├── models
├── __init__.py
├── DiffAug.py
├── VITGen.py
├── QEM.py
├── VIT_old.py
├── PSM.py
├── CNNDis.py
├── VIT.py
└── ops.py
├── util
├── __init__.py
├── data_prefetcher.py
├── inception.py
└── misc.py
├── assets
└── demo.jpg
├── losses
├── reconstruct.py
├── __init__.py
└── perceptual.py
├── datasets.py
├── evaluate.py
├── README.md
├── main.py
├── engine.py
└── LICENSE
/models/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/util/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/assets/demo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Kaiseem/QueryOTR/HEAD/assets/demo.jpg
--------------------------------------------------------------------------------
/losses/reconstruct.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from einops import rearrange
4 |
5 | class ReconLoss(nn.Module):
6 | def __init__(self,image_size=192,crop_width=32,loss_type='mse'):
7 | super(ReconLoss, self).__init__()
8 | assert loss_type in ['l1','mse']
9 | mask = torch.ones((image_size, image_size))
10 | mask[crop_width:-crop_width, crop_width:-crop_width] = 0
11 | self.mask=mask.view(-1).long().cuda()
12 | self.outer_index=self.mask==1
13 | if loss_type=='l1':
14 | self.loss=nn.L1Loss()
15 | else:
16 | self.loss=nn.MSELoss()
17 |
18 | def forward(self,input_fake, input_real):
19 | input_fake = rearrange(input_fake, 'b c w h -> b (w h) c')[:, self.outer_index]
20 | input_real = rearrange(input_real, 'b c w h -> b (w h) c')[:, self.outer_index]
21 | return self.loss(input_fake,input_real)
22 |
23 |
--------------------------------------------------------------------------------
/util/data_prefetcher.py:
--------------------------------------------------------------------------------
1 | import torch
2 |
3 | class data_prefetcher():
4 | def __init__(self, loader, device, prefetch=True):
5 | self.loader = iter(loader)
6 | self.prefetch = prefetch
7 | self.device = device
8 | if prefetch:
9 | self.stream = torch.cuda.Stream()
10 | self.preload()
11 |
12 | def preload(self):
13 | try:
14 | self.next_samples = next(self.loader)
15 | except StopIteration:
16 | self.next_samples = None
17 | return
18 | with torch.cuda.stream(self.stream):
19 | for k, v in self.next_samples.items():
20 | self.next_samples[k]=v.to(self.device)
21 |
22 | def next(self):
23 | if self.prefetch:
24 | torch.cuda.current_stream().wait_stream(self.stream)
25 | samples = self.next_samples
26 | if samples is not None:
27 | for k, v in samples.items():
28 | v.record_stream(torch.cuda.current_stream())
29 | self.preload()
30 | else:
31 | try:
32 | samples = next(self.loader)
33 | for k, v in self.next_samples.items():
34 | self.next_samples[k] = v.to(self.device)
35 | except StopIteration:
36 | samples = None
37 | return samples
38 |
39 |
40 |
--------------------------------------------------------------------------------
/losses/__init__.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | from .reconstruct import ReconLoss
3 | from .perceptual import PerceptualLoss
4 | import torch
5 | from torchvision import transforms
6 | from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
7 |
8 | class SetCriterion(nn.Module):
9 | def __init__(self,opts):
10 | super().__init__()
11 | self.recon_loss=ReconLoss()
12 | self.perceptual_loss=PerceptualLoss()
13 | self.gen_weight_dict={'loss_g_recon':5, 'loss_g_adversarial':1, 'loss_g_perceptual':10}
14 | self.dis_weight_dict = {'loss_d_adversarial': 1}
15 | self.imagenet_normalize=transforms.Normalize( mean=torch.tensor(IMAGENET_DEFAULT_MEAN), std=torch.tensor(IMAGENET_DEFAULT_STD))
16 | self.patch_mean=opts.patch_mean
17 | self.patch_std=opts.patch_std
18 |
19 | def renorm(self,tensor):
20 | tensor = tensor * self.patch_std + self.patch_mean
21 | return self.imagenet_normalize(tensor)
22 |
23 | def get_dis_loss(self, input_fake, input_real, discriminator=None):
24 | assert discriminator is not None
25 | return {'loss_d_adversarial': discriminator.calc_dis_loss(input_fake.detach(),input_real)}
26 |
27 | def get_gen_loss(self, input_fake, input_real,discriminator=None, warmup=False):
28 | if not warmup:
29 | assert discriminator is not None
30 | g_loss_dict={'loss_g_adversarial': discriminator.calc_gen_loss(input_fake,input_real)}
31 | g_loss_dict['loss_g_recon']=self.recon_loss(input_fake,input_real)
32 | g_loss_dict['loss_g_perceptual']=self.perceptual_loss(self.renorm(input_fake),self.renorm(input_real))
33 | return g_loss_dict
34 | else:
35 | return {'loss_g_recon':self.recon_loss(input_fake,input_real)}
36 |
37 |
38 |
39 |
40 |
41 |
--------------------------------------------------------------------------------
/losses/perceptual.py:
--------------------------------------------------------------------------------
1 | from torchvision.models.vgg import vgg19
2 |
3 | import torch
4 | import torch.nn as nn
5 |
6 |
7 | class VGG19(torch.nn.Module):
8 | def __init__(self, requires_grad=False):
9 | super().__init__()
10 | vgg_pretrained_features = vgg19(pretrained=True).features
11 | self.slice1 = torch.nn.Sequential()
12 | self.slice2 = torch.nn.Sequential()
13 | self.slice3 = torch.nn.Sequential()
14 | self.slice4 = torch.nn.Sequential()
15 | self.slice5 = torch.nn.Sequential()
16 | for x in range(2):
17 | self.slice1.add_module(str(x), vgg_pretrained_features[x])
18 | for x in range(2, 7):
19 | self.slice2.add_module(str(x), vgg_pretrained_features[x])
20 | for x in range(7, 12):
21 | self.slice3.add_module(str(x), vgg_pretrained_features[x])
22 | for x in range(12, 21):
23 | self.slice4.add_module(str(x), vgg_pretrained_features[x])
24 | for x in range(21, 30):
25 | self.slice5.add_module(str(x), vgg_pretrained_features[x])
26 | if not requires_grad:
27 | for param in self.parameters():
28 | param.requires_grad = False
29 |
30 | def forward(self, X):
31 | h_relu1 = self.slice1(X)
32 | h_relu2 = self.slice2(h_relu1)
33 | h_relu3 = self.slice3(h_relu2)
34 | h_relu4 = self.slice4(h_relu3)
35 | h_relu5 = self.slice5(h_relu4)
36 | out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
37 | return out
38 |
39 |
40 | class PerceptualLoss(nn.Module):
41 | '''
42 | same as https://github.com/NVlabs/SPADE/blob/master/models/networks/loss.py
43 | '''
44 | def __init__(self):
45 | super(PerceptualLoss, self).__init__()
46 |
47 | self.vgg = VGG19().cuda()
48 | self.criterion = nn.L1Loss()
49 | self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
50 |
51 | def forward(self, x, y):
52 | x_vgg, y_vgg = self.vgg(x), self.vgg(y)
53 | loss = 0
54 | for i in range(len(x_vgg)):
55 | loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
56 | return loss
57 |
58 | # self.vgg_model= vgg16(pretrained=True)
59 | # self.vgg_model.features.__delitem__(23)#delete maxpool
60 | # self.vgg_model.features.__delitem__(-1)#delete maxpool
61 | # self.instance_norm=nn.InstanceNorm2d(512,affine=False)
62 | # self.vgg_model.eval()
63 | # for param in self.vgg_model.parameters():
64 | # param.requires_grad = False
65 | # self.cuda()
66 | #
67 | # def forward(self, input_fake, input_real):
68 | # return torch.mean((self.instance_norm(self.vgg_model.features(input_fake)) - self.instance_norm(self.vgg_model.features(input_real))) ** 2)
69 |
70 |
71 |
--------------------------------------------------------------------------------
/models/DiffAug.py:
--------------------------------------------------------------------------------
1 | # Differentiable Augmentation for Data-Efficient GAN Training
2 | # Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han
3 | # https://arxiv.org/pdf/2006.10738
4 |
5 | import torch
6 | import torch.nn.functional as F
7 |
8 | def DiffAugment(x, policy='', channels_first=True):
9 | if policy:
10 | if not channels_first:
11 | x = x.permute(0, 3, 1, 2)
12 | for p in policy.split(','):
13 | for f in AUGMENT_FNS[p]:
14 | x = f(x)
15 | if not channels_first:
16 | x = x.permute(0, 2, 3, 1)
17 | x = x.contiguous()
18 | return x
19 |
20 |
21 | def rand_brightness(x):
22 | x = x + (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) - 0.5)
23 | return x
24 |
25 |
26 | def rand_saturation(x):
27 | x_mean = x.mean(dim=1, keepdim=True)
28 | x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) * 2) + x_mean
29 | return x
30 |
31 |
32 | def rand_contrast(x):
33 | x_mean = x.mean(dim=[1, 2, 3], keepdim=True)
34 | x = (x - x_mean) * (torch.rand(x.size(0), 1, 1, 1, dtype=x.dtype, device=x.device) + 0.5) + x_mean
35 | return x
36 |
37 |
38 | def rand_translation(x, ratio=0.125):
39 | shift_x, shift_y = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
40 | translation_x = torch.randint(-shift_x, shift_x + 1, size=[x.size(0), 1, 1], device=x.device)
41 | translation_y = torch.randint(-shift_y, shift_y + 1, size=[x.size(0), 1, 1], device=x.device)
42 | grid_batch, grid_x, grid_y = torch.meshgrid(
43 | torch.arange(x.size(0), dtype=torch.long, device=x.device),
44 | torch.arange(x.size(2), dtype=torch.long, device=x.device),
45 | torch.arange(x.size(3), dtype=torch.long, device=x.device),
46 | )
47 | grid_x = torch.clamp(grid_x + translation_x + 1, 0, x.size(2) + 1)
48 | grid_y = torch.clamp(grid_y + translation_y + 1, 0, x.size(3) + 1)
49 | x_pad = F.pad(x, [1, 1, 1, 1, 0, 0, 0, 0])
50 | x = x_pad.permute(0, 2, 3, 1).contiguous()[grid_batch, grid_x, grid_y].permute(0, 3, 1, 2).contiguous()
51 | return x
52 |
53 |
54 | def rand_cutout(x, ratio=0.5):
55 | cutout_size = int(x.size(2) * ratio + 0.5), int(x.size(3) * ratio + 0.5)
56 | offset_x = torch.randint(0, x.size(2) + (1 - cutout_size[0] % 2), size=[x.size(0), 1, 1], device=x.device)
57 | offset_y = torch.randint(0, x.size(3) + (1 - cutout_size[1] % 2), size=[x.size(0), 1, 1], device=x.device)
58 | grid_batch, grid_x, grid_y = torch.meshgrid(
59 | torch.arange(x.size(0), dtype=torch.long, device=x.device),
60 | torch.arange(cutout_size[0], dtype=torch.long, device=x.device),
61 | torch.arange(cutout_size[1], dtype=torch.long, device=x.device),
62 | )
63 | grid_x = torch.clamp(grid_x + offset_x - cutout_size[0] // 2, min=0, max=x.size(2) - 1)
64 | grid_y = torch.clamp(grid_y + offset_y - cutout_size[1] // 2, min=0, max=x.size(3) - 1)
65 | mask = torch.ones(x.size(0), x.size(2), x.size(3), dtype=x.dtype, device=x.device)
66 | mask[grid_batch, grid_x, grid_y] = 0
67 | x = x * mask.unsqueeze(1)
68 | return x
69 |
70 |
71 | AUGMENT_FNS = {
72 | 'color': [rand_brightness, rand_saturation, rand_contrast],
73 | 'translation': [rand_translation],
74 | 'cutout': [rand_cutout],
75 | }
--------------------------------------------------------------------------------
/datasets.py:
--------------------------------------------------------------------------------
1 |
2 | import os
3 | os.environ['KMP_DUPLICATE_LIB_OK']='True'
4 |
5 | from PIL import Image
6 | import torch.utils.data as data
7 | import torch
