # Scrapy stuff:
79 | .scrapy
80 |
81 | # Sphinx documentation
82 | docs/_build/
83 |
84 | # PyBuilder
85 | target/
86 |
87 | # Jupyter Notebook
88 | .ipynb_checkpoints
89 |
90 | # IPython
91 | profile_default/
92 | ipython_config.py
93 |
94 | # pyenv
95 | .python-version
96 |
97 | # celery beat schedule file
98 | celerybeat-schedule
99 |
100 | # SageMath parsed files
101 | *.sage.py
102 |
103 | # Environments
104 | .env
105 | .venv
106 | env/
107 | venv/
108 | ENV/
109 | env.bak/
110 | venv.bak/
111 |
112 | # Spyder project settings
113 | .spyderproject
114 | .spyproject
115 |
116 | # Rope project settings
117 | .ropeproject
118 |
119 | # mkdocs documentation
120 | /site
121 |
122 | # mypy
123 | .mypy_cache/
124 | .dmypy.json
125 | dmypy.json
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # TinyAgent
2 |
3 | 在`ChatGPT`横空出世,夺走`Bert`的桂冠之后,大模型愈发的火热,国内各种模型层出不穷,史称“百模大战”。大模型的能力是毋庸置疑的,但大模型在一些实时的问题上,或是某些专有领域的问题上,可能会显得有些力不从心。因此,我们需要一些工具来为大模型赋能,给大模型一个抓手,让大模型和现实世界发生的事情对齐颗粒度,这样我们就获得了一个更好的用的大模型。
4 |
5 | 本项目基于 `openai` 库和其 `tool_calls` 功能,实现了一个简单的 Agent 结构,可以调用预定义的工具函数来完成特定任务。
6 |
7 | 通过这个简单的例子,我们可以了解 Agent 如何利用大模型和外部工具进行交互。
8 |
9 |
10 |

11 |
12 |
13 | ## 实现细节
14 |
15 | ### Step 1: 初始化客户端和模型
16 |
17 | 首先,我们需要一个能够调用大模型的客户端。这里我们使用 `openai` 库,并配置其指向一个兼容 OpenAI API 的服务终端,例如 [SiliconFlow](https://cloud.siliconflow.cn/i/ybUFvmqK)。同时,指定要使用的模型,如 `Qwen/Qwen2.5-32B-Instruct`。
18 |
19 | ```python
20 | from openai import OpenAI
21 |
22 | # 初始化 OpenAI 客户端
23 | client = OpenAI(
24 | api_key="YOUR_API_KEY", # 替换为你的 API Key
25 | base_url="https://api.siliconflow.cn/v1", # 使用 SiliconFlow 的 API 地址
26 | )
27 |
28 | # 指定模型名称
29 | model_name = "Qwen/Qwen2.5-32B-Instruct"
30 | ```
31 |
32 | > **注意:** 你需要将 `YOUR_API_KEY` 替换为你从 [SiliconFlow](https://cloud.siliconflow.cn/i/ybUFvmqK) 或其他服务商获取的有效 API Key。
33 |
34 | ### Step 2: 定义工具函数
35 |
36 | 我们在 `src/tools.py` 文件中定义 Agent 可以使用的工具函数。每个函数都需要有清晰的文档字符串(docstring),描述其功能和参数,因为这将用于自动生成工具的 JSON Schema。
37 |
38 | ```python
39 | # src/tools.py
40 | from datetime import datetime
41 |
42 | # 获取当前日期和时间
43 | def get_current_datetime() -> str:
44 | """
45 | 获取当前日期和时间。
46 | :return: 当前日期和时间的字符串表示。
47 | """
48 | current_datetime = datetime.now()
49 | formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
50 | return formatted_datetime
51 |
52 | def add(a: float, b: float):
53 | """
54 | 计算两个浮点数的和。
55 | :param a: 第一个浮点数。
56 | :param b: 第二个浮点数。
57 | :return: 两个浮点数的和。
58 | """
59 | return a + b
60 |
61 | def compare(a: float, b: float):
62 | """
63 | 比较两个浮点数的大小。
64 | :param a: 第一个浮点数。
65 | :param b: 第二个浮点数。
66 | :return: 比较结果的字符串表示。
67 | """
68 | if a > b:
69 | return f'{a} is greater than {b}'
70 | elif a < b:
71 | return f'{b} is greater than {a}'
72 | else:
