├── README.md
├── TASK 1.ipynb
└── TASK-2.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Spark-Foundation
2 | The spark Foundation intership
3 | Hello Everyone i am doing an internship at the sparks foundation and this repository has task given by them i hope you guys like it and if you like do follow me on linkdin.
4 | ## Mandatory Task
5 | Improve your linkdin account: www.linkedin.com/in/shruthi-jain-81b4571ab
6 | ## PROJECTS(TASKS)
7 | There were many task given in which few are begginer level and some intermediate or advanced level , I have not completed all of them but i want to mention
8 | all the task according to which you can open my file.
9 | * Task-1 : Prediction Using Supervised Learning , predicting the percentage of student based on the number of hours studied.
10 | * Task-2: Prediction Using Unsupervised Learning. (iris dataset)
11 | * Task-3: Exploratory Data Analysis - Retail (As a manager figure out which area in business needs more attention)
12 | * Task-4 : Perform ‘Exploratory Data Analysis’ on dataset ‘Global Terrorism’
13 | * Task-5:Perform ‘Exploratory Data Analysis’ on dataset ‘Indian Premier League’
14 | * Task-6:Prediction using Decision Tree Algorithm
15 | * Task-7: Stock Market Prediction using Numerical and Textual Analysis
16 | * Task-8: Timeline Analysis : Covid-19
17 | # THANK YOU!!!!
18 |
--------------------------------------------------------------------------------
/TASK 1.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# ***The Spark Foundation - Task-1*** "
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "## ***Prediction using supervised learning ,Predict the percentage of an student based on the no. of study hours.***"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "### ***Import The Required Libraries***"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 67,
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "import numpy as np\n",
31 | "import pandas as pd\n",
32 | "import matplotlib.pyplot as plt\n",
33 | "%matplotlib inline\n",
34 | "from sklearn.model_selection import train_test_split\n",
35 | "from sklearn.linear_model import LinearRegression\n",
36 | "from sklearn.metrics import mean_absolute_error"
37 | ]
38 | },
39 | {
40 | "cell_type": "markdown",
41 | "metadata": {},
42 | "source": [
43 | "### ***Reading The CSV file***"
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": 2,
49 | "metadata": {},
50 | "outputs": [
51 | {
52 | "data": {
53 | "text/html": [
54 | "
\n",
55 | "\n",
68 | "
\n",
69 | " \n",
70 | " \n",
71 | " \n",
72 | " Hours \n",
73 | " Scores \n",
74 | " \n",
75 | " \n",
76 | " \n",
77 | " \n",
78 | " 0 \n",
79 | " 2.5 \n",
80 | " 21 \n",
81 | " \n",
82 | " \n",
83 | " 1 \n",
84 | " 5.1 \n",
85 | " 47 \n",
86 | " \n",
87 | " \n",
88 | " 2 \n",
89 | " 3.2 \n",
90 | " 27 \n",
91 | " \n",
92 | " \n",
93 | " 3 \n",
94 | " 8.5 \n",
95 | " 75 \n",
96 | " \n",
97 | " \n",
98 | " 4 \n",
99 | " 3.5 \n",
100 | " 30 \n",
101 | " \n",
102 | " \n",
103 | " 5 \n",
104 | " 1.5 \n",
105 | " 20 \n",
106 | " \n",
107 | " \n",
108 | " 6 \n",
109 | " 9.2 \n",
110 | " 88 \n",
111 | " \n",
112 | " \n",
113 | " 7 \n",
114 | " 5.5 \n",
115 | " 60 \n",
116 | " \n",
117 | " \n",
118 | " 8 \n",
119 | " 8.3 \n",
120 | " 81 \n",
121 | " \n",
122 | " \n",
123 | " 9 \n",
124 | " 2.7 \n",
125 | " 25 \n",
126 | " \n",
127 | " \n",
128 | " 10 \n",
129 | " 7.7 \n",
130 | " 85 \n",
131 | " \n",
132 | " \n",
133 | " 11 \n",
134 | " 5.9 \n",
135 | " 62 \n",
136 | " \n",
137 | " \n",
138 | " 12 \n",
139 | " 4.5 \n",
140 | " 41 \n",
141 | " \n",
142 | " \n",
143 | " 13 \n",
144 | " 3.3 \n",
145 | " 42 \n",
146 | " \n",
147 | " \n",
148 | " 14 \n",
149 | " 1.1 \n",
150 | " 17 \n",
151 | " \n",
152 | " \n",
153 | " 15 \n",
154 | " 8.9 \n",
155 | " 95 \n",
156 | " \n",
157 | " \n",
158 | " 16 \n",
159 | " 2.5 \n",
160 | " 30 \n",
161 | " \n",
162 | " \n",
163 | " 17 \n",
164 | " 1.9 \n",
165 | " 24 \n",
166 | " \n",
167 | " \n",
168 | " 18 \n",
169 | " 6.1 \n",
170 | " 67 \n",
171 | " \n",
172 | " \n",
173 | " 19 \n",
174 | " 7.4 \n",
175 | " 69 \n",
176 | " \n",
177 | " \n",
178 | " 20 \n",
179 | " 2.7 \n",
180 | " 30 \n",
181 | " \n",
182 | " \n",
183 | " 21 \n",
184 | " 4.8 \n",
185 | " 54 \n",
186 | " \n",
187 | " \n",
188 | " 22 \n",
189 | " 3.8 \n",
190 | " 35 \n",
191 | " \n",
192 | " \n",
193 | " 23 \n",
194 | " 6.9 \n",
195 | " 76 \n",
196 | " \n",
197 | " \n",
198 | " 24 \n",
199 | " 7.8 \n",
200 | " 86 \n",
201 | " \n",
202 | " \n",
203 | "
\n",
204 | "
"
205 | ],
206 | "text/plain": [
207 | " Hours Scores\n",
208 | "0 2.5 21\n",
209 | "1 5.1 47\n",
210 | "2 3.2 27\n",
211 | "3 8.5 75\n",
212 | "4 3.5 30\n",
213 | "5 1.5 20\n",
214 | "6 9.2 88\n",
215 | "7 5.5 60\n",
216 | "8 8.3 81\n",
217 | "9 2.7 25\n",
218 | "10 7.7 85\n",
219 | "11 5.9 62\n",
220 | "12 4.5 41\n",
221 | "13 3.3 42\n",
222 | "14 1.1 17\n",
223 | "15 8.9 95\n",
224 | "16 2.5 30\n",
225 | "17 1.9 24\n",
226 | "18 6.1 67\n",
227 | "19 7.4 69\n",
228 | "20 2.7 30\n",
229 | "21 4.8 54\n",
230 | "22 3.8 35\n",
231 | "23 6.9 76\n",
232 | "24 7.8 86"
233 | ]
234 | },
235 | "execution_count": 2,
236 | "metadata": {},
237 | "output_type": "execute_result"
238 | }
239 | ],
240 | "source": [
241 | "url=\"https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv\"\n",
242 | "df=pd.read_csv(url)\n",
243 | "df"
244 | ]
245 | },
246 | {
247 | "cell_type": "markdown",
248 | "metadata": {},
249 | "source": [
250 | "### ***Checking how many null values are there in dataset***"
251 | ]
252 | },
253 | {
254 | "cell_type": "code",
255 | "execution_count": 3,
256 | "metadata": {},
257 | "outputs": [
258 | {
259 | "data": {
260 | "text/plain": [
261 | "Hours 0\n",
262 | "Scores 0\n",
263 | "dtype: int64"
264 | ]
265 | },
266 | "execution_count": 3,
267 | "metadata": {},
268 | "output_type": "execute_result"
269 | }
270 | ],
271 | "source": [
272 | "df.isna().sum()"
273 | ]
274 | },
275 | {
276 | "cell_type": "markdown",
277 | "metadata": {},
278 | "source": [
279 | "### ***Descriptive analysis of the dataset using describe function***"
280 | ]
281 | },
282 | {
283 | "cell_type": "code",
284 | "execution_count": 4,
285 | "metadata": {},
286 | "outputs": [
287 | {
288 | "data": {
289 | "text/html": [
290 | "\n",
291 | "\n",
304 | "
\n",
305 | " \n",
306 | " \n",
307 | " \n",
308 | " Hours \n",
309 | " Scores \n",
310 | " \n",
311 | " \n",
312 | " \n",
313 | " \n",
314 | " count \n",
315 | " 25.000000 \n",
316 | " 25.000000 \n",
317 | " \n",
318 | " \n",
319 | " mean \n",
320 | " 5.012000 \n",
321 | " 51.480000 \n",
322 | " \n",
323 | " \n",
324 | " std \n",
325 | " 2.525094 \n",
326 | " 25.286887 \n",
327 | " \n",
328 | " \n",
329 | " min \n",
330 | " 1.100000 \n",
331 | " 17.000000 \n",
332 | " \n",
333 | " \n",
334 | " 25% \n",
335 | " 2.700000 \n",
336 | " 30.000000 \n",
337 | " \n",
338 | " \n",
339 | " 50% \n",
340 | " 4.800000 \n",
341 | " 47.000000 \n",
342 | " \n",
343 | " \n",
344 | " 75% \n",
345 | " 7.400000 \n",
346 | " 75.000000 \n",
347 | " \n",
348 | " \n",
349 | " max \n",
350 | " 9.200000 \n",
351 | " 95.000000 \n",
352 | " \n",
353 | " \n",
354 | "
\n",
355 | "
"
356 | ],
357 | "text/plain": [
358 | " Hours Scores\n",
359 | "count 25.000000 25.000000\n",
360 | "mean 5.012000 51.480000\n",
361 | "std 2.525094 25.286887\n",
362 | "min 1.100000 17.000000\n",
363 | "25% 2.700000 30.000000\n",
364 | "50% 4.800000 47.000000\n",
365 | "75% 7.400000 75.000000\n",
366 | "max 9.200000 95.000000"
367 | ]
368 | },
369 | "execution_count": 4,
370 | "metadata": {},
371 | "output_type": "execute_result"
372 | }
373 | ],
374 | "source": [
375 | "df.describe()"
376 | ]
377 | },
378 | {
379 | "cell_type": "markdown",
380 | "metadata": {},
381 | "source": [
382 | "### ***information about the dataset***"
383 | ]
384 | },
385 | {
386 | "cell_type": "code",
387 | "execution_count": 5,
388 | "metadata": {},
389 | "outputs": [
390 | {
391 | "name": "stdout",
