├── .DS_Store
├── .gitignore
├── CITATION.cff
├── LICENSE
├── MANIFEST.in
├── README.md
├── demo_ns.py
├── koopmanlab
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-310.pyc
│ ├── __init__.cpython-38.pyc
│ ├── data.cpython-310.pyc
│ ├── data.cpython-38.pyc
│ ├── func.cpython-310.pyc
│ ├── func.cpython-38.pyc
│ ├── kno.cpython-310.pyc
│ ├── kno.cpython-38.pyc
│ ├── koopman_vit.cpython-310.pyc
│ ├── model.cpython-310.pyc
│ ├── model.cpython-38.pyc
│ ├── utilities.cpython-38.pyc
│ ├── utils.cpython-310.pyc
│ ├── utils.cpython-38.pyc
│ └── vit.cpython-310.pyc
├── data.py
├── func.py
├── model.py
├── models
│ ├── __init__.py
│ ├── kno.py
│ └── koopmanViT.py
└── utils.py
├── logo.png
└── setup.py
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/.DS_Store
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.0.0
2 | message: "If you use KoopmanLab package for academic research, you are encouraged to cite as below."
3 | authors:
4 | - family-names: "Xiong"
5 | given-names: "Wei"
6 | orcid: "https://orcid.org/0000-0002-0099-6050"
7 | - family-names: "Tian"
8 | given-names: "Yang"
9 | orcid: "https://orcid.org/0000-0003-1970-0413"
10 | title: "KoopmanLab: A PyTorch module of Koopman neural operator family for solving partial differential equations"
11 | version: 1.0.1
12 | doi: 10.48550/arXiv.2301.01104
13 | date-released: 2023-01-03
14 | url: "https://github.com/Koopman-Laboratory/KoopmanLab"
15 | preferred-citation:
16 | type: article
17 | authors:
18 | - family-names: "Xiong"
19 | given-names: "Wei"
20 | orcid: "https://orcid.org/0000-0002-0099-6050"
21 | - family-names: "Ma"
22 | given-names: "Muyuan"
23 | - family-names: "Sun"
24 | given-names: "Pei"
25 | - family-names: "Tian"
26 | given-names: "Yang"
27 | orcid: "https://orcid.org/0000-0003-1970-0413"
28 | doi: "10.48550/arXiv.2301.01104"
29 | journal: "arXiv preprint arXiv:2301.01104"
30 | month: 1
31 | title: "KoopmanLab: A PyTorch module of Koopman neural operator family for solving partial differential equations"
32 | year: 2023
33 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include README.md
2 | include LICENSE
3 | include MANIFEST.in
4 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | [](
6 | https://pypi.org/project/koopmanlab/)
7 | [](
8 | https://github.com/Koopman-Laboratory/KoopmanLab)
9 | [](
10 | https://github.com/Koopman-Laboratory/KoopmanLab/blob/main/LICENSE)
11 |
12 | KoopmanLab is a package for Koopman Neural Operator with Pytorch.
13 |
14 | For more information, please refer to the following paper, where we provid detailed mathematical derivations, computational designs, and code explanations.
15 | - "[Koopman neural operator as a mesh-free solver of non-linear partial differential equations](https://www.sciencedirect.com/science/article/pii/S0021999124004431)." Journal of Computational Physics (2024). See also the arXiv preprint arXiv:2301.10022 (2023).
16 | - "[KoopmanLab: machine learning for solving complex physics equations](https://pubs.aip.org/aip/aml/article/1/3/036110/2910717/KoopmanLab-Machine-learning-for-solving-complex)." APL Machine Learning (2023).
17 |
18 | # Installation
19 | KoopmanLab requires the following dependencies to be installed:
20 | - PyTorch >= 1.10
21 | - Numpy >= 1.23.2
22 | - Matplotlib >= 3.3.2
23 |
24 | You can install KoopmanLab package via the following approaches:
25 |
26 | - Install the stable version with `pip`:
27 |
28 | ```
29 | $ pip install koopmanlab
30 | ```
31 |
32 | - Install the current version by source code with `pip`:
33 | ```
34 | $ git clone https://github.com/Koopman-Laboratory/KoopmanLab.git
35 | $ cd KoopmanLab
36 | $ pip install -e .
37 | ```
38 | # Quick Start
39 |
40 | If you install KoopmanLab successfully, you can use our model directly by:
41 |
42 | ``` python
43 | import koopmanlab as kp
44 | encoder = kp.models.encoder_mlp(t_in, operator_size)
45 | decoder = kp.models.decoder_mlp(t_in, operator_size)
46 | KNO1d_model = kp.models.KNO1d(encoder, decoder, operator_size, modes_x = 16, decompose = 6)
47 | # Input size [batch, x, t_in] Output size [batch, x, t_in] for once iteration
48 | KNO2d_model = kp.models.KNO2d(encoder, decoder, operator_size, modes_x = 10, modes_y = 10, decompose = 6)
49 | # Input size [batch, x, t_in] Output size [batch, x, t_in] for once iteration
50 | ```
51 | If you do not want to customize the algorithms for training, testing and plotting, we highly recommend that you use our basic APIs to build a Koopman model.
52 |
53 | # Usage
54 | You can read `demo_ns.py` to learn about some basic APIs and workflow of KoopmanLab. If you want to run `demo_ns.py`, the following data need to be prepared in your computing resource.
55 | - [Dataset](https://drive.google.com/drive/folders/1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-)
56 |
57 | If you want to generate Navier-Stokes Equation data by yourself, the data generation configuration file can be found in the following link.
58 |
59 | - [File](https://github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation/navier_stokes)
60 |
61 | Our package provides an easy way to create a Koopman neural operator model.
62 | ``` python
63 | import koopmanlab as kp
64 | MLP_KNO_2D = kp.model.koopman(backbone = "KNO2d", autoencoder = "MLP", device = device)
65 | MLP_KNO_2D = kp.model.koopman(backbone = "KNO2d", autoencoder = "MLP", o = o, m = m, r = r, t_in = 10, device = device)
66 | MLP_KNO_2D.compile()
67 | ## Parameter definitions:
68 | # o: the dimension of the learned Koopman operator
69 | # f: the number of frequency modes below frequency truncation threshold
70 | # r: the power of the Koopman operator
71 | # T_in: the duration length of input data
72 | # device : if CPU or GPU is used for calculating
73 |
74 | ViT_KNO = kp.model.koopman_vit(decoder = "MLP", resolution=(64, 64), patch_size=(2, 2),
75 | in_chans=1, out_chans=1, head_num=16, embed_dim=768, depth = 16, parallel = True, high_freq = True, device=device)
76 | ViT_KNO.compile()
77 | ## Parameter definitions:
78 | # depth: the depth of each head
79 | # head_num: the number of heads
80 | # resolution: the spatial resolution of input data
81 | # patch_size: the size of each patch (i.e., token)
82 | # in_chans: the number of target variables in the data set
83 | # out_chans: the number of predicted variables by ViT-KNO , which is usually same as in_chans
84 | # embed_dim: the embeding dimension
85 | # parallel: if data parallel is applied
86 | # high_freq: if high-frequency information complement is applied
87 | ```
88 | Once the model is compiled, an optimizer setting is required to run your own experiments. If you want a more customized setting of optimizer and scheduler, you could use any PyTorch method to create them and assign them to Koopman neural operator object, eg. `MLP_KNO_2D.optimizer` and `MLP_KNO_2D.scheduler`.
89 | ``` python
90 | MLP_KNO_2D.opt_init("Adam", lr = 0.005, step_size=100, gamma=0.5)
91 | ```
92 | If you use Burgers equation and Navier-Stokes equation data or the shallow water data provided by PDEBench, there are three specifc data interfaces that you can consider.
93 | ``` python
94 | train_loader, test_loader = kp.data.burgers(path, batch_size = 64, sub = 32)
95 | train_loader, test_loader = kp.data.shallow_water(path, batch_size = 5, T_in = 10, T_out = 40, sub = 1)
96 | train_loader, test_loader = kp.data.navier_stokes(path, batch_size = 10, T_in = 10, T_out = 40, type = "1e-3", sub = 1)
97 | ## Parameter definitions:
98 | # path: the file path of the downloaded data set
99 | # T_in: the duration length of input data
100 | # T_out: the duration length required to predict
101 | # Type: the viscosity coefficient of navier-stokes equation data set.
102 | # sub: the down-sampling scaling factor. For instance, a scaling factor sub=2 acting on a 2-dimensional data with the spatial resoluion 64*64 will create a down-sampled space of 32*32. The same factor action on a 1 dimensional data with the spatial resoluion 1*64 implies a down-sampled space of 1*32.
103 | ```
104 | We recommend that you process your data by PyTorch method `torch.utils.data.DataLoader`. In KNO model, the shape of 2D input data is `[batchsize, x, y, t_len]` and the shape of output data and label is `[batchsize, x, y, T]`, where t_len is defined in `kp.model.koopman` and T is defined in train module. In Koopman-ViT model, the shape of 2D input data is `[batchsize, in_chans, x, y]` and the shape of output data and label is `[batchsize, out_chans, x, y]`.
105 |
106 | The KoopmanLab provides two training and two testing methods of the compact KNO sub-family. If your scenario is single step prediction, you can consider to use `train_single` method or use `train` with `T_out = 1`. Our package provides a method to save and visualize your prediction results in `test`.
107 | ``` python
108 | MLP_KNO_2D.train_single(epochs=ep, trainloader = train_loader, evalloader = eval_loader)
109 | MLP_KNO_2D.train(epochs=ep, trainloader = train_loader, evalloader = eval_loader, T_out = T)
110 | MLP_KNO_2D.test_single(test_loader)
111 | MLP_KNO_2D.test(test_loader, T_out = T, path = "./fig/ns_time_error_1e-4/", is_save = True, is_plot = True)
112 | ```
113 | As for the ViT-KNO sub-family, `train` and `test` method is set with a single step predicition scenario. Specifically, `train_multi` and `test_multi` method provide multi-step iteration prediction, where the model iterates `T_out` times in training and testing.