73 | return f'{a} is equal to {b}'
74 |
75 | def count_letter_in_string(a: str, b: str):
76 | """
77 | 统计字符串中某个字母的出现次数。
78 | :param a: 要搜索的字符串。
79 | :param b: 要统计的字母。
80 | :return: 字母在字符串中出现的次数。
81 | """
82 | return a.count(b)
83 |
84 | # ... (可能还有其他工具函数)
85 | ```
86 |
87 | 为了让 OpenAI API 理解这些工具,我们需要将它们转换成特定的 JSON Schema 格式。这可以通过 `src/utils.py` 中的 `function_to_json` 辅助函数完成。
88 |
89 | ```python
90 | # src/utils.py (部分)
91 | import inspect
92 |
93 | def function_to_json(func) -> dict:
94 | # ... (函数实现细节)
95 | # 返回符合 OpenAI tool schema 的字典
96 | return {
97 | "type": "function",
98 | "function": {
99 | "name": func.__name__,
100 | "description": inspect.getdoc(func),
101 | "parameters": {
102 | "type": "object",
103 | "properties": parameters,
104 | "required": required,
105 | },
106 | },
107 | }
108 | ```
109 |
110 | ### Step 3: 构造 Agent 类
111 |
112 | 我们在 `src/core.py` 文件中定义 `Agent` 类。这个类负责管理对话历史、调用 OpenAI API、处理工具调用请求以及执行工具函数。
113 |
114 | ```python
115 | # src/core.py (部分)
116 | from openai import OpenAI
117 | import json
118 | from typing import List, Dict, Any
119 | from utils import function_to_json
120 | # 导入定义好的工具函数
121 | from tools import get_current_datetime, add, compare, count_letter_in_string
122 |
123 | SYSREM_PROMPT = """
124 | 你是一个叫不要葱姜蒜的人工智能助手。你的输出应该与用户的语言保持一致。
125 | 当用户的问题需要调用工具时,你可以从提供的工具列表中调用适当的工具函数。
126 | """
127 |
128 | class Agent:
129 | def __init__(self, client: OpenAI, model: str = "Qwen/Qwen2.5-32B-Instruct", tools: List=[], verbose : bool = True):
130 | self.client = client
131 | self.tools = tools # 存储可用的工具函数列表
132 | self.model = model
133 | self.messages = [
134 | {"role": "system", "content": SYSREM_PROMPT},
135 | ]
136 | self.verbose = verbose
137 |
138 | def get_tool_schema(self) -> List[Dict[str, Any]]:
139 | # 使用 utils.function_to_json 获取所有工具的 JSON Schema
140 | return [function_to_json(tool) for tool in self.tools]
141 |
142 | def handle_tool_call(self, tool_call):
143 | # 处理来自模型的工具调用请求
144 | function_name = tool_call.function.name
145 | function_args = tool_call.function.arguments
146 | function_id = tool_call.id
147 |
148 | # 动态执行工具函数
149 | # 注意:实际应用中应添加更严格的安全检查
150 | function_call_content = eval(f"{function_name}(**{function_args})")
151 |
152 | # 返回工具执行结果给模型
153 | return {
154 | "role": "tool",
155 | "content": function_call_content,
156 | "tool_call_id": function_id,
157 | }
158 |
159 | def get_completion(self, prompt) -> str:
160 | # 主对话逻辑
161 | self.messages.append({"role": "user", "content": prompt})
162 |
163 | # 第一次调用模型,传入工具 Schema
164 | response = self.client.chat.completions.create(
165 | model=self.model,
166 | messages=self.messages,
167 | tools=self.get_tool_schema(),
168 | stream=False,
169 | )
170 |
