├── .gitignore ├── LICENSE ├── README.md ├── demo.py ├── face_mesh ├── __init__.py └── face_mesh.py ├── iris_landmark ├── __init__.py ├── iris_landmark.py └── iris_landmark.tflite └── utils ├── __init__.py └── cvfpscalc.py /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | 131 | # bat 132 | *.bat -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # ⚠Attention⚠ 2 | MediaPipe 0.8.8 からFaceMeshにrefine_landmarksオプションが追加されました。
3 | このオプションを有効化すると虹彩の検出も同時に実施できるようになります。
4 | 特別な理由がない限り、[Kazuhito00/mediapipe-python-sample](https://github.com/Kazuhito00/mediapipe-python-sample)のFaceMeshを参考にすることをお勧めします。 5 | 6 | # iris-detection-using-py-mediapipe 7 | MediaPipeのIris(虹彩検出)をPythonで動作させるデモです。
8 | MediaPipeのFace Meshで顔のランドマークを検出し「[iris_landmark.tflite](https://github.com/google/mediapipe/blob/master/mediapipe/modules/iris_landmark/iris_landmark.tflite)」を用いて虹彩の検出をしています。
9 | 10 | ![8p6lo-slci5](https://user-images.githubusercontent.com/37477845/107108796-11e01c00-687e-11eb-8d82-9ffcdaad2610.gif) 11 | # Requirement 12 | * mediapipe 0.8.1 or later 13 | * OpenCV 3.4.2 or later 14 | * Tensorflow 2.3.0 or Later 15 | 16 | mediapipeはpipでインストールできます。 17 | ```bash 18 | pip install mediapipe 19 | ``` 20 | 21 | # Demo 22 | デモの実行方法は以下です。 23 | ```bash 24 | python demo.py 25 | ``` 26 | デモ実行時には、以下のオプションが指定可能です。 27 | 28 | * --device
29 | カメラデバイス番号の指定
30 | デフォルト:0 31 | * --width
32 | カメラキャプチャ時の横幅
33 | デフォルト:960 34 | * --height
35 | カメラキャプチャ時の縦幅
36 | デフォルト:540 37 | * --max_num_faces
38 | 顔の検出最大数
39 | デフォルト:1 40 | * --min_detection_confidence
41 | 検出信頼値の閾値
42 | デフォルト:0.7 43 | * --min_tracking_confidence
44 | トラッキング信頼値の閾値
45 | デフォルト:0.7 46 | 47 | # ToDo 48 | - [ ] 焦点距離から深度を推定するオプションを追加 49 | 50 | # Reference 51 | * [MediaPipe](https://github.com/google/mediapipe) 52 | 53 | # Author 54 | 高橋かずひと(https://twitter.com/KzhtTkhs) 55 | 56 | # License 57 | iris-detection-using-py-mediapipe is under [Apache-2.0 License](LICENSE). 58 | 59 | また、女性の画像は[フリー素材ぱくたそ](https://www.pakutaso.com)様の写真を利用しています。 60 | -------------------------------------------------------------------------------- /demo.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # -*- coding: utf-8 -*- 3 | import copy 4 | import argparse 5 | 6 | import cv2 as cv 7 | import numpy as np 8 | 9 | from utils import CvFpsCalc 10 | from face_mesh.face_mesh import FaceMesh 11 | from iris_landmark.iris_landmark import IrisLandmark 12 | 13 | 14 | def get_args(): 15 | parser = argparse.ArgumentParser() 16 | 17 | parser.add_argument("--device", type=int, default=0) 18 | parser.add_argument("--width", help='cap width', type=int, default=960) 19 | parser.add_argument("--height", help='cap height', type=int, default=540) 20 | 21 | parser.add_argument("--max_num_faces", type=int, default=1) 22 | parser.add_argument("--min_detection_confidence", 23 | help='min_detection_confidence', 24 | type=float, 25 | default=0.7) 26 | parser.add_argument("--min_tracking_confidence", 27 | help='min_tracking_confidence', 28 | type=int, 29 | default=0.7) 30 | 31 | args = parser.parse_args() 32 | 33 | return args 34 | 35 | 36 | def main(): 37 | # 引数 ##################################################################### 38 | args = get_args() 39 | 40 | cap_device = args.device 41 | cap_width = args.width 42 | cap_height = args.height 43 | 44 | max_num_faces = args.max_num_faces 45 | min_detection_confidence = args.min_detection_confidence 46 | min_tracking_confidence = args.min_tracking_confidence 47 | 48 | # カメラ準備 ############################################################### 49 | cap = cv.VideoCapture(cap_device) 50 | cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width) 