114 | ``` python
115 | ViT_KNO.train_single(epochs=ep, trainloader = train_loader, evalloader = eval_loader)
116 | ViT_KNO.test_single(test_loader)
117 | ViT_KNO.train_multi(epochs=ep, trainloader = train_loader, evalloader = eval_loader, T_out = T_out)
118 | ViT_KNO.test_multi(test_loader)
119 | ## Parameter definitions:
120 | # epoch: epoch number of training
121 | # trainloader: dataloader of training, which is returning variable from torch.utils.data.DataLoader
122 | # evalloader: dataloader of evaluating, which is returning variable from torch.utils.data.DataLoader
123 | # test_loader: dataloader of testing, which is returning variable from torch.utils.data.DataLoader
124 | # T_out: the duration length required to predict
125 | ```
126 | Once your model has been trained, you can use the saving module provided in KoopmanLab to save your model. Saved variable has three attribute. where `koopman` is the model class variable (i.e., the saved `kno_model` variable), `model` is the trained model variable (i.e., the saved `kno_model.kernel` variable), and `model_params` is the parameters dictionary of trained model variable (i.e., the saved `kno_model.kernel.state_dict()` variable).
127 | ``` python
128 | MLP_KNO_2D.save(save_path)
129 | ## Parameter definitions:
130 | # save_path: the file path of the result saving
131 | ```
132 | # Citation
133 | If you use KoopmanLab package for academic research, you are encouraged to cite the following paper:
134 | ```
135 | @article{xiong2024koopman,
136 | title={Koopman neural operator as a mesh-free solver of non-linear partial differential equations},
137 | author={Xiong, Wei and Huang, Xiaomeng and Zhang, Ziyang and Deng, Ruixuan and Sun, Pei and Tian, Yang},
138 | journal={Journal of Computational Physics},
139 | pages={113194},
140 | year={2024},
141 | publisher={Elsevier}
142 | }
143 |
144 | @article{xiong2023koopmanlab,
145 | title={Koopmanlab: machine learning for solving complex physics equations},
146 | author={Xiong, Wei and Ma, Muyuan and Huang, Xiaomeng and Zhang, Ziyang and Sun, Pei and Tian, Yang},
147 | journal={APL Machine Learning},
148 | volume={1},
149 | number={3},
150 | year={2023},
151 | publisher={AIP Publishing}
152 | }
153 | ```
154 | # Acknowledgement
155 | Authors appreciate Abby, a talented artist, for designing the logo of KoopmanLab.
156 |
157 | # License
158 | [GPL-3.0 License](https://github.com/Koopman-Laboratory/KoopmanLab/blob/main/LICENSE)
159 |
--------------------------------------------------------------------------------
/demo_ns.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import koopmanlab as kp
3 | # Setting your computing device
4 | torch.cuda.set_device(0)
5 | device = torch.device("cuda")
6 |
7 | # Path
8 | data_path = "./data/ns_V1e-3_N5000_T50.mat"
9 | fig_path = "./demo/fig/"
10 | save_path = "./demo/result/"
11 |
12 | # Loading Data
13 | train_loader, test_loader = kp.data.navier_stokes(data_path, batch_size = 10, T_in = 10, T_out = 40, type = "1e-3", sub = 1)
14 |
15 | # Hyper parameters
16 | ep = 1 # Training Epoch
17 | o = 32 # Koopman Operator Size
18 | m = 16 # Modes
19 | r = 8 # Power of Koopman Matrix
20 |
21 | # Model
22 | koopman_model = kp.model.koopman(backbone = "KNO2d", autoencoder = "MLP", o = o, m = m, r = r, t_in = 10, device = device)
23 | koopman_model.compile()
24 | koopman_model.opt_init("Adam", lr = 0.005, step_size=100, gamma=0.5)
25 | koopman_model.train(epochs=ep, trainloader = train_loader, evalloader = test_loader)
26 |
27 | # Result and Saving
28 | time_error = koopman_model.test(test_loader, path = fig_path, is_save = True, is_plot = True)
29 | filename = "ns_time_error_op" + str(o) + "m" + str(m) + "r" +str(r) + ".pt"
30 | torch.save({"time_error":time_error,"params":koopman_model.params}, save_path + filename)
31 |
--------------------------------------------------------------------------------
/koopmanlab/__init__.py:
--------------------------------------------------------------------------------
1 | __all__ = ["data","model"]
2 |
3 | from . import data
4 | from . import model
5 | from . import func
6 | from .model import koopman, koopman_vit
7 | from .models import KNO1d,KNO2d
8 | from .models import encoder_mlp, decoder_mlp, encoder_conv1d, decoder_conv1d, encoder_conv2d, decoder_conv2d
9 | from .models import ViT
10 |
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/__init__.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/__init__.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/data.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/data.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/data.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/data.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/func.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/func.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/func.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/func.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/kno.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/kno.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/kno.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/kno.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/koopman_vit.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/koopman_vit.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/model.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/model.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/model.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/model.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/utilities.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/utilities.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/utils.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/utils.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/utils.cpython-38.pyc
--------------------------------------------------------------------------------
/koopmanlab/__pycache__/vit.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/koopmanlab/__pycache__/vit.cpython-310.pyc
--------------------------------------------------------------------------------
/koopmanlab/data.py:
--------------------------------------------------------------------------------
1 | import h5py
2 | import torch
3 | import scipy.io
4 | import numpy as np
5 |
6 | def burgers(path, batch_size = 64, sub = 32):
7 | f = scipy.io.loadmat(path)
8 | x_data = f['a'][:,::sub]
9 | y_data = f['u'][:,::sub]
10 |
11 | x_train = torch.tensor(x_data[:1000,:],dtype=torch.float32)
12 | y_train = torch.tensor(y_data[:1000,:],dtype=torch.float32)
13 | x_test = torch.tensor(x_data[-200:,:],dtype=torch.float32)
14 | y_test = torch.tensor(y_data[-200:,:],dtype=torch.float32)
15 |
16 | S = x_train.shape[1]
17 |
18 | x_train = x_train.reshape(1000,S,1)
19 | x_test = x_test.reshape(200,S,1)
20 | x_test = x_test
21 | y_test = y_test
22 |
23 | print("Burgers Dataset has been loaded successfully!")
24 | print("X train shape:", x_train.shape, "Y train shape:", y_train.shape)
25 | print("X test shape:", x_test.shape, "Y test shape:", y_test.shape)
26 |
27 | train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_train, y_train), batch_size=batch_size, shuffle=True)
28 | test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=batch_size, shuffle=False)
29 | return train_loader, test_loader
30 |
31 | def shallow_water(path, batch_size = 20, T_in = 10, T_out = 20, sub = 1):
32 | ntrain = 900
33 | ntest = 100
34 | total = ntrain + ntest
35 | f = h5py.File(path)
36 | data = f['data'][0:total]
37 | data = torch.tensor(data,dtype=torch.float32)
38 | # Traning data
39 | train_a = data[:ntrain,::sub,::sub,:T_in]
40 | train_u = data[:ntrain,::sub,::sub,T_in:T_out+T_in]
41 | # Testing data
42 | test_a = data[-ntest:,::sub,::sub,:T_in]
43 | test_u = data[-ntest:,::sub,::sub,T_in:T_out+T_in]
44 |
45 | print("Shallow Water Equations Dataset has been loaded successfully!")
46 | print("X train shape:", train_a.shape, "Y train shape:", train_u.shape)
47 | print("X test shape:", test_a.shape, "Y test shape:", test_u.shape)
48 |
49 | train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
50 | test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
51 |
52 | return train_loader, test_loader
53 |
54 | def navier_stokes(path, batch_size = 20, T_in = 10, T_out = 40, type = "1e-3", sub = 1,reshape = False):
55 | if type == "1e-3":
56 | ntrain = 1000
57 | ntest = 200
58 | total = ntrain + ntest
59 | f = h5py.File(path)
60 | data = f['u'][...,0:total]
61 | print("dataset shape : ", data.shape) # Print original shape of the data
62 | data = torch.tensor(data,dtype=torch.float32)
63 | data = data.permute(3,1,2,0) # The dimension of the data shape is [B, X, Y, T]
64 |
65 | # Traning data
66 | train_a = data[:ntrain,::sub,::sub,:T_in]
67 | train_u = data[:ntrain,::sub,::sub,T_in:T_out+T_in]
68 | # Testing data
69 | test_a = data[-ntest:,::sub,::sub,:T_in]
70 | test_u = data[-ntest:,::sub,::sub,T_in:T_out+T_in]
71 |
72 | if reshape:
73 | train_a = train_a.permute(reshape)
74 | train_u = train_u.permute(reshape)
75 | test_a = test_a.permute(reshape)
76 | test_u = test_u.permute(reshape)
77 |
78 | print("Navier-Stokes (vis = 1e-3) Dataset has been loaded successfully!")
79 | print("X train shape:", train_a.shape, "Y train shape:", train_u.shape)
80 | print("X test shape:", test_a.shape, "Y test shape:", test_u.shape)
81 | train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
82 | test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
83 | elif type == "1e-4":
84 | ntrain = 8000
85 | ntest = 200
86 | total = ntrain + ntest
87 | f = h5py.File(path)
88 | data = f['u'][...,0:8200]
89 | data = torch.tensor(data,dtype=torch.float32)
90 | data = data.permute(3,1,2,0)
91 |
92 | # Traning data
93 | train_a = data[:ntrain,::sub,::sub,:T_in]
94 | train_u = data[:ntrain,::sub,::sub,T_in:T_out+T_in]
95 | # Testing data
96 | test_a = data[-ntest:,::sub,::sub,:T_in]
97 | test_u = data[-ntest:,::sub,::sub,T_in:T_out+T_in]
98 |
99 | if reshape:
100 | train_a = train_a.permute(reshape)
101 | train_u = train_u.permute(reshape)
102 | test_a = test_a.permute(reshape)
103 | test_u = test_u.permute(reshape)
104 |
105 | print("Navier-Stokes (vis = 1e-4) Dataset has been loaded successfully!")