392 | "output_type": "stream",
393 | "text": [
394 | "\n",
395 | "RangeIndex: 25 entries, 0 to 24\n",
396 | "Data columns (total 2 columns):\n",
397 | " # Column Non-Null Count Dtype \n",
398 | "--- ------ -------------- ----- \n",
399 | " 0 Hours 25 non-null float64\n",
400 | " 1 Scores 25 non-null int64 \n",
401 | "dtypes: float64(1), int64(1)\n",
402 | "memory usage: 528.0 bytes\n"
403 | ]
404 | }
405 | ],
406 | "source": [
407 | "df.info()"
408 | ]
409 | },
410 | {
411 | "cell_type": "markdown",
412 | "metadata": {},
413 | "source": [
414 | "### ***Plotting a scatter plot showing relationship between No of Hours vs scores*** "
415 | ]
416 | },
417 | {
418 | "cell_type": "code",
419 | "execution_count": 6,
420 | "metadata": {},
421 | "outputs": [
422 | {
423 | "data": {
424 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAcbUlEQVR4nO3de5RdZZ3m8e9DEoQgJFwK5JYUjjTigCIWKGojbUBE5NJecWIbbdrMOI5C66goY9v0WmlltQ3oaNtGUGMbUOTSoCgtE0Vl2aAVLgYMGoUkQCIpgYRLVAg888feBUVRl1OV2ue2n89atc45++zL7xThV+9533f/XtkmIiLqY5tWBxAREc2VxB8RUTNJ/BERNZPEHxFRM0n8ERE1k8QfEVEzSfwRETWTxB8tJWm1pKOHbXunpOtaFVMZwxclfW2E7S+U9CdJu0iaLenLkn4n6SFJv5b0kTHOeaqk28t975V0laQdq/0kEc+UxB+1IWn6BHb/KvAGSTsM2/4O4Du27wfOBZ4NHAjMAk4EfjvKtV8F/CPwNts7lsdcPKEPMI4Jfr6osST+aHuSDpR0raSNkm6TdOKQ966V9DdDXj/t24IkS3qvpFXAKhXOlbRB0iZJv5B00PBr2v5P4B7gjUPONQ34b8CSctNhwIW2H7D9hO3bbV8yysc4DPhP2zeV57/f9hLbD5Xn3l7SP0taU8Z1naTty/dOLD/3xvLzHjgkptWSPiLpF8AjkqZL2kvSpZIGJN0p6f1D9j9cUr+kB8tvHec0+t8hukcSf7Q1STOAbwPfB3YH3gcslXTABE5zMvBS4AXAa4AjgT8DZgNvBe4b5bivUbTwBx0NzAC+V76+Hlgk6V2S9h8nhhuAYyWdJekVkp417P1PAy8BXg7sAnwYeELSnwEXAacDPcB3gW9L2nbIsW8Dji8/zxMUv69bgL2BecDpko4t9/0M8BnbOwH/hSn+1hGdIYk/2sG/l63ZjZI2Av8y5L2XUXSnfMr2o7Z/AHyHItk16pNlC/sPwGPAjsDzAdleaXv9KMf9G/AqSfuUr99B0cJ/rHz9PmAp8L+AX0r6jaTjRjqR7Z8AbwAOBa4C7pN0jqRpkrYB/ho4zfY9th+3/VPbf6L4w3SV7WvK634a2J7iD8Sgz9q+q/x8hwE9tv+h/H3dAXwJOKXc9zHgeZJ2s/2w7esb/zVGt0jij3Zwsu3Zgz/A/xzy3l7AXbafGLJtDUVrtlF3DT4p/3B8Dvg8cK+kxZJ2Gukg22uBHwNvl/Rsim8OS4a8/wfb/2j7JcCuFK3nb0naZZTzfc/2CRQt+pOAdwJ/A+wGbMfI4wN7lZ938BxPlJ9n6Oe/a8jzucBew/6QfgzYo3z/VIpvO7dL+rmk148Ua3S3JP5od+uAfctW8aA5FP3vAI8AM4e895wRzvG0ErS2P1sm6/9KkQQ/NMb1l1C09N8I3Gn7xpF2sv0gxeDtDsB+Y5yPcjxgGfAD4CDg98AfKbpehltHkcwBkCRgX576/MM/311lnLOH/Oxo+3XltVfZfhtFt9nZwCUjDGBHl0vij3Z3A0Vy/7CkGZKOAk4AvlG+fzPF7JuZkp5H0aIdlaTDJL20HDt4hCLhPj7GIZdSJNqzGNLaL8/18fJ820raDjgN2Aj8aoTrniTpFEk7lwPMhwOvAq4vW/FfBs4pB2anSTqiHAe4GDhe0rwy5g8CfwJ+Okq8PwMeLAd8ty/PdZCkw8o43i6pp7zmxvKYsT5/dKEk/mhrth+lmCZ5HEXL+F+Ad9i+vdzlXOBR4F6KxLx0nFPuRNHn/QBFF8p9FP3mo13/EZ5K/sPPbeArZVzrgGOA420/PMKpHgDeDawCHgS+DvyT7cFz/m9gBfBz4H6K1vg2tn8FvB34v+V1TgBOKH8vI8X7eLnPIcCd5THnU0w3BXgtcJukhykGek+x/cfRPn90J2UhloiIekmLPyKiZpL4IyJqJok/IqJmkvgjImqmI4o67bbbbu7t7W11GBERHWX58uW/t90zfHtHJP7e3l76+/tbHUZEREeRtGak7enqiYiomST+iIiaSeKPiKiZJP6IiJpJ4o+IqJkk/oiIJli6Yim95/WyzVnb0HteL0tXjFdPsDodMZ0zIqKTLV2xlIXfXsjmxzYDsGbTGhZ+eyEA8w+e3/R40uKPiKjYmcvOfDLpD9r82GbOXHZmS+JJ4o+IqNjaTWsntL1qSfwRERWbM2vOhLZXLYk/IqJii+YtYuaMmU/bNnPGTBbNW9SSeJL4IyIqNv/g+Sw+YTFzZ81FiLmz5rL4hMUtGdiFDll6sa+vzynSFhExMZKW2+4bvj0t/oiImknij4iomST+iIiaSeKPiKiZJP6IiJqpNPFLOk3SrZJuk3R6uW0XSddIWlU+7lxlDBER8XSVJX5JBwHvBg4HXgS8XtL+wBnAMtv7A8vK1xER0SRVtvgPBK63vdn2FuBHwF8CJwFLyn2WACdXGENERAxTZeK/FThS0q6SZgKvA/YF9rC9HqB83H2kgyUtlNQvqX9gYKDCMCMi6qWyxG97JXA2cA1wNXALsGUCxy+23We7r6enp6IoIyLqp9LBXdsX2D7U9pHA/cAq4F5JewKUjxuqjCEiotNUvVpX1bN6di8f5wBvAC4CrgQWlLssAK6oMoaIiE4yuFrXmk1rMH5yta6pTP5Vz+O/VNIvgW8D77X9APAp4BhJq4BjytcREUFzVuuqdM1d238+wrb7gHlVXjciolM1Y7Wu3LkbEdFGmrFaVxJ/RHS8qgdDm6kZq3Ul8UdER2vGYGgzNWO1rqzAFREdrfe8XtZsWvOM7XNnzWX16aubH1AbyQpcEdE1hnbtjJT0YWoHQ7tNpbN6IiKm2mDXzvApj8NN5WBot0mLPyI6ykjz3Ieb6sHQbpPEHxEdZawunKoGQ7tNunoioqPMmTUng7lbKS3+iOgozZjn3u2S+COiozRjnnu3yzz+iIgulXn8EREBJPFHRNROEn9ERKmbir2NJdM5IyJ45h3Bg8XegK4bOK566cW/lXSbpFslXSRpO0n7SbpB0ipJ35S0bZUxREQ0ohkrX7WLyhK/pL2B9wN9tg8CpgGnAGcD59reH3gAOLWqGCIiGtWMla/aRdV9/NOB7SVNB2YC64FXA5eU7y8BTq44hoiIcTVj5at2UVnit30P8GlgLUXC3wQsBzba3lLudjew90jHS1ooqV9S/8DAQFVhRkQA9bojuMqunp2Bk4D9gL2AHYDjRth1xDvIbC+23We7r6enp6owIyKAet0RXOWsnqOBO20PAEi6DHg5MFvS9LLVvw+wrsIYIiIaNv/g+V2Z6Ierso9/LfAySTMlCZgH/BL4IfCmcp8FwBUVxhAREcNU2cd/A8Ug7o3AivJai4GPAB+Q9BtgV+CCqmKIiIhnqvQGLtufAD4xbPMdwOFVXjciIkaXkg0RETWTxB8Rk1aX2jbdJrV6ImJS6lTbptukxR8Rk1Kn2jbdJok/IialTrVtBnVL11YSf0RMSp1q28BTXVtrNq3B+MmurU5M/kn8ETEpdaptA93VtZXEHxGTUqfaNtBdXVuZ1RMRk1aX2jZQdGGt2bRmxO2dJi3+iIgGdFPXVhJ/REQDuqlrS/aI5fDbSl9fn/v7+1sdRkRER5G03Hbf8O1p8UdE1EwSf0REzSTxR0TUTBJ/RETNVLnY+gGSbh7y86Ck0yXtIukaSavKx52riiEiIp6pyqUXf2X7ENuHAC8BNgOXA2cAy2zvDywrX0dERJM0q6tnHvBb22uAk4Al5fYlwMlNiiEiImhe4j8FuKh8voft9QDl4+5NiiEi2li3lDzuBJUnfknbAicC35rgcQsl9UvqHxgYqCa4iGgL3VTyuBM0o8V/HHCj7XvL1/dK2hOgfNww0kG2F9vus93X09PThDAjolW6qeRxJ2hG4n8bT3XzAFwJLCifLwCuaEIMEdHGuqnkcSeoNPFLmgkcA1w2ZPOngGMkrSrf+1SVMURE+6vbal6tVmnit73Z9q62Nw3Zdp/tebb3Lx/vrzKGiDro9IHRbip53Aly525Eh+uGgdFuKnncCVKWOaLD9Z7XO+LKUHNnzWX16aubH1C0jZRljuhSGRiNiUrij+hwGRiNiUrij+hwGRiNiUrij+hwGRiNicrgbkREl8rgbkREAEn8ERG1k8QfEVEzSfwRETWTxB8RUTNJ/BEdoNOLsEV7md7qACJibINF2AYXKhkswgZkrn5MSlr8EW0uq1PFVEvij2hzKcIWUy2JP6LNpQhbTLWGEr+kN0vasXz+fyRdJunQBo6bLekSSbdLWinpCEm7SLpG0qryceet/RARnWCyA7QpwhZTrdEW/8dtPyTplcCxwBLgCw0c9xngatvPB14ErATOAJbZ3h9YVr6O6Gpbs0pWirDFVGuoSJukm2y/WNIngRW2LxzcNsYxOwG3AM/1kItI+hVwlO31kvYErrV9wFjXT5G26HRZJStaYWuLtN0j6YvAW4DvSnpWA8c+FxgAviLpJknnS9oB2MP2eoDycfdRAl4oqV9S/8DAQINhRrSnDNBGO2k08b8F+A/gtbY3ArsAHxrnmOnAocAXym8GjzCBbh3bi2332e7r6elp9LCItpQB2mgnDSV+25uBDcAry01bgFXjHHY3cLftG8rXl1D8Ibi37OKhfNww0aAjOk0GaKOdNDqr5xPAR4CPlptmAF8f6xjbvwPukjTYfz8P+CVwJbCg3LYAuGKCMUd0nAzQRjtpdHD3ZuDFwI2DA7qSfmH7heMcdwhwPrAtcAfwLoo/NhcDc4C1wJtt3z/WeTK4GxExcaMN7jZaq+dR25bk8mQ7NHKQ7ZuBZ1yUovUfEREt0Ojg7sXlrJ7Zkt4N/D/gS9WFFRERVWmoxW/705KOAR4EDgD+zvY1lUYWERGVGDfxS5oG/Ifto4Ek+4iIDjduV4/tx4HNkmY1IZ6IiKhYo4O7fwRWSLqG4kYsAGy/v5KoIiKiMo0m/qvKn4iI6HCN3rm7BLgIWF7+XFhui+h4Wc826qahFr+koyhKMa8GBOwraYHtH1cXWkT1sp5t1FGj8/j/GXiN7VfZPpKiJv+51YUV0RxZzzbqqNHEP8P2rwZf2P41Rb2eiI6WcslRR40m/n5JF0g6qvz5EkVff0RHS7nkqKNGE/97gNuA9wOnUVTZ/B9VBRXRLCmXHHXU6HTO6cBnbJ8DT97N+6zKoopoksEB3DOXncnaTWuZM2sOi+YtysBudLVGyzJfDxxt++Hy9bOB79t+ecXxASnLHBExGVu75u52g0kfoHw+c4z9IyKiTTWa+B+RdOjgC0l9wB+qCSkiIqrUaB//6cC3JK0DDOwFvHW8gyStBh4CHge22O6TtAvwTaCX4oawt9h+YMKRR0TEpIzZ4pd0mKTn2P458HyKhL0FuBq4s8Fr/IXtQ4b0M50BLLO9P7CsfB0REU0yXlfPF4FHy+dHAB8DPg88ACye5DVPoij/QPl48iTPExERkzBe4p82ZCH0twKLbV9q++PA8xo4v4HvS1ouaWG5bQ/b6wHKx91HOlDSQkn9kvoHBgYauFRERDRivD7+aZKm295CsUD6wiHvNTI+8Arb6yTtDlwj6fZGA7O9mPJbRV9f3/hzTiMioiHjJe+LgB9J+j3FLJ6fAEh6HrBpvJPbXlc+bpB0OXA4cK+kPW2vl7QnsGFrPkBEREzMmF09thcBHwS+CrzST93ttQ3wvrGOlbSDpB0HnwOvAW4FrgQWlLstAK6YbPARETFx43bX2L5+hG2/buDcewCXSxq8zoW2r5b0c+BiSacCa4E3TyzkiIjYGo3O458w23cALxph+30U4wURHWfpiqWp6xMdr7LEH9FtslpXdItGSzZE1F5W64pukcQf0aCs1hXdIok/okFZrSu6RRJ/RIOyWld0iyT+iAbNP3g+i09YzNxZcxFi7qy5LD5hcQZ2o+M0tAJXq2UFroiIidvaFbgiIqJLJPFHRNRMEn9ERM0k8UdE1EwSf0REzSTxx7iWrlhK73m9bHPWNvSe18vSFUtbHVJEbIUUaYsxpTBZRPdJiz/G1KmFyfItJWJ0afHHmDqxMFm+pUSMrfIWv6Rpkm6S9J3y9X6SbpC0StI3JW1bdQwxeZ1YmKxTv6VENEszunpOA1YOeX02cK7t/YEHgFObEENMUicWJuvEbykRzVRp4pe0D3A8cH75WsCrgUvKXZYAJ1cZQ2ydTixM1onfUiKaqeo+/vOADwM7lq93BTba3lK+vhvYu+IYYivNP3h+Wyf64RbNW/S0Pn5o/28pEc1UWYtf0uuBDbaXD908wq4jlgeVtFBSv6T+gYGBSmKM7tSJ31IimqmyssySPgn8FbAF2A7YCbgcOBZ4ju0tko4A/t72sWOdK2WZIyImrullmW1/1PY+tnuBU4Af2J4P/BB4U7nbAuCKqmKIiIhnasUNXB8BPiDpNxR9/he0IIaIiNpqyg1ctq8Fri2f3wEc3ozrRkTEM6VkQ0REzSTxR0TUTBJ/RETNJPFHRNRMEn80VcolR7ReyjJH06RcckR7SIs/miblkiPaQxJ/NE3KJUe0hyT+aJqUS45oD0n80TSduKhLRDdK4o+mSbnkiPZQWVnmqZSyzBERE9f0sswREdGekvgjImomiT8iomaS+CMiaiaJPyKiZipL/JK2k/QzSbdIuk3SWeX2/STdIGmVpG9K2raqGLrNWAXOWlX8LEXXIjpPlUXa/gS82vbDkmYA10n6HvAB4Fzb35D0r8CpwBcqjKMrjFXgDGhJ8bMUXYvoTE2Zxy9pJnAd8B7gKuA5trdIOgL4e9vHjnV85vFD73m9rNm05hnb586aCzDqe6tPX92SmKq8bkQ0ZrR5/JWWZZY0DVgOPA/4PPBbYKPtLeUudwN7j3LsQmAhwJw5qeUymQJnVRc/S9G1iM5U6eCu7cdtHwLsAxwOHDjSbqMcu9h2n+2+np6eKsPsCGMVOGtV8bMUXYvoTE2Z1WN7I3At8DJgtqTBbxr7AOuaEUOnG6vAWauKn6XoWkRnqnJWT4+k2eXz7YGjgZXAD4E3lbstAK6oKoZuMlaBs1YVP0vRtYjOVNngrqQXAkuAaRR/YC62/Q+Sngt8A9gFuAl4u+0/jXWuDO5GRExc0wd3bf8CePEI2++g6O+PNrV0xVLOXHYmazetZc6sOSyatyit+IguksXW42kyNz+i+6VkQzxNFkSP6H5J/PE0mZsf0f2S+ONpMjc/ovsl8XeJqSqWlrn5Ed0vib8LDA7Irtm0BuMnB2Qnk/wzNz+i+2Wx9SnWiqmQKZYWESNpSZG2umnVVMgMyEbERKSrZwq1aipkBmQjYiKS+KdQq1reGZCNiIlI4p9CrWp5Z0A2IiYiffxTaNG8RU/r44fmtbwHq3RGRIwnLf4plJZ3RHSCTOeMiOhSo03nTIu/g0zV3bkRUW/p4+8QKZccEVOlyqUX95X0Q0krJd0m6bRy+y6SrpG0qnzcuaoYJqsdW9YplxwRU6XKrp4twAdtH0ixyPp7Jb0AOANYZnt/YFn5um1MZd2bqZS7cyNiqlSW+G2vt31j+fwhioXW9wZOoliLl/Lx5KpimIx2bVnn7tyImCpNGdyV1Eux/u4NwB6210PxxwHYfZRjFkrql9Q/MDDQjDCB9m1Z5+7ciJgqlSd+Sc8GLgVOt/1go8fZXmy7z3ZfT09PdQEO064t69wjEBFTpdJZPZJmUCT9pbYvKzffK2lP2+sl7QlsqDKGiWrl3bfjyd25ETEVqpzVI+ACYKXtc4a8dSWwoHy+ALiiqhgmIy3riOh2ld25K+mVwE+AFcAT5eaPUfTzXwzMAdYCb7Z9/1jnyp27ERET1/SFWGxfB2iUt+dVdd1BrVgJKyKiE3Tlnbu5yzUiYnRdWaunXefiR0S0g65M/O06Fz8ioh10ZeJv17n4ERHtoCsTf+5yjYgYXVcm/szFj4gYXVbgiojoUlmBKyIigCT+iIjaSeKPiKiZJP6IiJpJ4o+IqJmOmNUjaQBYM4FDdgN+X1E4k9WOMUF7xtWOMUF7xtWOMUF7xtWOMUG1cc21/YyVrDoi8U+UpP6RpjC1UjvGBO0ZVzvGBO0ZVzvGBO0ZVzvGBK2JK109ERE1k8QfEVEz3Zr4F7c6gBG0Y0zQnnG1Y0zQnnG1Y0zQnnG1Y0zQgri6so8/IiJG160t/oiIGEUSf0REzXRV4pf0ZUkbJN3a6lgGSdpX0g8lrZR0m6TT2iCm7ST9TNItZUxntTqmQZKmSbpJ0ndaHcsgSaslrZB0s6S2KRMrabakSyTdXv77OqLF8RxQ/o4Gfx6UdHorYxok6W/Lf+u3SrpI0nZtENNpZTy3Nfv31FV9/JKOBB4Gvmb7oFbHAyBpT2BP2zdK2hFYDpxs+5ctjEnADrYfljQDuA44zfb1rYppkKQPAH3ATrZf3+p4oEj8QJ/ttrr5R9IS4Ce2z5e0LTDT9sZWxwXFH3DgHuCltidy82UVsexN8W/8Bbb/IOli4Lu2v9rCmA4CvgEcDjwKXA28x/aqZly/q1r8tn8M3N/qOIayvd72jeXzh4CVwN4tjsm2Hy5fzih/Wt4CkLQPcDxwfqtjaXeSdgKOBC4AsP1ouyT90jzgt61O+kNMB7aXNB2YCaxrcTwHAtfb3mx7C/Aj4C+bdfGuSvztTlIv8GLghtZG8mSXys3ABuAa2y2PCTgP+DDwRKsDGcbA9yUtl7Sw1cGUngsMAF8pu8bOl7RDq4Ma4hTgolYHAWD7HuDTwFpgPbDJ9vdbGxW3AkdK2lXSTOB1wL7NungSf5NIejZwKXC67QdbHY/tx20fAuwDHF5+9WwZSa8HNthe3so4RvEK24cCxwHvLbsUW206cCjwBdsvBh4BzmhtSIWy2+lE4FutjgVA0s7AScB+wF7ADpLe3sqYbK8EzgauoejmuQXY0qzrJ/E3QdmPfimw1PZlrY5nqLJ74FrgtS0O5RXAiWV/+jeAV0v6emtDKtheVz5uAC6n6JdttbuBu4d8U7uE4g9BOzgOuNH2va0OpHQ0cKftAduPAZcBL29xTNi+wPahto+k6KJuSv8+JPFXrhxIvQBYafucVscDIKlH0uzy+fYU/2Pc3sqYbH/U9j62eym6CX5gu6WtMgBJO5SD8pRdKa+h+JreUrZ/B9wl6YBy0zygZRMGhnkbbdLNU1oLvEzSzPL/x3kUY20tJWn38nEO8Aaa+Dub3qwLNYOki4CjgN0k3Q18wvYFrY2KVwB/Bawo+9QBPmb7uy2MaU9gSTnzYhvgYtttM32yzewBXF7kC6YDF9q+urUhPel9wNKya+UO4F0tjoeyv/oY4L+3OpZBtm+QdAlwI0V3yk20R/mGSyXtCjwGvNf2A826cFdN54yIiPGlqyciomaS+CMiaiaJPyKiZpL4IyJqJok/IqJmkvgjSpIeHvb6nZI+16p4IqqSxB9RsfJ+iYi2kcQf0QBJcyUtk/SL8nFOuf2rkt40ZL+Hy8ejynUYLqS4eW8HSVeVayDcKumtLfooEd11527EVtp+yN3VALsAV5bPP0exzsMSSX8NfBY4eZzzHQ4cZPtOSW8E1tk+HkDSrCmOPaJhafFHPOUPtg8Z/AH+bsh7RwAXls//DXhlA+f7me07y+crgKMlnS3pz21vmrqwIyYmiT9icgZrnWyh/P+oLAC27ZB9HnlyZ/vXwEso/gB8UtLQPyoRTZXEH9GYn1JUDQWYT7GUH8BqioQORc33GSMdLGkvYLPtr1MsCtIuJZSjhtLHH9GY9wNflvQhipWvBithfgm4QtLPgGUMaeUPczDwT5KeoKjG+J6K440YVapzRkTUTLp6IiJqJok/IqJmkvgjImomiT8iomaS+CMiaiaJPyKiZpL4IyJq5v8DJLMVKf0l3kkAAAAASUVORK5CYII=\n",
425 | "text/plain": [
426 | ""
427 | ]
428 | },
429 | "metadata": {
430 | "needs_background": "light"
431 | },
432 | "output_type": "display_data"
433 | }
434 | ],
435 | "source": [
436 | "plt.xlabel('Hours')\n",
437 | "plt.ylabel('Scores')\n",
438 | "plt.title('Hours VS Scores')\n",
439 | "plt.scatter(df.Hours,df.Scores,color='green')\n",
440 | "plt.show()"
441 | ]
442 | },
443 | {
444 | "cell_type": "markdown",
445 | "metadata": {},
446 | "source": [
447 | "### ***Two variables for the regression***"
448 | ]
449 | },
450 | {
451 | "cell_type": "code",
452 | "execution_count": 10,
453 | "metadata": {},
454 | "outputs": [],
455 | "source": [
456 | "x=np.array(df.Hours)\n",
457 | "y=np.array(df.Scores)"
458 | ]
459 | },
460 | {
461 | "cell_type": "markdown",
462 | "metadata": {},
463 | "source": [
464 | "### ***Reshaping the numpy array for vertical output***"
465 | ]
466 | },
467 | {
468 | "cell_type": "code",
469 | "execution_count": 14,
470 | "metadata": {},
471 | "outputs": [],
472 | "source": [
473 | "x=x.reshape(-1,1)\n",
474 | "y=y.reshape(-1,1)"
475 | ]
476 | },
477 | {
478 | "cell_type": "markdown",
479 | "metadata": {},
480 | "source": [
481 | "### ***Splitting the data into test data and train data***"
482 | ]
483 | },
484 | {
485 | "cell_type": "code",
486 | "execution_count": 16,
487 | "metadata": {},
488 | "outputs": [],
489 | "source": [
490 | "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)"
491 | ]
492 | },
493 | {
494 | "cell_type": "markdown",
495 | "metadata": {},
496 | "source": [
497 | "### ***Calling the linear function and reshaping all the data and fitting it to the model***"
498 | ]
499 | },
500 | {
501 | "cell_type": "code",
502 | "execution_count": 39,
503 | "metadata": {},
504 | "outputs": [
505 | {
506 | "data": {
507 | "text/plain": [
508 | "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)"
509 | ]
510 | },
511 | "execution_count": 39,
512 | "metadata": {},
513 | "output_type": "execute_result"
514 | }
515 | ],
516 | "source": [
517 | "reg=LinearRegression()\n",
518 | "X_test=X_test.reshape(-1,1)\n",
519 | "y_test=y_test.reshape(-1,1)\n",
520 | "X_train=X_train.reshape(-1,1)\n",
521 | "y_train=y_train.reshape(-1,1)\n",
522 | "reg.fit(X_train,y_train)"
523 | ]
524 | },
525 | {
526 | "cell_type": "markdown",
527 | "metadata": {},
528 | "source": [
529 | "### ***Formula of simple linear regression***"
530 | ]
531 | },
532 | {
533 | "cell_type": "code",
534 | "execution_count": 40,
535 | "metadata": {},
536 | "outputs": [],
537 | "source": [
538 | "line1=reg.coef_*X_train+reg.intercept_"
539 | ]
540 | },
541 | {
542 | "cell_type": "markdown",
543 | "metadata": {},
544 | "source": [
545 | "### ***Plotting a scatter plot for training dataset***"
546 | ]
547 | },
548 | {
549 | "cell_type": "code",
550 | "execution_count": 41,
551 | "metadata": {},
552 | "outputs": [
553 | {
554 | "data": {
555 | "text/plain": [
556 | "Text(0.5, 1.0, 'TRAINING DATA')"
557 | ]
558 | },
559 | "execution_count": 41,
560 | "metadata": {},
561 | "output_type": "execute_result"
562 | },
563 | {
564 | "data": {
565 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAdNklEQVR4nO3de5RcZZ3u8e9DEi4JEiABFhfTiRIQJXI5fThcFDhG5wxyEWep40zE6FLj8agHxBlB49Gg9BqDiGHWOV4iIChRZBCXEJWRhYAKykxuQCAJEaTDnY5AuJsLv/PH3kW6q3Z1V3VX1d5V9XzWyurU291Vv9RKnvz63e9+X0UEZmbWfnbIuwAzMxsdB7iZWZtygJuZtSkHuJlZm3KAm5m1KQe4mVmbcoCbmbUpB7g1jKTnB/16RdJLgx7PkbRA0pb08TOSbpd0TMbzzEi//1sZnwtJB6a/X5A+fu+gz49Px6anjy+XdH76++np535R9pxXSlow6PFrJF0k6UFJL0jaIOkaSUdV+XOXnrf0Z31C0lJJ76jy9bdIelrSToPGfjXo+7dI2jzo8XdqeW+s+zjArWEiYtfSL2ADcOqgsSXpl/0k/fxU4Gbg3zKe6oPA08D7B4dcFU8BX5E0ro5Sj5Z0XNYn0tf7DTALOAXYDTgEuAp45wjPu3v6ZzsMuBH4maQPlT3/dOCtQACnlcYj4qRB790S4IJB793/HPQU9bw31uEc4JaLiNhKElT7S9qr7NMfBL4IbAFOHeGpbgA2Ax+o4+UvAM6v8rkzgAOA0yNidURsi4gXIuKaiFhQy5NHxOMRcTGwAFgoafC/sw8CfwQuB+bWUfPg76/1vbEO5wC3XEjakSSM/kLSUZbG30oSoFcBV6dfM5wA/g/wZUkTanz5/wccJOntGZ97O/DvEfFCjc81nGuBvYGDB419kOQ/riXA/5C0T61PNor3xjqcA9xa7X2SngFeAj4GvCftxkvmAr+KiKeBHwEnSdp7uCeMiOuAAeCjNdbwMtBHdhc+FXi89EDS4el8/bOS1tX4/CWPph/3TJ/rLUAPcHVELAfuB/6xjuer+72xzuYAt1a7OiJ2B/YBVgP/pfQJSbsA7yXpTomIP5DMpdcScl8E5gM711jH94B9JJVPQ/wF2Lf0ICJWpfX+HVDvnPP+6cen0o9zgV9HxMb08Y+ocRpljO+NdSgHuOUiDbGPAwsklQLz3SQXDb8l6XFJj5OE4IhTBRFxI/An4H/V+PpbgPOArwIa9KmbgL+RNKnWP8sw3g08CaxLA/h9wAmD/myfAQ6TdFiNzzWq98Y6lwPcchMRa4F/Bz6XDs0FLiNZAXJ4+us44HBJs2p4yvmDnqsWPyTpqv920NgPgMdIVpAcKmmcpJ2B3lqfVNI+kj4FfBn4fES8ApwObAPeyPY/2yHA76gthMf63lgHcoBb3r4OzJPUA8wGFqWrOEq/lpOsNBlxqiEibgP+o9YXjohtJCG756Cxl4H/DtwL/AJ4FlgH/FeSDno4z0h6AbibZMnheyPisvRzc4HvR8SGwX8+4P8CcySNr/akkvZnjO+NdSb5QAczs/bkDtzMrE05wM3M2pQD3MysTTnAzczaVNUr380wderUmD59eitf0sys7S1fvnxjRJTvGdTaAJ8+fTrLli1r5UuambU9Sf1Z455CMTNrUw5wM7M25QA3M2tTDnAzszblADcza1MOcDOzOiy5ewnTF01nh/N2YPqi6Sy5e8nI39QkLV1GaGbWzpbcvYR518/jxS0vAtC/qZ95188DYM6sOS2vxx24mVmN5t80/9XwLnlxy4vMv2l+LvU4wM3MarRh04a6xpvNAW5mVqNpk6fVNd5sDnAzsxr1ze5j4oSJQ8YmTphI3+y+XOpxgJuZ1WjOrDksPnUxPZN7EKJncg+LT108/AXMP/4RVq1qSj0tPVKtt7c3vJmVmXWFxx6D/fbb/njbNthhdD2zpOURUXGwtjtwM7NG+8Qnhob34YePOryH43XgZmaNcuedSVgPdvnlMHduU17OAW5mNlavvAJvfSvcfvv2sWnT4L77YKedmvaynkIxMxuLX/4Sxo0bGt433wz9/U0Nb3AHbmY2Oi++CHvvDS+8sH3slFPguutAakkJ7sDNzOr1+c/DpElDw3vdOrj++paFNzjAzcxqt2JFEtBf+9r2sXPPhQg46KCWl+MpFDOzWmR11hs3wpQpra8l5Q7czGw4V15ZGd4nnph03TmGNzjAzcyybd2aBPcZZwwdf+65ZJVJDZp9+IMD3Mys3Kc+BRMmDB0777yk695115qeonT4Q/+mfoJ49fCHRoa458DNzEo2boS99qocf+WVuleXDHf4Q6NO73EHbmYGcPDBleG9dGnSdY9iaWArDn9wB25m3W3lSjjyyMrxMe7UOm3yNPo39WeON4o7cDMrjJaf+C5Vhvd99405vKE1hz84wM2sEFpx0e9V55xTOS1ywglJcM+c2ZCXGNXhD3XygQ5mlpsldy9h/k3z2bBpAztoB7bFtoqv6Zncw4NnPdiYF9yyBXbcsXL82WfhNa9pzGs0gQ90MLNCKe+4s8IbGnjR7/Wvrwzvk09Ouu4Ch/dwfBHTzHKRtcwuy5gv+j30ULI3d7kxHHFWFO1dvZm1rVo66zFf9JMqw/sb30i67jYPb3CAm1lOqnXW4zRu7Bf9fvWr7LXbEXD22fU/X0F5CsXMctE3u495188bMo0yccLEsa/UyAru22+HY44Z/XMWlDtwM8tFw5fZnXtu9a67A8MbvIzQzNpdtaWBOe/V3UheRmhmnWfmzMrwLt2Q0yHhPRzPgZtZ++ngpYH16J4/qZl1hhqWBrZ8T5WcuAM3s/Zwww1w0kmV42XX8Up3eJZWt5T2VAEaug9JEdTUgUv6jKR7JK2W9GNJO0uaIekOSesl/URSxlUEM7MGkCrD+7bbMncNHO4ghU4zYoBL2h/430BvRBwKjAPeDywEvhkRM4GngY80s1Az60LDLQ089tjMb2nFQQpFUesc+HhgF0njgYnAY8DbgGvSz18BnN748sysK23ZkgT3woVDxwcGRtyru9odno08SKEoRgzwiHgEuBDYQBLcm4DlwDMRsTX9soeB/bO+X9I8ScskLRsYGGhM1WbWuQ46qHJp4PHHJ8E9deqI396KgxSKopYplD2AdwEzgP2ASUDGlQQy/1uMiMUR0RsRvXtlHRZqZgawfn3Sda9fP3R82za49daan6YVBykURS2rUN4O/DkiBgAkXQscC+wuaXzahR8APNq8Ms2so2XNc194IXz2s6N6ujmz5nRkYJerZQ58A3C0pImSBMwG7gVuBt6Tfs1c4OfNKdHMOtbChdUvUo4yvLvJiB14RNwh6RpgBbAVWAksBn4BXCXp/HTs0mYWamYdJiu4r7sOTj219bW0qZpu5ImILwNfLht+ADiq4RWZWWebPh36+yvHW7ixXqfwrfRm1hovv5x03eXh/cADDu9RcoCbWfP3DpFgl10qxyNgxozGvlYXcYCbdbny0+FLe4c0JMTvuit7rnvrVnfdDeAAN+tyTds7RILDDhs6VrohZ9y4sT33GHXKboUOcLMu1/C9Qy64oPrSwDpuyGmWpv7E0WIOcLMu19C9QyQ455yhY5ddVqjpkk7ardABbtblGrJ3yOteV73r/vCHx1hhY3XSboUOcLMuN6a9Q/761yS4//znoeP331+ornuwTtqt0CfymNno9g7J6rihsMFd0je7b8iJPdC+uxW6Azez+rT50sBO2q1Q0cI3vLe3N5YtW9ay1zOzBssK7uOOg9//vvW1dBFJyyOit3zcHbiZjezrX69+kdLhnRvPgZvZ8LKC+5JL4CM+BjdvDnAzy3bggclqknJtMM/dLTyFYmZDlZYGlod3gZcGdit34Ga2XZsuDexW7sDNDO6+Ozu8t2xxeBeYA9ys20nw5jcPHTvmmCS4x/uH9CJzgJt1q298o/rSwNtvb309Vjf/92rWjbKC+3vfg49+tPW12Kg5wM26ycyZ8Kc/VY57nrsteQrFrBuUlgaWh/f69Q7vNuYO3KzTeWlgx3IHblYgDT2rcfVqLw3scO7AzQqidFZjaZ/q0lmNQGP26j76aPjDH8ZaphWIO3CzgmjIWY0XXVR9aaDDu+O4AzcriDGf1ZgV3IsXw8c+NoaqrMgc4GYFMW3yNPo39WeOD+sNb4B16yrHPc/d8TyFYlYQdZ8OX1oaWB7eXhrYNdyBmxVE6ULl/Jvms2HTBqZNnkbf7L7sC5heGmj4TEyz9nLPPXDooZXjW7Z446kO5jMxzdqdVBneRx3lXQO7mAPcrOgWLaq+NPCOO1pfjxWG/9s2K7Ks4P7ud2HevNbXYoXjADcrokMOgbVrK8d9kdIG8RSKWZFs3px03eXhfd99Dm+r4A7crCi8NNDq5A7cLG/33utdA21UHOBmeZLgTW8aOtbb66WBVpOaAlzS7pKukbRW0hpJx0jaU9KNktanH/dodrFmHePii6svDfzP/2x9PdaWau3ALwZuiIg3AIcBa4BzgZsiYiZwU/rYrOON+dAFCc46a+jYd77j6RKr24g/o0naDTge+BBARGwGNkt6F3Bi+mVXALcA5zSjSLOiGNOhC4cemtwKX87BbaNUSwf+OmAA+L6klZIukTQJ2CciHgNIP+7dxDrNCmFUhy6UlgaWh/e6dQ5vG5NaAnw8cCTw7Yg4AniBOqZLJM2TtEzSsoGBgVGWaVYMdR+6IMFOO1WOR8BBBzWwMutGtQT4w8DDEVHadOEakkB/QtK+AOnHJ7O+OSIWR0RvRPTutddejajZLDfVDleoGF+zJvsi5ebN7rqtYUYM8Ih4HHhI0sHp0GzgXuA6YG46Nhf4eVMqNCuQmg5dkOCNbxz6jUcemQT3hAktqNK6Ra0LTT8NLJG0I/AA8GGS8L9a0keADcB7m1OiWXEMe+jCv/4rnHlm5Te547Ym8YEOZo2QNV3yrW/BJz7R+lqs41Q70MG3epmNxaxZsHp15bi7bmsB30pvNhqlpYHl4b12rcPbWsYduFm9vGugFYQ7cLNarVrlpYFWKO7AzWqRFdw77QQvv9z6WsxS7sDNhvOlL1XfNdDhbTlzgFvHGPMugeUk+OpXh44tWODpEisMT6FYRxjTLoHlJkyArVsrxx3cVjDuwK0jjGqXwHKlpYHl4b1qlcPbCskduHWEuncJLOelgdaG3IFbR6h5l8By1ZYG/vWvDm8rPAe4dYSadgksJ8ERRwwdmzAhCe4dd2xClWaN5QC3jjBn1hwWn7qYnsk9CNEzuYfFpy7OvoC5YEH1pYGbNze9VrNG8W6E1l2ygvtLX4Lzzmt9LWY18m6E1t123jmZ1y7neW5rY55Csc5WWhpYHt4rVzq8re25A7fO5aWB1uHcgVvnufPO7PB++WWHt3UUd+DWWbKCe9y47FvjzdqcO3DrDF/5SvWlgQ5v61DuwK39ZQX3F79YuZOgWYdxgFv7mjgRXnqpctzz3NYlPIVi7ae0NLA8vFescHhbV3GAW3uRkqPMykVU7msyjIYf/mCWAwe4tYe77mrY0sDS4Q/9m/oJ4tXDHxzi1m4c4FZ8Ehx2WOV4RHY3PoKGHP5gVgAOcCuuiy6qvjRwDHPdYz78wawgHOBWTBJ89rNDx+bPb8hFylEf/mBWMA5wK5YZM6p33eef35CXGNXhD2YF5AC3YtiyJQnuBx8cOn7nnQ1fGljX4Q9mBeYDHSx/3jXQbFjVDnRwB275WbPGuwaajYFvpbd8ZAX3lCmwcWPrazFrU+7ArbW++c3qFykd3mZ1cYBb60hw9tlDx84/39MlZqPkAO8iue3/8frXV++65/vuR7PR8hx4lyjt/1G6hby0/wfQvOVzW7fChAmV46tWZd8ab2Z1cQfeJVq+/4eUHd4RdYW3dw00q84B3iVatv/H2rXeNdCsRRzgXaIl+39IcMghQ8f22MO7Bpo1Sc0BLmmcpJWSlqaPZ0i6Q9J6ST+RtGPzyrSxaur+H4sWVb9I+dRTo35a7xpoNrx6OvAzgTWDHi8EvhkRM4GngY80sjBrrKbt/yHBZz4zdOwrX/GugWYtUNMqFEkHACcDfcDZkgS8DfjH9EuuABYA325CjdYgc2bNadyKkz32gGeeqRxv4Jruvtl9Q1bOgHcNNBus1g58EfA54JX08RTgmYjYmj5+GNg/6xslzZO0TNKygYGBMRVrBVDaNbA8vFeu9K6BZi02Ygcu6RTgyYhYLunE0nDGl2b+642IxcBiSHYjHGWdVgQ57BrY0J8azDpMLR34ccBpkh4EriKZOlkE7C6p9B/AAcCjTanQ8nfvvdnh/dJLvg3eLEcjBnhEfD4iDoiI6cD7gd9ExBzgZuA96ZfNBX7etCotPxK86U2V4xGw886tr8fMXjWWdeDnkFzQ/BPJnPiljSnJCmHhwqYcKGxmjVPXXigRcQtwS/r7B4CjGl+S5S4ruP/5n+GCC1pfi5lV5c2sbLs994Snn64cd8dtVki+ld6SXQOlyvC+4w6Ht1mBuQPvdj5Q2KxtuQPvVtWWBr74Yk3h7W1ezfLnDrwbjbHrzuVwCDOr4A68m1x6aUOWBnqbV7NicIB3Cwk++tGhY//0T6Oa6/Y2r2bF4CmUTveWt8Btt1WOj+Ei5bTJ0+jf1J85bmat4w68U23blnTd5eF9111jXmHS1MMhzKxm7sA7UZOXBpYuVM6/aT4bNm1g2uRp9M3u8wVMsxZTtHC9b29vbyxbtqxlr9d17r8fDjywcvzll0d1JqWZFYOk5RHRWz7uDrxTZHXdM2bAAw+0vhYzawnPgbe7yy6rvjTQ4W3W0Rzg7UyCj5SdJb1woW+DN+sSnkJpRyecAL/9beW4g9usq7gDL5hh9xgpLQ0sD+877xxzeHtvE7P24w68QIbdY+TNH8j+pgZ03d7bxKw9uQMvkKw9RvZ54sXs8G7ggcLe28SsPbkDL5DyvURiQcYX9fTAgw829XVHGjezYnAHXiClvUTet7pKeEc0PLwHv26t42ZWDA7wAumb3UcsgJ9cM3R85Vl/39QVJt7bxKw9OcCL4sILM+e6l9x1JUd886qmvvScWXNYfOpieib3IETP5B4Wn7rYFzDNCs57oeTtlVdg3LjK8YceggMOaH09ZlY41fZCcQeepxNOqAzvAw9Mpksc3mY2Aq9CycNzz8Fuu1WOb94MEya0vh4za0vuwFvt+OMrw/vcc5Ou2+FtZnVwB94q69bBG95QOe79S8xslNyBt4JUGd4rVmSGt/ckMbNaOcCb6frrK/fqPvjgJLiPOKLiy0t7kvRv6ieIV/ckcYibWRYHeBVj6oQjkuA+7bSh4xs3wtq1Vb/Ne5KYWT0c4BnG1AkvWAA7lL2tn/50EupTpgz7rd6TxMzq4YuYGYbrhKvenVhtaeCWLTC+trd52uRp9G/qzxw3MyvnDjxD3Z3wCSdUhveVVyZdd43hDd6TxMzq4w48Q82d8H33JRcly41yaWCpu59/03w2bNrAtMnT6Jvd5z1JzCyTAzxD3+y+ISfUQEYnnHUS/IoVmatL6jFn1hwHtpnVxFMoGYbdnW/p0srwPuigqksDzcyaxbsR1iqicnUJwMAATJ1a11MtuXuJp0nMrGbejXAsspYGfvKTSaiPIrx9s46ZNYLnwIfTgKWB5Ua1RNHMLMOIHbik10q6WdIaSfdIOjMd31PSjZLWpx/3aH65LXT55ZXh/cMf1r00sJxv1jGzRqklibYCn42IFZJeAyyXdCPwIeCmiPiapHOBc4Fzmldqi/zlL9nTIg26VuCbdcysUUbswCPisYhYkf7+OWANsD/wLuCK9MuuAE5vVpEt84UvVIb3o482dMtX36xjZo1S10VMSdOBI4A7gH0i4jFIQh7Yu8r3zJO0TNKygYGBsVXbLPfdlywN/Jd/2T528cVJcO+7b0NfygcIm1mj1LyMUNKuwK1AX0RcK+mZiNh90Oefjohh58ELt4wwItkxcOnS7WO77gpPPAETJ1b/PjOzFhrTMkJJE4CfAksi4tp0+AlJ+6af3xd4slHFtsSttyZLAweH99KlycoTh7eZtYFaVqEIuBRYExEXDfrUdcDc9PdzgZ83vrwm2LwZenrgxBO3jx17LGzbBiefnFtZZmb1qqUDPw44A3ibpFXpr3cCXwPeIWk98I70ccM19IixK66AnXaCDYOW7K1aBbfdln2XpZlZgY24jDAifg9k7NwEwOzGljNU6a7F0o0vpbsWgfou+mUtDfz4x+E732lUqWZmLVfotrMhR4xlLQ185BGHt5m1vUIH+JjuWly/vnJp4KJFycqT/fZrUIVmZvkp9F4oo7prMWtp4KRJydLASZOaUKWZWT4K3YHXfdfib3+bvTTw+ecd3mbWcQrdgdd8xNjmzTBz5tDVJcceC7/7nVeXmFnHav8DHX7wA5g7d+jYqlVw2GGNfR0zs5xUuxOz0B34sJ56CqZMGTo2bx5897v51GNm1mLtOb8wf35leD/yiMPbzLpKe3Xg69cnBwgPtmgRnHlmPvWYmeWoPQI8Ak4/Ha67bvvYxInw5JNeXWJmXas9plAOPXRoeF9/PbzwgsPbzLpaewT4McckH48+GrZuhVNOybceM7MCaI8Av+SSZBrlD3+AcePyrsbMrBDaI8DNzKyCA9zMrE05wM3M2pQD3MysTTnAzczalAPczKxNOcDNzNqUA9zMrE21dD9wSQNA5Rlp1U0FNjapnNEqYk1QzLqKWBMUs64i1gTFrKuINUFz6+qJiL3KB1sa4PWStCxrE/M8FbEmKGZdRawJillXEWuCYtZVxJogn7o8hWJm1qYc4GZmbaroAb447wIyFLEmKGZdRawJillXEWuCYtZVxJogh7oKPQduZmbVFb0DNzOzKhzgZmZtqpABLukySU9KWp13LSWSXivpZklrJN0jKfeTlCXtLOk/JN2Z1nRe3jWVSBonaaWkpXnXUiLpQUl3S1olaVne9ZRI2l3SNZLWpn+/jsm5noPT96j061lJZ+VZU4mkz6R/11dL+rGknQtQ05lpPfe0+n0q5By4pOOB54EfRMShedcDIGlfYN+IWCHpNcBy4PSIuDfHmgRMiojnJU0Afg+cGRF/zKumEklnA73AbhFRiDPwJD0I9EZEoW4CkXQF8LuIuETSjsDEiHgm77og+Y8YeAT4bxFRz014zahlf5K/42+MiJckXQ38MiIuz7GmQ4GrgKOAzcANwCciYn0rXr+QHXhE/BZ4Ku86BouIxyJiRfr754A1wP451xQR8Xz6cEL6K/f/kSUdAJwMXJJ3LUUnaTfgeOBSgIjYXJTwTs0G7s87vAcZD+wiaTwwEXg053oOAf4YES9GxFbgVuDdrXrxQgZ40UmaDhwB3JFvJa9OVawCngRujIjcawIWAZ8DXsm7kDIB/FrScknz8i4m9TpgAPh+OuV0iaRJeRc1yPuBH+ddBEBEPAJcCGwAHgM2RcSv862K1cDxkqZImgi8E3htq17cAV4nSbsCPwXOiohn864nIrZFxOHAAcBR6Y90uZF0CvBkRCzPs44qjouII4GTgE+mU3V5Gw8cCXw7Io4AXgDOzbekRDqdcxrwb3nXAiBpD+BdwAxgP2CSpA/kWVNErAEWAjeSTJ/cCWxt1es7wOuQzjP/FFgSEdfmXc9g6Y/dtwB/m3MpxwGnpfPNVwFvk3RlviUlIuLR9OOTwM9I5i3z9jDw8KCfnK4hCfQiOAlYERFP5F1I6u3AnyNiICK2ANcCx+ZcExFxaUQcGRHHk0z9tmT+GxzgNUsvGF4KrImIi/KuB0DSXpJ2T3+/C8lf8LV51hQRn4+IAyJiOsmP37+JiFy7JABJk9KLz6RTFH9D8uNvriLiceAhSQenQ7OB3C6Ml/kHCjJ9ktoAHC1pYvrvcTbJtahcSdo7/TgN+Dta+J6Nb9UL1UPSj4ETgamSHga+HBGX5lsVxwFnAHenc84AX4iIX+ZY077AFelKgR2AqyOiMMv2CmYf4GfJv3vGAz+KiBvyLelVnwaWpFMWDwAfzrke0vncdwAfz7uWkoi4Q9I1wAqSaYqVFOO2+p9KmgJsAT4ZEU+36oULuYzQzMxG5ikUM7M25QA3M2tTDnAzszblADcza1MOcDOzNuUANzNrUw5wM7M29f8BAD2LU2nef/oAAAAASUVORK5CYII=\n",
566 | "text/plain": [
567 | ""
568 | ]
569 | },
570 | "metadata": {