51 | cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height) 52 | 53 | # モデルロード ############################################################# 54 | face_mesh = FaceMesh( 55 | max_num_faces, 56 | min_detection_confidence, 57 | min_tracking_confidence, 58 | ) 59 | iris_detector = IrisLandmark() 60 | 61 | # FPS計測モジュール ######################################################## 62 | cvFpsCalc = CvFpsCalc(buffer_len=10) 63 | 64 | while True: 65 | display_fps = cvFpsCalc.get() 66 | 67 | # カメラキャプチャ ##################################################### 68 | ret, image = cap.read() 69 | if not ret: 70 | break 71 | image = cv.flip(image, 1) # ミラー表示 72 | debug_image = copy.deepcopy(image) 73 | 74 | # 検出実施 ############################################################# 75 | # Face Mesh検出 76 | face_results = face_mesh(image) 77 | for face_result in face_results: 78 | # 目周辺のバウンディングボックス計算 79 | left_eye, right_eye = face_mesh.calc_around_eye_bbox(face_result) 80 | 81 | # 虹彩検出 82 | left_iris, right_iris = detect_iris(image, iris_detector, left_eye, 83 | right_eye) 84 | 85 | # 虹彩の外接円を計算 86 | left_center, left_radius = calc_min_enc_losingCircle(left_iris) 87 | right_center, right_radius = calc_min_enc_losingCircle(right_iris) 88 | 89 | # デバッグ描画 90 | debug_image = draw_debug_image( 91 | debug_image, 92 | left_iris, 93 | right_iris, 94 | left_center, 95 | left_radius, 96 | right_center, 97 | right_radius, 98 | ) 99 | 100 | cv.putText(debug_image, "FPS:" + str(display_fps), (10, 30), 101 | cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 2, cv.LINE_AA) 102 | 103 | # キー処理(ESC:終了) ################################################# 104 | key = cv.waitKey(1) 105 | if key == 27: # ESC 106 | break 107 | 108 | # 画面反映 ############################################################# 109 | cv.imshow('Iris(tflite) Demo', debug_image) 110 | 111 | cap.release() 112 | cv.destroyAllWindows() 113 | 114 | return 115 | 116 | 117 | def detect_iris(image, iris_detector, left_eye, right_eye): 118 | image_width, image_height = image.shape[1], image.shape[0] 119 | input_shape = iris_detector.get_input_shape() 120 | 121 | # 左目 122 | # 目の周辺の画像を切り抜き 123 | left_eye_x1 = max(left_eye[0], 0) 124 | left_eye_y1 = max(left_eye[1], 0) 125 | left_eye_x2 = min(left_eye[2], image_width) 126 | left_eye_y2 = min(left_eye[3], image_height) 127 | left_eye_image = copy.deepcopy(image[left_eye_y1:left_eye_y2, 128 | left_eye_x1:left_eye_x2]) 129 | # 虹彩検出 130 | eye_contour, iris = iris_detector(left_eye_image) 131 | # 座標を相対座標から絶対座標に変換 132 | left_iris = calc_iris_point(left_eye, eye_contour, iris, input_shape) 133 | 134 | # 右目 135 | # 目の周辺の画像を切り抜き 136 | right_eye_x1 = max(right_eye[0], 0) 137 | right_eye_y1 = max(right_eye[1], 0) 138 | right_eye_x2 = min(right_eye[2], image_width) 139 | right_eye_y2 = min(right_eye[3], image_height) 140 | right_eye_image = copy.deepcopy(image[right_eye_y1:right_eye_y2, 141 | right_eye_x1:right_eye_x2]) 142 | # 虹彩検出 143 | eye_contour, iris = iris_detector(right_eye_image) 144 | # 座標を相対座標から絶対座標に変換 145 | right_iris = calc_iris_point(right_eye, eye_contour, iris, input_shape) 146 | 147 | return left_iris, right_iris 148 | 149 | 150 | def calc_iris_point(eye_bbox, eye_contour, iris, input_shape): 151 | iris_list = [] 152 | for index in range(5): 153 | point_x = int(iris[index * 3] * 154 | ((eye_bbox[2] - eye_bbox[0]) / input_shape[0])) 155 | point_y = int(iris[index * 3 + 1] * 156 | ((eye_bbox[3] - eye_bbox[1]) / input_shape[1])) 157 | point_x += eye_bbox[0] 158 | point_y += eye_bbox[1] 159 | 160 | iris_list.append((point_x, point_y)) 161 | 162 | return iris_list 163 | 164 | 165 | def