171 | # 检查模型是否请求调用工具
172 | if response.choices[0].message.tool_calls:
173 | tool_list = []
174 | # 处理所有工具调用请求
175 | for tool_call in response.choices[0].message.tool_calls:
176 | # 执行工具并将结果添加到消息历史中
177 | self.messages.append(self.handle_tool_call(tool_call))
178 | tool_list.append(tool_call.function.name)
179 | if self.verbose:
180 | print("调用工具:", tool_list)
181 |
182 | # 第二次调用模型,传入工具执行结果
183 | response = self.client.chat.completions.create(
184 | model=self.model,
185 | messages=self.messages,
186 | tools=self.get_tool_schema(), # 再次传入 Schema 可能有助于模型理解上下文
187 | stream=False,
188 | )
189 |
190 | # 将最终的助手回复添加到消息历史
191 | self.messages.append({"role": "assistant", "content": response.choices[0].message.content})
192 | return response.choices[0].message.content
193 | ```
194 |
195 | 这个 Agent 的工作流程如下:
196 | 1. 接收用户输入。
197 | 2. 调用大模型(如 Qwen),并告知其可用的工具及其 Schema。
198 | 3. 如果模型决定调用工具,Agent 会解析请求,执行相应的 Python 函数。
199 | 4. Agent 将工具的执行结果返回给模型。
200 | 5. 模型根据工具结果生成最终回复。
201 | 6. Agent 将最终回复返回给用户。
202 |
203 |
204 |

205 |
206 |
207 | ### Step 4: 运行 Agent
208 |
209 | 现在我们可以实例化并运行 Agent。在 `demo.py` 的 `if __name__ == "__main__":` 部分提供了一个简单的命令行交互示例。
210 |
211 | ```python
212 | # demo.py (部分)
213 | if __name__ == "__main__":
214 | client = OpenAI(
215 | api_key="YOUR_API_KEY", # 替换为你的 API Key
216 | base_url="https://api.siliconflow.cn/v1",
217 | )
218 |
219 | # 创建 Agent 实例,传入 client、模型名称和工具函数列表
220 | agent = Agent(
221 | client=client,
222 | model="Qwen/Qwen2.5-32B-Instruct",
223 | tools=[get_current_datetime, add, compare, count_letter_in_string],
224 | verbose=True # 设置为 True 可以看到工具调用信息
225 | )
226 |
227 | # 开始交互式对话循环
228 | while True:
229 | # 使用彩色输出区分用户输入和AI回答
230 | prompt = input("\033[94mUser: \033[0m") # 蓝色显示用户输入提示
231 | if prompt.lower() == "exit":
232 | break
233 | response = agent.get_completion(prompt)
234 | print("\033[92mAssistant: \033[0m", response) # 绿色显示AI助手回答
235 | ```
236 |
237 | 运行 `python src/core.py` 后,你可以开始提问。如果问题需要调用工具,Agent 会自动处理。
238 |
239 | **示例交互:**
240 |
241 | ```bash
242 | User: 你好
243 | Assistant: 你好!有什么可以帮助你的吗?
244 | User: 9.12和9 .2哪个更大?
245 | 调用工具: ['compare']
246 | Assistant: 9.2 比 9.12 更大。
247 | User: 为什么?
248 | Assistant: 当我们比较9.12和9.2时,可以将它们看作是9.12和9.20。由于9.20在小数点后第二位是0,而9.12在小数点后第二位是2,所以在小数点后第一位相等的情况下,9.20(即9.2)大于9.12。因此,9.2 比 9.12 更大。
249 | User: strawberry中有几个r?
250 | 调用工具: ['count_letter_in_string']
251 | Assistant: 单词 "strawberry" 中有3个字母 'r'。
252 | User: 你确信嘛?
253 | 调用工具: ['count_letter_in_string']
254 | Assistant: 是的,我确定。单词 "strawberry" 中确实有3个字母 'r'。让我们再次确认一下,"strawberry" 中的 'r' 确实出现了3次。
255 | User: 好的 你很薄,现在几点 了?
256 | 调用工具: ['get_current_datetime']
257 | Assistant: 当前的时间是2025年4月26日17:01:33。不过,我注意到您提到“你很薄”,这似乎是一个打字错误,如果您有任何其他问题或者需要进一步的帮助,请告诉我!
