└── Credit_Card_Fraud_Detection.ipynb /Credit_Card_Fraud_Detection.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Credit Card Fraud Detection.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "authorship_tag": "ABX9TyOvXvWa08x2LlWfoGmI6x8T", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | }, 16 | "language_info": { 17 | "name": "python" 18 | } 19 | }, 20 | "cells": [ 21 | { 22 | "cell_type": "markdown", 23 | "metadata": { 24 | "id": "view-in-github", 25 | "colab_type": "text" 26 | }, 27 | "source": [ 28 | "\"Open" 29 | ] 30 | }, 31 | { 32 | "cell_type": "markdown", 33 | "metadata": { 34 | "id": "MhC-OrS7Cn48" 35 | }, 36 | "source": [ 37 | "Importing the Dependencies" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "metadata": { 43 | "id": "FK6vtiaB8T51" 44 | }, 45 | "source": [ 46 | "import numpy as np\n", 47 | "import pandas as pd\n", 48 | "from sklearn.model_selection import train_test_split\n", 49 | "from sklearn.linear_model import LogisticRegression\n", 50 | "from sklearn.metrics import accuracy_score" 51 | ], 52 | "execution_count": 1, 53 | "outputs": [] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "metadata": { 58 | "id": "L44gD2PlCptM" 59 | }, 60 | "source": [ 61 | "#loading the dataset to a Pandas DataFrame\n", 62 | "credit_card_data = pd.read_csv('/content/creditcard.csv')" 63 | ], 64 | "execution_count": 2, 65 | "outputs": [] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "metadata": { 70 | "colab": { 71 | "base_uri": "https://localhost:8080/", 72 | "height": 223 73 | }, 74 | "id": "hRrcaIP6Cv_0", 75 | "outputId": "5265fc7b-abf6-4c24-a66e-a896acb997a6" 76 | }, 77 | "source": [ 78 | "credit_card_data.head()" 79 | ], 80 | "execution_count": 3, 81 | "outputs": [ 82 | { 83 | "output_type": "execute_result", 84 | "data": { 85 | "text/html": [ 86 | "
\n", 87 | "\n", 100 | "\n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
00.0-1.359807-0.0727812.5363471.378155-0.3383210.4623880.2395990.0986980.3637870.090794-0.551600-0.617801-0.991390-0.3111691.468177-0.4704010.2079710.0257910.4039930.251412-0.0183070.277838-0.1104740.0669280.128539-0.1891150.133558-0.021053149.620
10.01.1918570.2661510.1664800.4481540.060018-0.082361-0.0788030.085102-0.255425-0.1669741.6127271.0652350.489095-0.1437720.6355580.463917-0.114805-0.183361-0.145783-0.069083-0.225775-0.6386720.101288-0.3398460.1671700.125895-0.0089830.0147242.690
21.0-1.358354-1.3401631.7732090.379780-0.5031981.8004990.7914610.247676-1.5146540.2076430.6245010.0660840.717293-0.1659462.345865-2.8900831.109969-0.121359-2.2618570.5249800.2479980.7716790.909412-0.689281-0.327642-0.139097-0.055353-0.059752378.660
31.0-0.966272-0.1852261.792993-0.863291-0.0103091.2472030.2376090.377436-1.387024-0.054952-0.2264870.1782280.507757-0.287924-0.631418-1.059647-0.6840931.965775-1.232622-0.208038-0.1083000.005274-0.190321-1.1755750.647376-0.2219290.0627230.061458123.500
42.0-1.1582330.8777371.5487180.403034-0.4071930.0959210.592941-0.2705330.8177390.753074-0.8228430.5381961.345852-1.1196700.175121-0.451449-0.237033-0.0381950.8034870.408542-0.0094310.798278-0.1374580.141267-0.2060100.5022920.2194220.21515369.990
\n", 310 | "
" 311 | ], 312 | "text/plain": [ 313 | " Time V1 V2 V3 ... V27 V28 Amount Class\n", 314 | "0 0.0 -1.359807 -0.072781 2.536347 ... 0.133558 -0.021053 149.62 0\n", 315 | "1 0.0 1.191857 0.266151 0.166480 ... -0.008983 0.014724 2.69 0\n", 316 | "2 1.0 -1.358354 -1.340163 1.773209 ... -0.055353 -0.059752 378.66 0\n", 317 | "3 1.0 -0.966272 -0.185226 1.792993 ... 0.062723 0.061458 123.50 0\n", 318 | "4 2.0 -1.158233 0.877737 1.548718 ... 0.219422 0.215153 69.99 0\n", 319 | "\n", 320 | "[5 rows x 31 columns]" 321 | ] 322 | }, 323 | "metadata": { 324 | "tags": [] 325 | }, 326 | "execution_count": 3 327 | } 328 | ] 329 | }, 330 | { 331 | "cell_type": "code", 332 | "metadata": { 333 | "colab": { 334 | "base_uri": "https://localhost:8080/", 335 | "height": 223 336 | }, 337 | "id": "0MaBF9kuCyk7", 338 | "outputId": "4bd74368-a078-4f14-db36-57d3e4d3a524" 339 | }, 340 | "source": [ 341 | "credit_card_data.tail()" 342 | ], 343 | "execution_count": 4, 344 | "outputs": [ 345 | { 346 | "output_type": "execute_result", 347 | "data": { 348 | "text/html": [ 349 | "
\n", 350 | "\n", 363 | "\n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
284802172786.0-11.88111810.071785-9.834783-2.066656-5.364473-2.606837-4.9182157.3053341.9144284.356170-1.5931052.711941-0.6892564.626942-0.9244591.1076411.9916910.510632-0.6829201.4758290.2134540.1118641.014480-0.5093481.4368070.2500340.9436510.8237310.770