106 | print("X train shape:", train_a.shape, "Y train shape:", train_u.shape)
107 | print("X test shape:", test_a.shape, "Y test shape:", test_u.shape)
108 |
109 | train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
110 | test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
111 | elif type == "1e-5":
112 | ntrain = 1100
113 | ntest = 100
114 | total = ntrain + ntest
115 | f = scipy.io.loadmat(path)
116 | data = f['u'][...,0:total]
117 | data = torch.tensor(data,dtype=torch.float32)
118 | print(data.shape)
119 |
120 |
121 | # Traning data
122 | train_a = data[:ntrain,::sub,::sub,:T_in]
123 | train_u = data[:ntrain,::sub,::sub,T_in:T_out+T_in]
124 | # Testing data
125 | test_a = data[-ntest:,::sub,::sub,:T_in]
126 | test_u = data[-ntest:,::sub,::sub,T_in:T_out+T_in]
127 |
128 | if reshape:
129 | train_a = train_a.permute(reshape)
130 | train_u = train_u.permute(reshape)
131 | test_a = test_a.permute(reshape)
132 | test_u = test_u.permute(reshape)
133 |
134 | print("Navier-Stokes (vis = 1e-5) Dataset has been loaded successfully!")
135 | print("X train shape:", train_a.shape, "Y train shape:", train_u.shape)
136 | print("X test shape:", test_a.shape, "Y test shape:", test_u.shape)
137 |
138 | train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(train_a, train_u), batch_size=batch_size, shuffle=True)
139 | test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_a, test_u), batch_size=batch_size, shuffle=False)
140 |
141 | else:
142 | print("The type is unclaimed. Data loading is failed.")
143 | return
144 |
145 | return train_loader, test_loader
146 |
147 | def navier_stokes_single(path, batch_size = 64, T_in = 10, T_out = 40, type = "1e-4", sub = 1,reshape = False):
148 | f = scipy.io.loadmat(path)
149 | print(f["a"].shape)
150 | print(f["u"].shape)
151 | data = f["u"]
152 | loc = 0
153 | x = np.zeros([3980,256,256,1])
154 | y = np.zeros([3980,256,256,1])
155 | for i in range(20):
156 | for j in range(199):
157 | x[i,:,:,0:1] = data[i,:,:,j:j+1]
158 | y[i,:,:,0:1] = data[i,:,:,j+1:j+2]
159 |
160 |
161 | ntrain = 3600
162 | ntest = 200
163 | total = ntrain + ntest
164 |
165 | x = torch.tensor(x,dtype=torch.float32)
166 | y = torch.tensor(y,dtype=torch.float32)
167 |
168 | if reshape:
169 | x = x.permute(reshape)
170 | y = y.permute(reshape)
171 |
172 | # Traning data
173 | x_train = x[:ntrain]
174 | y_train = y[:ntrain]
175 | # Testing data
176 | x_test = x[-ntest:]
177 | y_test = y[-ntest:]
178 |
179 |
180 | print("Navier-Stokes (vis = 1e-4) Dataset has been loaded successfully!")
181 | print("X train shape:", x_train.shape, "Y train shape:", y_train.shape)
182 | print("X test shape:", x_test.shape, "Y test shape:", y_test.shape)
183 |
184 | train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_train, y_train), batch_size=batch_size, shuffle=True)
185 | test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=batch_size, shuffle=False)
186 |
187 | return train_loader, test_loader
188 |
--------------------------------------------------------------------------------
/koopmanlab/func.py:
--------------------------------------------------------------------------------
1 | import os
2 | import torch
3 |
4 | def save(obj, path):
5 | if type(obj) != "koopmanlab.model.koopman":
6 | print("Save function only for saving Koopman solver!")
7 | return
8 | (fpath,_) = os.path.split(path)
9 | if not os.path.isfile(path):
10 | os.makedirs(fpath)
11 | torch.save({"koopman":obj},path)
12 | print("Koopman solver has been saved successfully!")
13 |
14 | def load(path):
15 | f = torch.load(path)
16 | return f['koopman']
--------------------------------------------------------------------------------
/koopmanlab/model.py:
--------------------------------------------------------------------------------
1 | from koopmanlab.models import kno
2 | from koopmanlab import utils
3 | from koopmanlab.models import koopmanViT
4 |
5 | import os
6 | import torch
7 | import numpy as np
8 | import matplotlib.pyplot as plt
9 | from timeit import default_timer
10 |
11 | class koopman:
12 | def __init__(self, backbone = "KNO1d", autoencoder = "MLP", o = 16, m = 16, r = 8, t_in = 1, device = False):
13 | self.backbone = backbone
14 | self.autoencoder = autoencoder
15 | self.operator_size = o
16 | self.modes = m
17 | self.decompose = r
18 | self.device = device
19 | self.t_in = t_in
20 | # Core Model
21 | self.params = 0
22 | self.kernel = False
23 | # Opt Setting
24 | self.optimizer = False
25 | self.scheduler = False
26 | self.loss = torch.nn.MSELoss()
27 | def compile(self):
28 | if self.autoencoder == "MLP":
29 | encoder = kno.encoder_mlp(self.t_in, self.operator_size)
30 | decoder = kno.decoder_mlp(self.t_in, self.operator_size)
31 | print("The autoencoder type is MLP.")
32 | elif self.autoencoder == "Conv1d":
33 | encoder = kno.encoder_conv1d(self.t_in, self.operator_size)
34 | decoder = kno.decoder_conv1d(self.t_in, self.operator_size)
35 | print("The autoencoder type is Conv1d.")
36 | elif self.autoencoder == "Conv2d":
37 | encoder = kno.encoder_conv2d(self.t_in, self.operator_size)
38 | decoder = kno.decoder_conv2d(self.t_in, self.operator_size)
39 | print("The autoencoder type is Conv2d.")
40 | else:
41 | # encoder = kno.encoder_mlp(self.t_in, self.operator_size)
42 | # decoder = kno.decoder_mlp(self.t_in, self.operator_size)
43 | # print("The autoencoder type is MLP.")
44 | print("Wrong!")
45 | if self.backbone == "KNO1d":
46 | self.kernel = kno.KNO1d(encoder, decoder, self.operator_size, modes_x = self.modes, decompose = self.decompose).to(self.device)
47 | print("KNO1d model is completed.")
48 |
49 | elif self.backbone == "KNO2d":
50 | self.kernel = kno.KNO2d(encoder, decoder, self.operator_size, modes_x = self.modes, modes_y = self.modes,decompose = self.decompose).to(self.device)
51 | print("KNO2d model is completed.")
52 |
53 | if not self.kernel == False:
54 | self.params = utils.count_params(self.kernel)
55 | print("Koopman Model has been compiled!")
56 | print("The Model Parameters Number is ",self.params)
57 | def opt_init(self, opt, lr, step_size, gamma):
58 | if opt == "Adam":
59 | self.optimizer = utils.Adam(self.kernel.parameters(), lr= lr, weight_decay=1e-4)
60 | if not step_size == False:
61 | self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=step_size, gamma=gamma)
62 |
63 | def train_single(self, epochs, trainloader, evalloader = False):
64 | for ep in range(epochs):
65 | # Train
66 | self.kernel.train()
67 | t1 = default_timer()
68 | train_recons_full = 0
69 | train_pred_full = 0
70 | for xx, yy in trainloader:
71 | l_recons = 0
72 | bs = xx.shape[0]
73 | xx = xx.to(self.device)
74 | yy = yy.to(self.device)
75 | pred,im_re = self.kernel(xx)
76 |
77 | l_recons = self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
78 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
79 |
80 | train_pred_full += l_pred.item()
81 | train_recons_full += l_recons.item()
82 |
83 | loss = 5*l_pred + 0.5*l_recons
84 | self.optimizer.zero_grad()
85 | loss.backward()
86 | self.optimizer.step()
87 | train_pred_full = train_pred_full / len(trainloader)
88 | train_recons_full = train_recons_full / len(trainloader)
89 | t2 = default_timer()
90 | test_pred_full = 0
91 | test_recons_full = 0
92 | mse_test = 0
93 | # Test
94 | if evalloader:
95 | with torch.no_grad():
96 | for xx, yy in evalloader:
97 | bs = xx.shape[0]
98 | loss = 0
99 | xx = xx.to(self.device)
100 | yy = yy.to(self.device)
101 |
102 | pred,im_re = self.kernel(xx)
103 |
104 |
105 | l_recons = self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
106 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
107 |
108 |
109 | test_pred_full += l_pred.item()
110 | test_recons_full += l_recons.item()
111 |
112 | test_pred_full = test_pred_full/len(evalloader)
113 | test_recons_full = test_recons_full/len(evalloader)
114 |
115 | self.scheduler.step()
116 |
117 | if evalloader:
118 | if ep == 0:
119 | print("Epoch","Time","[Train Recons MSE]","[Train Pred MSE]","[Eval Recons MSE]","[Eval Pred MSE]")
120 | print(ep, t2 - t1, train_recons_full, train_pred_full, test_recons_full, test_pred_full)
121 | else:
122 | if ep == 0:
123 | print("Epoch","Time","Train Recons MSE","Train Pred MSE")
124 | print(ep, t2 - t1, train_recons_full, train_pred_full)
125 |