258 | User: exit
259 | ```
260 |
261 | > ***记得给仓库点个小小的 star 哦~***
--------------------------------------------------------------------------------
/demo.py:
--------------------------------------------------------------------------------
1 | from src.core import Agent
2 | from src.tools import add, count_letter_in_string, compare, get_current_datetime
3 |
4 | from openai import OpenAI
5 |
6 |
7 | if __name__ == "__main__":
8 | client = OpenAI(
9 | api_key="your siliconflow api key",
10 | base_url="https://api.siliconflow.cn/v1",
11 | )
12 |
13 | agent = Agent(
14 | client=client,
15 | model="Qwen/Qwen2.5-32B-Instruct",
16 | tools=[get_current_datetime, add, compare, count_letter_in_string],
17 | )
18 |
19 | while True:
20 | # 使用彩色输出区分用户输入和AI回答
21 | prompt = input("\033[94mUser: \033[0m") # 蓝色显示用户输入提示
22 | if prompt == "exit":
23 | break
24 | response = agent.get_completion(prompt)
25 | print("\033[92mAssistant: \033[0m", response) # 绿色显示AI助手回答
26 |
--------------------------------------------------------------------------------
/images/React.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/KMnO4-zx/TinyAgent/3cfc0d5b0df07e5d9618874f9b976e495a4d46cc/images/React.png
--------------------------------------------------------------------------------
/images/Tiny_Agent.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/KMnO4-zx/TinyAgent/3cfc0d5b0df07e5d9618874f9b976e495a4d46cc/images/Tiny_Agent.jpg
--------------------------------------------------------------------------------
/images/example.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/KMnO4-zx/TinyAgent/3cfc0d5b0df07e5d9618874f9b976e495a4d46cc/images/example.gif
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | json
2 | openai
3 | datetime
4 | pprint
--------------------------------------------------------------------------------
/src/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/KMnO4-zx/TinyAgent/3cfc0d5b0df07e5d9618874f9b976e495a4d46cc/src/__init__.py
--------------------------------------------------------------------------------
/src/core.py:
--------------------------------------------------------------------------------
1 | from openai import OpenAI
2 | import json
3 | from typing import List, Dict, Any
4 | from src.utils import function_to_json
5 | from src.tools import get_current_datetime, add, compare, count_letter_in_string
6 |
7 | import pprint
8 |
9 | SYSREM_PROMPT = """
10 | 你是一个叫不要葱姜蒜的人工智能助手。你的输出应该与用户的语言保持一致。
11 | 当用户的问题需要调用工具时,你可以从提供的工具列表中调用适当的工具函数。
12 | """
13 |
14 | class Agent:
15 | def __init__(self, client: OpenAI, model: str = "Qwen/Qwen2.5-32B-Instruct", tools: List=[], verbose : bool = True):
16 | self.client = client
17 | self.tools = tools
18 | self.model = model
19 | self.messages = [
20 | {"role": "system", "content": SYSREM_PROMPT},
21 | ]
22 | self.verbose = verbose
23 |
24 | def get_tool_schema(self) -> List[Dict[str, Any]]:
25 | # 获取所有工具的 JSON 模式
26 | return [function_to_json(tool) for tool in self.tools]
27 |
28 | def handle_tool_call(self, tool_call):
29 | # 处理工具调用
30 | function_name = tool_call.function.name
31 | function_args = tool_call.function.arguments
32 | function_id = tool_call.id
33 |
34 | function_call_content = eval(f"{function_name}(**{function_args})")
35 |
36 | return {
37 | "role": "tool",
38 | "content": function_call_content,
39 | "tool_call_id": function_id,
40 | }
41 |
42 | def get_completion(self, prompt) -> str:
43 |
44 | self.messages.append({"role": "user", "content": prompt})
45 |
46 | # 获取模型的完成响应
47 | response = self.client.chat.completions.create(
48 | model=self.model,
49 | messages=self.messages,
50 | tools=self.get_tool_schema(),
51 | stream=False,
52 | )
53 | if response.choices[0].message.tool_calls:
54 | self.messages.append({"role": "assistant", "content": response.choices[0].message.content})
55 | # 处理工具调用
56 | tool_list = []
57 | for tool_call in response.choices[0].message.tool_calls:
58 | # 处理工具调用并将结果添加到消息列表中
59 | self.messages.append(self.handle_tool_call(tool_call))