284803172787.0-0.732789-0.0550802.035030-0.7385890.8682291.0584150.0243300.2948690.584800-0.975926-0.1501890.9158021.214756-0.6751431.164931-0.711757-0.025693-1.221179-1.5455560.0596160.2142050.9243840.012463-1.016226-0.606624-0.3952550.068472-0.05352724.790
284804172788.01.919565-0.301254-3.249640-0.5578282.6305153.031260-0.2968270.7084170.432454-0.4847820.4116140.063119-0.183699-0.5106021.3292840.1407160.3135020.395652-0.5772520.0013960.2320450.578229-0.0375010.6401340.265745-0.0873710.004455-0.02656167.880
284805172788.0-0.2404400.5304830.7025100.689799-0.3779610.623708-0.6861800.6791450.392087-0.399126-1.933849-0.962886-1.0420820.4496241.962563-0.6085770.5099281.1139812.8978490.1274340.2652450.800049-0.1632980.123205-0.5691590.5466680.1088210.10453310.000
284806172792.0-0.533413-0.1897330.703337-0.506271-0.012546-0.6496171.577006-0.4146500.486180-0.915427-1.040458-0.031513-0.188093-0.0843160.041333-0.302620-0.6603770.167430-0.2561170.3829480.2610570.6430780.3767770.008797-0.473649-0.818267-0.0024150.013649217.000
\n", 573 | "
" 574 | ], 575 | "text/plain": [ 576 | " Time V1 V2 ... V28 Amount Class\n", 577 | "284802 172786.0 -11.881118 10.071785 ... 0.823731 0.77 0\n", 578 | "284803 172787.0 -0.732789 -0.055080 ... -0.053527 24.79 0\n", 579 | "284804 172788.0 1.919565 -0.301254 ... -0.026561 67.88 0\n", 580 | "284805 172788.0 -0.240440 0.530483 ... 0.104533 10.00 0\n", 581 | "284806 172792.0 -0.533413 -0.189733 ... 0.013649 217.00 0\n", 582 | "\n", 583 | "[5 rows x 31 columns]" 584 | ] 585 | }, 586 | "metadata": { 587 | "tags": [] 588 | }, 589 | "execution_count": 4 590 | } 591 | ] 592 | }, 593 | { 594 | "cell_type": "code", 595 | "metadata": { 596 | "colab": { 597 | "base_uri": "https://localhost:8080/" 598 | }, 599 | "id": "H7bD0daoC0Jl", 600 | "outputId": "7546f901-1fb8-4f3f-c095-f64e096f1296" 601 | }, 602 | "source": [ 603 | "credit_card_data.info()" 604 | ], 605 | "execution_count": 5, 606 | "outputs": [ 607 | { 608 | "output_type": "stream", 609 | "text": [ 610 | "\n", 611 | "RangeIndex: 284807 entries, 0 to 284806\n", 612 | "Data columns (total 31 columns):\n", 613 | " # Column Non-Null Count Dtype \n", 614 | "--- ------ -------------- ----- \n", 615 | " 0 Time 284807 non-null float64\n", 616 | " 1 V1 284807 non-null float64\n", 617 | " 2 V2 284807 non-null float64\n", 618 | " 3 V3 284807 non-null float64\n", 619 | " 4 V4 284807 non-null float64\n", 620 | " 5 V5 284807 non-null float64\n", 621 | " 6 V6 284807 non-null float64\n", 622 | " 7 V7 284807 non-null float64\n", 623 | " 8 V8 284807 non-null float64\n", 624 | " 9 V9 284807 non-null float64\n", 625 | " 10 V10 284807 non-null float64\n", 626 | " 11 V11 284807 non-null float64\n", 627 | " 12 V12 284807 non-null float64\n", 628 | " 13 V13 284807 non-null float64\n", 629 | " 14 V14 284807 non-null float64\n", 630 | " 15 V15 284807 non-null float64\n", 631 | " 16 V16 284807 non-null float64\n", 632 | " 17 V17 284807 non-null float64\n", 633 | " 18 V18 284807 non-null float64\n", 634 | " 19 V19 284807 non-null float64\n", 635 | " 20 V20 284807 non-null float64\n", 636 | " 21 V21 284807 non-null float64\n", 637 | " 22 V22 284807 non-null float64\n", 638 | " 23 V23 284807 non-null float64\n", 639 | " 24 V24 284807 non-null float64\n", 640 | " 25 V25 284807 non-null float64\n", 641 | " 26 V26 284807 non-null float64\n", 642 | " 27 V27 284807 non-null float64\n", 643 | " 28 V28 284807 non-null float64\n", 644 | " 29 Amount 284807 non-null float64\n", 645 | " 30 Class 284807 non-null int64 \n", 646 | "dtypes: float64(30), int64(1)\n", 647 | "memory usage: 67.4 MB\n" 648 | ], 649 | "name": "stdout" 650 | } 651 | ] 652 | }, 653 | { 654 | "cell_type": "code", 655 | "metadata": { 656 | "colab": { 657 | "base_uri": "https://localhost:8080/" 658 | }, 659 | "id": "O57rEj5DC1uD", 660 | "outputId": "aff23b2f-6bb3-40dd-b029-709a44f0204a" 661 | }, 662 | "source": [ 663 | "#checking the number of missing values in each column\n", 664 | "credit_card_data.isnull().sum()" 665 | ], 666 | "execution_count": 6, 667 | "outputs": [ 668 | { 669 | "output_type": "execute_result", 670 | "data": { 671 | "text/plain": [ 672 | "Time 0\n", 673 | "V1 0\n", 674 | "V2 0\n", 675 | "V3 0\n", 676 | "V4 0\n", 677 | "V5 0\n", 678 | "V6 0\n", 679 | "V7 0\n", 680 | "V8 0\n", 681 | "V9 0\n", 682 | "V10 0\n", 683 | "V11 0\n", 684 | "V12 0\n", 685 | "V13 0\n", 686 | "V14 0\n", 687 | "V15 0\n", 688 | "V16 0\n", 689 | "V17 0\n", 690 | "V18 0\n", 691 | "V19 0\n", 692 | "V20 0\n", 693 | "V21 0\n", 694 | "V22 0\n", 695 | "V23 0\n", 696 | "V24 0\n", 697 | "V25 