├── Day2.Data and variable
├── Data and variable.ipynb
├── README.md
├── dinfo.JPG
└── variable.JPG
├── Graphical and Analytical representation of Data
├── README.md
└── part1.ipynb
├── Introduction
├── Day1 -Introduction to ML.ipynb
├── ML1.JPG
└── README.md
├── LICENSE
└── README.md
/Day2.Data and variable/README.md:
--------------------------------------------------------------------------------
1 | 
2 |
3 |
4 |
Types of data and variable
5 | Topics Covered:
6 |   >What is Data?
7 |   >What is the Difference between Data and Information ?
8 |   >What is Variable?
9 |   >Types of variable
10 |   >WHAT ARE INDEPENDENT AND DEPENDENT VARIABLES?
11 |   >What is Structured data and unstructured data?
12 |
13 | Click this for Documentation
14 | Follow me<3.
15 |
16 |
--------------------------------------------------------------------------------
/Day2.Data and variable/dinfo.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Kushal997-das/Machine-Learning/81c178a3a883adc8ab332e178d35b87d25e27fe3/Day2.Data and variable/dinfo.JPG
--------------------------------------------------------------------------------
/Day2.Data and variable/variable.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Kushal997-das/Machine-Learning/81c178a3a883adc8ab332e178d35b87d25e27fe3/Day2.Data and variable/variable.JPG
--------------------------------------------------------------------------------
/Graphical and Analytical representation of Data/README.md:
--------------------------------------------------------------------------------
1 | - Graphical and Analytical representation of Data
2 |
3 |
--------------------------------------------------------------------------------
/Graphical and Analytical representation of Data/part1.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "kernelspec": {
6 | "display_name": "Python 3",
7 | "language": "python",
8 | "name": "python3"
9 | },
10 | "language_info": {
11 | "codemirror_mode": {
12 | "name": "ipython",
13 | "version": 3
14 | },
15 | "file_extension": ".py",
16 | "mimetype": "text/x-python",
17 | "name": "python",
18 | "nbconvert_exporter": "python",
19 | "pygments_lexer": "ipython3",
20 | "version": "3.8.3"
21 | },
22 | "colab": {
23 | "name": "part1.ipynb",
24 | "provenance": [],
25 | "include_colab_link": true
26 | }
27 | },
28 | "cells": [
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {
32 | "id": "view-in-github",
33 | "colab_type": "text"
34 | },
35 | "source": [
36 | "
"
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {
42 | "id": "TjV4_p3F5A7j"
43 | },
44 | "source": [
45 | "# Graphical and Analytical representation of Data-1\n",
46 | ">part-1\n"
47 | ]
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "metadata": {
52 | "id": "pIE64uER5A7n"
53 | },
54 | "source": [
55 | "### What is data analysis?"
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "metadata": {
61 | "id": "6BqJP0cA5A7o"
62 | },
63 | "source": [
64 | "- Data analysis is the process of studying the available data and drawing valuable insights or information from it with the help of any software."
65 | ]
66 | },
67 | {
68 | "cell_type": "markdown",
69 | "metadata": {
70 | "id": "UmlhfJoN5A7o"
71 | },
72 | "source": [
73 | "- Data analysis being used everyday and everywhere to enable the businesses to take smart and accurate decisions."
74 | ]
75 | },
76 | {
77 | "cell_type": "markdown",
78 | "metadata": {
79 | "id": "HqGeFkFT5A7p"
80 | },
81 | "source": [
82 | "### How machine learning is related to data analysis ?
OR.
What has machine learning got to do with data analysis ?"
83 | ]
84 | },
85 | {
86 | "cell_type": "markdown",
87 | "metadata": {
88 | "id": "OxPrrczW5A7q"
89 | },
90 | "source": [
91 | "- We know data analysis is all about analyzing the data and bringing out the varibales insights from it using analytical tools."
92 | ]
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {
97 | "id": "U3dysT5S5A7q"
98 | },
99 | "source": [
100 | "- Data analysis is a part of machine learning which analyzes your data and brings out insights before applying any algorithm in it ."
101 | ]
102 | },
103 | {
104 | "cell_type": "markdown",
105 | "metadata": {
106 | "id": "x3OtkLga5A7r"
107 | },
108 | "source": [
109 | "### What is explanatory data analysis (EDA) ?"
110 | ]
111 | },
112 | {
113 | "cell_type": "markdown",
114 | "metadata": {
115 | "id": "8ZABNLM45A7r"
116 | },
117 | "source": [
118 | "- Explanatory data analytics focuses on all the parts of context, mainly the why and how. An outcome can be statistically calculated, modeled, or visualized to tell you the likelihood of certain events based on preconceived variables."
119 | ]
120 | },
121 | {
122 | "cell_type": "markdown",
123 | "metadata": {
124 | "id": "m-rDBo1h5A7s"
125 | },
126 | "source": [
127 | "\n",
128 | "
\n"
129 | ]
130 | },
131 | {
132 | "cell_type": "markdown",
133 | "metadata": {
134 | "id": "Tfm3k4er5A7t"
135 | },
136 | "source": [
137 | "## Levels of data analysis ."
138 | ]
139 | },
140 | {
141 | "cell_type": "markdown",
142 | "metadata": {
143 | "id": "p4Wk3_oV5A7t"
144 | },
145 | "source": [
146 | "#### There are 4 types of levels namely -"
147 | ]
148 | },
149 | {
150 | "cell_type": "markdown",
151 | "metadata": {
152 | "id": "XeSlMhtU5A7u"
153 | },
154 | "source": [
155 | "- Descriptive Analysis.\n",
156 | "- Diagnostic Analysis.\n",
157 | "- Predictive Analysis.\n",
158 | "- Prescriptive Analysis."
159 | ]
160 | },
161 | {
162 | "cell_type": "markdown",
163 | "metadata": {
164 | "id": "_jYuaEr45A7u"
165 | },
166 | "source": [
167 | "
"
168 | ]
169 | },
170 | {
171 | "cell_type": "markdown",
172 | "metadata": {
173 | "id": "mcXeEeBm5A7u"
174 | },
175 | "source": [
176 | "> Descriptive Analysis: \n",
177 | "- Descriptive data analysis looks at past data and tells what happened. This is often used when tracking Key Performance Indicators (KPIs), revenue, sales leads, and more."
178 | ]
179 | },
180 | {
181 | "cell_type": "markdown",
182 | "metadata": {
183 | "id": "HWa_-WmB5A7v"
184 | },
185 | "source": [
186 | "> Diagnostic Analysis :\n",
187 | "- Diagnostic data analysis aims to determine why something happened. Once your descriptive analysis shows that something negative or positive happened, diagnostic analysis can be done to figure out the reason. A business may see that leads increased in the month of October and use diagnostic analysis to determine which marketing efforts contributed the most.\n"
188 | ]
189 | },
190 | {
191 | "cell_type": "markdown",
192 | "metadata": {
193 | "id": "urkJTWt85A7v"
194 | },
195 | "source": [
196 | ">Predictive Analysis:\n",
197 | "- Predictive data analysis predicts what is likely to happen in the future. In this type of research, trends are derived from past data which are then used to form predictions about the future. For example, to predict next year’s revenue, data from previous years will be analyzed. If revenue has gone up 20% every year for many years, we would predict that revenue next year will be 20% higher than this year. This is a simple example, but predictive analysis can be applied to much more complicated issues such as risk assessment, sales forecasting, or qualifying leads."
198 | ]
199 | },
200 | {
201 | "cell_type": "markdown",
202 | "metadata": {
203 | "id": "6kFSoymI5A7w"
204 | },
205 | "source": [
206 | ">Prescriptive Analysis: \n",
207 | "- Prescriptive data analysis combines the information found from the previous 3 types of data analysis and forms a plan of action for the organization to face the issue or decision. This is where the data-driven choices are made."
208 | ]
209 | },
210 | {
211 | "cell_type": "markdown",
212 | "metadata": {
213 | "id": "aE4Qmt3T5A7w"
214 | },
215 | "source": [
216 | "#### These 4 types of data analysis can be applied to any issue with data related to it.\n"
217 | ]
218 | }
219 | ]
220 | }
--------------------------------------------------------------------------------
/Introduction/Day1 -Introduction to ML.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "kernelspec": {
6 | "display_name": "Python 3",
7 | "language": "python",
8 | "name": "python3"
9 | },
10 | "language_info": {
11 | "codemirror_mode": {
12 | "name": "ipython",
13 | "version": 3
14 | },
15 | "file_extension": ".py",
16 | "mimetype": "text/x-python",
17 | "name": "python",
18 | "nbconvert_exporter": "python",
19 | "pygments_lexer": "ipython3",
20 | "version": "3.7.4"
21 | },
22 | "colab": {
23 | "name": "Day1 -Introduction to ML.ipynb",
24 | "provenance": [],
25 | "include_colab_link": true
26 | }
27 | },
28 | "cells": [
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {
32 | "id": "view-in-github",
33 | "colab_type": "text"
34 | },
35 | "source": [
36 | "
"
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {
42 | "id": "1sxfrkK65Q9B"
43 | },
44 | "source": [
45 | "# Intoduction to Machine Learning."
46 | ]
47 | },
48 | {
49 | "cell_type": "markdown",
50 | "metadata": {
51 | "id": "z2GoDEHQ5Q9F"
52 | },
53 | "source": [
54 | "## What is Machine Learning?"
55 | ]
56 | },
57 | {
58 | "cell_type": "markdown",
59 | "metadata": {
60 | "id": "vu5bVHbu5Q9F"
61 | },
62 | "source": [
63 | ">Machine Learning is the ability of machines ,that is computers to learn and improve their past experience or data, without being explicitly programmed to do so .\n",
