├── Data ├── Baseline └── delete.txt ├── data ├── HandLabeled │ └── file2.txt └── WeaklyLabeled │ └── file3.txt ├── imgs ├── s1.png ├── s2.png ├── UNET.png ├── Folder1.png ├── Folder2.png ├── Folder3.png ├── S2_half.png ├── label.png ├── Label_half.png ├── S1Hand_NAN.png ├── HandLabeledTable.png └── WeaklyLabeledTable.png ├── pre-processing ├── snappyfunctions_pre.py ├── Pre-Process-Data.ipynb └── Pre-Processing-Sentinel 1.ipynb ├── README.md ├── LICENSE ├── Random_Forest └── Random_Forest_Floods.ipynb └── U-NET ├── UNET_S1S2_MultiModal.ipynb └── U_NET_S1Hand.ipynb /Data: -------------------------------------------------------------------------------- 1 | 2 | -------------------------------------------------------------------------------- /Baseline/delete.txt: -------------------------------------------------------------------------------- 1 | tipota 2 | -------------------------------------------------------------------------------- /data/HandLabeled/file2.txt: -------------------------------------------------------------------------------- 1 | delete 2 | -------------------------------------------------------------------------------- /data/WeaklyLabeled/file3.txt: -------------------------------------------------------------------------------- 1 | delete 2 | -------------------------------------------------------------------------------- /imgs/s1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/s1.png -------------------------------------------------------------------------------- /imgs/s2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/s2.png -------------------------------------------------------------------------------- /imgs/UNET.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/UNET.png -------------------------------------------------------------------------------- /imgs/Folder1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/Folder1.png -------------------------------------------------------------------------------- /imgs/Folder2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/Folder2.png -------------------------------------------------------------------------------- /imgs/Folder3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/Folder3.png -------------------------------------------------------------------------------- /imgs/S2_half.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/S2_half.png -------------------------------------------------------------------------------- /imgs/label.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/label.png -------------------------------------------------------------------------------- /imgs/Label_half.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/Label_half.png -------------------------------------------------------------------------------- /imgs/S1Hand_NAN.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/S1Hand_NAN.png -------------------------------------------------------------------------------- /imgs/HandLabeledTable.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/HandLabeledTable.png -------------------------------------------------------------------------------- /imgs/WeaklyLabeledTable.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/KonstantinosF/Flood-Mapping-Using-Satellite-Images/HEAD/imgs/WeaklyLabeledTable.png -------------------------------------------------------------------------------- /pre-processing/snappyfunctions_pre.py: -------------------------------------------------------------------------------- 1 | from osgeo import ogr 2 | import imageio 3 | import matplotlib.pyplot as plt 4 | import numpy as np 5 | # import rasterio 6 | 7 | import snappy 8 | from os.path import join 9 | from glob import glob 10 | import numpy as np 11 | import os 12 | import glob 13 | import jpy 14 | System = jpy.get_type('java.lang.System') 15 | System.gc() 16 | import gc 17 | 18 | import re 19 | from geomet import wkt 20 | from snappy import GPF 21 | from snappy import ProductIO 22 | from snappy import HashMap 23 | from snappy import jpy 24 | HashMap = snappy.jpy.get_type('java.util.HashMap') 25 | import time 26 | 27 | from osgeo import gdal, ogr 28 | import sys 29 | from osgeo import osr 30 | 31 | import configparser 32 | from os.path import expanduser 33 | os.chdir(r"D:\MICROS\Ship_detection") 34 | 35 | 36 | 37 | def subset(image): 38 | 39 | region = 'POLYGON ((33.0130819325524 34.54982297667559, 33.285059184082606 34.58857638473086, 33.25449505627861 34.734151031006526, 32.98203732050098 34.6954232998211,33.0130819325524 34.54982297667559))' 40 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 41 | HashMap = jpy.get_type('java.util.HashMap') 42 | 43 | parameters = snappy.HashMap() 44 | parameters.put('copyMetadata', True) 45 | parameters.put('geoRegion', region) 46 | 47 | subset = snappy.GPF.createProduct('Subset', parameters, image) 48 | parameters = None 49 | print('Subset implemented succesfully...') 