126 | def test_single(self, testloader):
127 | test_pred_full = 0
128 | test_recons_full = 0
129 | with torch.no_grad():
130 | for xx, yy in testloader:
131 | bs = xx.shape[0]
132 | loss = 0
133 | xx = xx.to(self.device)
134 | yy = yy.to(self.device)
135 |
136 | pred,im_re = self.kernel(xx)
137 |
138 | l_recons = self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
139 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
140 |
141 | test_pred_full += l_pred.item()
142 | test_recons_full += l_recons.item()
143 | test_pred_full = test_pred_full/len(testloader)
144 | test_recons_full = test_recons_full/len(testloader)
145 | print("Total prediction test mse error is ",test_pred_full)
146 | print("Total reconstruction test mse error is ",test_recons_full)
147 | return test_pred_full
148 |
149 |
150 | def train(self, epochs, trainloader, step = 1, T_out = 40, evalloader = False):
151 | T_eval = T_out
152 | for ep in range(epochs):
153 | self.kernel.train()
154 | t1 = default_timer()
155 | train_recons_full = 0
156 | train_pred_full = 0
157 | for xx, yy in trainloader:
158 | l_recons = 0
159 | xx = xx.to(self.device)
160 | yy = yy.to(self.device)
161 | bs = xx.shape[0]
162 | for t in range(0, T_out):
163 | y = yy[..., t:t + 1]
164 |
165 | im,im_re = self.kernel(xx)
166 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
167 | if t == 0:
168 | pred = im[...,-1:]
169 | else:
170 | pred = torch.cat((pred, im[...,-1:]), -1)
171 |
172 | xx = torch.cat((xx[..., step:], im[...,-1:]), dim=-1)
173 |
174 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
175 | loss = 5 * l_pred + 0.5 * l_recons
176 |
177 | train_pred_full += l_pred.item()
178 | train_recons_full += l_recons.item()/T_out
179 |
180 | self.optimizer.zero_grad()
181 | loss.backward()
182 | self.optimizer.step()
183 | train_pred_full = train_pred_full / len(trainloader)
184 | train_recons_full = train_recons_full / len(trainloader)
185 | t2 = default_timer()
186 | test_pred_full = 0
187 | test_recons_full = 0
188 | loc = 0
189 | mse_error = 0
190 | if evalloader:
191 | with torch.no_grad():
192 | for xx, yy in evalloader:
193 | loss = 0
194 | xx = xx.to(self.device)
195 | yy = yy.to(self.device)
196 |
197 | for t in range(0, T_eval):
198 | y = yy[..., t:t + 1]
199 | im, im_re = self.kernel(xx)
200 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
201 | if t == 0:
202 | pred = im[...,-1:]
203 | else:
204 | pred = torch.cat((pred, im[...,-1:]), -1)
205 | xx = torch.cat((xx[..., 1:], im[...,-1:]), dim=-1)
206 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
207 |
208 | test_recons_full += l_recons.item() / T_eval
209 | test_pred_full += l_pred.item()
210 |
211 | loc = loc + 1
212 | mse_error = mse_error / loc
213 | test_recons_full = test_recons_full / len(evalloader)
214 | test_pred_full = test_pred_full / len(evalloader)
215 | self.scheduler.step()
216 |
217 | if evalloader:
218 | if ep == 0:
219 | print("Epoch","Time","[Train Recons MSE]","[Train Pred MSE]","[Eval Recons MSE]","[Eval Pred MSE]")
220 | print(ep, t2 - t1, train_recons_full, train_pred_full, test_recons_full, test_pred_full)
221 | else:
222 | if ep == 0:
223 | print("Epoch","Time","Train Recons MSE","Train Pred MSE")
224 | print(ep, t2 - t1, train_recons_full, train_pred_full)
225 | def test(self, testloader, step = 1, T_out = 40, path = False, is_save = False, is_plot = False):
226 | time_error = torch.zeros([T_out,1])
227 | test_pred_full = 0
228 | test_recons_full = 0
229 | loc = 0
230 | with torch.no_grad():
231 | for xx, yy in testloader:
232 | loss = 0
233 | bs = xx.shape[0]
234 | xx = xx.to(self.device)
235 | yy = yy.to(self.device)
236 | l_recons = 0
237 | for t in range(0, T_out):
238 | y = yy[..., t:t + 1]
239 | im, im_re = self.kernel(xx)
240 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
241 | t_error = self.loss(im[...,-1:],y)
242 | if t == 0:
243 | pred = im[...,-1:]
244 | else:
245 | pred = torch.cat((pred, im[...,-1:]), -1)
246 | time_error[t] = time_error[t] + t_error.item()
247 | xx = torch.cat((xx[..., 1:], im[...,-1:]), dim=-1)
248 |
249 | test_recons_full += l_recons.item() / T_out
250 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
251 | test_pred_full += l_pred.item()
252 | if(loc == 0 & is_save):
253 | torch.save({"pred":pred, "yy":yy}, path+ "pred_yy.pt")
254 |
255 | if(loc == 0 & is_plot):
256 | for i in range(T_out):
257 | plt.subplot(1,3,1)
258 | plt.title("Predict")
259 | plt.imshow(pred[0,...,i].cpu().detach().numpy())
260 | plt.subplot(1,3,2)
261 | plt.imshow(yy[0,...,i].cpu().detach().numpy())
262 | plt.title("Label")
263 | plt.subplot(1,3,3)
264 | plt.imshow(pred[0,...,i].cpu().detach().numpy()-yy[0,...,i].cpu().detach().numpy())
265 | plt.title("Error")
266 | plt.show()
267 | plt.savefig(path + "time_"+str(i)+".png")
268 | plt.close()
269 | loc = loc + 1
270 | test_pred_full = test_pred_full / loc
271 | test_recons_full = test_recons_full / loc
272 | time_error = time_error / len(testloader)
273 | print("Total prediction test mse error is ",test_pred_full)
274 | print("Total reconstruction test mse error is ",test_recons_full)
275 | return time_error
276 |
277 | def save(self, path):
278 | (fpath,_) = os.path.split(path)
279 | if not os.path.isfile(fpath):
280 | os.makedirs(fpath)
281 | torch.save({"koopman":self,"model":self.kernel,"model_params":self.kernel.state_dict()}, path)
282 |
283 | class koopman_vit:
284 | def __init__(self, decoder = "Conv2d", depth = 16, resolution=(256, 256), patch_size=(4, 4),
285 | in_chans=1, out_chans=1, embed_dim=768, parallel = False, device = False):
286 | # Model Hyper-parameters
287 | self.decoder = decoder
288 | self.resolution = resolution
289 | self.patch_size = patch_size
290 | self.in_chans = in_chans
291 | self.out_chans = out_chans
292 | self.embed_dim = embed_dim
293 | self.depth = depth
294 | # Core Model
295 | self.params = 0
296 | self.kernel = False
297 | # Opt Setting
298 | self.optimizer = False
299 | self.scheduler = False
300 | self.device = device
301 | self.parallel = parallel
302 | self.loss = torch.nn.MSELoss()
303 | def compile(self):
304 | self.kernel = koopmanViT.ViT(img_size=self.resolution, patch_size=self.patch_size, in_chans=self.in_chans, out_chans=self.out_chans, num_blocks=self.num_blocks, embed_dim = self.embed_dim, depth=self.depth, settings = self.decoder).to(self.device)
305 | if self.parallel:
306 | self.kernel = torch.nn.DataParallel(self.kernel)
307 | self.params = utils.count_params(self.kernel)
308 |
309 | print("Koopman Fourier Vision Transformer has been compiled!")
310 | print("The Model Parameters Number is ",self.params)
311 |
312 | def opt_init(self, opt, lr, step_size, gamma):
313 | if opt == "Adam":
314 | self.optimizer = utils.Adam(self.kernel.parameters(), lr= lr, weight_decay=1e-4)
315 | if not step_size == False:
316 | self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=step_size, gamma=gamma)
317 |
318 | def train_multi(self, epochs, trainloader, T_out = 10, evalloader = False):
319 | T_eval = T_out
320 | for ep in range(epochs):
321 | self.kernel.train()
322 | t1 = default_timer()
323 | train_recons_full = 0
324 | train_pred_full = 0
325 | for xx, yy in trainloader:
326 | l_recons = 0
327 | xx = xx.to(self.device) # [batchsize,1,x,y]
328 | yy = yy.to(self.device) # [batchsize,T,x,y]
329 | bs = xx.shape[0]
330 | for t in range(0, T_out):
331 | y = yy[:, t:t + 1]
332 | im,im_re = self.kernel(xx)
333 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
334 |
335 | if t == 0:
336 | pred = im[:, -1:]
337 | else:
338 | pred = torch.cat((pred, im[:, -1:]), -1)
339 |
340 | xx = im
341 |
342 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
343 | loss = 5 * l_pred + 0.5 * l_recons
344 |
345 | train_pred_full += l_pred.item()
346 | train_recons_full += l_recons.item()/T_out
347 |
348 | self.optimizer.zero_grad()
349 | loss.backward()
350 | self.optimizer.step()
351 | train_pred_full = train_pred_full / len(trainloader)
352 | train_recons_full = train_recons_full / len(trainloader)
353 | t2 = default_timer()
354 | test_pred_full = 0
355 | test_recons_full = 0
356 | loc = 0
357 | mse_error = 0
358 | if evalloader:
359 | with torch.no_grad():
360 | for xx, yy in evalloader:
361 | loss = 0
362 | xx = xx.to(self.device)
363 | yy = yy.to(self.device)
364 |
365 | for t in range(0, T_eval):
