├── README.md
├── Untitled6 (1).py
├── LICENSE
├── .gitignore
└── Untitled37.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # data-analysis-and-machine-learning-algorithms-
--------------------------------------------------------------------------------
/Untitled6 (1).py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | # coding: utf-8
3 |
4 | # In[1]:
5 |
6 |
7 | import pandas as pd
8 | import matplotlib.pyplot as plt
9 | import seaborn as sns
10 | import numpy as np
11 |
12 |
13 | # In[3]:
14 |
15 |
16 | df=pd.read_csv("E:\IBM\covid_vaccine_statewise - covid_vaccine_statewise (1).csv")
17 | df
18 |
19 |
20 | # In[4]:
21 |
22 |
23 | df.head()
24 |
25 |
26 | # In[5]:
27 |
28 |
29 | df.tail()
30 |
31 |
32 | # In[6]:
33 |
34 |
35 | df.dtypes
36 |
37 |
38 | # In[7]:
39 |
40 |
41 | df.isnull()
42 |
43 |
44 | # In[10]:
45 |
46 |
47 | df["First Dose Administered"].fillna(df["First Dose Administered"].mode()[0],inplace=True)
48 |
49 |
50 | # In[11]:
51 |
52 |
53 | df.dropna().values
54 |
55 |
56 | # In[12]:
57 |
58 |
59 | df.describe().T
60 |
61 |
62 | # In[13]:
63 |
64 |
65 | df.info()
66 |
67 |
68 | # In[14]:
69 |
70 |
71 | df["Sessions"].hist()
72 |
73 |
74 | # In[16]:
75 |
76 |
77 | df.groupby("State")
78 |
79 |
80 | # In[ ]:
81 |
82 |
83 |
84 |
85 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | BSD 2-Clause License
2 |
3 | Copyright (c) 2024, KISHAN KUMAR SURESH KUMAR
4 |
5 | Redistribution and use in source and binary forms, with or without
6 | modification, are permitted provided that the following conditions are met:
7 |
8 | 1. Redistributions of source code must retain the above copyright notice, this
9 | list of conditions and the following disclaimer.
10 |
11 | 2. Redistributions in binary form must reproduce the above copyright notice,
12 | this list of conditions and the following disclaimer in the documentation
13 | and/or other materials provided with the distribution.
14 |
15 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
19 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
22 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
23 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # poetry
98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102 | #poetry.lock
103 |
104 | # pdm
105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106 | #pdm.lock
107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108 | # in version control.
109 | # https://pdm.fming.dev/#use-with-ide
110 | .pdm.toml
111 |
112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113 | __pypackages__/
114 |
115 | # Celery stuff
116 | celerybeat-schedule
117 | celerybeat.pid
118 |
119 | # SageMath parsed files
120 | *.sage.py
121 |
122 | # Environments
123 | .env
124 | .venv
125 | env/
126 | venv/
127 | ENV/
128 | env.bak/
129 | venv.bak/
130 |
131 | # Spyder project settings
132 | .spyderproject
133 | .spyproject
134 |
135 | # Rope project settings
136 | .ropeproject
137 |
138 | # mkdocs documentation
139 | /site
140 |
141 | # mypy
142 | .mypy_cache/
143 | .dmypy.json
144 | dmypy.json
145 |
146 | # Pyre type checker
147 | .pyre/
148 |
149 | # pytype static type analyzer
150 | .pytype/
151 |
152 | # Cython debug symbols
153 | cython_debug/
154 |
155 | # PyCharm
156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158 | # and can be added to the global gitignore or merged into this file. For a more nuclear
159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160 | #.idea/
161 |
--------------------------------------------------------------------------------
/Untitled37.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "provenance": [],
7 | "authorship_tag": "ABX9TyN30rMj4HXg7+aQKV4x/K/b",
8 | "include_colab_link": true
9 | },
10 | "kernelspec": {
11 | "name": "python3",
12 | "display_name": "Python 3"
13 | },
14 | "language_info": {
15 | "name": "python"
16 | }
17 | },
18 | "cells": [
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {
22 | "id": "view-in-github",
23 | "colab_type": "text"
24 | },
25 | "source": [
26 | " "
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": 44,
32 | "metadata": {
33 | "id": "_GUlGOJI2_6c"
34 | },
35 | "outputs": [],
36 | "source": [
37 | "import pandas as pd\n",
38 | "import matplotlib.pyplot as plt\n",
39 | "import seaborn as sns\n",
40 | "import numpy as np\n",
41 | "from sklearn.linear_model import LinearRegression\n",
42 | "from sklearn.model_selection import train_test_split"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "source": [
48 | "df=pd.read_csv(\"/content/covid_19_india _l.csv\")\n",
49 | "df"
50 | ],
51 | "metadata": {
52 | "colab": {
53 | "base_uri": "https://localhost:8080/",
54 | "height": 423
55 | },
56 | "id": "KmlDrYqb3w-I",
57 | "outputId": "5aee384b-4fd4-4194-adc0-1fc226f2fc3e"
58 | },
59 | "execution_count": 45,
60 | "outputs": [
61 | {
62 | "output_type": "execute_result",
63 | "data": {
64 | "text/plain": [
65 | " Unnamed: 0 Date State/UT Latitude Longitude Confirmed \\\n",
66 | "0 0 30-01-2020 Kerala 10.8505 76.2711 1 \n",
67 | "1 1 31-01-2020 Kerala 10.8505 76.2711 1 \n",
68 | "2 2 01-02-2020 Kerala 10.8505 76.2711 2 \n",
69 | "3 3 02-02-2020 Kerala 10.8505 76.2711 3 \n",
70 | "4 4 03-02-2020 Kerala 10.8505 76.2711 3 \n",
71 | ".. ... ... ... ... ... ... \n",
72 | "947 947 15-04-2020 Telengana 18.1124 79.0193 624 \n",
73 | "948 948 15-04-2020 Tripura 23.9408 91.9882 2 \n",
74 | "949 949 15-04-2020 Uttar Pradesh 26.8467 80.9462 660 \n",
75 | "950 950 15-04-2020 Uttarakhand 30.0668 79.0193 37 \n",
76 | "951 951 15-04-2020 West Bengal 22.9868 87.8550 213 \n",
77 | "\n",
78 | " Active Deaths Mortality rate Cured Recovery rate \n",
79 | "0 1 0 0.000000 0 0.000000 \n",
80 | "1 1 0 0.000000 0 0.000000 \n",
81 | "2 2 0 0.000000 0 0.000000 \n",
82 | "3 3 0 0.000000 0 0.000000 \n",
83 | "4 3 0 0.000000 0 0.000000 \n",
84 | ".. ... ... ... ... ... \n",
85 | "947 507 17 0.027244 100 0.160256 \n",
86 | "948 2 0 0.000000 0 0.000000 \n",
87 | "949 605 5 0.007576 50 0.075758 \n",
88 | "950 28 0 0.000000 9 0.243243 \n",
89 | "951 169 7 0.032864 37 0.173709 \n",
90 | "\n",
91 | "[952 rows x 11 columns]"
92 | ],
93 | "text/html": [
94 | "\n",
95 | "
\n",
96 | "
\n",
97 | "\n",
110 | "
\n",
111 | " \n",
112 | " \n",
113 | " \n",
114 | " Unnamed: 0 \n",
115 | " Date \n",
116 | " State/UT \n",
117 | " Latitude \n",
118 | " Longitude \n",
119 | " Confirmed \n",
120 | " Active \n",
121 | " Deaths \n",
122 | " Mortality rate \n",
123 | " Cured \n",
124 | " Recovery rate \n",
125 | " \n",
126 | " \n",
127 | " \n",
128 | " \n",
129 | " 0 \n",
130 | " 0 \n",
131 | " 30-01-2020 \n",
132 | " Kerala \n",
133 | " 10.8505 \n",
134 | " 76.2711 \n",
135 | " 1 \n",
136 | " 1 \n",
137 | " 0 \n",
138 | " 0.000000 \n",
139 | " 0 \n",
140 | " 0.000000 \n",
141 | " \n",
142 | " \n",
143 | " 1 \n",
144 | " 1 \n",
145 | " 31-01-2020 \n",
146 | " Kerala \n",
147 | " 10.8505 \n",
148 | " 76.2711 \n",
149 | " 1 \n",
150 | " 1 \n",
151 | " 0 \n",
152 | " 0.000000 \n",
153 | " 0 \n",
154 | " 0.000000 \n",
155 | " \n",
156 | " \n",
157 | " 2 \n",
158 | " 2 \n",
159 | " 01-02-2020 \n",
160 | " Kerala \n",
161 | " 10.8505 \n",
162 | " 76.2711 \n",
163 | " 2 \n",
164 | " 2 \n",
165 | " 0 \n",
166 | " 0.000000 \n",
167 | " 0 \n",
168 | " 0.000000 \n",
169 | " \n",
170 | " \n",
171 | " 3 \n",
172 | " 3 \n",
173 | " 02-02-2020 \n",
174 | " Kerala \n",
175 | " 10.8505 \n",
176 | " 76.2711 \n",
177 | " 3 \n",
178 | " 3 \n",
179 | " 0 \n",
180 | " 0.000000 \n",
181 | " 0 \n",
182 | " 0.000000 \n",
183 | " \n",
184 | " \n",
185 | " 4 \n",
186 | " 4 \n",
187 | " 03-02-2020 \n",
188 | " Kerala \n",
189 | " 10.8505 \n",
190 | " 76.2711 \n",
191 | " 3 \n",
192 | " 3 \n",
193 | " 0 \n",
194 | " 0.000000 \n",
195 | " 0 \n",
196 | " 0.000000 \n",
197 | " \n",
198 | " \n",
199 | " ... \n",
200 | " ... \n",
201 | " ... \n",
202 | " ... \n",
203 | " ... \n",
204 | " ... \n",
205 | " ... \n",
206 | " ... \n",
207 | " ... \n",
208 | " ... \n",
209 | " ... \n",
210 | " ... \n",
211 | " \n",
212 | " \n",
213 | " 947 \n",
214 | " 947 \n",
215 | " 15-04-2020 \n",
216 | " Telengana \n",
217 | " 18.1124 \n",
218 | " 79.0193 \n",
219 | " 624 \n",
220 | " 507 \n",
221 | " 17 \n",
222 | " 0.027244 \n",
223 | " 100 \n",
224 | " 0.160256 \n",
225 | " \n",
226 | " \n",
227 | " 948 \n",
228 | " 948 \n",
229 | " 15-04-2020 \n",
230 | " Tripura \n",
231 | " 23.9408 \n",
232 | " 91.9882 \n",
233 | " 2 \n",
234 | " 2 \n",
235 | " 0 \n",
236 | " 0.000000 \n",
237 | " 0 \n",
238 | " 0.000000 \n",
239 | " \n",
240 | " \n",
241 | " 949 \n",
242 | " 949 \n",
243 | " 15-04-2020 \n",
244 | " Uttar Pradesh \n",
245 | " 26.8467 \n",
246 | " 80.9462 \n",
247 | " 660 \n",
248 | " 605 \n",
249 | " 5 \n",
250 | " 0.007576 \n",
251 | " 50 \n",
252 | " 0.075758 \n",
253 | " \n",
254 | " \n",
255 | " 950 \n",
256 | " 950 \n",
257 | " 15-04-2020 \n",
258 | " Uttarakhand \n",
259 | " 30.0668 \n",
260 | " 79.0193 \n",
261 | " 37 \n",
262 | " 28 \n",
263 | " 0 \n",
264 | " 0.000000 \n",
265 | " 9 \n",
266 | " 0.243243 \n",
267 | " \n",
268 | " \n",
269 | " 951 \n",
270 | " 951 \n",
271 | " 15-04-2020 \n",
272 | " West Bengal \n",
273 | " 22.9868 \n",
274 | " 87.8550 \n",
275 | " 213 \n",
276 | " 169 \n",
277 | " 7 \n",
278 | " 0.032864 \n",
279 | " 37 \n",
280 | " 0.173709 \n",
281 | " \n",
282 | " \n",
283 | "
\n",
284 | "
952 rows × 11 columns
\n",
285 | "
\n",
286 | "
\n",
549 | "
\n"
550 | ]
551 | },
552 | "metadata": {},
553 | "execution_count": 45
554 | }
555 | ]
556 | },
557 | {
558 | "cell_type": "code",
559 | "source": [
560 | "sns.lmplot(x=\"Confirmed\",y=\"Cured\",data=df)"
561 | ],
562 | "metadata": {
563 | "colab": {
564 | "base_uri": "https://localhost:8080/",
565 | "height": 523
566 | },
567 | "id": "uJVrHDl535CM",
568 | "outputId": "1f8aad14-128a-4439-f5af-b22e2ebf36e4"
569 | },
570 | "execution_count": 46,
571 | "outputs": [
572 | {
573 | "output_type": "execute_result",
574 | "data": {
575 | "text/plain": [
576 | ""
577 | ]
578 | },