8 | from torchvision import transforms
9 | from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
10 |
11 |
12 | IMG_EXTENSIONS = [
13 | '.jpg', '.JPG', '.jpeg', '.JPEG',
14 | '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
15 | '.tif', '.TIF', '.tiff', '.TIFF','npy','mat'
16 | ]
17 | def is_image_file(filename):
18 | return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
19 |
20 | def make_dataset(dir, max_dataset_size=float("inf")):
21 | images = []
22 | assert os.path.isdir(dir), '%s is not a valid directory' % dir
23 | for root, _, fnames in sorted(os.walk(dir)):
24 | for fname in fnames:
25 | if is_image_file(fname):
26 | path = os.path.join(root, fname)
27 | images.append(path)
28 | return images[:min(max_dataset_size, len(images))]
29 | from copy import deepcopy
30 |
31 | class ImageDataset(data.Dataset):
32 | def __init__(self, opts):
33 | self.img_paths = sorted(make_dataset(opts.data_root))
34 | self.is_train=not opts.eval
35 | input_size=opts.input_size
36 | output_size=opts.output_size
37 | per_edge_pad=(output_size-input_size)//2
38 | normlize_target=opts.normlize_target
39 | patch_mean=opts.patch_mean
40 | patch_std=opts.patch_std
41 |
42 | if self.is_train:
43 | self.transform = transforms.Compose([
44 | transforms.RandomResizedCrop(output_size),
45 | transforms.RandomHorizontalFlip(),
46 | transforms.ToTensor(),
47 | ])
48 | else:
49 | self.transform = transforms.Compose([
50 | transforms.Resize((output_size, output_size)),
51 | transforms.ToTensor(),
52 | ])
53 |
54 | self.input_image_normalize=transforms.Normalize( mean=torch.tensor(IMAGENET_DEFAULT_MEAN), std=torch.tensor(IMAGENET_DEFAULT_STD))
55 | if normlize_target:
56 | self.output_patch_normalize=transforms.Normalize( mean=torch.tensor((patch_mean,patch_mean,patch_mean)), std=torch.tensor((patch_std,patch_std,patch_std)))
57 | else:
58 | self.output_patch_normalize=self.input_image_normalize
59 |
60 | self._mean=torch.tensor((patch_mean,patch_mean,patch_mean))
61 | self._std=torch.tensor((patch_std,patch_std,patch_std))
62 |
63 | self.mask=torch.zeros([1,output_size, output_size])
64 | self.mask[:,per_edge_pad:-per_edge_pad,per_edge_pad:-per_edge_pad]=1
65 |
66 | self.per_edge_pad=per_edge_pad
67 |
68 | def __getitem__(self, index):
69 | name= os.path.splitext(os.path.split(self.img_paths[index])[-1])[0]
70 | im=Image.open(self.img_paths[index]).convert('RGB')
71 | im=self.transform(im)
72 | input_img=self.input_image_normalize(deepcopy(im))[:,self.per_edge_pad:-self.per_edge_pad,self.per_edge_pad:-self.per_edge_pad]
73 |
74 | gt=self.output_patch_normalize(deepcopy(im))
75 | gt_inner=deepcopy(gt)*self.mask
76 | return {'input':input_img,'ground_truth':gt,'gt_inner':gt_inner,'name':name}
77 |
78 | def __len__(self):
79 | return len(self.img_paths)
80 |
--------------------------------------------------------------------------------
/util/inception.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.autograd import Variable
4 | from torch.nn import functional as F
5 | import torch.utils.data
6 |
7 | from torchvision.models.inception import inception_v3
8 |
9 | import numpy as np
10 | from scipy.stats import entropy
11 |
12 | def inception_score(imgs, cuda=True, batch_size=32, resize=False, splits=1):
13 | """Computes the inception score of the generated images imgs
14 | imgs -- Torch dataset of (3xHxW) numpy images normalized in the range [-1, 1]
15 | cuda -- whether or not to run on GPU
16 | batch_size -- batch size for feeding into Inception v3
17 | splits -- number of splits
18 | """
19 | N = len(imgs)
20 |
21 | assert batch_size > 0
22 | assert N > batch_size
23 |
24 | # Set up dtype
25 | if cuda:
26 | dtype = torch.cuda.FloatTensor
27 | else:
28 | if torch.cuda.is_available():
29 | print("WARNING: You have a CUDA device, so you should probably set cuda=True")
30 | dtype = torch.FloatTensor
31 |
32 | # Set up dataloader
33 | dataloader = torch.utils.data.DataLoader(imgs, batch_size=batch_size)
34 |
35 | # Load inception model
36 | inception_model = inception_v3(pretrained=True, transform_input=False).type(dtype)
37 | inception_model.eval();
38 | up = nn.Upsample(size=(299, 299), mode='bilinear').type(dtype)
39 | def get_pred(x):
40 | if resize:
41 | x = up(x)
42 | x = inception_model(x)
43 | return F.softmax(x).data.cpu().numpy()
44 |
45 | # Get predictions
46 | preds = np.zeros((N, 1000))
47 |
48 | for i, batch in enumerate(dataloader, 0):
49 | batch = batch.type(dtype)
50 | batchv = Variable(batch)
51 | batch_size_i = batch.size()[0]
52 |
53 | preds[i*batch_size:i*batch_size + batch_size_i] = get_pred(batchv)
54 |
55 | # Now compute the mean kl-div
56 | split_scores = []
57 |
58 | for k in range(splits):
59 | part = preds[k * (N // splits): (k+1) * (N // splits), :]
60 | py = np.mean(part, axis=0)
61 | scores = []
62 | for i in range(part.shape[0]):
63 | pyx = part[i, :]
64 | scores.append(entropy(pyx, py))
65 | split_scores.append(np.exp(np.mean(scores)))
66 |
67 | return np.mean(split_scores), np.std(split_scores)
68 |
69 | if __name__ == '__main__':
70 | class IgnoreLabelDataset(torch.utils.data.Dataset):
71 | def __init__(self, orig):
72 | self.orig = orig
73 |
74 | def __getitem__(self, index):
75 | return self.orig[index][0]
76 |
77 | def __len__(self):
78 | return len(self.orig)
79 |
80 | import torchvision.datasets as dset
81 | import torchvision.transforms as transforms
82 |
83 | cifar = dset.CIFAR10(root='data/', download=True,
84 | transform=transforms.Compose([
85 | transforms.Scale(32),
86 | transforms.ToTensor(),
87 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
88 | ])
89 | )
90 |
91 | IgnoreLabelDataset(cifar)
92 |
93 | print ("Calculating Inception Score...")
94 | print (inception_score(IgnoreLabelDataset(cifar), cuda=True, batch_size=32, resize=True, splits=10))
--------------------------------------------------------------------------------
/evaluate.py:
--------------------------------------------------------------------------------
1 | import os
2 | from einops import rearrange
3 | import matplotlib.pyplot as plt
4 | os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
5 | from torch.utils.data import Dataset
6 | from models.VITGen import TransGen
7 | from datasets import ImageDataset
8 | import argparse
9 | from util.inception import inception_score
10 | import numpy as np
11 | from PIL import Image
12 | import torch
13 | parser = argparse.ArgumentParser()
14 | parser.add_argument('--eval', default=True, type=bool)
15 | parser.add_argument('--batch_size', type=int, default=64)
16 | parser.add_argument("-r", "--resume", type=str)
17 | parser.add_argument('--input_size', type=int, default=128)
18 | parser.add_argument('--output_size', type=int, default=192)
19 | parser.add_argument('--dec_depth', type=int, default=4)
20 | parser.add_argument('--normlize_target', default=True, type=bool, help='normalized the target patch pixels')
21 | parser.add_argument('--patch_mean', type=float, default=0.5044838)
22 | parser.add_argument('--patch_std', type=float, default=0.1355051)
23 | parser.add_argument('--data_root', type=str, default='')
24 | parser.add_argument('--epoch', type=str, default=None)
25 | opts = parser.parse_args()
26 |
27 |
28 |
29 | def denorm_img(tensor):
30 | _mean = torch.tensor([opts.patch_mean, opts.patch_mean, opts.patch_mean]).unsqueeze(-1).unsqueeze(-1).unsqueeze(0)
31 | _std = torch.tensor([opts.patch_std, opts.patch_std, opts.patch_std]).unsqueeze(-1).unsqueeze(-1).unsqueeze(0)
32 | tensor = tensor * _std.cuda().expand_as(tensor) + _mean.cuda().expand_as(tensor)
33 | tensor = rearrange(tensor[0:1], 'b c w h -> b w h c').detach().cpu()
34 | tensor = np.clip(tensor[0].numpy(), 0, 1)
35 | return tensor
36 |
37 | if __name__=='__main__':
38 | gen = TransGen(opts=opts).cuda()
39 | logdir = opts.resume
40 | ckptdir = os.path.join(logdir, "checkpoints")
41 | if opts.epoch is not None:
42 | ckpt_name = os.path.join(ckptdir, f'{opts.epoch}.pth')
43 | else:
44 | ckpt_name = os.path.join(ckptdir, 'latest.pth')
45 | assert os.path.isfile(ckpt_name), f'check if existing checkpoint files {ckpt_name}'
46 | gtdir = os.path.join(logdir, "gt")
47 | generatedir = os.path.join(logdir, "generated")
48 | for d in [gtdir, generatedir]:
49 | os.makedirs(d, exist_ok=True)
50 | test_dataset = ImageDataset(opts)
51 | test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False, drop_last=False)
52 | state_path = os.path.join(ckpt_name)
53 | state_dict = torch.load(state_path)
54 | gen.load_state_dict(state_dict['gen'])
55 | gen.eval()
56 | with torch.no_grad():
57 | for batch_idx, test_data in enumerate(test_loader):
58 | for k in test_data.keys():
59 | if isinstance(test_data[k], torch.Tensor):
60 | test_data[k] = test_data[k].cuda()
61 | name = test_data['name']
62 | fake = gen(test_data)
63 | gt = test_data['ground_truth']
64 | for i in range(fake.size(0)):
65 | plt.imsave(os.path.join(gtdir, f'{name[i]}.png'), denorm_img(gt[i:i + 1]), vmin=0, vmax=1)
66 | plt.imsave(os.path.join(generatedir, f'{name[i]}.png'), denorm_img(fake[i:i + 1]), vmin=0, vmax=1)
67 |
68 | # FID socre https://github.com/mseitzer/pytorch-fid
69 | # inception score https://github.com/sbarratt/inception-score-pytorch
70 | os.system(f'python -m pytorch_fid {gtdir} {generatedir}')
71 | imgs = []
72 | for f in os.listdir(generatedir):
73 | im = np.array(Image.open(os.path.join(generatedir, f))).transpose(2, 0, 1).astype(np.float32)[:3]
74 | im /= 255
75 | im = im * 2 - 1
76 | imgs.append(im)
77 | imgs = np.stack(imgs, 0)
78 | imgs = torch.from_numpy(imgs).cuda()
79 | iscore = inception_score(imgs, cuda=True, batch_size=32, resize=True, splits=1)[0]
80 | print('IS score', iscore)
81 |
--------------------------------------------------------------------------------
/models/VITGen.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | from .ops import get_sinusoid_encoding_table, CorssAttnBlock
6 | from .VIT import *
7 | from .QEM import QueryExpansionModule
8 | from .PSM import PatchSmoothingModule
9 |
10 | class TransGen(nn.Module):
11 | def __init__(self,opts, enc_ckpt_path=None):
12 | super(TransGen, self).__init__()
13 | self.output_size=opts.output_size
14 | self.input_size=opts.input_size
15 | self.patch_size=16 # same as ViT-B
16 | hidden_num=768 # same as ViT-B
17 |
18 | # initialize the weight of decoder, psm and qem
19 | self.qem=QueryExpansionModule(hidden_num=hidden_num,input_size=self.input_size,outout_size=self.output_size,patch_size=self.patch_size)
20 | self.transformer_decoder=nn.ModuleList([
21 | CorssAttnBlock(
22 | dim=hidden_num, num_heads=12, mlp_ratio=4, qkv_bias=True, qk_scale=None,
23 | drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm,
24 | init_values=0., window_size= None)
25 | for _ in range(opts.dec_depth)])