0\n", 698 | "V26 0\n", 699 | "V27 0\n", 700 | "V28 0\n", 701 | "Amount 0\n", 702 | "Class 0\n", 703 | "dtype: int64" 704 | ] 705 | }, 706 | "metadata": { 707 | "tags": [] 708 | }, 709 | "execution_count": 6 710 | } 711 | ] 712 | }, 713 | { 714 | "cell_type": "code", 715 | "metadata": { 716 | "colab": { 717 | "base_uri": "https://localhost:8080/" 718 | }, 719 | "id": "kHZ3xqtwC5Eo", 720 | "outputId": "3a427f5e-3f25-4005-de8d-28bc58f51a55" 721 | }, 722 | "source": [ 723 | "#distribution of legit transactions & fraudulent transactions\n", 724 | "credit_card_data['Class'].value_counts()" 725 | ], 726 | "execution_count": 7, 727 | "outputs": [ 728 | { 729 | "output_type": "execute_result", 730 | "data": { 731 | "text/plain": [ 732 | "0 284315\n", 733 | "1 492\n", 734 | "Name: Class, dtype: int64" 735 | ] 736 | }, 737 | "metadata": { 738 | "tags": [] 739 | }, 740 | "execution_count": 7 741 | } 742 | ] 743 | }, 744 | { 745 | "cell_type": "markdown", 746 | "metadata": { 747 | "id": "SIYpCTxxC_u7" 748 | }, 749 | "source": [ 750 | "This Dataset is Highly Unbalanced\n", 751 | "\n", 752 | "0 --> Normal Transaction\n", 753 | "1 --> Fraudulent Transaction" 754 | ] 755 | }, 756 | { 757 | "cell_type": "code", 758 | "metadata": { 759 | "id": "QfADx3mdC8c1" 760 | }, 761 | "source": [ 762 | "#separating the data for analysis\n", 763 | "legit = credit_card_data[credit_card_data.Class == 0]\n", 764 | "fraud = credit_card_data[credit_card_data.Class == 1]" 765 | ], 766 | "execution_count": 8, 767 | "outputs": [] 768 | }, 769 | { 770 | "cell_type": "code", 771 | "metadata": { 772 | "colab": { 773 | "base_uri": "https://localhost:8080/" 774 | }, 775 | "id": "OAYzlLtHDKoy", 776 | "outputId": "7fa72ac0-b00d-45a8-fbcf-3540052b05d1" 777 | }, 778 | "source": [ 779 | "print(legit.shape)\n", 780 | "print(fraud.shape)" 781 | ], 782 | "execution_count": 9, 783 | "outputs": [ 784 | { 785 | "output_type": "stream", 786 | "text": [ 787 | "(284315, 31)\n", 788 | "(492, 31)\n" 789 | ], 790 | "name": "stdout" 791 | } 792 | ] 793 | }, 794 | { 795 | "cell_type": "code", 796 | "metadata": { 797 | "colab": { 798 | "base_uri": "https://localhost:8080/" 799 | }, 800 | "id": "cir6ALxkDMIa", 801 | "outputId": "9bedb752-8856-4218-d997-798382491c25" 802 | }, 803 | "source": [ 804 | "#statistical measures of the data\n", 805 | "legit.Amount.describe()" 806 | ], 807 | "execution_count": 10, 808 | "outputs": [ 809 | { 810 | "output_type": "execute_result", 811 | "data": { 812 | "text/plain": [ 813 | "count 284315.000000\n", 814 | "mean 88.291022\n", 815 | "std 250.105092\n", 816 | "min 0.000000\n", 817 | "25% 5.650000\n", 818 | "50% 22.000000\n", 819 | "75% 77.050000\n", 820 | "max 25691.160000\n", 821 | "Name: Amount, dtype: float64" 822 | ] 823 | }, 824 | "metadata": { 825 | "tags": [] 826 | }, 827 | "execution_count": 10 828 | } 829 | ] 830 | }, 831 | { 832 | "cell_type": "code", 833 | "metadata": { 834 | "colab": { 835 | "base_uri": "https://localhost:8080/" 836 | }, 837 | "id": "rs1vrV2-DOor", 838 | "outputId": "3f029505-fd95-42ac-ec57-42e6a9b1093d" 839 | }, 840 | "source": [ 841 | "fraud.Amount.describe()" 842 | ], 843 | "execution_count": 11, 844 | "outputs": [ 845 | { 846 | "output_type": "execute_result", 847 | "data": { 848 | "text/plain": [ 849 | "count 492.000000\n", 850 | "mean 122.211321\n", 851 | "std 256.683288\n", 852 | "min 0.000000\n", 853 | "25% 1.000000\n", 854 | "50% 9.250000\n", 855 | "75% 105.890000\n", 856 | "max 2125.870000\n", 857 | "Name: Amount, dtype: float64" 858 | ] 859 | }, 860 | "metadata": { 861 | "tags": [] 862 | }, 863 | "execution_count": 11 864 | } 865 | ] 866 | }, 867 | { 868 | "cell_type": "code", 869 | "metadata": { 870 | "colab": { 871 | "base_uri": "https://localhost:8080/", 872 | "height": 162 873 | }, 874 | "id": "xQP2XYh-DQYc", 875 | "outputId": "bcc5d05b-001d-40e8-ad80-82b4a1630988" 876 | }, 877 | "source": [ 878 | "#compare the values for both transactions\n", 879 | "credit_card_data.groupby('Class').mean()" 880 | ], 881 | "execution_count": 12, 882 | "outputs": [ 883 | { 884 | "output_type": "execute_result", 885 | "data": { 886 | "text/html": [ 887 | "
\n", 888 | "\n", 901 | "\n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | " \n", 1020 | " \n", 1021 | " \n", 1022 | " \n", 1023 | " \n", 1024 | " \n", 1025 | " \n", 1026 | " \n", 1027 | " \n", 1028 | " \n", 1029 | " \n", 1030 | " \n", 1031 | " \n", 1032 | " \n", 1033 | " \n", 1034 | " \n", 1035 | " \n", 1036 | " \n", 1037 | " \n", 1038 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28Amount
Class