366 | y = yy[:, t:t + 1]
367 | im, im_re = self.kernel(xx)
368 |
369 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
370 |
371 | if t == 0:
372 | pred = im
373 | else:
374 | pred = torch.cat((pred, im), 1)
375 |
376 | xx = im
377 |
378 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
379 |
380 | test_recons_full += l_recons.item() / T_eval
381 | test_pred_full += l_pred.item()
382 |
383 | test_recons_full = test_recons_full / len(evalloader)
384 | test_pred_full = test_pred_full / len(evalloader)
385 | self.scheduler.step()
386 |
387 | if evalloader:
388 | if ep == 0:
389 | print("Epoch","Time","[Train Recons MSE]","[Train Pred MSE]","[Eval Recons MSE]","[Eval Pred MSE]")
390 | print(ep, t2 - t1, train_recons_full, train_pred_full, test_recons_full, test_pred_full)
391 | else:
392 | if ep == 0:
393 | print("Epoch","Time","Train Recons MSE","Train Pred MSE")
394 | print(ep, t2 - t1, train_recons_full, train_pred_full)
395 |
396 | def test_multi(self, testloader, step = 1, T_out = 5, path = False, is_save = False, is_plot = False):
397 | time_error = torch.zeros([T_out,1])
398 | test_pred_full = 0
399 | test_recons_full = 0
400 | loc = 0
401 | with torch.no_grad():
402 | for xx, yy in testloader:
403 | loss = 0
404 | bs = xx.shape[0]
405 | xx = xx.to(self.device)
406 | yy = yy.to(self.device)
407 | l_recons = 0
408 | for t in range(0, T_out):
409 | y = yy[:, t:t + 1]
410 | im, im_re = self.kernel(xx)
411 |
412 |
413 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
414 | t_error = self.loss(im, y)
415 |
416 | xx = im
417 |
418 | if t == 0:
419 | pred = im
420 | else:
421 | pred = torch.cat((pred, im), 1)
422 | time_error[t] = time_error[t] + t_error.item()
423 |
424 | test_recons_full += l_recons.item() / T_out
425 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
426 | test_pred_full += l_pred.item()
427 |
428 | if(loc == 0 & is_save):
429 | torch.save({"pred":pred, "yy":yy}, path+ "pred_yy.pt")
430 |
431 | if(loc == 0 & is_plot):
432 | for i in range(T_out):
433 | plt.subplot(1,3,1)
434 | plt.title("Predict")
435 | plt.imshow(pred[0,i].cpu().detach().numpy())
436 | plt.subplot(1,3,2)
437 | plt.imshow(yy[0,i].cpu().detach().numpy())
438 | plt.title("Label")
439 | plt.subplot(1,3,3)
440 | plt.imshow(pred[0,i].cpu().detach().numpy()-yy[0,i].cpu().detach().numpy())
441 | plt.title("Error")
442 | plt.show()
443 | plt.savefig(path + "time_"+str(i)+".png")
444 | plt.close()
445 |
446 | loc = loc + 1
447 | test_pred_full = test_pred_full / loc
448 | test_recons_full = test_recons_full / loc
449 | time_error = time_error / len(testloader)
450 | print("Total prediction test mse error is ",test_pred_full)
451 | print("Total reconstruction test mse error is ",test_recons_full)
452 | return time_error
453 |
454 |
455 | def train_single(self, epochs, trainloader, evalloader = False):
456 | for ep in range(epochs):
457 | self.kernel.train()
458 | t1 = default_timer()
459 | train_recons_full = 0
460 | train_pred_full = 0
461 | for x, y in trainloader:
462 | l_recons = 0
463 | x = x.to(self.device) # [batchsize,1,64,64]
464 | y = y.to(self.device) # [batchsize,1,64,64]
465 | bs = x.shape[0]
466 |
467 | im,im_re = self.kernel(x)
468 |
469 | l_recons = self.loss(im_re.reshape(bs, -1), x.reshape(bs, -1))
470 | l_pred = self.loss(im.reshape(bs, -1), y.reshape(bs, -1))
471 |
472 | loss = 5 * l_pred + 0.5 * l_recons
473 |
474 | train_pred_full += l_pred.item()
475 | train_recons_full += l_recons.item()
476 |
477 | self.optimizer.zero_grad()
478 | loss.backward()
479 | self.optimizer.step()
480 | train_pred_full = train_pred_full / len(trainloader)
481 | train_recons_full = train_recons_full / len(trainloader)
482 | t2 = default_timer()
483 | test_pred_full = 0
484 | test_recons_full = 0
485 | loc = 0
486 | mse_error = 0
487 | if evalloader:
488 | with torch.no_grad():
489 | for x, y in evalloader:
490 | loss = 0
491 | x = x.to(self.device)
492 | y = y.to(self.device)
493 |
494 | im, im_re = self.kernel(x)
495 |
496 | l_recons = self.loss(im_re.reshape(bs, -1), x.reshape(bs, -1))
497 | l_pred = self.loss(im.reshape(bs, -1), y.reshape(bs, -1))
498 |
499 | test_recons_full += l_recons.item()
500 | test_pred_full += l_pred.item()
501 |
502 | test_recons_full = test_recons_full / len(evalloader)
503 | test_pred_full = test_pred_full / len(evalloader)
504 | self.scheduler.step()
505 |
506 | if evalloader:
507 | if ep == 0:
508 | print("Epoch","Time","[Train Recons MSE]","[Train Pred MSE]","[Eval Recons MSE]","[Eval Pred MSE]")
509 | print(ep, t2 - t1, train_recons_full, train_pred_full, test_recons_full, test_pred_full)
510 | else:
511 | if ep == 0:
512 | print("Epoch","Time","Train Recons MSE","Train Pred MSE")
513 | print(ep, t2 - t1, train_recons_full, train_pred_full)
514 |
515 | def test_single(self, testloader, T_out = 1, path = False, is_save = False, is_plot = False):
516 | time_error = torch.zeros([T_out,1])
517 | test_pred_full = 0
518 | test_recons_full = 0
519 | loc = 0
520 | idx = np.random.randint(0,len(testloader))
521 | with torch.no_grad():
522 | for xx, yy in testloader:
523 | loss = 0
524 | bs = xx.shape[0]
525 | xx = xx.to(self.device)
526 | yy = yy.to(self.device)
527 | l_recons = 0
528 | for t in range(0, T_out):
529 | y = yy[:, t:t + 1]
530 | im, im_re = self.kernel(xx)
531 |
532 | l_recons += self.loss(im_re.reshape(bs, -1), xx.reshape(bs, -1))
533 | t_error = self.loss(im, y)
534 |
535 | xx = im
536 |
537 | if t == 0:
538 | pred = im
539 | else:
540 | pred = torch.cat((pred, im), 1)
541 | time_error[t] = time_error[t] + t_error.item()
542 |
543 | test_recons_full += l_recons.item() / T_out
544 | l_pred = self.loss(pred.reshape(bs, -1), yy.reshape(bs, -1))
545 | test_pred_full += l_pred.item()
546 |
547 | if(loc == 0 & is_save):
548 | torch.save({"pred":pred, "yy":yy}, path+ "pred_yy.pt")
549 |
550 | if(loc == 0 & is_plot):
551 | for i in range(T_out):
552 | plt.subplot(1,3,1)
553 | plt.title("Predict")
554 | plt.imshow(pred[0,i].cpu().detach().numpy())
555 | plt.subplot(1,3,2)
556 | plt.imshow(yy[0,i].cpu().detach().numpy())
557 | plt.title("Label")
558 | plt.subplot(1,3,3)
559 | plt.imshow(pred[0,i].cpu().detach().numpy()-yy[0,i].cpu().detach().numpy())
560 | plt.title("Error")
561 | plt.show()
562 | plt.savefig(path + "time_"+str(i)+".png")
563 | plt.close()
564 | loc = loc + 1
565 |
566 | test_pred_full = test_pred_full / len(testloader)
567 | test_recons_full = test_recons_full / len(testloader)
568 | time_error = time_error / len(testloader)
569 | print("Total prediction test mse error is ",test_pred_full)
570 | print("Total reconstruction test mse error is ",test_recons_full)
571 |
572 | return time_error
573 |
574 | def save(self, path):
575 | # (fpath,_) = os.path.split(path)
576 | # print(fpath, os.path.isfile(fpath))
577 | # if not os.path.isfile(fpath):
578 | # os.makedirs(fpath)
579 | torch.save({"koopman":self,"model":self.kernel,"model_params":self.kernel.state_dict()}, path)
580 |
--------------------------------------------------------------------------------
/koopmanlab/models/__init__.py:
--------------------------------------------------------------------------------
1 | from .kno import KNO1d,KNO2d
2 | from .kno import encoder_mlp, decoder_mlp, encoder_conv1d, decoder_conv1d, encoder_conv2d, decoder_conv2d
3 | from .koopmanViT import ViT
--------------------------------------------------------------------------------
/koopmanlab/models/kno.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 |
6 | torch.manual_seed(0)
7 |
8 | # The structure of Auto-Encoder
9 | class encoder_mlp(nn.Module):
10 | def __init__(self, t_len, op_size):
11 | super(encoder_mlp, self).__init__()
12 | self.layer = nn.Linear(t_len, op_size)
13 | def forward(self, x):
14 | x = self.layer(x)
15 | return x
16 |
17 | class decoder_mlp(nn.Module):
18 | def __init__(self, t_len, op_size):
19 | super(decoder_mlp, self).__init__()
20 | self.layer = nn.Linear(op_size, t_len)
21 | def forward(self, x):
22 | x = self.layer(x)
23 | return x
24 |
25 | class encoder_conv1d(nn.Module):
26 | def __init__(self, t_len, op_size):
27 | super(encoder_conv1d, self).__init__()
28 | self.layer = nn.Conv1d(t_len, op_size,1)
29 | def forward(self, x):
30 | x = x.permute([0,2,1])
31 | x = self.layer(x)
32 | x = x.permute([0,2,1])
33 | return x