26 | self.psm=PatchSmoothingModule(patch_size=16,out_chans=3,embed_dim=hidden_num)
27 | self.apply(self._init_weights)
28 |
29 | # initialize the weight of encoder using pretrain checkpoint
30 |
31 | self.transformer_encoder = vit_base_patch16(pretrained=True, img_size=224, init_ckpt=enc_ckpt_path)
32 | #vit_base_patch16(pretrain=True, init_ckpt=enc_ckpt_path, img_size=self.input_size)
33 |
34 | self.enc_image_size=224
35 |
36 | # initialize the weight of encoder using pretrain checkpoint
37 | self.pos_embed = get_sinusoid_encoding_table(12**2, hidden_num)
38 | self.inner_index, self.outer_index=self.get_index()
39 |
40 | def get_index(self):
41 | input_query_width=self.input_size//self.patch_size
42 | output_query_width=self.output_size//self.patch_size
43 | mask=torch.ones(size=[output_query_width,output_query_width]).long()
44 | pad_width=(output_query_width-input_query_width)//2
45 | mask[pad_width:-pad_width,pad_width:-pad_width] = 0
46 | mask=mask.view(-1)
47 | return mask==0,mask==1
48 |
49 | def _init_weights(self, m):
50 | if isinstance(m, nn.Linear):
51 | nn.init.xavier_uniform_(m.weight)
52 | if isinstance(m, nn.Linear) and m.bias is not None:
53 | nn.init.constant_(m.bias, 0)
54 | elif isinstance(m, nn.LayerNorm):
55 | nn.init.constant_(m.bias, 0)
56 | nn.init.constant_(m.weight, 1.0)
57 |
58 | def forward(self, samples):
59 | if type(samples) is not dict:
60 | samples={'input':samples, 'gt_inner':F.pad(samples,(32,32,32,32))}
61 | x = samples['input']
62 |
63 | gt_inner = samples['gt_inner']
64 |
65 | b,c,w,h=x.size()
66 |
67 | assert w==128 and h==128
68 | padded_x = F.pad(x, (48, 48, 48, 48), mode='reflect')
69 | vit_mask = torch.ones(size=(14, 14)).long()
70 | vit_mask[3:-3, 3:-3] = 0
71 |
72 | vit_mask = vit_mask.view(-1).expand(b, -1).contiguous().bool()
73 |
74 | src = self.transformer_encoder.forward_features(padded_x, vit_mask) # b n c
75 |
76 | query_embed=self.qem(src)
77 |
78 | full_pos=self.pos_embed.type_as(x).to(x.device).clone().detach().expand(x.size(0),-1,-1)
79 |
80 | tgt_outer=query_embed[:,self.outer_index,:]+full_pos[:,self.outer_index,:]
81 |
82 | for i,dec in enumerate(self.transformer_decoder):
83 | tgt_outer = dec(tgt_outer, src)
84 |
85 | tgt = torch.zeros_like(query_embed,dtype=torch.float32)
86 |
87 | tgt[:, self.outer_index] = tgt_outer
88 |
89 | fake=self.psm(tgt,gt_inner)
90 | return fake
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # QueryOTR
2 |
3 | ## Outpainting by Queries, ECCV 2022. [Paper](https://link.springer.com/chapter/10.1007/978-3-031-20050-2_10) [ArXiv](https://arxiv.org/abs/2207.05312)
4 |
5 | we propose a novel hybrid vision-transformer-based encoder-decoder framework, named Query Outpainting TRansformer (QueryOTR), for extrapolating visual context all-side around a given image. Patch-wise mode's global modeling capacity allows us to extrapolate images from the attention mechanism's query standpoint. A novel Query Expansion Module (QEM) is designed to integrate information from the predicted queries based on the encoder's output, hence accelerating the convergence of the pure transformer even with a relatively small dataset. To further enhance connectivity between each patch, the proposed Patch Smoothing Module (PSM) re-allocates and averages the overlapped regions, thus providing seamless predicted images. We experimentally show that QueryOTR could generate visually appealing results smoothly and realistically against the state-of-the-art image outpainting approaches.
6 |
7 |
8 |

9 |
10 |
11 | ## 1. Requirements
12 | PyTorch >= 1.10.1;
13 | python >= 3.7;
14 | CUDA >= 11.3;
15 | torchvision;
16 |
17 | NOTE: The code was tested to work well on Linux with torch 1.7, 1.9 and Win10 with torch 1.10.1. However, there is potential "Inplace Operation Error" bug if you use PyTorch < 1.10, which is quiet subtle and not fixed. If you found why the bug occur, pls let me know.
18 |
19 | ## News:
20 | \[2022/11/7\] We update the code. We found the [official MAE](https://github.com/facebookresearch/mae) code may degrade the performance by unkonwn reason (about 0.5-1 in terms of FID), and we go back to [unofficial MAE](https://github.com/pengzhiliang/MAE-pytorch). Meanwhile, we upload a trained checkpoints on Scenery [google drive](https://drive.google.com/drive/folders/1s_Qs6m314a5vwLzdQ58uKOveK6fZjgaB?usp=share_link) which can reach FID 20.38, IS 3.959. It worth noting that the result may change due to the randomness of the code, e.g., one of the input of QEM is noise.
21 |
22 |
23 | ## 2. Data preparation
24 |
25 | ### Scenery
26 | Scenery consists of about 6,000 images, and we randomly select 1,000 images for evaluation. The training and test dataset can be down [here](https://github.com/z-x-yang/NS-Outpainting)
27 |
28 | Meanwhile, we also provide the Scenery dataset that we have split here [baidu_pan](https://pan.baidu.com/s/1Zn5X3jfqr6x3ho705VMHZA?pwd=qotr).
29 |
30 | ### Building
31 | Building contains about 16,000 images in the training set and 1,500 images in the testing set, which can be found in [here](https://github.com/PengleiGao/UTransformer)
32 |
33 | ### WikiArt
34 | The WikiArt datasets can be downloaded [here](https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset). We perform a split manner of genres datasets, which contains 45,503 training images and 19,492 testing images
35 |
36 | ## 3. Training and evaluation
37 | Before you reimplement our results, you need to download the ViT pretrain checkpoint [here](https://drive.google.com/drive/folders/1ZVzOD-ZGPBNtJ4HtsR-8IIH7Cm40LiMW?usp=share_link), and then initialize the encoder weight.
38 |
39 |
40 | Training on your datasets, run:
41 | ```
42 | CUDA_VISIBLE_DEVICES= python main.py --name=EXPERIMENT_NAME --data_root=YOUR_TRAIN_PATH --patch_mean=YOUR_PATCH_MEAN --patch_std=YOUR_PATCH_STD
43 | ```
44 |
45 | Evaluate on your datasets, run:
46 | ```
47 | CUDA_VISIBLE_DEVICES= python evaluate.py --r=EXPERIMENT_NAME --data_root=YOUR_TEST_PATH --patch_mean=YOUR_PATCH_MEAN --patch_std=YOUR_PATCH_STD
48 | ```
49 |
50 |
51 |
52 |
53 | ## Acknowledgements
54 |
55 | Our codes are built upon MAE, [pytroch-fid](https://github.com/mseitzer/pytorch-fid) and [inception score](https://github.com/sbarratt/inception-score-pytorch)
56 |
57 | ## Citation
58 |
59 | ```
60 | @inproceedings{yao2022qotr,
61 | title={Outpainting by Queries},
62 | author={Yao, Kai and Gao, Penglei and Yang, Xi and Sun, Jie and Zhang, Rui and Huang, Kaizhu},
63 | booktitle={European Conference on Computer Vision},
64 | pages={153--169},
65 | year={2022},
66 | organization={Springer}
67 | }
68 | ```
69 |
--------------------------------------------------------------------------------
/models/QEM.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from torchvision.ops import DeformConv2d, deform_conv2d
4 |
5 |
6 | class DeformConv(DeformConv2d):
7 | def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=None):
8 | super(DeformConv, self).__init__(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
9 | stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
10 | channels_ = groups * 3 * self.kernel_size[0] * self.kernel_size[1]
11 | self.conv_offset_mask = nn.Conv2d(self.in_channels,
12 | channels_,
13 | kernel_size=self.kernel_size,
14 | stride=self.stride,
15 | padding=self.padding,
16 | bias=True)
17 | self.init_offset()
18 |
19 | def init_offset(self):
20 | self.conv_offset_mask.weight.data.zero_()
21 | self.conv_offset_mask.bias.data.zero_()
22 |
23 | def forward(self, input):
24 | out = self.conv_offset_mask(input)
25 | o1, o2, mask = torch.chunk(out, 3, dim=1)
26 | offset = torch.cat((o1, o2), dim=1)
27 | mask = torch.sigmoid(mask)
28 | return deform_conv2d(input, offset, self.weight, self.bias, stride=self.stride,
29 | padding=self.padding, dilation=self.dilation, mask=mask)
30 |
31 |
32 | class ResidualBlock(nn.Module):
33 | def __init__(self, planes, ):
34 | super(ResidualBlock, self).__init__()
35 | self.conv1 = nn.Conv2d(planes, planes, 3, 1, 1)
36 | self.conv2 = DeformConv(planes, planes, 3, 1, 1)
37 | self.norm1 = nn.InstanceNorm2d(planes, affine=True)
38 | self.norm2 = nn.InstanceNorm2d(planes, affine=True)
39 | self.act = nn.LeakyReLU(0.2, True)
40 |
41 | def forward(self, x):
42 | x_sc = x
43 | x = self.norm1(x)
44 | x = self.act(x)
45 | x = self.conv1(x)
46 | x = self.norm2(x)
47 | x = self.act(x)
48 | x = self.conv2(x)
49 | return x + x_sc
50 |
51 |
52 | class QueryExpansionModule(nn.Module):
53 | def __init__(self, hidden_num=768, n_block=8, input_size=128, outout_size=192, patch_size=16):
54 | super(QueryExpansionModule, self).__init__()
55 |
56 | self.hidden_num = hidden_num
57 | self.input_query_width = input_size // patch_size
58 | self.output_query_width = outout_size // patch_size
59 | self.res_blocks = nn.ModuleList([ResidualBlock(hidden_num) for _ in range(n_block)])
60 | self.noise_mlp = nn.Sequential(nn.Linear(hidden_num // 8, hidden_num // 4), nn.LayerNorm(hidden_num // 4),
61 | nn.ReLU(),
62 | nn.Linear(hidden_num // 4, hidden_num // 2), nn.LayerNorm(hidden_num // 2),
63 | nn.ReLU(),
64 | nn.Linear(hidden_num // 2, hidden_num))
65 |
66 | self.norm = nn.LayerNorm(hidden_num)
67 | self.embed = nn.Linear(hidden_num, hidden_num)
68 | self.inner_query_index, self.outer_query_index = self.get_index()
69 |
70 | def get_index(self):
71 | mask = torch.ones(size=[self.output_query_width, self.output_query_width]).long()
72 | pad_width = (self.output_query_width - self.input_query_width) // 2
73 | mask[pad_width:-pad_width, pad_width:-pad_width] = 0
74 | mask = mask.view(-1)
75 | return mask == 0, mask == 1
76 |
77 | def forward(self, src_query):
78 | b, n, c = src_query.size()
79 |
80 | ori_src_query = src_query
81 | assert src_query.size(
82 | 1) == self.input_query_width ** 2, f'QEM input spatial dimension is wrong, {src_query.size(1)} and {self.input_query_width ** 2}'
83 | noise = torch.randn(size=(b, self.output_query_width ** 2, c // 8), dtype=torch.float32).to(src_query.device)
84 |
85 | initial_query = self.noise_mlp(noise)
86 |
87 | initial_query[:, self.inner_query_index] = src_query
88 |
89 | x = initial_query.permute(0, 2, 1).reshape(b, c, self.output_query_width, self.output_query_width).contiguous()
90 |
91 | for layer in self.res_blocks:
92 | x = layer(x)
93 |
94 | x = x.flatten(2).transpose(1, 2)
95 | x = self.norm(x)
96 | x[:, self.inner_query_index, :] = ori_src_query
97 | x = self.embed(x)
98 | return x
99 |
100 | if __name__ == '__main__':
101 | m1 = QueryExpansionModule()
102 | x1 = torch.randn([1, 64, 768])
103 | y1 = m1(x1)
104 | print(y1.size())
105 |
--------------------------------------------------------------------------------
/models/VIT_old.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) Meta Platforms, Inc. and affiliates.