calc_min_enc_losingCircle(landmark_list): 166 | center, radius = cv.minEnclosingCircle(np.array(landmark_list)) 167 | center = (int(center[0]), int(center[1])) 168 | radius = int(radius) 169 | 170 | return center, radius 171 | 172 | 173 | def draw_debug_image( 174 | debug_image, 175 | left_iris, 176 | right_iris, 177 | left_center, 178 | left_radius, 179 | right_center, 180 | right_radius, 181 | ): 182 | # 虹彩:外接円 183 | cv.circle(debug_image, left_center, left_radius, (0, 255, 0), 2) 184 | cv.circle(debug_image, right_center, right_radius, (0, 255, 0), 2) 185 | 186 | # 虹彩:ランドマーク 187 | for point in left_iris: 188 | cv.circle(debug_image, (point[0], point[1]), 1, (0, 0, 255), 2) 189 | for point in right_iris: 190 | cv.circle(debug_image, (point[0], point[1]), 1, (0, 0, 255), 2) 191 | 192 | # 虹彩:半径 193 | cv.putText(debug_image, 'r:' + str(left_radius) + 'px', 194 | (left_center[0] + int(left_radius * 1.5), 195 | left_center[1] + int(left_radius * 0.5)), 196 | cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1) 197 | cv.putText(debug_image, 'r:' + str(right_radius) + 'px', 198 | (right_center[0] + int(right_radius * 1.5), 199 | right_center[1] + int(right_radius * 0.5)), 200 | cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 1) 201 | 202 | return debug_image 203 | 204 | 205 | if __name__ == '__main__': 206 | main() 207 | -------------------------------------------------------------------------------- /face_mesh/__init__.py: -------------------------------------------------------------------------------- 1 | # IRIS LANDMARK -------------------------------------------------------------------------------- /face_mesh/face_mesh.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # -*- coding: utf-8 -*- 3 | import cv2 as cv 4 | import numpy as np 5 | import mediapipe as mp 6 | 7 | 8 | class FaceMesh(object): 9 | def __init__( 10 | self, 11 | max_num_faces=1, 12 | min_detection_confidence=0.7, 13 | min_tracking_confidence=0.7, 14 | ): 15 | mp_face_mesh = mp.solutions.face_mesh 16 | self._face_mesh = mp_face_mesh.FaceMesh( 17 | max_num_faces=max_num_faces, 18 | min_detection_confidence=min_detection_confidence, 19 | min_tracking_confidence=min_tracking_confidence, 20 | ) 21 | 22 | def __call__( 23 | self, 24 | image, 25 | ): 26 | # 推論 27 | image = cv.cvtColor(image, cv.COLOR_BGR2RGB) 28 | results = self._face_mesh.process(image) 29 | 30 | # X,Y座標を相対座標から絶対座標に変換 31 | # [X座標, Y座標, Z座標, Visibility, Presence]のリストに変更 32 | face_mesh_results = [] 33 | if results.multi_face_landmarks is not None: 34 | for face_landmarks in results.multi_face_landmarks: 35 | face_mesh_results.append( 36 | self._calc_landmarks(image, face_landmarks.landmark)) 37 | return face_mesh_results 38 | 39 | def _calc_landmarks(self, image, landmarks): 40 | image_width, image_height = image.shape[1], image.shape[0] 41 | 42 | landmark_list = [] 43 | for _, landmark in enumerate(landmarks): 44 | landmark_x = min(int(landmark.x * image_width), image_width - 1) 45 | landmark_y = min(int(landmark.y * image_height), image_height - 1) 46 | 47 | landmark_list.append((landmark_x, landmark_y, landmark.z, 48 | landmark.visibility, landmark.presence)) 49 | return landmark_list 50 | 51 | def _calc_bounding_rect(self, landmarks): 52 | landmark_array = np.empty((0, 2), int) 53 | 54 | for _, landmark in enumerate(landmarks): 55 | landmark_x = int(landmark[0]) 56 | landmark_y = int(landmark[1]) 57 | 58 | landmark_point = [np.array((landmark_x, landmark_y))] 59 | landmark_array = np.append(landmark_array, landmark_point, axis=0) 60 | 61 | x, y, w, h = cv.boundingRect(landmark_array) 62 | 63 | return [x, y, x + w, y + h] 64 | 65 | def get_eye_landmarks(self, landmarks): 66 | # 目の輪郭の座標列を取得 67 | 68 | left_eye_landmarks = [] 69 | right_eye_landmarks = [] 70 | 71 | if len(landmarks) > 0: 72 | # 参考:https://github.com/tensorflow/tfjs-models/blob/master/facemesh/mesh_map.jpg 73 | # 左目 74 | left_eye_landmarks.append((landmarks[133][0], landmarks[133][1])) 75 | left_eye_landmarks.append((landmarks[173][0], landmarks[173][1])) 76 | left_eye_landmarks.append((landmarks[157][0], landmarks[157][1])) 77 | left_eye_landmarks.append((landmarks[158][0], landmarks[158][1])) 78 | left_eye_landmarks.append((landmarks[159][0], landmarks[159][1])) 79 | left_eye_landmarks.append((landmarks[160][0], landmarks[160][1])) 80 | left_eye_landmarks.append((landmarks[161][0], landmarks[161][1])) 81 | left_eye_landmarks.append((landmarks[246][0], landmarks[246][1])) 82 | left_eye_landmarks.append((landmarks[163][0], landmarks[163][1])) 83 | left_eye_landmarks.append((landmarks[144][0], landmarks[144][1])) 84 | left_eye_landmarks.append((landmarks[145][0], landmarks[145][1])) 85 | left_eye_landmarks.append((landmarks[153][0], landmarks[153][1])) 86 | left_eye_landmarks.append((landmarks[154][0], landmarks[154][1])) 87 | left_eye_landmarks.append((landmarks[155][0], landmarks[155][1])) 88 | 89 | # 右目 90 | right_eye_landmarks.append((landmarks[362][0], landmarks[362][1])) 91 | right_eye_landmarks.append((landmarks[398][0], landmarks[398][1])) 92 | right_eye_landmarks.append((landmarks[384][0], landmarks[384][1])) 93 | right_eye_landmarks.append((landmarks[385][0], landmarks[385][1])) 94 | right_eye_landmarks.append((landmarks[386][0], landmarks[386][1])) 95 | right_eye_landmarks.append((landmarks[387][0], landmarks[387][1])) 96 | right_eye_landmarks.append((landmarks[388][0], landmarks[388][1])) 97 | right_eye_landmarks.append((landmarks[466][0], landmarks[466][1])) 98 | right_eye_landmarks.append((landmarks[390][0], landmarks[390][1])) 99 | right_eye_landmarks.append((landmarks[373][0], landmarks[373][1])) 100 | right_eye_landmarks.append((landmarks[374][0], landmarks[374][1])) 101 | right_eye_landmarks.append((landmarks[380][0], landmarks[380][1])) 102 | right_eye_landmarks.append((landmarks[381][0], landmarks[381][1])) 103 | right_eye_landmarks.append((landmarks[382][0], landmarks[382][1])) 104 | 105 | return left_eye_landmarks, right_eye_landmarks 106 | 107 | def calc_eye_bbox(self, landmarks): 108 | # 目に隣接するバウンディングボックスを取得 109 | 110 | left_eye_lm, right_eye_lm = self.get_eye_landmarks(landmarks) 111 | 112 | left_eye_bbox = self._calc_bounding_rect(left_eye_lm) 113 | right_eye_bbox = self._calc_bounding_rect(right_eye_lm) 114 | 115 | return left_eye_bbox, right_eye_bbox 116 | 117 | def calc_around_eye_bbox(self, landmarks, around_ratio=0.5): 118 | # 目の周囲のバウンディングボックスを取得 119 | 120 | left_eye_bbox, right_eye_bbox = self.calc_eye_bbox(landmarks) 121 | 122 | left_eye_bbox = self._calc_around_eye(left_eye_bbox, around_ratio) 123 | right_eye_bbox = self._calc_around_eye(right_eye_bbox, around_ratio) 124 | 125 | return left_eye_bbox, right_eye_bbox 126 | 127 | def _calc_around_eye(self, bbox, around_ratio=0.5): 128 | x1, y1, x2, y2 = bbox 129 | x = x1 130 | y = y1 131 | w = x2 - x1 132 | h = y2 - y1 133 | 134 | cx = int(x + (w / 2)) 135 | cy = int(y + (h / 2)) 136 | square_length = max(w, h) 137 | x = int(cx - (square_length / 2)) 138 | y = int(cy - (square_length / 2)) 139 | w = square_length 140 | h = square_length 141 | 142 | around_ratio = 0.5 143 | x = int(x - (square_length * around_ratio)) 144 | y = int(y - (square_length * around_ratio)) 145 | w = int(square_length * (1 + (around_ratio * 2))) 146 | h = int(square_length * (1 + (around_ratio * 2))) 147 | 148 | return [x, y, x + w, y + h] 149 | -------------------------------------------------------------------------------- /iris_landmark/__init__.py: -------------------------------------------------------------------------------- 1 | # IRIS LANDMARK -------------------------------------------------------------------------------- /iris_landmark/iris_landmark.