50 | 51 | 52 | return subset 53 | 54 | 55 | 56 | def importvector(image): 57 | 58 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 59 | HashMap = jpy.get_type('java.util.HashMap') 60 | 61 | #shape = fiona.open('C:\\Users\\Kostas-Geosystems\\Desktop\\Ship_detection\\AOI\\Cyprus_Coastline_Final_V2\\Cyprus_Coastline_Final_V2.shp') 62 | shape_path = r'D:\\MICROS\\Ship_detection\\Cyprus_Coastline_Final_V2.shp' 63 | shapef = "D:/MICROS/Ship_detection/AOI/Cyprus_Coastline_Final_V2/Cyprus_Coastline_Final_V2.shp" 64 | 65 | parameters = HashMap() 66 | parameters.put('vectorFile', shapef) 67 | parameters.put('separateShapes', True) 68 | 69 | addvector = snappy.GPF.createProduct('Import-Vector', parameters, image) 70 | parameters = None 71 | print('The land mask added succesfully...') 72 | 73 | return addvector 74 | 75 | 76 | def landmask(image): 77 | 78 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 79 | HashMap = jpy.get_type('java.util.HashMap') 80 | 81 | parameters = snappy.HashMap() 82 | parameters.put('sourceBands', 'Intensity_VH') 83 | parameters.put('landMask', False) 84 | parameters.put('useSRTM', False) 85 | parameters.put('geometry', 'Cyprus_Coastline_Final_V2_1') 86 | parameters.put('invertGeometry', True) 87 | parameters.put('shorelineExtension', 35) 88 | #parameters.put('byPass', False) 89 | 90 | maskland = snappy.GPF.createProduct('Land-Sea-Mask', parameters, image) 91 | parameters = None 92 | print('The land mask added succesfully...') 93 | 94 | return maskland 95 | 96 | def calibration(image): 97 | 98 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 99 | HashMap = jpy.get_type('java.util.HashMap') 100 | parameters = snappy.HashMap() 101 | parameters.put('sourceBands', 'Intensity_VH') 102 | parameters.put('outputImageScaleInDb', True) 103 | 104 | calibrated = snappy.GPF.createProduct('Calibration', parameters, image) 105 | parameters = None 106 | print('Calibration implemented succesfully...') 107 | 108 | return calibrated 109 | 110 | def adaptivethresholding(image): 111 | 112 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 113 | HashMap = jpy.get_type('java.util.HashMap') 114 | 115 | 116 | parameters = snappy.HashMap() 117 | parameters.put('targetWindowSizeInMeter', 250) 118 | parameters.put('guardWindowSizeInMeter', 600.0) 119 | parameters.put('backgroundWindowSizeInMeter', 800.0) 120 | parameters.put('pfa', 16.0) 121 | parameters.put('estimateBackground', False) 122 | 123 | threshold = snappy.GPF.createProduct('AdaptiveThresholding', parameters, image) 124 | parameters = None 125 | print('Adaptive Thresholding implemented succesfully...') 126 | 127 | return threshold 128 | 129 | def objectdiscrimination(image): 130 | 131 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 132 | HashMap = jpy.get_type('java.util.HashMap') 133 | 134 | parameters = snappy.HashMap() 135 | parameters.put('minTargetSizeInMeter', 30.0) 136 | parameters.put('maxTargetSizeInMeter', 800.0) 137 | 138 | objectdetection = snappy.GPF.createProduct('Object-Discrimination', parameters, image) 139 | parameters = None 140 | print('Object Discimination implemented succesfully...') 141 | 142 | return objectdetection 143 | 144 | def applyorbitfile(image): 145 | 146 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 147 | HashMap = jpy.get_type('java.util.HashMap') 148 | 149 | parameters = snappy.HashMap() 150 | parameters.put('orbitType', 'Sentinel Precise (Auto Download)') 151 | parameters.put('continueOnFail', True) 152 | 153 | orbit_correction = snappy.GPF.createProduct('Apply-Orbit-File', parameters, image) 154 | parameters = None 155 | print('Apply Orbit File implemented succesfully...') 