34 |
35 | class decoder_conv1d(nn.Module):
36 | def __init__(self, t_len, op_size):
37 | super(decoder_conv1d, self).__init__()
38 | self.layer = nn.Conv1d(op_size, t_len,1)
39 | def forward(self, x):
40 | x = x.permute([0,2,1])
41 | x = self.layer(x)
42 | x = x.permute([0,2,1])
43 | return x
44 |
45 | class encoder_conv2d(nn.Module):
46 | def __init__(self, t_len, op_size):
47 | super(encoder_conv2d, self).__init__()
48 | self.layer = nn.Conv2d(t_len, op_size,1)
49 | def forward(self, x):
50 | x = x.permute([0,3,1,2])
51 | x = self.layer(x)
52 | x = x.permute([0,2,3,1])
53 | return x
54 |
55 | class decoder_conv2d(nn.Module):
56 | def __init__(self, t_len, op_size):
57 | super(decoder_conv2d, self).__init__()
58 | self.layer = nn.Conv2d(op_size, t_len,1)
59 | def forward(self, x):
60 | x = x.permute([0,3,1,2])
61 | x = self.layer(x)
62 | x = x.permute([0,2,3,1])
63 | return x
64 |
65 | # Koopman 1D structure
66 | class Koopman_Operator1D(nn.Module):
67 | def __init__(self, op_size, modes_x = 16):
68 | super(Koopman_Operator1D, self).__init__()
69 | self.op_size = op_size
70 | self.scale = (1 / (op_size * op_size))
71 | self.modes_x = modes_x
72 | self.koopman_matrix = nn.Parameter(self.scale * torch.rand(op_size, op_size, self.modes_x, dtype=torch.cfloat))
73 | # Complex multiplication
74 | def time_marching(self, input, weights):
75 | # (batch, t, x), (t, t+1, x) -> (batch, t+1, x)
76 | return torch.einsum("btx,tfx->bfx", input, weights)
77 | def forward(self, x):
78 | batchsize = x.shape[0]
79 | # Fourier Transform
80 | x_ft = torch.fft.rfft(x)
81 | # Koopman Operator Time Marching
82 | out_ft = torch.zeros(x_ft.shape, dtype=torch.cfloat, device = x.device)
83 | out_ft[:, :, :self.modes_x] = self.time_marching(x_ft[:, :, :self.modes_x], self.koopman_matrix)
84 | #Inverse Fourier Transform
85 | x = torch.fft.irfft(out_ft, n=x.size(-1))
86 | return x
87 |
88 | class KNO1d(nn.Module):
89 | def __init__(self, encoder, decoder, op_size, modes_x = 16, decompose = 4, linear_type = True, normalization = False):
90 | super(KNO1d, self).__init__()
91 | # Parameter
92 | self.op_size = op_size
93 | self.decompose = decompose
94 | # Layer Structure
95 | self.enc = encoder
96 | self.dec = decoder
97 | self.koopman_layer = Koopman_Operator1D(self.op_size, modes_x = modes_x)
98 | self.w0 = nn.Conv1d(op_size, op_size, 1)
99 | self.linear_type = linear_type # If this variable is False, activate function will be worked after Koopman Matrix
100 | self.normalization = normalization
101 | if self.normalization:
102 | self.norm_layer = torch.nn.BatchNorm2d(op_size)
103 | def forward(self, x):
104 | # Reconstruct
105 | x_reconstruct = self.enc(x)
106 | x_reconstruct = torch.tanh(x_reconstruct)
107 | x_reconstruct = self.dec(x_reconstruct)
108 | # Predict
109 | x = self.enc(x) # Encoder
110 | x = torch.tanh(x)
111 | x = x.permute(0, 2, 1)
112 | x_w = x
113 | for i in range(self.decompose):
114 | x1 = self.koopman_layer(x) # Koopman Operator
115 | if self.linear_type:
116 | x = x + x1
117 | else:
118 | x = torch.tanh(x + x1)
119 | if self.normalization:
120 | x = torch.tanh(self.norm_layer(self.w0(x_w)) + x)
121 | else:
122 | x = torch.tanh(self.w0(x_w) + x)
123 | x = x.permute(0, 2, 1)
124 | x = self.dec(x) # Decoder
125 | return x, x_reconstruct
126 |
127 | # Koopman 2D structure
128 | class Koopman_Operator2D(nn.Module):
129 | def __init__(self, op_size, modes_x, modes_y):
130 | super(Koopman_Operator2D, self).__init__()
131 | self.op_size = op_size
132 | self.scale = (1 / (op_size * op_size))
133 | self.modes_x = modes_x
134 | self.modes_y = modes_y
135 | self.koopman_matrix = nn.Parameter(self.scale * torch.rand(op_size, op_size, self.modes_x, self.modes_y, dtype=torch.cfloat))
136 |
137 | # Complex multiplication
138 | def time_marching(self, input, weights):
139 | # (batch, t, x,y ), (t, t+1, x,y) -> (batch, t+1, x,y)
140 | return torch.einsum("btxy,tfxy->bfxy", input, weights)
141 |
142 | def forward(self, x):
143 | batchsize = x.shape[0]
144 | # Fourier Transform
145 | x_ft = torch.fft.rfft2(x)
146 | # Koopman Operator Time Marching
147 | out_ft = torch.zeros(x_ft.shape, dtype=torch.cfloat, device = x.device)
148 | out_ft[:, :, :self.modes_x, :self.modes_y] = self.time_marching(x_ft[:, :, :self.modes_x, :self.modes_y], self.koopman_matrix)
149 | out_ft[:, :, -self.modes_x:, :self.modes_y] = self.time_marching(x_ft[:, :, -self.modes_x:, :self.modes_y], self.koopman_matrix)
150 | #Inverse Fourier Transform
151 | x = torch.fft.irfft2(out_ft, s=(x.size(-2), x.size(-1)))
152 | return x
153 |
154 | class KNO2d(nn.Module):
155 | def __init__(self, encoder, decoder, op_size, modes_x = 10, modes_y = 10, decompose = 6, linear_type = True, normalization = False):
156 | super(KNO2d, self).__init__()
157 | # Parameter
158 | self.op_size = op_size
159 | self.decompose = decompose
160 | self.modes_x = modes_x
161 | self.modes_y = modes_y
162 | # Layer Structure
163 | self.enc = encoder
164 | self.dec = decoder
165 | self.koopman_layer = Koopman_Operator2D(self.op_size, self.modes_x, self.modes_y)
166 | self.w0 = nn.Conv2d(op_size, op_size, 1)
167 | self.linear_type = linear_type # If this variable is False, activate function will be worked after Koopman Matrix
168 | self.normalization = normalization
169 | if self.normalization:
170 | self.norm_layer = torch.nn.BatchNorm2d(op_size)
171 | def forward(self, x):
172 | # Reconstruct
173 | x_reconstruct = self.enc(x)
174 | x_reconstruct = torch.tanh(x_reconstruct)
175 | x_reconstruct = self.dec(x_reconstruct)
176 | # Predict
177 | x = self.enc(x) # Encoder
178 | x = torch.tanh(x)
179 | x = x.permute(0, 3, 1, 2)
180 | x_w = x
181 | for i in range(self.decompose):
182 | x1 = self.koopman_layer(x) # Koopman Operator
183 | if self.linear_type:
184 | x = x + x1
185 | else:
186 | x = torch.tanh(x + x1)
187 | if self.normalization:
188 | x = torch.tanh(self.norm_layer(self.w0(x_w)) + x)
189 | else:
190 | x = torch.tanh(self.w0(x_w) + x)
191 | x = x.permute(0, 2, 3, 1)
192 | x = self.dec(x) # Decoder
193 | return x, x_reconstruct
194 |
--------------------------------------------------------------------------------
/koopmanlab/models/koopmanViT.py:
--------------------------------------------------------------------------------
1 | import math
2 | from functools import partial
3 | from collections import OrderedDict
4 | from copy import Error, deepcopy
5 | from re import S
6 | from numpy.lib.arraypad import pad
7 | import numpy as np
8 | import torch
9 | import torch.nn as nn
10 | import torch.nn.functional as F
11 | from timm.models.layers import DropPath, trunc_normal_
12 | import torch.fft
13 | from torch.nn.modules.container import Sequential
14 | from torch.utils.checkpoint import checkpoint_sequential
15 | from einops import rearrange, repeat
16 | from einops.layers.torch import Rearrange
17 |
18 | class PatchEmbed(nn.Module):
19 | def __init__(self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768):
20 | super().__init__()
21 | num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
22 | self.img_size = img_size
23 | self.patch_size = patch_size
24 | self.num_patches = num_patches
25 | self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
26 |
27 | def forward(self, x):
28 | B, C, H, W = x.shape
29 | assert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
30 | x = self.proj(x).flatten(2).transpose(1, 2)
31 | return x
32 |
33 | class Mlp(nn.Module):
34 | def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
35 | super().__init__()
36 | out_features = out_features or in_features
37 | hidden_features = hidden_features or in_features
38 | self.fc1 = nn.Linear(in_features, hidden_features)
39 | self.act = act_layer()
40 | self.fc2 = nn.Linear(hidden_features, out_features)
41 | self.drop = nn.Dropout(drop)
42 |
43 | def forward(self, x):
44 | x = self.fc1(x)
45 | x = self.act(x)
46 | x = self.drop(x)
47 | x = self.fc2(x)
48 | x = self.drop(x)
49 | return x
50 |
51 | # Use Fourier-Transformer structure to approximate linear Koopman Operator
52 | class Attention(nn.Module):
53 | def __init__(
54 | self,
55 | dim,
56 | num_heads=8,
57 | qkv_bias=False,
58 | qk_scale=None,
59 | attn_drop=0.0,
60 | proj_drop=0.0,
61 | input_size=(4, 14, 14),
62 | ):
63 | super().__init__()