579 | "metadata": {},
580 | "execution_count": 46
581 | },
582 | {
583 | "output_type": "display_data",
584 | "data": {
585 | "text/plain": [
586 | ""
587 | ],
588 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAAHpCAYAAACmzsSXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF3klEQVR4nO3deXxU1f0//te5d+7cmcls2RcIW9gCAVzZrKCVCm4Vaj91a6v9ttoi2LpWxX3FT9ufbbWI/dhPtd9+RbuJVlTqCtSCoAhCwpqAbNm3mUxmv/f8/pjMJZNMQhJmz/vpI4+HuXNn5syQ5DXn3HPeh3HOOQghhBCScoRkN4AQQggh0VFIE0IIISmKQpoQQghJURTShBBCSIqikCaEEEJSFIU0IYQQkqIopAkhhJAURSENgHMOp9MJWjJOCCEklVBIA+jo6IDNZkNHR0eym0IIIYRoKKQJIYSQFEUhTQghhKQoCmlCCCEkRVFIE0IIISmKQpoQQghJURTShBBCSIqikCaEEEJSFIU0IYQQkqIopAkhhJAURSFNCCGEpCgKaUIIISRFUUgTQgghKYpCmhBCCElRumQ3gBBCCEl1qspRVetEq9uPHJMeU0usEAQW9+elkCaEEEL6sbm6Gas31qCm0YWAwiGJDGUFZiydX4a54/Pi+tw03E0IIYT0YXN1M1as3Y29dU5kyToUWGRkyTrsrevAirW7sbm6Oa7PTyFNCCGERKGqHKs31sDlC6LIaoBBEiEIDAZJRJFVhsunYPXGGqgqj1sbKKQJIYSQKKpqnahpdCHbpAdjkdefGWOwmyTUNLpQVeuMWxsopAkhhJAoWt1+BBQOvRg9KmVRQEDlaHX749YGCmlCCCEkihyTHpLI4FfUqLf7FBWSwJBj0setDRTShBBCSBRTS6woKzCjzR0A55HXnTnnaHcHUFZgxtQSa9zaQCFNCCGERCEIDEvnl8Esi6h3+uAJKFBVDk9AQb3TB7MsYun8sriul6aQJoQQQvowd3wenloyDeXFFrh9QTS6fHD7gigvtuCpJdPivk6a8Z59+GHI6XTCZrPB4XDAao3fsAUhhJD0RBXHCCGEkBQlCAzTRtoS/7wJf0ZCCCGEDAiFNCGEEJKiKKQJIYSQFJXUkF65ciXOPfdcWCwWFBQUYPHixdi/f3/EORdccAEYYxFfP/nJTyLOOXr0KC677DKYTCYUFBTg7rvvRjAYTORLIYQQQmIuqRPHNm7ciGXLluHcc89FMBjEihUrcPHFF2PPnj3IysrSzrvpppvw2GOPad+bTCbt/xVFwWWXXYaioiJs3rwZdXV1+P73vw9JkvDUU08l9PUQQgghsZRSS7CamppQUFCAjRs3Yt68eQBCPekzzjgDv/nNb6Le591338Xll1+O2tpaFBYWAgBeeOEF3HPPPWhqaoJef+pybbQEixBCSCpKqWvSDocDAJCTkxNx/JVXXkFeXh4qKipw3333we12a7dt2bIF06ZN0wIaABYuXAin04mqqqqoz+Pz+eB0OiO+CCGEkFSTMuukVVXFbbfdhvPOOw8VFRXa8euuuw6jR49GSUkJdu3ahXvuuQf79+/H66+/DgCor6+PCGgA2vf19fVRn2vlypV49NFH4/RKCCGEkNhImZBetmwZKisr8cknn0Qcv/nmm7X/nzZtGoqLi3HRRRehpqYGZWVlQ3qu++67D3fccYf2vdPpRGlp6dAaTgghhMRJSgx3L1++HOvWrcPHH3+MkSNH9nvurFmzAADV1dUAgKKiIjQ0NEScE/6+qKgo6mPIsgyr1RrxRQghhKSapIY05xzLly/H2rVr8dFHH2Hs2LGnvM/OnTsBAMXFxQCAOXPmYPfu3WhsbNTOef/992G1WjFlypS4tJsQQsjw4w0oCPSxt3S8JHV29y233II1a9bgzTffxKRJk7TjNpsNRqMRNTU1WLNmDS699FLk5uZi165duP322zFy5Ehs3LgRQGgJ1hlnnIGSkhL84he/QH19Pb73ve/hRz/60YCXYNHsbkIIIf3xBhTUO7wosRuh1yWuf5vUkGYs+g4iL730Em688UYcO3YM3/3ud1FZWYnOzk6UlpZiyZIleOCBByLC9MiRI1i6dCk2bNiArKws3HDDDXj66aeh0w3skjuFNCGEkL6EA1rlHCOzTcMnpFMFhTQhhJBougc0gISHdMrM7iaEEEJSicevoMF5MqCTgUKaEEII6cHjV1Dv9CLZg80psQSLEEIISRWpEtAA9aQJIYQQjdsfRIPTlxIBDVBPmhBCCAGQegENUE+aEEIIQacviMaO1ApogHrShBBChrlUDWiAetKEEEKGMZcviKYUDWiAetKEEEKGqVQPaIB60oQQQoahDm8ATR2+ZDfjlKgnTQghZFhJl4AGKKQJIYQMI+kU0AANdxNCCBkmnN4AmtMooAEKaUIIIcOAwxNAiyu9Ahqg4W5CCCEZLl0DGqCeNCGEkAzmcAfQ0pmeAQ1QT5oQQkiGSveABqgnTQghJAO1u/1o7fQnuxmnjXrShBBCMkqmBDRAPWlCCCEZpK3TjzZ3ZgQ0QD1pQgghGSLTAhqgnjQhhJAM0NrpR3uGBTRAIU0IISTNtbh8cHgCyW5GXNBwNyGEkLSVyQENUE+aEEJImmp2+eDM4IAGqCdNCCEkDQ2HgAaoJ00IISTNNHX40OHN/IAGqCdNCCEkjQyngAaoJ00IISRNNHZ44fIGk92MhKKeNCGEkJQ3HAMaoJ40IYSQFNfo9MLlG34BDVBIE0IISVGcczR1+IZtQAMU0oQQQlIQ5xyNHT50DuOABuiaNCGEkBRDAX0S9aQJIYSkDM45Gpw+uP0U0AD1pAkhhKQICujeKKQJIYQkHQV0dDTcTQghKUxVOapqnWh1+5Fj0mNqiRWCwJLdrJjinKPe6YXHryS7KSmHQpoQQlLU5upmrN5Yg5pGFwIKhyQylBWYsXR+GeaOz0t282KCArp/NNxNCCEpaHN1M1as3Y29dU5kyToUWGRkyTrsrevAirW7sbm6OdlNPG2qylHnoIDuD4U0IYSkGFXlWL2xBi5fEEVWAwySCEFgMEgiiqwyXD4FqzfWQFV5sps6ZKoa6kF7AxTQ/aGQJoSQFFNV60RNowvZJj0Yi7z+zBiD3SShptGFqlpnklp4elSVo44CekAopAkhJMW0uv0IKBx6MfqfaFkUEFA5Wt3+BLfs9IUD2kcBPSAU0oQQkmJyTHpIIoNfUaPe7lNUSAJDjkmf4JadHoUCetAopAkhJMVMLbGirMCMNncAnEded+aco90dQFmBGVNLrElq4eApKkedw5PWAd3g9OJPm79K6HNSSBNCSIoRBIal88tglkXUO33wBBSoKocnoKDe6YNZFrF0flnarJcOB7Q/GH1kIB3srXPille+wJPv7MWr244m7HkZ7/kxbRhyOp2w2WxwOBywWtPnk2miDIdiCoSkooh10iqHJKTfOulMCOiNB5qw8t192mvQCQwf3jkfo3Oz4v7cVMyE9Gs4FFMgJFXNHZ+H2eNy0/ZDsqJy1LZ7EOjj2nqq45zj1W3H8IdPDmvHdALDU0umJSSgAepJA6CedF/CxRRcviCyTXroRQF+RUWbOwCzLOKpJdMoqAkhUQUVFXUOb9oGdEBR8cz7B/CvqgbtmMWgw6rrzsK8ifkJawddkyZRDYdiCoSQ+Ej3gHZ4Arj777siAnqE3YjfXXsmZo/LTWhbKKRJVJleTIEQEh/pHtBHW91YvmYHdh13aMemj7Thd9edidIcU8LbQ9ekSVQDKabgSNNiCoQMBk2cHLh0D+idx9rx8D+r0OE9uV3mwqmFuH3BROh1yenTUkiTqLoXUzAIYq/b07WYAiGDQRMnBy6gqKhP44B+d3cdnvngIJRul/B+9LWxuHZmaa/RxESi4W4SVSYWUyBkMIbDLlSxks4BrXKO/9l0CL9874AW0HqdgIevmILrZo1KakADFNKkD5lWTIGQwaCJkwMXUFTUtadnQHsDCh59aw9e++yYdizbJOHX35mB+Qmcwd0fCmnSp7nj8/DUkmkoL7bA7Qui0eWD2xdEebGFll+RjEYTJwfGHwwFdFBNv4Budvlw21924t8HT46IjMvLwvPXn4Xy4tQZIaRr0qRf6V5MgZChoImTp+YPhoa40zGgaxpdWLG2Ek0un3Zs1tgcPHBZObLk1IrF1GoNSUmCwDBtpC3ZzSAkYWjiZP/8QRV1Dk/EJKt0saWmBY+/vQfewMkPF0vOHIFbLiiDmIKdDwppQgjpITxxcm9dB4qsQsSQd3jiZHmxZVhOnPQFFdQ7vGkX0Jxz/P2LE3hhQw3CLRcYsPzC8Vh85oiktq0/dE2aEEJ6oImT0aVrQAcVFb/54CBWdwtokz5U2jiVAxqg2t0AqHY3ISS6TNiFKlbSNaBd3iAeXbcH24+0accKrTKeWjINY/MGv0nGyGxTQgub0HA3IYT0gSZOhngDChqc6RfQte0e3L+2Ekda3dqx8mILHr+yAjlZ6TGfgEKaEEL6MdwnTnoDoR60mmaDrpUnHHjwzSo4PAHt2IWT8vHzhZMgS70nA6YqCmlCCCFRpWtAf7C3Ab/8134ElJPt/t7sUbhh7hgISa4gNlhJnTi2cuVKnHvuubBYLCgoKMDixYuxf//+iHO8Xi+WLVuG3NxcmM1mXHXVVWhoaIg45+jRo7jssstgMplQUFCAu+++G8FgEIQQQoYmHQOac46XN3+Fp97ZpwW0JDLce8lk/OC8sWkX0ECSQ3rjxo1YtmwZPv30U7z//vsIBAK4+OKL0dnZqZ1z++2346233sLf/vY3bNy4EbW1tfjWt76l3a4oCi677DL4/X5s3rwZf/rTn/Dyyy/joYceSsZLIoSQtJeOAe0PqnjynX34v1uOaMesBh1+9e0ZuHhKYRJbdnpSanZ3U1MTCgoKsHHjRsybNw8OhwP5+flYs2YNvv3tbwMA9u3bh/LycmzZsgWzZ8/Gu+++i8svvxy1tbUoLAz9Q7zwwgu455570NTUBL3+1JMDaHY3IYSEePwK6p3eXhvrpLI2tx8PvVkVUaZ1VI4JTy6pwAi7MabPlejZ3Sm1TtrhCG2ynZOTAwDYvn07AoEAFixYoJ0zefJkjBo1Clu2bAEAbNmyBdOmTdMCGgAWLlwIp9OJqqqqqM/j8/ngdDojvgghZLhLx4D+qqUTy9fsiAjos0bZ8dy1Z8Q8oJMhZUJaVVXcdtttOO+881BRUQEAqK+vh16vh91ujzi3sLAQ9fX12jndAzp8e/i2aFauXAmbzaZ9lZaWxvjVEEJIeknHgP78q1bcumYH6hxe7djl04vx9LemwWKQktiy2EmZkF62bBkqKyvx2muvxf257rvvPjgcDu3r2LFjp74TIYRkKLc/mHYB/c8va3Hv67vR6VcAAAzA0vnjcPuCCdD1sTFKOkqJJVjLly/HunXrsGnTJowcOVI7XlRUBL/fj/b29ojedENDA4qKirRztm3bFvF44dnf4XN6kmUZsizH+FUQQkj6cfuDaHD60iagFZXjhY01+McXJ7RjBp2A+y8rx3kZWAUuqR83OOdYvnw51q5di48++ghjx46NuP3ss8+GJEn48MMPtWP79+/H0aNHMWfOHADAnDlzsHv3bjQ2NmrnvP/++7BarZgyZUpiXgghhKShTl96BbTbH8SDb1ZGBHSuWY/fXHNGRgY0kOSe9LJly7BmzRq8+eabsFgs2jVkm80Go9EIm82GH/7wh7jjjjuQk5MDq9WKW2+9FXPmzMHs2bMBABdffDGmTJmC733ve/jFL36B+vp6PPDAA1i2bBn1lgkhpA+dviAaO9InoBudXtz/RiVqmk4u0R1fYMaTiyuQb8ncv/VJXYLF+lhY/tJLL+HGG28EECpmcuedd+LVV1+Fz+fDwoUL8fzzz0cMZR85cgRLly7Fhg0bkJWVhRtuuAFPP/00dLqBfQahJViEkOHE5QuiKY0Cel+9Ew+8UYXWTr927LyyXKy4rBzGBJf4TPQSrJRaJ50sFNKEkOHC5Qui0ek99YkpYtOBJqx8dx98QVU79p1zRuKm88dBTMJGJ7QLFiGEkLjo8AbQ1OFLdjMGhHOOV7cdwx8+OawdEwWG2y6agMumFyexZYlFIU0IIcNAOgV0QFHx6/cPYn3VyVoXWbKIR6+YirNGZyexZYlHIU0IIRnO6Q2gOU0C2ukJ4OF/VuHL4w7tWLHNgJVLpmFUrimJLUsOCmlCCMlg6RTQx9vcWLG2EsfbPNqxaSOseOybFbCZMqOC2GBRSBNCSIZyeAJocaVHQH95rB0P/7MKTu/JbYYXlBfgrosnJXSiVqqhkCaEkAyUTgG9vrIez7x/AEH15GKjH5w3Bt+dNarPpbrDBYU0ISQtqSpHVa0TrW4/ckx6TC2xQkjCkpxU5HAH0NKZ+gGtco7//eQwXt12cv8ESWS4d9FkXDi5IIktSx0U0oSQtLO5uhmrN9agptGFgMIhiQxlBWYsnV+GuRlaHnKg0iWgvQEFT7+7D5sONmvHsk0SHr+yAlNKqF5F2PAd6CeEpKXN1c1YsXY39tY5kSXrUGCRkSXrsLeuAyvW7sbm6uZTP0iGanf70yKgW1w+3P7XLyMCekyuCauuO4sCugcKaUJI2lBVjtUba+DyBVFkNcAgiRAEBoMkosgqw+VTsHpjDVR1+BVSbHf7I8pmpqqaRheWrdmB/fUd2rGZY7Lx3LVnoshmSGLLUhOFNCEkbVTVOlHT6EK2Sd9rQhFjDHaThJpGF6pqnUlqYXK0daZHQH96qAU/fW0nGrstCVt8RgmeXDINWTJdfY2G3hVCSNpodfsRUDj0YvT+hSwKcKgcre7UD6xYaev0oy3FXy/nHK/vOIHVG2oQHuQQGHDLBePxrbNGJLdxKY5CmhCSNnJMekgig19RYRB6737kU1RIAkOOSZ+E1iVea6cf7Ske0IrK8buPqvHml7XaMaMk4sHLyzF7XG4SW5YeKKQJIWljaokVZQVm7K3rQJFViBjy5pyj3R1AebEFU4fB5KMWlw8OTyDZzeiXyxfE4+v24LOv2rRjBRYZTy6pQFm+OYktSx90TZoQkjYEgWHp/DKYZRH1Th88AQWqyuEJKKh3+mCWRSydX5bx66XTIaDrHV7c+uqOiICeVGTB89efRQE9CBTShJC0Mnd8Hp5aMg3lxRa4fUE0unxw+4IoL7bgqSXTMn6ddHMaBPSeWieWrfkCR1rc2rH5E/Pxm+/MQE7W8LgUESs03E0ISTtzx+dh9rjcYVdxrNnlgzPFA/qjfY347/X7EFBOLoO7ftYo/OC8MRCGeYnPoaCQJoSkJUFgmDbSluxmJExThw8d3tQNaM45/vzpEby8+Yh2TCcw3HnxRCycWpTElqU3CmlCCElxqR7Q/qCKX723Hx/sbdSOWQ06PPrNqZhRak9ewzIAhTTpE21gQEjyNXZ44eq2fWOqaXf78dCbVajsVkBmZLYRTy2pwMhsUxJblhkopElUtIEBIcmX6gF9pKUTK9ZWos7h1Y6dUWrHI1dMgdUoJbFlmYNmd5NeaAMDQpKv0ZnaAb39SBuWv7ojIqAvrSjCf181jQI6hqgnTSL03MAgXCzCIIgosgqod/qwemMNZo/LpaFvQuKAc46mDh9cvtQN6HW7avGbDw5qJT4ZgJvmjcPV54zsVVOdnB4KaRJhMBsYDKeZtYQkAuccjR0+dKZoQCsqx/9sOoS/bT+uHZN1AlZcWo7zJ9BlsHigkCYRaAMDQpIj1QPa41fw5Dt7sbmmRTuWm6XHE4srMKnIksSWZTYKaRKBNjAgJPE452hw+uD2p2ZAN3X4cP/aSlQ3ubRj4/PNeHJJBfItchJblvlo4hiJEN7AoM0dAOc84rbwBgZlBeZhsYEBIYmQ6gF9oKEDt6z5IiKg54zLxW+vOYMCOgEopEkE2sCAkMThnKPe6U3ZgP7kYDNue20nWlwnL299++wReOzKqTDqe4+0kdhjvGd3aRhyOp2w2WxwOBywWqmHCPRYJ61ySAKtkyYklsIB7fEryW5KL5xz/OXz43hx0yGEA0JgwM8umoArZpQktW3JNjLbBL0ucf1buiZNohquGxgQkgiqytHQkZoBHVBU/PaDg3insl47liWLePjyKThnTE4SWzY8UUiTPg23DQwISQRVDfWgvYHUC+gObwCPvLUHO462a8eKbQY8uaQCY3KzktewYYxCmhBCEiSVA/pEmwcr1u7GsTaPdqyixIrHrpwKO63mSBoKaUIISQBV5ahzeuFLwYD+8ng7Hn6zCs5uZUgXlBfgrosnJfT6K+mNQpoQQuIslQP6vap6/Oq9AwiqJ+cQ/2DuGHx39igq8ZkCKKQJISSOlK4h7lQLaJVzvPSfr/DK1qPaMUlkuGfRZHx9ckESW5a6ZEmEmODJsxTShBASJ4rKUefwwB9Uk92UCL6AgqfX78fGA03aMbtRwuOLp2JqCU0W7YkxhmyTlJRr8xTShBASB6ka0K2dfjzwRiX21Xdox0bnmvDUkgoU24xJbFlq0usE5FtkyLrkFG+hkCaEkBhL1YA+1OTCirWVaOzwacfOGZ2Nh66YArNMcdAdYwx2owS7SUrqtXn6VyGEkBhSVI7adg8CSmoF9NbDLXh83V64uxVQ+eaMEtz69fEJv86a6iQx1Hs2SMkvfUohTQghMRJUVNQ5vCkX0K9/cQLPb6hGeAI3A3DLhWX41pkjaAZ3D3aTHtlJ7j13RyFNCCExkIoBragcv/u4Gm/urNWOGSQBD1xWjrllVIO/u1TqPXdHIU0IIacpFQO60xfE4+v2YNtXbdqxfLOMp5ZUoKzAnMSWpR6rUUJulj5les/dUUgTQshpSMWArnd6cf/aShxu7tSOTSq04InFU5Frpj2gwyRRQJ5ZTultNymkCSFkiAKKivoUC+i9dU488EYl2twB7di8CXm495LJKTeUm0wWQ6j3nOo7+1FIE0LIEAQUFXXtXgTV1AnoDfsb8fT6/RFLv66bWYr/87WxEFJwKDcZdIKAPIseJn16xF96tJIQQlJIqgU05xyvbD2KP/7nK+2YTmC44xsTsaiiKHkNSzFmgw55WXLK9567o5AmhJBB8AdDQ9ypEtD+oIpn3j+A9/Y0aMcsBh0e++ZUzCi1J69hKUQUGPLMMrLSsGBL+rWYEEKSJNUC2uEO4KF/VmH3CYd2bGS2EU8tqcDIbFMSW5Y6zLIOuWY5bQu2UEgTQsgA+IMq6hweKN22dEymoy1urHhjN2rbvdqxGSNtePSbU2E1SklsWWoQBYZcs5z25U7Tu/WEEJIAvqCCeoc3ZQL6i6NteOSfe+DyBbVji6YW4fZvTIAkCklsWWow6XXIM+uhy4D3gkKaEEL6kWoB/fauOvzmw4MR7fnR18bi2pmlKVmMI5EExpBr1sNiyJyRBAppQgjpQyoFtKJyvPjvQ/jr58e1Y7JOwH2XTMa8iflJbFlqMOpF5JvljOg9d0chTQghUXgDChqcqRHQnoCCp97ei//UtGjHcrL0eHJxBSYVWZLYsuQTGEN2lh62DL0OTyFNCCE9eAOhHrTKkx/QTR0+PPBGJQ42urRjZflZeHJxBQqshiS2LPkMkoh8i5zR1+EppAkhpJtUCuiDDR24/41KNLv82rHZ43LwwGXlaVMxKx4YY8gx6WEzZWbvubvh+69MCCE9pFJA/6e6GU++vRfebiU+rzprBH4yvyxt1/zGgiyFrj3rdZnbe+6OQpoQQpA6Ac05x9+2H8fvNx5CuCUCA279+gRceUZJUtuWTIwxZJsk2E36ZDcloSikCSHDnsevoN7pBU9yQAcVFc9+VI11u+q0Y1l6EQ9dMQXnjslJYsuSS68TkG+RIeuG3y5eFNKEkGEtVQLa5Q3ikbeq8MXRdu1YkdWAJ5dUYGxeVvIalkSMMdiMErJN0rBdA04hTQgZtlIloE+0e3D/2kocbXVrx6YUW/D44gpkD7Ph3TBJDPWeh/se2BTShJBhye0PosHpS3pAV55w4ME3q+DwBLRjX59cgJ8vnDRsJkf1ZDNKyMnSD9vec3cU0oSQYSdVAvqDvQ345b/2I6CcbMf354zGDXNGD8uAot5zbxTShJBhpdMXRGNHcgOac46XN3+FP396VDsmiQx3L5yEBeWFSWtXMlmNEnJMegjDeHlZNBTShJBhIxUC2hdQ8It/7cfH+5u0YzajhMevnIqKEbaktStZdEKo92zUU+85mqRe8Ni0aROuuOIKlJSUgDGGN954I+L2G2+8EYyxiK9FixZFnNPa2orrr78eVqsVdrsdP/zhD+FyuUAIId25UiCgWzv9uPNvX0YE9OgcE1Zdd+awDGiLQcLIbCMFdD+SGtKdnZ2YMWMGVq1a1ec5ixYtQl1dnfb16quvRtx+/fXXo6qqCu+//z7WrVuHTZs24eabb4530wkhacTlC6IxybO4Dzd3YtmaL7CnrkM7dvYoO5679kyU2I1Ja1cy6AQBRTYD8i0yDW+fQlKHuy+55BJccskl/Z4jyzKKioqi3rZ3716sX78en332Gc455xwAwHPPPYdLL70Uv/rVr1BSMnyr8xBCQjq8ATR1+JLahm2HW/HYuj1w+xXt2BXTi3Hr18dn3NaKp2KWdcg1y8O6tOlgpPxPx4YNG1BQUIBJkyZh6dKlaGk5uVXbli1bYLfbtYAGgAULFkAQBGzdurXPx/T5fHA6nRFfhMSTqnLsPu7AxgNN2H3cATUFtj8cDlIhoN/YcQIr1u7WApoBWHpBGW5bMGFYBbQoMBRaDSiwGiigByGlJ44tWrQI3/rWtzB27FjU1NRgxYoVuOSSS7BlyxaIooj6+noUFBRE3Een0yEnJwf19fV9Pu7KlSvx6KOPxrv5hAAANlc3Y/XGGtQ0uhBQOCSRoazAjKXzyzB3fF6ym5exnN4AmpMY0IrKsXpDDV7fcUI7ZpAE3H9pOc4bZv/uWbIOedR7HpKUDulrrrlG+/9p06Zh+vTpKCsrw4YNG3DRRRcN+XHvu+8+3HHHHdr3TqcTpaWlp9VWQqLZXN2MFWt3w+ULItukh14U4FdU7K3rwIq1u/HUkmkU1HGQ7IB2+4N4fN1ebD3cqh3LM+vx5OIKTCi0JK1diSYKDDlZelgMmb+lZLyk1VjLuHHjkJeXh+rqagBAUVERGhsbI84JBoNobW3t8zo2ELrObbVaI74IiTVV5Vi9sQYuXxBFVgMMkghBYDBIIoqsMlw+Bas31tDQd4w5PMkN6AanFz99dWdEQE8sNOP5688aVgFt0uswwm6kgD5NaRXSx48fR0tLC4qLiwEAc+bMQXt7O7Zv366d89FHH0FVVcyaNStZzSQEAFBV60RNowvZpt7lDRljsJsk1DS6UFVLcyJixeEJoMWVvIDeW+fELa98gUPNndqx88bn4tdXn4E8s5y0diWSwBjyLDKKbIZhdc09XpI63O1yubReMQAcPnwYO3fuRE5ODnJycvDoo4/iqquuQlFREWpqavDzn/8c48ePx8KFCwEA5eXlWLRoEW666Sa88MILCAQCWL58Oa655hqa2U2SrtXtR0Dh0Pfxh0oWBThUjla3P8Ety0wOdwAtnckL6I0HmrDy3X3wB1Xt2NXnjMRN88ZBGCYlPo16EXlmGRKFc8wkNaQ///xzXHjhhdr34evEN9xwA1avXo1du3bhT3/6E9rb21FSUoKLL74Yjz/+OGT55CfSV155BcuXL8dFF10EQRBw1VVX4dlnn034ayGkpxyTHpLI4FdUGITexRp8igpJYMgZprscxVIyA5pzjjXbjuJ/P/lKOyYKDLcvmIBLpxUnpU2Jxljo2rPNSEPbscZ4sivMpwCn0wmbzQaHw0HXp0nMqCrHDS9tw966DhRZ5Yghb8456p0+lBdb8KcfzKSCDqeh3e1Ha2dyRiP8QRW//uAA/lXVoB2zGHR45IopOHNUdlLalGgGKdR7Hq47dsUbvauExIkgMCydXwazLKLe6YMnoEBVOTwBBfVOH8yyiKXzyyigT0NbZ/IC2uEJ4O6/74oI6BF2I5679sxhEdDh3nOJ3UgBHUfUkwb1pEl8RayTVjkkgdZJx0Jbpx9tSbqef7TVjfvXVuJEu0c7Nn2kDY9+c+qwGPKVJRH51HtOCAppUEiT+FNVjqpaJ1rdfuSY9JhaYqUe9Glo7fSjPUkBveNoGx7+5x64fEHt2MKphbh9wcSMDy3GGOxGCXaTNCz3u06GlC5mQkimEASGaSOH3y5H8ZDMgH53dx2e+eAglG5r23/0tbG4dmZpxoeWXhfaUlLW0Y5ViUQhTQhJGy0uHxyeQMKfV+Ucf/j3Ybz22THtmF4n4N5Fk3HBpPyEtyfR7CY9sqn3nBQU0oSQtJCsgPYEFKx8Zx8+qW7WjmWbJDyxuALlxZl9eUwSQ71ng0S952QZcEgPZqcouq5LCImlZpcPziQEdLPLhwfeqMSBBpd2bFxeFp5YUoEiqyHh7Ukkm1FCTlbvankksQYc0na7fcD/WIqinPokQggZgGQFdHWjC/evrURTtzKjM8fm4MHLypElZ+4gJPWeU8uAf9I+/vhj7f+/+uor3HvvvbjxxhsxZ84cAKG9nf/0pz9h5cqVsW8lIWRYaurwocOb+IDeUtOCx9/eA2/gZInPJWeOwC0XlGX0dosWg4TcLD2tPEghQ1qCddFFF+FHP/oRrr322ojja9aswf/8z/9gw4YNsWpfQtASLEJSTzICmnOOv39xAi9sqEH4D6PAgOUXjsfiM0cktC2JpBNCvWejnnrPqWZIIW0ymfDll19iwoQJEccPHDiAM844A263O2YNTAQKaUJSS2OHFy5v8NQnxlBQUfHcR9V4a1eddsykF/HQ5VMwc2xOQtuSSGaDDnlZMvWeU9SQVt6XlpbixRdf7HX8D3/4A0pLS0+7UYSQ4SsZAe3yBnHf2sqIgC60ynju2jMzNqB1goAimwEFFgMFdAob0uyHX//617jqqqvw7rvvavs2b9u2DQcPHsQ//vGPmDaQEDJ8NDq9EZW8EqG23YP711biSOvJEcDyYgsev7ICOVmZuUOZWdYh1yxn9PX1TDHksqDHjh3D6tWrsW/fPgChvZ1/8pOfpGVPmoa7CUkuzjmaOnwJD+jKEw48+GZVxPrrCybm455FkyBn4OxmUWDINcswZ/Ds9ExDtbtBIU1IMnHO0djhQ2eCA/rDvQ34xb/2I6Cc/BP43dmjcOPcMRAycG1wlqxDHvWe086Qq8H/+9//xne/+13MnTsXJ06cAAD8+c9/xieffBKzxhFCMlsyAppzjpc3f4Un39mnBbQkMtx7yWT8n/PGZlxAC4wh3yKj0GqggE5DQwrpf/zjH1i4cCGMRiO++OIL+Hyhxf4OhwNPPfVUTBtICMlMnHM0OBMb0P6giiff2Yf/u+WIdsxq0OGX356Oi6cUJqwdiWLUixiZbYTFkPnbZ2aqIYX0E088gRdeeAEvvvgiJOnkP/55552HL774ImaNI4RkpnBAu/2JC+g2tx93/u1LfLSvUTtWmm3EquvPwvSR9oS1IxEExpBnkVFsM0InZvb2mZluSLMH9u/fj3nz5vU6brPZ0N7efrptIoRksGQE9FctnVjxeiXqnV7t2Jmj7HjkiikZ18s0SCLyLTIkCueMMKSQLioqQnV1NcaMGRNx/JNPPsG4ceNi0S5CSAbinKPe6YXHn7j6/p991YrH3tqDzm7Peem0Itx20YSM6mUyxpBj0sNmyqwPHcPdkEL6pptuws9+9jP88Y9/BGMMtbW12LJlC+666y48+OCDsW4jISQDqCpHQ0diA/rNnbV47qODULsmcDMAN88bh++cMzKjdneSJRH5Zhl6XeZ86CAhQwrpe++9F6qq4qKLLoLb7ca8efMgyzLuuusu3HrrrbFuIyEkzalqqAftDSQmoBWV44WNNfjHFye0YwadgBWXluNrE/IS0oZEYIwh2yTBbsrMoitkCOukFUXBf/7zH0yfPh0mkwnV1dVwuVyYMmUKzGZzvNoZV7ROmpD4SXRAu/1BPPH2Xnx6qFU7lmvW48nFFZhYaElIGxJBrwttiiHrMq/oCjlpSMVMDAYD9u7di7Fjx8ajTQlHIU1IfKgqR53TC1+CArrR6cWKNypxqKlTOza+wIwnF1cg3yInpA3xxhiD3SjBbpIyasieRDekCxgVFRU4dOhQrNtCCMkgiQ7o/fUduGXNjoiAPq8sF7+95oyMCWhJFFBsMyA7S08BPUwM6Zr0E088gbvuuguPP/44zj77bGRlZUXcTr1RQoYXVeWoqnWi1e1HjkmPyUUWNLp8CQvoTQebsPKdffAFVe3Yd84ZiZvOH5cxVbbsJj2yqfc87AxpuFsQTnbAu//AcM7BGIOiJG72ZizQcDchQ7e5uhmrN9agptGFgMKhE4CROSZcc24pzhyVHdfn5pzj1W3H8IdPDmvHBAbctmAiLp9eHNfnThRJDF17NmTghh/k1IbUk/74449j3Q5CSBraXN2MFWt3w+ULItukhyQwuAMKqhtdeOb9A7jjGxPjFtQBRcVvPjiIdyvrtWNZsohHr5iKs0bH98NBoliNEnJpaHtYG1JIz58/P9btICkmGFTx1q46nGh3Y4TdhCumF0NHazBJN6rKsXpjDVy+IIqsBgBAQOHQiwLyzHo0u/xYs+0YZpTaY75phdMTwCNvVWHnMYd2rNhmwMol0zAq1xTT50oGSRSQZ5Zh1FPvebgbUkhv2rSp39ujlQwl6ePFTTVYtaEGHZ4AVIRmFz66rgrLLijDTfPKkt08kiKqap2oaXQhu2uNbkDhCF89Y2CwGCQca+lEdUMnJhbFbnnm8TY3VqytxPE2j3Zs2ggrHvtmRUZU27IYQr1nIUOupZPTM6SQvuCCC3od6z4ck27XpMlJL26qwX+v3w9F5dCJDDoGqBxwuAP47/X7AYCCmgAAWt1+BBQOSWARAR2mFxk6OIfD64/Zc355rB0P/7MKTu/Jut8Lygtw18WT0r7alk4QkGfRw6Qf0p9lkqGG9FPd1tYW8dXY2Ij169fj3HPPxXvvvRfrNpIECQZVrNpQA0Xl0OsYdIIAgQnQCQL0OgZF5Vi1oQbBbjNoyfCVY9JDJwDugNIroAHAr3BIjMFmiE01rPWV9bj777siAvoH543BfZdMTvuANht0GJltpIAmvQzpJ8Jms/U69o1vfAN6vR533HEHtm/fftoNI4n31q46dHgC0IkMAov8oycwATpRRYcngLd21WHJWSOS1EqSKiYVmjEyx4TqRhfyzHowdFvpAY4ObwDj8s0YX5jVz6Ocmso5/vjJYazZdkw7JokM9y6ajAsnF5zWYyebKDDkmWVkyRTOJLqYfvwsLCzE/v37Y/mQJIFOtLtD16D7uBQmMIB3nUeGt6CioqHDh2vOLYVJL6LZ5Yc3qELlHN6gimaXHya9iOtmlp7WpDFvQMFj6/ZEBHS2ScKvv3NG2ge0WdZhZLaJApr0a0g/Hbt27Yr4nnOOuro6PP300zjjjDNi0S6SBCPsJggIXYOOFtQqD+0iNMKe/rNnydAFFBX1Di8CioozR2Xjjm9MxJptx3CspRMdPDTEPS7fjOtmnt466RaXDw+8WYX99R3asTG5Jjy1ZBqKbIZYvJSkEAWGXLMMM4UzGYAhFzNhjPW6DjV79mz88Y9/xOTJk2PWwESgYiYhwaCKc576AA53AHpd5JC3ylX4gxw2k4TPVyyg5VjDVEBRUdfuRVCNnJegco7qhk44vH7YDHqML8w6rR50TaML979RicYOn3Zs5phsPHj5lLTueZr0OuSZ9Rm1jzWJryH9tB8+fDjie0EQkJ+fD4MhfT/dEkCnE7DsgjL89/r98Ac5dKIKoWt2d1DhEAWGZReUUUAPU/5gqAfdM6ABQGAsZsusPj3UgsfX7YWnW0nRK2eUYPnXx6dtiU+BMeSa9bAY0n+JGEmsQf21/eijjzBlyhRkZ2dj9OjR2ldpaSl8Ph+mTp2Kf//73/FqK0mAm+aV4Z5Fk2AzSVBVjoDCoaqhHvQ9iybR8qsUpaocu487sPFAE3Yfd0BVBz1A1q/+AjpWOOd4/YvjeOCNSi2gBQYsv3A8frZgQtoGtFEvYmS2kQKaDMmghru/+c1v4sILL8Ttt98e9fZnn30WH3/8MdauXRuzBiYCDXf3RhXH0kfP2tmSyFBWYMbS+WWYOz7vtB8/EQGtqBy/+6gab35Zqx0zSiIevLwcs8flxu1540lgDNlZetiMFM5k6AYV0qNHj8b69etRXl4e9fZ9+/bh4osvxtGjR2PWwESgkCbpqmftbL0owK+oaHMHYJZFPLVk2mkFtT+oos7hgRLjnnl3Ll8Qj6/bg8++atOOFVhkPLmkAmX5satUlkgGSUS+RYZE157JaRrUNemGhgZIUt+fCnU6HZqamk67UYSQU+tZOztc9c8giCiyCqh3+rB6Yw1mj8sdUolJX1BBvcMb14Cud3ixYu1ufNVyclnfpCILnlxcgZys2BRBSSTGGHJM+owoT0pSw6A+5o0YMQKVlZV93r5r1y4UF2fG9nCEpLrutbN77pLEGIPdJKGm0YWqWuegHzsRAV1V68CyNV9EBPS8iXn49XdmpGVAy5KIEXYjBTSJqUGF9KWXXooHH3wQXq+3120ejwcPP/wwLr/88pg1jhDSt3DtbH0fQ6qyKCCgcrS6B1c7OxEB/dG+Rtzx1y/R5g5ox66fNQoPXT4l7fZNZowhJ0uPEXZj2pcnJalnUMPdDzzwAF5//XVMnDgRy5cvx6RJkwCErkWvWrUKiqLg/vvvj0tDCSGRckx6SCKDX1FhEHoHm09RIQmh4deB8gZCAa0OvnzCgHDO8edPj+DlzUe0YzqB4Y5vTMSiiqK4PGc86XUC8i0yZF16fbAg6WNQIV1YWIjNmzdj6dKluO+++05uS8cYFi5ciFWrVqGwsDAuDSWERJpaYkVZgRl76zpQZBUihrw552h3B1BebMHUkoFNhox3QPuDKn713n58sLdRO2Y16PDoN6diRqk9Ls8ZL4wx2IwSsk1Sr0sNhMTSkCqOAaGdsKqrq8E5x4QJE5CdPfTyf8lGs7tJujo5u1uB3SRBFgX4FBXtg5zdHe+Abnf78dCbVajsdn18ZLYRTy2pwMjs9CozK4mh3nO6DcuT9DTkkM4kFNIknUWsk1ZD+zsPZp10vAP6SEsnVqytRJ3j5FyWM0rteOSKKbCm2Rpim1FCTlbviXqExAuFNCikSfpTVY6qWida3X7kmPSYWmId0LKreAf09iNteOStKnT6Tpb4vLSiCD9bMCGt1hBT75kkS/pWqieEaASBYdrI3vu898fjV1Dv9PbaKCdW1u2qxW8+OIjwJHEG4KZ543D1OSPTqidqNUrIMemHtNackNNFIU3IMBTPgFZUjv/ZdAh/235cOybrBKy4tBznTzj9MqWJohNCvWejnnrPJHkopAkZZtz+IBqcvrgEtMev4Ml39mJzTYt2LDdLjyeXVGBioSXmzxcvFoOE3CzqPZPko5AmZBiJZ0A3dfhw/9pKVDe5tGPj8814ckkF8i1yzJ8vHnSCgDyLHiY9/WkkqYF+EgkZJuIZ0AcaOnD/G5VocZ2sbjZnXC4euKw8bYaLzbIOuWY5bbfEJJmJQpqQYaDTF0RjR3wC+t8Hm7Hynb3wBk9uZflfZ4/EzfPGpUXgiQJDnllGlkx/DknqoZ9KQjKcyxdEUxwCmnOOv3x+HC9uOoTwIwsMuG3BBFw+vSSmzxUvWbIOedR7JimMQpqQDBavgA4oKn77wUG8U1mvHcuSRTx8+RScMyYnps8VD6IQ2hTDYkivYipk+KGQJiRDuXxBNDp771h3ujq8ATzy1h7sONquHSu2GfDUkgqMzs2K+fPFmkmvQ55ZD10aFVMhwxeFNCEZqMMbQFOHL+aPe6LNgxVrd+NYm0c7VlFixWNXToV9ELttJYPAGHLMelip90zSCIU0IRkmXgG963g7HnqzCk5vUDu2oLwAd108KeX3UTbqReSZ5bQqRUoIQCFNSEZxegNojkNAv7enAb/6134E1ZPXtm+cOxrfmz06pUt8Mha69mxLs408CAmjkCYkQ8QjoFXO8dJ/vsIrW49qxySR4Z5Fk/H1yQUxfa5YM0gi8i3UeybpjUKakAzg8ATQ4optQPsCCv57/X5sONCkHbMbJTy+eCqmlgxuM49EYowhx6SHzUS9Z5L+KKRJWhjqVozDgcMdQEtnbAO6tdOPB9+sxN66Du3Y6FwTnlpSgWKbMabPFUuyJCLfLKf8NXJCBopCmqS8zdXNWL2xBjWNLgQUDklkKCswY+n8Mswdnz67KsVDPAL6cHMnVqzdjQbnycc9Z3Q2HrpiCswpWpWLMQa7UYLdJKX0NXJCBiupHzc3bdqEK664AiUlJWCM4Y033oi4nXOOhx56CMXFxTAajViwYAEOHjwYcU5rayuuv/56WK1W2O12/PCHP4TL5QLJDJurm7Fi7W7srXMiS9ahwBIq37i3rgMr1u7G5urmZDcxadrd/pgH9NbDLbj11R0RAf3NGSVY+a1pKRvQep2AErsB2Vl6CmiScZIa0p2dnZgxYwZWrVoV9fZf/OIXePbZZ/HCCy9g69atyMrKwsKFC+H1nizQcP3116Oqqgrvv/8+1q1bh02bNuHmm29O1EsgcaSqHKs31sDlC6LIaoBBEiEIDAZJRJFVhsunYPXGGqhq7OtRp7q2Tj9aO/2nPnEQXv/iBO5fWwm3XwEAMAC3XFCGn100PmXLZtpNeoywGyHr0mMTD0IGi/F4VNwfAsYY1q5di8WLFwMI9aJLSkpw55134q677gIAOBwOFBYW4uWXX8Y111yDvXv3YsqUKfjss89wzjnnAADWr1+PSy+9FMePH0dJSfT6wT6fDz7fyZ6C0+lEaWkpHA4HrFZrfF8oGbDdxx348Z8/R5asg0Hq/UfYE1Dg9gXx+++dg2kjU3ciU6y1dfrR5o5dQCsqx6qPq/HGzlrtmEES8OBlUzCnLDdmzxNLkigg3yJH/bkgJJOk7OyKw4cPo76+HgsWLNCO2Ww2zJo1C1u2bAEAbNmyBXa7XQtoAFiwYAEEQcDWrVv7fOyVK1fCZrNpX6WlpfF7IWTIWt1+BBQOfR9LaGRRQEDlaI1hYKW61hgHdKcviPvfqIwI6HyzjOeuOTNlA9pmlDAy20gBTYaFlA3p+vpQ4f7CwsKI44WFhdpt9fX1KCiIXKup0+mQk5OjnRPNfffdB4fDoX0dO3Ysxq1Pb6rKsfu4AxsPNGH3cUfShpNzTHpIIoNfUaPe7lNUSEJouc1w0OLyoT2GAV3v9OKnr+3EtsOt2rFJhRY8f/2ZKCswx+x5YkUSBZTYjcg1y3TtmQwbqTkTJM5kWYYsy8luRkpKpZnUU0usKCswY29dB4qsQsQfZs452t0BlBdbMLUk8y9RNLt8cHoCMXu8vXVOPPBGJdrcJx9z3oQ83HvJ5JTsoVoMEnKz9LTsjgw7KduTLioqAgA0NDREHG9oaNBuKyoqQmNjY8TtwWAQra2t2jlk4FJtJrUgMCydXwazLKLe6YMnoEBVOTwBBfVOH8yyiKXzyzL+D3dTR2wDesP+Rtz+1y8jAvramaV46IopKRfQOkFAsc2IfIuc8f/OhESTsiE9duxYFBUV4cMPP9SOOZ1ObN26FXPmzAEAzJkzB+3t7di+fbt2zkcffQRVVTFr1qyEtzmdpepM6rnj8/DUkmkoL7bA7Qui0eWD2xdEebEFTy2ZlvHrpBs7vOjwxiagOef4f58ewWPr9sIfDF1C0AkMdy+chJvOHwchxYaQzQYdRmYbYdSn1gcHQhIpqcPdLpcL1dXV2veHDx/Gzp07kZOTg1GjRuG2227DE088gQkTJmDs2LF48MEHUVJSos0ALy8vx6JFi3DTTTfhhRdeQCAQwPLly3HNNdf0ObObRFdV60RNowvZpt5rTRljsJsk1DS6UFXrTPhM6rnj8zB7XO6wqzjW2OGFq9uOU6fDH1TxzPsH8N6ekyNTFoMOj35zKs4otcfkOWJFJwjIs+hh0g/Lq3GEREjqb8Hnn3+OCy+8UPv+jjvuAADccMMNePnll/Hzn/8cnZ2duPnmm9He3o6vfe1rWL9+PQwGg3afV155BcuXL8dFF10EQRBw1VVX4dlnn034a0l3A5lJ7UjiTGpBYMNmmRXnHE0dPrh8sQlohzuAh/5Zhd0nHNqxkdlGPLm4AqU5ppg8R6yYZR1yzXLKrssmJNFSZp10MjmdTthstmG9TprWJKcGzjkaO3zojFFAH21xY8Ubu1HbfrIA0IyRNjzyzakptX2jKDDkmuWUrWpGSLLQbwQBQDOpUwHnHA1OH9z+2AT0F0fa8MhbeyJ65AunFuKOb0xMqe0bs2Qd8qj3TEhUqfObSpKKZlInV6wDet2uOtzz+u6IgP7R18bi5wsnpUxAC4wh3yKj0GqggCakDzTcDRru7i5inbTKIQm041S8cc5R7/TC01Uz+3QoKseL/z6Ev35+XDsm6wTcd8lkzJuYf9qPHytGfWhLSV2KfGAgJFVRSINCuifauzlxVDUU0N7A6Qe0J6Dgqbf34j81LdqxnCw9nlg8FZOLUuPnWmAMOWY9rIbUuR5OSCqja9Kkl+E0kzqZYhnQTR0+PPBGJQ42ntymdVx+Fp5aXIECq6GfeyaOQRKRb5FTZridkHRAIU1IEqgqR53TC18MAvpgQwdWvFGJFtfJ5XGzx+XggcvKU2KtMWOh+uo2E/WeCRms5P8GEzLMKCpHncOjVf06Hf+pbsaTb++Ft9tjfeusEVg6vywlJmPJUujas15HvWdChoJCmpAEilVAc87xt+3H8fuNhxCeVCIw4KcXTcA3ZyS/2h5jDNkmCfZhskMZIfFCIU1IggQVFXUOLwJ9bL05mMf57YfVeHt3nXYsSy/ioSum4NwxOafbzNOm1wnIt8iQdVRzm5DTRSFNSALEKqA7vAE8+tYefHG0XTtWZDXgySUVGJuXdZqtPD2MMdiNEuwmifZ7JiRGKKQJibNYBXRtuwcr1lbiaKtbOzal2IrHF09FdpKHlSVRQIGVes+ExBqFNCFxFFBU1McgoHcfd+DBNyvh7LYr1tcnF+DnCyclfVKW3aRHNvWeCYkLCmlC4iSgqKhr9yKonl5Av7+nAb96bz8Cysm6Q9+fMxo3zBmd1GCUxNC152gbshBCYoNCmmio0ljs+IOhHvTpBLTKOV7e/BX+36dHtWOSyHD3wklYUF4Yi2YOmdUoITer997jhJDYopAmAHrU7FY4JJFqdg+VP6iizuGBog694q4voOAX/9qPj/c3acdsRgmPXzkVFSOSVw1OEgXkmWUY9dR7JiQRqHY3qHb35upmrFgb2jEp26SHXhTgV1S0uQMwyyKeWjKNgnqAfEEF9Q7vaQV0a6cfD71ZiT11Hdqx0TkmPLmkAiV2YyyaOSQWQ6j3TKMrhCQO9aSHOVXlWL2xBi5fEEVWgzZ8aRBEFFkF1Dt9WL2xBrPH5dIf51OIRUAfbu7EirW70eD0acfOHmXHw1dMhdlwer+uKueobuiEw+uHzaDH+MIsCAMYrtYJAvIs+pQoMUrIcEO/dcNcVa0TNY0uZJt6X19kjMFuklDT6EJVrZM23eiHNxAKaPU0Bqa2HW7FY+v2wN1ty8orphfj1q+PP+0tHXccbcOabcdwrKVT24K0NDcL180sxZmjsvu8n9mgQ16WTB/QCEkSKqg7zLW6/QgoHPo+QkAWBQRUjla3P+rtJDYB/ebOE1ixdrcW0AzA0vnjcNuCCTEJ6GfeP4BDTS4Y9TrkZulh1OtwqMmFZ94/gB1H23rdRxQYCq0GFFgMFNCEJBH1pIe5HJMeksjgV1QYhN6TgXyKCkkI7WJEejvdgFZUjuc3VGPtjlrtmEEScP+l5TgvBvMAVM6xZtsxuP0K8sx6MIQCV9Yx5Jn1aHb5sWbbMcwotWtD32ZZh1yznBIbdBAy3FFPepibWmJFWYEZbe4Aes4h5Jyj3R1AWYEZU0uG34S6U/H4FdSdRkC7/UH89LUdEQEtMGBsXhZMMZo9Xd3QiWMtnbAaJC2gwxgYLAYJx1o6Ud3QCVFgKLAaUGA1UEATkiIopIc5QWBYOr8MZllEvdMHT0CBqnJ4AgrqnT6YZRFL55fRkGcPbn8Q9U5vrw82A9Xg9OKm/7sde7vN4JZ1AoptBtQ7vH0OQw+Ww+sPXYMWo//76UWGAOfwBBWMsBthlmlwjZBUQiFNMHd8Hp5aMg3lxRa4fUE0unxw+4IoL7bQ8qso3P4gGpy+IQf03jonbnnlC9Q5vNqxLL2I0mwjsvQ65Jn1cPsVrNl27LSucwOAzaCHJLCIamXd+RUOWRQwPt982te+CSGxRx+bCYBQUM8el0sVx06h0xdEY8fQA3rjgSasfHdfxH7S2SYJed2qd/Uchp5YZB5ye8cXZqE0NwuHmlwR16QBgLHQ65lSYqXLGYSkKAppohEERsus+uHyBdE0xIDmnOPVbcfwh08ORxwvMOthjzIpTy8ydHAOh/f0ZtULjOG6maV45v0DaHb5YTFI0IsCFM7R4Q3CYtDR5QxCUhiFNCED0OENoKnDd+oTowgoKp55/wD+VdWgHTPpRegFBmMfBUL8CofEGGyG059Vf+aobNzxjYlYs+0Yjre64fYHoRcFlBdbqOwrISmOQpqQUzidgHZ4Anj4n1XYddyhHSuxG/Dk4gr87uOaqMPQHBwd3gDG5ZsxvjDrtNsPAGeNzsHXJxfieJuHLmcQkkYopAnph9MbQPMQA/poqxv3r63EiXaPdmz6SBse/eZU2IxSlGFoBr8SCmiTXsR1M0sHVLbzVGRJRL5Zhl4nIDuL1rsTkk5ogw3QBhskOocngBbX0AJ6x9E2PPLWHnR4g9qxhVMLcfuCidDrhIjztHKdPDTEPZBynQPBGEO2SYp6zZsQkh4opEEhTXpzuANo6RxaQL+7uw7PfHAwYqONH31tLK6dWRp1/+WhbnzRH71OQL5FhqyjLSUJSWc03E1ID+1uP1o7Bz+rWuUcf/j3Ybz22THtmF4n4N5Fk3HBpPw+7ycwdlrLrLpjjMFulGA3SVE/EBBC0guFdAZTVU7rngeprdOPtiFsJuINKFj57j78+2CzdizbJOGJxRUoL07M6IwkhnrPBol6z4RkCgrpDLW5uhmrN9agptGFgBIqC1lWYO5zyQ0FOtDa6Uf7EAK62eXDA29U4kCDSzs2Ni8LTy6pQJHVEMsm9slmlJCT1Xu7UUJIeqNr0si8a9Kbq5uxYu1uuHxBZJv00IsC/IqKNncAZlnsVepzsIGeiVpcPjg8gUHfr6bRhRVrK9HUbYLZzLE5ePCycmQloA429Z4JyWxUrDfDqCrH6o01cPmCKLIaYJBECAKDQRJRZJXh8ilYvbEGatekpnCg761zIkvWocAiI0vWYW9dB1as3Y3N1c2neMb0N9SA3lzTjFtf2xER0EvOHIEnF1ckJKCtRgkjs40U0IRkMArpDFNV60RNowvZpt5Dn4wx2E0SahpdqKp1DjrQM1HzEAKac46/bT+OB9+ogjcQqsEtMODWr4/HrV8fH/dtHiVRQLHNiDyzTMPbhGQ4uiadYVrdfgQUDn0fOxrJogCHytHq9g8q0DOxpndThw8d3sEFdFBR8dzH1XjryzrtmEkv4qHLp2Dm2JxYN7EXi0FCbpZ+2M0XIGS4opDOMDkmPSSRwa+oMAi9h0F9igpJYMgx6QcV6JmmscMLV7dCIwPh8gbx6Lo92H7k5D7PhVYZTy2ZhrF5sSnf2RedICDPooepj1rfhJDMRMPdGWZqiRVlBWa0uQO9dmvinKPdHUBZgRlTS6wRgR5N90DPJI3OwQd0bbsHt766IyKgy4stWHXdWXEPaLNBhxHZRgpoQoYhCukMIwgMS+eXwSyLqHf64AkoUFUOT0BBvdMHsyxqWxMOJtAzAec8FNC+wQV05QkHlq3ZgSOtbu3YBRPz8cx/zUBOHGthiwJDodWAAosh7te5CSGpiUI6A80dn4enlkxDebEFbl8QjS4f3L4gyostEcuvBhPo6Y5zjsYO36AD+sO9Dbjzb19GTC777uxReODycshxnFWdJeswMtuUkFnihJDUReukkXnrpMMGWqAkYp20yiEJmbVOmnOOBqcPbv/AA5pzjv+75Qj+tOWIdkwSGe68eBIunlIYj2YCCPWec7L0sBikuD0HISR9UEgjc0N6MDK14thQAtofVPHLf+3Hh/satWNWgw6PXTkV00fa49DKEJNehzyzHro+JvIRQoYfGksjAEJD35m2zIpzjnqnFx6/MuD7tLn9eOjNKlTVOrVjpdlGPLVkGkZkG+PRTAiMIcesh5V6z4SQHiikSUZS1VBAewMDD+ivWjqx4vVK1Du92rEzR9nxyBVT4jb8bNSLyDPLkKj3TAiJgkKaZJyhBPRnX7Xisbf2oLNbr/vSaUW47aIJcRl+Zix07dlmpN4zIaRvFNIkowwloP/5ZS2e/fAgwtVPGYCb543Dd84ZGZeymwZJRL6Fes+EkFOjkCYZQ1U56pxe+AYY0IrK8cLGGvzjixPaMYNOwIpLy/G1CbGf1c5YqDCMzUS9Z0LIwFBIk4ww2IB2+4N44u29+PRQq3Ys16zHk4srMLHQEvP2yZKIfLMMvY56z4SQgaOQJmmp+5Ixm0FCrlmPQB/lTXtqdHpx/xuVqGnq1I6NLzDjycUVyLfIMW0nYwzZJgk2o0Q7VhFCBo1CephLx/XR3Yuv+IMqBIGhNMeE62aW4sxR2f3e90BDB+5fW4mWzpObhswty8X9l5bDqI9tBTG9TkC+RYaso/2eCSFDQ8VMMHyLmURUGlM4JDH1K41trm7GirW74fIFYTdKYAhtEOL0BmDSi7jjGxP7DOpNB5uw8p198AVP9rj/6+yRuHneuJjXxrab9Mg2Ue+ZEHJ66AJZBlFVjt3HHdh4oAm7jzugqn1//gqH3d46J7JkHQosMrJkHfbWdWDF2t3YXN2cwJYPjKpyrN5YA5cviEKLDFEQwBgg6wTkmfVw+xWs2XYMapTNQl7ddhSP/HOPFtCiwHDHNyZi6QVlMQ1oSRRQYjciJ6v3Ht2EEDJYNNydIQbTK+4edkVWgxYmBkFEkVVAvdOH1RtrMHtcbkoNfVfVOlHT6ILdKCGoImLnLgYGi0HCsZZOVDd0YmKRGQAQUFT85oODeLeyXjvXIAn4ybwyXDqtKKbtsxklCmdCSExRTzoDDLZXHA67bFPvQGGMwW6SUNPoiiiNmQpa3X74gyoYWK+tNQFALzIEOIfDG7re7PQEcM8/dkUEtMAAvShgzdYjuOcfu7HjaFuvxxmscO851yxTQBNCYopCOs317BUbJBGCwGCQRBRZZbh8ClZvrIkY+m51+7XetsevoMMbgMevgCN0jiwKCKgcrW5/X0+bFDaDBEEA/H3M4vYrHBJjsBn0ON7mxvJXd2DnMYd2u05gKLEZUWCRYdTrcKjJhWfeP3BaQW01ShhhN8IQx20rCSHDF4V0mhtKrzjHpIfKOQ43u3GktRPH2zw40tqJr5rdcPmC8CkqJCFUeCNVBBUV2SYJpTlZcHoD2geKMA6ODm8ApblZ6PQHsHzNDhxv82i360WG0blGmPQiBMZOeR37VHSCgGKbEXlmOaUuCRBCMguFdJoL94r1fZSYjNYrdnj86PQH4Q0oYAB0IoPAGLwBBcdb3Wjq8KKswIypJakx0z2oqKhzeKFwjutmlsKkF9Hs8sMbVKFyDm9QRbPLD5NexISCLNzzj91wek9uTZmlF1FkNUBkke9Rz+vYA2U26DAy2xjzJVuEENIThXSayzHpIYmszyHgnr1iVeX4/aZD0IsCJJFB4QDnoXrVggAEVQ5fUMWP541LiR5ioCugw4VKzhyVjTu+MRHj8s3w+oNocfvh9QcxNi8Lk4sseO2z4wh2De1LIsN1M0uh1wl9VvrqeR27PzpBQJHNgAKLISXeG0JI5qPZ3WluaokVZQVm7K3rQJFViBjy5pyj3R1AebFF6xWHh8cLrQYEVY6mDi98QTUU1Cy0+YNJL8BmTP5Qd0BRUd8toMPOHJWNGaV2VDd0wuH1w6jT4e9fHMOH+5q0c7JNEh6/sgI6QcAHexoQUDhkXe9g7X4duz9mWYdcsxzz9dSEENIfCuk0JwgMS+eXYcXa3ah3+mA3SZBFAT5FRbs7ALMsYun8Mq3n13143CAxZOmz4A2oCKoqdIIAvcjQ1OlP+qSxgKKirt2LoBp9hEBgDBOLzGjt9OP+Nyqxv75Du21MrglPLZmGIpsBKucozc3CoSYX8sx6MHT7ENN1HXtcvhnjC7OiPo8oMOSaZZhl+lUhhCQeDXdngLnj8/DUkmkoL7bA7Qui0eWD2xdEebEFTy2ZFrFOuufwOGMMRr0Ii0GCUS/Cr/KkTxo7VUCH1TS5cMsrX0QE9Mwx2Xju2jNRZDMACIX5NeeOhE5gqG33weENQFEjr2NfN7MUQpSlU1myDiOzTRTQhJCkob8+GWLu+DzMHpd7yjrcgx0eTzR/MDTEfaqA/vRQCx5ftxeebrteXXlGCZZfOD5iSHrH0Ta89tlxBBQOXzAIjzOIFsEHs6xDWYElar1vgTHkmvWwGJKzpWQ61lMnhMQHhXQGEQSGaSNtpzxnMMPjiTSQgOacY+2OE1j1cU3EIiyzXsTxNg92HW/XQnfH0TY88/4BuP0KbMbQTlmdviBc3iAkUcA1547sFdAmvQ55Zj10fcyWj7d0rKdOCImflB7ufuSRR8AYi/iaPHmydrvX68WyZcuQm5sLs9mMq666Cg0NDUlscXqYPS4XPzp/HAqtMhzuABo7+h4eTxR/UEWdw9NvQCsqx7MfVuN33QKaASi2ysg1yxHFSVTOsWbbMbj9CvLMesg6ASJjsBokFNtDk+Ze++y4tj5aYAx5FhlFNkNSAzrd6qkTQuIr5XvSU6dOxQcffKB9r9OdbPLtt9+Ot99+G3/7299gs9mwfPlyfOtb38J//vOfZDQ1LfTc5hEMKLIacM3MUbhu5qik9KB9QQX1Di+UfjYE6fQF8fi6Pdj21cnqYDqBYYTdoG0FmWfWo9nlx5ptx2DU63CspRNWgxQxWQzovT56eqkN+RYZUpLCGUjfeuqEkPhK+ZDW6XQoKuq9EYLD4cD//u//Ys2aNfj6178OAHjppZdQXl6OTz/9FLNnz+7zMX0+H3w+n/a905laNarjpfs2j9kmPbJNAvyKinqnD3/49yGMy8tKeC96IAFd7/Bixdrd+KrFrR3TiwJG2iN7vd3Dd0+dEwGVwypGDzS9yNDBOVRwlNiNsXtBQzSYynGnuqRBCMkcKT3cDQAHDx5ESUkJxo0bh+uvvx5Hjx4FAGzfvh2BQAALFizQzp08eTJGjRqFLVu29PuYK1euhM1m075KS0vj+hpSwVBqfMfbQAK6qtaBZWu+iAhoSWQYmR19WDpcnIRxQBIYAkr0xw6oHAZRQGm26fRfSAwMpXIcISTzpXRIz5o1Cy+//DLWr1+P1atX4/Dhwzj//PPR0dGB+vp66PV62O32iPsUFhaivr4++gN2ue++++BwOLSvY8eOxfFVpIZE73x1qr2tBxLQH+1rxB1//RJt7oB2bNHUItgNOvRRYE0rTlJeYkVpbpQ63yxUWc3lDWJ8YfJmsfc02MpxhJDhIaWHuy+55BLt/6dPn45Zs2Zh9OjR+Otf/wqjcehDlLIsQ5blWDQxbQykp+aIUU/tVDOUvYFQQPe1qQXnHH/+9Ahe3nxEO6YTGO68eCK+MaUQ9/xj9ymLk0wsNOO6maV45v0DaHb5YTGEZrErnMPpCcJi0CVtFns0qb40jhCSHCndk+7Jbrdj4sSJqK6uRlFREfx+P9rb2yPOaWhoiHoNe7iLd08t3HNevaEGd/7tyz5nKG/Y19hvQPuDKla+uy8ioK0GHX75X9OxcGoRBMZOuclGuDhJ9zrfvoCCNo8fXr+S1FnsfQkvjTPLIuqdPngCClSVwxNQUO/0JXVpHCEkeVK6J92Ty+VCTU0Nvve97+Hss8+GJEn48MMPcdVVVwEA9u/fj6NHj2LOnDlJbmnqiUdPLVx045PqZvyrqh4NDg+aO/1QVA6jJMJi4DBITJuhXOfw4L/X78P3545BtlGP8YVZEZW+2t1+PPRmFSq7DbmPzDZi5ZJpGJF9cuQkHL5rth3DsZZOdPDQEPe4fHOv4iQzx+Zi0dRiHGrujGtxkFMVIBlIgZJw5bjwKISjq/pbebGF1kkTMkwxzge5kW4C3XXXXbjiiiswevRo1NbW4uGHH8bOnTuxZ88e5OfnY+nSpXjnnXfw8ssvw2q14tZbbwUAbN68eVDP43Q6YbPZ4HA4YLVm7nDiydndStQiJoPpXYaHtPfUOrRrxpIoIKhyCCy0s5bAGEZkG2GWdXB6A6HNMoIqsmQdjJKA0twsLVSPtHRixdpK1Dm82nOcUWrHo9+c0mflL5VzbZMNm6F36JsNOuRlxX+/51MN7w+2QAlVHCOEhKV0SF9zzTXYtGkTWlpakJ+fj6997Wt48sknUVZWBiBUzOTOO+/Eq6++Cp/Ph4ULF+L5558f9HD3cAlpoEegdPXUBlvRKhz2Hd4APH4VPkWByBiCKofKQ7OvBcYQVFTodSLyLXqcaPNA6doSs9Cqh6wLBbdJL+Ly6cX4f1uPotN3ssTnpRVF+NmCCUNauywKDHnm0DB7vPVc1qYXQ8va2ro++Fw/axRe2Xq0z9tTbdidEJJaUjqkE2U4hTTQu6c2qcCMtyvrcaLdjRF2E66YXgxdH/svqyrHDS9tw946Jww6AXVOHwQWCkaVc/iDoR8nBqCvHywGIDdLj+wsCSfavXD7lYjbbjp/LK4+t7TXLPRTvi7OcbzVAw4gzyzHvQfa/b3oXoAECF1CqHN4oXAOncCi3l7v9KG82II//WAm9ZQJIVGl1TVpEhvda3y/uKkG3/vjVnR4AlARmkn46LoqLLugDDfNK+t136paJ/bUOuH2K2hz+6GogIJQyc7uMdPfJz8OoLnTj05fEJ7gyYlssk7AikvLcf6Ewfcsdx5tx9+2H8ORFnfCal6falmbUS+irt2DEruRCpQQQoaEQnqY6d6L3ri/EX/a/BVUDuhEBh0DVA443AH89/r9ANArqD+pbkJ71zItQWBQuuJ4KDVQuge0xaDDL789HRMLLYN+nKpaB3774QF0+pWIIeXwjPJ4DSmfalmbyBhUAH0NCMRy2RshJDNRSA8jkROYVDR3+sE5IAmATggFjcAAganwBzlWbajBD+aO1Ya+VZXjX1UN4AiFugAGhfEhBXR3OoFhxSXlgw5oxhiyjRL++vlxdPqVhNe87r6szSCIvW5XOIeA0CS6aKhACSHkVNJqnTQZup47LEk6QQuPoIqIyl8CE6ATGTo8Aby1q047XlXrRIPDA4NO1Cp+6QQBpxN9AgMqRthw7tjsU5/cjSyJGGE34libJ6GV1LoLL2trcwfQc2oH5xwevwKLUYInoES9vd0dQFmBmQqUEEL6RCGdAU5VgrNn3W5ZEuANnBxq5gCCqhoRJAILHT/RfrJmdqvbj6AK5FtkiIwhoHIwFuoJDzWorQYdvjd7VMTSqf4wxpCTpccIuxF6nZDUmtenKkBiMeiw7IIymGUdFSghhAwJDXenuYGswe0+wanTr6CpwwePPxjxOCoPhTLr9j0