156 | 157 | return orbit_correction 158 | 159 | 160 | def terraincorrection(image): 161 | 162 | GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() 163 | HashMap = jpy.get_type('java.util.HashMap') 164 | 165 | proj = '''GEOGCS["WGS 84", 166 | DATUM["WGS_1984", 167 | SPHEROID["WGS 84",6378137,298.257223563, 168 | AUTHORITY["EPSG","7030"]], 169 | AUTHORITY["EPSG","6326"]], 170 | PRIMEM["Greenwich",0, 171 | AUTHORITY["EPSG","8901"]], 172 | UNIT["degree",0.0174532925199433, 173 | AUTHORITY["EPSG","9122"]], 174 | AUTHORITY["EPSG","4326"]]''' 175 | 176 | parameters = snappy.HashMap() 177 | parameters.put('demName', 'SRTM 1Sec HGT') 178 | parameters.put('sourceBands', 'Sigma0_VH') 179 | parameters.put('imageResamplingMethod', 'BILINEAR_INTERPOLATION') 180 | parameters.put('pixelSpacingInMeter', 10.0) 181 | parameters.put('mapProjection', proj) 182 | parameters.put('noDataValueAtSea', False) 183 | parameters.put('saveSelectedSourceBand', True) 184 | parameters.put('nodataValueAtSea', False) 185 | 186 | terrain_correction = snappy.GPF.createProduct('Terrain-Correction', parameters, image) 187 | parameters = None 188 | print('Terrain Correction implemented succesfully...') 189 | 190 | return terrain_correction 191 | 192 | 193 | 194 | 195 | 196 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Flood-Mapping-Using-Satellite-Images 2 | MSc Thesis - Data Science - UoP & NCSR "Demokritos" 3 | 4 |
22 |
23 |
28 |
29 |
35 |
36 |
This subfolder contains one folder S1Hand which consists of sentinel 1 image patches with two polarization bands (VH & VV) and another one called S2Hand which includes Sentinel 2 image patches with all 13 spectral bands. It should be noticed that not all bands share the same spatial resolution, thus if needed an extra processing (pansharpening) should be applied. The size of the patches is 512x512 within the coordinate system EPSG:4326 - WGS 84 - Geographic. The rest folders are the coresponding ground trouth mask, each one being created with a different method. The areas of study are parts of 12 countries as shown below:
47 | 48 |
49 |
50 |
56 |
57 |
After visually checking the dataset with manually loading image patches on a free 64 | and open Geographic Information System software called QGIS, we noticed that 65 | many images contain corroded pixels with no information or the number with flooded 66 | pixels is significant lower than the background pixels. Additionally it was noticed 67 | that a large number of sentinel 2 images are heavily or totally covered with clouds. 68 | Bellow is an illustration of a sentinel 2 image tile blocked with clouds, 69 | the corresponding sentinel 1 tile and the respective ground truth. 70 | The initial image tiles of 512x512 size were splited into patches of 128x128, so 71 | from each itinial image 16 patches were created. The splitting process in a google 72 | colab environment took 8 to 10 hours to complete.
73 | 74 |Another critical issue was the imbalance between the number of flooded pixels and the background pixels. In order to overcome all these challenges and create a coherent multimodal dataset, we eliminated patches completely covered with clouds, with no flooded pixels or corroded pixels but also the patches with unbalanced number of flooded pixels and background pixels. The remaining number of patches per geographic area is illustrated in Table 4.1. with a total number of images of 577.
75 | 76 |
77 |
78 |
79 |
80 |
84 |
85 |
86 |
The initial total number of images were 4384. Each image was splitted into 16 91 | patches of a size 128x128 pixels, resulting in 70144 patches in total. From these we 92 | remove the patches having at least one cropped pixel labeled as (-1), patches were 93 | the number of flooded pixels were more than 50% than the background pixels and 94 | patches with with background pixels more than 50% of the flooded pixels, resulting 95 | in a dataset comprised of 6835 patches. Since the number of patches were still very 96 | high and not easy to handle, only the first 50 patches from each geographic area we 97 | kept, resulting in 600 patches in total.
98 | 99 | The link for the new dataset: https://uopel-my.sharepoint.com/:f:/g/personal/dit2025dsc_office365_uop_gr/EjZZUSHVyv1LozsRfnTt7uEBKoDEbOsyDsCOzMPi0X02lQ?e=gBMJub 100 | 101 | 102 |Experiments were splited into three parts, with each one based on a different 104 | semantic segmentation scheme. The first one is based on a Fully Convolutional 105 | Neural Network called U-NET, the second approach is based on a Random Forest 106 | and a set of hand crafted features while the last one is based on the concept of 107 | Transfer Learning using as a backbone the VGG16 model.