2 | # All rights reserved.
3 |
4 | # This source code is licensed under the license found in the
5 | # LICENSE file in the root directory of this source tree.
6 | # --------------------------------------------------------
7 | # References:
8 | # timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
9 | # DeiT: https://github.com/facebookresearch/deit
10 | # --------------------------------------------------------
11 |
12 | from functools import partial
13 |
14 | import torch
15 | import torch.nn as nn
16 |
17 | import timm.models.vision_transformer
18 |
19 |
20 | class VisionTransformer(timm.models.vision_transformer.VisionTransformer):
21 | """ Vision Transformer with support for global average pooling
22 | """
23 | def __init__(self, global_pool=False, **kwargs):
24 | super(VisionTransformer, self).__init__(**kwargs)
25 |
26 | self.global_pool = global_pool
27 | if self.global_pool:
28 | norm_layer = kwargs['norm_layer']
29 | embed_dim = kwargs['embed_dim']
30 | self.fc_norm = norm_layer(embed_dim)
31 |
32 | del self.norm # remove the original norm
33 |
34 |
35 | def forward_features(self, x):
36 | x = self.patch_embed(x)
37 |
38 | #cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
39 | #x = torch.cat((cls_tokens, x), dim=1)
40 | # exclude the cls token and its corresponding position embeding
41 | x = x + self.pos_embed[:, 1:]
42 | x = self.pos_drop(x)
43 |
44 | for blk in self.blocks:
45 | x = blk(x)
46 | return x
47 |
48 | def interpolate_pos_embed(model, checkpoint_model):
49 | if 'pos_embed' in checkpoint_model:
50 | pos_embed_checkpoint = checkpoint_model['pos_embed']
51 | embedding_size = pos_embed_checkpoint.shape[-1]
52 | num_patches = model.patch_embed.num_patches
53 | num_extra_tokens = model.pos_embed.shape[-2] - num_patches
54 | # height (== width) for the checkpoint position embedding
55 | orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
56 | # height (== width) for the new position embedding
57 | new_size = int(num_patches ** 0.5)
58 | # class_token and dist_token are kept unchanged
59 | if orig_size != new_size:
60 | print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
61 | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
62 | # only the position tokens are interpolated
63 | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
64 | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
65 | pos_tokens = torch.nn.functional.interpolate(
66 | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
67 | pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
68 | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
69 | checkpoint_model['pos_embed'] = new_pos_embed
70 |
71 | from timm.models.layers import trunc_normal_
72 | def vit_base_patch16(pretrain=False, init_ckpt=None, **kwargs):
73 | model = VisionTransformer(
74 | patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
75 | norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
76 | if pretrain and init_ckpt is not None:
77 | checkpoint = torch.load(init_ckpt, map_location='cpu')
78 |
79 | print("Load pre-trained checkpoint from: %s" % init_ckpt)
80 | checkpoint_model = checkpoint['model']
81 | state_dict = model.state_dict()
82 | for k in ['head.weight', 'head.bias']:
83 | if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
84 | print(f"Removing key {k} from pretrained checkpoint")
85 | del checkpoint_model[k]
86 |
87 | # interpolate position embedding
88 | interpolate_pos_embed(model, checkpoint_model)
89 |
90 | # load pre-trained model
91 | msg = model.load_state_dict(checkpoint_model, strict=False)
92 | print(msg)
93 |
94 | # manually initialize fc layer
95 | trunc_normal_(model.head.weight, std=2e-5)
96 | return model
97 |
98 |
99 | def vit_large_patch16(**kwargs):
100 | model = VisionTransformer(
101 | patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
102 | norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
103 | return model
104 |
105 |
106 | def vit_huge_patch14(**kwargs):
107 | model = VisionTransformer(
108 | patch_size=14, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True,
109 | norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
110 | return model
111 |
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
4 | import torch
5 | import itertools
6 | import datetime
7 |
8 | torch.backends.cudnn.benchmark = True
9 | from torch.utils.data import DataLoader
10 | from datasets import ImageDataset
11 | from util.misc import cosine_scheduler
12 |
13 | import argparse
14 |
15 | parser = argparse.ArgumentParser()
16 | parser.add_argument('--name', type=str, default='scenery')
17 |
18 | parser.add_argument('--lr', type=float, default=1e-4)
19 | parser.add_argument('--min_lr', type=float, default=1e-4)
20 | parser.add_argument('--warnup_epoch', type=int, default=10)
21 | parser.add_argument('--max_epoch', type=int, default=300)
22 | parser.add_argument('--batch_size', type=int, default=64)
23 | parser.add_argument('--num_workers', type=int, default=8)
24 |
25 | parser.add_argument('--eval', default=False, type=bool)
26 | parser.add_argument('--half_precision', default=False, type=bool)
27 |
28 | parser.add_argument('--input_size', type=int, default=128)
29 | parser.add_argument('--output_size', type=int, default=192)
30 | parser.add_argument('--enc_ckpt_path', type=str, default='pretrain_mae_vit_base_mask_0.75_400e.pth')
31 | parser.add_argument('--dec_depth', type=int, default=4)
32 |
33 | parser.add_argument('--data_root', type=str, default='E:/data3/train')
34 | parser.add_argument('--normlize_target', default=True, type=bool, help='normalized the target patch pixels')
35 | parser.add_argument('--patch_mean', type=float, default=0.5044838)
36 | parser.add_argument('--patch_std', type=float, default=0.1355051)
37 |
38 | from models.VITGen import TransGen
39 | from models.CNNDis import MsImageDis
40 | from losses import SetCriterion
41 | from engine import train_one_epoch, train_one_epoch_warmup
42 |
43 | if __name__ == '__main__':
44 | opts = parser.parse_args()
45 |
46 | train_dataset = ImageDataset(opts)
47 | train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=opts.batch_size,
48 | num_workers=opts.num_workers, persistent_workers=opts.num_workers > 0,
49 | shuffle=True, pin_memory=True)
50 |
51 | gen = TransGen(opts=opts, enc_ckpt_path=opts.enc_ckpt_path).cuda()
52 | cnn_dis = MsImageDis().cuda()
53 |
54 | g_param_dicts = [
55 | {"params": [p for n, p in gen.named_parameters() if 'conv_offset_mask' not in n and not 'transformer_encoder' in n], "lr_scale": 1},
56 | {"params": [p for n, p in gen.named_parameters() if 'conv_offset_mask' in n], "lr_scale": 0.1},
57 | {"params": [p for n, p in gen.named_parameters() if 'transformer_encoder' in n], "lr_scale": 1}
58 | ]
59 |
60 | opt_g = torch.optim.Adam(g_param_dicts, lr=opts.lr, betas=(0.0, 0.99), weight_decay=1e-4)
61 | opt_d = torch.optim.Adam(itertools.chain(cnn_dis.parameters()), lr=opts.lr, betas=(0.0, 0.99), weight_decay=1e-4)
62 | lr_schedule_values = cosine_scheduler(opts.lr, opts.min_lr, opts.max_epoch, len(train_loader),
63 | warmup_epochs=opts.warnup_epoch, warmup_steps=-1)
64 |
65 | now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
66 | nowname = now + '_' + opts.name
67 | logdir = os.path.join("logs", nowname)
68 | ckptdir = os.path.join(logdir, "checkpoints")
69 | visdir = os.path.join(logdir, "visuals")
70 | for d in [logdir, ckptdir, visdir]:
71 | os.makedirs(d, exist_ok=True)
72 | opts.visdir = visdir
73 | opts.ckptdir = ckptdir
74 |
75 | if opts.half_precision:
76 | g_grad_scaler = torch.cuda.amp.GradScaler()
77 | else:
78 | g_grad_scaler = None
79 |
80 | criterion = SetCriterion(opts)
81 |
82 | iteration = 1
83 | for epoch in range(opts.max_epoch):
84 | # warm up the learning rate
85 | if lr_schedule_values is not None and epoch < opts.warnup_epoch:
86 | for i, param_group in enumerate(opt_g.param_groups):
87 | param_group["lr"] = lr_schedule_values[iteration] * param_group["lr_scale"]
88 | for i, param_group in enumerate(opt_d.param_groups):
89 | param_group["lr"] = lr_schedule_values[iteration]
90 | else:
91 | for i, param_group in enumerate(opt_g.param_groups):
92 | param_group["lr"] = opts.lr * param_group["lr_scale"]
93 | for i, param_group in enumerate(opt_d.param_groups):
94 | param_group["lr"] = opts.lr
95 |
96 | if epoch < opts.warnup_epoch:
97 | train_one_epoch_warmup(opts, gen, criterion, train_loader, opt_g, torch.device('cuda'), epoch,
98 | g_grad_scale=g_grad_scaler)
99 | else:
100 | train_one_epoch(opts, gen, cnn_dis, criterion, train_loader, opt_g, opt_d, torch.device('cuda'), epoch,
101 | g_grad_scale=g_grad_scaler)
102 |
103 | iteration += len(train_loader)
104 |
105 | if (epoch + 1) % 10 == 0 and epoch > 50:
106 | torch.save({'gen': gen.state_dict()}, os.path.join(ckptdir, f'{epoch + 1}.pth'))
107 | torch.save({'gen': gen.state_dict()}, os.path.join(ckptdir, f'latest.pth'))
108 |
--------------------------------------------------------------------------------
/models/PSM.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | import torch
3 | from einops import rearrange
4 | import torch.nn.functional as F
5 |
6 | # Equivalent implementation in the paper for efficiency
7 | class PatchSmoothingModule(nn.Module):
8 | def __init__(self, embed_dim=768, out_chans=3, input_size=128, output_size=192, patch_size=16, overlap_size=8,
9 | bias=True):
10 | super().__init__()
11 | self.use_bias = bias
12 | self.patch_size = patch_size
13 | self.input_size = input_size
14 | self.output_size = output_size
15 |
16 | self.embed_dim = embed_dim
17 | patch_size = patch_size
18 | kernel_size = patch_size + overlap_size * 2
19 | padding_size = overlap_size
20 | self.proj = nn.ConvTranspose2d(embed_dim, out_chans, bias=False, kernel_size=kernel_size, stride=patch_size,
21 | padding=padding_size)
22 | if bias:
23 | self.bias = torch.nn.Parameter(torch.FloatTensor(1, out_chans, kernel_size, kernel_size),
24 | requires_grad=True)
25 | nn.init.constant_(self.bias, 0)
26 |
27 | self.mask = torch.ones(1, 1, output_size // patch_size, output_size // patch_size)
28 | p = ((output_size - input_size) // 2) // patch_size
29 | self.mask[:, :, p:-p, p:-p] = 0
30 |
31 | self.mask_weight = F.conv_transpose2d(self.mask.detach(), torch.ones([1, out_chans, kernel_size, kernel_size]),
32 | bias=None, stride=patch_size, padding=padding_size)
33 | self.mask_weight[self.mask_weight != 0] = 1 / self.mask_weight[self.mask_weight != 0]
34 | self.patch_size = patch_size