64 | assert dim % num_heads == 0, "dim should be divisible by num_heads"
65 | self.num_heads = num_heads
66 | head_dim = dim // num_heads
67 | self.scale = qk_scale or head_dim**-0.5
68 |
69 | self.q = nn.Linear(dim, dim, bias=qkv_bias)
70 | self.k = nn.Linear(dim, dim, bias=qkv_bias)
71 | self.v = nn.Linear(dim, dim, bias=qkv_bias)
72 | assert attn_drop == 0.0 # do not use
73 | self.proj = nn.Linear(dim, dim)
74 | self.proj_drop = nn.Dropout(proj_drop)
75 | self.input_size = input_size
76 | assert input_size[1] == input_size[2]
77 |
78 | def forward(self, x):
79 | B, N, C = x.shape
80 | q = (
81 | self.q(x)
82 | .reshape(B, N, self.num_heads, C // self.num_heads)
83 | .permute(0, 2, 1, 3)
84 | )
85 | k = (
86 | self.k(x)
87 | .reshape(B, N, self.num_heads, C // self.num_heads)
88 | .permute(0, 2, 1, 3)
89 | )
90 | v = (
91 | self.v(x)
92 | .reshape(B, N, self.num_heads, C // self.num_heads)
93 | .permute(0, 2, 1, 3)
94 | )
95 |
96 | attn = (q @ k.transpose(-2, -1)) * self.scale
97 |
98 | attn = attn.softmax(dim=-1)
99 |
100 | x = (attn @ v).transpose(1, 2).reshape(B, N, C)
101 | x = self.proj(x)
102 | x = self.proj_drop(x)
103 | x = x.view(B, -1, C)
104 | return x
105 |
106 |
107 | class At_Block(nn.Module):
108 | """
109 | Transformer Block in Fourier Domain
110 | """
111 | def __init__(
112 | self,
113 | dim=768,
114 | num_heads=8,
115 | mlp_ratio=4.0,
116 | qkv_bias=False,
117 | qk_scale=None,
118 | drop=0.0,
119 | attn_drop=0.0,
120 | drop_path=0.0,
121 | act_layer=nn.GELU,
122 | norm_layer=nn.LayerNorm,
123 | attn_func=Attention,
124 | ):
125 | super().__init__()
126 | self.norm1 = norm_layer(dim)
127 | self.attn = attn_func(
128 | dim,
129 | num_heads=num_heads,
130 | qkv_bias=qkv_bias,
131 | qk_scale=qk_scale,
132 | attn_drop=attn_drop,
133 | proj_drop=drop,
134 | )
135 |
136 | self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
137 | self.norm2 = norm_layer(dim)
138 | mlp_hidden_dim = int(dim * mlp_ratio)
139 | self.mlp = Mlp(
140 | in_features=dim,
141 | hidden_features=mlp_hidden_dim,
142 | act_layer=act_layer,
143 | drop=drop,
144 | )
145 |
146 | def forward(self, x):
147 | x_ft = torch.fft.fft(x, dim=-1, norm="ortho")
148 | x_r = x_ft.real
149 | x_i = x_ft.imag
150 | # Calculate Real Part
151 | x_r = x_r + self.drop_path(self.attn(self.norm1(x_r)))
152 | x_r = x_r + self.drop_path(self.mlp(self.norm2(x_r)))
153 | # Calculate Imaginary Part
154 | x_i = x_i + self.drop_path(self.attn(self.norm1(x_i)))
155 | x_i = x_i + self.drop_path(self.mlp(self.norm2(x_i)))
156 | # Merge
157 | x_ft.real = x_r
158 | x_ft.imag = x_i
159 | x = torch.fft.ifft(x_ft, dim=-1, norm="ortho")
160 | return x
161 |
162 | # Use linear AFNO1D structure to approximate linear Koopman Operator
163 | class AFNO1D(nn.Module):
164 | def __init__(self, hidden_size, num_blocks=8, sparsity_threshold=0.01, hard_thresholding_fraction=1, hidden_size_factor=1):
165 | super().__init__()
166 | assert hidden_size % num_blocks == 0, f"hidden_size {hidden_size} should be divisble by num_blocks {num_blocks}"
167 |
168 | self.hidden_size = hidden_size
169 | self.sparsity_threshold = sparsity_threshold
170 | self.num_blocks = num_blocks
171 | self.block_size = self.hidden_size // self.num_blocks
172 | self.hard_thresholding_fraction = hard_thresholding_fraction
173 | self.hidden_size_factor = hidden_size_factor
174 | self.scale = 0.02
175 |
176 | self.w1 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size, self.block_size * self.hidden_size_factor))
177 | self.b1 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size * self.hidden_size_factor))
178 | self.w2 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size * self.hidden_size_factor, self.block_size))
179 | self.b2 = nn.Parameter(self.scale * torch.randn(2, self.num_blocks, self.block_size))
180 |
181 | def forward(self, x):
182 | bias = x
183 |
184 | dtype = x.dtype
185 | x = x.float()
186 | B, N, C = x.shape
187 |
188 | x = torch.fft.rfft(x, dim=1, norm="ortho")
189 | x = x.reshape(B, N // 2 + 1, self.num_blocks, self.block_size)
190 |
191 | o1_real = torch.zeros([B, N // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor], device=x.device)
192 | o1_imag = torch.zeros([B, N // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor], device=x.device)
193 | o2_real = torch.zeros(x.shape, device=x.device)
194 | o2_imag = torch.zeros(x.shape, device=x.device)
195 |
196 | total_modes = N // 2 + 1
197 | kept_modes = int(total_modes * self.hard_thresholding_fraction)
198 |
199 | o1_real[:, :kept_modes] = F.relu(
200 | torch.einsum('...bi,bio->...bo', x[:, :kept_modes].real, self.w1[0]) - \
201 | torch.einsum('...bi,bio->...bo', x[:, :kept_modes].imag, self.w1[1]) + \
202 | self.b1[0]
203 | )
204 |
205 | o1_imag[:, :kept_modes] = F.relu(
206 | torch.einsum('...bi,bio->...bo', x[:, :kept_modes].imag, self.w1[0]) + \
207 | torch.einsum('...bi,bio->...bo', x[:, :kept_modes].real, self.w1[1]) + \
208 | self.b1[1]
209 | )
210 |
211 | o2_real[:, :kept_modes] = (
212 | torch.einsum('...bi,bio->...bo', o1_real[:, :kept_modes], self.w2[0]) - \
213 | torch.einsum('...bi,bio->...bo', o1_imag[:, :kept_modes], self.w2[1]) + \
214 | self.b2[0]
215 | )
216 |
217 | o2_imag[:, :kept_modes] = (
218 | torch.einsum('...bi,bio->...bo', o1_imag[:, :kept_modes], self.w2[0]) + \
219 | torch.einsum('...bi,bio->...bo', o1_real[:, :kept_modes], self.w2[1]) + \
220 | self.b2[1]
221 | )
222 |
223 | x = torch.stack([o2_real, o2_imag], dim=-1)
224 | x = F.softshrink(x, lambd=self.sparsity_threshold)
225 | x = torch.view_as_complex(x)
226 | x = x.reshape(B, N // 2 + 1, C)
227 | x = torch.fft.irfft(x, n=N, dim=1, norm="ortho")
228 | x = x.type(dtype)
229 | return x + bias
230 |
231 | class Af_Block(nn.Module):
232 | """
233 | AdaptiveFNO Block
234 | """
235 | def __init__(
236 | self,
237 | dim,
238 | mlp_ratio=4.,
239 | drop=0.,
240 | drop_path=0.,
241 | act_layer=nn.GELU,
242 | norm_layer=nn.LayerNorm,
243 | double_skip=True,
244 | num_blocks=8,
245 | sparsity_threshold=0.01,
246 | hard_thresholding_fraction=1.0,
247 | ):
248 | super().__init__()
249 | self.norm1 = norm_layer(dim)
250 | self.filter = AFNO1D(dim, num_blocks, sparsity_threshold, hard_thresholding_fraction)
251 | self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
252 | #self.drop_path = nn.Identity()
253 | self.norm2 = norm_layer(dim)
254 | mlp_hidden_dim = int(dim * mlp_ratio)
255 | self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
256 | self.double_skip = double_skip
257 |
258 | def forward(self, x):
259 | residual = x
260 | x = self.norm1(x)
261 | x = self.filter(x)
262 |
263 | if self.double_skip:
264 | x = x + residual
265 | residual = x
266 |
267 | x = self.norm2(x)
268 | x = self.mlp(x)
269 | x = self.drop_path(x)
270 | x = x + residual
271 | return x
272 |
273 |
274 | class ViT(nn.Module):
275 | def __init__(
276 | self,
277 | img_size=(720, 1440),
278 | patch_size=(8, 8),
279 | in_chans=20,
280 | out_chans=20,
281 | embed_dim=768,
282 | encoder_depth = 2,
283 | depth=10,
284 | mlp_ratio=4.,
285 | drop_rate=0.,
286 | drop_path_rate=0.,
287 | num_blocks=16,
288 | sparsity_threshold=0.01,
289 | hard_thresholding_fraction=1.0,
290 | settings = "Conv2d",
291 | encoder_network = False
292 | ):
293 | super().__init__()
294 | self.encoder_network = encoder_network
295 | self.img_size = img_size
296 | self.patch_size = patch_size
297 | self.in_chans = in_chans
298 | self.out_chans = out_chans
299 |
300 | self.num_features = self.embed_dim = embed_dim
301 | self.num_blocks = num_blocks
302 | self.depth = depth
303 | self.settings = settings
304 | norm_layer = partial(nn.LayerNorm, eps=1e-6)
305 |
306 | self.patch_embed = PatchEmbed(img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=embed_dim)
307 | num_patches = self.patch_embed.num_patches
308 |
309 | self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
310 | self.pos_drop = nn.Dropout(p=drop_rate)
311 |
312 | dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.depth)]
313 | self.dpr = dpr
314 |
315 | self.h = img_size[0] // self.patch_size[0]
316 | self.w = img_size[1] // self.patch_size[1]
317 |
318 |
319 | # Encoder Settings
320 | self.encoder_depth = encoder_depth
321 | # There are two options. Af_Block represents using the AdaptiveFNO blocks, and At_Block represents using the Fourier-Transformer blocks.