108 | 109 | 110 |U-Net is a convolutional neural network that was developed for biomedical image segmentation. The network is based on the fully convolutional network and its architecture was modified and extended to work with fewer training images and to yield more precise segmentations. The network consists of a contracting path (convolution) and an expansive path (deconvolution), which gives it the u-shaped architecture. The contracting path is a typical convolutional network that consists of repeated application of convolutions, each followed by a rectified linear unit (ReLU) and a max pooling operation. During the contraction, the spatial information is reduced while feature information is increased. The expansive pathway combines the feature and spatial information through a sequence of up-convolutions and concatenations with high-resolution features from the contracting path. [https://en.wikipedia.org/wiki/U-Net#cite_note-Shelhamer_2017-2]
113 | 114 | 117 | 118 | #### Single-Modal - UNET 119 | | Hand Labeled | | | 120 | | ------------------------ | ---|---- | 121 | | Source & Labels |IOU | Acc | 122 | | S1Hand & S1OtsuLabelHand |0.89|0.94 | 123 | | S2Hand & LabelHand |0.47|0.72 | 124 | 125 | 126 | |Weakly Labeled | | | 127 | |-------------------------| --- | --- | 128 | | Source & Labels | IOU | Acc | 129 | | S1Hand & S1OtsuLabelWeak|0.81 |0.87 | 130 | 131 | 132 | |Weakly Supervised | | | | 133 | |-------------------------|---------------- |--- | --- | 134 | | Trained On | Tested on | IOU | Acc | 135 | | S1Hand & S1OtsuLabelWeak| S1OtsuLabelHand |0.77 |0.86 | 136 | 137 | 138 | 139 | #### Multi-Modal - UNET 140 | 141 | | Hand Labeled | | | 142 | | ----------------------------------- | --- | --- | 143 | | Source & Labels | IOU | Acc | 144 | | S1Hand - S2Hand & S1OtsuLabelHand |0.72 |0.82 | 145 | | S1Hand - S2Hand & LabelHand |0.42 |0.71 | 146 | 147 | 148 | 149 | 150 | 151 |For this set of experiments a various hand crafted features were utilized from both 155 | sentinel 1 and sentinel 2 raw spectral bands. More specifically from optical bands 156 | were constructed the NDVI and NDWI while from sentinel 1 the devision between 157 | VV and VH. Apart from these futures three more kernel based features were con- 158 | structed based on VH and NIR bands respectively. Those are the median filter with 159 | and variance filters with kernel size of 3 and the roberts edge detection filter.
160 | 161 | 162 | #### Single-Modal - RF 163 | | Hand Labeled | | | 164 | | ------------------------ |--- | --- | 165 | | Source & Labels |IOU | Acc | 166 | | S1Hand & S1OtsuLabelHand |0.79|0.89 | 167 | | S2Hand & LabelHand |0.87|0.93 | 168 | 169 | 170 | |Weakly Labeled | | | 171 | |-------------------------| --- | --- | 172 | | Source & Labels | IOU | Acc | 173 | | S1Weak & S1OtsuLabelWeak|0.81 |0.90 | 174 | 175 | 176 | |Weakly Supervised | | | | 177 | |-------------------------|--------------------------|--- | --- | 178 | | Trained On | Tested on | IOU | Acc | 179 | | S1Weak & S1OtsuLabelWeak| S1Hand + S1OtsuLabelHand | 0.77|0.88 | 180 | 181 | 182 | 183 | #### Multi-Modal - RF 184 | 185 | | Hand Labeled | | | 186 | | ----------------------------------- | --- | --- | 187 | | Source & Labels | IOU | Acc | 188 | | S1Hand - S2Hand & S1OtsuLabelHand |0.84 |0.92 | 189 | | S1Hand - S2Hand & LabelHand |0.87 |0.93 | 190 | 191 | 192 |In the current study the VGG16 architecture pretrained on the Imagenet pub- 197 | licly available data is being used, while the Sen1Floods11 dataset is used for fine 198 | tuning. Lastly, the classification part is handled by a random forest.