35 | self.padding_size = padding_size
36 |
37 | def forward(self, x, gt_inner):
38 | assert x.size(1) == (self.output_size // self.patch_size) ** 2
39 | x = rearrange(x, 'b (h w) c -> b c h w', h=self.output_size // self.patch_size)
40 | x = self.proj(x)
41 |
42 | if self.use_bias:
43 | bias = F.conv_transpose2d(self.mask.detach().to(x.device), self.bias, bias=None, stride=self.patch_size,
44 | padding=self.padding_size)
45 | x = x + bias
46 | x = x * self.mask_weight.to(x.device)
47 | p = (self.output_size - self.input_size) // 2
48 | x[:, :, p:-p, p:-p] = gt_inner[:, :, p:-p, p:-p]
49 |
50 | return x
51 |
52 | # Original implementation in the paper
53 | class PatchSmoothingModule_v2(nn.Module):
54 | def __init__(self, embed_dim=768, out_chans=3, input_size=128, output_size=192, patch_size=16, overlap_size=8,
55 | bias=True):
56 | super().__init__()
57 | self.use_bias = bias
58 | self.patch_size = patch_size
59 | self.input_size = input_size
60 | self.output_size = output_size
61 | self.out_chans = out_chans
62 | self.embed_dim = embed_dim
63 | self.overlap_size = overlap_size
64 |
65 | patch_size = patch_size
66 | self.kernel_size = kernel_size = patch_size + overlap_size * 2
67 | padding_size = overlap_size
68 | self.proj = nn.ConvTranspose2d(embed_dim, out_chans, bias=bias, kernel_size=kernel_size, stride=kernel_size,
69 | padding=0)
70 |
71 | self.patch_size = patch_size
72 | self.padding_size = padding_size
73 |
74 | def forward(self, x, gt_inner):
75 | assert x.size(1) == (self.output_size // self.patch_size) ** 2
76 | x = rearrange(x, 'b (h w) c -> (b h w) c', h=self.output_size // self.patch_size)
77 | x = x.unsqueeze(-1).unsqueeze(-1)
78 | x = self.proj(x) # (b h w) c 32 32
79 | x = rearrange(x, '(b h w) c p1 p2-> b c h w p1 p2', h=self.output_size // self.patch_size,
80 | w=self.output_size // self.patch_size)
81 | output_patches = x
82 |
83 | output = torch.zeros([x.size(0), self.out_chans, self.output_size + 2 * self.overlap_size,
84 | self.output_size + 2 * self.overlap_size])
85 |
86 | mask_weight = torch.zeros(
87 | [1, 1, self.output_size + 2 * self.overlap_size, self.output_size + 2 * self.overlap_size])
88 | for i in range(self.output_size // self.patch_size):
89 | for j in range(self.output_size // self.patch_size):
90 | output[:, :, i * self.patch_size: (i + 1) * self.patch_size + self.overlap_size * 2,
91 | j * self.patch_size: (j + 1) * self.patch_size + self.overlap_size * 2] += x[:, :, i, j, :, :]
92 | mask_weight[:, :, i * self.patch_size: (i + 1) * self.patch_size + self.overlap_size * 2,
93 | j * self.patch_size: (j + 1) * self.patch_size + self.overlap_size * 2] += 1
94 |
95 | mask_weight[mask_weight != 0] = 1 / mask_weight[mask_weight != 0]
96 | output = output * mask_weight
97 | output = output[:, :, self.overlap_size:-self.overlap_size, self.overlap_size:-self.overlap_size]
98 | p = (self.output_size - self.input_size) // 2
99 | output[:, :, p:-p, p:-p] = gt_inner[:, :, p:-p, p:-p]
100 | return output, output_patches
101 |
102 | if __name__ == '__main__':
103 | m1 = PatchSmoothingModule()
104 | m2 = PatchSmoothingModule_v2()
105 | x1 = torch.randn([1, 144, 768])
106 | x2 = torch.randn([1, 3, 192, 192])
107 | y1 = m1(x1, x2)
108 | y2, _ = m2(x1, x2)
109 | print(y1.size(), y2.size())
110 |
111 |
--------------------------------------------------------------------------------
/engine.py:
--------------------------------------------------------------------------------
1 |
2 | import math
3 | import os
4 | import sys
5 | from typing import Iterable
6 | import torch
7 |
8 | import functools
9 | print = functools.partial(print, flush=True)
10 | import util.misc as utils
11 |
12 | from einops import rearrange
13 | import numpy as np
14 | import matplotlib.pyplot as plt
15 | import time
16 |
17 | def denorm_img(tensor, opts):
18 | tensor = rearrange(tensor[0:4], 'b c w h -> b w h c').detach().cpu()
19 | tensor = tensor * torch.tensor((opts.patch_std,opts.patch_std,opts.patch_std)) + torch.tensor((opts.patch_mean,opts.patch_mean,opts.patch_mean))
20 | tensor = np.clip(tensor.flatten(0, 1).numpy(), 0, 1)
21 | return tensor
22 |
23 | def train_one_epoch(opts, GEN: torch.nn.Module, DIS: torch.nn.Module, criterion: torch.nn.Module,
24 | data_loader: Iterable, gen_opt: torch.optim.Optimizer, dis_opt: torch.optim.Optimizer,
25 | device: torch.device, epoch: int, g_grad_scale=None):
26 | GEN.train()
27 | DIS.train()
28 | criterion.train()
29 | metric_logger = utils.MetricLogger(delimiter=" ")
30 | metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
31 |
32 | header = 'Epoch: [{}]'.format(epoch)
33 | print_freq = 10
34 | display_freq=75
35 |
36 | for i, samples in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
37 | for k,v in samples.items():
38 | if isinstance(samples[k], torch.Tensor):
39 | samples[k]=v.to(device)
40 | if g_grad_scale is None:
41 | gt=samples['ground_truth']
42 | fake = GEN(samples)
43 | if i%display_freq==0:
44 | fig_name = f"{epoch}_{time.time():04f}"
45 | fig = np.concatenate([denorm_img(gt, opts), denorm_img(fake, opts)], axis=1)
46 | plt.imsave(os.path.join(opts.visdir, fig_name + '.png'), fig, vmin=0, vmax=1)
47 |
48 | D_loss_dict = criterion.get_dis_loss(fake, gt, DIS)
49 | D_losses = sum(D_loss_dict[k] * criterion.dis_weight_dict[k] for k in D_loss_dict.keys())
50 |
51 | dis_opt.zero_grad()
52 | D_losses.backward()
53 | dis_opt.step()
54 |
55 | G_loss_dict = criterion.get_gen_loss(fake, gt, DIS)
56 | G_losses = sum(G_loss_dict[k] * criterion.gen_weight_dict[k] for k in G_loss_dict.keys())
57 |
58 | gen_opt.zero_grad()
59 | G_losses.backward()
60 | gen_opt.step()
61 |
62 | else:
63 | with torch.cuda.amp.autocast():
64 | gt = samples['ground_truth']
65 | fake = GEN(samples)
66 |
67 | if i % display_freq == 0:
68 | fig_name = f"{epoch}_{time.time():04f}"
69 | fig = np.concatenate([denorm_img(gt, opts), denorm_img(fake, opts)], axis=1)
70 | plt.imsave(os.path.join(opts.visdir, fig_name + '.png'), fig, vmin=0, vmax=1)
71 |
72 | D_loss_dict = criterion.get_dis_loss(fake, gt)
73 | D_losses = sum(D_loss_dict[k] * criterion.dis_weight_dict[k] for k in D_loss_dict.keys())
74 |
75 | dis_opt.zero_grad()
76 | D_losses.backward()
77 | dis_opt.step()
78 |
79 | with torch.cuda.amp.autocast():
80 | G_loss_dict = criterion.get_gen_loss(fake, gt)
81 | G_losses = sum(G_loss_dict[k] * criterion.gen_weight_dict[k] for k in G_loss_dict.keys())
82 |
83 | gen_opt.zero_grad()
84 | g_grad_scale.scale(G_losses).backward()
85 | g_grad_scale.step(gen_opt)
86 | g_grad_scale.update()
87 |
88 | metric_logger.update(**G_loss_dict,**D_loss_dict)
89 | metric_logger.update(lr=dis_opt.param_groups[0]["lr"])
90 |
91 | metric_logger.synchronize_between_processes()
92 | print("Averaged stats:", metric_logger)
93 | return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
94 |
95 |
96 | def train_one_epoch_warmup(opts, GEN: torch.nn.Module,criterion: torch.nn.Module,
97 | data_loader: Iterable, gen_opt: torch.optim.Optimizer,
98 | device: torch.device, epoch: int, g_grad_scale=None):
99 |
100 |
101 | GEN.train()
102 | criterion.train()
103 | metric_logger = utils.MetricLogger(delimiter=" ")
104 | metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
105 |
106 | header = '(Warning Up!!)Epoch: [{}]'.format(epoch)
107 | print_freq = 10
108 | display_freq = 75
109 |
110 | for i,samples in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
111 | for k, v in samples.items():
112 | if isinstance(samples[k], torch.Tensor):
113 | samples[k] = v.to(device)
114 |
115 | if g_grad_scale is None:
116 | gt = samples['ground_truth']
117 | outputs = GEN(samples)
118 | if i%display_freq==0:
119 | fig_name = f"{epoch}_{time.time():04f}"
120 | fig = np.concatenate([denorm_img(gt, opts), denorm_img(outputs, opts)], axis=1)
121 | plt.imsave(os.path.join(opts.visdir, fig_name + '.png'), fig, vmin=0, vmax=1)
122 | G_loss_dict = criterion.get_gen_loss(outputs, gt, warmup=True)
123 | G_losses = sum(G_loss_dict[k] * criterion.gen_weight_dict[k] for k in G_loss_dict.keys())
124 |
125 | gen_opt.zero_grad()
126 | G_losses.backward()
127 | gen_opt.step()
128 | else:
129 | gen_opt.zero_grad()
130 | with torch.cuda.amp.autocast():
131 | gt = samples['ground_truth']
132 | outputs = GEN(samples)
133 | if i % display_freq == 0:
134 | fig_name = f"{epoch}_{time.time():04f}"
135 | fig = np.concatenate([denorm_img(gt, opts), denorm_img(outputs, opts)], axis=1)
136 | plt.imsave(os.path.join(opts.visdir, fig_name + '.png'), fig, vmin=0, vmax=1)
137 | G_loss_dict = criterion.get_gen_loss(outputs, gt, warmup=True)
138 | G_losses = sum(G_loss_dict[k] * criterion.gen_weight_dict[k] for k in G_loss_dict.keys())
139 | g_grad_scale.scale(G_losses).backward()
140 | g_grad_scale.step(gen_opt)
141 | g_grad_scale.update()
142 |
143 | metric_logger.update(**G_loss_dict)
144 | metric_logger.update(lr=gen_opt.param_groups[0]["lr"])
145 |
146 | metric_logger.synchronize_between_processes()
147 | print("Averaged stats:", metric_logger)
148 | return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
--------------------------------------------------------------------------------
/util/misc.py:
--------------------------------------------------------------------------------
1 | import time
2 | from collections import defaultdict, deque
3 | import datetime
4 | import functools
5 | print = functools.partial(print, flush=True)
6 |
7 | import torch
8 | import torch.distributed as dist
9 | import numpy as np
10 | import math
11 |
12 | def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
13 | start_warmup_value=0, warmup_steps=-1):
14 | warmup_schedule = np.array([])
15 | warmup_iters = warmup_epochs * niter_per_ep
16 | if warmup_steps > 0:
17 | warmup_iters = warmup_steps
18 | print("Set warmup steps = %d" % warmup_iters)
19 | if warmup_epochs > 0:
20 | warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
21 |
22 | iters = np.arange(epochs * niter_per_ep - warmup_iters)
23 | schedule = np.array(
24 | [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
25 |
26 | schedule = np.concatenate((warmup_schedule, schedule))
27 |
28 | assert len(schedule) == epochs * niter_per_ep
29 | return schedule
30 |
31 | def is_dist_avail_and_initialized():
32 | if not dist.is_available():
33 | return False
34 | if not dist.is_initialized():
35 | return False
36 | return True
37 |
38 | class SmoothedValue(object):
39 | """Track a series of values and provide access to smoothed values over a
40 | window or the global series average.