094838.2022580.008258-0.0062710.012171-0.0078600.0054530.0024190.009637-0.0009870.0044670.009824-0.0065760.0108320.0001890.0120640.0001610.0071640.0115350.003887-0.001178-0.000644-0.001235-0.0000240.0000700.000182-0.000072-0.000089-0.000295-0.00013188.291022
180746.806911-4.7719483.623778-7.0332814.542029-3.151225-1.397737-5.5687310.570636-2.581123-5.6768833.800173-6.259393-0.109334-6.971723-0.092929-4.139946-6.665836-2.2463080.6806590.3723190.7135880.014049-0.040308-0.1051300.0414490.0516480.1705750.075667122.211321
\n", 1039 | "
" 1040 | ], 1041 | "text/plain": [ 1042 | " Time V1 V2 ... V27 V28 Amount\n", 1043 | "Class ... \n", 1044 | "0 94838.202258 0.008258 -0.006271 ... -0.000295 -0.000131 88.291022\n", 1045 | "1 80746.806911 -4.771948 3.623778 ... 0.170575 0.075667 122.211321\n", 1046 | "\n", 1047 | "[2 rows x 30 columns]" 1048 | ] 1049 | }, 1050 | "metadata": { 1051 | "tags": [] 1052 | }, 1053 | "execution_count": 12 1054 | } 1055 | ] 1056 | }, 1057 | { 1058 | "cell_type": "markdown", 1059 | "metadata": { 1060 | "id": "TbUcihrEDVM0" 1061 | }, 1062 | "source": [ 1063 | "Under-Sampling:\n", 1064 | "\n", 1065 | "Build a sample dataset containing similar distribution of Normal Transactions and Fraudulent Transactions" 1066 | ] 1067 | }, 1068 | { 1069 | "cell_type": "markdown", 1070 | "metadata": { 1071 | "id": "0wqv0N1dDhTT" 1072 | }, 1073 | "source": [ 1074 | "Number of Fraudulent Transactions --> 492" 1075 | ] 1076 | }, 1077 | { 1078 | "cell_type": "code", 1079 | "metadata": { 1080 | "id": "kMhRAKtCDS94" 1081 | }, 1082 | "source": [ 1083 | "legit_sample = legit.sample(n=492)" 1084 | ], 1085 | "execution_count": 13, 1086 | "outputs": [] 1087 | }, 1088 | { 1089 | "cell_type": "markdown", 1090 | "metadata": { 1091 | "id": "2zLLgbr_DlEs" 1092 | }, 1093 | "source": [ 1094 | "Concatenating two DataFrames:" 1095 | ] 1096 | }, 1097 | { 1098 | "cell_type": "code", 1099 | "metadata": { 1100 | "id": "YGi0YqQWDjch" 1101 | }, 1102 | "source": [ 1103 | "new_dataset = pd.concat([legit_sample, fraud], axis=0)" 1104 | ], 1105 | "execution_count": 14, 1106 | "outputs": [] 1107 | }, 1108 | { 1109 | "cell_type": "code", 1110 | "metadata": { 1111 | "colab": { 1112 | "base_uri": "https://localhost:8080/", 1113 | "height": 223 1114 | }, 1115 | "id": "Lr0VHCwBDqs9", 1116 | "outputId": "6c2fb935-1570-4d04-8c57-dc62925ffa68" 1117 | }, 1118 | "source": [ 1119 | "new_dataset.head()" 1120 | ], 1121 | "execution_count": 15, 1122 | "outputs": [ 1123 | { 1124 | "output_type": "execute_result", 1125 | "data": { 1126 | "text/html": [ 1127 | "
\n", 1128 | "\n", 1141 | "\n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | " \n", 1175 | " \n", 1176 | " \n", 1177 | " \n", 1178 | " \n", 1179 | " \n", 1180 | " \n", 1181 | " \n", 1182 | " \n", 1183 | " \n", 1184 | " \n", 1185 | " \n", 1186 | " \n", 1187 | " \n", 1188 | " \n", 1189 | " \n", 1190 | " \n", 1191 | " \n", 1192 | " \n", 1193 | " \n", 1194 | " \n", 1195 | " \n", 1196 | " \n", 1197 | " \n", 1198 | " \n", 1199 | " \n", 1200 | " \n", 1201 | " \n", 1202 | " \n", 1203 | " \n", 1204 | " \n", 1205 | " \n", 1206 | " \n", 1207 | " \n", 1208 | " \n", 1209 | " \n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | " \n", 1270 | " \n", 1271 | " \n", 1272 | " \n", 1273 | " \n", 1274 | " \n", 1275 | " \n", 1276 | " \n", 1277 | " \n", 1278 | " \n", 1279 | " \n", 1280 | " \n", 1281 | " \n", 1282 | " \n", 1283 | " \n", 1284 | " \n", 1285 | " \n", 1286 | " \n", 1287 | " \n", 1288 | " \n", 1289 | " \n", 1290 | " \n", 1291 | " \n", 1292 | " \n", 1293 | " \n", 1294 | " \n", 1295 | " \n", 1296 | " \n", 1297 | " \n", 1298 | " \n", 1299 | " \n", 1300 | " \n", 1301 | " \n", 1302 | " \n", 1303 | " \n", 1304 | " \n", 1305 | " \n", 1306 | " \n", 1307 | " \n", 1308 | " \n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | " \n", 1315 | " \n", 1316 | " \n", 1317 | " \n", 1318 | " \n", 1319 | " \n", 1320 | " \n", 1321 | " \n", 1322 | " \n", 1323 | " \n", 1324 | " \n", 1325 | " \n", 1326 | " \n", 1327 | " \n", 1328 | " \n", 1329 | " \n", 1330 | " \n", 1331 | " \n", 1332 | " \n", 1333 | " \n", 1334 | " \n", 1335 | " \n", 1336 | " \n", 1337 | " \n", 1338 | " \n", 1339 | " \n", 1340 | " \n", 1341 | " \n", 1342 | " \n", 1343 | " \n", 1344 | " \n", 1345 | " \n", 1346 | " \n", 1347 | " \n", 1348 | " \n", 1349 | " \n", 1350 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
13528381184.0-1.692426-1.4266322.048187-0.1036340.598736-1.8250260.131808-0.271939-1.3665250.321437-0.314836-0.2773550.019219-0.0455760.312121-1.389728-0.3622871.182754-1.8867690.172073-0.165291-0.5851070.5032700.8269480.039087-0.682189-0.146479-0.060679139.890