64 | "\n",
65 | "\n",
66 | ">Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.\n"
67 | ]
68 | },
69 | {
70 | "cell_type": "markdown",
71 | "metadata": {
72 | "id": "d9BeqY_v5Q9G"
73 | },
74 | "source": [
75 | "## Why machine learning is so important/Why machine learning is the future?"
76 | ]
77 | },
78 | {
79 | "cell_type": "markdown",
80 | "metadata": {
81 | "id": "1dcxMRKF5Q9H"
82 | },
83 | "source": [
84 | "> Machine Learning is an application of Artificial Intelligence. It allows software applications to become accurate in predicting outcomes. As humans become more addicted to machines, we're witnesses to a new revolution that's taking over the world, and that is going to be the future of **Machine** Learning. "
85 | ]
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "metadata": {
90 | "id": "yGpfLHC15Q9H"
91 | },
92 | "source": [
93 | "## Why is it called machine learning?"
94 | ]
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {
99 | "id": "xeIAX5tu5Q9I"
100 | },
101 | "source": [
102 | "> It used to be called statistical learning theory. ... Its because the way human learn different thing machine is learning different thing. we are not telling machine what to do, we are teaching machine how to do.So, machine will use this skill to solve next problem it will face without explicitly programmed."
103 | ]
104 | },
105 | {
106 | "cell_type": "markdown",
107 | "metadata": {
108 | "id": "cjgRU3Em5Q9I"
109 | },
110 | "source": [
111 | "## Application of machine Learning. "
112 | ]
113 | },
114 | {
115 | "cell_type": "markdown",
116 | "metadata": {
117 | "id": "6cfdwsT45Q9I"
118 | },
119 | "source": [
120 | "## Here are the few Applications of Machine Learning from Day-to-Day Life-\n",
121 | ">*1.Virtual Personal Assistants. Siri, Alexa, Google Now are some of the popular examples of virtual personal assistants.*
\n",
122 | ">*2.Predictions while Commuting.*
\n",
123 | ">*3.Videos Surveillance.*
\n",
124 | ">*4.Social Media Services.*
\n",
125 | ">*5.Email Spam and Malware Filtering.*
\n",
126 | ">*6.Online Customer Support.*
\n",
127 | ">*7.Search Engine Result Refining.*
\n",
128 | ">*8.Product Recommendations.*
"
129 | ]
130 | },
131 | {
132 | "cell_type": "markdown",
133 | "metadata": {
134 | "id": "BO34hh5p5Q9J"
135 | },
136 | "source": [
137 | "## Types of machine learning:"
138 | ]
139 | },
140 | {
141 | "cell_type": "markdown",
142 | "metadata": {
143 | "id": "PttS0kYX5Q9J"
144 | },
145 | "source": [
146 | "#### There are mainly two types of machine learning-\n",
147 | " 1.Supervised Learning.\n",
148 | " 2.Unsupervised Learning."
149 | ]
150 | },
151 | {
152 | "cell_type": "code",
153 | "metadata": {
154 | "id": "LbjM-wHg5Q9K",
155 | "outputId": "49a7b8ea-ece0-43c0-f179-b75b0f4ee1df"
156 | },
157 | "source": [
158 | "from IPython.display import Image\n",
159 | "Image(filename=\"./ML1.jpg\")"
160 | ],
161 | "execution_count": null,
162 | "outputs": [
163 | {
164 | "output_type": "execute_result",
165 | "data": {
166 | "image/jpeg": "/9j/4AAQSkZJRgABAQEAkACQAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAHMBEgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEpD7mlbpXFfFbxxL4B8KXWrRwi4MWPkY4ByQP61nOUYLmkb0KM8RUVKnu9js+vel4r5QX9r7Ucqf7HjHH9/vUn/DYOpf8AQGi/77rzHmmG7n2UeDM5auqf4n1XxRXya/7XmpNnGkqp9pMUz/hrnVf+gWP+/wB/9al/auHXUr/UvOOtP8T61or5K/4a51X/AKBY/wC/3/1qX/hrrVP+gYP+/v8A9aj+1sP3D/UrN/8An3+J9aUV8l/8Ndap/wBAwf8Af3/61H/DXWqf9Awf9/f/AK1P+1sP3F/qXm//AD7/ABPrSivkr/hrnVf+gWP+/wB/9aj/AIa51X/oFj/v9/8AWpf2th+4/wDUvN/+ff4n1rRXyV/w1zqv/QLH/f7/AOtR/wANc6r/ANAsf9/v/rUf2th+4f6l5v8A8+/xPrWivkr/AIa51X/oFj/v9/8AWo/4a51X/oFj/v8Af/Wo/tbD9w/1Lzf/AJ9/ifWtFfJX/DXOq/8AQLH/AH+/+tR/w1zqv/QLH/f7/wCtR/a2H7h/qXm//Pv8T61or5K/4a51X/oFj/v9/wDWo/4a51X/AKBY/wC/3/1qP7Ww/cP9S83/AOff4n1rRXyV/wANc6r/ANAsf9/v/rUf8Nc6r/0Cx/3+/wDrUf2th+4f6l5v/wA+/wAT61or5K/4a51X/oFj/v8Af/Wo/wCGudV/6BY/7/f/AFqP7Ww/cP8AUvN/+ff4n1rRXyV/w1zqv/QLH/f7/wCtR/w1zqv/AECx/wB/v/rUf2th+4f6l5v/AM+/xPrWivkr/hrnVf8AoFj/AL/f/Wo/4a51X/oFj/v9/wDWo/tbD9w/1Lzf/n3+J9a0V8lf8Nc6r/0Cx/3+/wDrUf8ADXOq/wDQLH/f7/61H9rYfuH+peb/APPv8T61or5K/wCGudV/6BY/7/f/AFqP+GudV/6BY/7/AH/1qP7Ww/cP9S83/wCff4n1rRXyV/w1zqv/AECx/wB/v/rUf8Nc6r/0Cx/3+/8ArUf2th+4f6l5v/z7/E+taK+Sv+GudV/6BY/7/f8A1qP+GudV/wCgWP8Av9/9an/a2H7h/qXm/wDz7/E+taK+Sv8AhrnVf+gWP+/3/wBaj/hrnVf+gWP+/wB/9al/a2H7h/qXm/8Az7/E+taK+Sv+GudV/wCgWP8Av9/9aj/hrnVf+gWP+/3/ANaj+1sP3D/UvN/+ff4n1rRXyV/w1zqv/QLH/f7/AOtR/wANc6r/ANAsf9/v/rUf2th+4f6l5v8A8+/xPrWivkr/AIa51X/oFj/v9/8AWo/4a51X/oFj/v8Af/Wo/tbD9w/1Lzf/AJ9/ifWtFfJX/DXOq/8AQLH/AH+/+tR/w1zqv/QLH/f7/wCtR/a2H7h/qXm//Pv8T61or5K/4a51X/oFj/v9/wDWpf8AhrrVP+gYP+/v/wBaj+1sP3D/AFKzf/n3+J9aUV8l/wDDXWqf9Awf9/f/AK1H/DXWqf8AQMH/AH9/+tT/ALVw/cX+peb/APPv8T60or5K/wCGudV/6BY/7/f/AFqP+GudV/6BY/7/AH/1qX9rYfuP/UvN/wDn3+J9a0V8lf8ADXOq/wDQLH/f7/61H/DXOq/9Asf9/v8A61H9rYfuH+peb/8APv8AE+taK+Sv+GudV/6BY/7/AH/1qP8AhrnVf+gWP+/3/wBaj+1sP3D/AFLzf/n3+J9a0V8lf8Ndar/0C1/7/f8A1qP+GutU/wCgYv8A3+/+tT/tbD9w/wBSs3/59/ifWtFfJX/DXWqf9Axf+/3/ANaj/hrnVf8AoFj/AL/f/Wo/tXD9w/1Kzf8A59/ifWtFfJX/AA1zqv8A0Cx/3+/+tR/w1zqv/QLH/f7/AOtS/tbD9w/1Kzf/AJ9/ifWtFfJX/DXOq/8AQLH/AH+/+tR/w1zqv/QLH/f7/wCtR/a2H7h/qXm//Pv8T61or5K/4a51X/oFj/v9/wDWo/4a51X/AKBY/wC/3/1qP7Ww/cP9S83/AOff4n1rRXyV/wANc6r/ANAsf9/v/rUf8Nc6r/0Cx/3+/wDrUf2th+4f6l5v/wA+/wAT60NKDXyX/wANdap30tSPeXP9Kf8A8Nf6kikjSIz7b6P7Vw76ifBecWv7NW9T6uVhuHvUteffBf4kSfE/wu2rS2i2jLO8GxTn7uP8a9Br1ozVSKlHZnxdajPD1JUqis1uFFFFUYhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAI33TXkX7TX/ACSvUv8AgP8A6Eteunoa8i/aa/5JXqf1X/0Ja5MX/Ake3kv/ACMaH+JHxL/Cv4/0oyaTIwB35/pRkV+Zs/r9fChDnNGTS9aAB2pDDmloprMF6kA1Uddhc0Y7sdSUzzlDYLgH0zzT9w/yKtxaV2iI1adR8sJJsTmjJpetJxuxWb7mgZNGTS7RS7RSENyaMml2ijaKBiZNGTS7RRtFACZNGTS7RS7RSuluA3JoyaXaKBg01rsAmTRk0u0UYFG+wCZNGTS4FGAKV0AnNHNOprMFXk4q467Cule4ZNHNC9R279KX60STTsyYyjNJxd0xMmjJpQAeaMAVF+hW24nNGTSt/wDWpq9a0UXZvoiXOMZKDerF5oyaXrwOTTFYMeDk88Dnp1ppN7ClUjBXk7DuaOaXr0Oe9HHSoZoJk0ZNLgCjApAJk0ZNKMN0pDigAyaOaQUrMOmf85x/WqSexDlFK7YZNHNC889qXrwBk0nvYakmrpiA06o1ddw+YdcdfwpyuG6HP0q+WSV2hRqwk3GMk2OpDQWC9TQTnIGSR7e2aOWUvhCVSEWot6sTJoyaF+bnqOuadtFZ7blbDcmjJpdoo2ih6bjEyaMml2ijhatRYCc0ZNBYcDuRkA/XH9KapzRZrcUWpq8XoOyaMmkyMcc/TmgEcHORRyt6oTmlLkb1F5oyaXIpNy5wOtTysrVhzRzS7hSnpz0pC32G5NGTSjDdKNooH5CZNGTS7RRtFACZoY/KaXaKRgNppoUvhZ9jfsg/8kyn/wCv+X+SV7pXhf7IP/JMZ/8Ar/l/kte6V+mYT+BD0P4/zn/kYVv8TCiiius8UKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBK8j/AGmv+SV6n9V/9CWvXK8j/aa/5JXqf1X/ANCWuTF/wJHtZL/yMaH+JHxCfvfh/hRQw+b8P8KK/M3uf2AvhQ5elHf3o/hprdz/ACqWPqi1penXGt6na2FqnmXFy4jjX3Pf8OT+FfU+l+D/AAX8B/DMd9r0ceoavIPm3LuJbphRj9a8q/Zf0uDU/ivE84XdZ20k0Zb13Bf5Mai/aX1m51L4jXNnJn7PYgCMeu5QxP619FR5MLhXiHG7uflmZurnecLKlNxpxXM7aN+R6Hb/ALUHhqSZIpvDXlQM20uAhwPXG3+tc58a/C/g7V9Bt/E+gXlvazzNloVxmXPHTsR16djXg4O3tlR2NK0m5BubKDJC57+mOg/CuOWYVKkHGpBansUuFqWBxEMRhKsoW31vdDlYswVRucnAA5P5VN9ju2Bxazk+giYn8sV9HfBPwbpHgTwDL4612JJJpI2kh3LkooyMAevWoLP9rj7VqqQXPh2NdJkkCNIJQZAp6ErjBHTvXRTyyjGCdWVm9UcVXiXG4irU/s3De0p03q2z5xKHOD9727VItvO0BmEMjRD+PYdv517z+0L8NtMtdIt/GOixLFbXRRpY1GFw2MMB+Irs/hjJplr+z3cXGrW/2iwSGXz41A3MncdKiGWqVWUZvRK5WI4u/wBkpYnDw5nJ2cez7HyrDZ3NwuYrWZx/eSMsBzjnA4qNVdpDGFYyDjbg5646V9NfDP4/WOqeLtL8NWPhy3sNLuC0UZUjcuFOCVxjtjqetS/EjxJ4U+DXjCe80/QVutevD5zM3CJxjg9s47DvWkcvoyh7Tm0MVxPmEcS8JLCe+1eKTv8AefMb2s8agyQSxqTjLoVz+YpsUMszMsUTysoyRGpYjnHOPrX1xP4gs/jT8EdS1S602O1mTeoTAba64Oc/lXnP7IKo3jDW1k+ZRYgncBjPmAZAwan+zYe1UFK6aKp8WVll9fEVaVqlN2a8zw1be4uJDCkErSZxtVCWB+mKSaKS1IWaN4j/AHZFKnrjv719E+JfjppPw98WalbaJ4Yhlm87/SriUhDI2M5GAfX2ruPiZJ4Om8I6P421bRRczhEkghVQcsw4B6A/j6VpHLaTTtPYylxXjKM6aq4W0anw2etz5CjsbpgxW1nKqMkiNiMflULY9cn25NfXHwb+M8XxQ1a90K60OGygWDdHtcOCvuNoxxXhGteA11j40XfhqxAghkvdm7aDtGMk4/EVlXy9JRlSldN2O3A8TzlWq0cfT9m4K/e6ODhtZ7jPkxvMFOC0alh+YpZbWaBd0kMka/3mUgfnX1X428daF+z3pljomg6XHdXe3dszsG3uWIBOSaZ4D+Juk/HiO88Pa1pUdpdshdER9ysPUH261o8so39m5++cP+tWNdNY2WFvQvvfW3ex8pIpkZVQFnb7qjnNO8qZZRH5T+aRuEe07seuOteoeH/B7eCfj7pOkMd8cd1+7J7oVavYvjL8RNB+G/iO2nOif2jrbQfJM+MRrk988fgDUU8vjyOVSfLZ22O3F8TVViIUcHS53UjdeR8ny2d2i7nt5o0HVmjIH8q7L4Fwx3nxY8OwyossbNLlW5B/cvX0Z8M/iVZ/G7w3r1hfaTHaz20WJUGGQhg20j8VP5V4J8HbFLD48aPaIW2RXNxGOn/PGSt44SFGpCalzJnmVs9r5jl+LoYiHs6lNLb5lz9ozT1t/iZNBawNs8kMEhjzj8q8tkikglKSKyN/dZSDXvnxM8U/8Ib+0Baam7YgVFScEZ+QnBPQ9s1X/ai8Jx2OpaZ4jtU/0W6i8tyoGNwOV6ev9KyxmF5vaVYPVPY68lzuph/quBrR92cFaXmeGRxvMxWNGdsZwiknFJNG8LFHVkYdVYYIr6C/Zh8N2+n6XrXi2/GEhUwwsw7AEswP5ivFvHfiI+KPFN/qWMLK5CjJxtB4PX09q4K2FVLDRqN+8z6LL85ljswq4WnH3Ifa7sr+GQreKNGVhlWvYAR6jzFz+lfQ/wC1xpNppuj6CbaGOEmdgfLQLkbT6V87+F+fFWiY/wCf6D/0YtfSf7YuP7F8PkHP79z/AOO134aMXgKre583m0pLiPBRUnrzHyzJ0PGeP1r6n+B+k2d18D7u5mgjkdVn+dkBPBfHb2FfLDZ24PU819Y/AePzPgHeDIxsuM8+71GVxjKU3LojTjaUqeGpcrt7yPlK4H+lOnAYyMo6DJz0H51Iun3n/PrPnOOYmB/lXsn7MnhPTvEXizVb/UIlnmsVV4IXGeTnn68V0/ij9oPxP4X1i6tbjwt5VlHIVV5ARuXPrgqfzq4YGnKHtJvcVbiTExxH1TB01LlSb5nb7j5ubKcONpzjBGOaekMkrMkaM7L1VRk11fxA17TfG3iOK40PTP7PkumUPGqqN0pOOuea93urXSP2cfA9pNb6cdQ169GDJtzubALc9gMiuejgYVG3f3Ud+P4klg6VOKp/vam0e3zPl6azuoRl4JY1/vPGR/Soiw2jvnpivpfwJ8c5PiJrUHhrxJoEaWuoDykkTJUNgn5sj2ry/wAf/Cl9D+J1v4dszmHUXX7NjoqM2Mfzq62WxcYyoO6vYjB8TXqSoZhT5JRV9He6POobO4ulZ4YnmCnB8tSwBx0OK9I/Z2sRcfGPSILuAhWjmYxzJjH7tj0I9q9w8WeLNC/Z38P6fpljpi3F7Kg+VFUF8Dl2Yj/69UPg/wDGHRviV40tI7/RI9P16FJGtpozuB+VgwyB/dz1ruo4OjSrRjKXvHzGaZ9j8xy+rVhh7UXdKXU8b/aEtIrP4nXsUKLEixIdqgAAnPp+Nebsw24IzXpn7Rqlfipf56+Wn82rzTbyM+teLjFy4iV11P0XI3zZTRcnf3V+R9g/sx6LZah8L4Zbi3ilk8xlLOik9fpXj/7TXgIeF/GSahawhLO+QsQowEdep/EGvVfgLLJb/Ae9kify3CzYYfwnB5pPEkY+NnwP+2gB9UtQXcDqsijBGfoa+mqUYVsGoRWqVz8WwWPrZfnk8TKTdPn5X8z5x+GfhGXxt460nSkXMbyiSYk4AjX5mz9QMfjX2t418N6VbeCtRSOwtwYrZgh8pcjA45rxb9l3w7H4f8Pax4zvhtVg6RM3QIn3iPxFd/4Z8UT+MPhPrOqztl7lpin+yAcD9OarCYeFPDOMl7zVyeIcwqY/NFUpSfJCSW/W58Vlzu9FYkg9M8//AF6nWxu2xi3mIPQ+UcfyrpPhlqmg6T4nhm1+xa+tQrCOMKHCv2O3vkjFewzftLanosjG08DywaYrY3yI0XydMgbCP1rw6OEp1Pemz9NzLPsbgpKlh6Ckkk7tnzqyvHIUdWRh1Vhgj8KNw3BcZYnAXua+kfj94b0fxJ4B07xlY2a2k9wUYvgIXjYdDjr+NVfgP4B0XRPB7+OdctxM2GaBZORGi5HT1o/s29Xkb93czjxbTll6xSp++3y8vdnz81ldDP8Aoc4IOP8AVnj9Km0NSfEWlK6kD7XEpDDAPzjIr3ib9rOU3zxjw/CdOLbQyyAPt6ZIwR+FeX+KvEmk+K/iPpl9pOm/YEe6hEhKhS/zrzgGn9Xw1KcXTnd3E8yzPEYepDF4b2acXZpnp37Vum21hLootoYofM/hjUKT19OteBfYLvaT9lmwvU+W2B+OK+wvjZ460TwO2l3+oaWdT1EDFuhAKqRnkk1T+Efxki+L1xqOjalokNm6wl12t5isvQg8cV6GJwdGtWcW7S7HymWZ9j8tyuE1h+amt5X8z5a8FajZ6T4r0u9v7ZryygnDSQqMlsdOO/OPyrtPjd4w0TxXq9jJpFhJZ+XGdzTQiFnyem32warro8Wh/G2Gwj+SGPU0UBf4V3YIrtf2tI0g8SaSIxsH2foAcE7zjvXDGhJYWpHzPoquNpVs5w1ZJvmi3voeFzRy28aySRNHG2MM4IBz6HvT1s7qRQUtJnBGQViY/wBK+vdX1XQ9E+CXh6/1nTzqMMUMUiwKoId8cEgn8eT2rm/hx+0VF4t8WWegXfh+GysrglInRw+0gHAK7R3ArX+zaEaijKWsjjXFWYVaMq9LDXjBu7v0TPmAA8hhgjgg9R06/nT445JmZYkeVl6qqkke5r0/9oLwxDo/xS+x6bEqfbIYnVUGPnZmXdj8BXqeq2um/s3eCbKS300alrt2QjycZZsZJYnkLwQMe1cscvftJQm/dR7OK4qhTw9GdGF51Voj5ea2uVXLW8qL3ZkI/pUSsCcZzX0v4G+OR+I2tReG/EWgwpa3/wC6WWMkgMeikY9cc1458XPAq/D7xlcafED9kcebBkdEJPH6GoxOBjSp+0pO6OrKOIKmLxP1LFU1CdrqzumcZS0lLXkn2y2Ckb7ppaRvumqh8RFT4WfY37IH/JMZ/wDr/l/kte514Z+yB/yTGf8A6/5f5LXudfpuF/gR9D+P85/5GFb/ABMKKKK6zxgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEryP9pr/klep/Vf/Qlr1w9K8j/aa/5JXqf1X/0Ja5MX/Ake1kv/ACMaH+JHxG3X8P8ACm05vvfh/hSYr8ze5/YEfhQo6UHHfpQvSjvU9Sl3Oz+DvjGPwP8AEHTtSuG22rEwzt3Ct/8AX216/wDtFfDC78SNb+KdCga+R48TRwDcxXjDADrjA/Cvmxlz2zXqXw5/aA17wDarYyIuracOFhmkKsnsDg8e2K9zC4qm6Tw9bY/Pc5ynGQxkc0yzWot0+qPMLaxuby8+xQQSzXmdohRDuz6Yrv8AxN8C/EHhfwnFrl/5MKsoMlu3DR54HXvz0r1Rv2r9MjtTJB4e23fXaNqjP+8P8K8i+JXxc1r4mTYvSttZRvvitYySFOOpPc/hSnDBUYNxd2Z0MRxBj8TFVKSow+11v6Ht8tnN8Rf2bre20sGS4hhUmJOTlGJxj3A/Wvl+10261LVItMggdr2VvLECod2SRnj2wfyrsPhl8XNX+GNxJ9kC3djKcyWbvtBPrnBx+VeqTftS6aluZ7bw4keotyTxjP1GP5V0OeExKhOcrNaHmUcLnGSTrYbCUFUhUbalfa/c3vjkU8M/AbStCumxftHbxbW67lKE/wAjVbwwB/wyrq57i1m/lXg3j34hav8AEXVheapIu1eI4lyVQew9a3tP+Mtzpvw1ufCP9nLLBNG0f2gTEEbv9nHP51ssdRlOS8rHJ/q3jKOCoRSvNVFKX3/kjM+CYI+LHhv1+0MPx2NXbftVEn4gQkg/8ewJ49DXlXg3xE/hDxRpmspAty9i5dY2cqGJDDrg+o7Vs/E74jSfErXo9UmsFspFiEZQMH/XArzPb03hXS63PramXYipn0MXy/u+Rq/me3/BnK/s8at2C3Fxn/x3/CuX/ZEX/istdBOP9A/9qCuR8I/Gq58KeA7nwummrcR3DvI9x9oZCN3XjFZnwr+J03wt1e+voLFb03UXlFfNMe0Bsjsc16McVRU6DT2Wp8xWyHHvC46moazldeaKfxP/AOR/1v8A6+PX2A/nXvHxgAH7Pfho5xmO3/VTXzj4i1tvEWu3mpNF5UlzJ5hUMW2+2TXbeJfjFP4m8C6d4ak05beOzVF88Sli20Y6YripV6UVV13Pbx+V4qtUy9xj/Da5vuOg/ZPX/iv708gfYzzj2NT6bqsOkftQXklwwEbXflFj2JjXB/Q1598MfiFP8M9cl1SGyW9kkiMRjMpTj64rJ8WeIpvFHim91zy/s01xKJRGrbthGMHPHPFXTxVONCCvqmYYjI8Ri8yxE5K0Jwsn53PU/wBqbwvf2PjRNaKs9heRqiyLyqsB0qH9lvw3e6h8Qk1ZImTT7OF1efaQCx4Az61c8IftNX2n6bDp/iHTY9XhjGPP3fNgdMqRjOfepfFf7T11d2cll4e0yPS45Fw027Dc9RtAx+Oc11RqYWNV4mUtex408Lns8B/YzoLlWnPfoS+INWh1f9qDSJIXQrDKsJIIxkK1Uv2slJ8bWWM/8evp/tV5X4Y8Sz+H/FVnrrJ9qubeUyEM5UuSCOvPrWv8UPiJN8StWg1CayWzaOIR+WHL/qcVyYjGRrYeUXu3c9zBZJiMFm2HnFXhCHK352PU/wBkPHn+McMufJt/4h/02rjfhef+MiNPxz/p1x/6KkrJ+FPxUufhfJqjQ2YvTfxojbpim3bu7AH+8ayPDfjabw74+t/FC2izTQzSSiBpSAdysp+bHHDZ6dq1jiqKjRV9tzgqZHjJVsdNwvzpcuu71Oy/acRv+FlXG4HItwQfxOK9N8JQn40fAN9L3iTVrDbEjNyQ4HD/AI/N+VeB/ELx1N8RPEX9qy2i2UjosflqQ+DnrnFeqfsmrrGn+IdVPkyQ6R9m/fFxgBww2D8i9dWEqqpjJ2V4M5M6wUsHk2HlO0a1K3X70jf+LE0fwp+DekeFrZtl7cxgSbTg7uGkP4nd+dfMxUbdqj5QePyr0b49eNT4w8fXYjdms7M+RGO24da85z6V4uYVva1nCOy0PsOFsveEy+M6n8Sd5P5lnSLoadrFjdv923njlOT/AHWB/pX1h8fPDtz8TvhvperaMrXZtwLgRRDJcEYP5ZJ/CvkY/d56d69L+Gnx81z4d2f2AQLqem5ytvM+0oPQHB/lW2BxEacZUavws5eIcqxVavRzDAJOrS6PqjzeKCaa7S2SGR72Q7FgA+fOf7vWvrjw7pZ+FPwBlj1aRIrp4JHZGOMM5O1T7/MK5mb9rDT47MtbeHwlyedgYKAfqBXkfxI+L2s/EqSNbsi1tI2DJbxMSMgdc45P4V2Up4TBU5+zlds+fxGFzniCtShi6KpU4u763sZ3gDXPEuh6xPqvh1JpZoVMlxsUtGUHQHH1New+Hv2pLbV5Lez8SeHoZzO4TzYQGUEnHRq8r+GfxSv/AIZ3Vw9taw3cFwf3scnDN9G7flXo0n7QPhfzhfJ4PhfUwM+Y+Bz/AL2Mn8qrC4iMYJOpZdis+y2vicRJ/VOb+WUXZ/MPjd4U0bwX4q8Na/plutrbzXUU0sEY+UgEMWx26V6t8ZPGF54Z8LaXq1hpFtrVlj960qb/ACwQpU/j/Svln4i/EbUviTqwu78CKJBiKBWyF9q6n4f/AB91fwjpqaVqEK6zpacLHI5UoPY4OR7GtKeOpc8op2T62OHFcN5hLD4arNe0nT+KN+nkzZ039pK8kvoUsfCunyXWdyLFCS+fbAzVD/hbE3ir4seG9Q1a1jsGsbhIZQDjaM9T+ddHeftJaPp9q/8AYnhaGG5fgu4Vce/A5/SvC9Z1afXNVuNRmVIriZ/MbyeBu9awrYxR5LVOaz9D0MvyN4j2kqmE9leLSbld6+R7r+1p4bvX1fTtbj3S6e0Xkl15CsQCOnrjr0rkv2ZdPub34tWN1bws9vaxzedIoyqbo2Ayfqa6Dwb+09dafo8emeINOXUoo0AWfILHHADKePxFJdftTXltrlrLpmix2+mwk7oBMVabKkDcQOMEg9+lburhfbRxLZ57wueQy2WUfV00k0pX3Ry/7Rn/ACVS+/65If1b/GvMudw+tdD4+8ZS+PfE0usS2y2jyIqGNW39M9659vpnmvBxFSM685x2ufpuUUKuGwFKjWXvKKX4H1p8B1/4sPe59JeMexriP2WvGi2PibUvDN5L/omo7niR+gcE/L+IJ/KuQ8F/HK78HeC5fDqaWs8MgYGczkdf9nH9a4HQdcuvD+vWeqW21J7eTzF2kjvnbn3HFey8fFey5XtufntPhvE4iGOp1o2c3eL80fT/AO0l4gtfAvgeDw9pKraG9LbYk42rnJOPfp+NSfCcf8Y+XLA9FlA56187/Ef4iX3xI1xL+7j+zoi7EhDlwPU8iuk8MfHS68MeBW8NR6Sk0JDDz/tBUjJ9MVvHH0p4mUm7Rtock+GcZSy3D0oxvPm5pdzqf2WPCOmalNrGtXlut1Lp6rHDG65GDlt3NZWt/tHa1b69eW50+xk0+KdojbSJncgPI6dcVxHw3+I2o/DbWDeWYE0Ei7JbZjw+DkHP4+lega38cPC14x1C28E2ra25Ba4nxw3ruHX8q56OJpOlGMJctmdOKyjGRzCc6lD20ZJJa6R+89E+NF5HqXwF026t7dbG3lEW217R5B4FUvDNufH/AOzX/Zti2y7SLa0YPIZHDY/EL+teX+N/2gNQ8d+E4tEu9LjhKsrNcJMTkj0XGBXN/Dv4nat8Nrx5dPYTW8v+ttpGIVvf2PvXTLMKfttXeLVmcdDhrMFlqjy2nCbkl93U5BbW4e++xeTJ9r3+X5Cod27pjGK1tP0u70nxfpdpe2729yt3DmKQYb747V7of2pNLa1M3/CNRrqGMfKFK59d2M49+teOeK/iFfeMPF1rrd7DGpt5UkjhQ5A2sG6kc5xXmyp4WjLmhK+p9XRr5zj4SoYjDKEeVrfc9g/a8zI2hHHGD/I/41hfslgL4+vyc4+xt2461yPxW+LM/wAUGsHn02OwNtkfJL5mRjHdRis74X/Eab4aa5PqUVkt60kXlCMylMfiAa2eIp/X1Vi9P+AcEMnxf+rn1NwtOz067nT64f8AjIfA5/4mi/8Aoyuo/a7+bxRpIxjMPGeP4jXk9742kvPHp8TfZVWT7T9p8guWBO4kDcR+PStH4rfFKb4oajb3ktglg0EWwIsgfdyx7qPal9ZpSozi92yYZPjFjcJV5LqMGn5Ox7d8UWH/AAzj4fB4JihxnqflNeI/BUhvipoAJA/0jvx1FaviX41z+JPAVl4YOmpbRWqoomExbftH93H9a4zwf4lfwh4is9XihFxJancsZbbk4IxnHHWlWxFKWKpzvorG2W5Ti6OUYrDzjaU3K3zZ7F+0JeR6X8ctIupBmGO1t3b6b35r1n41+M7vwv4d07WLLSLbWrJiFeWVd3lhhlWyOx4H418rfEzx9J8SfEB1Wa0WzbyFhESuX4BY9T9a6v4f/tCav4R02PStRtl1nTEUIqyvtZB6Dg5Arthj6XtakIysm97HhYrhzF/U8JUUOaVJe9Hv8zf0/wDaPvrq9hjsfClg93nKrBCS2Rzn9K8++J/xGvviJrEV1fWKWdzAhiaNCSRznBz0x/WvULr9pLR7K2c6L4Ygiun6vIAuD68DmvCdW1afXNYur+4RVluGLvtGBnPavOxtdunyxnc9/IMrdPEvETwfs7LS8rvUq0tJS14fQ/SEFI33TS0jfdNUtyKnws+xv2QP+SYz/wDX/L/Ja9zrwz9kD/kmM/8A1/y/yWvc6/T8L/Ah6H8f5z/yMK3+JhRRRXUeMFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjdK8i/aa/wCSW6l/wH/0Ja9dPSvI/wBpn/klup/h/wChCuTF/wACR7eSf8jKh/iX5nxIfvD6f4Uho7r9D/Slr8ze5/YEfhQgpaKKhlBRRRSExMCloooBCbRRgUtFAMKQ80tFAIbto206iqQxu2jZjnrTqOlJgNC85p1FFIAooop3AKTaKWijUYm33paKKQBSGlopk2uWNJul0/U7W5kj81IZVkKHuAc4r2fXv2mp7jQpdP0nS49PaVdhl4BAxjPHWvD6AN3UV00sROjFxg7Hi43J8HmFWNXEw5nHbX9B0kjXDeZKxaRuWb1PrTcCj2ormbbd2ezGKilGOwtJtFFLQNibRRgUtFA0FJgUtFF7CsFFJmijcewtFFFABSbRS0lFmG4YFLRRSAKKKTNUgFpDS0UgEHSjaKKM96ADApaTNFCbANoowKWii9wEPNJtp1FNAN20badRRcTG7aNtOopXuCG7aTbT6KaBjVXFOoopMEFFFFIYUjfdNLSN901S3M6nws+xv2QP+SYz/wDX/L/Ja9zrwz9kD/kmM/8A1/y/yWvc6/T8L/Ah6H8f5z/yMK3+JhRRRXUeMFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAleSftM/8ks1P/gP8xXrdeSftM/8AJLNT/wCA/wAxXJi/4Mj3Mj/5GVD/ABI+Iv7v0P8ASlpP7v0P9KWvzN7n9goKKKKhgFFFFIAooooAKKKKACiiigAooooARunFbGl+D9a1qye8stPluLVMhpVxgY+prHPYDrnHNfVX7OEat8G9VJGcNKFzzxg16WBw6xEpJ9j5PiLNqmU4eNWmrtyS+8+VmVo5GRhgqcEUhqXUP+QpdeglbGfqahbHfp+VcPJaTij6iM04qctrBuFLmt7wz8P/ABF4whM2laXNcRBtokK4U/Qnr+FWNe+GPibwxZ/atQ0qaG3zzIFyB+VbfVarXMoux5f9rYL2nsnUV/VHM5pfeo9ynvxXXaH8KfFviC3S5s9FnaBxlJGQhWHsT1pU8PUq/Crm+Jx2Fwf8aaj6uxylG4VueJfAuueD2X+19MmtFfpIyEL+fSovDHg/V/GV1NBpNo93LCu91QZIHrVPDzjLkadwjj8JKj9YVRcne+n3mRuHSiuisvhx4kvPtrRaTOEsyRM5QgKR2zTNF8Aa94g0ufUrDT5JraHd5jjgDb160/qtR9GY/wBq4JpyVRWXmYHb2o6ZI7V1mifCbxZ4isxd2ei3DW7/AHWZCoP51i+IPCupeEbwW+q2M1nKwyA4IB6dD0PUfnSnhqsI3cdB0c0wdeo6NKqnPtcW18L6veaZJqUNhNJYx/enVfl4rLA+bI54zXtng/xf4ktfg7c2FtoS3OmRLMn25SOBubJIPJxyK8r8LeDdW8XTTW+k2rXUluoZwnXBzzz9DW9TCq0Y0k22jzMvzapVdZ4rljGDtv8An2MjNFdRpfwt8UaxcXMNpo08j27FJCVIAI6jJ6/hVbxN4B8QeDljfVtMmtYn+7Kynb9M9Kx+p1Yq7TPSpZrgqlRUYVE2/NGDTdwqxpunXetXkVpY20l5cyfdijUsTz7V1t58GfGWn2puJdCuCgGT5a7iPwFSsLUkrxTaLr5lg8NP2daolLtdHFbhj0pevSuhm+HuvW/h4a3Np8kemAEmZhjoSD79Qa50/MBtNYzpyp6SR04fFUMUr0ZJpFjT9PudVu47Szha4uZPuRr1atTVfA/iHQbM3Wo6TcWlsG2mRwMA/ga3vgbj/haGhZAPz859MGvsv4i+G7bxf4T1LSWC+bJCSB3B5wR+Ir3cJl0MRQlUb1Pz3POKauU5jTw3LeD3+8/Pott+9wef0rU0PwvqviZ5V0uwmvmi++Ih05xVHUrF9KvJrS5G2aBtrqTyCpIP8q+z/wBnPwXF4I8AQT3aLDe6k4mcseecBR+IGfxrmwOB+sVXDsenxHxCsowsa1BXnLZeR8dax4f1Hw7cLBqVpJZzMNwWTGcVQr2/9rBQvjewwCA0BIA+o/xrynw34N1rxhI8ejafNf7PvPEDsX6t0rnxGGlGs6cNbHqZbnEMRl1PG4lqN18jG3DOKCcV2V58G/GWn2st1Nok/kxDLsjb8D6VxrcZypOM5GOlctWjOjG81Y9fDY/DYy/sJqVt7MTd3PSprG1l1K6itraNpp5W2oi9Sa2fDHgPXvGCSNpWmzXcattLqvyA4z1rq/A/w98ReF/iR4efU9IuLeA3ODIYyV+6ep6V20cHUqSinF2Z5OYZ5g8LRqOFRc8VtdHC6xoN/wCH7hYNQtZLSVhuCydxVCvav2rI1Xx1ZYH/ACwP8xXl3hnwfrXjCR00bT5r3yxlpI1Oxf8AgXSlWwco1pUoa2DL83hWy6njcU1HmMXcOlPjjeaVIo1LyOwVVHUknArrdX+EfizRbGS8u9GmWCPlnUlsflWB4Zz/AMJNpP8A18x/+hCslQlTqRjNWudssyoVaE6uHmpcqezH6z4Z1bw60P8AaVjJZ+cCU8zHzYxnofcVmZHrX0P+1oqlvCYHy5jlH44SvGfCvgDxB4ygkn0fTpLmFDgyAYBPsT/StcThZQq+zpq55GU55DFZdHGYtqLba3Oe6EClrqde+F/ijw1ZG81DSZorZThpMlsfgK5QsMGuOpRnRdpqx9FhcZh8ZHmoTUvRi5paYrBulPrE7QooooAKKKKACiiigAooooAKKKKACkb7ppaRvumqW5nU+Fn2N+yB/wAkxn/6/wCX+S17nXhn7IH/ACTGf/r/AJf5LXudfp+F/gQ9D+P85/5GFb/EwooorqPGCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAQ15J+01/ySzUv+A/zFett0ryP9po/8Wt1Id/l/mK5MX/Ake5kf/Iyof4kfEf936H+lLSd1+h/pS1+Zvc/sFbBRRRUMAooopAFFFFABRRRQAUUUUAFFFFACfxA+4r6r/ZwYf8ACmdUH+1L/I18qen1FfWH7Mdo958I9Qt0XdLJJKqr6kg4r38oV5zXkfmvHTjHBU3LpJHyrqS79Qux281v5mtbwF4b/wCEu8aaTo5JCXU21sf3QCzD8ga7O+/Z18fyXs7LoPDysy/6VDyCf9+o/DfhfW/g38RPDup+ILIafELjAJlV/vKUz8pPTdWMMLUp14uona56NfPMJXwMqWEqp1OXRJp9D2z4wXXijwXbaZoXgXSZIbZYcvNAoO0g4wAT171Q+D+reONe1i60fxppM0+lTwNie4jACsOg69xmtP43at41WGz1fwjMbjTmjxLFGgkOf7w9fwrzHRvFXxg1TfJbxXVrHEu55Lm1EWAOTjcBn8K9+o4wqt2bXlsflGFw88Tlyj+7U3f3m/evc4zxhop+H/xWltbSBbhYblZIbcrncpOdv15r1nUPE3xg1TFxpOhLpVp0SFsMw4xknI7jpgVxXwf1X/hLvjTb3nid0uL2NWCmQYG8Ie3rwce4rW+PGveOLb4hXENnLqltpsUai2az3+XIpAOTtGC2cjFc1GKjGVSHfZH0mNUsRjKOCqRi5xhq5PR+h6RZ3mpePvgzqx8U6eINUtd8TqU/iHO4Z6V5z+x7Iq+LPEBOWX7EvXv8/XFel+B9Y8Q6x8Eb+fxHE4vRE6h5U2MY8cEj1+teYfshZTxV4gOP+XFf/QzXX7n1im/I+bpqX9mYyk1ZKS2enTYb8UPjtrdv4g1PSNLhtbXT42aJgylmYngnPGK7j9m++GnfCDWrowiZYmll2dMnBJH4189fERs+Ota97k17x8A2P/Cj/EIBHIm/9BNcGEqyqYh83S59NnWX4XDZVQ9lCzk43PObj9pbxct4ststnbWiEFbVYztCg/dznrXof7U0cF/4L0PVDGv2kyAKwHRWXJH6V8yP938MfrX01+0nj/hV/h/BB/ex9/8AZP8AgayoVJVsNVU3/VzbMMDh8vzLBPCx5W97Dvhq3/GNOqnnO24xg8/fesH9j9hH4g8Qlun2eI4/77re+GeP+GadV5H3Lk/+PyVg/si/Lr3iLjpbRD9X/wAK748vt6Tj0R4db/cswT35/wDIoePvj94j0/xPqdjo6W2m21vO8a+WmWdsj5jXoninXm+IP7ODaxqMEZuXheT5QcBkdgCM9M7RXzf4+YDxvrbEgD7ZJ39wa990s/8AGJ8ScZ+zzjr/ANNXrmw9WdSVWMtrHp5pl+HwVLAVqELTlKN2VP2ddIsvCvw81fxldQrNcruVWxkqqDjH1ya4K9/aS8YS6hNPFNbC1Mm4QtGWG3+6eeuO/wD+qvRf2edSsfFfwx1jwjNMsd3luG4JVgNp9x9K8l1D4BeNrPWJNPj0k3GHwlwjKIiueD14/GnU9s6VNYZadScHHAfXMWs1sp305u3ke7+PfEn/AAmP7O/9si2W1N1DuMYOdpBYdeP5V8jrycken8hX1r408Ly+D/2cU0uWeO4lt4CrvGcgkkkj8DxXySvAH0z/ACrhzW/PG66H0fA/J9Vr+zfu87t6HefAv/kqeh/7/wDQ19I+NPG3/CL/ABk0KKaTbZX1u9rICeA24FW/PNfN3wMB/wCFpaH/AL+P0Neh/tZTeT4m0iaNsPGGdSD/ABBgR+td2DrexwvN5nhZ7go5hnqw8usHb1LXxK+DcmofG7SRBBu03UZPtEzbflXZ8zZ+uCK9B8TeL0Hxc8IeErQgW1t88qg8cfKq/oDXReAfiBZ+Ivhja+IrhkM8NtmZu4kVfm/XP5184/DHX38TftA2mqyMW865Zl3dk6D+X61388KDgqe8z5WlQxOY06zxW2Hg18zZ/aotWv8A4iaXarw0yeSCOPvFQK9A8b67bfs+/DvTdO0a2jGoTqF3kY+bHLHHXoa4P9qa6Fj8R9HuRz5KibAPXayn+ldr8YPCsnxl8A6VrWgSLdXkKLK0Cn7w2/Mv1BJ/Kud/HV9n8R6UPZSo5dHGu1Bp39el/I4D4c/tE6+/ii1tddkhutNvGEUuEKlM/wAXv24qT9pT4b2ul+MtGuNOUQR6tKsbqowqSFgAQB165rm/hj8FfEereMdOF7pdxp9hbyrNNNcrtHHOBnrXZ/tL+OrH/hNPD9pbSiYaXOtxNtOcYZSB/Osaan9W/wBqWt+p6FZ0aebxWUPTlfNy7eR3PxM8Xp8DPAej6fodtGl5MvlqWHCkDLMQOua8/wDhX+0B4g1bxvp2mawkN7b3b7BhMGNsE7hn6V2nxy8E3XxU8G6TrmgL9tnhQMIYyPnRsZx7jrjrxXlfwf8AhL4nPj3S7660yaws7OXfJNOu0dCMc9fwrap9Y+tR5fh/A8/CQyuWUVpYhr6xd3vvc2v2m9PbWvihoVhu2i6VYAf95wuf1r0jx5a658NPBGlaR4I0oyXEoAmmjUZXA+8R3zg15z+0bfLpfxU8P35+cWrJNgf7Mit/SvVPivrniTXPB+ma14HuhOoG+aGNA7OpxjAPp/St4qLlUS3OSr7b2OAg0vZvvpG/mcV8L/EXxKk8UW9h4m0u5uNFuspLJPGF8v5SeMHucD8a4P4teC7fwb8ZLFLRVjtLq4jlSNe3zDNaGi+LvjDrl4LeCG8iYdXntBEoHrlgM/hXEap4g13XviBpv9vXBnvLW7S3b5QMHeK4Kk4KCi4u9+p9FgcLWjiKuIUoRjyO8YP7nY9V/a5VQfCQY7VMcxJHXGEzXczaTrk3wj0GP4fyW8VwscZlLnDFAnOMfxZx1964T9rbM0nhJE+dmimAVeSeI+P1Fcfpek/Ez4Y6VaX2lJdvZXCCQQQoZ9n1QciuiVT2eIl7t7o8ihhI4nKsO41VGak9JbPUu654++JHhmxvrPxLp01za3EZjDzqCF91xkV45nzGOQPUbelfXnwt8b6/8RNH1q08XaL9ms4IMG5njMZkJ6jYw4/CvlPX7W2s9ev4bNs2iTssW3oFz0ryMxo2jGal959zwrjFUq18M6UYSja/LszPVNuaWjBGaK8O2p+keYUUUUgCiiigAooooAKKKKACiiigApG+6aWkb7pqo7mdT4WfY37IH/JMZ/8Ar/l/kte514Z+yB/yTGf/AK/5f5LXudfp+F/gQ9D+P85/5GFb/EwooorqPGCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARvumvIf2mv+SX6l9B/6EK9eb7pryH9prj4X6l9B/wChCuXF/wACR7mR/wDIyof4kfEp6p9D/SlpD/D9D/SjNfmT3P7Aj8KFopM0ZqWULRSZozSswFopM0ZoswFopM0ZoswFopM0ZoswFopM0ZoswDJHTrXbeDfi7r/gTTjZaZJGluTu2uM4NcTmjitqdSpR96m7HFisHQx0PZYiHMj1X/hpTxkWB8+26/8APM/41yfjb4kax4/aBtVaN/JB2bFxjP41y3FIvetZYrEVFyykedQyPL8LU9rSopNeR3Pgv40eKPA8Kw2d6Lu2Thbe6G5B9MHNbXib9pHxf4lsXtHNtYRvwzWiNkj0yW4/KvK04zTqr61XUeS+hlPh/LJVvbOgnJdSa3v7i0uoryGWRLqN/MWUNhg3rmvUI/2lvFSaclvNDp9zKowLmaDdJn164FeUZ5x29aMCohiK0NIs6cXlGCxzTxFJO2x3qfGzxZLpt1ZzXy3MVwTvMiYIB7DFYPgnxzq3gO6uZ9KZEe4jWOXzOeBnpWByMYPFOJGPWj6zWUuZsFk+CjSlRjSSjLdWLGqahPqt9cXk5UzzNuYqK6Hw58S9b8K6DcaRZSRC0uAwcMDnkYrld1NfORioVSrGV4vVnXXwVDEQjSqQTiv0F2Z4JwAcjb611fif4l6z4v0mDTtQkjeC3wU2rjoD1/OuVz0pF4zSjUqRTUXuFTCUa8o1JwvKO3kdXpPxK1nRfC8nh+3aIafIGDKQc/Nkn9TVTwX491bwJPdT6Wyo9wqrJ5nPTd/8VXPqTgk0N04qo4itFrXbQweV4SUZ03TVp7+bLOoahLql9Pd3G0yzPvcqO5rpIviVrdv4RHhwSodNUMoXHOGYk/zrkxgrg0oYbsHOPWiNWcW7PVnRWwdGtyKcE1Dby9Dtvhn4T8Ua9eXOo+GJmtrixjU7l6t2C4/Ou5uvFnxj1oLpRsLm2nm/dG4S2xtzxncT+teUeF/GGreELw3Gl3TW8jqN6gnY2Aeo713Un7SXjeWHy2urVeMF1iw2PrmvXw+Io04pNu6Pgc1ynH18XKpTpQkns3uj1L4qsfh/8D7Pw7f3YutUZAh3N87sWLMfwz+lfLW0rwTuAzg1q+IPEupeJrz7TqV5LeS9jIchR6Csz8a48bifrU00tkfQ8O5TLKML7OcuaUm27d2XvD+vXXhnWLfU7MgXMDZQt06Y/rWj4w8dar46uoZ9TkVmjBC7R6mufppbn2rj9pUUeVbHuPBUJ11iOT311N3TPHWraT4bvtEtrgx2F22907jpwKq+G/EF54V1a31KwZVuYPu7hx/nmssAd6Xd7U/aVXJSb2CWAw7jOCgkp/F5m/4w8bap46vorzU5FM0alRtHHXNXPBXxN8QeAmK6XeH7MTua2mG6Mn2GQRXKduKVcdzWv1irGfOnqzKeW4WdBYaUF7NdLHquuftKeL9as2t99tZblx5lqjBvpy1eWXU097M008zTTPyzvyT9aTcPWmlvbNRUr1arvUZngspweX3+rUlG53vgf40eJPANv9k0+5Saz6i3ulLIp9sEH9au65+0F4t1u7tpmuI7VYJPMEdum1WbGOep/WvNS3y8daXNaxxteEeVPQ5qmQZbUqutOgm2bvjLxtqfjrUI7zVCsk6x+XleBjPetHwV8VvEngL5NMvyYO9rMu6L8OQRXI7qQfezWCr1oy57nXUyrBVaCw06S5F0PW9Z/ae8Yarp7222zs93/La3Rt36t/SvLm1a6k1RNRednu1lEu9v7wOc1UbJPXik5z04oqV61Wzb2JwmT4HAwlHDUlFS3On8XfELV/HD2Z1ORJPsikRbBjGcZ/8AQRXReF/2gPF3hi1FmtxDqNuo2ol5GTtH1ByfxrzjjHBxRux71SxNfm9pfUyrZJl9akqMqKcVstrHpPiv4+eKfFGny2TzQ6fbScMLNCpYY/3jXmy/eByTgYz3/GjAbBJ/ClyO1RWq1a+s2dOCy7C5fFxw0OW/YU9qKQGjIrHU9NKysLRSZFGRSsxi0UmRRkUWYC0UmRRkUWYC0UmRRkUWYC0UmRRkUWYC0jfdNFDfdNVD4jKp8LPsb9kD/kmM/wD1/wAv8lr3OvDP2Qf+SYz/APX/AC/yWvc6/TcL/Aj6H8f5x/yMK3+JhRRRXWeMFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAjfdNeQ/tOZ/4VjqH0H/oQr1+srxB4b0/xRp0tjqdql5aSfeik+6ecj9QKxrQdWnKC6nfgMQsJiqeIavyu5+bCsMg7hjHrTvMX+8K+9f8AhQPgRT/yLVmR/un0+tL/AMKF8B/9CvZfka+SeRT/AJj9sj4jYa3vUX+B8EeYn94UeYn94V97/wDChPAf/Qr2X5Gj/hQngP8A6Fey/I0v7Cn/ADFf8RGwn/PiX4HwR5if3hR5if3hX3v/AMKE8B/9CvZfkaP+FCeA/wDoV7L8jR/YU/5g/wCIjYT/AJ8S/A+CPMT+8KPMT+8K+9/+FCeA/wDoV7L8jR/woTwH/wBCvZfkaP7Cn/MH/ERsJ/z4l+B8EeYn94UeYn94V97/APChPAf/AEK9l+Ro/wCFCeA/+hXsvyNH9hT/AJg/4iNhP+fEvwPgjzE/vCjzE/vCvvf/AIUJ4D/6Fey/I0f8KE8B/wDQr2X5Gj+wp/zB/wARGwn/AD4l+B8EeYn94UeYn94V97/8KE8B/wDQr2X5Gj/hQngP/oV7L8jR/YU/5g/4iNhP+fEvwPgjzE/vCjzE/vCvvf8A4UJ4D/6Fey/I0f8AChPAf/Qr2X5Gj+wp/wAwf8RGwn/PiX4HwR5if3hR5if3hX3v/wAKE8B/9CvZfkaP+FCeA/8AoV7L8jR/YU/5g/4iNhP+fEvwPgjzE/vCjzE/vCvvf/hQngP/AKFey/I0f8KE8B/9CvZfkaP7Cn/MH/ERsJ/z4l+B8EeYn94UeYn94V97/wDChPAf/Qr2X5Gj/hQngP8A6Fey/I0f2FP+YP8AiI2E/wCfEvwPgjzE/vCjzE/vCvvf/hQngP8A6Fey/I0f8KE8B/8AQr2X5Gj+wp/zB/xEbCf8+JfgfBHmJ/eFHmJ/eFfe/wDwoTwH/wBCvZfkaP8AhQngP/oV7L8jR/YU/wCYP+IjYT/nxL8D4I8xP7wo8xP7wr73/wCFCeA/+hXsvyNH/ChPAf8A0K9l+Ro/sKf8wf8AERsJ/wA+JfgfBHmJ/eFHmJ/eFfe//ChPAf8A0K9l+Ro/4UJ4D/6Fey/I0f2FP+YP+IjYT/nxL8D4I8xP7wpfMX+8K+9v+FCeA/8AoV7L8jR/woTwH/0K9l+Ro/sKp/MH/ERsJ/z4l+B8E7g3APP1powxAB5PvX3u3wD8BbT/AMUxZevQ/wCNfjZ+3r8SvEfwu/ag8WeHvC+rXGjaNa+QYLS3ICrmJSf/AB7NUsjqL7Qf8RFwv/PqS+4+nOwIOfoc0u73r6Z/ZF+GPhrx5+zd4C8Qa9pFvqer31iZbi5mB3SP5jrk/gK9f/4UL4D/AOhXsvyb/Gj+w5/zB/xEbCr/AJcyf3HwRuHrRuHrX3v/AMKF8B/9CvZfk3+NH/ChfAf/AEK9l+v+NH9hz/mF/wARGwn/AD4l+B8Ebh60bh6197/8KF8B/wDQr2X6/wCNH/ChfAf/AEK9l+v+NH9hz/mD/iI2E/58S/A+CNw9aNw9a+9/+FC+A/8AoV7L9f8AGj/hQvgP/oV7L9f8aP7Dn/MH/ERsJ/z4l+B8Ebh60bh6197/APChfAf/AEK9l+v+NH/ChfAf/Qr2X6/40f2HP+YP+IjYT/nxL8D4I3D1o3D1r73/AOFC+A/+hXsv1/xo/wCFC+A/+hXsv1/xo/sOf8wf8RGwn/PiX4HwRuHrRuHrX3v/AMKF8B/9CvZfr/jR/wAKF8B/9CvZfr/jR/Yc/wCYP+IjYT/nxL8D4I3D1o3D1r73/wCFC+A/+hXsv1/xo/4UL4D/AOhXsv1/xo/sOf8AMH/ERsJ/z4l+B8Ebh60bh6197/8AChfAf/Qr2X6/40f8KF8B/wDQr2X6/wCNH9hz/mD/AIiNhP8AnxL8D4I3D1o3D1r73/4UL4D/AOhXsv1/xo/4UL4D/wChXsv1/wAaP7Dn/MH/ABEbCf8APiX4HwRuHrRuHrX3v/woXwH/ANCvZfr/AI0f8KF8B/8AQr2X6/40f2HP+YP+IjYT/nxL8D4I3D1o3D1r73/4UL4D/wChXsv1/wAaP+FC+A/+hXsv1/xo/sOf8wf8RGwn/PiX4HwRuHrRuHrX3v8A8KF8B/8AQr2X6/40f8KF8B/9CvZfr/jR/Yc/5g/4iNhP+fEvwPgjcPWjcPWvvf8A4UL4D/6Fey/X/Gj/AIUL4D/6Fey/X/Gj+w5/zB/xEbCf8+JfgfBG4etG4etfe/8AwoXwH/0K9l+v+NH/AAoXwH/0K9l+v+NH9hz/AJg/4iNhP+fEvwPgjcPWjcPWvvf/AIUL4D/6Fey/X/Gj/hQvgP8A6Fey/X/Gj+w5/wAwf8RGwn/PiX4HwRuHc0w7Fyd3b1r76/4UL4DP/MsWQ98H/Gj/AIUH4D6f8IzZn6qaayOad+YmXiNhrNKjLX0ON/ZCx/wrOb+9/aEw/Ra905rG8MeEdK8H2P2PR7GOwtWcyGKMcbj1NbVfVUKbpU4wfQ/E8diFisTOtHaTvqFFFFbnCFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN90/Sv5//APgpof8AjMjxsfa3/wDRS1/QA33TX8/3/BTP/k8bxt9Lf/0SlAH7FfsK/wDJpPwz/wCwa3/o6SveK8H/AGFf+TSfhn/2DW/9HSV7xQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAI33TX8/3/BTP/k8bxt9Lf/0Slf0At90/Sv5/v+Cmf/J43jb6W/8A6JSgD9iv2Ff+TSfhn/2DW/8AR0le8V4P+wr/AMmk/DP/ALBrf+jpK94oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKAwbODmg9K+G/wDgqn8evHHwD+HfgfUfBGtSaLe3+qy288kQHzoISwH54oA+5aK/ny/4eQftBf8AQ+3n5f8A16P+HkH7QX/Q+3n+fxoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QX/Q+3n5f/XoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QX/Q+3n5f/XoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QX/Q+3n5f/XoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QX/Q+3n5f/XoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QX/Q+3n5f/XoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QX/Q+3n5f/XoA/oNor+fL/h5B+0F/0Pt5+X/16P8Ah5B+0F/0Pt5+X/16AP6DaK/ny/4eQftBf9D7efl/9ej/AIeQftBf9D7efl/9egD+g2iv58v+HkH7QX/Q+3n5f/Xo/wCHkH7QP/Q+3n5f/XoA/oLf7pHtX8//APwUz+b9sbxqR0/0f/0UtVV/4KQ/tA5H/FeXh/D/AOvXhvxF+JGv/FbxdeeJfE1/JqWsXZXzrhjy20ADt6CgD+gb9hX/AJNJ+Gf/AGDW/wDR0le75r+drwT+3d8afh74U07w9oPjC5stJ0+Pyre3UcIMk/1Nbf8Aw8i/aB/6Hu6/L/69AH9BWaM1/Pr/AMPJP2gv+h7uvy/+vR/w8k/aC/6Hu6/L/wCvQB/QVmjNfz6/8PJP2gv+h7uvy/8Ar0f8PJP2gv8Aoe7r8v8A69AH9BWaM1/Pr/w8k/aC/wCh7uvy/wDr0f8ADyT9oL/oe7r8v/r0Af0FZozX8+v/AA8k/aC/6Hu6/L/69H/DyT9oL/oe7r8v/r0Af0FZozX8+v8Aw8k/aC/6Hu6/L/69H/DyT9oL/oe7r8v/AK9AH9BWaM1/Pr/w8k/aC/6Hu6/L/wCvR/w8k/aC/wCh7uvy/wDr0Af0FZozX8+v/DyT9oL/AKHu6/L/AOvR/wAPJP2gv+h7uvy/+vQB/QVmjNfz6/8ADyT9oL/oe7r8v/r0f8PJP2gv+h7uvy/+vQB/QVmjNfz6/wDDyT9oL/oe7r8v/r0f8PJP2gv+h7uvy/8Ar0Af0FZozX8+v/DyT9oL/oe7r8v/AK9H/DyT9oL/AKHu6/L/AOvQB/QUzBRkkAe9G4etfz5yf8FIP2gZUZP+E8vBkYyuQfzzWP8A8N9fHw5J+JeuZJz/AMfb/wCNAH9Em4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NH/AA3x8fP+ima5/wCBkn+NAH9Eu4etG4etfztf8N8fHz/opmuf+Bkn+NB/b2+PhHPxL13HteSf/FUAf0SKwbp/KnV8Sf8ABKf42eMvjh8FvE2o+NNZn12+0/XWtILq5YtJ5fkRPgk9eXNfbdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5sf8Fuv+ST/AA3P/Ubn/wDSev0nr82P+C3X/JJ/hv8A9huf/wBJ6APEv+CQvwX8FfGDUfidH4w8PWevJYRaebYXQJ2bzcbsY/3Fr9Jf+GKPgj/0TnR/++H/APiq+Ef+CHOP7S+L3r5Ol/zua/V2gDxD/hin4Jf9E50f/vh//iqP+GKfgl/0TnR/++H/APiq9vooA8Q/4Yp+CX/ROdH/AO+H/wDiqP8Ahin4Jf8AROdH/wC+H/8Aiq9vooA8Q/4Yp+CX/ROdH/74f/4qj/hin4Jf9E50f/vh/wD4qvb6KAPEP+GKfgl/0TnR/wDvh/8A4qj/AIYp+CX/AETnR/8Avh//AIqvb6KAPEP+GKfgl/0TnR/++H/+Ko/4Yp+CX/ROdH/74f8A+Kr2+igDxD/hin4Jf9E50f8A74f/AOKo/wCGKfgl/wBE50f/AL4f/wCKr2+igDxD/hin4Jf9E50f/vh//iqP+GKfgl/0TnR/++H/APiq9vooA8Q/4Yp+CX/ROdH/AO+H/wDiqP8Ahin4Jf8AROdH/wC+H/8Aiq9vooA8Q/4Yp+CX/ROdH/74f/4qj/hin4Jf9E50f/vh/wD4qvb6KAPEP+GKfgl/0TnR/wDvh/8A4qj/AIYp+CX/AETnR/8Avh//AIqvb6KAPEP+GKfgl/0TnR/++H/+Ko/4Yp+CX/ROdH/74f8A+Kr2+igDxD/hin4Jf9E50f8A74f/AOKo/wCGKfgl/wBE50f/AL4f/wCKr2+igDxD/hin4Jf9E50f/vh//iqP+GKfgl/0TnR/++H/APiq9vooA8Q/4Yp+CX/ROdH/AO+H/wDiqP8Ahin4Jf8AROdH/wC+H/8Aiq9vooA8Q/4Yp+CX/ROdH/74f/4qj/hin4Jf9E50f/vh/wD4qvb6KAPEP+GKfgl/0TnR/wDvh/8A4qj/AIYp+CX/AETnR/8Avh//AIqvb6KAPEP+GKfgl/0TnR/++H/+Ko/4Yp+CX/ROdH/74f8A+Kr2+igDxD/hin4Jf9E50f8A74f/AOKo/wCGKfgl/wBE50f/AL4f/wCKr2+igDxD/hin4Jf9E50f/vh//iqP+GKfgl/0TnR/++H/APiq9vooA8Q/4Yp+CX/ROdH/AO+H/wDiqP8Ahin4Jf8AROdH/wC+H/8Aiq9vooA8Q/4Yp+CX/ROdH/74f/4qj/hin4Jf9E50f/vh/wD4qvb6KAPEf+GKvgl/0TnRx/wB/wD4qrEX7HPwYhtZLcfDvRfJkOWHknPr13V7NRQB4gf2Kfgkf+adaP8A98P/APFUn/DE/wAEv+id6P8A98P/APFV7hRQB4f/AMMT/BL/AKJ3o/8A3w//AMVR/wAMT/BL/onej/8AfD//ABVe4UUAeH/8MT/BL/onej/98P8A/FUf8MT/AAS/6J3o/wD3w/8A8VXuFFAHh/8AwxP8Ev8Aonej/wDfD/8AxVH/AAxP8Ev+id6P/wB8P/8AFV7hRQB4f/wxP8Ev+id6P/3w/wD8VR/wxP8ABL/onej/APfD/wDxVe4UUAeH/wDDE/wS/wCid6P/AN8P/wDFUf8ADE/wS/6J3o//AHw//wAVXuFFAHh//DE/wS/6J3o//fD/APxVH/DE/wAEv+id6P8A98P/APFV7hRQB4f/AMMT/BL/AKJ3o/8A3w//AMVR/wAMT/BL/onej/8AfD//ABVe4UUAeH/8MT/BL/onej/98P8A/FUf8MT/AAS/6J3o/wD3w/8A8VXuFFAHh/8AwxP8Ev8Aonej/wDfD/8AxVH/AAxP8Ev+id6P/wB8P/8AFV7hRQB4h/wxR8Ev+idaOf8AgD//ABVH/DFPwR/6Jzo//fD/APxVe30UAeJR/sW/BOF1dPhxopZTkbo2I/U1tf8ADLnwlyP+LeeH+OObFa9TooA8t/4Zd+E3/RPPD3/gClH/AAy78Jv+ieeHv/AFK9SooA8t/wCGXfhN/wBE88Pf+AKUf8Mu/Cb/AKJ54e/8AUr1KigDy3/hl34Tf9E88Pf+AKUf8Mu/Cb/onnh7/wAAUr1KigDy3/hl34Tf9E88Pf8AgClH/DLvwm/6J54e/wDAFK9SooA8t/4Zd+E3/RPPD3/gClH/AAy78Jv+ieeHv/AFK9SooA8t/wCGXfhN/wBE88Pf+AKUf8Mu/Cb/AKJ54e/8AUr1KigDy3/hl34Tf9E88Pf+AKUf8Mu/Cb/onnh7/wAAUr1KigDy3/hl34Tf9E88Pf8AgClH/DLvwm/6J54e/wDAFK9SooA8t/4Zd+E3/RPPD3/gClH/AAy78Jv+ieeHv/AFK9SooA8t/wCGXfhN/wBE88Pf+AKUf8Mu/Cb/AKJ54e/8AUr1KigDy3/hl34Tf9E88P8A4WKV+XH/AAWI+G3hf4c+M/hvD4Z0Kw0GK50+7aaOwgEYkIlTBOPY1+zNfkX/AMFvv+R7+Fv/AGDbz/0ZHQB7B/wRN/5IF45/7GZv/SSCv0Ur86/+CJv/ACQLxz/2Mzf+kkFfopQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAlfmx/wAFuv8Akk/w3/7Dk/8A6Ir9KK/Nb/gt1/ySb4b/APYbuP8A0RQBxX/BDr/kKfF7/rjpf87mv1er8of+CHX/ACFPi9/1x0v+dzX6vUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+Rf8AwW+/5Hr4W/8AYNvP/RkdfrpX5F/8Fvv+R6+Fv/YNvP8A0ZHQB7B/wRN/5IF45/7GZv8A0kgr9FK/Ov8A4Im/8kC8c/8AYzN/6SQV+ilABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSE4ozQAtFFFABRRRQAlfmx/wAFuv8Akk/w3/7Dk/8A6Ir9KK/Nf/gtz/ySb4b/APYbn/8ARFAHE/8ABDr/AJCnxe/646X/ADua/V6vyh/4Idf8hT4vf9cdL/nc1+r1ABRRRQAUUUUAFFITjk0BgaAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiko3CgBaKTdziigBaKSigBa/Iv/gt9/yPXwt/7Bt5/wCjI6/XPNfkZ/wW+/5Hv4W/9g29/wDRkVAHsH/BE3/kgXjn/sZm/wDSSCv0Ur86/wDgib/yQLxz/wBjM3/pJBX6J5oAWikzRmgBaKTcBSbhQA6ikoyKAFopM0tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUmaAFopN1LQAUUlJvFADqKTNFAC0UUUAFFFFABRRRQAh6U3Pqacfeqd9qFvYQvLPKsSKMszkAD6mmk27Iic401zTdkWi2BxSbq+fviH+0pDDef2R4Rt31zU3OzzIoy0an06c/hxXNR61+0DKiyJp9vhhkBhbAgemN386644WVvedj52pnlKMuWnBy9LH1NzRzXy3/a37Qn/QOt//ACV/+KpP7X/aE/6B1t/5K/8AxVP6t/eRn/bi/wCfM/uR9SltvJ4Ffm1/wW0YN8J/hx8wbbrc+cH/AKYH/A19AjWP2hMj/iX24/8AAb/4uvL/AI8fAP4l/tJaPpmmeOtD+3WemztcW0dvcQRbJCNpbIfJ4Pej6t/eQ1nqX/Lmf3I8Z/4If/u9V+LwOFPlaWMZ563Vfq1u9/1r8/PgH+zT4/8A2aZtbk8B+HG046wIhdi4u4J9wjLlB8zdt7fnXr/9rftBf8+Fv+Vr/wDFUfVv7yB56n/y5n9yPqTd7/rRu9/1r5b/ALW/aC/58Lf8rX/4qj+1v2gv+fC3/K1/+Ko+rf3kL+3F/wA+Z/cj6k3e/wCtG73/AFr5c/tb9oL/AJ8Lf8rX/wCKo/tb9oP/AJ8Lf8rX/wCKo+rf3kH9uL/nzP7kfUeTSq3vmvlWb4gfGzwd5epa7pKXOnRt+9SGOJiR/wAAJIr174b/AB18PfECFVjufsd/j57O6IVgfb1/nUSw84q61R1YfOKFafJNOL89D0360u4UxZFk5U5FLXKe9dC7h60bh60mR7/lRx7/AJUBcXcPWl3A0nFHFAXHUU3cKXcKAuLRTQ4PGeadQMKKKKACikpN4oAdRSUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFJmloAKKTIo3UALRSbqNwoAWimlh0pvP+TQBJRTOfSkz/nNK4ElFR5/zmlDevH40XAfRTd6/wB4fnSeYvrQK4rfd6ZpjSBVySB65qpqur2emWkk91cRwwIPmd3CgfjXz/4+/aWe6vv7F8E2M2sagx2C4VCYlPoMcn6niuinRlU9Dy8ZmVDBL3neXY+iftEfd1z9aPtEf98fnXyzb/CP4u6xCt5ceNTp80x3tbG7lHlZ/h+XI/Wpf+FI/Ff/AKKD/wCTc/8AhW/1ePWR439s4l6qg/vPqH7RH/fH50faI/7w/Ovl7/hSPxX/AOig/wDk3P8A4UD4I/Ff/ooP/k3P/hR9Xh/MH9s4r/nw/vR9Q+eh4DD86/JL/gtw3n+PPhb5fz/8S29zt5/5axf4Gvs0/BP4rf8ARQf/ACbn/wAK5Dxt+xx4g+JlxbXHi3VdH8RzWyFIZNVVrlogxBIUtHx0o+rx/mLjnNe/vUH96OA/4IpnyvgH443cf8VMf/SSCv0P85P73618eeCv2T/F3w5sbiy8LeINN8N2k8hlkt9LaWBHfpuIVR82AB+FdD/wpH4rf9FCb/wNuP8ACj6vH+YHnGIvpQf3o+ovOT+9+tHnJ/e/Wvl3/hSPxW/6KE3/AIG3H+FL/wAKR+K3/RQm/wDA24/wpfV4fzC/tjE/8+H96PqEypg/N+tIsif3v1r5f/4Uj8Vv+ihN/wCBk/8AhUU/wh+LenRNcQ+OWu5IvnWEXcvzkc4+YY/On9XXSQv7YrrWeHf3n1SCDyDn6Uv1r5t8E/tJXmh6kNE8fWUmmXyDb9sMeEb64/mOK+g9J1qz1m0jubS4jubdxlZI23A/jXPOlKmezhMwo4rSLs+xoUtNDDHWjzF9axPUHUU3ePWjzB60Cuh1FN8wetHmD1oC6HUmabvBoFAx9FJmkJ4oAdRTBnPSnc0ALRSUZoAWikooADSfjilbOOK89+MHxO/4Vb4dGqtaG8HmLH5Yfb1Prg/yq4QlUlyxOXE4mnhKTrVXZI7/AHDdjOadXyp/w2uo5/4R5v8AwK/+wpR+20n/AELzf+BP/wBhXb9Rr9j5n/WvKv5z6qP0prHYpbPFfLH/AA2wn/Qut/4Ff/YUjftrowwfDzgHj/j6/wDsKPqNbqhf61ZZbSodj8QP2orTwT4ovtGfRbq6e1IDSq4VST7mua/4bPs/+hduf+/6f4ViN+11prXZum8KK1yeDL5o3Ht12+lS/wDDYtn/ANCv/wCTA/8Aia7Y4Vpa07nzlXPacptxxdl6Gt/w2hZ/9C5c/wDf9P8ACj/htCz/AOhcuf8Av+n+FZX/AA2JZf8AQsf+TA/+Io/4bEsv+hY/8mB/8RT+rf8ATv8AEy/tuP8A0G/gav8Aw2hZ/wDQuXP/AH/T/Cj/AIbQs/8AoXLn/v8Ap/hWV/w2JZf9Cx/5MD/4ij/hsSy/6Fj/AMmB/wDEUfVv+nf4h/bcf+g38DV/4bQs/wDoXLn/AL/p/hR/w2hZ/wDQuXP/AH/T/Csr/hsSy/6Fj/yYH/xFH/DYll/0K/8A5MD/AOJo+rf9O/xD+2o/9Bn4GnJ+2hashC+HbrcRgfv069u1Y0tp48+OTi81W5bwx4YHzBcFNy9+vLfyqVv2xLPaf+KX/wDJgf8AxFeR/ET45a98QZHhd/sGmZ+S1tyRx/tHvWsMO/5bHm4zOqXJeVZ1H22PQNU+JnhL4P2r6b4IsodS1VRtk1SY7hu9jjB/CuSH7TnjxvvamoPUhYI8Z9vlryfdnj8c4A/QUu6vQjh6aWup8dVznFVJXhJxXZaHrH/DTXjz/oKf+QY//iaP+GmvHn/QU/8AIMf/AMTXk26jdV+wpdjD+1sf1qS+89Z/4aa8ef8AQU/8gx//ABNH/DTXjz/oKf8AkGP/AOJrybdRuo9hR7B/a+O/5+S+89Z/4aa8ef8AQU/8gx//ABNH/DTXjz/oKf8AkGP/AOJrybdRuo9hR7B/a+O/5+S+89Z/4aa8ef8AQU/8gx//ABNB/aa8e/8AQUH/AH5j/wDia8m3UbqTw9J9A/tfHf8APyX3nrH/AA054+/6Cq/9+I//AImj/hpzx731Vfwgj/8Aia8oyKMil9Xpdg/tfHf8/JfeeyaN+1J4wtr6N9Rli1G06PbyRqoYfgK7VNB8FfGpTf8Ah26/4RjxODuMA+Us3+c9K+ZTg1Pa3stnOk0MjxzIcq6nBB9iKynhY2vE7sLnVVPlxPvLz3+8+oNO+M3jb4Mt/Zni/S5tWs1G2C8B2l/+BHINaX/DaVl/0LV1/wCBCf4V554G/ao1XQbT7JrVoutxKuI5nfZMPZjghv0rqv8AhsOy/wChaP8A4Ef/AGNcEsK29YXPtaOeU4xtDE8q7NGx/wANp2X/AELV3/4EJ/hR/wANqWX/AELV3/4EJ/hWR/w2JZf9C0f/AAI/+xo/4bEsj/zLR/8AAj/7Go+p/wDTv8To/t1f9Bf4Gt/w2pZf9C1df+BCf4Uv/Dall/0LV1/4EJ/hWP8A8NhWX/QtH/wIH/xNA/bDsf8AoWj/AOBH/wBjR9Uf/Pv8Rf28v+gv8DY/4bUs/wDoWrr/AMCE/wAKVf20rJjg+GrwDuVnUn+VY5/bEsf+haP/AIEf/Y0n/DYliwIbwySDwf8ASP8A7CmsL/07/EP7d7Yz8D274RfGC3+LEd/JBp81j9kcKfMcNuyPavRq+S9P/bDsNL8wWvhdYBIdzCOfGT7/AC1c/wCG2o/+heb/AMCf/sK5JYGq37sbH0NDinL400qta79D6oor5X/4baj/AOheb/wJ/wDsKP8AhtqP/oXm/wDAn/7Co+o1+x0f615X/wA/D6oJwPSkXPrn8K+WP+G2I24/4R5v/An/AOwqaw/bMivL23g/sBl8yRU3efnGTjP3amWCrRV2i4cT5ZVkoRnqz6kBpar2cxuLeGXGC6hiPqKsVwn1id0mgooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJ0obpSCgA6c9aTcK5f4meIp/CvgzVdTtgrTW0JdQ4yOor5JP7X3i9uTbWX/fB/wAa7aOFqV480T5rM8+wuVzVOtufb34Uv518P/8ADX/i/wD597H/AL4P+NH/AA2B4w/597H/AL9n/Gt/7Pqnjf65Zd5n2+3yqTgmvGfjF8SvGPhHXLGy8N+Hm1aOZSzP5buScHgBa8H/AOGwPGH/AD72P/fB/wAaY37XXixiM21icd/LP+NXDA1Yu7OLF8WYDEQ9nCbi/Q78fGb4x848BkD/AK9Zv6NS/wDC6PjL/wBCIf8AwEn/APi64D/hrzxZyPs1jj/rmf8AGk/4a68Wf8+1l/3xXQsPP+VHif25hI6LEzPQP+F0fGX/AKEQ/wDgHOP/AGej/hc3xk/6EQ/+Ak//AMVXn/8Aw114s/59rL/v2f8AGl/4a78W/wDPtY/9+z/8VR9Xn/Kg/tzCv/mJmd9/wub4yf8AQiH/AMBJ/wD4qj/hc3xk/wChEP8A4CT/APxVcD/w154tH/LtY/8Afs//ABVL/wANfeLf+fWx/wC/Z/8Aiqf1ef8AKg/tvDf9BMzvv+FzfGT/AKERv/AOf/4uk/4XR8ZD8v8AwguD72c//wAXXA/8NfeLf+fWx/79n/4qk/4a88Wf8+lj/wB+z/8AFUfV5/yoP7cw2lsRM6+68K+O/i5K+oeNbs+F9AhPzWr5iz6jaSc/iawtc+L/AIZ+Gdq+k+AtPie5UbJNSkGT+GeteaePvjP4k+ITBb+5EVsOBbwgqn1PNcNv+UKBhRyABXZTw8re+fN4zO480vqya/vPVs6u5+KHiu8uJJZtdvPMdtxZZCB9MVF/wsfxN/0Hr7/v6a5jdS5FdapR7HzssdiW78z+86b/AIWR4mH/ADHr7/v6aP8AhZXiX/oO33/f01zBNJVezh1iifr2J/mf3nT/APCyvEv/AEHL7/v8aX/hZPiT/oOX3/f41y9Ao9nDokH13Ev7T+86j/hZHiXtrl8P+2xo/wCFkeJv+g9ff9/TXM5FITR7OHWKD67iV9p/edK3