41 | """
42 |
43 | def __init__(self, window_size=20, fmt=None):
44 | if fmt is None:
45 | fmt = "{median:.4f} ({global_avg:.4f})"
46 | self.deque = deque(maxlen=window_size)
47 | self.total = 0.0
48 | self.count = 0
49 | self.fmt = fmt
50 |
51 | def update(self, value, n=1):
52 | self.deque.append(value)
53 | self.count += n
54 | self.total += value * n
55 |
56 | def synchronize_between_processes(self):
57 | """
58 | Warning: does not synchronize the deque!
59 | """
60 | if not is_dist_avail_and_initialized():
61 | return
62 | t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
63 | dist.barrier()
64 | dist.all_reduce(t)
65 | t = t.tolist()
66 | self.count = int(t[0])
67 | self.total = t[1]
68 |
69 | @property
70 | def median(self):
71 | d = torch.tensor(list(self.deque))
72 | return d.median().item()
73 |
74 | @property
75 | def avg(self):
76 | d = torch.tensor(list(self.deque), dtype=torch.float32)
77 | return d.mean().item()
78 |
79 | @property
80 | def global_avg(self):
81 | return self.total / self.count
82 |
83 | @property
84 | def max(self):
85 | return max(self.deque)
86 |
87 | @property
88 | def value(self):
89 | return self.deque[-1]
90 |
91 | def __str__(self):
92 | return self.fmt.format(
93 | median=self.median,
94 | avg=self.avg,
95 | global_avg=self.global_avg,
96 | max=self.max,
97 | value=self.value)
98 |
99 | class MetricLogger(object):
100 | def __init__(self, delimiter="\t"):
101 | self.meters = defaultdict(SmoothedValue)
102 | self.delimiter = delimiter
103 |
104 | def update(self, **kwargs):
105 | for k, v in kwargs.items():
106 | if isinstance(v, torch.Tensor):
107 | v = v.item()
108 | assert isinstance(v, (float, int))
109 | self.meters[k].update(v)
110 |
111 | def __getattr__(self, attr):
112 | if attr in self.meters:
113 | return self.meters[attr]
114 | if attr in self.__dict__:
115 | return self.__dict__[attr]
116 | raise AttributeError("'{}' object has no attribute '{}'".format(
117 | type(self).__name__, attr))
118 |
119 | def __str__(self):
120 | loss_str = []
121 | for name, meter in self.meters.items():
122 | loss_str.append(
123 | "{}: {}".format(name, str(meter))
124 | )
125 | return self.delimiter.join(loss_str)
126 |
127 | def synchronize_between_processes(self):
128 | for meter in self.meters.values():
129 | meter.synchronize_between_processes()
130 |
131 | def add_meter(self, name, meter):
132 | self.meters[name] = meter
133 |
134 | def log_every(self, iterable, print_freq, header=None):
135 | i = 0
136 | if not header:
137 | header = ''
138 | start_time = time.time()
139 | end = time.time()
140 | iter_time = SmoothedValue(fmt='{avg:.4f}')
141 | data_time = SmoothedValue(fmt='{avg:.4f}')
142 | space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
143 | if torch.cuda.is_available():
144 | log_msg = self.delimiter.join([
145 | header,
146 | '[{0' + space_fmt + '}/{1}]',
147 | 'eta: {eta}',
148 | '{meters}',
149 | 'time: {time}',
150 | 'data: {data}',
151 | 'max mem: {memory:.0f}'
152 | ])
153 | else:
154 | log_msg = self.delimiter.join([
155 | header,
156 | '[{0' + space_fmt + '}/{1}]',
157 | 'eta: {eta}',
158 | '{meters}',
159 | 'time: {time}',
160 | 'data: {data}'
161 | ])
162 | MB = 1024.0 * 1024.0
163 | for obj in iterable:
164 | data_time.update(time.time() - end)
165 | yield obj
166 | iter_time.update(time.time() - end)
167 | if i % print_freq == 0 or i == len(iterable) - 1:
168 | eta_seconds = iter_time.global_avg * (len(iterable) - i)
169 | eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
170 | if is_main_process():
171 | if torch.cuda.is_available():
172 | print(log_msg.format(
173 | i, len(iterable), eta=eta_string,
174 | meters=str(self),
175 | time=str(iter_time), data=str(data_time),
176 | memory=torch.cuda.max_memory_allocated() / MB))
177 | else:
178 | print(log_msg.format(
179 | i, len(iterable), eta=eta_string,
180 | meters=str(self),
181 | time=str(iter_time), data=str(data_time)))
182 | i += 1
183 | end = time.time()
184 | total_time = time.time() - start_time
185 | total_time_str = str(datetime.timedelta(seconds=int(total_time)))
186 | if is_main_process():
187 | print('{} Total time: {} ({:.4f} s / it)'.format(
188 | header, total_time_str, total_time / len(iterable)))
189 |
190 | def is_main_process():
191 | return get_rank() == 0
192 |
193 | def get_rank():
194 | if not is_dist_avail_and_initialized():
195 | return 0
196 | return dist.get_rank()
197 |
198 |
--------------------------------------------------------------------------------
/models/CNNDis.py:
--------------------------------------------------------------------------------
1 | """
2 | Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
3 | Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
4 | """
5 | from torch import nn
6 | from torch.autograd import Variable
7 | import torch
8 | import torch.nn.functional as F
9 | try:
10 | from itertools import izip as zip
11 | except ImportError: # will be 3.x series
12 | pass
13 | from torch.nn.utils.parametrizations import spectral_norm
14 | ##################################################################################
15 | # Discriminator
16 | ##################################################################################
17 | class Conv2dBlock(nn.Module):
18 | def __init__(self, input_dim ,output_dim, kernel_size, stride,
19 | padding=0, norm='none', activation='relu', pad_type='zero'):
20 | super(Conv2dBlock, self).__init__()
21 | self.use_bias = True
22 | # initialize padding
23 | if pad_type == 'reflect':
24 | self.pad = nn.ReflectionPad2d(padding)
25 | elif pad_type == 'replicate':
26 | self.pad = nn.ReplicationPad2d(padding)
27 | elif pad_type == 'zero':
28 | self.pad = nn.ZeroPad2d(padding)
29 | else:
30 | assert 0, "Unsupported padding type: {}".format(pad_type)
31 |
32 | # initialize convolution
33 | if 'sn' in norm:
34 | self.conv = spectral_norm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias))
35 | norm=norm.replace('sn','')
36 | else:
37 | self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
38 |
39 | # initialize normalization
40 | norm_dim = output_dim
41 | if norm == 'bn':
42 | self.norm = nn.BatchNorm2d(norm_dim)
43 | elif norm == 'in':
44 | self.norm = nn.InstanceNorm2d(norm_dim)
45 | elif norm == 'none':
46 | self.norm = None
47 | else:
48 | assert 0, "Unsupported normalization: {}".format(norm)
49 |
50 | # initialize activation
51 | if activation == 'relu':
52 | self.activation = nn.ReLU(inplace=True)
53 | elif activation == 'lrelu':
54 | self.activation = nn.LeakyReLU(0.2, inplace=True)
55 | elif activation == 'prelu':
56 | self.activation = nn.PReLU()
57 | elif activation == 'selu':
58 | self.activation = nn.SELU(inplace=True)
59 | elif activation == 'tanh':
60 | self.activation = nn.Tanh()
61 | elif activation == 'none':
62 | self.activation = None
63 | else:
64 | assert 0, "Unsupported activation: {}".format(activation)
65 |
66 | def forward(self, x):
67 | x = self.conv(self.pad(x))
68 | if self.norm:
69 | x = self.norm(x)
70 | if self.activation:
71 | x = self.activation(x)
72 | return x
73 |
74 | from .DiffAug import DiffAugment
75 |
76 | class MsImageDis(nn.Module):
77 | # Multi-scale discriminator architecture
78 | def __init__(self,input_dim=3,n_layer=4,num_scales=2):
79 | super(MsImageDis, self).__init__()
80 | self.n_layer = n_layer
81 | self.gan_type = 'hinge'
82 | self.dim = 64
83 | self.norm = 'snin'
84 | self.activ = 'lrelu'
85 | self.num_scales = num_scales
86 | self.pad_type = 'reflect'
87 | self.input_dim = input_dim
88 | self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False)
89 |
90 | self.use_DiffAug=True
91 | self.avg_loss=False
92 |
93 | self.cnns = nn.ModuleList()
94 | for _ in range(self.num_scales):
95 | self.cnns.append(self._make_net())
96 |
97 | def _make_net(self):
98 | dim = self.dim
99 | cnn_x = []
100 | cnn_x += [Conv2dBlock(self.input_dim, dim, 4, 2, 1, norm='none', activation=self.activ, pad_type=self.pad_type)]
101 | for i in range(self.n_layer - 1):
102 | cnn_x += [Conv2dBlock(dim, dim * 2, 4, 2, 1, norm=self.norm, activation=self.activ, pad_type=self.pad_type)]
103 | dim *= 2
104 | cnn_x += [nn.Conv2d(dim, 1, 4, 1, 1)]
105 | cnn_x = nn.Sequential(*cnn_x)
106 | return cnn_x
107 |
108 | def forward(self, x):
109 | if self.use_DiffAug:
110 | policy="color,translation,cutout"
111 | x = DiffAugment(x, policy=policy)
112 | outputs = []
113 | for model in self.cnns:
114 | output=model(x)
115 | outputs.append(output)
116 | x = self.downsample(x)
117 | return outputs
118 |
119 | def calc_dis_loss(self, input_fake, input_real):
120 | # calculate the loss to train D
121 | input_real.requires_grad_()
122 | outs0 = self.forward(input_fake)
123 | outs1 = self.forward(input_real)
124 | loss = 0
125 | for it, (out0, out1) in enumerate(zip(outs0, outs1)):
126 | if self.gan_type == 'lsgan':
127 | loss += torch.mean((out0 - 0) ** 2) + torch.mean((out1 - 1) ** 2)
128 | elif self.gan_type == 'nsgan':
129 | all0 = Variable(torch.zeros_like(out0.data).cuda(), requires_grad=False)
130 | all1 = Variable(torch.ones_like(out1.data).cuda(), requires_grad=False)
131 | loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all0) +
132 | F.binary_cross_entropy(F.sigmoid(out1), all1))
133 | elif self.gan_type == 'hinge':
134 | loss += F.relu(1.0+out0).mean()+F.relu(1.0-out1).mean()
135 | elif self.gan_type == 'ralsgan':
136 | loss += (torch.mean((out0 - torch. mean(out1,0) - 1) ** 2) + torch.mean((out1 - torch.mean(out0,0) + 1) ** 2))/2
137 | else:
138 | assert 0, "Unsupported GAN type: {}".format(self.gan_type)
139 | #loss+=self.r1_reg(out1,input_real)
140 | if self.avg_loss:
141 | return loss/self.num_scales
142 | return loss
143 |
144 | def calc_gen_loss(self, input_fake,input_real):
145 | # calculate the loss to train G
146 | outs0 = self.forward(input_fake)
147 | outs1 = self.forward(input_real)
148 | loss = 0
149 | for it, (out0, out1) in enumerate(zip(outs0, outs1)):
150 | if self.gan_type == 'lsgan':
151 | loss += torch.mean((out0 - 1)**2)# LSGAN
152 | elif self.gan_type == 'nsgan':
153 | all1 = Variable(torch.ones_like(out0.data).cuda(), requires_grad=False)
154 | loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all1))
155 | elif self.gan_type == 'hinge':
156 | loss += -out0.mean()
157 | elif self.gan_type == 'ralsgan':
158 | loss += (torch.mean((out0 - torch.mean(out1,0) + 1) ** 2) + torch.mean((out1 - torch.mean(out0,0) - 1) ** 2))/2
159 | else:
160 | assert 0, "Unsupported GAN type: {}".format(self.gan_type)
161 | if self.avg_loss:
162 | return loss/self.num_scales
163 | return loss
--------------------------------------------------------------------------------
/models/VIT.py:
--------------------------------------------------------------------------------
1 | import torch.nn.functional as F
2 | from .ops import *
3 | from collections import OrderedDict
4 |
5 | class VisionTransformer(nn.Module):
6 | """ Vision Transformer with support for patch or hybrid CNN input stage
7 | """
8 | def __init__(self,
9 | img_size=224,
10 | patch_size=16,
11 | in_chans=3,
12 | num_classes=1000,
13 | embed_dim=768,
14 | depth=12,
15 | num_heads=12,
16 | mlp_ratio=4.,
17 | qkv_bias=False,
18 | qk_scale=None,
19 | drop_rate=0.,
20 | attn_drop_rate=0.,
21 | drop_path_rate=0.,
22 | norm_layer=nn.LayerNorm,
23 | init_values=0.,
24 | use_learnable_pos_emb=False,
25 | use_rel_pos_bias=False,
26 | use_shared_rel_pos_bias=False,
27 | init_scale=0.,
28 | use_mean_pooling=True):
29 | super().__init__()
30 | self.num_classes = num_classes