5173745096.01.2545230.426688-0.6594890.7444711.0441570.4346400.444509-0.048640-0.6904910.1874450.5274361.1378361.2974850.4757040.1671120.072254-0.859530-0.0287220.123554-0.0290200.0144570.123478-0.321232-1.3024100.958048-0.1889100.006375-0.01133616.440
207351136634.01.578821-1.037392-0.7009040.442737-0.871919-0.767364-0.020586-0.1814631.334681-0.364394-0.9154100.579226-0.1707890.0048500.022921-0.126676-0.207565-0.6374800.2898130.204680-0.276729-1.1005090.2578010.012313-0.580246-0.438032-0.041466-0.001984225.960
10415768934.0-0.7238081.2777810.9078960.123921-0.311881-1.0659930.3081440.387264-0.478737-0.721150-0.457502-0.209393-0.364916-0.0010980.9177570.5326730.207107-0.028286-0.092203-0.004759-0.220555-0.7510670.0583200.312616-0.1527130.0758100.1158300.0268518.990
180887124736.00.990966-2.717490-3.215571-0.290394-0.665947-1.6380201.248703-0.755283-0.8264720.680349-1.059235-1.720531-1.9962730.994732-0.1850290.1995650.721654-1.4489930.5020271.1619250.8638550.964671-0.800307-0.0004610.4438690.242508-0.2326390.018657685.100
\n", 1351 | "
" 1352 | ], 1353 | "text/plain": [ 1354 | " Time V1 V2 ... V28 Amount Class\n", 1355 | "135283 81184.0 -1.692426 -1.426632 ... -0.060679 139.89 0\n", 1356 | "51737 45096.0 1.254523 0.426688 ... -0.011336 16.44 0\n", 1357 | "207351 136634.0 1.578821 -1.037392 ... -0.001984 225.96 0\n", 1358 | "104157 68934.0 -0.723808 1.277781 ... 0.026851 8.99 0\n", 1359 | "180887 124736.0 0.990966 -2.717490 ... 0.018657 685.10 0\n", 1360 | "\n", 1361 | "[5 rows x 31 columns]" 1362 | ] 1363 | }, 1364 | "metadata": { 1365 | "tags": [] 1366 | }, 1367 | "execution_count": 15 1368 | } 1369 | ] 1370 | }, 1371 | { 1372 | "cell_type": "code", 1373 | "metadata": { 1374 | "colab": { 1375 | "base_uri": "https://localhost:8080/", 1376 | "height": 223 1377 | }, 1378 | "id": "YdvEWT33DsCC", 1379 | "outputId": "6b6c7624-219a-40d7-9cdb-241754493097" 1380 | }, 1381 | "source": [ 1382 | "new_dataset.tail()" 1383 | ], 1384 | "execution_count": 16, 1385 | "outputs": [ 1386 | { 1387 | "output_type": "execute_result", 1388 | "data": { 1389 | "text/html": [ 1390 | "
\n", 1391 | "\n", 1404 | "\n", 1405 | " \n", 1406 | " \n", 1407 | " \n", 1408 | " \n", 1409 | " \n", 1410 | " \n", 1411 | " \n", 1412 | " \n", 1413 | " \n", 1414 | " \n", 1415 | " \n", 1416 | " \n", 1417 | " \n", 1418 | " \n", 1419 | " \n", 1420 | " \n", 1421 | " \n", 1422 | " \n", 1423 | " \n", 1424 | " \n", 1425 | " \n", 1426 | " \n", 1427 | " \n", 1428 | " \n", 1429 | " \n", 1430 | " \n", 1431 | " \n", 1432 | " \n", 1433 | " \n", 1434 | " \n", 1435 | " \n", 1436 | " \n", 1437 | " \n", 1438 | " \n", 1439 | " \n", 1440 | " \n", 1441 | " \n", 1442 | " \n", 1443 | " \n", 1444 | " \n", 1445 | " \n", 1446 | " \n", 1447 | " \n", 1448 | " \n", 1449 | " \n", 1450 | " \n", 1451 | " \n", 1452 | " \n", 1453 | " \n", 1454 | " \n", 1455 | " \n", 1456 | " \n", 1457 | " \n", 1458 | " \n", 1459 | " \n", 1460 | " \n", 1461 | " \n", 1462 | " \n", 1463 | " \n", 1464 | " \n", 1465 | " \n", 1466 | " \n", 1467 | " \n", 1468 | " \n", 1469 | " \n", 1470 | " \n", 1471 | " \n", 1472 | " \n", 1473 | " \n", 1474 | " \n", 1475 | " \n", 1476 | " \n", 1477 | " \n", 1478 | " \n", 1479 | " \n", 1480 | " \n", 1481 | " \n", 1482 | " \n", 1483 | " \n", 1484 | " \n", 1485 | " \n", 1486 | " \n", 1487 | " \n", 1488 | " \n", 1489 | " \n", 1490 | " \n", 1491 | " \n", 1492 | " \n", 1493 | " \n", 1494 | " \n", 1495 | " \n", 1496 | " \n", 1497 | " \n", 1498 | " \n", 1499 | " \n", 1500 | " \n", 1501 | " \n", 1502 | " \n", 1503 | " \n", 1504 | " \n", 1505 | " \n", 1506 | " \n", 1507 | " \n", 1508 | " \n", 1509 | " \n", 1510 | " \n", 1511 | " \n", 1512 | " \n", 1513 | " \n", 1514 | " \n", 1515 | " \n", 1516 | " \n", 1517 | " \n", 1518 | " \n", 1519 | " \n", 1520 | " \n", 1521 | " \n", 1522 | " \n", 1523 | " \n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | " \n", 1532 | " \n", 1533 | " \n", 1534 | " \n", 1535 | " \n", 1536 | " \n", 1537 | " \n", 1538 | " \n", 1539 | " \n", 1540 | " \n", 1541 | " \n", 1542 | " \n", 1543 | " \n", 1544 | " \n", 1545 | " \n", 1546 | " \n", 1547 | " \n", 1548 | " \n", 1549 | " \n", 1550 | " \n", 1551 | " \n", 1552 | " \n", 1553 | " \n", 1554 | " \n", 1555 | " \n", 1556 | " \n", 1557 | " \n", 1558 | " \n", 1559 | " \n", 1560 | " \n", 1561 | " \n", 1562 | " \n", 1563 | " \n", 1564 | " \n", 1565 | " \n", 1566 | " \n", 1567 | " \n", 1568 | " \n", 1569 | " \n", 1570 | " \n", 1571 | " \n", 1572 | " \n", 1573 | " \n", 1574 | " \n", 1575 | " \n", 1576 | " \n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | " \n", 1581 | " \n", 1582 | " \n", 1583 | " \n", 1584 | " \n", 1585 | " \n", 1586 | " \n", 1587 | " \n", 1588 | " \n", 1589 | " \n", 1590 | " \n", 1591 | " \n", 1592 | " \n", 1593 | " \n", 1594 | " \n", 1595 | " \n", 1596 | " \n", 1597 | " \n", 1598 | " \n", 1599 | " \n", 1600 | " \n", 1601 | " \n", 1602 | " \n", 1603 | " \n", 1604 | " \n", 1605 | " \n", 1606 | " \n", 1607 | " \n", 1608 | " \n", 1609 | " \n", 1610 | " \n", 1611 | " \n", 1612 | " \n", 1613 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28AmountClass