xI8T9tevv+/xpv8AwsjxR/0Hr7/v6a5uij2cP5RPG4p/af3nSr8SPFG7/kO33/f01Pb/ABS8V2s0c0evXwkjYMD5mensa5MU7IpOnTfQqOOxUdpu/qfQegfGrw78RbNNH8f6bD5zfKmpRr3I6n0P6VtW/grxp8LWXU/AOpHxJokh4sx+9OPTAPbPb0r5hY8H/Cu18A/F7xF8O5CNMvGa2IwbWbJj+oGa46uGdvdPpsFnUG0sTdf3lue+r8aPjEOB4D4z3tZs/wDoVOPxo+Mf/QiH/wABJ/8A4uvPf+GuvFvB+z2JPp5bf/FUp/a68WkY+y2P/fs/41x/V5/yo+iWeYZaLEzPQP8AhdXxj/6ENv8AwEuP/i6T/hdHxj/6ENv/AAEuP/iq8+/4a38Xf8+1j/3xR/w1x4t/597H/vij6vP+VB/bmHf/ADET/A9B/wCF0fGP/oQ2/wDAS4/+Ko/4XR8Y/wDoQ2/8BLj/AOKrz7/hrfxd/wA+1j/3xR/w1v4u/wCfax/74o+rz/lQv7cw/wD0ET/A9Ab40fGPaf8AihGH/bnP/wDFV2/wn+J/jfxV4pk07xB4b/sq2ji3mQwyIQcHuxx1xXhH/DXHi5efs1j/AN+z/jT1/a+8Wrgi1sQev3D+XWplhKkl8KR0YfiDCUqinKvJ+p9vjrn9Kd+f5V8Qf8NheL/+fax/79n/ABo/4bA8X/8APtY/98H/ABrl/s+sfQ/655a+59v/AJ0bq+IP+GwPF/8Az7WP/fB/xpP+GwPF/wDz7WP/AHwf8aP7Pqh/rll3S59vM3HpTh+Zr4hX9r7xezY+zWP/AHwa+tPhr4jufFfgvTNVulVZ7mLewTp3/wAK5q2FnRV5Ht5bnmGzSTjQ6HV9/eikXPFFch9EK3Svn/8AbDz/AMK5X/r6jr6AbpXz/wDth/8AJOR/19RV24P+NE+X4l/5FdU+KjTeadQ3SvrurP5te43JoyaKKBBk0ZNFFABk0ZNFFAB1o2d8mjrgDrVzTdNutXuYrWzge4nmOEjRSSecdKTdtWXCnKrLlhuUwvoeaXkc4NeiR/AHxxJDv/sKZVxnBAz/ADrkPEXhfVfCt4bbV7GWwnHRZVK5+lQqkG7JnVVy/E4ePtJxaXoZRbNJRRg1ocfK1uFFA5xgj060g5xj2/WkIWik9fypaYXV7BRR6+1ISF6kD8admAtJS8c8jA560uA3Q5p8r7BdCUUYPPBH1FKFOfut+VTtuNaiYororTwPrd94en1yKwkfTLc4edVyBzj+dc+45pXT2NalGdKyktxtFGDRTMrPTzCij6c/TmjBoEFA60H5epA/Grmk6Tc65qNvY2kRmuZziOMDljT2V2XCEqjUY7lVgeeKbW54r8H6r4NvEtdWtXtZ5E3qr+mcZ/Q1h0Jp6oc6cqUuWSswooopmYUUUUAFFFFAAK0PD/zaxZAdfPT/ANCFZ9X/AA7xrdkT089P/QhWNb+HI7cF/vEPVH6e6X/yD7X/AK5L/IVcqnpf/IPtf+uS/wAhVyviXuf1VT+BegUUUUjQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARulJ60rdKT1oA8/+On/JMfEH/Xq39K/Opv6/0Ffor8dP+SY+IP8Ar1b+lfnW3T/PtX0+W/w2fhnG/wDvkfT9WNooor0z836hRRRTAKMGhetXtJ0uXWtStrGDb5s7hF3dMmk5cppTpzqSUYIo7SR0NOWu6+JXwh1b4X/Y21KSFxdA7PKPQjGR+tcMBkgUoyjJcyN62FqUKnsqitITBK5xxTcV6H4s+CuseEfB1p4lu5bd7O42hVQncpbp+ma8+PcZ5+tEZKesRV8PUw8lGommNoo2n0ox9Dzjg1RyhRR+I/OjoMkYoBe9sFJS/wAWCRnOOtKVoHZ3sJRRjr7Un6/SjzEmnsLRRjPTn6UAZ7UAJRTiAOCcH3oK/WgLiUUe3eigYUUUcdyMe5xRbS7FZ3XmGD6H8qMV3WpfCHWtM8C2/imRI/scuPkBO8KejYrh2/PPpUqXNsdFWhOi0pLfUavWnU0evUDrTv04zWiMeV9gNIBRuHA7+lO+vH14zQSve2CigHuOnrW/4I8F3njzX4dIsGiSeYMymY8EAZJobS1ZvRpSrS5I6nPt6U2t7xr4NvPAuvT6TetG88IBZozwc1g1N09URUpypScJbhRRRQZhRRRQA6P74r9FfgX/AMkt0D/r3H8zX50x/eFfot8C/wDklugf9e4/9CNePmXwI/UuBv48z0DuaKO5or5w/aQbpXz/APth/wDJOR/19RV9AN0r5/8A2w/+Scj/AK+oq7MJ/GifLcTf8iuqfFVDdKKG6V9cfze9xtFFFMkKKKKACiiigAXr3/CvqH9j/Q7Oay1vWGjSfU4H8qIHG5VxnH418vKNzAfnXafDf4qax8L9Va7051MUnE1tLja/p+lcuIhKcLRPoMjxdHB4r2ldaHo/in4/fEnw/rV2l1CLCKOVljhuLTjAz0Y9aw/id8fJ/iR4Ws9Mm0yOG8Vw0tyrfKcf3OM167pP7UXgrxXB5PiPSGtWwN3mxCZfr0yBWF8aPgv4avvB58YeEmjSIASvHC2Y3UkA49CM5/CuGlONNqM42Z9fjaWIxVCpPCV1Ui90+iPIbP4P6xffD+fxcs1uNOhDOylmLhR14xXLeE/Ddz4u8QWekWZVLi7by08xsKGAJ5x9K+kdBUj9k3Vc9VgmBxXi3wJwfiz4dGelyT/44x/rXRGs3CUn0PDr5XQhiqFGC0mlczPG3w91HwH4iXRr2aOS5ZQyvAxxz0zx711+ofs0eLrG+0+1jSC6F6rNvhkOyNV28sT/ALw6dfzrd/aWUr8ZrLbwdkePrxz+Yruf2pfGGr+HNF8LWelXslkl0khk8ptpYKI9oyOnLZrOVapJQcep3RyvBUPrFSte1NnlniL9mbxdoOkS34+zXyQjLxWzndt9ecZryuz0641C7S1t4XlnZtojGQ2fSvoL9l34karfeKpdDvrqW/tLyNnAuJN7KyqSSM9jjH410vws8F6bD+0J4wIiU/YNphVhkKXGc/rR9YnDmU9wjlGHx8KVXDuylujzXT/2WfFl7Yw3MstnZtIM+TPK29fyFcD48+HOufDvVBa6rAQsgBjnjfKSDPY4r6B+Inw18QeJPFd5ff8ACeWtmjPiO3S4KiNR04FX/Hmiw3nwQuNM1rXLPVtWsU82K7jkBb5SCB69BinCtNuJpisowijUhFcrj+J4Z4d+B/iDxT4Nm8RaeYnto2b9wrMZDtxkAY9xWtZ/s0+Krj7Kt2bSwnuM7IJ5dzEhdxA255wDXr/wm1268Lfs2arqtntNzbebNGX6Z2qa+f8ARPitrsHjbTNb1HU7m9eC4Vz5jfLz8rfL0AwxHFEatWo5tPRGNbB5fg/YQmnzTSOa8UeHbzwnrt7pF+qx3FrJtbByDxnj8CK6nwf8GdZ8YeGbvXbeW1tLG3DEyXO7OVGTjFemftReEU1LUtD8S6dEZo9SVYWCfxEdPxIKr+Fb3xevF+FXwW0rwraSYvrpRHK68FsYLn8SQPwoeIclFLciOTUqE6s63wr4TkPDbeMYfgDqBsJNPGhRrMP3gbzlUOd3scmvOfh78J9b+JN5NDpkKxxQgh7ickRj2zXuXgnK/sp6oV5+Wc/X5zVH9n/xZoNx8PdV8K3GsDQ9RuJGdbhpArMGCgYJ+n61HtJRi3HudbweGrV6Ma705evzON1j9lnxbpenTXMctlfeWM+Xbyneee27AryfTtGvdU1JbG2t5JbyR/LEKDnIOD096+i5/gt8QvC9vPfeH/FT6ovksoVpCwdT/vHGfpUX7I+greeJfEF/fIGv7WPaN64KMTycfnVfWJRpuTepyRyWjWxdKhGlyrXrucrb/sq+LJ7VJZJ9PtmYf6uSRiw9jjivOPGnw/1fwBqYsdVt/JY/6uVASr/Q/jXv3iz4ZeJfEXiK61GTx9ZQ7pD5cUdyVjTngAetafxi0qC7+C8cep6tZ6nrmlgMlxDKCzjeAffO2lHETub4jJcNKjPkXK4/jqeBeA/hD4j+IQebTLUC2UgNPIQqj8z/ACr0jwz8AvEvgXxnoWo3KQ3tqLpRI1qzHy+DjIPv6V3PiLWp/hh+zlpZ0YiK5mSONpk6jfyx+vbNeN/B3x/4jT4haOn9s3kqXEnlSpNM8iEYPGCSM0nOpUjJrY1p4bA4LE0qLTc3ZnR/tfJjx5p/TIsweR/tN05rwevef2vsnx1p5PP+iAfQ7mrwau3D/wANHymdq2OqeoUUUV0nhBRRRQAUUUUAFX9A/wCQxY/9d0/9CFZ5rQ0H/kNWH/XxH/6EKwrfw5HZg/8AeIeqP080n/kH2v8A1zX+Qq7VLSf+Qfb/APXNf5CrtfGy3P6qp/AgoooqTUKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARulJ60rdKT1oA8/wDjp/yTHxB/16t/Svzrbp/n2r9FPjp/yTHxB/16t/Svzrbp/n2r6fLf4bPwzjf/AH2Pp+rG0UUV6Z+cPcKKKKYhV610Xw9/5HTRv+vlP51zgroPAlxHaeLtJlmcRotwpLN061nU+Bno5c7Yunfuj6C/bM/1fh36y/8AstfMMf3hX1H+2XbPJY+H7pUYwq7xl8cbiAQPyU/lXy9bqZpFCDcScDHrXJhmvYM+izqm5ZraKvc+sPjkB/wz7oWcY8236/Rq8z8E/s7y+NvhrH4jtr0/a5GYJa8BeH2nLE9AMn8K9L+PwNn8BtDtph5c4kgyjdfut/jVbwneSWf7Jc8sErQygSgPGcEZuCDXHGU4wXK92fTYjDYeviakq0b8kE/wOf0n9lGz1C3SB/FlqdT2/Na27hgp9hnJrx3xN8PdS8NeNpPDk6LLehlWPyxhXVvusK6D4B30/wDwtjQnMzZe4CuxYksCef0rs/jxrw8MfH6z1TyvP+zW8EjR+vLg/pXRGVSFRxbvoeJUw+AxWDp4lQ5VzWfmXE/Zk03S7e1XXfFVvpl/IgLQllGCfqa8++LPwlf4cS2Uyahb6lZXj7Y5Yz85x13dvyr2TX2+G3x2uoLybXZNK1dkUbZHCe23DY5rzP4yfBzU/h9Z6fdDVH1jRGkbypNxYQ5Ixk9OamnVne0jfMMHSlQc8PTTjG2qfTzK+v8AwUXQ/hPYeMPt5ka6ijk+zbeBuz3rnfhL4DX4keL4tFkumtUeJpPMUZI2gkj/AD617r8QAR+yvoIHP+j26nHrivOf2UR/xdy0JBA+zXBzj2qlWl7KUjCpl1COZUaEY6NJs5u6+F/2b4rL4PS7LBp/KW4YcjIJ6V6LqH7KX9n600d14ghtdMVAVurplRnPcKM/zqHVP+TqIeQP9NHf0U1D+1pe3TePLS0M8ptlt1YR7jtznsKmM6k2o3toaywuCweGqV6lLm5ZNDPG/wCzLPo3h2XWdD1ePWoIVLyBME4/2SOD1z9K8r8E+CNU8d65FpmlweZOwJk3cKgB5JNe+/shaxe39n4i0m5kabTI4Y5UhblULBg35gDitr9mTTLC0uvHcqlIHin8hJQeVjAY5/P+VZuvOmmjphk+ExdWhVhHlU07r0OQf9mXQ7E+Tf8AjKK1vcYaLKDB9ME5ryr4mfC3U/hrrSWtygms5hmC8Q5En19Oteoax4G+G2oaxc3dx48uWupZiXYlSQc8jO3tWn8YPFnhTVvhRY6Lp+vLq1/YMgill/1r7cqc/n+lXCrU5jnxWBwU6E7WUo7fec5oP7Mt34k8D6drdhqKPPdAN5MowiqTgkn2GTVyz/Zk0+61X+yX8Twy3/kGVY7cghsHkHuK7HXdavNH/ZYsprCZrabyYlDxnB5cA814B8L/ABrceE/HenarJM7xiXbPuJJdGI3c/nTjKpNSlcrEUsvw9WlQlTvdLUwfEGhz+Gdev9Ouk2zWspQhu4H0r0r/AIUWlr8K28XajqT2jOu6K2KD5snCj6En8q7n41fCtvEPxO0C909fOtNbdUd0GVBUbmOf9pefwqv+1R4njsotD8H2DL9ns4laUK3OBgKp/IH8aFXlUtFGUcrw+BhVr146N2j/AMAyPEPhnXYfgHp2pzeIJptOmSJ1sSoATIIwD3HtWV8N/gCfGHhc+INY1KPRtNZgI3kAGR0zz716L4w+b9lXQQO8cI+nWsrwP8UPBfjD4b2vhDxXK+nNbr5ayISFPcMSOB+NQpT5G49z0J4TCfWlTra2imr9WYHir9nGx03w7daroniez1Q2iNLMrbc7QM8bT/OvMvh/8PdW+IusLp2m2wYj55ZHPyRj1zXs+u/s6Knh291HwV4nfUrYR5kgVwwlAGdoKnFdD+ynY2tj4C8STSSi0m3+XLMOsYCkA8/54q3XlGnvqctPJ6eIxsFVpcsWm9HuczL+zRoVm32abxrbw32drQblzux0xnI5ryL4ifDfVPhzr39nX0RaNuYbmMZjkGR09OteoT+AfhpNqD3reP7n7TJIZTL8uS+eedtbXxu8X+FPEngTRbKw1ldX1K1lRFkY/vGQ8MelTCtOLu9ScRgcJWotRtGUXZWe+v5nI/D39m2/8W+H49bv9Qi0iwm+ePcPmKevoM+9ejfDD4Ix+D/iFpup6TrNvrNpGsi3ASRS8WRgcA+pqP8Aag1K88P/AA38PaZpjNb2EmyJ2Q4BVUyFyPoD+Fea/sx3lxD8VbSMSyKjxyB03EK/ynkipk51IOTZ2UVhMJjoYSFPVJalH9pHj4paqPZK8rr1P9pJsfFTVR67f5V5ZXpUf4aPg80/32r6hRRRW55QUUUUCYsf3hX6LfAv/klugf8AXuP/AEI1+dMf3hX6LfAv/klugf8AXuP/AEI14+ZfAj9T4F/jzPQO5oo7mivnD9pBulfP/wC2H/yTkf8AX1FX0A3Svn/9sL/knI/6+oq7MJ/GifLcTf8AIrqnxVQ3SihulfXH83vcbRRRTJCiiigAooooAFxkZGR6V7h8Bj8P7/T9S0nxQoGo3TYW4m+4q44CnsRXh4pVYr3BHbj/AOtWVSmqkbXsengcb9Rqe05VJdmfT0/7K3huS6+02fjFY7YcouyNjjORl91T/Frx34a+H/wxPgfw/dLc3DJ5XyODtBbczE+5zwPWvl0TyZ++QR3/AP1YpC5+b5iN3Xb/APXrmjhE5Jyke7Uz+CpyhhqXI5bn1Z8D9V0Txp8HdQ8H3WoR2N4++M7m+bacfMORn86r+CfhB4X+F/i7TNS1TxZDeSrIRbwKMDftIJY7jjj1r5a3EZ5z/X60GRsjnJBznP8A9alLCWclF6M1jxBT5YOdK8oaJnt37Q+pWupfFuzmtbiO4jVIwXjcMMg9Mivbvjd4J8P+ObPw5p+q6v8A2NfCNmtZCgZXGE3KeR6L3FfF2mXS2+oW8jsdiyAlmJPevaf2lviBovja28MLpF+t41qkokwpBTIjx1H+yaidCXPCMdkdmFzWi8LiKtaKvNrQ9K8A+B/DPwHtNR16+16HUbvyvLjZRtCrnoqhjya8j8BfGxNM+L174ivcrZalJ5c/OSqcgNj24rx5mOOeB165/mKaGPXdg4x8orVYX4uZnlVc/nKUFRXLGPQ+pfGnwP0jx5q767oPim3tre6PmNCxyASck9c15b8Vfh7o/gHT7OG28R/2tqUjkTxg8bSO2DXlwkK9G2/7oP8A8UKaW3devtRTw7g9zPGZxTxMXy0rN+Z9MeDdesI/2Y9csnvIUupElVYTIAxJVQBivmsOFZXxkbtw/Om+YfXHbAJx9cUNjjJPrkdPpW9OiqbfmebjMxnivZqMbciPr34D+NtF8UfD2z0/XZrcXGkXIaPz3ALbWDo3Pvxj2rwz4/eNv+E0+IF08MvmWNp+4g2n5cDJZvxOK80DFSSGxk5+UkUNIW5J5znj1rOGHUKjkejis9q4zDxo2tY+mfBmvafD+zDf2LXcIumWUeSXAc5fIGOvSuH+G3ww8KeP/C0QfxEun+IVl37ZFUrt4woBxXjwkcLjecZzgMQKTdgcYHfAFT7DRpMTziNScJVad+VWPsD4a+Dj8H5rrUtU8Yx3WmxwlfsqvlSc5zyePoK8y+GPxm07w38Xta1CTEGj6tM0bMRwq5+Vsema8NaQtgE5+oo3ZXr8wGOnFTHDKzTOmpxDWVSnKkrKPT1Pp7xL8ANN8UarcanoXiy2s7K6YyCBiGCbuSRz3PNeW/FbwZpXgFbC2sPEJ1a9f5blVGRgDOeteZrIdqgMwA9cn/2ajcPTH+73p08O47s5MXmlPEQ/d0rTvvc+rfhr4i8PfFj4Vr4Q1m9jtdQhAVd/XAwQw5GcHPGe1UfDPwV8MfDPxJp+ran4rhukjlxDCke3L88khjjr3r5hDYYndyRjjj9aGkZsZYsRxz/POKn6rLVKWh2xz6m1CVSlecdLntf7V2p2mqeOLGS0uI7hFswrNE4IzuJx+RFeI0rMW6sX9CxJOKSuqnD2cVE+bxmJli60q0la4UUUVqcQUUUUAFFFFACGtDQf+Q1Yf9fEf/oQrPNaGg/8hqw/6+I//QhWFb+HI7MH/vEPVH6eaT/yD7f/AK5r/IVdqlpP/IPt/wDrmv8AIVdr42W5/VVP4EFFFFSahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0pPWlbpSetAHn/AMdP+SY+IP8Ar1b+lfnW3T/PtX6KfHT/AJJj4g/69W/pX51t0/z7V9Plv8Nn4Zxv/vsfT9WNooor0z84e4UUUUxAKlhmaGRXRmV1OVZTgg+tRUf54pW5tGXGUoyU4brU+p/CPxy8J+PvB8Gg+OkEcyKFa4kTKEheG3dQ3XnFO0mx+Cfg28XU7fU/7Rmh+aOKaVpefYba+WdwPWm/L07d+BXF9TV99D62PElWyc6acl1PVfjn8ZP+FnarDb2aPb6TaHKKxG52/vYHtXV6J8RNDtv2cZvDsl+g1VjJttyDuOZiw6DHTmvANwH9MCjIbrwe52it3h4WSXQ8uGcYlzqTnvNWOz+EOtWfhv4gaRqF9MsFpBPukkboozXYfFbxp4Z1/wCNFnq8sn9p6GkUKzCMcNjdxzjoSK8cLcYzn8KN3GAzAdhn/wCtTlRjKXO3qZ08yq06Kw9k4p3Poe78K/BvXGa8tvEZ0p5CZBCT9xj7Y/rVL42/E7w7e+C9