DMMJ+cgOK8PCuXidgRLYRTR1e+IIqOEKhHt7LgiH06U9B/0QG3HdpeUTxkf7odQLyLbK2NWX3NvU15BzvIeWBFCCZWmKjAiWEkCGhkE5jfa3R7TlhKtzb9Csq6tpDJTl1ogAlGFkiVFE5BJFB5SqCCofNJOGK6cXa7ZFVy2Rk5WbBG1DhVxRwDrS6/AhwFarKoar9L8MSGPDD88fh3DE5A3qtdpMe2Sap15B2KtS8njs+D7PH5fZZgORUtxNCSF9ouDtNhYewnR4/DDoBTk8ADk8AepH12noy3NtsdPq6AjpUbETXIySCKkdQDU0aEwWGZReURayX7jm86w2qXY/B4PIFYc+S8H/mjsW4vCxw9B3QJknAzeePwzXnnnqLUEkUUGI3Iier9zXnaG1K1pByeFnb/In5mDbS1uv5TnU7IYREQz3pNFVV68SXx9rg8ilodZ8cuq5zAPkWQ8SEqaklVhRYDah3eruuH4cCQhIFcK6g+5bLihrqQfe1Trr78O7Bho7QcHKPutlzynJx2192RmwxKbJQgZGvlxfg/8wdC1E8dUhZDBJys/SnDDSqeU0IyVQU0mnqla1H4PT2vuqrcKDe6UUBl8ERmuwlCAwLpxZh1/F2KJyDcX5yKJox6IXQBC53QMV3Z4/Gzy+e1GfFMSAUihUjbNhc3dKrbvaXx9vx8JtVcHpPfnA4s9SO/3PeWJSXWAY0QUwnCMiz6GHSD/zHk4aUCSGZiEI6DQWDKt7utjSqe+6FJ2g3u3woMOu1CVNfG5+HP/xbgsevIqCq4Dx0P6MkIN9igCgw6H1BXDG9BDqd0O8mDx3eABo7QhthqBw40tqJdrcf++o78P+2HkGw2+zyG+eOxvdmjx5wiU+zrEOuWYY4hHDtXkmNEEIyAYV0GnprVx06u8/ODmciCwUv56HwtHaFKxCaYDWlxIY9tU4UGw1aoQ2/oqLTG4Q7oGDGSCumllj7nTE+baQN71XVY822Y6hp7IDLF9TWTHe/Bi2JDD9fOBkXlRcM6DWJAkOuWYY5AZtiEEJIuqC/iGloc01zRJUvLaN7zNSaMdKu9X7DE6xWrN0NhzcIzkM7MXV/nC+PO/DgG7vxn5qWqDPG7/3HLlw6rRhv7apFuzsAX1CJGtACA348b9yAA9qk1yHPrIduCDteEUJIJqO/imlmc3UzPt7fqH3fc1OLcFgKDJhbFjlhKjzBymIQ0dJ5MqAZAJ0AuHwKXtl2DE0dPhRZDTBIIgSBwSCJyDfr4fQG8cq2o+j0BaFyHjWgGUJD1lsOtUI9xQZrAmPIs8goshkooAkhJArqSaeR8LIrzjkE1q0ASdcssG6j3rAaQ2uce15bPmdUNto6A1owC4IAxgAGBsYUBBTAE4ickKaoHIrKIUsCmpw+ZGdJ8HcVMemOIfThwKQXcaylE9UNnZhYZI76Wox6EXlmeUj7RRNCyHBBIZ1GwpXDcrJkSKKIemdo8lbPDqvQtcZ521etva4tmw06OL2B0K5XQmRAMggAVKgcaPcEkG3SQ1E5gl1d5vCuTr6gGrFsK4yjq1IZAwKcw+HtXYozXNbTZpRi8I4QQkhmo5BOI93rVOdbZABAU4c3IjAZgP86ewSmltiiViM73uqBygFB5VAZ12Z5M0TOEg8oakRAA6FdnYDQsHhfOABvIFSK02aILMUpSyLyzTL0/SzvIoQQchKFdBrpWafaqBdh6NosI9yb1olMqxUd3lADCAVnUFVhlkW4AwqCPLSUCzgZ0CJj2vppAYgIaJWraHENbJOKDm8AM0baMb4wK/T4jCHbJMFOWzKSGOhveSAhmYZCOo10r1NtllXUdqvDDXAEFQ4OYNXH1QgoKnKy5K4NNbo2wuDRS3VyhJdthW5lALxBFVJQhV5k8AZDNb+VU0wEC99X5cD5E/MhMBZ1UwxChmogG8oQkkkopBNssL2A8PktLh+aXT5YZBFufxCtnT6AA5IudN+gCoiCgBK7AW2dfrgDCsx6HeqcPiich2psMw5/MDJow8/c/ehl0wpR5/TjWEsn2rvWUUe7Bt2TwABZJ0AUBBTbjMg26WGPsikGIUMx0A1lCMkkFNIJNNhewL/3N+Hxd/bieKsbnqDSa4IYAPiCHKJwsnKYWdZBUTk6vEHUd4QCWhIYGGNdS64iH6Tn8imTXsTl00difGEW3qtqwPMbaiIC2iiJ8AcVhOachTadVnmoBx/qMQvwBhRMKDAjO4uGt0ls9NwTPfzBzyCIKLIKqHf6sHpjDWaPy6Whb5JRKKQTZLC9gPtf34VXPzsWUWykL4rKkdetWpfFoIMgAP6gCknHtD9o3Ye7GULXr7NNejAWWrNskkS0evxweP3YdMCN33x4EP5u21lmGyXkmiXUtnu7dsACmBC6jq0oHCILTSqbUmzBGaX22LxxhCByT/SeIzOMsYgNZag0LMkkNM02AXr2AroXCem5rSQA/M/GaryybWABHVbb7gHv6mr7FQ6jpANjofAM9XRD/4WJQii0TXoROSY9LLIOAZVDB+CT6mY8tm6vFtCiwGCRRViNEgQmIMcsQ2QMQbXrsbsa2ulXYDXocMsF46k3kySqyrH7uAMbDzRh93GH9jOV7rqvbIhGFgUEVI5W98AmNxKSLqgnnQCD6QWUF1nw7Mc1g34Ov8Lh8Ssw6AU0u3zIt8gQOhn8QSUUpgoiKoAFVYAhtO+yXhTAweH0+KFy4K0vu23eAaAszwQAaHL5kWfWwySJKLQZ0Orywa+oCKqAXmSYNsKOWy6gCTzJksmTqnqubOjJp4SW/eXQCgKSYSikE2AgvQBHVy/grV11cHfb5nEwGpxe+JRQMRJV4fAGVXBwWGQdnN4gBIQKnQS6LjJzAM1OHzgHfEEFnT4lYgcrSWTIN8tocvkhsNDEsGaXHxaDBINOQJ5FhsMdgEEScetFE3DdzFHUg06STJ9U1X1lQ5FViPiwyzlHuzuA8mKLtqEMIZmChrsToHsvIIyDw+0PotnlQ2OHF5xz2I0STrS7ofbzWP1x+UNFRoqsMkpzTMi3hCqGtboDUFQOUWBd66FD5wsMUAC0dvq61lGfDGijJGBUtglmObT5hcqB3Cw9xuWZ4fUH0eYOIBBUMb3Ujl9ffQa+O3t0ygV0ooZ+4/k8A3nswV5OSUfhDWLMsoh6pw+egAJVDY0E1Tt9MMsils4vS7mfQUJOF/WkE2BSgRlmg4TjbW5kmyToRQH1Tm+oCEnXOQzA/Wt34fyJBQiteo6+prk/kghMLDBD6Cr3qdeJoVKeXbOv/QoHA6DXMRSZZYhMgMPjh9MbRFA9+dHAatCh0CJrvRUGBotBQrs7gDsvnoycLD3cASWlC0kkaug3ns8z0MceLpOqwhvEhN8ThxpauVBebMmIIX1CoqGQjrMXN9Vg1YYaON0BqADc/uglNRmAPXUdaHB6YZLFfktv9kVRAHdAhVkW4PIFcaLNE1GARBQAroYmkzHG4A0qcPQYWs/NkpAT5Y+9XmTo5IBeJ+DcsTmDblsiJWroN57PM5jHHszllHQ3d3weZo/LpYpjZNig4e44enFTDf57/X443AGIIkO0ktUCA/SiAL0kgAFo9wSRZ5ZDxUcGSQXQ2OGF2x9EncMDReURW0AKYNDpQuul6x1eNHb4tNt0AoPVoINZjlJ8pGvHLVknIM8sD7pdiZSood94Ps9gHzva5ZTuMm1SlSAwTBtpw/yJ+Zg20kYBTTIahXScBIMqVm2ogaJy6HWhHadEoffbLYksdK0YDDpRAOccnT4F35szGhZ58KU03T4FXzW74Q2oUHjkBhnh/Sw5EHH9WScy/OY7Z2BCoQVObyBiqZYgMEgCg9MbRFmBOeUn5gxm6DdVn2ewjx2eVNXmDmjL8MLCk6rS4d+OENIbhXScvLWrDh2e0JaQAgu9zdEqhnXvaDEWOsevqCiwyCjNNg76eTmg1foM19EOC6ih69Ldm6ETGO5dNAlTRlhx3cxSmPQiml1++IIqhK610A0d/rSZmJOo9bTxfJ7BPjZNqiIkc9E16TgJz9LWsdD65GBXUZGeuh8KbxsJAP93yxF4/EGIDAOqm90dw8klVmEiQjO5uzNIAr4/ZzSCCvD/Pj2CQqsBP/v6BPx9x3Eca3HDHVAgCQwjs41YOLUIFoMEVeV9/rEfyu5E3e9j79pjut0TGNL9c0x62I0SdALg9AYgCqERDIMkAAzw+lW4/UGAQ3uu/h6rvMiCvfUdUV9PPNftDuWxaVIVIZmJQjpORthNYAjV1u5vnnY4lDlCQ9NCV5lNf1DBCLsRX7V0otM/8EVZAgO4tuHkSdGmoXkDKv5n0+GT9wVgMeqw7IIyzCnLxyfVTfhXVQMaHB788ZPD+POWr/qcuTyUWc7d79PpV+ANhOqTGyURWbI4qPuHnzMnS48OXxBuvwKBdS056wrWoKJCUQFJFPDLf+3DLReM1x6752OpnEPhoVKnAhN6vZ54rtsd6mPTpCpCMg/jPS9iDUNOpxM2mw0OhwNWa2yu22060Ijv//GzU56n71q0rKihYehskx4AR06WDIMkwuUL4lirO+Iacn8YutY/D+FfVeyaICYKDFefMxL/qWnpNbu4zR2AWRYjZhf3NRM52rlh3e8j60Q0Or3aSIMoMORbZPiCfED3Dz9nu8ePOocXnIfeAyD0IShcflxA6Pp7z8cGEPFYfkUNzYxXOXQiQ4nNCL1O6PV6TrZBgd0kQRYF+BQV7f287oGK52MTQtIHXZOOA1XleGFD9YDODaocwa5Z2FNLrPjR+ePAwLp2sgpAZKHhZoN06n+qcP9Z4aF/2L46UH09EkdoDXVQ5fjL58fh8p56dvFgZyKrKseXx9rx5Dt70e4OoNAiw+EJgAOQdAIkUYDCAYcngEKLPuos6WjPyVhomJwhvHmIAINeRPd5c4wBJXYjcrJkrW3Pb6jG8xtOPpYsCWhxha716rtmwrd0+iDrhF6vJzzEXF5sgdsXRKPLB7cviPJiy2mHaDwfmxCSPmi4Ow6qap3YdWJgs3qnj7BhyZkjccYoO6aNsOGVrUfg8AbQ5vYDYBCE0NInm1ECeADeYO+h73A4d+88q0Cfo+ys92h46DG6Zp3phNAHB1FkA5pdPJCZyG/urEW904t/VdXjeJsbrZ2hUqOHmlX4FRW6rhnuYIBOAHxBFb4gj1qII9rs51a3H26for0sX1AFIITKmXb7tKLrmmEfbtu++g4wMO2xPH4FvqACUWAQWOi98AVVeAMqjHqxV3viOcRMw9eEEArpOGh1+xEIDmy8eV9DByYUmjGj1I4XN9Xg/3v/gFZbGwhtjKEoClw+BQIQ5WrzwCqTdb9fXyPnHF2T18Lf93ElpGdxjP5mIgcUFU0uHx56czc6uwq5hINSYAy+oAqVc4iMRcxK5xwIqiqy9LpehTh6zn52+YJodPoiqrfxrudWOSCCQWDhUQsVoWl0XbOkldDHm/BjBVU19B4IvdsCiFELg4TX7cZDPB+bEJL6aLg7DnJMeki6gfV2fAEVK9/di00HGvH/vX8AvkDXPs1dt3NAq+WtYvClQsO6L9HuqyPG0LUMLPx9z6Im4TZ3m13cXyENreqZyhFQOBgLLflS1K5NQBBaJw4AAVXV1mfzrnboBCHqTObuz8nB0dTh6/WBguHkhLGAqkIF1x4z4nWITLuGDoRuDy+F69mWnq+dEELijUI6DqaWWDEq2zCgcwUG7K934f61u+ELqF0ByrqGWyPPZd2+Bqtbae6oIR0OI4AjqIbDlJ+yOEZfhTRUrqKu3YOgGpp1HVBUraCLTgzPtg71YsOhGPoKDbXLOgGyjkUtxNH9OT2+7sPTka8lvKEI56FSqLJO0K7th1/H5CILJhVZtPYb9AJknQhF5VC5qrXFIAlUGIQQknAU0nHw6aEWtLhPvd1kKERCPcJjbV5t0ld4MpnKIwOVsa5enciGFNTh3qWK6EEtMMAf5NB1ze42y7pTFseIVkjD6QmgurFTu34eUDgUDm3yl8AESMLJoBa7euyBoIqAokJkgNUo9VlEpftzNrt8UFXetbtX5DngJ49xhB6Tc0S8jlsuGI9bLjjZfm9ARa451Ev2BzkEBuRmyfAGVSoMQghJOFqChdguwVJVjhte2oa9dU6YZR2OtLijDlGLQqi37I8yEawv4T2dGWNQVT6oZVZl+Vkw6UXUtnvg9Aahdi354l1lQsNLtyxGCcsuKMNN88oi1w53FceItnZZVTnWbDuKV7cdxfFWDzp8Ae1xJSF0rTl8nV0vChAFBg4Of1CFXicgqITWJIcnjxn1IrL0A1sn/Yt/7cfu4+0AC/Wkw0PcoVGA0HkMwKhcEzx+pc/X0fO1ht7frnXSgtDnayeEkHiikEZsQ3r3cQd+/OfPkSXrYJBEdPoCONTs7nWerBO0iU0DJQmhNb+D/QebMcKKfyw9D4LAUFXrRHOnD+2dAWSbJNhMEg41daLO4cEIuwlXTC+GrttOIKeqItY93HwBBU5fECrnyDbq4fAEQsVZWOjaO0do6EavE0LX2jlHqd2IVncAI7ONeOLKCjCBDariWDCo4tu/34JDTZ3IN+th1IcmhXkDoV65wxNAxQgrXr5xZp/Vw/p6rf1VHCOEkESg2d0x1nPmsUmvg0ES4A2EeszaWuau4ezBCAy8063JNkm455JyLXijzRQ+c1R2n/fvb3Zxz4IiBkkMbX3JQ2U5dSJDQAkVBJF0AvxBFSqAIFfB1dB+105fEHaThBWXluOM0X23oy86nYCfL5yEFWt3w+ENggkMshiaedfpDxUCueWC8dDphFPOko72WmlmNSEkmeiadIx1n3msKAoanT6ILHJSE4DT3irxVBiAsXkmrLrurLgMz0YrKBKuGKYTmfYBRGAMQSVUqDR8HVrpqlFq0osoL7ZS4Q9CCOkD9aRjLDzzeNuhVvj62N9XZAwGSdDWDZ8unQDYZBHXzhkDR2cQRlnEJRVFmDHSHrfh2WgFRcLLl0Kz00MT4PItMpyeIHxBBSoPTcQaX2DGkjNH4Gvj86nwByGE9INCOsYEgUEvsj4DOoTDHYOA1oWXGKkcQTCcOyYX8yfmn/bjDkS07RQNkgBZJ8DTtdab89BEsTF5Jnh8CppdPozNN+PvP54Tcd07VqjwByEk09Bwd4z5/Qo+3t/U7zkKH3pRkjCGUIESAQBnDCKLT4ENVeXYfdyBjQeasPu4QxumtxslcHC0uf3w+BVwzsEYQ77FALFriBvgEBiDN6DC4Q0iO0uPny+cFJeAJoSQTEQ96Rj7/97bN+gJYUPBAQSCPLSciXOMys2KeYGNvrafnDchDxsPNKPDG9Tqbss6AfkWA8yyDiV2A060eyAwhg5vEJJI+xoTQshQUEjH0NmPv4eWzkDCno8jdN1XLzLcdfHEmF5/7Wv7yS+PObClpgVZsog8sxzaYlLl8PgVnGhzI88iwx/kKLEZcNO8MpTmmOj6MCGEDBGFdIwkOqC7G5FtxNyy2PVQe87cDk8Mk5kARVWhqBxBhSM7S4JeJ6CpwwdvIIiAwtHc4cfMsdm45YLx1GsmhJDTRCEdA+0d3qQEtCQy5JlleP0K3txZixyzPia91p4ztzk4vH4Vnf4gfEEVuq4lZl6/CrOsQ5YswutX4faHgvruhZMxo9Q+6Oftr3DKqYqqEEJIJqKQjoFv/8/WhD8nAzAhPwudfhW1Dg+eeHsPBMa068anc/23+8xtly+Ipg4ffEFFK8ASKiHKtO0bw6U8ZZ2ARpcP7Z7Bf2Dp6/r30vllANDnbdRbJ4RkMgrpGGh0ehL+nIVWAzxBjlpHaCtIk16E1SDBr6jYW9eBFWt3D7mQh90oAQDqnV11vnnXci8xtOlEaCMQ3mt7yqFu49jX9e+9dR24/a87AYQqtPW87XReIyGEpANaCxMDYoKHXQutMvLMejQ6vaGymwKDL6jC4fGj0xcAg4pGpw9PvL0HXx5rj1rdLNrSqmBQxS/e3Ydb13yBNrcfLZ0BBJTQdpWhutuRu2+1dZ7cnrLnNo59Ld2K1o6elcsEgcEgiSi06NHa6Udrpx+FVjnitiKrDJdPweqNNXGv3kYIIclCPekYmFpsxieH2hP2fJwD7Z6AVrHMr3A0dvh6nbenrgPXvfgpzhqd3feOT13Dx7IkoM7h1WqMd6dywB8MbSHZPQ49AQXVjS7kmmX4gqq2jeOnh1oGPDwdrXJZmC8Y3smKwxfgMHbroDPGYDdJqGl0oarWSUVMCCEZiXrSMZBvy0ro8zV2+NDgGNgQe6dfwRdH2rBi7W5srm7Whpb31jmRJetQYJHhDyo43OyOGtDdhbfGFEO7TwIAfEEV9U4vim0ynloyDQB6PX6WrNOGpzdXN0c8ZrTKZWGha96hDyXh/+9OFgUEVI5Wt39A7wUhhKQbCukY+O7sUQl/zsHsiOUJKHD5gnh+Qw2e31AdMbQMcLS5Iyd6sW4h3JMkhHavkkQGnQAUWWVYZB1sRgkzx+T0OXTd1/B09w1JetIJgtae8P93N9Rr4IQQki4opGPg79uPJ7sJ/VJ5aDb2/voO7KvviBhadniCWg9Zw9FnSjMmgCM0y9sg6ZBrkZFnkXGoqRNv7arrc+i65/B0WHhDkjb3yevbYbIuVJucMQZZiny8ntfACSEkE1FInya/X8HfPk/dkD4ZbaHZ2IFg5NByoJ+NQKLlNEeokInAGPItMhiYNux8ot3d59A1EH14WhAYls4vg1kWUe/0wRNQQhXMAgoaOvzIydIjJ0uPBqc/4rZ6p0+7Bk7rpQkhmYomjp2mFzYdQjCJs4sZ+t6so0dfFnoxVJjEr6gwCCIAQIoSqFpHOsqDc85hkHTIt8gwy6Efn/Cw8wi7SRu6Dj9+d30NT4f3gw5PNnOoHJJwst43gD5vo+VXhJBMRiF9mo60dib1+U/18YADEBigco7JRVYAHPvqXSiyCmCMwWbUoc6BXkPe3UeeGULVzSSBochmhFEWtcVY4WHn8mILrphejNd3HMfeug7t8U8+3snzog1Pn2o/aNormhAyHFFIn6Zck5TsJvQpnLN6nQBRYFhUUYQxuSbcv3Y3jrd5YNSLMEoibCYJrV1lTQUWCujumT0mz4TrZo7CK1uPwuENggmhIW6foqLdHdCGnXU6AUvnl2HF2t2od/pgN0lRz+srXPvbD5r2iiaEDEeM95ytMww5nU7YbDY4HA5YrYObhDRlxdtwD2Kmdaz1N9wNdC2XYqGtJK0GHfIsMly+IGrbvdr1aJ0gICdLgssXhMevaKU/jbKIq88pxQOXTYEgsMj11SqHjgGFNiMWTi3E18bna73bnudJQuQ66Wh1uAFQT5kQQnqgkMbphfSYe9+OU6sGptQuo9bh6z1DuxuBASJjEAQGf1AFY0CxzQBZJ8IbUOAOKLAZJTx+5VS0uAI40e7GCLsJV0wvhk4Xec06HLCfVDfjX1X1WtWzngVL+toQI1ohlVxz6Bp1i8tPtbkJIaSbjJndvWrVKowZMwYGgwGzZs3Ctm3bkt2khKh3+nGqeWsMABNChUe6CnjB4QnCJIvINcsYaTei06fgxX8fxpVnlGD51ydgyVkjegU0EBp27vAG8JfPjuJ4m7vPgiXh4en5E/MxbaRNC+iehU4YC/Wgq2qdYIydsvgJIYQMJxkR0n/5y19wxx134OGHH8YXX3yBGTNmYOHChWhsbIzr8waDSRzn7hJQ+SknjykcAO++GAvwBoLw+kPt72sNczT91drur552tPsxBjg8Aa14isMTABNAtbkJIaRLRoT0M888g5tuugk/+MEPMGXKFLzwwgswmUz44x//GPV8n88Hp9MZ8TUUb+2qO51mxxzr5xKu2u2qBkfvUpsDLbHZX63t/sI+2v28ATW0P7UgQCcK8AWVIX1wIISQTJX2Ie33+7F9+3YsWLBAOyYIAhYsWIAtW7ZEvc/KlSths9m0r9LS0iE994l295