199 | 200 | #### Single-Modal - Transfer Learning (R NIR SWIR, VV+VH +VH/VV) 201 | | Hand Labeled | | | 202 | | ------------------------ |--- | --- | 203 | | Source & Labels |IOU | Acc | 204 | | S1Hand & S1OtsuLabelHand |0.84|0.92 | 205 | | S2Hand & LabelHand |0.47|0.65 | 206 | 207 | 208 | |Weakly Labeled | | | 209 | |-------------------------| --- | --- | 210 | | Source & Labels | IOU | Acc | 211 | | S1Hand & S1OtsuLabelWeak|0.86 |0.92 | 212 | 213 | 214 | 215 | |Weakly Supervised | | | | 216 | |-------------------------|--------------------------|--- | --- | 217 | | Trained On | Tested on | IOU | Acc | 218 | | S1Hand & S1OtsuLabelWeak| S1Hand + S1OtsuLabelHand |0.83 |0.91 | 219 | 220 | 221 | #### Multi-Modal - Transfer Learning (VH+RED+NIR) 222 | 223 | | Hand Labeled | | | 224 | | ----------------------------------- | --- | --- | 225 | | Source & Labels | IOU | Acc | 226 | | S1Hand - S2Hand & S1OtsuLabelHand |0.73 |0.85 | 227 | | S1Hand - S2Hand & LabelHand |0.55 |0.71 | 228 | 229 | 230 | 231 || \n", 76 | " | Name | \n", 77 | "Process_Level | \n", 78 | "Sensing_Date | \n", 79 | "Relevant_Orbit | \n", 80 | "Height | \n", 81 | "Width | \n", 82 | "Band_Names | \n", 83 | "
|---|---|---|---|---|---|---|---|
| 0 | \n", 88 | "S1A_IW_GRDH_1SDV_20180129T035110_20180129T0351... | \n", 89 | "GRDH | \n", 90 | "20180129 | \n", 91 | "022CA0 | \n", 92 | "16717 | \n", 93 | "25826 | \n", 94 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 95 | "
| 1 | \n", 98 | "S1A_IW_GRDH_1SDV_20180305T154919_20180305T1549... | \n", 99 | "GRDH | \n", 100 | "20180305 | \n", 101 | "023D1B | \n", 102 | "16729 | \n", 103 | "25752 | \n", 104 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 105 | "
| 2 | \n", 108 | "S1A_IW_GRDH_1SDV_20180504T154921_20180504T1549... | \n", 109 | "GRDH | \n", 110 | "20180504 | \n", 111 | "0258A9 | \n", 112 | "16729 | \n", 113 | "25748 | \n", 114 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 115 | "
| 3 | \n", 118 | "S1A_IW_GRDH_1SDV_20180529T035113_20180529T0351... | \n", 119 | "GRDH | \n", 120 | "20180529 | \n", 121 | "026411 | \n", 122 | "16717 | \n", 123 | "25822 | \n", 124 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 125 | "
| 4 | \n", 128 | "S1A_IW_GRDH_1SDV_20180703T154924_20180703T1549... | \n", 129 | "GRDH | \n", 130 | "20180703 | \n", 131 | "0273B9 | \n", 132 | "16729 | \n", 133 | "25749 | \n", 134 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 135 | "
| 5 | \n", 138 | "S1A_IW_GRDH_1SDV_20180728T035127_20180728T0351... | \n", 139 | "GRDH | \n", 140 | "20180728 | \n", 141 | "027EBD | \n", 142 | "16717 | \n", 143 | "25581 | \n", 144 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 145 | "
| 6 | \n", 148 | "S1A_IW_GRDH_1SDV_20180901T154928_20180901T1549... | \n", 149 | "GRDH | \n", 150 | "20180901 | \n", 151 | "028F3B | \n", 152 | "16729 | \n", 153 | "25748 | \n", 154 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 155 | "
| 7 | \n", 158 | "S1A_IW_GRDH_1SDV_20180926T035119_20180926T0351... | \n", 159 | "GRDH | \n", 160 | "20180926 | \n", 161 | "029ABA | \n", 162 | "16711 | \n", 163 | "25709 | \n", 164 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 165 | "
| 8 | \n", 168 | "S1A_IW_GRDH_1SDV_20181031T154929_20181031T1549... | \n", 169 | "GRDH | \n", 170 | "20181031 | \n", 171 | "02ABA3 | \n", 172 | "16729 | \n", 173 | "25752 | \n", 174 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 175 | "
| 9 | \n", 178 | "S1A_IW_GRDH_1SDV_20181125T035119_20181125T0351... | \n", 179 | "GRDH | \n", 180 | "20181125 | \n", 181 | "02B8B2 | \n", 182 | "16713 | \n", 183 | "25789 | \n", 184 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 185 | "