571 | "needs_background": "light"
572 | },
573 | "output_type": "display_data"
574 | }
575 | ],
576 | "source": [
577 | "plt.scatter(X_train,y_train,color='green')\n",
578 | "plt.plot(X_train,line1,color='red',linewidth=2)\n",
579 | "plt.title('TRAINING DATA')"
580 | ]
581 | },
582 | {
583 | "cell_type": "code",
584 | "execution_count": 44,
585 | "metadata": {},
586 | "outputs": [],
587 | "source": [
588 | "line2=reg.coef_*X_test+reg.intercept_"
589 | ]
590 | },
591 | {
592 | "cell_type": "markdown",
593 | "metadata": {},
594 | "source": [
595 | "### ***Plotting a scatter plot for testing dataset***"
596 | ]
597 | },
598 | {
599 | "cell_type": "code",
600 | "execution_count": 45,
601 | "metadata": {},
602 | "outputs": [
603 | {
604 | "data": {
605 | "text/plain": [
606 | "Text(0.5, 1.0, 'TESTING DATA')"
607 | ]
608 | },
609 | "execution_count": 45,
610 | "metadata": {},
611 | "output_type": "execute_result"
612 | },
613 | {
614 | "data": {
615 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU9dXH8c9JCEtYZIuIQAyKilYtKlKXanGtOzy1ioqUKjVWoUpREUFNA0VFLRR3UaxYo4ioFXmwiBTclbIpCiLCwyYgiyCrLMl5/pgBc0kge27u5Pt+veY1mZNZzrB8c/K7c+81d0dERKInKewGRESkdBTgIiIRpQAXEYkoBbiISEQpwEVEIkoBLiISUQpwEZGIUoBLhTCzzfkueWa2Ld/trmb2FzPbudf9NuR7fCczm21mG81srZlNNrMMM3sy3/137PUcb8Xv42ZWI/48z8Vvd8j33G3MzPfq91wzm2Jmm8xsXfy17zCz2vt4f8/FX39T/PKFmd1nZgcUct+O8R765qudnq/vLfHv5/+zSN/rtXaZ2cFl+1uRRKMAlwrh7vV2X4ClwCX5ajnxu72c/37u3hBiAQs8D9wKHAC0Bh4H8tz9j/me9969nuOCfbTzPfDXffVqZpcDY4EXgUPcvQnQBWgJtNrP23zA3esDacC1wMnAh2ZWd6/7dY/30D3fn8/7+d7Hz+Llhvney9J4b3WBy4AfgK776UWqIQW4VEXtgP9z98kes8ndX90daqUwCjjOzH619zfMzIChwEB3f9rdvwdw9/nu/id3X1DUk7v7j+7+X+BSoAmxMN/9/KnAb4GewOFm1r6EvV8GbAAGku8HgAgowKVqmgm0NbNhZnammdUr4/NtJTatDy7ke0cSm7RfLeNr4O6bgEnA6fnKlwGbgVeAicDvSvi03YGXgNHE/kxOKGufkjgU4BKmK8xsQ77LFAB3XwR0BFoAY4C18XXgsgT5U0C6me29zNI0fr1qd8HMRsf72Wpm3Ur4OiuAxvludye2zJNLbInmKjNLKc4TxdfBzwRedPfvgMloCpd8FOASpjHu3jDf5czd33D3T9z9CndPIzbRngEMKO0Luft2YFD8Yvm+tS5+3Tzffa+Mr8fPBJJL+FItiK13Y2atiAXw7jX/N4DawEXFfK5uwDx3nx2/nQNcXdwfAJL4FOBS5cXXl18DjinjU/2D2EbR/8lX+wr4FvhNGZ+b+G8I5wDvx0vdiP0fe9PMVgGLiAV4cZdRfgccamar4o8fSuw3hn1trJVqpkbYDYjszcx+CRwFvOHuq82sLbENhKPK8rzuvsvM/gI8nK/mZnYr8LSZbST2aZQNQBugWTH7rUXsh8sQYD2xHxQQC+Bs4Ml8d+8AvGJmTdx9HftgZqcAhwHHA2vyfetvxJZRxhWnN0lsmsAlTF32+uzzZjM7kFiAXgrMMbPNwL+B14EHyuE1XwJW5i+4+8vAFcA1wDJgLbG19xHENj7uS18z20RsyeR5YAZwqrtvMbOTgQzgMXdfle8yDvgGuKqIPrsT+wE2J//jgeHAxWbWuIjHSzVgOqGDiEg0aQIXEYkoBbiISEQpwEVEIkoBLiISUZX6McKmTZt6RkZGZb6kiEjkzZgxY218p7aASg3wjIwMpk+fXpkvKSISeWa2pLC6llBERCJKAS4iElEKcBGRiFKAi4hElAJcRCSiFOAiIhGlABcRiSgFuIhIBZnz3Rws22gxtEWFPL9O6CAiUs7cnfNzzufthW8DsGLTigp5HQW4iEg5+mjZR5z27GmB2tTuUyvktRTgIiLlIDcvlxNHnMhn3322p3bGIWcwpfsUkqxiVqsV4CIiZfTWgre48MULA7UZmTM4ofkJFfq6CnARkVLavms7GcMzWLV51Z7aFT+7gtGXjcbMKvz1FeAiIqXw0pyXuPq1qwO1+b3mc0STIyqtBwW4iEgJbN6xmfr31Q/Uep3Ui0cufKTSe1GAi4gU0+P/fZyeE3oGasv+vIyWDVqG0o8CXESkCOu2rqPpg00Dtb/86i9kdcwKqaMYBbiIyH4MfHcgWVODQb329rU0SW0SUkc/UYCLiBRi+cbltBrWKlB79IJH6dmh5z4eUfkU4CIie+k1oReP/fexQG3TnZuoV7NeSB0VTgEuIhL39bqvOfLRIwO1F3/zIlcde1VIHe2fAlxEqj13p8vYLrwy95U9tYPqHcTiWxZTq0atEDvbPwW4iFRrs1bO4oQRwV3eJ1w9gQsOvyCkjoqvyAA3syOBl/OVDgXuAZ6P1zOAxcAV7r6+/FsUESl/7k7HUR15b8l7e2rtDmrH9Ounk5yUHGJnxVfkIbLcfb67t3P3dsCJwFbgdaAfMNndDwcmx2+LiFR57y5+l6SBSYHw/vC6D5l1w6zIhDeUfAnlbGChuy8xs05Ax3h9FDAVuKP8WhMRKV+78nZxzOPHMH/d/D21Xx/2a97q+lalHHyqvJU0wK8EXop/3czdVwK4+0ozO7CwB5hZJpAJkJ6eXto+RUTKZNz8cXQa3SlQ+/yPn3Nss2ND6qjsin2UcTOrCVwKvFLUffNz9xHu3t7d26elpZW0PxGRMvlx1480GtIoEN7djuuGZ3nFh3dODmRkQFJS7Donp1yfviQT+AXATHf/Ln77OzNrHp++mwOry7UzEZEyGjV7FL9/4/eB2sKbF3Joo0Mr/sVzciAzE7Zujd1esiR2G6Br13J5iZKc5+cqflo+ARgHdI9/3R14o1w6EhEpo43bN2LZFgjv2065Dc/yyglvgAEDfgrv3bZujdXLSbEmcDNLBc4FbshXvh8YY2Y9gKXA5eXWlYhIKQ37eBh93u4TqK28dSUH1TuochtZurRk9VIoVoC7+1agyV61dcQ+lSIiErrVW1bT7KFmgdr9Z9/PHb8M6cNx6emxZZPC6uWkYk6VLCJSiQZMHlAgvNffsT688AYYPBhSU4O11NRYvZxoV3oRiawlG5aQMTwjUHvmkmfocUKPcBrKb/eGygEDYssm6emx8C6nDZigABeRiLp+3PU8M+uZPbdTU1JZc/saUlNS9/OoSta1a7kG9t4U4CISKXPXzOVnj/8sUBt7+VguO/qykDoKjwJcRCLB3ek0uhNvfv3mnlrrhq2Z32s+KckpIXYWHgW4iFR5076dxi+e+UWg9k63dzj70Or9QTgFuIhUWXmexykjT2Hat9P21E5ueTIfXvchSaYP0SnARaRKmrRwEue9cF6gNu0P0zipxUkhdVT1KMBFpErZmbuTNo+0YekPP+2x2LltZ1674rVIHvK1IinARaTKGDt3LJe/Ejwqx9yb5nJU2lEhdVS1KcBFJHRbd26l0ZBG7MjdsaeWeUImT13yVIhdVX0KcBEJ1YgZI7hh/A2B2pLeS0g/QCeAKYoCXERCsX7beho/0DhQu+v0uxh01qCQOooeBbiIVLr73r+P/v/pH6itvm01aXV11q6SUICLSKVZuWklBw89OFAb9uth9D65d0gdRZsCXEQqRZ+JfRj2ybBAbWO/jdSvVT+kjqJPAS4iFWrh9wtp80ibQO35zs/T7efdQuoocSjARaTCXPPaNeTM+elM7E3qNGF5n+XUrlE7xK4Shw4mICLFk5MDGRmQlBS7zsnZ510/W/UZlm2B8H7zqjdZ23etwrscaQIXkaLl5EBm5k9nWV+yJHYbAicscHfOe+E83ln0zp7aUU2P4vMbP6dGkuKmvGkCF5GiDRjwU3jvtnVrrB73wdIPSBqYFAjvd3//LnN7zlV4VxD9qYpI0ZYu3Wc9Ny+Xdk+144vVX+wpn5lxJpN/N1kHn6pgCnARKVp6emzZZC8TTk3jokHBGJl1wyzaHdSusjqr1rSEIiJFGzwYUn86WfD2ZDjwdrjo3NV7alcecyWe5QrvSqQJXESKtntD5YAB5BywhGt+E/z2172+5vAmh1d+X9VcsQLczBoCzwDHAA5cB8wHXgYygMXAFe6+vkK6FJHQrfuf82n6zTWB2s0dbmb4BcND6kiKu4QyHPi3u7cFfg7MA/oBk939cGBy/LaIJKBur3ej6YNNA7Vv+3yr8A5ZkRO4mTUAzgB+D+DuO4AdZtYJ6Bi/2yhgKnBHRTQpIuFY9sMy0v8ePC73eYedx8RrJobUkeRXnCWUQ4E1wD/M7OfADOAWoJm7rwRw95VmdmBhDzazTCATID1dB2gXiYqOz3Xk3SXvBmrL/7ycFg1ahNSR7K04Syg1gBOAJ9z9eGALJVgucfcR7t7e3dunpelYvyJV3Zerv8SyLRDe17W7Ds9yhXcVU5wJfDmw3N0/jd8eSyzAvzOz5vHpuzmwep/PICKR0Hp4axZvWByofd/3exrVaRROQ7JfRU7g7r4KWGZmR8ZLZwNzgXFA93itO/BGhXQoIhXuo2UfYdkWCO+7z7gbz3KFdxVW3M+B/wnIMbOawCLgWmLhP8bMegBLgcsrpkURqSjuTtLAgnPc1v5bqZNSJ4SOpCSKFeDuPhtoX8i3zi7fdkSksoz/ejyXvHRJoPbYhY9x00k3hdSRlJT2xBSpZvI8j+SByQXqO+/eqaMGRoyOhSJSjTw3+7kC4T3mt2PwLFd4R5D+xkSqge27tlN7cMEz4eTdk6dDvkaYJnCRBHf/B/cXCO/Jv5uMZ7nCO+I0gYskqE3bN9Hg/gaBWqPajfj+ju9D6kjKmyZwkQR0y1u3FAjvmZkzFd4JRhO4SAJZvWU1zR5qFqgdf9DxzLxhZkgdSUVSgIskiMvGXMZr814L1BbevJBDGx0aUkdS0RTgIhG3aP0iDnv4sECtc9vOvN7l9ZA6ksqiABeJsJOePonpK6YHaqtuXUWzes328QhJJNqIKRJBs1fNxrItEN5/6vAnPMsV3tWIJnCRiGn6QFPWbVsXqP3Q7wca1Gqwj0dIotIELhIRU/5vCpZtgfC+7+z78CxXeFdTmsBFqrh9HfL1xwE/UqtGrRA6kqpCE7hIFfbq3FcLhPfIS0fiWa7wFk3gIlXRrrxdpAxKKVDPvSeXJNPcJTH6lyBSxTzx3ycKhPe4K8fhWa7wlgBN4CJVxLad20i9N7VAXYd8lX3Rj3ORKiBrSlaB8P7g2g90yFfZL03gIiHa8OMGGg0JnvW9VYNWLP3z0pA6kijRBC4SkuvHXV8gvL+48QuFtxSbJnCRSrZi0wpaDG0RqJ2efjrvXfteSB1JVCnARSrR+S+cz8SFEwO1Jb2XkH5AekgdSZQpwEUqwfy182n7WNtAreuxXXnhNy+E1JEkAgW4SAVr+2hb5q+bH6itvX0tTVKbhNSRJIpibcQ0s8VmNsfMZpvZ9HitsZlNMrMF8etGRT2PSHUy7dtpWLYFwrvvqX3xLFd4S7koyQR+pruvzXe7HzDZ3e83s37x23eUa3ciEVVzUE125u0M1DbfuZm6NeuG1JEkorJ8jLATMCr+9Sigc9nbEYm2id9MxLItEN7Dfj0Mz3KFt5S74k7gDrxtZg485e4jgGbuvhLA3Vea2YGFPdDMMoFMgPR0bWmXxJTneSQPTC5Q33HXDlKSCx6USqQ8FHcCP83dTwAuAHqa2RnFfQF3H+Hu7d29fVpaWqmaFKnKXvj8hQLhnfObHDzLFd5SoYo1gbv7ivj1ajN7HegAfGdmzePTd3NgdQX2KVLl7MzdSc2/1ixQ18GnpLIUOYGbWV0zq7/7a+A84AtgHNA9frfuwBsV1aRIVTP046EFwnviNRN18CmpVMWZwJsBr8f/UdYAXnT3f5vZf4ExZtYDWApcXnFtilQNW3Zsod599QK12jVqs23AtpA6kuqsyAB390XAzwuprwPOroimRKqivpP68uBHDwZq0/4wjZNanBRSR1LdaU9MkSKs3bqWtAeDG+CPTjuaL2/6MqSORGIU4CL7cfWrV/PSFy8FavN7zeeIJkeE1JHITxTgIoVYsmEJGcMzArUL2lzAhK4TwmlIpBAKcJG9nP6P0/lg6QeB2oo+K2hev3lIHYkUTmfkEYn7YvUXWLYFwjvzhEw8yxXeUiVpAhcBWg1rxfKNywO19Xesp2HthiF1JFI0TeBSrX2w9AMs2wLhnfWrLDzLFd5S5WkCl2rJ3UkaWHB+2TZgG7Vr1A6hI5GS0wQu1c64+eMKhPeTFz2JZ7nCWyJFE7hUG7l5udQYVPCf/K67d5GcVPBQsCJVnSZwqRZGzhxZILxfveJVPMsV3hJZmsAloW3ftZ3agwsui+iQr5IINIFLwrr3/XsLhPeU7lN0yFdJGJrAJeFs3L6RA+4/IFBLS01j9e0654gkFk3gklB6TehVILxn3zBb4S0JSRO4JIRVm1fR/G/B3d07tOjAp3/4NKSORCqeAlwir9PoToybPy5QW3TzIlo3ah1SRyKVQwEukbXw+4W0eaRNoPbbo3/LK5e/ElJHIpVLAS6RdPxTxzN71exAbfVtq0mrm7aPR4gkHm3ElEiZtXIWlm2B8O79i954liu8pdrRBC6R0WhIIzb8uCFQ29hvI/Vr1Q+pI5FwaQKXKm/yoslYtgXC+4FzHsCzXOEt1ZomcKmy9nXI1+13badmcs0QOhKpWjSBS5U05ssxBcL7uU7P4Vmu8BaJ0wQuVcquvF2kDEopUM+9J5ck07whkl+x/0eYWbKZzTKz8fHbrc3sUzNbYGYvm5nGIimTx6Y9ViC8x181Hs9yhbdIIUoygd8CzAMaxG8PAYa5+2gzexLoATxRzv1JNbBt5zZS700N1Awj955cHTVQZD+KNdaYWUvgIuCZ+G0DzgLGxu8yCuhcEQ1KYrvrP3cVCO+PrvuIvCwdr1ukKMWdwP8O9AV2f2arCbDB3XfFby8HWhT2QDPLBDIB0tPTS9+pJJT129bT+IHGgdphjQ7jm5u/CakjkegpcgI3s4uB1e4+I3+5kLt6YY939xHu3t7d26elaU85gWvfuLZAeM+9aa7CW6SEijOBnwZcamYXArWJrYH/HWhoZjXiU3hLYEXFtSmJYPnG5bQa1ipQO6v1WUz+3eSQOhKJtiIncHe/091bunsGcCXwH3fvCkwBfhu/W3fgjQrrUiLv3H+eWyC8l/15mcJbpAzK8tmsO4A+ZvYNsTXxkeXTkiSSeWvmYdnGO4ve2VPr/vPueJbTskHLEDsTib4S7cjj7lOBqfGvFwEdyr8lSRSHP3I433wfXNde13cdjes03scjRKQktHeElLtPln+CZVsgvPv/sj+e5QpvkXKkXeml3Lg7yQOT8b0+kLSl/xZSU1L38SgRKS1N4FIu3lrwFkkDkwLh/fD5D+NZrvAWqSCawKVM8jyP5IHJBeo7795JjST98xKpSJrApdSe/+z5AuE9+rLReJYrvEUqgf6XSYntyN1Brb/WKlDPu0fHLxGpTJrApUQe/PDBAuE9qdskPMsV3iKVTBO4FMvmHZupf1/w/JP1atZj052bQupIRDSBS5H6TOxTILxnZM5QeIuETBO47NOaLWs48KEDA7Xjmh3HZ3/8LKSORCQ/BbgUqsvYLoz5ckygtuBPC2jTuE1IHYnI3hTgErB4w2JaD28dqF1yxCWMu2pcSB2JyL4owGWPU0eeysfLPw7UVt66koPqHRRSRyKyP9qIKXz+3edYtgXC+6b2N+FZrvAWqcI0gVdzB//tYFZuXhmo/dDvBxrUahBSRyJSXJrAq6n3lryHZVsgvAedOQjPcoW3SERoAq9m3J2kgQV/bm8bsI3aNWqH0JGIlJYm8GrkX1/9q0B4P33J03iWK7xFIkgTeDWQm5dLjUEF/6p33b2L5KSCh4IVkWjQBJ7gRswYUSC8/9XlX3iWK7xFIk4TeIL6cdeP1Blcp0Bdh3wVSRyawBPQoHcHFQjv937/ng75KpJgNIEnkB9+/IGGQxoGas3rNWfFrStC6khEKpIm8ARx4/gbC4T353/8XOEtksCKnMDNrDbwHlArfv+x7p5lZq2B0UBjYCbQzd13VGSzUtDKTSs5eOjBgdqprU7lw+s+DKkjEaksxZnAtwNnufvPgXbA+WZ2MjAEGObuhwPrgR4V12YCycmBjAxISopd5+SU+qkueemSAuG9+JbFCm+RaqLIAPeYzfGbKfGLA2cBY+P1UUDnCukwkeTkQGYmLFkC7rHrzMwSh/iCdQuwbGP81+P31Lr8rAue5RzS8JDy7lpEqqhibcQ0s2RgBtAGeAxYCGxw913xuywHWlRIh4lkwADYujVY27o1Vu/atVhPcdwTxzFn9ZxAbc3ta2ia2rS8uhSRiCjWRkx3z3X3dkBLoANwVGF3K+yxZpZpZtPNbPqaNWtK32kiWLq0ZPV8ZqyYgWVbILz7nNwHz3KFt0g1VaKPEbr7BjObCpwMNDSzGvEpvCVQ6Mcd3H0EMAKgffv2hYZ8tZGeHls2Kay+H/XurceWnVsCtU13bqJezXrl2Z2IREyRE7iZpZlZw/jXdYBzgHnAFOC38bt1B96oqCYTxuDBkJoarKWmxuqFeGfRO1i2BcL7oXMfwrNc4S0ixZrAmwOj4uvgScAYdx9vZnOB0Wb2V2AWMLIC+0wMu9e5BwyILZukp8fCe6/1730d8nX7XdupmVyzMjoVkQgw98pb1Wjfvr1Pnz690l4vikZ/MZqrXr0qUPvn//yTa467JqSORCRsZjbD3dvvXdeu9FXErrxdpAxKKVDPvSeXJNMOsyJSkJKhCnj404cLhPdbXd/Cs1zhLSL7pHQI0dadW7Fs45Z/37KnlpKUgmc557c5v3KaKMc9Q0WkcinAQ9J/cn/q3ls3UPukxyfsuLsSDydTTnuGikg4tBGzku3I3UGtv9YK1I5ocgTze82v/GYyMgr/XPohh8DixZXdjYjsgzZiVgHTvp3GtW9cG6jN6zmPtk3bhtNQGfYMFZHwaQmlEmzduZXb3r6NU0aewtw1cwHI+lUWnuXhhTfsew/QIvYMFZGqQRN4BZu6eCp/GPcHFq5fSJIlcfupt5PdMZs6KQXPV1npBg+OrXnnP8DWfvYMFZGqRQFeQTZu30jfSX15asZTABx74LGMvHQkJ7U4KeTO8inmnqEiUjUpwCvAhAUTuGH8DSzfuJyUpBTuOuMu+v2yX9XcDb5rVwW2SEQpwMvR2q1r6f3v3uTMiX0Mr0OLDoy8dCTHHHhMyJ2JSCJSgJcDd+eVua/Qa0Iv1mxdQ50adRh05iB6n9yb5KTksNsTkQSlAC+jFZtW0HNCT/711b8A6JjRkacveZo2jduE3JmIJDoFeCm5O/+Y/Q/6TOzDD9t/oH7N+jx47oNcf+L1On6JiFQKBXgpLN6wmMw3M5m0aBIAFx5+IU9e9CStDmgVcmciUp0owEsgz/N4dNqj9J/cny07t9CkThOGnz+cq4+9GjMLuz0RqWYU4MX01dqv6DGuBx8t+wiAK352BY9c8AgH1j0w5M5EpLpSgBdhZ+5OHvroIbLfzWZ77naa12vO4xc9Tue2ncNuTUSqOQX4fsxaOYse43owa9UsAK5rdx0PnfcQjeo0CrkzEREFeKF+3PUjg94dxJAPh5DruWQ0zGDExSM497Bzw25NRGQPBfhePl72MdeNu46v1n6FYdzc4WYGnz2YejXrhd2aiEiAAjxuy44tDPjPAB7+9GEc58gmRzLy0pGcln5a2K2JiBRKAQ68s+gdrn/zehZvWEyyJXPHaXdw96/upnaN2mG3JiKyT9U6wDf8uIHb3r6NkbNGAtDuoHY8e+mzHN/8+JA7ExEpWrUN8HHzx3Hj/97Iik0rqJlck6xfZXH7qbeTkpwSdmsiIsVS5EE7zKyVmU0xs3lm9qWZ3RKvNzazSWa2IH5dcZ+ty8mJnYA3KSl2XYazpq/ZsoYrx15Jp9GdWLFpBae2OpXP/vgZ/U/vr/AWkUgpzlGXdgG3uvtRwMlATzM7GugHTHb3w4HJ8dvlLycndtqvJUvAPXadmVniEHd3XpzzIkc9dhQvf/kyqSmpDD9/OO/9/r1wz0spIlJK5u4le4DZG8Cj8UtHd19pZs2Bqe5+5P4e2759e58+fXrJOszIiIX23g45BBYvLtZTLN+4nBv/90bGfz0egHMOPYcRF4+gdaPWJetFRCQEZjbD3dvvXS/RGriZZQDHA58Czdx9JUA8xAs9KIiZZQKZAOmlOdv50qUlq+fj7jw982lun3Q7G7dv5IBaBzD010O5tt21OviUiEResQPczOoBrwK93X1jcQPQ3UcAIyA2gZe4w/T0wifwIn4YLPx+Ide/eT1TFk8BoNORnXj8osc5uP7BJW5BRKQqKtaZB8wshVh457j7a/Hyd/GlE+LXqyukw8GDITU1WEtNjdULkZuXy9CPh3LsE8cyZfEU0lLTGH3ZaF7v8rrCW0QSSnE+hWLASGCeuw/N961xQPf4192BN8q/PWJnTB8xIrbmbRa7HjGi0DOpf7n6S0579jRufftWtu3aRtdjuzK351y6HNNFSyYiknCK3IhpZr8E3gfmAHnxcn9i6+BjgHRgKXC5u3+/v+cq1UbMYtiRu4MhHwxh0HuD2Jm3kxb1W/DUxU9x0REXlftriYhUtlJvxHT3D4B9ja9nl7Wxspq+Yjo9xvXg8+8+B+CGE29gyDlDOKD2ASF3JiJSsSK7J+a2ndv4y9S/8NDHD5HneRza6FCeueQZzmx9ZtitiYhUikgG+PtL3qfHuB4s+H4BSZZEn5P7MOisQaSmpBb9YBGRBBGpAN+0fRP93unH49MfB+DotKN59tJn+UXLX4TcmYhI5YtMgE/8ZiKZ4zNZ+sNSaiTV4M5f3smA0wdQq0atsFsTEQlFJAK876S+PPjRgwCc2PxEnu30LMc1Oy7krkREwhWJAD+11anUrlGb7I7Z9DmlDzWSItG2iEiFikQSdm7bmYU3L9SelCIi+RRrV/qqQOEtIhIUmQAXEZEgBbiISEQpwEVEIkoBLiISUQpwEZGIUoCLiESUAlxEJKJKfFb6Mr2Y2RqgkBNcVilNgbVhN1GOEun9JNJ7gcR6P3ovFesQd0/bu1ipAR4FZja9sDNfRFUivZ9Eei+QWO9H7yUcWkIREYkoBbiISEQpwAsaEXYD5SyR3k8ivRdIrPej9xICrYGLiESUJnARkYhSgIuIRJQCPM7MWpnZFDObZ2ZfmtktYfdUWmZW28ymmdln8feSHXZPZQF5hPoAAAKZSURBVGVmyWY2y8zGh91LWZnZYjObY2azzWx62P2UlZk1NLOxZvZV/P/PKWH3VBpmdmT872T3ZaOZ9Q67r/3RGnicmTUHmrv7TDOrD8wAOrv73JBbKzEzM6Cuu282sxTgA+AWd/8k5NZKzcz6AO2BBu5+cdj9lIWZLQbau3tV21mkVMxsFPC+uz9jZjWBVHffEHZfZWFmycC3wC/cvcrufKgJPM7dV7r7zPjXm4B5QItwuyodj9kcv5kSv0T2J7WZtQQuAp4JuxcJMrMGwBnASAB33xH18I47G1hYlcMbFOCFMrMM4Hjg03A7Kb34ksNsYDUwyd0j+16AvwN9gbywGyknDrxtZjPMLDPsZsroUGAN8I/4EtczZlY37KbKwZXAS2E3URQF+F7MrB7wKtDb3TeG3U9puXuuu7cDWgIdzOyYsHsqDTO7GFjt7jPC7qUcnebuJwAXAD3N7IywGyqDGsAJwBPufjywBegXbktlE18GuhR4JexeiqIAzye+XvwqkOPur4XdT3mI/zo7FTg/5FZK6zTg0vi68WjgLDN7IdyWysbdV8SvVwOvAx3C7ahMlgPL8/2GN5ZYoEfZBcBMd/8u7EaKogCPi2/4GwnMc/ehYfdTFmaWZmYN41/XAc4Bvgq3q9Jx9zvdvaW7ZxD7tfY/7n5NyG2VmpnVjW8kJ77UcB7wRbhdlZ67rwKWmdmR8dLZQOQ2/O/lKiKwfAKxX38k5jSgGzAnvnYM0N/dJ4TYU2k1B0bFt6QnAWPcPfIfv0sQzYDXY/MCNYAX3f3f4bZUZn8CcuJLD4uAa0Pup9TMLBU4F7gh7F6KQx8jFBGJKC2hiIhElAJcRCSiFOAiIhGlABcRiSgFuIhIRCnARUQiSgEuIhJR/w8X2Aq1Ddq8RgAAAABJRU5ErkJggg==\n",
616 | "text/plain": [
617 | ""
618 | ]
619 | },
620 | "metadata": {
621 | "needs_background": "light"
622 | },
623 | "output_type": "display_data"
624 | }
625 | ],
626 | "source": [
627 | "plt.scatter(X_test,y_test,color='red')\n",
628 | "plt.plot(X_test,line2,color='green',linewidth=2)\n",
629 | "plt.title('TESTING DATA')"
630 | ]
631 | },
632 | {
633 | "cell_type": "markdown",
634 | "metadata": {},
635 | "source": [
636 | "### ***predicting the test value***"
637 | ]
638 | },
639 | {
640 | "cell_type": "code",
641 | "execution_count": 49,
642 | "metadata": {},
643 | "outputs": [
644 | {
645 | "data": {
646 | "text/plain": [
647 | "array([[16.88414476],\n",
648 | " [33.73226078],\n",
649 | " [75.357018 ],\n",
650 | " [26.79480124],\n",
651 | " [60.49103328]])"
652 | ]
653 | },
654 | "execution_count": 49,
655 | "metadata": {},
656 | "output_type": "execute_result"
657 | }
658 | ],
659 | "source": [
660 | "y_predict=reg.predict(X_test)\n",
661 | "y_predict"
662 | ]
663 | },
664 | {
665 | "cell_type": "markdown",
666 | "metadata": {},
667 | "source": [
668 | "### ***Comparing the actuals with the prediction to see the difference***"
669 | ]
670 | },
671 | {
672 | "cell_type": "code",
673 | "execution_count": 56,
674 | "metadata": {},
675 | "outputs": [
676 | {
677 | "name": "stdout",
678 | "output_type": "stream",
679 | "text": [
680 | "Comparing the actuals with prediction: \n"
681 | ]
682 | },
683 | {
684 | "data": {
685 | "text/html": [
686 | "\n",
687 | "\n",
700 | "
\n",
701 | " \n",
702 | " \n",
703 | " \n",
704 | " ACTUAL \n",
705 | " prediction \n",
706 | " \n",
707 | " \n",
708 | " \n",
709 | " \n",
710 | " 0 \n",
711 | " 20 \n",
712 | " 16.884145 \n",
713 | " \n",
714 | " \n",
715 | " 1 \n",
716 | " 27 \n",
717 | " 33.732261 \n",
718 | " \n",
719 | " \n",
720 | " 2 \n",
721 | " 69 \n",
722 | " 75.357018 \n",
723 | " \n",
724 | " \n",
725 | " 3 \n",
726 | " 30 \n",
727 | " 26.794801 \n",
728 | " \n",
729 | " \n",
730 | " 4 \n",
731 | " 62 \n",
732 | " 60.491033 \n",
733 | " \n",
734 | " \n",
735 | "
\n",
736 | "
"
737 | ],
738 | "text/plain": [
739 | " ACTUAL prediction\n",
740 | "0 20 16.884145\n",
741 | "1 27 33.732261\n",
742 | "2 69 75.357018\n",
743 | "3 30 26.794801\n",
744 | "4 62 60.491033"
745 | ]
746 | },
747 | "execution_count": 56,
748 | "metadata": {},
749 | "output_type": "execute_result"
750 | }
751 | ],
752 | "source": [
753 | "a=y_test.flatten()\n",
754 | "b=y_predict.flatten()\n",
755 | "compare={\"ACTUAL\":a,\"prediction\":b}\n",
756 | "label={0,1,2,3,4}\n",
757 | "print(\"Comparing the actuals with prediction: \")\n",
758 | "df=pd.DataFrame(compare,index=label)\n",
759 | "df\n"
760 | ]
761 | },
762 | {
763 | "cell_type": "markdown",
764 | "metadata": {},
765 | "source": [
766 | "### ***Evaluating the model***\n",
767 | "#### ***Evaluation is a very impotant step for knowing the accuracy of the model by using MAE***"
768 | ]
769 | },
770 | {
771 | "cell_type": "code",
772 | "execution_count": 69,
773 | "metadata": {},