K8HeGrlr2ztSC1yzE42j5QM9fvN+VeCcfUd8gH+lLu4wMAfX/wCtWH1WN7tndWz2tKg6VKKXNufUPgX4jeC/GHwhg8K+K75dOaFBE27K5Cn5SpxUvgfXvhR8LPEyPpeoNdXE0bq167lkhXHCgY7/ANa+WWIbB4J/2lBoVgMkcZ4P+cUvqke+h1w4jq3i3BcyW57faa7Y+JP2lLLULCdbi2kvdyOBwRtNetfGmD4e654sjsvFc0unX8EStHdo2FZcnAOM18s/DvxJb+FfGOl6pdrI8FrNvfy25IwR0x710fxv+Ilj8SPFKalYpLHCsKofNUZyKzeGTqKz0sdVPOacMBJuKc5SWjPYL/4meBfhL4IvdM8HXS6hf3SkeYhJYnGAWOPc15R8Ffi03w58VyXV3mfTrxTHchevJyG59+PpXmCsB1AH0/8A1U5XCqecGtlhoKLieTUzzETxEKsVbk2XQ+kNe8M/B3xPqMupjxCunyXDGV4EOFyeTgbeK8r+KX/CGW95ZQeEXkeOFCs0zkESe4rgSwbvj6gH+lL5gxjkfRsf0q6dHlerMsVm8sRTcYwSZ754k+JOg337Pln4fiv0fVFSJTbjORhwT29K8EhYxsDkg+1N3/XnrnBoyK2jTjBNLqcWLxtTEVIVHvGyPrf4VfHvw7Z/D/T4dbuo4tU01CiIyks20EAqcdWBxXzP428TS+LvFup6xLIWF1cl1PHyoMhR+ChR+FYDFT159MKKTdjp1/KsqdCFNuS6nZjM5xOLhCnO1on0B4m+I2hah+z3pOgQagkmqxJErW4zuUrnPbHGareF7b4TeKPC1hb6pcy6JqlvHtmlzje3duhzXhLEc4Lf40m7nOFH/AaX1eNnruaRzqcqvtKkE7K2qPqXR/GXw/8Agz4f1VtA1pta1K6TCRAnGQPl46Dn0rzX4H/GKL4eeIb5NSi36PqQxOo52nJwcd8biPxryXd+H4Ck3c571McNBJw7ms8+ryrU60Vbl6I+kdR8HfBzV9Sk1BfEq2sczmU2wOAMnJAG3IryX4nyeFIdat4/CHnG2hiCM5YHcwJORXEcf5AP9KCxbhuR7HH9KqFDke5jis2eJjGnyqNnuj6i8K/FPwd8R/h3b+HPG1ytnPaqq+c5wTtwFYEZwT3qTwjrXwn+F/iKCfStSkvribepuZJCywgj6d+RXyyzA84XP+6DS7h26dway+qRlKzeh2x4iq2UnTXMuvU7344+IrLxT8QtQvtOn+0WjbdsijAPHvXAUpx2GB2FJXYoqC5Yny9eq69SVWW7CiiiqMAooooExY/vCv0W+Bf/ACS3QP8Ar3H/AKEa/OmP7wr9FvgX/wAkt0D/AK9x/wChGvHzL4EfqfAv8eZ6B3NFHc0V84ftIV8//thA/wDCuAf+nqKvoCvAf2wv+SbD/r6i/nXXhP40T5jiX/kV1T4oobpRQ3Svrz+bZbjaKKKZIUUUUAFFFFABRRRQAUUhpygsMDk0BcSil2nBPYY7+tJSKlFx+JAOtO47Y/AU2kqkP3rWHt0ptJu+tFDI8mLRSUUhrV2Qopz0yjd9aBbC0UlOUflSuPrYSinHBXjr/nr6U2gGnHcKKSlpiWuwUUlFA7PcWiiigQUUUUAFFFFABRRRQAUUUUAIa0NB/wCQ1Yf9fEf/AKEKzzWhoP8AyGrD/r4j/wDQhWFb+HI7MH/vEPVH6eaT/wAg+3/65r/IVdqlpP8AyD7f/rmv8hV2vjZbn9VU/gQUUUVJqFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAI3Sk9aVulJ60Aef/HT/AJJj4g/69W/pX51t0/z7V+inx0/5Jj4g/wCvVv6V+dbdP8+1fT5b/DZ+Gcb/AO+x9P1Y2iiivTPzh7hRRRTEFFFFABRRRQAUUUUAFJSgZx+VW5tJvLeETS2k8cR6SPGQp69yPY0rpbmkacpJuK0RUooIIopmYUUUUDEoCmhqeoOKaRN0N2mjaafSVXKV5Ddpo2mn0lLlCzG7TRinqpYgAZJ4A9akurWazfy7iGSCTGdsilTjOM4NTpeyK5ZOPOloQUUUUEb7BRikpymmh+QmKKc1NoYBRRRSEFFFFABRRRQAUUUUAFFFFAmLH94V+i3wL/5JboH/AF7j/wBCNfnTH94V+i3wL/5JboH/AF7j/wBCNePmXwI/U+Bf48z0DuaKO5or5w/aQrwH9sL/AJJsP+vqL+de/GvAf2wv+Sbgd/tUX8668J/GifMcS/8AIrqnxRQ3SihulfXn82y3G0UUUyQooooAKKKKACiiigBKkh5dfrTKfb/eH1qJNpOx04b3qsYtdUfUnxq8I6TpPwH066tNPt4Llvs2ZY4wGJI55r5YCncRX1/8ej/xj7pv1tq+Qdp3N2rmwsm4vmPpOJKcKWJjyK10gVSSB/WrR0u7WPebaXZ/e2HFfQv7OPw50yTw7qXjLVbVrxbUk20AXP3V547nPatCH46eJLjWlSTwao0mSUIyNCdwQ8Z9KylilzWib0OHk6UKlWTvPY+YdvOOp9BT4baS4bbEjSN6KMmva/2kvh3ZeGNUsdc0yIw2OpABomOFVyCcAds103hHx9e6X4P0yHwd4GkuZfLzcXc0eRuHU9OefQ1vLEJwTRyUcmX1idCvNpR7K584XFlNa7fOieLd93eMZ+lLb2M94xWCGSZhgkRqWxnp0r6/025h+MHgHxFb+IdDTT9Y0kHzMLja2CwZfrtrhP2PLO3uPEOvLNGkqraoPnUHgPjvWP1r3HK2qO1cPN16dNT92Svc+eRaStuxGx2/e46fWlNlMsImMTiI8iQj5fzr3r4pfGDRLSHWfDOg+H44UmVoXvGbad2TkgYrv9JvNH8Ofs7afqWqaWmpRQxxuYc43tvAXLYz1wfwq/rM4pe7uRTyXDzqVIxq+7E+Sl0q7aHzRbSmPGd201oeD20+LxJp7apC1xp6ygzxICSV7jivp34P/HKD4h+KE8PT+HrOyspYmKbPmxgE4II9q8y17w7ZaH+0dBY2sKpZvdq5jxxz2xWf1iUrxkrGkcnpUpUsRRnzxbsYHxy1Xw5q/iCzl8N2z21uIMTeZA0O5hwCAwB4FeeyWE8Sp5kLoXOF3DGfpXu37UlrFb/EbQY4o40ieEb0UbQw3gY49q9S+NHjDRfh3pfhy/utAh1S+ZWFrnCIhwm5jxzkEURxEoqMUr3NpZRTq1a1arPlUXsfG1xptzbR+ZJbyIvqVNV1Xc20cnrxzX2d8LfiBbfG7QdasNS0e3tvLjx+7wcqfqO1eO/Af4a2Hij4lalDeRefp2ksx8phwx3ELn8R+lX9a0fMtUcdXIYznSVKd1M8bj065mj8yO3ldfVUNI1jOLfzvKfyc48zHy9cdfwr6W8YftJWnh/xDeaRpfh2zmsLVzEXfC78cHgD+da3jW70TXv2Zb7VdJ0tdMt5nVlg4Yxt9qUOM/UGhYmV1zLcuWSYSUarpVLuCPkvpRStzz7Uld258XqlqFFFFABRRRQAUUUUAFFFFACGtDQf+Q1Yf9fEf/oQrPNaGg/8hqw/6+I//QhWFb+HI7MH/vEPVH6eaT/yD7f/AK5r/IVdqlpP/IPt/wDrmv8AIVdr42W5/VVP4EFFFFSahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACN0pPWlbpSetAHn/AMdP+SY+IP8Ar1b+lfnW3T/PtX6KfHT/AJJj4g/69W/pX51t/n9K+ny3+Gz8M43/AN9j6fqxtFFFemfnD3CiiimIKKKKACiiigApDS0lAE1v/rU+uK+tPjxaQx/AfSHWNVJeAZUAfwtXyVb/AOsT619d/Hrn4A6Njrvg/wDQWrzsQ37SKR9vk0Yyy7FNrVI+Qe/tirOn6ZdapdJbWcElxcOcLHGpZj+A5quvbjIPBFfVX7M/guKx8A6l4phsl1DWGLR28cg5XABAH/fQrprVvYx13PIynLJ5nWcXslc8HuPg74yhgMzeHNQ2KMnFu2f5VyElrLDM8bxusqHayFTuU+hHavqC01D40/21Hdz2bfZTJva1wAu0nBXr6Vz/AO1X4LttNm0rxDb2a2k998s8PT5wM5wOpz39q56WK97lkexjcjpU6Lr0r6OzPG9B8B6/4njMmmaPeX0Q4MkMLMo+pApPEXgHXvC8ay6ppVzYxHo00bKPSvoPw/N8Uda8H6VHoVhaaDaRwhfMmYh5T/eHHH4iuw0O31/xB8PfFWmeN7JJLqzikEVwyhg48skMpx2NRLEtS+ZvHIaNWg4aqVrnyN4d8Jax4rllj0yynu3hG51hQsVBzyfyNPPgvXDa3Nz/AGVdG3tjiWdYWKJzjk4x1r3f9j5RDr3iZeoFvEck88Mw5/CuX+Kvx31fVr7WPD9nb29jpCO0BQJl2wc5zkY5FbRr1J1Goo4JZXg6OFhXqyfNLQ82/wCEB19NFj1c6TdNp8mAk4ibY2TtHP1q7/wqXxf9lNz/AMI9frEF3bvs7dMfSvpRvFj+Df2ZdO1KC0t7qeKOMRx3CbowxlIDY9ic1zXwI+OHiTxl49TS9VlhntZ4ZDtjj27WBG3HNY/WK1nLojvWT5fCvTouT5pK/wB54H4LmfSvGWlu2mtqE8F0h+xMvzOwbG3B75Fdl+0BrU/iLxdaSSaBcaI62iqI7hNryDe/Ix75/Kt/xTpttpf7TkEVvEsURvrdyq55Y4JP5k1d/auVV+KukZClfsEWVxnjzpMjk8U5VnzJ+RlTy/kwk6fNZKaR5FffDrxFplzawXOiXsc11kRRvC2Xx6DFWNW+FfinQ7CW8vNCvYbaMZeVoWAQe/FfUf7RfxK1D4d2Oiy6bbWr3s6uouLmPeUAC52+54/Kqv7PfxH1T4o6br2n+IBDeJGn3tmCysMEdal4iooqdtLnT/YeAniXg1N86Tf6nx7DBJcSLHGjO7HAVRyTnGP1rrIfhL4wntTcL4evxCF3bmtmHGM56V6p+zR4NstQ+I2uX86LNBphfy4mHG4uwDfgFIqDxx+0x4pt/F9/DphghsYJzHFG0e4tjjmtnXqSnaKPNpZXg8PhlXxctZNo8im8D61Z6EdWm0y4isFOGuGjYIDkjGT9Kwmxt4NfWfjjxLJ4x/ZlbVpreO3lnx5iQjC7hIcnHavkvbn9f6VtRqOom2eZm2ApYGcY0no1cSiiiug8IKKKKBBRRRQAUUUUAFFFFAmLH94V+i3wL/5JboH/AF7j/wBCNfnVH94V+ivwL/5JboH/AF7j/wBCNePmXwI/U+Bf48z0DuaKO5or5w/aQbpXz/8Ath/8k5H/AF9RV9AN0r5//bC/5Jyp7faoq7MJ/GifLcTf8iuqfFVDdKKG6V9efze9xtFFFAgooooAKKKKACiiigBKkhPzD60yljO3r9aUo80bGtKXJLnfSx9rfFTwjqfjD4G6ZYaRateXrC3cRKwU7QMk8kdq+bZPgB48jVi2gyr/ANtY/wD4qrWn/tGeNdOsobWLUwsMaBFUxKdoHA61JcftJeOLhSv9oqOO0Kj+lcFOlWp3S2Ptsfj8rx1qjT5kkey/s3a9cS/D/W/DtlOlrr9nK/lK4DBWxgEjofmrkrz4lfGfT9Uazk0yQzK+wyJp2UPvuxjk89a8R0fxnrGg65Jq9heSWt87l2ePADE9c16A37UHjdrZomuLd224EhhXd9c4qfqs027bmsM8w9SjGEpSi47W2E+Ini7xlr2taP4f8btHDEtxDLtCKMZOCcjg8GvYPjt4k1/wL4d8P23hKJorLZhprZNwOF4XA9eua+WPEHijUvFOqSahql1Jd3LEDzGxkDHYdBXZeHvj34s8O6WNPjvI7y2QYjW7jDlQOgGQaudCUlFLQ4sPnEGqka7b5uvX0Pon4R+IvEXiL4b+JbjxFZvBMIikNxLCInnXY/Ud8ZFee/sdt5ev+IieP9ET9XOP5V5p/wAL48Yr9v8A+JqzpeDDxsikAYxwMDH4VheDPiFrHgOe6l0e4EElyoST5d27ByOvSo+qy95HZ/btCM6U0naCsR+Mm/4q7Vs/8/Mg/JjmvojxIB/wyjbHgnyov/Rgr5fu7yTULya6nbfNNIXdumc8mukuPiZr9x4PHhp7vOlBVURbRxg56/XFdE6MnGC7HiYTH06EcRF/bWh137L+F+LOnknA8uTP/fJrovGjD/hpq1Pb7RGM1474W8VX3g3WE1PTJvJuowwV9ueox0/Op7/x1q+p+J11+4ud+pq29ZAoABHTionh5OTdzpw+aU6WGo0XvCV2ex/tVrv+JeghecQDp/vitf8Aa8kDeH/BwBzhZP8A0COvCfF3j3WPG+p29/qtz591bqFjfaFxznoKl8ZfEbW/HdtZwavdC4js8iHKBSAQo7f7oqYYeScX2NK2bUqlPExSfvtNHtn7IDj/AIqEZ5MS/wA6h/Zx8SWml/FTxRYXMoV9QZ0iJOBkOx/w/OvFvB3xE1vwI1z/AGRd/ZxOAJPlByBVnwF4d1Lx540jgsb1bLUJHaYXTNtIbls8H2qamGd5Ns6cJm1vYQoxu4/qdp8RPgP4qt/GeoPp+lS39lPMZoZo8bWyc4PPHPrXp/izwndeCf2Up9LvSn2pNrv5ZyAWulYj6gtWVe6b8cbdDp63a3MeSBdR7D9DnGR+Yq18XrhPAvwIh8L6lfm91q8kDuzPubcZRK34dq5VzSlGNz3fZUcLQxU4xa5l17+R8rfwj6UlK3b6Ule3Zo/KNwooooAKKKKACiiigAooooAQ1oaD/wAhqw/6+I//AEIVQ61f0H/kNWH/AF3T/wBCFY1v4cjrwf8AvEPVH6eaT/yD7f8A65r/ACFXapaT/wAeFt/1zX+Qq7Xxktz+q6fwIKKKKk0CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEbpSetK3Sk9aAPP8A46f8kx8Qf9ep/pX51P1/H/Cv0V+On/JMfEH/AF6t/Svzqfr+P+FfT5b/AA2fhfG/++x9P1YlFFFemfnL3CiiimIKKKKACiiigAooooAktf8AXIMZO4YHvmvuLxr4DuviN8IdI03T7iGG42xS7pchcBTkcfWvhpSVYEEg+1dFB8QPEdvEkUWs3kUaDaqrMwAFclehKo1KL2PpspzOjgaVWnXhzKSPVJv2R/FMcZZtT08ADn5nP9K6/wDZ58QLd+Fte8DPqDaZqqSSGG4jkKsWOASvf5So/A18+t8RfEzZzrl8R/13NYcOoXNteC6huJIpwciRWIfJ5zmolh6k1aTOmlm2EwdVTwtNpPfU+gb74Z/GiG/e1j1zUZbcvgXI1MAEAfeI37h+ArhPH0eveH/F1po3irxBca1bo8crA3TSKBkZGD0/Gueb4seLmhMX9v3gTGPlfr7ZrmLq8mvJXkuJnmkbJZ2YsT7ZPP51UMPPZ2M8XmlCTUqEW7u7Telj63+P2leJ/FGl6BN4NlkudJWM70sptpP3dh6+mRV34YWPifSfhf4ig8UXDyTeTKYYpZRI8aeWeDgn9a+WNJ+IPiLQ7YW2n6vdWsGf9XHIQq8dhVZfGWuKbhv7Uu2+05EpaYksD1zWP1WSST7npSz+i6sqqi05Lb5HvP7JbiPX/FBY4BgjH/jzH+orwrxqRH4w1wk4H2mQ8/U1S0vxBqGiySSWF3LaPL98xuRux2NUZpXuJGkldneTLMzckkmuqFFwk2jwcRmaxGHpUkrcrufUPjB1b9k+yQH5h5K/j5+P515v+zAwX4rWJ9In/nXms3iTU7jSxp0l7M1kORAznZwSw4+tQaZql1o90lzZ3ElvOg2h422n35qY4d+zcb7nXLOIyxlLEuPwpI9x8cSLJ+1BblTkfa7Y/ltBp37VUgm+KWkFef8AQIh/5GlrxGbXL6fU11GS6le9Dh/OZstx05pupa3fa3dJc6hdzXc6jYJJXJKruJGPzNZ/VXvfoUs6i6UouPxSufR/7YkyzWXhzac4Ev8AJah/Y9mWKXxEWPWNMfnXz1q3iLUdeWIajezXnljCLK5O3IHSl0jxFqWg+YdPvJrIyDa32dyMj3pvDt01C4RzqMMa8by7qx7R+zv42s/C/wATtVsr+VYoNSkki8xjwHDkqPx5rT8efsuarqfiq9vtJvLRrC6kaX98xUxkmvIfhroNh4s8Xw2Wp6m2mxSbn+0gjO/+Hk+vWvbrj9n/AMZkLbweNZZdObgMZWyFJ6/l6Vz1YujO6Z7WDqLHYX2VSnzRTZu/ETw3b+Ff2bH0m0vo9RW3Kq80ZypYtkgfjXyN/h/hX0t8bPEmi+DfhfZ+BdMvFvLtceYytnHzl2ye5JNfNLL8pJHORz+FdWDTUW33PH4lq0qmJSo7JJDT1ooorrPknuFFFFAgooooAKKKKACgUUUEsdH96v0V+Bf/ACS3QP8Ar3H/AKEa/OmP7wr9F/gX/wAkt0D/AK9x/wChGvGzL4EfqnAv8abO/wC5ooor50/aQPSvAP2wyD8N0x/z8xfzr35s7eK82+OHwxu/ij4R/sq0uYrObzkl8yUEjjqOK6MPJQqKTPCzzDzxeAq0aSvJn56UjdK+j/8AhinxB/0H7D/v2/8AhR/wxR4g/wCg/Yf9+3/wr6Z46jfc/D3wrmbetO583UV9Jf8ADE+v/wDQesP+/b/4Uf8ADE2v/wDQfsP+/b/4VP1yg+ov9Vc06Uj5tor6S/4Ym1//AKD9h/37f/Cj/hibX/8AoP2H/ft/8KX1yh3D/VXNP+fR820V9Jf8MTa//wBB+w/79v8A4Uf8MTa//wBB+w/79v8A4UfXKHcP9Vc0/wCfR820V9Jf8MTa/wD9B+w/79v/AIUf8MTa/wD9B+w/79v/AIUfXKHcP9Vc0/59HzbRX0l/wxNr/wD0H7D/AL9v/hR/wxNr/wD0H7D/AL9v/hR9dodw/wBVc0/59HzbRX0l/wAMTa//ANB+w/79v/hR/wAMTa//ANB+w/79v/hR9do9w/1VzT/n0fNu760bvrX0l/wxNr//AEH7D/v2/wDhR/wxNr//AEH7D/v2/wDhR9do9w/1VzT/AJ9HzbRX0l/wxNr/AP0H7D/v2/8AhR/wxNr/AP0H7D/v2/8AhR9codw/1VzT/n0fNtFfSX/DE+v/APQfsP8Av2/+FH/DE+v/APQesP8Av2/+FH12j3D/AFVzPrSPm4N9aUtX0h/wxPr/AP0HrD/v