Dulwy9ioj1KLU50BKb/dXaBvoO+2j3C6oqeNckNcaG/sGBEEIyVdqHdHNzMxRFQWFhYcTxwsJC1NfXR73PfffdB4fDoX0dO3ZsSM89wm4a0v2SQWCRPW29KMKgD/3zD6bEZn+1toG+wz7a/XSCEApnhAK6Z41uqs1NCBnu0j6kh0KWZVit1oivobhienGMWzZ4JunkHs/9zdMXGUP3FU3ZJglcxaBLbPZXa7u/sI92P4MkQNYJCKoqgooKWTe0Dw6EEJKp0j6k8/LyIIoiGhoaIo43NDSgqKgors+t0wm4/9LJcX2Ofp9fYLj9G5Nw3czSPnetAkLDyQFFhcoBvcgwNi80AtDo8sHtC6K82IKnlkwb0HKn/mpt9xf20e7HOWA1SlrxFJtxaB8cCCEkU2XEOulZs2Zh5syZeO655wAAqqpi1KhRWL58Oe69995T3v901kkDwIubavDkO/sGfb++SF3Ll84dk4NLphZhc3UzfvtxNfxdS6gEFgq3ZReU4aZ5odrWv99Yg999VI1Of1C7zisIDCa9CFFgEBhDaY4Jd108EXPL8k67cMipCpYM5n4R66QH8ViEEJLpMiKk//KXv+CGG27A73//e8ycORO/+c1v8Ne//hX79u3rda06mtMNaSC0HGv8A++e8rxsg4B8qwGyToexeUbkmWW0uPxo7AzAZtRhweRCLD6j9xrlYFDFW7vq+i000vOcyyqKsL/RFbcqXn0VLBnK/QCqOEYIIT1lREgDwO9+9zv88pe/RH19Pc444ww8++yzmDVr1oDuG4uQJoQQQmItY0L6dFBIE0IISUVpP3GMEEIIyVQU0oQQQkiKopAmhBBCUhSFNCGEEJKiKKQJIYSQFEUhTQghhKQoCmlCCCEkRVFIE0IIISmKQpoQQghJURTShBBCSIqikCaEEEJSlC7ZDUgF4fLlTqczyS0hhBAynFgsFjDW945/FNIAOjo6AAClpaVJbgkhhJDh5FQbO9EuWABUVUVtbe0pP9GcitPpRGlpKY4dO0a7afVA70109L5ER+9LdPS+RJfO7wv1pAdAEASMHDkyZo9ntVrT7gclUei9iY7el+jofYmO3pfoMvF9oYljhBBCSIqikCaEEEJSFIV0DMmyjIcffhiyLCe7KSmH3pvo6H2Jjt6X6Oh9iS6T3xeaOEYIIYSkKOpJE0IIISmKQpoQQghJURTShBBCSIqikCaEEEJSFIV0DK1atQpjxoyBwWDArFmzsG3btmQ3Ka4eeeQRMMYiviZPnqzd7vV6sWzZMuTm5sJsNuOqq65CQ0NDxGMcPXoUl112GUwmEwoKCnD33XcjGAwm+qWclk2bNuGKK65ASUkJGGN44403Im7nnOOhhx5CcXExjEYjFixYgIMHD0ac09raiuuvvx5WqxV2ux0//OEP4XK5Is7ZtWsXzj//fBgMBpSWluIXv/hFvF/aaTnV+3LjjTf2+vlZtGhRxDmZ9r6sXLkS5557LiwWCwoKCrB48WLs378/4pxY/d5s2LABZ511FmRZxvjx4/Hyyy/H++UN2UDelwsuuKDXz8tPfvKTiHMy7X0BAHASE6+99hrX6/X8j3/8I6+qquI33XQTt9vtvKGhIdlNi5uHH36YT506ldfV1WlfTU1N2u0/+clPeGlpKf/www/5559/zmfPns3nzp2r3R4MBnlFRQVfsGAB37FjB3/nnXd4Xl4ev++++5LxcobsnXfe4ffffz9//fXXOQC+du3aiNuffvppbrPZ+BtvvMG//PJL/s1vfpOPHTuWezwe7ZxFixbxGTNm8E8//ZT/+9//5uPHj+fXXnutdrvD4eCFhYX8+uuv55WVlfzVV1/lRqOR//73v0/Uyxy0U70vN9xwA1+0aFHEz09ra2vEOZn2vixcuJC/9NJLvLKyku/cuZNfeumlfNSoUdzlcmnnxOL35tChQ9xkMvE77riD79mzhz/33HNcFEW+fv36hL7egRrI+zJ//nx+0003Rfy8OBwO7fZMfF8455xCOkZmzpzJly1bpn2vKAovKSnhK1euTGKr4uvhhx/mM2bMiHpbe3s7lySJ/+1vf9OO7d27lwPgW7Zs4ZyH/ogLgsDr6+u1c1avXs2tViv3+XxxbXu89AwjVVV5UVER/+Uvf6kda29v57Is81dffZVzzvmePXs4AP7ZZ59p57z77rucMcZPnDjBOef8+eef59nZ2RHvyz333MMnTZoU51cUG32F9JVXXtnnfYbD+9LY2MgB8I0bN3LOY/d78/Of/5xPnTo14rmuvvpqvnDhwni/pJjo+b5wHgrpn/3sZ33eJ1PfFxrujgG/34/t27djwYIF2jFBELBgwQJs2bIliS2Lv4MHD6KkpATjxo3D9ddfj6NHjwIAtm/fjkAgEPGeTJ48GaNGjdLeky1btmDatGkoLCzUzlm4cCGcTieqqqoS+0Li5PDhw6ivr494H2w2G2bNmhXxPtjtdpxzzjnaOQsWLIAgCNi6dat2zrx586DX67VzFi5ciP3796OtrS1Bryb2NmzYgIKCAkyaNAlLly5FS0uLdttweF8cDgcAICcnB0Dsfm+2bNkS8Rjhc9Ll71HP9yXslVdeQV5eHioqKnDffffB7XZrt2Xq+0IbbMRAc3MzFEWJ+OEAgMLCQuzbty9JrYq/WbNm4eWXX8akSZNQV1eHRx99FOeffz4qKytRX18PvV4Pu90ecZ/CwkLU19cDAOrr66O+Z+HbMkH4dUR7nd3fh4KCgojbdTodcnJyIs4ZO3Zsr8cI35adnR2X9sfTokWL8K1vfQtjx45FTU0NVqxYgUsuuQRbtmyBKIoZ/76oqorbbrsN5513HioqKgAgZr83fZ3jdDrh8XhgNBrj8ZJiItr7AgDXXXcdRo8ejZKSEuzatQv33HMP9u/fj9dffx1A5r4vFNJkyC655BLt/6dPn45Zs2Zh9OjR+Otf/5qSP+wktVxzzTXa/0+bNg3Tp09HWVkZNmzYgIsuuiiJLUuMZcuWobKyEp988kmym5JS+npfbr75Zu3/p02bhuLiYlx00UWoqalBWVlZopuZMDTcHQN5eXkQRbHXDMyGhgYUFRUlqVWJZ7fbMXHiRFRXV6OoqAh+vx/t7e0R53R/T4qKiqK+Z+HbMkH4dfT3s1FUVITGxsaI24PBIFpbW4fVezVu3Djk5eWhuroaQGa/L8uXL8e6devw8ccfR2yTG6vfm77OsVqtKf0Buq/3JZpZs2YBQMTPSya+LxTSMaDX63H22Wfjww8/1I6pqooPP/wQc+bMSWLLEsvlcqGmpgbFxcU4++yzIUlSxHuyf/9+HD16VHtP5syZg927d0f8IX7//fdhtVoxZcqUhLc/HsaOHYuioqKI98HpdGLr1q0R70N7ezu2b9+unfPRRx9BVVXtD9GcOXOwadMmBAIB7Zz3338fkyZNSukh3cE4fvw4WlpaUFxcDCAz3xfOOZYvX461a9fio48+6jVUH6vfmzlz5kQ8RvicVP17dKr3JZqdO3cCQMTPS6a9LwBoCVasvPbaa1yWZf7yyy/zPXv28Jtvvpnb7faImYaZ5s477+QbNmzghw8f5v/5z3/4ggULeF5eHm9sbOSch5aSjBo1in/00Uf8888/53PmzOFz5szR7h9eMnHxxRfznTt38vXr1/P8/Py0W4LV0dHBd+zYwXfs2MEB8GeeeYbv2LGDHzlyhHMeWoJlt9v5m2++yXft2sWvvPLKqEuwzjzzTL5161b+ySef8AkTJkQsNWpvb+eFhYX8e9/7Hq+srOSvvfYaN5lMKbvUiPP+35eOjg5+11138S1btvDDhw/zDz74gJ911ll8woQJ3Ov1ao+Rae/L0qVLuc1m4xs2bIhYSuR2u7VzYvF7E15qdPfdd/O9e/fyVatWpfRSo1O9L9XV1fyxxx7jn3/+OT98+DB/8803+bhx4/i8efO0x8jE94VzWoIVU8899xwfNWoU1+v1fObMmfzTTz9NdpPi6uqrr+bFxcVcr9fzESNG8KuvvppXV1drt3s8Hn7LLbfw7OxsbjKZ+JIlS3hdXV3EY3z11Vf8kksu4Uajkefl5fE777yTBwKBRL+U0/Lxxx9zAL2+brjhBs55aBnWgw8+yAsLC7ksy/yiiy7i+/fvj3iMlpYWfu2113Kz2cytViv/wQ9+wDs6OiLO+fLLL/nXvvY1LssyHzFiBH/66acT9RKHpL/3xe1284svvpjn5+dzSZL46NGj+U033dTrQ22mvS/R3g8A/KWXXtLOidXvzccff8zPOOMMrtfr+bhx4yKeI9Wc6n05evQonzdvHs/JyeGyLPPx48fzu+++O2KdNOeZ975wzjltVUkIIYSkKLomTQghhKQoCmlCCCEkRVFIE0IIISmKQpoQQghJURTShBBCSIqikCaEEEJSFIU0IYQQkqIopAkhhJAURSFNCOkT5xw333wzcnJywBjDzp07ccEFF+C2225LdtM0L7/8cq+tHQnJFBTShKSp+vp63HrrrRg3bhxkWUZpaSmuuOKKXhsInI7169fj5Zdfxrp161BXV4eKigq8/vrrePzxx2P2HISQvtF+0oSkoa+++grnnXce7HY7fvnLX2LatGkIBAL417/+hWXLlmHfvn0xeZ7wrmZz587VjuXk5PR7H7/fD71eH5PnJ2S4o540IWnolltuAWMM27Ztw1VXXYWJEydi6tSpuOOOO/Dpp58CAI4ePYorr7wSZrMZVqsV3/nOdyL20n3kkUdwxhln4M9//jPGjBkDm82Ga665Bh0dHQCAG2+8EbfeeiuOHj0KxhjGjBkDAL2Gu8eMGYPHH38c3//+92G1WnHzzTdrQ9Dr1q3DpEmTYDKZ8O1vfxtutxt/+tOfMGbMGGRnZ+OnP/0pFEXRHsvn8+Guu+7CiBEjkJWVhVmzZmHDhg0Rr/3ll1/GqFGjYDKZsGTJErS0tMTnTSYkBVBIE5JmWltbsX79eixbtgxZWVm9brfb7VBVFVdeeSVaW1uxceNGvP/++zh06BCuvvrqiHNramrwxhtvYN26dVi3bh02btyIp59+GgDw29/+Fo899hhGjhyJuro6fPbZZ3226Ve/+hVmzJiBHTt24MEHHwQAuN1uPPvss3jttdewfv16bNiwAUuWLME777yDd955B3/+85/x+9//Hn//+9+1x1m+fDm2bNmC1157Dbt27cJ//dd/YdGiRTh48CAAYOvWrfjhD3+I5cuXY+fOnbjwwgvxxBNPnPZ7SkjKSvIuXISQQdq6dSsHwF9//fU+z3nvvfe4KIr86NGj2rGqqioOgG/bto1zzvnDDz/MTSYTdzqd2jl33303nzVrlvb9r3/9az569OiIx54/fz7/2c9+pn0/evRovnjx4ohzXnrpJQ4gYuvSH//4x9xkMkVsNblw4UL+4x//mHPO+ZEjR7goivzEiRMRj3XRRRdpewJfe+21/NJLL424/eqrr+Y2m63P94KQdEY9aULSDB/A7rJ79+5FaWkpSktLtWNTpkyB3W7H3r17tWNjxoyBxWLRvi8uLkZjY+Og23TOOef0OmYymVBWVqZ9X1hYiDFjxsBsNkccCz/f7t27oSgKJk6cCLPZrH1t3LgRNTU12uuaNWtWxPPMmTNn0O0lJF3QxDFC0syECRPAGIvJ5DBJkiK+Z4xBVdVBP060Yfdoj93f87lcLoiiiO3bt0MUxYjzugc7IcMJ9aQJSTM5OTlYuHAhVq1ahc7Ozl63t7e3o7y8HMeOHcOxY8e043v27EF7ezumTJmSyOYO2JlnnglFUdDY2Ijx48dHfBUVFQEAysvLsXXr1oj7hSfKEZKJKKQJSUOrVq2CoiiYOXMm/vGPf+DgwYPYu3cvnn32WcyZMwcLFizAtGnTcP311+OLL77Atm3b8P3vfx/z58+POjSdCiZOnIjrr78e3//+9/H666/j8OHD2LZtG1auXIm3334bAPDTn/4U69evx69+9SscPHgQv/vd77B+/fokt5yQ+KGQJiQNjRs3Dl988QUuvPBC3HnnnaioqMA3vvENfPjhh1i9ejUYY3jzzTeRnZ2NefPmYcGCBRg3bhz+8pe/JLvp/XrppZfw/e9/H3feeScmTZqExYsX47PPPsOoUaMAALNnz8aLL76I3/72t5gxYwbee+89PPDAA0luNSHxw/hAZqEQQgghJOGoJ00IIYSkKAppQgghJEVRSBNCCCEpikKaEEIISVEU0oQQQkiKopAmhBBCUhSFNCGEEJKiKKQJIYSQFEUhTQghhKQoCmlCCCEkRVFIE0IIISnq/wdKG8pj9Zw0TgAAAABJRU5ErkJggg==\n"
589 | },
590 | "metadata": {}
591 | }
592 | ]
593 | },
594 | {
595 | "cell_type": "code",
596 | "source": [
597 | "x=np.array(df[[\"Confirmed\"]]).reshape(-1,1)"
598 | ],
599 | "metadata": {
600 | "id": "b5J9DxRR8vGo"
601 | },
602 | "execution_count": 85,
603 | "outputs": []
604 | },
605 | {
606 | "cell_type": "code",
607 | "source": [
608 | "y=np.array(df[[\"Cured\"]]).reshape(-1,1)"
609 | ],
610 | "metadata": {
611 | "id": "Sqlgxmos89mY"
612 | },
613 | "execution_count": 86,
614 | "outputs": []
615 | },
616 | {
617 | "cell_type": "code",
618 | "source": [
619 | "lm=LinearRegression()"
620 | ],
621 | "metadata": {
622 | "id": "96vDPSk05OuD"
623 | },
624 | "execution_count": 87,
625 | "outputs": []
626 | },
627 | {
628 | "cell_type": "code",
629 | "source": [
630 | "lm.fit(x,y)"
631 | ],
632 | "metadata": {
633 | "colab": {
634 | "base_uri": "https://localhost:8080/",
635 | "height": 74
636 | },
637 | "id": "MYirZIvs5OyV",
638 | "outputId": "f8d813a2-08d5-4114-8790-87c46ec9e5df"
639 | },
640 | "execution_count": 88,
641 | "outputs": [
642 | {
643 | "output_type": "execute_result",
644 | "data": {
645 | "text/plain": [
646 | "LinearRegression()"
647 | ],
648 | "text/html": [
649 | "LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
650 | ]
651 | },
652 | "metadata": {},
653 | "execution_count": 88
654 | }
655 | ]
656 | },
657 | {
658 | "cell_type": "code",
659 | "source": [
660 | "x_train,y_train,x_test,y_test=train_test_split(x,y,test_size=0.2)"
661 | ],
662 | "metadata": {
663 | "id": "9yOf-c7l4m3h"
664 | },
665 | "execution_count": 89,
666 | "outputs": []
667 | },
668 | {
669 | "cell_type": "code",
670 | "source": [
671 | "y_predict=lm.predict(x_test)\n",
672 | "y_predict"
673 | ],
674 | "metadata": {
675 | "colab": {
676 | "base_uri": "https://localhost:8080/"
677 | },
678 | "id": "6_H579Cz5O1o",
679 | "outputId": "0bb79264-8042-43b9-d580-07664a0e531f"
680 | },
681 | "execution_count": 90,
682 | "outputs": [
683 | {
684 | "output_type": "execute_result",
685 | "data": {
686 | "text/plain": [
687 | "array([[ 0.56792547],\n",
688 | " [ 0.56792547],\n",
689 | " [ 0.56792547],\n",
690 | " [ 0.96542625],\n",
691 | " [ 0.56792547],\n",
692 | " [ 0.64742563],\n",
693 | " [ 0.56792547],\n",
694 | " [ 0.56792547],\n",
695 | " [ 0.56792547],\n",
696 | " [ 1.0449264 ],\n",
697 | " [ 0.88592609],\n",
698 | " [ 0.64742563],\n",
699 | " [ 1.0449264 ],\n",
700 | " [ 0.56792547],\n",
701 | " [ 0.56792547],\n",
702 | " [ 0.64742563],\n",
703 | " [ 0.56792547],\n",
704 | " [ 0.56792547],\n",
705 | " [ 0.80642594],\n",
706 | " [ 0.56792547],\n",
707 | " [ 1.83992794],\n",
708 | " [ 0.56792547],\n",
709 | " [ 0.80642594],\n",
710 | " [ 0.56792547],\n",
711 | " [ 0.64742563],\n",
712 | " [ 0.96542625],\n",
713 | " [ 0.56792547],\n",
714 | " [ 0.56792547],\n",
715 | " [ 0.56792547],\n",
716 | " [ 0.64742563],\n",
717 | " [ 1.0449264 ],\n",
718 | " [ 2.79392979],\n",
719 | " [ 0.72692578],\n",
720 | " [ 0.56792547],\n",
721 | " [ 3.90693195],\n",
722 | " [ 2.87342995],\n",
723 | " [ 0.56792547],\n",
724 | " [15.51395448],\n",
725 | " [ 0.96542625],\n",
726 | " [ 0.56792547],\n",
727 | " [ 1.28342686],\n",
728 | " [ 0.56792547],\n",
729 | " [ 0.96542625],\n",
730 | " [ 0.56792547],\n",
731 | " [ 1.60142748],\n",
732 | " [ 0.56792547],\n",
733 | " [ 2.23742871],\n",
734 | " [ 0.72692578],\n",
735 | " [ 0.56792547],\n",
736 | " [ 0.56792547],\n",
737 | " [ 0.56792547],\n",
738 | " [ 0.56792547],\n",
739 | " [ 0.56792547],\n",
740 | " [ 0.56792547],\n",
741 | " [ 0.56792547],\n",
742 | " [ 0.56792547],\n",
743 | " [ 0.56792547],\n",
744 | " [ 0.56792547],\n",