774 | "outputs": [
775 | {
776 | "data": {
777 | "text/plain": [
778 | "4.183859899002975"
779 | ]
780 | },
781 | "execution_count": 69,
782 | "metadata": {},
783 | "output_type": "execute_result"
784 | }
785 | ],
786 | "source": [
787 | "mae=mean_absolute_error(y_test,y_predict)\n",
788 | "mae"
789 | ]
790 | },
791 | {
792 | "cell_type": "markdown",
793 | "metadata": {},
794 | "source": [
795 | "## ***prediction***\n",
796 | "### ***What will be predicted score if a student studies for 9.25 hrs/ day?***"
797 | ]
798 | },
799 | {
800 | "cell_type": "code",
801 | "execution_count": 71,
802 | "metadata": {},
803 | "outputs": [
804 | {
805 | "data": {
806 | "text/plain": [
807 | "array([[93.69173249]])"
808 | ]
809 | },
810 | "execution_count": 71,
811 | "metadata": {},
812 | "output_type": "execute_result"
813 | }
814 | ],
815 | "source": [
816 | "data_predict=reg.predict([[9.25]])\n",
817 | "data_predict"
818 | ]
819 | }
820 | ],
821 | "metadata": {
822 | "kernelspec": {
823 | "display_name": "Python 3",
824 | "language": "python",
825 | "name": "python3"
826 | },
827 | "language_info": {
828 | "codemirror_mode": {
829 | "name": "ipython",
830 | "version": 3
831 | },
832 | "file_extension": ".py",
833 | "mimetype": "text/x-python",
834 | "name": "python",
835 | "nbconvert_exporter": "python",
836 | "pygments_lexer": "ipython3",
837 | "version": "3.7.6"
838 | }
839 | },
840 | "nbformat": 4,
841 | "nbformat_minor": 4
842 | }
843 |
--------------------------------------------------------------------------------
/TASK-2.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# ***The Sparks Foundation Task-2***"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "## ***From the given ‘Iris’ dataset, predict the optimum number of clusters and represent it visually.***\n"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "### ***Import all the required libraries***"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 14,
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "import pandas as pd\n",
31 | "import numpy as np\n",
32 | "from sklearn.cluster import KMeans\n",
33 | "from sklearn.preprocessing import MinMaxScaler\n",
34 | "import matplotlib.pyplot as plt\n",
35 | "%matplotlib inline"
36 | ]
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "### ***Read the CSV file***"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": 9,
48 | "metadata": {},
49 | "outputs": [
50 | {
51 | "data": {
52 | "text/html": [
53 | "\n",
54 | "\n",
67 | "
\n",
68 | " \n",
69 | " \n",
70 | " \n",
71 | " Id \n",
72 | " SepalLengthCm \n",
73 | " SepalWidthCm \n",
74 | " PetalLengthCm \n",
75 | " PetalWidthCm \n",
76 | " Species \n",
77 | " \n",
78 | " \n",
79 | " \n",
80 | " \n",
81 | " 0 \n",
82 | " 1 \n",
83 | " 5.1 \n",
84 | " 3.5 \n",
85 | " 1.4 \n",
86 | " 0.2 \n",
87 | " Iris-setosa \n",
88 | " \n",
89 | " \n",
90 | " 1 \n",
91 | " 2 \n",
92 | " 4.9 \n",
93 | " 3.0 \n",
94 | " 1.4 \n",
95 | " 0.2 \n",
96 | " Iris-setosa \n",
97 | " \n",
98 | " \n",
99 | " 2 \n",
100 | " 3 \n",
101 | " 4.7 \n",
102 | " 3.2 \n",
103 | " 1.3 \n",
104 | " 0.2 \n",
105 | " Iris-setosa \n",
106 | " \n",
107 | " \n",
108 | " 3 \n",
109 | " 4 \n",
110 | " 4.6 \n",
111 | " 3.1 \n",
112 | " 1.5 \n",
113 | " 0.2 \n",
114 | " Iris-setosa \n",
115 | " \n",
116 | " \n",
117 | " 4 \n",
118 | " 5 \n",
119 | " 5.0 \n",
120 | " 3.6 \n",
121 | " 1.4 \n",
122 | " 0.2 \n",
123 | " Iris-setosa \n",
124 | " \n",
125 | " \n",
126 | " ... \n",
127 | " ... \n",
128 | " ... \n",
129 | " ... \n",
130 | " ... \n",
131 | " ... \n",
132 | " ... \n",
133 | " \n",
134 | " \n",
135 | " 145 \n",
136 | " 146 \n",
137 | " 6.7 \n",
138 | " 3.0 \n",
139 | " 5.2 \n",
140 | " 2.3 \n",
141 | " Iris-virginica \n",
142 | " \n",
143 | " \n",
144 | " 146 \n",
145 | " 147 \n",
146 | " 6.3 \n",
147 | " 2.5 \n",
148 | " 5.0 \n",
149 | " 1.9 \n",
150 | " Iris-virginica \n",
151 | " \n",
152 | " \n",
153 | " 147 \n",
154 | " 148 \n",
155 | " 6.5 \n",
156 | " 3.0 \n",
157 | " 5.2 \n",
158 | " 2.0 \n",
159 | " Iris-virginica \n",
160 | " \n",
161 | " \n",
162 | " 148 \n",
163 | " 149 \n",
164 | " 6.2 \n",
165 | " 3.4 \n",
166 | " 5.4 \n",
167 | " 2.3 \n",
168 | " Iris-virginica \n",
169 | " \n",
170 | " \n",
171 | " 149 \n",
172 | " 150 \n",
173 | " 5.9 \n",
174 | " 3.0 \n",
175 | " 5.1 \n",
176 | " 1.8 \n",
177 | " Iris-virginica \n",
178 | " \n",
179 | " \n",
180 | "
\n",
181 | "
150 rows × 6 columns
\n",
182 | "
"
183 | ],
184 | "text/plain": [
185 | " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm \\\n",
186 | "0 1 5.1 3.5 1.4 0.2 \n",
187 | "1 2 4.9 3.0 1.4 0.2 \n",
188 | "2 3 4.7 3.2 1.3 0.2 \n",
189 | "3 4 4.6 3.1 1.5 0.2 \n",
190 | "4 5 5.0 3.6 1.4 0.2 \n",
191 | ".. ... ... ... ... ... \n",
192 | "145 146 6.7 3.0 5.2 2.3 \n",
193 | "146 147 6.3 2.5 5.0 1.9 \n",
194 | "147 148 6.5 3.0 5.2 2.0 \n",
195 | "148 149 6.2 3.4 5.4 2.3 \n",
196 | "149 150 5.9 3.0 5.1 1.8 \n",
197 | "\n",
198 | " Species \n",
199 | "0 Iris-setosa \n",
200 | "1 Iris-setosa \n",
201 | "2 Iris-setosa \n",
202 | "3 Iris-setosa \n",
203 | "4 Iris-setosa \n",
204 | ".. ... \n",
205 | "145 Iris-virginica \n",
206 | "146 Iris-virginica \n",
207 | "147 Iris-virginica \n",
208 | "148 Iris-virginica \n",
209 | "149 Iris-virginica \n",
210 | "\n",
211 | "[150 rows x 6 columns]"
212 | ]
213 | },
214 | "execution_count": 9,
215 | "metadata": {},
216 | "output_type": "execute_result"
217 | }
218 | ],
219 | "source": [
220 | "df=pd.read_csv(\"iris.csv\")\n",
221 | "df"
222 | ]
223 | },
224 | {
225 | "cell_type": "markdown",
226 | "metadata": {},
227 | "source": [
228 | "### ***Dropping the unnecessary columns***"
229 | ]
230 | },
231 | {
232 | "cell_type": "code",
233 | "execution_count": 16,
234 | "metadata": {},
235 | "outputs": [],
236 | "source": [
237 | "df.drop(['Id', 'Species'],axis='columns',inplace=True) "
238 | ]
239 | },
240 | {
241 | "cell_type": "code",
242 | "execution_count": 44,
243 | "metadata": {},
244 | "outputs": [
245 | {
246 | "data": {
247 | "text/html": [
248 | "\n",
249 | "\n",
262 | "
\n",
263 | " \n",
264 | " \n",
265 | " \n",
266 | " SepalLengthCm \n",
267 | " SepalWidthCm \n",
268 | " PetalLengthCm \n",
269 | " PetalWidthCm \n",
270 | " cluster \n",
271 | " \n",
272 | " \n",
273 | " \n",
274 | " \n",
275 | " 0 \n",
276 | " 5.1 \n",
277 | " 3.5 \n",
278 | " 1.4 \n",
279 | " 0.2 \n",
280 | " 1 \n",
281 | " \n",
282 | " \n",
283 | " 1 \n",
284 | " 4.9 \n",
285 | " 3.0 \n",
286 | " 1.4 \n",
287 | " 0.2 \n",
288 | " 1 \n",
289 | " \n",
290 | " \n",
291 | " 2 \n",
292 | " 4.7 \n",
293 | " 3.2 \n",
294 | " 1.3 \n",
295 | " 0.2 \n",
296 | " 1 \n",
297 | " \n",
298 | " \n",
299 | " 3 \n",
300 | " 4.6 \n",
301 | " 3.1 \n",
302 | " 1.5 \n",
303 | " 0.2 \n",
304 | " 1 \n",
305 | " \n",
306 | " \n",
307 | " 4 \n",
308 | " 5.0 \n",
309 | " 3.6 \n",
310 | " 1.4 \n",
311 | " 0.2 \n",
312 | " 1 \n",
313 | " \n",
314 | " \n",
315 | " ... \n",
316 | " ... \n",
317 | " ... \n",
318 | " ... \n",
319 | " ... \n",
320 | " ... \n",
321 | " \n",
322 | " \n",
323 | " 145 \n",
324 | " 6.7 \n",
325 | " 3.0 \n",
326 | " 5.2 \n",
327 | " 2.3 \n",
328 | " 0 \n",
329 | " \n",
330 | " \n",
331 | " 146 \n",
332 | " 6.3 \n",
333 | " 2.5 \n",
334 | " 5.0 \n",
335 | " 1.9 \n",
336 | " 2 \n",
337 | " \n",
338 | " \n",
339 | " 147 \n",
340 | " 6.5 \n",
341 | " 3.0 \n",
342 | " 5.2 \n",
343 | " 2.0 \n",
344 | " 0 \n",
345 | " \n",
346 | " \n",
347 | " 148 \n",
348 | " 6.2 \n",
349 | " 3.4 \n",
350 | " 5.4 \n",
351 | " 2.3 \n",
352 | " 0 \n",
353 | " \n",
354 | " \n",
355 | " 149 \n",
356 | " 5.9 \n",
357 | " 3.0 \n",
358 | " 5.1 \n",
359 | " 1.8 \n",
360 | " 2 \n",
361 | " \n",
362 | " \n",
363 | "
\n",
364 | "
150 rows × 5 columns
\n",
365 | "
"
366 | ],
367 | "text/plain": [
368 | " SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm cluster\n",
369 | "0 5.1 3.5 1.4 0.2 1\n",
370 | "1 4.9 3.0 1.4 0.2 1\n",
371 | "2 4.7 3.2 1.3 0.2 1\n",
372 | "3 4.6 3.1 1.5 0.2 1\n",