31 | self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
32 |
33 | self.patch_embed = PatchEmbed(
34 | img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
35 | num_patches = self.patch_embed.num_patches
36 |
37 | # self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
38 | if use_learnable_pos_emb:
39 | self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
40 | else:
41 | # sine-cosine positional embeddings is on the way
42 | self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
43 |
44 | if use_shared_rel_pos_bias:
45 | self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
46 | else:
47 | self.rel_pos_bias = None
48 |
49 | self.pos_drop = nn.Dropout(p=drop_rate)
50 | self.use_rel_pos_bias = use_rel_pos_bias
51 |
52 | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
53 | self.blocks = nn.ModuleList([
54 | Block(
55 | dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
56 | drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
57 | init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
58 | for i in range(depth)])
59 | self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
60 | self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
61 | self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
62 |
63 | if use_learnable_pos_emb:
64 | trunc_normal_(self.pos_embed, std=.02)
65 |
66 | # trunc_normal_(self.cls_token, std=.02)
67 | trunc_normal_(self.head.weight, std=.02)
68 | self.apply(self._init_weights)
69 |
70 | self.head.weight.data.mul_(init_scale)
71 | self.head.bias.data.mul_(init_scale)
72 |
73 | def _init_weights(self, m):
74 | if isinstance(m, nn.Linear):
75 | trunc_normal_(m.weight, std=.02)
76 | if isinstance(m, nn.Linear) and m.bias is not None:
77 | nn.init.constant_(m.bias, 0)
78 | elif isinstance(m, nn.LayerNorm):
79 | nn.init.constant_(m.bias, 0)
80 | nn.init.constant_(m.weight, 1.0)
81 |
82 | def get_num_layers(self):
83 | return len(self.blocks)
84 |
85 | @torch.jit.ignore
86 | def no_weight_decay(self):
87 | return {'pos_embed', 'cls_token'}
88 |
89 | def get_classifier(self):
90 | return self.head
91 |
92 | def reset_classifier(self, num_classes, global_pool=''):
93 | self.num_classes = num_classes
94 | self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
95 |
96 | def forward_features(self, x, mask):
97 | x = self.patch_embed(x)
98 |
99 | # cls_tokens = self.cls_token.expand(batch_size, -1, -1)
100 | # x = torch.cat((cls_tokens, x), dim=1)
101 | x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
102 |
103 | B, _, C = x.shape
104 | x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible
105 |
106 | rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
107 | for blk in self.blocks:
108 | x_vis = blk(x_vis, rel_pos_bias=rel_pos_bias)
109 |
110 | # for blk in self.blocks:
111 | # x_vis = blk(x_vis)
112 |
113 | x_vis = self.norm(x_vis)
114 | return x_vis
115 |
116 | def forward_features123(self, x, return_src=False):
117 | x = self.patch_embed(x)
118 | B, _, _ = x.size()
119 |
120 | # cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
121 | # x = torch.cat((cls_tokens, x), dim=1)
122 | if self.pos_embed is not None:
123 | x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach()
124 | x = self.pos_drop(x)
125 |
126 | for blk in self.blocks:
127 | x = blk(x)
128 | x = self.norm(x)
129 |
130 | if return_src:
131 | return x
132 | if self.fc_norm is not None:
133 | # return self.fc_norm(x[:, 1:].mean(1))
134 | return self.fc_norm(x.mean(1))
135 | else:
136 | return x[:, 0]
137 |
138 | def forward(self, x):
139 | x = self.forward_features(x)
140 | x = self.head(x)
141 | return x
142 |
143 | def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
144 | missing_keys = []
145 | unexpected_keys = []
146 | error_msgs = []
147 | # copy state_dict so _load_from_state_dict can modify it
148 | metadata = getattr(state_dict, '_metadata', None)
149 | state_dict = state_dict.copy()
150 | if metadata is not None:
151 | state_dict._metadata = metadata
152 |
153 | def load(module, prefix=''):
154 | local_metadata = {} if metadata is None else metadata.get(
155 | prefix[:-1], {})
156 | module._load_from_state_dict(
157 | state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
158 | for name, child in module._modules.items():
159 | if child is not None:
160 | load(child, prefix + name + '.')
161 |
162 | load(model, prefix=prefix)
163 |
164 | warn_missing_keys = []
165 | ignore_missing_keys = []
166 | for key in missing_keys:
167 | keep_flag = True
168 | for ignore_key in ignore_missing.split('|'):
169 | if ignore_key in key:
170 | keep_flag = False
171 | break
172 | if keep_flag:
173 | warn_missing_keys.append(key)
174 | else:
175 | ignore_missing_keys.append(key)
176 |
177 | missing_keys = warn_missing_keys
178 |
179 | if len(missing_keys) > 0:
180 | print("Weights of {} not initialized from pretrained model: {}".format(
181 | model.__class__.__name__, missing_keys))
182 | if len(unexpected_keys) > 0:
183 | print("Weights from pretrained model not used in {}: {}".format(
184 | model.__class__.__name__, unexpected_keys))
185 | if len(ignore_missing_keys) > 0:
186 | print("Ignored weights of {} not initialized from pretrained model: {}".format(
187 | model.__class__.__name__, ignore_missing_keys))
188 | if len(error_msgs) > 0:
189 | print('\n'.join(error_msgs))
190 |
191 | from functools import partial
192 |
193 | def vit_base_patch16(pretrained=False,init_ckpt=None, **kwargs):
194 | model = VisionTransformer(
195 | patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
196 | norm_layer=partial(nn.LayerNorm, eps=1e-6), use_mean_pooling=False, **kwargs)
197 |
198 | if pretrained:
199 | checkpoint = torch.load(init_ckpt, map_location='cpu')
200 | checkpoint_model = None
201 | for model_key in 'model|module'.split('|'):
202 | if model_key in checkpoint:
203 | checkpoint_model = checkpoint[model_key]
204 | print("Load state_dict by model_key = %s" % model_key)
205 | break
206 | if checkpoint_model is None:
207 | checkpoint_model = checkpoint
208 | state_dict = model.state_dict()
209 | for k in ['head.weight', 'head.bias']:
210 | if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
211 | print(f"Removing key {k} from pretrained checkpoint")
212 | del checkpoint_model[k]
213 | all_keys = list(checkpoint_model.keys())
214 | new_dict = OrderedDict()
215 | for key in all_keys:
216 | if key.startswith('backbone.'):
217 | new_dict[key[9:]] = checkpoint_model[key]
218 | elif key.startswith('encoder.'):
219 | new_dict[key[8:]] = checkpoint_model[key]
220 | else:
221 | new_dict[key] = checkpoint_model[key]
222 | checkpoint_model = new_dict
223 | if 'pos_embed' in checkpoint_model:
224 | pos_embed_checkpoint = checkpoint_model['pos_embed']
225 | embedding_size = pos_embed_checkpoint.shape[-1]
226 | num_patches = model.patch_embed.num_patches
227 | num_extra_tokens = model.pos_embed.shape[-2] - num_patches
228 | # height (== width) for the checkpoint position embedding
229 | orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
230 | # height (== width) for the new position embedding
231 | new_size = int(num_patches ** 0.5)
232 | # class_token and dist_token are kept unchanged
233 | if orig_size != new_size:
234 | print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
235 | extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
236 | # only the position tokens are interpolated
237 | pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
238 | pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
239 | pos_tokens = torch.nn.functional.interpolate(
240 | pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
241 | pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
242 | new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
243 | checkpoint_model['pos_embed'] = new_pos_embed
244 |
245 | load_state_dict(model, checkpoint_model, prefix='')
246 | return model
247 |
248 | if __name__=='__main__':
249 | model2=vit_base_patch16(pretrained=True,img_size=224,init_values=0.1,use_shared_rel_pos_bias=True,init_ckpt='beit_base_patch16_224_pt22k.pth')
250 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/models/ops.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from timm.models.layers import trunc_normal_ as __call_trunc_normal_
5 | from timm.models.layers import drop_path, to_2tuple, trunc_normal_
6 | from timm.models.registry import register_model
7 |
8 | class DropPath(nn.Module):
9 | """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
10 | """
11 |
12 | def __init__(self, drop_prob=None):
13 | super(DropPath, self).__init__()
14 | self.drop_prob = drop_prob
15 |
16 | def forward(self, x):
17 | return drop_path(x, self.drop_prob, self.training)
18 |
19 | def extra_repr(self) -> str:
20 | return 'p={}'.format(self.drop_prob)
21 |
22 | class Mlp(nn.Module):
23 | def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
24 | super().__init__()
25 | out_features = out_features or in_features
26 | hidden_features = hidden_features or in_features
27 | self.fc1 = nn.Linear(in_features, hidden_features)
28 | self.act = act_layer()
29 | self.fc2 = nn.Linear(hidden_features, out_features)
30 | self.drop = nn.Dropout(drop)
31 |
32 | def forward(self, x):
33 | x = self.fc1(x)
34 | x = self.act(x)
35 | # x = self.drop(x)
36 | # commit this for the orignal BERT implement
37 | x = self.fc2(x)
38 | x = self.drop(x)
39 | return x
40 |
41 | class Attention(nn.Module):
42 | def __init__(
43 | self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
44 | proj_drop=0., window_size=None, attn_head_dim=None):
45 | super().__init__()
46 | self.num_heads = num_heads
47 | head_dim = dim // num_heads
48 | if attn_head_dim is not None:
49 | head_dim = attn_head_dim
50 | all_head_dim = head_dim * self.num_heads
51 | self.scale = qk_scale or head_dim ** -0.5
52 |
53 | self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
54 | if qkv_bias:
55 | self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
56 | self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
57 | else:
58 | self.q_bias = None
59 | self.v_bias = None
60 |
61 | if window_size:
62 | self.window_size = window_size
63 | self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
64 | self.relative_position_bias_table = nn.Parameter(
65 | torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
66 | # cls to token & token 2 cls & cls to cls
67 |
68 | # get pair-wise relative position index for each token inside the window
69 | coords_h = torch.arange(window_size[0])
70 | coords_w = torch.arange(window_size[1])
71 | coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
72 | coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
73 | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
74 | relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
75 | relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
76 | relative_coords[:, :, 1] += window_size[1] - 1
77 | relative_coords[:, :, 0] *= 2 * window_size[1] - 1
78 | relative_position_index = \
79 | torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
80 | relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
81 | relative_position_index[0, 0:] = self.num_relative_distance - 3
82 | relative_position_index[0:, 0] = self.num_relative_distance - 2
83 | relative_position_index[0, 0] = self.num_relative_distance - 1
84 |
85 | self.register_buffer("relative_position_index", relative_position_index)
86 | else:
87 | self.window_size = None
88 | self.relative_position_bias_table = None
89 | self.relative_position_index = None
90 |