745 | " [ 0.96542625],\n",
746 | " [ 0.56792547],\n",
747 | " [ 0.56792547],\n",
748 | " [ 0.88592609],\n",
749 | " [ 3.50943118],\n",
750 | " [ 0.56792547],\n",
751 | " [ 0.56792547],\n",
752 | " [ 0.88592609],\n",
753 | " [ 0.96542625],\n",
754 | " [ 0.80642594],\n",
755 | " [ 0.56792547],\n",
756 | " [ 0.80642594],\n",
757 | " [ 2.23742871],\n",
758 | " [ 0.56792547],\n",
759 | " [ 1.0449264 ],\n",
760 | " [ 1.9194281 ],\n",
761 | " [ 0.56792547],\n",
762 | " [ 0.64742563],\n",
763 | " [ 0.80642594],\n",
764 | " [ 0.56792547],\n",
765 | " [ 1.20392671],\n",
766 | " [ 0.56792547],\n",
767 | " [ 1.68092763],\n",
768 | " [ 0.56792547],\n",
769 | " [ 1.76042779],\n",
770 | " [ 0.56792547],\n",
771 | " [ 0.64742563],\n",
772 | " [ 0.64742563],\n",
773 | " [ 1.52192733],\n",
774 | " [ 1.12442655],\n",
775 | " [ 2.55542933],\n",
776 | " [ 0.56792547],\n",
777 | " [ 0.56792547],\n",
778 | " [ 0.56792547],\n",
779 | " [ 0.80642594],\n",
780 | " [ 0.56792547],\n",
781 | " [ 0.56792547],\n",
782 | " [ 0.64742563],\n",
783 | " [ 0.80642594],\n",
784 | " [ 0.56792547],\n",
785 | " [ 0.56792547],\n",
786 | " [ 3.98643211],\n",
787 | " [ 2.23742871],\n",
788 | " [ 0.56792547],\n",
789 | " [ 0.56792547],\n",
790 | " [ 0.56792547],\n",
791 | " [ 0.56792547],\n",
792 | " [ 0.56792547],\n",
793 | " [ 2.23742871],\n",
794 | " [ 0.56792547],\n",
795 | " [ 3.66843149],\n",
796 | " [ 0.72692578],\n",
797 | " [ 0.56792547],\n",
798 | " [ 8.5179409 ],\n",
799 | " [ 0.80642594],\n",
800 | " [ 0.64742563],\n",
801 | " [ 3.50943118],\n",
802 | " [ 0.88592609],\n",
803 | " [ 0.56792547],\n",
804 | " [ 0.56792547],\n",
805 | " [ 0.72692578],\n",
806 | " [ 0.56792547],\n",
807 | " [ 0.56792547],\n",
808 | " [ 0.56792547],\n",
809 | " [ 2.23742871],\n",
810 | " [ 0.64742563],\n",
811 | " [ 0.80642594],\n",
812 | " [ 0.56792547],\n",
813 | " [ 0.56792547],\n",
814 | " [ 0.64742563],\n",
815 | " [ 0.64742563],\n",
816 | " [ 0.72692578],\n",
817 | " [ 0.88592609],\n",
818 | " [ 0.56792547],\n",
819 | " [ 0.56792547],\n",
820 | " [ 0.56792547],\n",
821 | " [ 0.56792547],\n",
822 | " [ 2.71442964],\n",
823 | " [ 0.56792547],\n",
824 | " [ 0.56792547],\n",
825 | " [ 0.80642594],\n",
826 | " [ 0.80642594],\n",
827 | " [ 0.56792547],\n",
828 | " [ 1.36292702],\n",
829 | " [ 1.52192733],\n",
830 | " [ 0.56792547],\n",
831 | " [ 0.56792547],\n",
832 | " [ 2.71442964],\n",
833 | " [ 3.35043087],\n",
834 | " [ 1.28342686],\n",
835 | " [ 0.72692578],\n",
836 | " [ 0.56792547],\n",
837 | " [ 0.56792547],\n",
838 | " [ 0.56792547],\n",
839 | " [ 1.76042779],\n",
840 | " [ 1.44242717],\n",
841 | " [ 0.56792547],\n",
842 | " [ 0.56792547],\n",
843 | " [ 3.35043087],\n",
844 | " [ 0.64742563],\n",
845 | " [ 0.56792547],\n",
846 | " [ 0.72692578],\n",
847 | " [ 0.56792547],\n",
848 | " [ 1.44242717],\n",
849 | " [ 0.56792547],\n",
850 | " [ 0.56792547],\n",
851 | " [ 0.56792547],\n",
852 | " [ 3.66843149],\n",
853 | " [ 2.55542933],\n",
854 | " [ 0.56792547],\n",
855 | " [ 1.99892825],\n",
856 | " [ 0.64742563],\n",
857 | " [ 0.56792547],\n",
858 | " [ 0.56792547],\n",
859 | " [ 0.56792547],\n",
860 | " [ 0.80642594],\n",
861 | " [ 0.56792547],\n",
862 | " [ 0.80642594],\n",
863 | " [ 0.56792547],\n",
864 | " [ 0.64742563],\n",
865 | " [ 0.96542625],\n",
866 | " [ 1.60142748],\n",
867 | " [ 2.9529301 ],\n",
868 | " [ 0.56792547],\n",
869 | " [ 0.56792547],\n",
870 | " [ 0.64742563],\n",
871 | " [ 0.56792547],\n",
872 | " [ 0.56792547],\n",
873 | " [ 1.0449264 ],\n",
874 | " [ 0.64742563],\n",
875 | " [ 0.56792547],\n",
876 | " [ 0.64742563],\n",
877 | " [ 0.64742563],\n",
878 | " [ 0.56792547],\n",
879 | " [ 1.12442655],\n",
880 | " [ 0.56792547],\n",
881 | " [ 0.80642594],\n",
882 | " [ 2.87342995],\n",
883 | " [ 0.80642594],\n",
884 | " [ 0.64742563],\n",
885 | " [ 0.56792547],\n",
886 | " [ 0.56792547],\n",
887 | " [ 0.80642594],\n",
888 | " [ 0.56792547],\n",
889 | " [ 0.64742563],\n",
890 | " [ 0.56792547],\n",
891 | " [ 0.56792547],\n",
892 | " [ 0.56792547],\n",
893 | " [ 0.56792547],\n",
894 | " [ 1.20392671],\n",
895 | " [ 0.56792547],\n",
896 | " [ 0.56792547],\n",
897 | " [ 2.63492949],\n",
898 | " [ 0.56792547],\n",
899 | " [ 0.56792547],\n",
900 | " [ 0.56792547],\n",
901 | " [ 0.56792547],\n",
902 | " [12.25444816],\n",
903 | " [ 1.0449264 ],\n",
904 | " [ 0.64742563],\n",
905 | " [ 0.56792547],\n",
906 | " [ 0.56792547],\n",
907 | " [ 0.56792547],\n",
908 | " [ 0.64742563],\n",
909 | " [ 0.96542625],\n",
910 | " [ 0.56792547],\n",
911 | " [ 0.56792547],\n",
912 | " [ 1.44242717],\n",
913 | " [ 0.64742563],\n",
914 | " [ 0.80642594],\n",
915 | " [ 5.01993412],\n",
916 | " [ 0.56792547],\n",
917 | " [ 0.56792547],\n",
918 | " [ 1.12442655],\n",
919 | " [ 0.56792547],\n",
920 | " [ 0.56792547],\n",
921 | " [ 4.06593226],\n",
922 | " [ 0.56792547],\n",
923 | " [ 2.79392979],\n",
924 | " [ 0.80642594],\n",
925 | " [ 0.56792547],\n",
926 | " [ 0.56792547],\n",
927 | " [ 2.47592918],\n",
928 | " [ 0.64742563],\n",
929 | " [ 0.72692578],\n",
930 | " [ 0.56792547],\n",
931 | " [ 0.64742563],\n",
932 | " [ 0.56792547],\n",
933 | " [ 0.56792547],\n",
934 | " [ 0.80642594],\n",
935 | " [ 0.56792547],\n",
936 | " [ 0.56792547],\n",
937 | " [ 0.56792547],\n",
938 | " [ 1.36292702],\n",
939 | " [ 0.64742563],\n",
940 | " [ 0.56792547],\n",
941 | " [ 0.56792547],\n",
942 | " [ 0.72692578],\n",
943 | " [ 0.56792547],\n",
944 | " [ 0.56792547],\n",
945 | " [ 0.80642594],\n",
946 | " [ 0.88592609],\n",
947 | " [ 0.64742563],\n",
948 | " [ 0.56792547],\n",
949 | " [ 1.36292702],\n",
950 | " [ 0.56792547],\n",
951 | " [ 0.56792547],\n",
952 | " [ 0.56792547],\n",
953 | " [ 1.36292702],\n",
954 | " [ 0.56792547],\n",
955 | " [ 1.12442655],\n",
956 | " [ 2.31692887],\n",
957 | " [ 0.56792547],\n",
958 | " [ 7.00743797],\n",
959 | " [ 0.56792547],\n",
960 | " [ 0.56792547],\n",
961 | " [ 0.56792547],\n",
962 | " [ 0.56792547],\n",
963 | " [ 0.80642594],\n",
964 | " [ 1.0449264 ],\n",
965 | " [ 0.72692578],\n",
966 | " [ 0.64742563],\n",
967 | " [ 0.64742563],\n",
968 | " [ 0.88592609],\n",
969 | " [ 0.56792547],\n",
970 | " [ 5.25843458],\n",
971 | " [ 0.56792547],\n",
972 | " [ 0.56792547],\n",
973 | " [17.81945896],\n",
974 | " [ 0.56792547],\n",
975 | " [ 0.56792547],\n",
976 | " [ 0.96542625],\n",
977 | " [ 0.56792547],\n",
978 | " [ 1.12442655],\n",
979 | " [ 0.80642594],\n",
980 | " [ 0.72692578],\n",
981 | " [ 0.56792547],\n",
982 | " [ 0.56792547],\n",
983 | " [ 2.47592918],\n",
984 | " [ 0.56792547],\n",
985 | " [ 0.56792547],\n",
986 | " [ 0.56792547],\n",
987 | " [ 1.28342686],\n",
988 | " [ 0.56792547],\n",
989 | " [ 0.56792547],\n",
990 | " [ 0.56792547],\n",
991 | " [ 1.0449264 ],\n",
992 | " [ 0.56792547],\n",
993 | " [ 0.56792547],\n",
994 | " [ 0.56792547],\n",
995 | " [ 0.72692578],\n",
996 | " [ 0.56792547],\n",
997 | " [ 2.23742871],\n",
998 | " [ 1.28342686],\n",
999 | " [ 2.07842841],\n",
1000 | " [ 0.56792547],\n",
1001 | " [ 0.56792547],\n",
1002 | " [ 1.28342686],\n",
1003 | " [ 1.0449264 ],\n",
1004 | " [ 0.56792547],\n",
1005 | " [ 0.56792547],\n",
1006 | " [ 0.56792547],\n",
1007 | " [ 0.56792547],\n",
1008 | " [ 0.56792547],\n",
1009 | " [ 0.56792547],\n",
1010 | " [ 0.96542625],\n",
1011 | " [ 0.56792547],\n",
1012 | " [ 1.60142748],\n",
1013 | " [ 0.88592609],\n",
1014 | " [ 0.56792547],\n",
1015 | " [ 0.56792547],\n",
1016 | " [ 0.96542625],\n",
1017 | " [ 0.56792547],\n",
1018 | " [ 0.56792547],\n",
1019 | " [ 0.56792547],\n",
1020 | " [ 2.07842841],\n",
1021 | " [ 0.56792547],\n",
1022 | " [ 0.56792547],\n",
1023 | " [ 0.80642594],\n",
1024 | " [ 0.56792547],\n",
1025 | " [ 0.56792547],\n",
1026 | " [ 0.56792547],\n",
1027 | " [ 0.56792547],\n",
1028 | " [ 0.56792547],\n",
1029 | " [ 1.52192733],\n",
1030 | " [ 1.0449264 ],\n",
1031 | " [ 0.56792547],\n",
1032 | " [ 0.56792547],\n",
1033 | " [ 0.56792547],\n",
1034 | " [14.7984531 ],\n",
1035 | " [ 0.80642594],\n",
1036 | " [ 0.64742563],\n",
1037 | " [ 0.56792547],\n",
1038 | " [ 0.64742563],\n",
1039 | " [ 0.56792547],\n",
1040 | " [ 0.64742563],\n",
1041 | " [ 0.64742563],\n",
1042 | " [ 0.72692578],\n",
1043 | " [ 2.55542933],\n",
1044 | " [ 0.56792547],\n",
1045 | " [ 0.56792547],\n",
1046 | " [ 1.36292702],\n",
1047 | " [ 0.56792547],\n",
1048 | " [ 0.64742563],\n",
1049 | " [ 0.72692578],\n",
1050 | " [ 0.56792547],\n",
1051 | " [ 2.07842841],\n",
1052 | " [ 0.72692578],\n",
1053 | " [ 0.56792547],\n",
1054 | " [ 0.80642594],\n",
1055 | " [ 0.56792547],\n",
1056 | " [ 0.56792547],\n",
1057 | " [ 1.36292702],\n",
1058 | " [ 0.96542625],\n",
1059 | " [ 0.56792547],\n",
1060 | " [ 0.56792547],\n",
1061 | " [ 0.56792547],\n",
1062 | " [ 0.56792547],\n",
1063 | " [ 0.56792547],\n",
1064 | " [ 0.64742563],\n",
1065 | " [ 0.64742563],\n",
1066 | " [ 0.64742563],\n",
1067 | " [ 1.0449264 ],\n",
1068 | " [17.34245803],\n",
1069 | " [ 0.56792547],\n",
1070 | " [ 0.56792547],\n",
1071 | " [ 0.56792547],\n",
1072 | " [ 1.0449264 ],\n",
1073 | " [ 0.56792547],\n",
1074 | " [ 0.56792547],\n",
1075 | " [ 1.36292702],\n",
1076 | " [ 0.56792547],\n",
1077 | " [ 0.56792547],\n",
1078 | " [ 1.28342686],\n",
1079 | " [ 0.64742563],\n",
1080 | " [ 0.56792547],\n",
1081 | " [ 0.56792547],\n",
1082 | " [ 0.56792547],\n",
1083 | " [ 0.64742563],\n",
1084 | " [ 0.56792547],\n",
1085 | " [ 0.56792547],\n",
1086 | " [ 7.16643828],\n",
1087 | " [ 0.72692578],\n",
1088 | " [ 0.56792547],\n",
1089 | " [ 0.56792547],\n",
1090 | " [ 0.56792547],\n",
1091 | " [ 0.56792547],\n",
1092 | " [ 0.72692578],\n",
1093 | " [ 3.98643211],\n",
1094 | " [ 0.56792547],\n",
1095 | " [ 0.56792547],\n",
1096 | " [ 0.56792547],\n",
1097 | " [ 3.90693195],\n",
1098 | " [ 0.56792547],\n",
1099 | " [ 0.56792547],\n",
1100 | " [ 0.56792547],\n",
1101 | " [ 0.80642594],\n",
1102 | " [ 3.11193041],\n",
1103 | " [ 0.56792547],\n",
1104 | " [ 0.56792547],\n",
1105 | " [ 1.44242717],\n",
1106 | " [ 0.64742563],\n",
1107 | " [ 0.80642594],\n",
1108 | " [ 0.56792547],\n",