279863169142.0-1.9278831.125653-4.5183311.749293-1.566487-2.010494-0.8828500.697211-2.064945-5.5877942.115795-5.417424-1.235123-6.6651770.401701-2.897825-4.570529-1.3151470.3911671.2529670.778584-0.3191890.639419-0.2948850.5375030.7883950.2926800.147968390.001
280143169347.01.3785591.289381-5.0042471.4118500.442581-1.326536-1.4131700.248525-1.127396-3.2321532.858466-3.096915-0.792532-5.210141-0.613803-2.155297-3.267116-0.6885050.7376570.2261380.3706120.028234-0.145640-0.0810490.5218750.7394670.3891520.1866370.761
280149169351.0-0.6761431.126366-2.2137000.468308-1.120541-0.003346-2.2347391.210158-0.652250-3.4638911.794969-2.775022-0.418950-4.057162-0.712616-1.603015-5.035326-0.5070000.2662720.2479680.7518260.8341080.1909440.032070-0.7396950.4711110.3851070.19436177.891
281144169966.0-3.1138320.585864-5.3997301.817092-0.840618-2.943548-2.2080021.058733-1.632333-5.2459841.933520-5.030465-1.127455-6.4166280.141237-2.549498-4.614717-1.478138-0.0354800.3062710.583276-0.269209-0.456108-0.183659-0.3281680.6061160.884876-0.253700245.001
281674170348.01.9919760.158476-2.5834410.4086701.151147-0.0966950.223050-0.0683840.577829-0.8887220.4911400.7289030.380428-1.948883-0.8324980.5194360.9035621.1973150.593509-0.017652-0.164350-0.295135-0.072173-0.4502610.313267-0.2896170.002988-0.01530942.531
\n", 1614 | "
" 1615 | ], 1616 | "text/plain": [ 1617 | " Time V1 V2 ... V28 Amount Class\n", 1618 | "279863 169142.0 -1.927883 1.125653 ... 0.147968 390.00 1\n", 1619 | "280143 169347.0 1.378559 1.289381 ... 0.186637 0.76 1\n", 1620 | "280149 169351.0 -0.676143 1.126366 ... 0.194361 77.89 1\n", 1621 | "281144 169966.0 -3.113832 0.585864 ... -0.253700 245.00 1\n", 1622 | "281674 170348.0 1.991976 0.158476 ... -0.015309 42.53 1\n", 1623 | "\n", 1624 | "[5 rows x 31 columns]" 1625 | ] 1626 | }, 1627 | "metadata": { 1628 | "tags": [] 1629 | }, 1630 | "execution_count": 16 1631 | } 1632 | ] 1633 | }, 1634 | { 1635 | "cell_type": "code", 1636 | "metadata": { 1637 | "colab": { 1638 | "base_uri": "https://localhost:8080/" 1639 | }, 1640 | "id": "SJjyXuTHDuQr", 1641 | "outputId": "768d1286-ce01-413b-f297-4cb7c133b41c" 1642 | }, 1643 | "source": [ 1644 | "new_dataset['Class'].value_counts()" 1645 | ], 1646 | "execution_count": 17, 1647 | "outputs": [ 1648 | { 1649 | "output_type": "execute_result", 1650 | "data": { 1651 | "text/plain": [ 1652 | "1 492\n", 1653 | "0 492\n", 1654 | "Name: Class, dtype: int64" 1655 | ] 1656 | }, 1657 | "metadata": { 1658 | "tags": [] 1659 | }, 1660 | "execution_count": 17 1661 | } 1662 | ] 1663 | }, 1664 | { 1665 | "cell_type": "code", 1666 | "metadata": { 1667 | "colab": { 1668 | "base_uri": "https://localhost:8080/", 1669 | "height": 162 1670 | }, 1671 | "id": "Lchuy7YfDv3R", 1672 | "outputId": "40478540-d57c-4ee0-dc6f-32740b8a8890" 1673 | }, 1674 | "source": [ 1675 | "new_dataset.groupby('Class').mean()" 1676 | ], 1677 | "execution_count": 18, 1678 | "outputs": [ 1679 | { 1680 | "output_type": "execute_result", 1681 | "data": { 1682 | "text/html": [ 1683 | "
\n", 1684 | "\n", 1697 | "\n", 1698 | " \n", 1699 | " \n", 1700 | " \n", 1701 | " \n", 1702 | " \n", 1703 | " \n", 1704 | " \n", 1705 | " \n", 1706 | " \n", 1707 | " \n", 1708 | " \n", 1709 | " \n", 1710 | " \n", 1711 | " \n", 1712 | " \n", 1713 | " \n", 1714 | " \n", 1715 | " \n", 1716 | " \n", 1717 | " \n", 1718 | " \n", 1719 | " \n", 1720 | " \n", 1721 | " \n", 1722 | " \n", 1723 | " \n", 1724 | " \n", 1725 | " \n", 1726 | " \n", 1727 | " \n", 1728 | " \n", 1729 | " \n", 1730 | " \n", 1731 | " \n", 1732 | " \n", 1733 | " \n", 1734 | " \n", 1735 | " \n", 1736 | " \n", 1737 | " \n", 1738 | " \n", 1739 | " \n", 1740 | " \n", 1741 | " \n", 1742 | " \n", 1743 | " \n", 1744 | " \n", 1745 | " \n", 1746 | " \n", 1747 | " \n", 1748 | " \n", 1749 | " \n", 1750 | " \n", 1751 | " \n", 1752 | " \n", 1753 | " \n", 1754 | " \n", 1755 | " \n", 1756 | " \n", 1757 | " \n", 1758 | " \n", 1759 | " \n", 1760 | " \n", 1761 | " \n", 1762 | " \n", 1763 | " \n", 1764 | " \n", 1765 | " \n", 1766 | " \n", 1767 | " \n", 1768 | " \n", 1769 | " \n", 1770 | " \n", 1771 | " \n", 1772 | " \n", 1773 | " \n", 1774 | " \n", 1775 | " \n", 1776 | " \n", 1777 | " \n", 1778 | " \n", 1779 | " \n", 1780 | " \n", 1781 | " \n", 1782 | " \n", 1783 | " \n", 1784 | " \n", 1785 | " \n", 1786 | " \n", 1787 | " \n", 1788 | " \n", 1789 | " \n", 1790 | " \n", 1791 | " \n", 1792 | " \n", 1793 | " \n", 1794 | " \n", 1795 | " \n", 1796 | " \n", 1797 | " \n", 1798 | " \n", 1799 | " \n", 1800 | " \n", 1801 | " \n", 1802 | " \n", 1803 | " \n", 1804 | " \n", 1805 | " \n", 1806 | " \n", 1807 | " \n", 1808 | " \n", 1809 | " \n", 1810 | " \n", 1811 | " \n", 1812 | " \n", 1813 | " \n", 1814 | " \n", 1815 | " \n", 1816 | " \n", 1817 | " \n", 1818 | " \n", 1819 | " \n", 1820 | " \n", 1821 | " \n", 1822 | " \n", 1823 | " \n", 1824 | " \n", 1825 | " \n", 1826 | " \n", 1827 | " \n", 1828 | " \n", 1829 | " \n", 1830 | " \n", 1831 | " \n", 1832 | " \n", 1833 | " \n", 1834 | "
TimeV1V2V3V4V5V6V7V8V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27V28Amount
Class
091689.526423-0.004396-0.0727720.078174-0.056607-0.0361430.0022960.0156720.0362200.018225-0.0631940.0081750.052299-0.0091250.007462-0.023142-0.0027520.037757-0.050499-0.0292560.0578270.0073460.011248-0.006803-0.006657-0.0059470.0178900.0008400.029621104.587378
180746.806911-4.7719483.623778-7.0332814.542029-3.151225-1.397737-5.5687310.570636-2.581123-5.6768833.800173-6.259393-0.109334-6.971723-0.092929-4.139946-6.665836-2.2463080.6806590.3723190.7135880.014049-0.040308-0.1051300.0414490.0516480.1705750.075667122.211321
\n", 1835 | "
" 1836 | ], 1837 | "text/plain": [ 1838 | " Time V1 V2 ... V27 V28 Amount\n", 1839 | "Class ... \n", 1840 | "0 91689.526423 -0.004396 -0.072772 ... 0.000840 0.029621 104.587378\n", 1841 | "1 80746.806911 -4.771948 3.623778 ... 0.170575 0.075667 122.211321\n", 1842 | "\n", 1843 | "[2 rows x 30 columns]" 1844 | ] 1845 | }, 1846 | "metadata": { 1847 | "tags": [] 1848 | }, 1849 | "execution_count": 18 1850 | } 1851 | ] 1852 | }, 1853 | { 1854 | "cell_type": "markdown", 1855 | "metadata": { 1856 | "id": "jVdxPud4DzPe" 1857 | }, 1858 | "source": [ 1859 | "Splitting the data into Features and Targets" 1860 | ] 1861 | }, 1862 | { 1863 | "cell_type": "code", 1864 | "metadata": { 1865 | "id": "uF10Oe5RDxlX" 1866 | }, 1867 | "source": [ 1868 | "X = new_dataset.drop(columns='Class', axis=1)\n", 1869 | "Y = new_dataset['Class']" 1870 | ], 1871 | "execution_count": 19, 1872 | "outputs": [] 1873 | }, 1874 | { 1875 | "cell_type": "code", 1876 | "metadata": { 1877 | "colab": { 1878 | "base_uri": "https://localhost:8080/" 1879 | }, 1880 | "id": "rj3oUiHMD10n", 1881 | "outputId": "fe729953-b3c0-4c96-f475-1db4d2677b0d" 1882 | }, 1883 | "source": [ 1884 | "print(X)" 1885 | ], 1886 | "execution_count": 20, 1887 | "outputs": [ 1888 | { 1889 | "output_type": "stream", 1890 | "text": [ 1891 | " Time V1 V2 ... V27 V28 Amount\n", 1892 | "135283 81184.0 -1.692426 -1.426632 ... -0.146479 -0.060679 139.89\n", 1893 | "51737 45096.0 1.254523 0.426688 ... 0.006375 -0.011336 16.44\n", 1894 | "207351 136634.0 1.578821 -1.037392 ... -0.041466 -0.001984 225.96\n", 1895 | "104157 68934.0 -0.723808 1.277781 ... 0.115830 0.026851 8.99\n", 1896 | "180887 124736.0 0.990966 -2.717490 ... -0.232639 0.018657 685.10\n", 1897 | "... ... ... ... ... ... ... ...\n", 1898 | "279863 169142.0 -1.927883 1.125653 ... 0.292680 0.147968 390.00\n", 1899 | "280143 169347.0 1.378559 1.289381 ... 0.389152 0.186637 0.76\n", 1900 | "280149 169351.0 -0.676143 1.126366 ... 0.385107 0.194361 77.89\n", 1901 | "281144 169966.0 -3.113832 0.585864 ... 0.884876 -0.253700 245.00\n", 1902 | "281674 170348.0 1.991976 0.158476 ... 0.002988 -0.015309 42.53\n", 1903 | "\n", 1904 | "[984 rows x 30 columns]\n" 1905 | ], 1906 | "name": "stdout" 1907 | } 1908 | ] 1909 | }, 1910 | { 1911 | "cell_type": "code", 1912 | "metadata": { 1913 | "colab": { 1914 | "base_uri": "https://localhost:8080/" 1915 | }, 1916 | "id": "m5GvzTNJD3eE", 1917 | "outputId": "ae12650f-76ef-4248-fb90-10bfd1dfe1d1" 1918 | }, 1919 | "source": [ 1920 | "print(Y)" 1921 | ], 1922 | "execution_count": 21, 1923 | "outputs": [ 1924 | { 1925 | "output_type": "stream", 1926 | "text": [ 1927 | "135283 0\n", 1928 | "51737 0\n", 1929 | "207351 0\n", 1930 | "104157 0\n", 1931 | "180887 0\n", 1932 | " ..