| 10 | \n", 188 | "S1A_IW_GRDH_1SDV_20190325T035117_20190325T0351... | \n", 189 | "GRDH | \n", 190 | "20190325 | \n", 191 | "02F78B | \n", 192 | "16714 | \n", 193 | "25785 | \n", 194 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 195 | "
| 11 | \n", 198 | "S1A_IW_GRDH_1SDV_20190429T154927_20190429T1549... | \n", 199 | "GRDH | \n", 200 | "20190429 | \n", 201 | "030A73 | \n", 202 | "16722 | \n", 203 | "25936 | \n", 204 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 205 | "
| 12 | \n", 208 | "S1A_IW_GRDH_1SDV_20190628T154930_20190628T1549... | \n", 209 | "GRDH | \n", 210 | "20190628 | \n", 211 | "0325DC | \n", 212 | "16709 | \n", 213 | "25936 | \n", 214 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 215 | "
| 13 | \n", 218 | "S1A_IW_GRDH_1SDV_20190723T035122_20190723T0351... | \n", 219 | "GRDH | \n", 220 | "20190723 | \n", 221 | "0330A7 | \n", 222 | "16702 | \n", 223 | "25785 | \n", 224 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 225 | "
| 14 | \n", 228 | "S1A_IW_GRDH_1SDV_20190827T154933_20190827T1549... | \n", 229 | "GRDH | \n", 230 | "20190827 | \n", 231 | "0341B2 | \n", 232 | "16710 | \n", 233 | "25936 | \n", 234 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 235 | "
| 15 | \n", 238 | "S1A_IW_GRDH_1SDV_20190921T035125_20190921T0351... | \n", 239 | "GRDH | \n", 240 | "20190921 | \n", 241 | "034E08 | \n", 242 | "16702 | \n", 243 | "25786 | \n", 244 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 245 | "
| 16 | \n", 248 | "S1A_IW_GRDH_1SDV_20191026T154935_20191026T1550... | \n", 249 | "GRDH | \n", 250 | "20191026 | \n", 251 | "035FDD | \n", 252 | "16709 | \n", 253 | "25940 | \n", 254 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 255 | "
| 17 | \n", 258 | "S1A_IW_GRDH_1SDV_20191120T035126_20191120T0351... | \n", 259 | "GRDH | \n", 260 | "20191120 | \n", 261 | "036C5B | \n", 262 | "16702 | \n", 263 | "25789 | \n", 264 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 265 | "
| 18 | \n", 268 | "S1A_IW_GRDH_1SDV_20200223T154932_20200223T1549... | \n", 269 | "GRDH | \n", 270 | "20200223 | \n", 271 | "039CB5 | \n", 272 | "16709 | \n", 273 | "25940 | \n", 274 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 275 | "
| 19 | \n", 278 | "S1A_IW_GRDH_1SDV_20200518T035125_20200518T0351... | \n", 279 | "GRDH | \n", 280 | "20200518 | \n", 281 | "03C70A | \n", 282 | "16702 | \n", 283 | "25786 | \n", 284 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 285 | "
| 20 | \n", 288 | "S1A_IW_GRDH_1SDV_20200622T154936_20200622T1550... | \n", 289 | "GRDH | \n", 290 | "20200622 | \n", 291 | "03D694 | \n", 292 | "16709 | \n", 293 | "25936 | \n", 294 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 295 | "
| 21 | \n", 298 | "S1A_IW_GRDH_1SDV_20200717T035128_20200717T0351... | \n", 299 | "GRDH | \n", 300 | "20200717 | \n", 301 | "03E174 | \n", 302 | "16704 | \n", 303 | "25714 | \n", 304 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 305 | "
| 22 | \n", 308 | "S1A_IW_GRDH_1SDV_20200821T154940_20200821T1550... | \n", 309 | "GRDH | \n", 310 | "20200821 | \n", 311 | "03F264 | \n", 312 | "16710 | \n", 313 | "25936 | \n", 314 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 315 | "
| 23 | \n", 318 | "S1A_IW_GRDH_1SDV_20200915T035132_20200915T0351... | \n", 319 | "GRDH | \n", 320 | "20200915 | \n", 321 | "03FEF3 | \n", 322 | "16704 | \n", 323 | "25715 | \n", 324 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 325 | "