60 | tool_list.append([tool_call.function.name, tool_call.function.arguments])
61 | if self.verbose:
62 | print("调用工具:", response.choices[0].message.content, tool_list)
63 | # 再次获取模型的完成响应,这次包含工具调用的结果
64 | response = self.client.chat.completions.create(
65 | model=self.model,
66 | messages=self.messages,
67 | tools=self.get_tool_schema(),
68 | stream=False,
69 | )
70 |
71 | # 将模型的完成响应添加到消息列表中
72 | self.messages.append({"role": "assistant", "content": response.choices[0].message.content})
73 | return response.choices[0].message.content
74 |
75 |
76 |
77 |
78 |
--------------------------------------------------------------------------------
/src/tools.py:
--------------------------------------------------------------------------------
1 | from datetime import datetime
2 |
3 | # 获取当前日期和时间
4 | def get_current_datetime() -> str:
5 | """
6 | 获取当前日期和时间。
7 | :return: 当前日期和时间的字符串表示。
8 | """
9 | current_datetime = datetime.now()
10 | formatted_datetime = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
11 | return formatted_datetime
12 |
13 | def add(a: float, b: float):
14 | """
15 | 计算两个浮点数的和。
16 | :param a: 第一个浮点数。
17 | :param b: 第二个浮点数。
18 | :return: 两个浮点数的和。
19 | """
20 | return str(a + b)
21 |
22 | def mul(a: float, b: float):
23 | """
24 | 计算两个浮点数的积。
25 | :param a: 第一个浮点数。
26 | :param b: 第二个浮点数。
27 | :return: 两个浮点数的积。
28 | """
29 | return str(a * b)
30 |
31 | def compare(a: float, b: float):
32 | """
33 | 比较两个浮点数的大小。
34 | :param a: 第一个浮点数。
35 | :param b: 第二个浮点数。
36 | :return: 比较结果的字符串表示。
37 | """
38 | if a > b:
39 | return f'{a} is greater than {b}'
40 | elif a < b:
41 | return f'{b} is greater than {a}'
42 | else:
43 | return f'{a} is equal to {b}'
44 |
45 | def count_letter_in_string(a: str, b: str):
46 | """
47 | 统计字符串中某个字母的出现次数。
48 | :param a: 要搜索的字符串。
49 | :param b: 要统计的字母。
50 | :return: 字母在字符串中出现的次数。
51 | """
52 | string = a.lower()
53 | letter = b.lower()
54 |
55 | count = string.count(letter)
56 | return(f"The letter '{letter}' appears {count} times in the string.")
57 |
--------------------------------------------------------------------------------
/src/utils.py:
--------------------------------------------------------------------------------
1 | import inspect
2 | from datetime import datetime
3 | import pprint
4 |
5 | def function_to_json(func) -> dict:
6 | # 定义 Python 类型到 JSON 数据类型的映射
7 | type_map = {
8 | str: "string", # 字符串类型映射为 JSON 的 "string"
9 | int: "integer", # 整型类型映射为 JSON 的 "integer"
10 | float: "number", # 浮点型映射为 JSON 的 "number"
11 | bool: "boolean", # 布尔型映射为 JSON 的 "boolean"
12 | list: "array", # 列表类型映射为 JSON 的 "array"
13 | dict: "object", # 字典类型映射为 JSON 的 "object"
14 | type(None): "null", # None 类型映射为 JSON 的 "null"
15 | }
16 |
17 | # 获取函数的签名信息
18 | try:
19 | signature = inspect.signature(func)
20 | except ValueError as e:
21 | # 如果获取签名失败,则抛出异常并显示具体的错误信息
22 | raise ValueError(
23 | f"无法获取函数 {func.__name__} 的签名: {str(e)}"
24 | )
25 |
26 | # 用于存储参数信息的字典
27 | parameters = {}
28 | for param in signature.parameters.values():
29 | # 尝试获取参数的类型,如果无法找到对应的类型则默认设置为 "string"
30 | try:
31 | param_type = type_map.get(param.annotation, "string")
32 | except KeyError as e:
33 | # 如果参数类型不在 type_map 中,抛出异常并显示具体错误信息
34 | raise KeyError(
35 | f"未知的类型注解 {param.annotation},参数名为 {param.name}: {str(e)}"
36 | )
37 | # 将参数名及其类型信息添加到参数字典中
38 | parameters[param.name] = {"type": param_type}
39 |
40 | # 获取函数中所有必需的参数(即没有默认值的参数)
41 | required = [
42 | param.name
43 | for param in signature.parameters.values()
44 | if param.default == inspect._empty
45 | ]
46 |
47 | # 返回包含函数描述信息的字典
48 | return {
49 | "type": "function",
50 | "function": {
51 | "name": func.__name__, # 函数的名称
52 | "description": func.__doc__ or "", # 函数的文档字符串(如果不存在则为空字符串)
53 | "parameters": {
54 | "type": "object",
55 | "properties": parameters, # 函数参数的类型描述
56 | "required": required, # 必须参数的列表
57 | },
58 | },
59 | }
60 |
61 |
--------------------------------------------------------------------------------