1109 | " [ 0.56792547],\n",
1110 | " [ 0.64742563],\n",
1111 | " [ 0.64742563],\n",
1112 | " [ 0.56792547],\n",
1113 | " [ 0.56792547],\n",
1114 | " [ 0.56792547],\n",
1115 | " [ 0.56792547],\n",
1116 | " [ 0.56792547],\n",
1117 | " [ 0.72692578],\n",
1118 | " [ 0.64742563],\n",
1119 | " [ 0.56792547],\n",
1120 | " [ 0.56792547],\n",
1121 | " [ 0.56792547],\n",
1122 | " [ 0.96542625],\n",
1123 | " [ 0.56792547],\n",
1124 | " [ 0.56792547],\n",
1125 | " [ 1.52192733],\n",
1126 | " [ 2.07842841],\n",
1127 | " [ 0.64742563],\n",
1128 | " [ 0.80642594],\n",
1129 | " [ 0.80642594],\n",
1130 | " [ 1.20392671],\n",
1131 | " [ 0.56792547],\n",
1132 | " [ 1.60142748],\n",
1133 | " [ 0.56792547],\n",
1134 | " [ 2.23742871],\n",
1135 | " [ 0.56792547],\n",
1136 | " [ 0.96542625],\n",
1137 | " [ 0.80642594],\n",
1138 | " [ 0.56792547],\n",
1139 | " [ 0.80642594],\n",
1140 | " [ 2.23742871],\n",
1141 | " [ 0.80642594],\n",
1142 | " [ 1.36292702],\n",
1143 | " [ 0.56792547],\n",
1144 | " [ 0.56792547],\n",
1145 | " [ 5.17893442],\n",
1146 | " [ 0.80642594],\n",
1147 | " [ 0.56792547],\n",
1148 | " [ 2.23742871],\n",
1149 | " [ 0.56792547],\n",
1150 | " [ 0.96542625],\n",
1151 | " [ 0.56792547],\n",
1152 | " [ 0.56792547],\n",
1153 | " [ 0.56792547],\n",
1154 | " [ 0.64742563],\n",
1155 | " [ 0.56792547],\n",
1156 | " [ 0.56792547],\n",
1157 | " [ 0.88592609],\n",
1158 | " [ 0.56792547],\n",
1159 | " [ 0.64742563],\n",
1160 | " [ 0.64742563],\n",
1161 | " [ 0.88592609],\n",
1162 | " [ 0.80642594],\n",
1163 | " [ 0.56792547],\n",
1164 | " [ 2.07842841],\n",
1165 | " [ 0.56792547],\n",
1166 | " [ 0.56792547],\n",
1167 | " [ 0.56792547],\n",
1168 | " [ 0.56792547],\n",
1169 | " [ 0.56792547],\n",
1170 | " [ 0.56792547],\n",
1171 | " [ 0.72692578],\n",
1172 | " [ 0.64742563],\n",
1173 | " [ 0.56792547],\n",
1174 | " [ 2.23742871],\n",
1175 | " [ 0.56792547],\n",
1176 | " [ 2.23742871],\n",
1177 | " [ 0.64742563],\n",
1178 | " [ 1.0449264 ],\n",
1179 | " [ 0.56792547],\n",
1180 | " [ 0.56792547],\n",
1181 | " [ 0.80642594],\n",
1182 | " [ 0.56792547],\n",
1183 | " [ 0.64742563],\n",
1184 | " [ 0.64742563],\n",
1185 | " [ 0.56792547],\n",
1186 | " [ 1.76042779],\n",
1187 | " [ 0.72692578],\n",
1188 | " [ 2.07842841],\n",
1189 | " [ 0.56792547],\n",
1190 | " [ 4.06593226],\n",
1191 | " [ 1.99892825],\n",
1192 | " [ 0.56792547],\n",
1193 | " [ 3.27093072],\n",
1194 | " [ 0.80642594],\n",
1195 | " [ 0.72692578],\n",
1196 | " [ 0.56792547],\n",
1197 | " [ 0.56792547],\n",
1198 | " [ 0.56792547],\n",
1199 | " [ 3.11193041],\n",
1200 | " [ 2.23742871],\n",
1201 | " [ 6.13293628],\n",
1202 | " [ 0.56792547],\n",
1203 | " [ 0.88592609],\n",
1204 | " [ 0.56792547],\n",
1205 | " [ 0.64742563],\n",
1206 | " [ 0.56792547],\n",
1207 | " [ 0.56792547],\n",
1208 | " [ 3.8274318 ],\n",
1209 | " [ 0.56792547],\n",
1210 | " [ 0.56792547],\n",
1211 | " [ 1.44242717],\n",
1212 | " [ 0.56792547],\n",
1213 | " [ 3.03243026],\n",
1214 | " [ 0.56792547],\n",
1215 | " [ 1.0449264 ],\n",
1216 | " [ 2.23742871],\n",
1217 | " [ 0.64742563],\n",
1218 | " [ 0.56792547],\n",
1219 | " [ 0.56792547],\n",
1220 | " [ 0.96542625],\n",
1221 | " [ 6.21243643],\n",
1222 | " [ 0.56792547],\n",
1223 | " [ 2.55542933],\n",
1224 | " [ 0.56792547],\n",
1225 | " [ 1.44242717],\n",
1226 | " [ 0.64742563],\n",
1227 | " [ 0.56792547],\n",
1228 | " [ 1.12442655],\n",
1229 | " [ 1.36292702],\n",
1230 | " [ 0.56792547],\n",
1231 | " [ 0.56792547],\n",
1232 | " [ 1.44242717],\n",
1233 | " [ 2.87342995],\n",
1234 | " [ 0.80642594],\n",
1235 | " [ 1.28342686],\n",
1236 | " [ 0.56792547],\n",
1237 | " [ 0.56792547],\n",
1238 | " [ 0.56792547],\n",
1239 | " [ 0.56792547],\n",
1240 | " [ 0.56792547],\n",
1241 | " [ 3.03243026],\n",
1242 | " [ 0.56792547],\n",
1243 | " [ 0.56792547],\n",
1244 | " [ 0.56792547],\n",
1245 | " [ 0.72692578],\n",
1246 | " [ 0.56792547],\n",
1247 | " [ 0.56792547],\n",
1248 | " [ 0.56792547],\n",
1249 | " [ 1.52192733],\n",
1250 | " [ 1.83992794],\n",
1251 | " [ 0.64742563],\n",
1252 | " [ 0.56792547],\n",
1253 | " [ 0.80642594],\n",
1254 | " [ 1.36292702],\n",
1255 | " [ 1.0449264 ],\n",
1256 | " [ 0.64742563],\n",
1257 | " [ 0.56792547],\n",
1258 | " [ 1.44242717],\n",
1259 | " [ 2.55542933],\n",
1260 | " [ 0.56792547],\n",
1261 | " [ 0.56792547],\n",
1262 | " [ 9.86944353],\n",
1263 | " [21.15846544],\n",
1264 | " [ 0.56792547],\n",
1265 | " [ 0.56792547],\n",
1266 | " [ 0.64742563],\n",
1267 | " [ 0.56792547],\n",
1268 | " [ 0.56792547],\n",
1269 | " [ 0.64742563],\n",
1270 | " [ 1.44242717],\n",
1271 | " [ 1.44242717],\n",
1272 | " [ 0.56792547],\n",
1273 | " [ 0.56792547],\n",
1274 | " [ 0.56792547],\n",
1275 | " [ 0.80642594],\n",
1276 | " [ 0.56792547],\n",
1277 | " [ 3.90693195],\n",
1278 | " [ 0.56792547],\n",
1279 | " [ 3.27093072],\n",
1280 | " [ 0.56792547],\n",
1281 | " [ 0.56792547],\n",
1282 | " [ 0.96542625],\n",
1283 | " [ 0.56792547],\n",
1284 | " [ 0.64742563],\n",
1285 | " [ 1.44242717],\n",
1286 | " [ 2.79392979],\n",
1287 | " [ 0.88592609],\n",
1288 | " [ 0.56792547],\n",
1289 | " [ 0.96542625],\n",
1290 | " [ 1.20392671],\n",
1291 | " [ 1.44242717],\n",
1292 | " [ 0.80642594],\n",
1293 | " [ 0.56792547],\n",
1294 | " [ 1.0449264 ],\n",
1295 | " [ 0.80642594],\n",
1296 | " [ 2.55542933],\n",
1297 | " [ 0.56792547],\n",
1298 | " [ 0.56792547],\n",
1299 | " [ 0.80642594],\n",
1300 | " [ 0.56792547],\n",
1301 | " [ 4.14543242],\n",
1302 | " [ 0.56792547],\n",
1303 | " [ 0.56792547],\n",
1304 | " [ 0.56792547],\n",
1305 | " [ 0.56792547],\n",
1306 | " [ 0.96542625],\n",
1307 | " [ 0.56792547],\n",
1308 | " [ 1.0449264 ],\n",
1309 | " [ 0.56792547],\n",
1310 | " [ 0.56792547],\n",
1311 | " [ 0.56792547],\n",
1312 | " [ 0.56792547],\n",
1313 | " [ 2.23742871],\n",
1314 | " [ 0.80642594],\n",
1315 | " [ 0.56792547],\n",
1316 | " [ 0.56792547],\n",
1317 | " [ 0.56792547],\n",
1318 | " [ 0.96542625],\n",
1319 | " [ 2.55542933],\n",
1320 | " [ 2.23742871],\n",
1321 | " [ 0.56792547],\n",
1322 | " [ 0.56792547],\n",
1323 | " [ 0.64742563],\n",
1324 | " [ 1.99892825],\n",
1325 | " [ 0.56792547],\n",
1326 | " [ 0.64742563],\n",
1327 | " [ 1.83992794],\n",
1328 | " [ 0.64742563],\n",
1329 | " [ 1.0449264 ],\n",
1330 | " [ 1.36292702],\n",
1331 | " [ 0.80642594],\n",
1332 | " [10.34644445],\n",
1333 | " [ 0.56792547],\n",
1334 | " [ 0.64742563],\n",
1335 | " [ 0.64742563],\n",
1336 | " [ 0.64742563],\n",
1337 | " [ 0.56792547],\n",
1338 | " [ 0.56792547],\n",
1339 | " [ 1.83992794],\n",
1340 | " [ 0.56792547],\n",
1341 | " [ 0.56792547],\n",
1342 | " [ 0.56792547],\n",
1343 | " [ 1.0449264 ],\n",
1344 | " [ 0.88592609],\n",
1345 | " [ 0.56792547],\n",
1346 | " [ 0.56792547],\n",
1347 | " [ 2.9529301 ],\n",
1348 | " [ 0.56792547],\n",
1349 | " [ 0.56792547],\n",
1350 | " [ 0.56792547],\n",
1351 | " [ 2.07842841],\n",
1352 | " [ 0.56792547],\n",
1353 | " [ 0.56792547],\n",
1354 | " [ 0.88592609],\n",
1355 | " [ 0.56792547],\n",
1356 | " [ 0.56792547],\n",
1357 | " [ 0.88592609],\n",
1358 | " [ 0.56792547],\n",
1359 | " [ 4.22493257],\n",
1360 | " [ 0.56792547],\n",
1361 | " [ 0.56792547],\n",
1362 | " [ 0.88592609],\n",
1363 | " [ 0.72692578],\n",
1364 | " [ 0.72692578],\n",
1365 | " [ 0.56792547],\n",
1366 | " [ 0.56792547],\n",
1367 | " [ 1.20392671],\n",
1368 | " [ 0.64742563],\n",
1369 | " [ 2.07842841],\n",
1370 | " [ 1.36292702],\n",
1371 | " [ 0.56792547],\n",
1372 | " [ 0.56792547],\n",
1373 | " [ 0.80642594],\n",
1374 | " [ 0.80642594],\n",
1375 | " [ 0.56792547],\n",
1376 | " [ 0.80642594],\n",
1377 | " [ 1.36292702],\n",
1378 | " [ 0.56792547],\n",
1379 | " [ 0.56792547],\n",
1380 | " [ 0.56792547],\n",
1381 | " [ 0.56792547],\n",
1382 | " [ 0.56792547],\n",
1383 | " [ 0.96542625],\n",
1384 | " [ 4.62243334],\n",
1385 | " [ 0.56792547],\n",
1386 | " [ 2.23742871],\n",
1387 | " [ 1.28342686],\n",
1388 | " [ 2.23742871],\n",
1389 | " [ 0.80642594],\n",
1390 | " [ 0.64742563],\n",
1391 | " [ 0.80642594],\n",
1392 | " [ 0.56792547],\n",
1393 | " [ 0.56792547],\n",
1394 | " [ 0.56792547],\n",
1395 | " [ 0.56792547],\n",
1396 | " [ 0.80642594],\n",
1397 | " [ 0.64742563],\n",
1398 | " [ 0.80642594],\n",
1399 | " [ 0.64742563],\n",
1400 | " [ 2.71442964],\n",
1401 | " [ 0.56792547],\n",
1402 | " [ 0.64742563],\n",
1403 | " [ 2.79392979],\n",
1404 | " [ 0.64742563],\n",
1405 | " [ 0.80642594],\n",
1406 | " [ 0.56792547],\n",
1407 | " [ 0.56792547],\n",
1408 | " [ 0.56792547],\n",
1409 | " [ 0.56792547],\n",
1410 | " [ 0.64742563],\n",
1411 | " [ 0.56792547],\n",
1412 | " [ 3.90693195],\n",
1413 | " [ 0.56792547],\n",
1414 | " [ 1.12442655],\n",
1415 | " [ 0.56792547],\n",
1416 | " [ 0.56792547],\n",
1417 | " [ 0.56792547],\n",
1418 | " [ 0.64742563],\n",
1419 | " [ 5.09943427],\n",
1420 | " [ 0.64742563],\n",
1421 | " [ 0.56792547],\n",
1422 | " [ 0.56792547],\n",
1423 | " [17.10395757],\n",
1424 | " [ 0.56792547],\n",
1425 | " [ 0.56792547],\n",
1426 | " [ 0.56792547],\n",
1427 | " [ 0.56792547],\n",
1428 | " [ 0.80642594],\n",
1429 | " [ 0.56792547],\n",
1430 | " [ 0.56792547],\n",
1431 | " [ 0.56792547],\n",
1432 | " [ 0.80642594],\n",
1433 | " [ 0.56792547],\n",
1434 | " [ 0.56792547],\n",
1435 | " [ 0.56792547],\n",
1436 | " [ 0.88592609],\n",
1437 | " [ 1.44242717],\n",
1438 | " [ 0.80642594],\n",
1439 | " [ 6.84843766],\n",
1440 | " [ 0.56792547],\n",
1441 | " [ 0.56792547],\n",
1442 | " [ 2.55542933],\n",
1443 | " [ 1.0449264 ],\n",
1444 | " [ 0.56792547],\n",
1445 | " [ 0.56792547],\n",
1446 | " [ 0.56792547],\n",
1447 | " [ 0.56792547]])"
1448 | ]
1449 | },
1450 | "metadata": {},
1451 | "execution_count": 90
1452 | }
1453 | ]
1454 | },
1455 | {
1456 | "cell_type": "markdown",
1457 | "source": [
1458 | "did not able to create regression because of data is not so clean and we have clean the data"
1459 | ],
1460 | "metadata": {
1461 | "id": "3CwqS8ks_WYT"
1462 | }
1463 | }
1464 | ]
1465 | }
--------------------------------------------------------------------------------