| 24 | \n", 328 | "S1A_IW_GRDH_1SDV_20201020T154941_20201020T1550... | \n", 329 | "GRDH | \n", 330 | "20201020 | \n", 331 | "041124 | \n", 332 | "16710 | \n", 333 | "25939 | \n", 334 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 335 | "
| 25 | \n", 338 | "S1A_IW_GRDH_1SDV_20201219T154940_20201219T1550... | \n", 339 | "GRDH | \n", 340 | "20201219 | \n", 341 | "042F4B | \n", 342 | "16709 | \n", 343 | "25942 | \n", 344 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 345 | "
| 26 | \n", 348 | "S1B_IW_GRDH_1SDV_20180228T035033_20180228T0350... | \n", 349 | "GRDH | \n", 350 | "20180228 | \n", 351 | "011BFF | \n", 352 | "16722 | \n", 353 | "25654 | \n", 354 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 355 | "
| 27 | \n", 358 | "S1B_IW_GRDH_1SDV_20180404T154854_20180404T1549... | \n", 359 | "GRDH | \n", 360 | "20180404 | \n", 361 | "012CFF | \n", 362 | "16725 | \n", 363 | "25718 | \n", 364 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 365 | "
| 28 | \n", 368 | "S1B_IW_GRDH_1SDV_20180429T035034_20180429T0350... | \n", 369 | "GRDH | \n", 370 | "20180429 | \n", 371 | "01386C | \n", 372 | "16722 | \n", 373 | "25652 | \n", 374 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 375 | "
| 29 | \n", 378 | "S1B_IW_GRDH_1SDV_20180603T154857_20180603T1549... | \n", 379 | "GRDH | \n", 380 | "20180603 | \n", 381 | "01492F | \n", 382 | "16726 | \n", 383 | "25716 | \n", 384 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 385 | "
| 30 | \n", 388 | "S1B_IW_GRDH_1SDV_20180628T035038_20180628T0351... | \n", 389 | "GRDH | \n", 390 | "20180628 | \n", 391 | "015437 | \n", 392 | "16723 | \n", 393 | "25653 | \n", 394 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 395 | "
| 31 | \n", 398 | "S1B_IW_GRDH_1SDV_20180802T154900_20180802T1549... | \n", 399 | "GRDH | \n", 400 | "20180802 | \n", 401 | "016411 | \n", 402 | "16725 | \n", 403 | "25715 | \n", 404 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 405 | "
| 32 | \n", 408 | "S1B_IW_GRDH_1SDV_20180827T035041_20180827T0351... | \n", 409 | "GRDH | \n", 410 | "20180827 | \n", 411 | "016F1E | \n", 412 | "16722 | \n", 413 | "25651 | \n", 414 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 415 | "
| 33 | \n", 418 | "S1B_IW_GRDH_1SDV_20181001T154903_20181001T1549... | \n", 419 | "GRDH | \n", 420 | "20181001 | \n", 421 | "017F04 | \n", 422 | "16726 | \n", 423 | "25717 | \n", 424 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 425 | "
| 34 | \n", 428 | "S1B_IW_GRDH_1SDV_20181026T035043_20181026T0351... | \n", 429 | "GRDH | \n", 430 | "20181026 | \n", 431 | "0189FA | \n", 432 | "16722 | \n", 433 | "25656 | \n", 434 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 435 | "
| 35 | \n", 438 | "S1B_IW_GRDH_1SDV_20190529T154903_20190529T1549... | \n", 439 | "GRDH | \n", 440 | "20190529 | \n", 441 | "01EFC4 | \n", 442 | "16686 | \n", 443 | "26521 | \n", 444 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 445 | "
| 36 | \n", 448 | "S1B_IW_GRDH_1SDV_20190623T035044_20190623T0351... | \n", 449 | "GRDH | \n", 450 | "20190623 | \n", 451 | "01FA62 | \n", 452 | "16722 | \n", 453 | "25652 | \n", 454 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 455 | "
| 37 | \n", 458 | "S1B_IW_GRDH_1SDV_20190728T154906_20190728T1549... | \n", 459 | "GRDH | \n", 460 | "20190728 | \n", 461 | "0209A2 | \n", 462 | "16676 | \n", 463 | "26520 | \n", 464 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 465 | "
| 38 | \n", 468 | "S1B_IW_GRDH_1SDV_20190822T035047_20190822T0351... | \n", 469 | "GRDH | \n", 470 | "20190822 | \n", 471 | "021497 | \n", 472 | "16710 | \n", 473 | "25652 | \n", 474 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 475 | "