\n", 1933 | "279863 1\n", 1934 | "280143 1\n", 1935 | "280149 1\n", 1936 | "281144 1\n", 1937 | "281674 1\n", 1938 | "Name: Class, Length: 984, dtype: int64\n" 1939 | ], 1940 | "name": "stdout" 1941 | } 1942 | ] 1943 | }, 1944 | { 1945 | "cell_type": "markdown", 1946 | "metadata": { 1947 | "id": "L3nrBewjD_Pb" 1948 | }, 1949 | "source": [ 1950 | "Train and Testing Split" 1951 | ] 1952 | }, 1953 | { 1954 | "cell_type": "code", 1955 | "metadata": { 1956 | "id": "UDvZRJoyD4xQ" 1957 | }, 1958 | "source": [ 1959 | "X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)" 1960 | ], 1961 | "execution_count": 22, 1962 | "outputs": [] 1963 | }, 1964 | { 1965 | "cell_type": "code", 1966 | "metadata": { 1967 | "colab": { 1968 | "base_uri": "https://localhost:8080/" 1969 | }, 1970 | "id": "f0g6WjruEBJl", 1971 | "outputId": "be7e97cc-0c5d-43c8-ef3c-b336eccbd0ec" 1972 | }, 1973 | "source": [ 1974 | "print(X.shape, X_train.shape, X_test.shape)" 1975 | ], 1976 | "execution_count": 23, 1977 | "outputs": [ 1978 | { 1979 | "output_type": "stream", 1980 | "text": [ 1981 | "(984, 30) (787, 30) (197, 30)\n" 1982 | ], 1983 | "name": "stdout" 1984 | } 1985 | ] 1986 | }, 1987 | { 1988 | "cell_type": "markdown", 1989 | "metadata": { 1990 | "id": "_NumLl3qEEX9" 1991 | }, 1992 | "source": [ 1993 | "Logistic Regression Model Training" 1994 | ] 1995 | }, 1996 | { 1997 | "cell_type": "code", 1998 | "metadata": { 1999 | "id": "ASdVtR5fECNj" 2000 | }, 2001 | "source": [ 2002 | "model = LogisticRegression()" 2003 | ], 2004 | "execution_count": 24, 2005 | "outputs": [] 2006 | }, 2007 | { 2008 | "cell_type": "code", 2009 | "metadata": { 2010 | "colab": { 2011 | "base_uri": "https://localhost:8080/" 2012 | }, 2013 | "id": "poA9v678EGtW", 2014 | "outputId": "c41e0334-d44d-4705-9990-9b2beace01d9" 2015 | }, 2016 | "source": [ 2017 | "#training the Logistic Regression Model with Training Data\n", 2018 | "model.fit(X_train, Y_train)" 2019 | ], 2020 | "execution_count": 25, 2021 | "outputs": [ 2022 | { 2023 | "output_type": "execute_result", 2024 | "data": { 2025 | "text/plain": [ 2026 | "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", 2027 | " intercept_scaling=1, l1_ratio=None, max_iter=100,\n", 2028 | " multi_class='auto', n_jobs=None, penalty='l2',\n", 2029 | " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n", 2030 | " warm_start=False)" 2031 | ] 2032 | }, 2033 | "metadata": { 2034 | "tags": [] 2035 | }, 2036 | "execution_count": 25 2037 | } 2038 | ] 2039 | }, 2040 | { 2041 | "cell_type": "markdown", 2042 | "metadata": { 2043 | "id": "YilGdZ-qELK8" 2044 | }, 2045 | "source": [ 2046 | "Model Evaluation: Accuracy Score" 2047 | ] 2048 | }, 2049 | { 2050 | "cell_type": "code", 2051 | "metadata": { 2052 | "id": "W3yCpyPZEIqv" 2053 | }, 2054 | "source": [ 2055 | "#accuracy on training data\n", 2056 | "X_train_prediction = model.predict(X_train)\n", 2057 | "training_data_accuracy = accuracy_score(X_train_prediction, Y_train)" 2058 | ], 2059 | "execution_count": 26, 2060 | "outputs": [] 2061 | }, 2062 | { 2063 | "cell_type": "code", 2064 | "metadata": { 2065 | "colab": { 2066 | "base_uri": "https://localhost:8080/" 2067 | }, 2068 | "id": "NheDGoa7EPFA", 2069 | "outputId": "9970a7fb-c119-40af-a850-befa902c709e" 2070 | }, 2071 | "source": [ 2072 | "print('Accuracy on Training Data : ', training_data_accuracy)" 2073 | ], 2074 | "execution_count": 27, 2075 | "outputs": [ 2076 | { 2077 | "output_type": "stream", 2078 | "text": [ 2079 | "Accuracy on Training Data : 0.9364675984752223\n" 2080 | ], 2081 | "name": "stdout" 2082 | } 2083 | ] 2084 | }, 2085 | { 2086 | "cell_type": "code", 2087 | "metadata": { 2088 | "id": "eUXUuaE5ERM2" 2089 | }, 2090 | "source": [ 2091 | "#accuracy on test data\n", 2092 | "X_test_prediction = model.predict(X_test)\n", 2093 | "test_data_accuracy = accuracy_score(X_test_prediction, Y_test)" 2094 | ], 2095 | "execution_count": 28, 2096 | "outputs": [] 2097 | }, 2098 | { 2099 | "cell_type": "code", 2100 | "metadata": { 2101 | "colab": { 2102 | "base_uri": "https://localhost:8080/" 2103 | }, 2104 | "id": "CYtrUlRMEUjM", 2105 | "outputId": "3b1b4299-394e-4538-d39b-a88e4a88f70c" 2106 | }, 2107 | "source": [ 2108 | "print('Accuracy score on Test Data : ', test_data_accuracy)" 2109 | ], 2110 | "execution_count": 29, 2111 | "outputs": [ 2112 | { 2113 | "output_type": "stream", 2114 | "text": [ 2115 | "Accuracy score on Test Data : 0.9289340101522843\n" 2116 | ], 2117 | "name": "stdout" 2118 | } 2119 | ] 2120 | }, 2121 | { 2122 | "cell_type": "code", 2123 | "metadata": { 2124 | "id": "QajzXv5GEWmj" 2125 | }, 2126 | "source": [ 2127 | "" 2128 | ], 2129 | "execution_count": null, 2130 | "outputs": [] 2131 | } 2132 | ] 2133 | } --------------------------------------------------------------------------------