322 | self.encoder_blocks = nn.ModuleList([
323 | Af_Block(dim=embed_dim, mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
324 | num_blocks=self.num_blocks, sparsity_threshold=sparsity_threshold, hard_thresholding_fraction=hard_thresholding_fraction)
325 | for i in range(encoder_depth)])
326 |
327 | # Koopman Layers
328 | self.core_blocks = nn.ModuleList([
329 | Af_Block(dim=embed_dim, mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
330 | num_blocks=self.num_blocks, sparsity_threshold=sparsity_threshold, hard_thresholding_fraction=hard_thresholding_fraction)
331 | for i in range(self.depth)])
332 |
333 | self.norm = norm_layer(embed_dim)
334 |
335 | # High-frequency component
336 | self.w0 = nn.Conv1d(embed_dim, embed_dim, 1) # or user-defined more complicated convolutional structure
337 |
338 | # Decoder Settings
339 | if self.settings == "MLP":
340 | self.decoder_pred_mlp = nn.Linear(self.embed_dim, self.out_chans*self.patch_size[0]*self.patch_size[1], bias=False)
341 | elif self.settings == "Conv2d":
342 | self.decoder_pred_conv2d = nn.ConvTranspose2d(self.embed_dim, self.out_chans, kernel_size=self.patch_size, stride=self.patch_size)
343 |
344 | trunc_normal_(self.pos_embed, std=.02)
345 | self.apply(self._init_weights)
346 |
347 | def _init_weights(self, m):
348 | if isinstance(m, nn.Linear):
349 | trunc_normal_(m.weight, std=.02)
350 | if isinstance(m, nn.Linear) and m.bias is not None:
351 | nn.init.constant_(m.bias, 0)
352 | elif isinstance(m, nn.LayerNorm):
353 | nn.init.constant_(m.bias, 0)
354 | nn.init.constant_(m.weight, 1.0)
355 |
356 | @torch.jit.ignore
357 | def no_weight_decay(self):
358 | return {'pos_embed', 'cls_token'}
359 |
360 | def encoder(self, x):
361 | # Position Encoder
362 | B = x.shape[0]
363 | x = self.patch_embed(x)
364 | x = x + self.pos_embed
365 | x = self.pos_drop(x)
366 | # Encoder Network (if reconstruction task is hard, please use more complicated structure)
367 | for blk in self.encoder_blocks:
368 | x = blk(x)
369 |
370 | if self.encoder_network:
371 | x = self.encoder_network(x)
372 |
373 | return x
374 |
375 | def decoder(self, x):
376 | B = x.shape[0]
377 | x = x.reshape(B, self.h, self.w, self.embed_dim)
378 | if self.settings == "MLP":
379 | x = self.decoder_pred_mlp(x)
380 | x = rearrange(
381 | x,
382 | "b h w (p1 p2 c_out) -> b c_out (h p1) (w p2)",
383 | p1=self.patch_size[0],
384 | p2=self.patch_size[1],
385 | h=self.img_size[0] // self.patch_size[0],
386 | w=self.img_size[1] // self.patch_size[1],
387 | )
388 | elif self.settings == "Conv2d":
389 | x = rearrange(x, "B H W C -> B C H W")
390 | x = self.decoder_pred_conv2d(x)
391 | return x
392 |
393 | def forward(self, x):
394 | x = self.encoder(x)
395 | # Reconstruction
396 | x_recons = self.decoder(x)
397 | # Prediction
398 | x_w = self.w0(x.permute(0,2,1)).permute(0,2,1)
399 | for blk in self.core_blocks:
400 | x = blk(x)
401 | x = blk(x)
402 | x = x + x_w
403 | x = self.decoder(x)
404 | return x, x_recons
405 |
--------------------------------------------------------------------------------
/koopmanlab/utils.py:
--------------------------------------------------------------------------------
1 | import math
2 | import torch
3 | from torch import Tensor
4 | from typing import List, Optional
5 | from torch.optim.optimizer import Optimizer
6 | import operator
7 | from functools import reduce
8 |
9 | # print the number of parameters
10 | def count_params(model):
11 | c = 0
12 | for p in list(model.parameters()):
13 | c += reduce(operator.mul,
14 | list(p.size()+(2,) if p.is_complex() else p.size()))
15 | return c
16 |
17 |
18 | def adam(params: List[Tensor],
19 | grads: List[Tensor],
20 | exp_avgs: List[Tensor],
21 | exp_avg_sqs: List[Tensor],
22 | max_exp_avg_sqs: List[Tensor],
23 | state_steps: List[int],
24 | *,
25 | amsgrad: bool,
26 | beta1: float,
27 | beta2: float,
28 | lr: float,
29 | weight_decay: float,
30 | eps: float):
31 | r"""Functional API that performs Adam algorithm computation.
32 | See :class:`~torch.optim.Adam` for details.
33 | """
34 |
35 | for i, param in enumerate(params):
36 |
37 | grad = grads[i]
38 | exp_avg = exp_avgs[i]
39 | exp_avg_sq = exp_avg_sqs[i]
40 | step = state_steps[i]
41 |
42 | bias_correction1 = 1 - beta1 ** step
43 | bias_correction2 = 1 - beta2 ** step
44 |
45 | if weight_decay != 0:
46 | grad = grad.add(param, alpha=weight_decay)
47 |
48 | # Decay the first and second moment running average coefficient
49 | exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
50 | exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
51 | if amsgrad:
52 | # Maintains the maximum of all 2nd moment running avg. till now
53 | torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
54 | # Use the max. for normalizing running avg. of gradient
55 | denom = (max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)).add_(eps)
56 | else:
57 | denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
58 |
59 | step_size = lr / bias_correction1
60 |
61 | param.addcdiv_(exp_avg, denom, value=-step_size)
62 |
63 |
64 | class Adam(Optimizer):
65 | r"""Implements Adam algorithm.
66 | It has been proposed in `Adam: A Method for Stochastic Optimization`_.
67 | The implementation of the L2 penalty follows changes proposed in
68 | `Decoupled Weight Decay Regularization`_.
69 | Args:
70 | params (iterable): iterable of parameters to optimize or dicts defining
71 | parameter groups
72 | lr (float, optional): learning rate (default: 1e-3)
73 | betas (Tuple[float, float], optional): coefficients used for computing
74 | running averages of gradient and its square (default: (0.9, 0.999))
75 | eps (float, optional): term added to the denominator to improve
76 | numerical stability (default: 1e-8)
77 | weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
78 | amsgrad (boolean, optional): whether to use the AMSGrad variant of this
79 | algorithm from the paper `On the Convergence of Adam and Beyond`_
80 | (default: False)
81 | .. _Adam\: A Method for Stochastic Optimization:
82 | https://arxiv.org/abs/1412.6980
83 | .. _Decoupled Weight Decay Regularization:
84 | https://arxiv.org/abs/1711.05101
85 | .. _On the Convergence of Adam and Beyond:
86 | https://openreview.net/forum?id=ryQu7f-RZ
87 | """
88 |
89 | def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
90 | weight_decay=0, amsgrad=False):
91 | if not 0.0 <= lr:
92 | raise ValueError("Invalid learning rate: {}".format(lr))
93 | if not 0.0 <= eps:
94 | raise ValueError("Invalid epsilon value: {}".format(eps))
95 | if not 0.0 <= betas[0] < 1.0:
96 | raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
97 | if not 0.0 <= betas[1] < 1.0:
98 | raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
99 | if not 0.0 <= weight_decay:
100 | raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
101 | defaults = dict(lr=lr, betas=betas, eps=eps,
102 | weight_decay=weight_decay, amsgrad=amsgrad)
103 | super(Adam, self).__init__(params, defaults)
104 |
105 | def __setstate__(self, state):
106 | super(Adam, self).__setstate__(state)
107 | for group in self.param_groups:
108 | group.setdefault('amsgrad', False)
109 |
110 | @torch.no_grad()
111 | def step(self, closure=None):
112 | """Performs a single optimization step.
113 | Args:
114 | closure (callable, optional): A closure that reevaluates the model
115 | and returns the loss.
116 | """
117 | loss = None
118 | if closure is not None:
119 | with torch.enable_grad():
120 | loss = closure()
121 |
122 | for group in self.param_groups:
123 | params_with_grad = []
124 | grads = []
125 | exp_avgs = []
126 | exp_avg_sqs = []
127 | max_exp_avg_sqs = []
128 | state_steps = []
129 | beta1, beta2 = group['betas']
130 |
131 | for p in group['params']:
132 | if p.grad is not None:
133 | params_with_grad.append(p)
134 | if p.grad.is_sparse:
135 | raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
136 | grads.append(p.grad)
137 |
138 | state = self.state[p]
139 | # Lazy state initialization
140 | if len(state) == 0:
141 | state['step'] = 0
142 | # Exponential moving average of gradient values
143 | state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
144 | # Exponential moving average of squared gradient values
145 | state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
146 | if group['amsgrad']:
147 | # Maintains max of all exp. moving avg. of sq. grad. values
148 | state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
149 |
150 | exp_avgs.append(state['exp_avg'])
151 | exp_avg_sqs.append(state['exp_avg_sq'])
152 |
153 | if group['amsgrad']:
154 | max_exp_avg_sqs.append(state['max_exp_avg_sq'])
155 |
156 | # update the steps for each param group update
157 | state['step'] += 1
158 | # record the step after step update
159 | state_steps.append(state['step'])
160 |
161 | adam(params_with_grad,
162 | grads,
163 | exp_avgs,
164 | exp_avg_sqs,
165 | max_exp_avg_sqs,
166 | state_steps,
167 | amsgrad=group['amsgrad'],
168 | beta1=beta1,
169 | beta2=beta2,
170 | lr=group['lr'],
171 | weight_decay=group['weight_decay'],
172 | eps=group['eps'])
--------------------------------------------------------------------------------
/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Koopman-Laboratory/KoopmanLab/c9e347a9df50103d308235148132ce7ad1c850a4/logo.png
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | import io
2 | import setuptools
3 |
4 | with io.open("README.md", "r", encoding="utf-8") as f:
5 | long_description = f.read()
6 |
7 | setuptools.setup(
8 | name="koopmanlab",
9 | version="1.0.4",
10 | author="Wei Xiong, Tian Yang",
11 | author_email="xiongw21@mails.tsinghua.edu.cn",
12 | description="A library for Koopman Neural Operator with Pytorch",
13 | long_description=long_description,
14 | long_description_content_type="text/markdown",
15 | url="https://github.com/Koopman-Laboratory/KoopmanLab",
16 | packages=setuptools.find_packages(),
17 | classifiers=[
18 | "Programming Language :: Python :: 3",
19 | "License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
20 | "Operating System :: OS Independent",
21 | ],
22 | python_requires='>=3.8.5',
23 | install_requires = [
24 | 'torch>=1.10',
25 | 'torchvision>=0.13.1',
26 | 'matplotlib>=3.3.2',
27 | 'numpy>=1.14.5',
28 | 'einops==0.5.0',
29 | 'timm==0.6.11',
30 | 'scipy==1.7.3',
31 | 'h5py==3.7.0',
32 | ]
33 | )
34 |
--------------------------------------------------------------------------------