91 | self.attn_drop = nn.Dropout(attn_drop)
92 | self.proj = nn.Linear(all_head_dim, dim)
93 | self.proj_drop = nn.Dropout(proj_drop)
94 |
95 | def forward(self, x, rel_pos_bias=None):
96 | B, N, C = x.shape
97 | qkv_bias = None
98 | if self.q_bias is not None:
99 | qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
100 | # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
101 | qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
102 | qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
103 | q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
104 |
105 | q = q * self.scale
106 | attn = (q @ k.transpose(-2, -1))
107 |
108 | if self.relative_position_bias_table is not None:
109 | relative_position_bias = \
110 | self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
111 | self.window_size[0] * self.window_size[1] + 1,
112 | self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
113 | relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
114 | attn = attn + relative_position_bias.unsqueeze(0)
115 |
116 | if rel_pos_bias is not None:
117 | attn = attn + rel_pos_bias
118 |
119 | attn = attn.softmax(dim=-1)
120 | attn = self.attn_drop(attn)
121 |
122 | x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
123 | x = self.proj(x)
124 | x = self.proj_drop(x)
125 | return x
126 |
127 | class CrossAttention(nn.Module):
128 | def __init__(
129 | self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
130 | proj_drop=0., window_size=None, attn_head_dim=None):
131 | super().__init__()
132 | self.num_heads = num_heads
133 | head_dim = dim // num_heads
134 | if attn_head_dim is not None:
135 | head_dim = attn_head_dim
136 | all_head_dim = head_dim * self.num_heads
137 | self.scale = qk_scale or head_dim ** -0.5
138 |
139 | self.q = nn.Linear(dim, all_head_dim * 1, bias=False)
140 | self.kv = nn.Linear(dim, all_head_dim * 2, bias=False)
141 |
142 | if qkv_bias:
143 | self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
144 | self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
145 | else:
146 | self.q_bias = None
147 | self.v_bias = None
148 |
149 | if window_size:
150 | self.window_size = window_size
151 | self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
152 | self.relative_position_bias_table = nn.Parameter(
153 | torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
154 | # cls to token & token 2 cls & cls to cls
155 |
156 | # get pair-wise relative position index for each token inside the window
157 | coords_h = torch.arange(window_size[0])
158 | coords_w = torch.arange(window_size[1])
159 | coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
160 | coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
161 | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
162 | relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
163 | relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
164 | relative_coords[:, :, 1] += window_size[1] - 1
165 | relative_coords[:, :, 0] *= 2 * window_size[1] - 1
166 | relative_position_index = \
167 | torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
168 | relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
169 | relative_position_index[0, 0:] = self.num_relative_distance - 3
170 | relative_position_index[0:, 0] = self.num_relative_distance - 2
171 | relative_position_index[0, 0] = self.num_relative_distance - 1
172 |
173 | self.register_buffer("relative_position_index", relative_position_index)
174 | else:
175 | self.window_size = None
176 | self.relative_position_bias_table = None
177 | self.relative_position_index = None
178 |
179 | self.attn_drop = nn.Dropout(attn_drop)
180 | self.proj = nn.Linear(all_head_dim, dim)
181 | self.proj_drop = nn.Dropout(proj_drop)
182 |
183 | def forward(self, x, y, rel_pos_bias=None):
184 | B, N1, C = x.shape
185 | B, N2, C = y.shape
186 | q_bias = None
187 | kv_bias = None
188 | if self.q_bias is not None:
189 | q_bias=self.q_bias
190 | kv_bias = torch.cat((torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
191 | # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
192 | q=F.linear(input=x,weight=self.q.weight,bias=q_bias)
193 | kv = F.linear(input=y, weight=self.kv.weight, bias=kv_bias)
194 | q = q.reshape(B, N1, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4)
195 | q = q[0]
196 | kv = kv.reshape(B, N2, 2, self.num_heads, -1).permute(2, 0, 3, 1, 4)
197 | k, v = kv[0], kv[1] # make torchscript happy (cannot use tensor as tuple)
198 |
199 | q = q * self.scale
200 | attn = (q @ k.transpose(-2, -1))
201 |
202 | if self.relative_position_bias_table is not None:
203 | relative_position_bias = \
204 | self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
205 | self.window_size[0] * self.window_size[1] + 1,
206 | self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
207 | relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
208 | attn = attn + relative_position_bias.unsqueeze(0)
209 |
210 | if rel_pos_bias is not None:
211 | attn = attn + rel_pos_bias
212 |
213 | attn = attn.softmax(dim=-1)
214 | attn = self.attn_drop(attn)
215 |
216 | x = (attn @ v).transpose(1, 2).reshape(B, N1, -1)
217 | x = self.proj(x)
218 | x = self.proj_drop(x)
219 | return x
220 |
221 | class CorssAttnBlock(nn.Module):
222 | def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
223 | drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
224 | window_size=None, attn_head_dim=None):
225 | super().__init__()
226 | self.norm1 = norm_layer(dim)
227 | self.attn = Attention(
228 | dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
229 | attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
230 | self.cross_attn = CrossAttention(
231 | dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
232 | attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
233 | # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
234 | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
235 | self.norm2 = norm_layer(dim)
236 | self.norm3= norm_layer(dim)
237 | mlp_hidden_dim = int(dim * mlp_ratio)
238 | self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
239 |
240 | if init_values > 0:
241 | self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
242 | self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
243 | self.gamma_3 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
244 | else:
245 | self.gamma_1, self.gamma_2, self.gamma_3 = None, None, None
246 |
247 | def forward(self, x, y, rel_pos_bias=None):
248 | if self.gamma_1 is None:
249 | x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
250 | x = x + self.drop_path(self.cross_attn(self.norm2(x),y, rel_pos_bias=rel_pos_bias))
251 | x = x + self.drop_path(self.mlp(self.norm3(x)))
252 | else:
253 | x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
254 | x = x + self.drop_path(self.gamma_2 * self.cross_attn(self.norm2(x),y, rel_pos_bias=rel_pos_bias))
255 | x = x + self.drop_path(self.gamma_3 * self.mlp(self.norm3(x)))
256 | return x
257 |
258 | class Block(nn.Module):
259 |
260 | def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
261 | drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
262 | window_size=None, attn_head_dim=None):
263 | super().__init__()
264 | self.norm1 = norm_layer(dim)
265 | self.attn = Attention(
266 | dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
267 | attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
268 | # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
269 | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
270 | self.norm2 = norm_layer(dim)
271 | mlp_hidden_dim = int(dim * mlp_ratio)
272 | self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
273 |
274 | if init_values > 0:
275 | self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
276 | self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
277 | else:
278 | self.gamma_1, self.gamma_2 = None, None
279 |
280 | def forward(self, x, rel_pos_bias=None):
281 | if self.gamma_1 is None:
282 | x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
283 | x = x + self.drop_path(self.mlp(self.norm2(x)))
284 | else:
285 | x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
286 | x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
287 | return x
288 |
289 | class PatchEmbed(nn.Module):
290 | """ Image to Patch Embedding
291 | """
292 |
293 | def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
294 | super().__init__()
295 | img_size = to_2tuple(img_size)
296 | patch_size = to_2tuple(patch_size)
297 | num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
298 | self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
299 | self.img_size = img_size
300 | self.patch_size = patch_size
301 | self.num_patches = num_patches
302 |
303 | self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
304 |
305 | def forward(self, x, **kwargs):
306 | B, C, H, W = x.shape
307 | # FIXME look at relaxing size constraints
308 | assert H == self.img_size[0] and W == self.img_size[1], \
309 | f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
310 | x = self.proj(x).flatten(2).transpose(1, 2)
311 | return x
312 |
313 | class RelativePositionBias(nn.Module):
314 | def __init__(self, window_size, num_heads):
315 | super().__init__()
316 | self.window_size = window_size
317 | self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
318 | self.relative_position_bias_table = nn.Parameter(
319 | torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
320 | # cls to token & token 2 cls & cls to cls
321 |
322 | # get pair-wise relative position index for each token inside the window
323 | coords_h = torch.arange(window_size[0])
324 | coords_w = torch.arange(window_size[1])
325 | coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
326 | coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
327 | relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
328 | relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
329 | relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
330 | relative_coords[:, :, 1] += window_size[1] - 1
331 | relative_coords[:, :, 0] *= 2 * window_size[1] - 1
332 | relative_position_index = \
333 | torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
334 | relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
335 | relative_position_index[0, 0:] = self.num_relative_distance - 3
336 | relative_position_index[0:, 0] = self.num_relative_distance - 2
337 | relative_position_index[0, 0] = self.num_relative_distance - 1
338 |
339 | self.register_buffer("relative_position_index", relative_position_index)
340 |
341 | # trunc_normal_(self.relative_position_bias_table, std=.02)
342 |
343 | def forward(self):
344 | relative_position_bias = \
345 | self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
346 | self.window_size[0] * self.window_size[1] + 1,
347 | self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
348 | return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
349 |
350 | import numpy as np
351 | def get_sinusoid_encoding_table(n_position, d_hid):
352 | ''' Sinusoid position encoding table '''
353 | # TODO: make it with torch instead of numpy
354 | def get_position_angle_vec(position):
355 | return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
356 |
357 | sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
358 | sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
359 | sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
360 |
361 | return torch.FloatTensor(sinusoid_table).unsqueeze(0)
--------------------------------------------------------------------------------