| 39 | \n", 478 | "S1B_IW_GRDH_1SDV_20190926T154910_20190926T1549... | \n", 479 | "GRDH | \n", 480 | "20190926 | \n", 481 | "0224A2 | \n", 482 | "16676 | \n", 483 | "26522 | \n", 484 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 485 | "
| 40 | \n", 488 | "S1B_IW_GRDH_1SDV_20191021T035049_20191021T0351... | \n", 489 | "GRDH | \n", 490 | "20191021 | \n", 491 | "022FC0 | \n", 492 | "16710 | \n", 493 | "25656 | \n", 494 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 495 | "
| 41 | \n", 498 | "S1B_IW_GRDH_1SDV_20191220T035048_20191220T0351... | \n", 499 | "GRDH | \n", 500 | "20191220 | \n", 501 | "024BA5 | \n", 502 | "16709 | \n", 503 | "25657 | \n", 504 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 505 | "
| 42 | \n", 508 | "S1B_IW_GRDH_1SDV_20200124T154907_20200124T1549... | \n", 509 | "GRDH | \n", 510 | "20200124 | \n", 511 | "025C24 | \n", 512 | "16698 | \n", 513 | "26048 | \n", 514 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 515 | "
| 43 | \n", 518 | "S1B_IW_GRDH_1SDV_20200218T035046_20200218T0351... | \n", 519 | "GRDH | \n", 520 | "20200218 | \n", 521 | "0267B1 | \n", 522 | "16709 | \n", 523 | "25655 | \n", 524 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 525 | "
| 44 | \n", 528 | "S1B_IW_GRDH_1SDV_20200324T154906_20200324T1549... | \n", 529 | "GRDH | \n", 530 | "20200324 | \n", 531 | "027825 | \n", 532 | "16698 | \n", 533 | "26043 | \n", 534 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 535 | "
| 45 | \n", 538 | "S1B_IW_GRDH_1SDV_20200418T035047_20200418T0351... | \n", 539 | "GRDH | \n", 540 | "20200418 | \n", 541 | "028374 | \n", 542 | "16709 | \n", 543 | "25652 | \n", 544 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 545 | "
| 46 | \n", 548 | "S1B_IW_GRDH_1SDV_20200523T154909_20200523T1549... | \n", 549 | "GRDH | \n", 550 | "20200523 | \n", 551 | "029359 | \n", 552 | "16677 | \n", 553 | "26520 | \n", 554 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 555 | "
| 47 | \n", 558 | "S1B_IW_GRDH_1SDV_20200617T035050_20200617T0351... | \n", 559 | "GRDH | \n", 560 | "20200617 | \n", 561 | "029E1C | \n", 562 | "16709 | \n", 563 | "25652 | \n", 564 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 565 | "
| 48 | \n", 568 | "S1B_IW_GRDH_1SDV_20200722T154912_20200722T1549... | \n", 569 | "GRDH | \n", 570 | "20200722 | \n", 571 | "02ADDE | \n", 572 | "16677 | \n", 573 | "26520 | \n", 574 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 575 | "
| 49 | \n", 578 | "S1B_IW_GRDH_1SDV_20200816T035053_20200816T0351... | \n", 579 | "GRDH | \n", 580 | "20200816 | \n", 581 | "02B8CC | \n", 582 | "16710 | \n", 583 | "25652 | \n", 584 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 585 | "
| 50 | \n", 588 | "S1B_IW_GRDH_1SDV_20200920T154915_20200920T1549... | \n", 589 | "GRDH | \n", 590 | "20200920 | \n", 591 | "02C90A | \n", 592 | "16676 | \n", 593 | "26521 | \n", 594 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 595 | "
| 51 | \n", 598 | "S1B_IW_GRDH_1SDV_20201015T035055_20201015T0351... | \n", 599 | "GRDH | \n", 600 | "20201015 | \n", 601 | "02D431 | \n", 602 | "16709 | \n", 603 | "25655 | \n", 604 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 605 | "
| 52 | \n", 608 | "S1B_IW_GRDH_1SDV_20210118T154913_20210118T1549... | \n", 609 | "GRDH | \n", 610 | "20210118 | \n", 611 | "030072 | \n", 612 | "16698 | \n", 613 | "26048 | \n", 614 | "[Amplitude_VH, Intensity_VH, Amplitude_VV, Int... | \n", 615 | "