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # -*- coding: utf-8 -*- 3 | import cv2 as cv 4 | import numpy as np 5 | import tensorflow as tf 6 | 7 | 8 | class IrisLandmark(object): 9 | def __init__( 10 | self, 11 | model_path='iris_landmark/iris_landmark.tflite', 12 | num_threads=1, 13 | ): 14 | self._interpreter = tf.lite.Interpreter(model_path=model_path, 15 | num_threads=num_threads) 16 | self._interpreter.allocate_tensors() 17 | self._input_details = self._interpreter.get_input_details() 18 | self._output_details = self._interpreter.get_output_details() 19 | 20 | def __call__( 21 | self, 22 | image, 23 | ): 24 | input_shape = self._input_details[0]['shape'] 25 | 26 | # 正規化・リサイズ 27 | img = cv.cvtColor(image, cv.COLOR_BGR2RGB) 28 | img = img / 255.0 29 | img_resized = tf.image.resize(img, [input_shape[1], input_shape[2]], 30 | method='bicubic', 31 | preserve_aspect_ratio=False) 32 | img_input = img_resized.numpy() 33 | img_input = (img_input - 0.5) / 0.5 34 | 35 | reshape_img = img_input.reshape(1, input_shape[1], input_shape[2], 36 | input_shape[3]) 37 | tensor = tf.convert_to_tensor(reshape_img, dtype=tf.float32) 38 | 39 | # 推論実行 40 | input_details_tensor_index = self._input_details[0]['index'] 41 | self._interpreter.set_tensor(input_details_tensor_index, tensor) 42 | self._interpreter.invoke() 43 | 44 | # 推論結果取得 45 | output_details_tensor_index0 = self._output_details[0]['index'] 46 | output_details_tensor_index1 = self._output_details[1]['index'] 47 | eye_contour = self._interpreter.get_tensor( 48 | output_details_tensor_index0) 49 | iris = self._interpreter.get_tensor(output_details_tensor_index1) 50 | 51 | return np.squeeze(eye_contour), np.squeeze(iris) 52 | 53 | def get_input_shape(self): 54 | input_shape = self._input_details[0]['shape'] 55 | return [input_shape[1], input_shape[2]] -------------------------------------------------------------------------------- /iris_landmark/iris_landmark.tflite: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Kazuhito00/iris-detection-using-py-mediapipe/85ead970598017967937d3f5d7ffe6238aa3fe9b/iris_landmark/iris_landmark.tflite -------------------------------------------------------------------------------- /utils/__init__.py: -------------------------------------------------------------------------------- 1 | from utils.cvfpscalc import CvFpsCalc -------------------------------------------------------------------------------- /utils/cvfpscalc.py: -------------------------------------------------------------------------------- 1 | from collections import deque 2 | import cv2 as cv 3 | 4 | 5 | class CvFpsCalc(object): 6 | def __init__(self, buffer_len=1): 7 | self._start_tick = cv.getTickCount() 8 | self._freq = 1000.0 / cv.getTickFrequency() 9 | self._difftimes = deque(maxlen=buffer_len) 10 | 11 | def get(self): 12 | current_tick = cv.getTickCount() 13 | different_time = (current_tick - self._start_tick) * self._freq 14 | self._start_tick = current_tick 15 | 16 | self._difftimes.append(different_time) 17 | 18 | fps = 1000.0 / (sum(self._difftimes) / len(self._difftimes)) 19 | fps_rounded = round(fps, 2) 20 | 21 | return fps_rounded 22 | --------------------------------------------------------------------------------