2/8AhR/wxPr/AP0HrD/v2/8AhVLG0e4f6qZl/wA+j5t3fWlDHPevpH/hifX/APoPWH/ft/8ACj/hifX/APoPWH/ft/8ACl9coPqH+qmZf8+j5w3GkYkjFfR//DFPiD/oP2H/AH7f/Cj/AIYp8Qf9B+w/79v/AIUvrlHuS+E8z6Uz5u2n61ZtbyexmSeCWSGVCCJI2KkY+lfRH/DFPiD/AKD9h/37f/Cl/wCGKfEH/QesP+/bf4UfXaLVrmkOFs0hqqep5EPjP43ChF8SXuB0wcfhXNatrOoa9dG61G7mvbhjktM2SPpX0F/wxPr/AP0HrD/v2/8AhS/8MUeIP+g9Yf8Aft/8KhYrDI6Z8PZ1UjacW/mfOFLgV9Hf8MUeIP8AoP6f/wB+3/wo/wCGKPEH/Qf0/wD79v8A4VosZQ7nN/qtmj/5dHzjgUYFfR3/AAxR4g/6D+n/APft/wDCj/hijxB/0H9P/wC/b/4U/rlDuH+quaf8+j5xwKMCvo7/AIYo8Qf9B/T/APv2/wDhR/wxR4g/6D+n/wDft/8ACj65Q7h/qrmn/Po+ccCjAr6O/wCGKPEH/Qf0/wD79v8A4Uf8MUeIP+g/p/8A37f/AAo+uUO4f6q5p/z6PnHAowK+jv8AhijxB/0H9P8A+/b/AOFH/DFHiD/oP6f/AN+3/wAKPrlDuH+quaf8+j5wxV3Q/wDkNWH/AF3T/wBCFfQX/DFHiD/oPWH/AH7f/Cp9P/Yz1+z1C2nOuWLLHIrkCNucHOOlZ1MZScGos6cNwzmdOrGU4WSaPrLSv+Qfa/8AXJf5CrtQWsJt4IY+uxQpP0Aqevl2f0BBcsUgooopFhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGk9adTcHmgDz/46D/i2Ov+9sR+or86m7H1PFfp14w8Mx+LvDt5pM0kkMd1H5bSR43Lz2zXhP8AwxXoO7nW9SxjH/LP/wCJr2sJiadGnyyPzDibIcVmmJU6G1j462mjaa+xv+GK/D//AEG9S/8AIf8A8TR/wxX4f/6Depf+Q/8A4mu369RPjv8AU3Mr7nxztNG019jf8MV+H/8AoN6l/wCQ/wD4mj/hivw//wBBvUv/ACH/APE0fXqI/wDU3MT452mjaa+xv+GK/D//AEG9S/8AIf8A8TR/wxX4f/6Depf+Q/8A4mj69RD/AFNzE+Odpo2mvsb/AIYr8P8A/Qb1L/yH/wDE0f8ADFfh/wD6Depf+Q//AImj69RD/U3MT452mjaa+xv+GK/D/wD0G9S/8h//ABNH/DFfh/8A6Depf+Q//iaPr1EP9TcxPjoClNfYn/DFfh//AKDepf8AkP8A+Jo/4Yr8P/8AQb1P/wAh/wDxNP8AtCig/wBTcxPjnmjaa+xv+GK/D/8A0G9S/wDIf/xNH/DFfh//AKDepf8AkP8A+Jp/2hRD/U3MT452mjaa+xv+GK/D/wD0G9S/8h//ABNH/DFfh/8A6Dep/wDkP/4mj+0KIf6m5ifHODRzX2N/wxX4f/6Depf+Q/8A4mj/AIYr8P8A/Qb1L/yH/wDE0vr9Fh/qbmJ8c7TRtNfY3/DFfh//AKDepf8AkP8A+Jo/4Yr8P/8AQb1L/wAh/wDxNNY+iH+puYnxztNKBX2L/wAMV+H/APoN6l/5D/8AiaP+GK/D/wD0G9T/APIf/wATR/aFEP8AU3MT47NN2mvsb/hivw//ANBvUv8AyH/8TR/wxX4f/wCg3qX/AJD/APiaP7Qoh/qbmJ8dAUp6GvsT/hivw/8A9BvUv/If/wATR/wxX4f/AOg3qX/kP/4mj6/RE+DcxsfHXK4OB8vTAGR+dTLf3Pe4l9eXY/yIxX1+P2K9AzzrWpfnH/8AE07/AIYq8Pf9BzUv/If/AMTSeOoFrhPNoq0Hb5nx00jSMWLFmPXNIcmvsU/sV+Hu2t6l/wCQ/wD4mk/4Yr8P/wDQb1L/AMh//E0vr9Ej/U3Mt2fHO00bTX2N/wAMV+H/APoN6l/5D/8AiaP+GK/D/wD0G9S/8h//ABNH16iP/U3MT452mjaa+xv+GK/D/wD0G9S/8h//ABNH/DFfh/8A6Depf+Q//iaPr1EP9TcxPjnaaNpr7G/4Yr8P/wDQb1L/AMh//E0f8MV+H/8AoN6l/wCQ/wD4mj69RD/U3MT452mjaa+xv+GK/D//AEG9S/8AIf8A8TR/wxX4f/6Depf+Q/8A4mj69RD/AFNzE+OcUV9jj9ivw/8A9BvUv/If/wATS/8ADFXh7/oN6n/5D/8AiaPr1EP9Tcy6WPjhPvCv0X+BeR8LdA/69x/6Ea8ub9ivw/tONb1LP/AP8K908G+GY/B/h2y0eCSSaG1TaskmMnkn+tedjcTCtFKJ9xwxkeKyurKeI6m5RSc8frRXkn6OOpKWigBNtGD60tFACUUtFACUUtFACUUtFACUUtFACUUtFACUUtFACUUtFACUUtFACUUtFACUUtFACUYpaKAG7T60bT606igBMH1opaKAEopaKAEopaKAEopaKAEopaKAEopaKAEopaKAEopaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkNLRQA3aaNpp1FADdpo2mnUUAN2mjaadRQA3aaNpp1FADdpo2mnUUAN2mjaadRQA3aaNpp1FADdpo2mnUUAN2mjaadRQA3aaNpp1FADdpo2mnUUAN2mjaadRQA3aaNpp1FADdpo2mnUUAN2mjaadRQA3aaNpp1FADdpo2mnUUAN2mjaadRQA3aaNpp1FADQKdRRQAlLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=\n",
167 | "text/plain": [
168 | ""
169 | ]
170 | },
171 | "metadata": {
172 | "tags": []
173 | },
174 | "execution_count": 2
175 | }
176 | ]
177 | },
178 | {
179 | "cell_type": "markdown",
180 | "metadata": {
181 | "id": "RpvO3Bf-5Q9N"
182 | },
183 | "source": [
184 | "#### before going to Supervised Learning and Unsupervised Learning we should have an idea about labeled data and unlabeled data.\n"
185 | ]
186 | },
187 | {
188 | "cell_type": "markdown",
189 | "metadata": {
190 | "id": "p7cwaSVe5Q9O"
191 | },
192 | "source": [
193 | "### labeled data-\n",
194 | ">1.Labeled data, used by Supervised learning add meaningful tags or labels or class to the observations (or rows). These tags can come from observations or asking people or specialists about the data.\n",
195 | "\n",
196 | ">2.Classification and Regression could be applied to labelled datasets for Supervised learning.\n",
197 | " \n",
198 | ">3.Machine learning models can be applied to the labeled data so that new unlabeled data can be presented to the model and a likely label can be guessed or predicted."
199 | ]
200 | },
201 | {
202 | "cell_type": "markdown",
203 | "metadata": {
204 | "id": "EwVXGH6f5Q9O"
205 | },
206 | "source": [
207 | "### unlabeled data-"
208 | ]
209 | },
210 | {
211 | "cell_type": "markdown",
212 | "metadata": {
213 | "id": "ZknfVLZy5Q9P"
214 | },
215 | "source": [
216 | ">1.Unlabeled data, used by Unsupervised learning however do not have any meaningful tags or labels associated with it.\n",
217 | "\n",
218 | ">2.Unsupervised learning has more difficult algorithms than supervised learning since we know little to no information about the data, or the outcomes that are to be expected.\n",
219 | "\n",
220 | ">3.Clustering is considered to be one of the most popular unsupervised machine learning techniques used for grouping data points, or objects that are somehow similar.\n"
221 | ]
222 | },
223 | {
224 | "cell_type": "markdown",
225 | "metadata": {
226 | "id": "K6xnwNM05Q9P"
227 | },
228 | "source": [
229 | "## Supervised Learning:\n"
230 | ]
231 | },
232 | {
233 | "cell_type": "markdown",
234 | "metadata": {
235 | "id": "AFvGld885Q9P"
236 | },
237 | "source": [
238 | ">1.Supervised learning is one of the most basic types of machine learning. In this type, the machine learning algorithm is trained on labeled data. Even though the data needs to be labeled accurately for this method to work, supervised learning is extremely powerful when used in the right circumstances.\n",
239 | "\n"
240 | ]
241 | },
242 | {
243 | "cell_type": "markdown",
244 | "metadata": {
245 | "id": "t_abWjw95Q9Q"
246 | },
247 | "source": [
248 | ">2.In a supervised learning model, the algorithm learns on a labeled dataset, providing an answer key that the algorithm can use to evaluate its accuracy on training data"
249 | ]
250 | },
251 | {
252 | "cell_type": "markdown",
253 | "metadata": {
254 | "id": "9cbnZV7f5Q9Q"
255 | },
256 | "source": [
257 | "## Unsupervised Learning:\n"
258 | ]
259 | },
260 | {
261 | "cell_type": "markdown",
262 | "metadata": {
263 | "id": "gFdwYoXa5Q9R"
264 | },
265 | "source": [
266 | "> 1.Unsupervised machine learning holds the advantage of being able to work with unlabeled data. This means that human labor is not required to make the dataset machine-readable, allowing much larger datasets to be worked on by the program. "
267 | ]
268 | },
269 | {
270 | "cell_type": "markdown",
271 | "metadata": {
272 | "id": "C2V64pzl5Q9R"
273 | },
274 | "source": [
275 | ">2.unsupervised model, in contrast, provides unlabeled data that the algorithm tries to make sense of by extracting features and patterns on its own."
276 | ]
277 | },
278 | {
279 | "cell_type": "markdown",
280 | "metadata": {
281 | "id": "L1pN_-015Q9R"
282 | },
283 | "source": [
284 | "### This is all about the introduction to ML. "
285 | ]
286 | },
287 | {
288 | "cell_type": "markdown",
289 | "metadata": {
290 | "id": "vMwC3jIm5Q9S"
291 | },
292 | "source": [
293 | "### Hope you liked it <3."
294 | ]
295 | },
296 | {
297 | "cell_type": "markdown",
298 | "metadata": {
299 | "id": "m43ZdmMa5Q9S"
300 | },
301 | "source": [
302 | "#### Thank You:)"
303 | ]
304 | }
305 | ]
306 | }
--------------------------------------------------------------------------------
/Introduction/ML1.JPG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Kushal997-das/Machine-Learning/81c178a3a883adc8ab332e178d35b87d25e27fe3/Introduction/ML1.JPG
--------------------------------------------------------------------------------
/Introduction/README.md:
--------------------------------------------------------------------------------
1 | 
2 |
3 |
4 | Introduction To Machine Learning
5 | Topics Covered:
6 |   >What is Machine Learning?
7 |   >Why machine learning is so important/Why machine learning is the future?
8 |   >Why is it called machine learning?
9 |   >Application of machine Learning.
10 |   >Types of machine learning
11 |
12 | Click this for Documentation
13 | Follow me<3.
14 |
15 |
16 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2020 Kushal Das
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](https://github.com/Kushal997-das)
2 | [](https://github.com/kushal997-das)
3 | 
4 | [](https://github.com/Kushal997-das/Machine-Learning)
5 | 
6 |
7 |
8 |
9 | 
10 |
11 |
12 | - [Day1](Introduction)
13 | - [Introduction to ML](https://github.com/Kushal997-das/Machine-Learning/blob/master/Introduction/Day1%20-Introduction%20to%20ML.ipynb)
14 | - [Day2](https://github.com/Kushal997-das/Machine-Learning/tree/master/Day2.Data%20and%20variable)
15 | - [Day2.Data and variable](https://github.com/Kushal997-das/Machine-Learning/blob/master/Day2.Data%20and%20variable/Data%20and%20variable.ipynb)
16 |
17 |
18 |
19 | Let's connect! Find me on the web.
20 |
21 | [
][Youtube]
22 | [
][gmail]
23 | [
][LinkedIn]
24 | [
][Github]
25 |
26 |
27 |
28 | [youtube]: https://www.youtube.com/channel/UCIHj6mNCMnSnmWLHOxzIESw?view_as=subscriber
29 | [gmail]: mailto:daskushal980@gmail.com
30 | [linkedin]: https://www.linkedin.com/in/kushal-das-7337421a9/
31 | [github]: https://github.com/Kushal997-das/
32 |
33 |
34 |
35 |
36 | If you have any Queries or Suggestions, feel free to reach out to me.
37 |
38 | Show some ❤️ by starring some of the repositories!
39 |
--------------------------------------------------------------------------------