373 | "4 5.0 3.6 1.4 0.2 1\n",
374 | ".. ... ... ... ... ...\n",
375 | "145 6.7 3.0 5.2 2.3 0\n",
376 | "146 6.3 2.5 5.0 1.9 2\n",
377 | "147 6.5 3.0 5.2 2.0 0\n",
378 | "148 6.2 3.4 5.4 2.3 0\n",
379 | "149 5.9 3.0 5.1 1.8 2\n",
380 | "\n",
381 | "[150 rows x 5 columns]"
382 | ]
383 | },
384 | "execution_count": 44,
385 | "metadata": {},
386 | "output_type": "execute_result"
387 | }
388 | ],
389 | "source": [
390 | "df"
391 | ]
392 | },
393 | {
394 | "cell_type": "markdown",
395 | "metadata": {},
396 | "source": [
397 | "### ***K-Means***"
398 | ]
399 | },
400 | {
401 | "cell_type": "code",
402 | "execution_count": 37,
403 | "metadata": {},
404 | "outputs": [],
405 | "source": [
406 | "x=df.iloc[:,[0,1,2,3]].values\n",
407 | "sse = []\n",
408 | "k_rng = range(1,10)\n",
409 | "for k in k_rng:\n",
410 | " km = KMeans(n_clusters=k)\n",
411 | " km.fit(x)\n",
412 | " sse.append(km.inertia_)"
413 | ]
414 | },
415 | {
416 | "cell_type": "markdown",
417 | "metadata": {},
418 | "source": [
419 | "### ***Plotting an ELBOW GRAPH to find the correct number of cluster***"
420 | ]
421 | },
422 | {
423 | "cell_type": "code",
424 | "execution_count": 31,
425 | "metadata": {},
426 | "outputs": [
427 | {
428 | "data": {
429 | "text/plain": [
430 | "[]"
431 | ]
432 | },
433 | "execution_count": 31,
434 | "metadata": {},
435 | "output_type": "execute_result"
436 | },
437 | {
438 | "data": {
439 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZQddZ338fenO3tI0p2kE0ISSG6HRQRkaRBF2WIiiAgoyDYSEGUeHx9HYdwfnZE5yuB5Rh0cZ5hhUUAJiywTUHTCviiLCSCLAclGVkgn6SxkT/r7/FHVzaW5fbs7ye263ffzOqdOV/3qV3W/Nwf62/WrX31LEYGZmRlAVdYBmJlZ+XBSMDOzVk4KZmbWyknBzMxaOSmYmVkrJwUzM2vlpGBmZq2cFGy3kvRW3tIsaVPe9vmSvifpVwWOC0mT0vXvSdrW5lxr2vm8Cemxb7VZzk733yDp++0cG5I2pP1XSrpFUk2bPh+X9Ezab5WkmyWNS/f1SY89Kq//+el527a90sG/2/faHpe2X5i2f61N+xJJx7fT99Nt2o+XtKTAZ35B0kuS+uW11UlqlPQRJb4jaWH6PZdIujmv7xOSLkzXi/a1nsNJwXariNijZQEWAafmtXXll8Rt+eeKiJoO+te06X9bJz/nfWmsOaAW+F7LDklnAtOBq4CRwHuBLcATkmojYjvwJHBc3vmOBV4p0PZYewFIEvAZYDUwrUCX1cA3JA3t4LtMK3KOQv4TaAT+b17bT4EZEfEA8FngHODE9N/oSOCRds7Vlb5WxpwUzICIWAfcAxwIrb+ofwR8PyJujohNEfEG8DngLeDS9NDHSH7pt/gw8MMCbe0mhXT/XsCXgXPy/3JPzSFJPpe2PbCFpH1IEtElwEcljS7yeQBEUs7gc8DfSTpY0sfSWP4+7XIk8PuImJ/2Xx4R17Zzuq70tTLmpGAGSKoFTgeeSpv2B/YGfp3fLyKagTuBKWnTY8AxkqokjQQGA7cDR+W1HUDxpDANuBdoubr5eIE+3wUulTS8nXNcAMyKiDtJksj5RT4v//vMA/4J+AVwNfC/ImJtuvsp4CJJX5V0hKTqIqfqSl8rY04KloVPS1qTv3Siz8MdnHNlm/7v6WQsz6afv5IkCfxX2j4y/bm8wDHL8/Y/DQwCDib5K/uJiNgILMhrez0iFhX6cEmDgLOA6RGxDbiDAsM/EfE8MBP4Rjvf4wKSoS7Sn50dQoJkeAzgmYj4Td5n3gB8BTiZJKmtkPTVQifoSl8rb04KloXbI6Imf+lEnxM6OOfINv3ndDKWw9PPH0Dyl/LjkgaQJAmAMQWOGdOyPyI2A8+QDBcdCzye9nkir63YVcIZwHbgvnT7ZuBkSXUF+v4D8AVJe+Y3SjoGmAjcmjZNBw6WdGiRz22VXv28ArxcYN8vI2IyUAN8EfhnSZPbOU+n+1r5clIwA9K/0q8j+eV6EPAqsITkr/hWkqqATwEP5jW33Ff4MG8nhcfz2joaOtoDWCTpDZLhqr7AuQVifAW4C/h2gXMIeD49x9Np+wVFPrdLImJbRNxKkjgO2l19rfz0yToAs25Qnf7136I5Irbmd0jHwC8CNgHzIyLS4Y9r0+mcdwPDgCuAocBP8g5/DPhfwA7gL2nbEyRJppZ2koKkscBkkiGXF/J2fYXkF/1PCxx2edpX6TkGAJ8mucH827x+nwL+QdLX8z4v/98AYEsUqZ0v6bPAGyQJbkMa5/4kV0Y73dfKm68UrFydXeDZg1FF+q9p0/eyvH3fJPll37I8lLfvz5LeAppIfhGfERGrAdJprZ8hmfWzkuQX/kDgmIhYlXeOP5IkjKdbfsmm+xuBFRHxWjsxfwZ4PiJmRsQbLQtJMjhE0rv+yo6IBcAvSW5oQ3JzfBNwU5tzXA9UAyel/ca2+TfYBNS3E1eLdcB3gMXpv88VwCUR8eQu9rUyJr9kx8zMWvhKwczMWjkpmJlZKycFMzNr5aRgZmatevSU1JEjR8aECROyDsPMrEeZPXv2yogo9IBkaZOCpEtJCm4F8CLJPPAxJE9eDgeeBT4TEVsl9QduAo4AVgFnR8TCYuefMGECs2bNKt0XMDPrhSS93t6+kg0fpQ/m/B3QEBEHkcyZPoekguRPImJfkvnMF6eHXAw0RcQkkgeDfliq2MzMrLBS31PoAwyU1IekaNhy4ESSol8AN5I8fANwWrpNun9yWr7YzMy6ScmSQkQsBf6F5EUry4G1wGxgTfpyEkhqy4xN18eSPA1Jun8tMKLteSVdImmWpFmNjY2lCt/MrCKVcvioluSv/4kkLxAZTFIPpa2WR6oLXRW863HriLgmIhoioqGuruB9EjMz20mlHD76CLAgIhrTCpR3AR8EatLhJIBxwLJ0fQkwHpJ335LUklldwvjMzKyNUiaFRcDRkgal9wYmkxQUexg4M+0zDZiRrt/D2y8GORN4qFgFRzMz2/1KeU/haZIbxs+STEetAq4heXPUZZLmktwzuD495HpgRNp+GUllSzMz60Y9ukpqQ0ND7MxzCov/uJhX732VyVdMxhOczKzSSJodEQ2F9lVkmYvlzy3nD1f+gaZ5TVmHYmZWVioyKdRPTd4tMu/+eRlHYmZWXioyKQyfNJxh+wxj/sz5WYdiZlZWKjIpSKJ+aj0LHlpA8/bmrMMxMysbFZkUIBlC2rJuC0ufWZp1KGZmZaNik8LEEyeCYN5M31cwM2tRsUlh4PCBjD1yLPPv930FM7MWFZsUAHJTcix5egmb12zOOhQzs7JQ0Umhfmo9sSNY8PCCrEMxMysLFZ0Uxh09jn579PMQkplZqqKTQnW/aiYcP8E3m83MUhWdFAByU3M0zWuiab5LXpiZVXxScMkLM7O3VXxSGLHfCIaOH+qSF2ZmOCm45IWZWZ6KTwqQPK+wec1mls1a1nFnM7NezEkByE3OueSFmRklTAqS9pf0fN6yTtJXJA2XdL+k19KftWl/SfqppLmSXpB0eKlia2vQyEHsdcRefl7BzCpeKd/R/GpEHBoRhwJHABuBu0nevfxgROwLPMjb72I+Gdg3XS4Bri5VbIXkpuRY/ORitqzb0p0fa2ZWVrpr+GgyMC8iXgdOA25M228ETk/XTwNuisRTQI2kMd0Un0temJnRfUnhHOCWdH10RCwHSH+OStvHAovzjlmStnWLcR8YR9/BfT2EZGYVreRJQVI/4BPArzvqWqAtCpzvEkmzJM1qbGzcHSEC0Kd/HyYc55IXZlbZuuNK4WTg2Yh4M91+s2VYKP25Im1fAozPO24c8K45ohFxTUQ0RERDXV3dbg00NzXH6tdWs2bhmt16XjOznqI7ksK5vD10BHAPMC1dnwbMyGu/IJ2FdDSwtmWYqbu45IWZVbqSJgVJg4ApwF15zVcCUyS9lu67Mm2/D5gPzAWuBf53KWMrZOQBIxkydohLXphZxepTypNHxEZgRJu2VSSzkdr2DeCLpYynIy0lL17571do3tFMVbWf7TOzyuLfem3kpuTY3LSZ5bO7deTKzKwsOCm0kftIDnDJCzOrTE4KbQyuG8yYw8f4eQUzq0hOCgXkpuRY/MfFbFnvkhdmVlmcFAqon1pP8/ZmFj6yMOtQzMy6lZNCAeOPGU+fgX08hGRmFcdJoQCXvDCzSuWk0I7c1ByrXl3F2kVrsw7FzKzbOCm0wyUvzKwSOSm0o+7AOobs5ZIXZlZZupwUJFVLOr8UwZQTSeSm5Jj/wHyadzRnHY6ZWbdoNylIGirpW5J+JmlqWr30SyRF6z7dfSFmJzclx6bVm3jjuTeyDsXMrFsUu1L4JbA/8CLwOWAmcCZwWkSc1g2xZc4lL8ys0hSrkpqLiIMBJF0HrAT2joj13RJZGdhj9B7seeiezL9/Ph/+9oezDsfMrOSKXSlsa1mJiB3AgkpKCC1yU3Is+sMitr61NetQzMxKrlhSeJ+kdZLWS1oPHJK3va67Asxa/dR6mrc1s/DRhVmHYmZWcu0mhYiojoihETEkXfrkbQ/tziCztPeH9qbPAJe8MLPK0OGb1ySdALwXCODliHik1EGVkz4D+rDPsfv4ZrOZVYRiU1LHSnoa+B6QAyYBl0t6RtLYzpxcUo2kOyS9ImmOpA9IGi7pfkmvpT9r076S9FNJcyW9IOnw3fD9dovc1Bwr56xk3ZKKGTUzswpV7J7Cz4CrI+K4iLgsIi6NiOPS9v/o5PmvAn4fEQcA7wPmAN8EHoyIfYEH022Ak4F90+US4Oouf5sSqZ/ikhdmVhmKJYUDI+KGto0RcRNwQEcnljQUOBa4Pj1ua0SsAU4Dbky73Qicnq6fBtwUiaeAGkljOvtFSmnUwaMYPHqwS16YWa9XLClUF2qUVNXevjZyQCPwC0nPSbpO0mBgdEQsB0h/jkr7jwUW5x2/JG1r+/mXSJolaVZjY2Mnwth1kqifWs/8B+YTzdEtn2lmloViSeFeSdemv8gBSNf/E7ivE+fuAxxOMgR1GLCBt4eKClGBtnf9Bo6IayKiISIa6urqOhHG7pGbkmPjyo288bxLXphZ71UsKXwdWAu8Lmm2pFnAQmAd8NVOnHsJsCQink637yBJEm+2DAulP1fk9R+fd/w4YFknv0fJueSFmVWCYs8pbIuIr5L8or4Q+CywT0R8NSI6fLw3It4AFkvaP22aDPwFuAeYlrZNA2ak6/cAF6SzkI4G1rYMM5WDIWOGMPqQ0X5ewcx6tQ6fU4iITSRF8QCQNAX4ekRM6cT5vwTcLKkfSXXVi0gS0e2SLgYWAWelfe8DPgbMBTamfctKbkqOZ/7tGbZu2Eq/wf2yDsfMbLdrNylIOpHk/sFewH8DVwA3kYz9/6AzJ4+I54GGArsmF+gbwBc7c96s1E+t58kfPcnrj73Ovifvm3U4Zma7XbF7Cj8ieV5gBMn9gKeAX0bEERFxV3cEV272/vDeVPev9hCSmfVaxYaPIq+kxX9LaoyIq7ohprLVd2Bf9vmwS16YWe9VLCnUSPpk3rbytyv1aiE3NccDX3+AdUvXMXRsxdQFNLMKUWz46FHg1Lwlf/vjpQ+tPLWUvJj/gIeQzKz3afdKISLKbvZPORh9yGgGj0pKXhw67dCswzEz262KXSkgqVrSyLztfmmZiTmlD608qUrkpuSYd/88l7wws16nWOnsc4DVwAuSHk3fqzCfpJrp+d0UX1nKTcmxsXEjb77wZtahmJntVsVuNH8HOCIi5qbvNngSOCci7u6e0MpXayntmfPY89A9M47GzGz3KTZ8tDUi5gJExLPAAieExJC9hjDqoFF+XsHMep1iVwqjJF2Wt71H/nZE/Lh0YZW/3JQcf/qPP7Ft4zb6DuqbdThmZrtFsSuFa4EheUvb7YpWP7WeHVt28Prjr2cdipnZblNsSurl3RlIT7PPsftQ3S8peTHpo5OyDsfMbLcoNvvo9rz1H7bZN7OUQfUEfQf1Ze8P7e2SF2bWqxQbPsovA9q2THb3vfKsjOWm5ljx4grWL1+fdShmZrtFsaRQ7MksP7WFS16YWe9TLCkMknSYpCOAgen64S3b3RRfWdvz0D0ZNHIQ82c6KZhZ71BsSupyoGXa6Rt56y3bFe8dJS8ikJR1SGZmu6TY7KMTdvXkkhYC64EdwPaIaJA0HLgNmAAsBD4dEU1KfqNeRfJKzo3AhelDc2UtNyXHS7e8xIoXVzD6kNFZh2NmtkuKFsTbTU6IiEMjouW1nN8EHoyIfYEH021Iairtmy6XAFd3Q2y7LL/khZlZT9cdSaGt04Ab0/UbgdPz2m+KxFMkL/kZk0F8XTJ03FDqDqxzUjCzXqHUSSGAmZJmS7okbRsdEcsB0p+j0vaxwOK8Y5ekbe+Qlu6eJWlWY2NjCUPvvNyUHIseX8S2TduyDsXMbJd09D6FPpJOlfS1dPm4pGI3p9s6JiIOJxka+qKkY4t9XIG2d019jYhrIqIhIhrq6srjcYn6qfVs37ydRU8syjoUM7NdUuyJ5r2Al4G/B/Yi+av9a8DL6b4ORcSy9OcK4G7gKODNlmGh9OeKtPsSYHze4eOAZV35MlnZ57h9qOpb5aqpZtbjFbtSuAK4OiKOj4hLI+IrEXEc8O/AP3d0YkmDJQ1pWQemAi8B9wDT0m7TgBnp+j3ABUocDaxtGWYqd/0G92PvY1zywsx6vmJDQUdHxIVtGyPip5Je7cS5RwN3p3P3+wDTI+L3kv4E3C7pYmARcFba/z6S6ahzSaak9qh3ROem5njo2w/x1ptvscfoPbIOx8xspxRLCpuK7NvY0YkjYj7wvgLtq4DJBdoD+GJH5y1X9VPqeejbDzH/gfkccv4hWYdjZrZTiiWFYZI+WaBdwNASxdNj7XnYngwcMZD5M50UzKznKpYUHgNOLbLP8lRVV5H7iEtemFnPVqzMxYXdGEevkJuS4+XbXqbx5UZGHTSq4wPMzMpMsSmp/5q3/uU2+24oYUw9lktemFlPV2xKav6DZtPa7POgeQHD9h7GyANGOimYWY9VLCmonXUrIjclx+uPvc72zduzDsXMrMuKJYUqSbWSRuStD09LX1d3U3w9Tv3UerZv2s6iP7jkhZn1PEWnpAKzefsqoezfbVAO9jluH6r6JCUvcpNzWYdjZtYl7V4pRMSEiMhFxMRCS3cG2ZP0H9Kf8R8c7/sKZtYjdbl0tqT9JV1bimB6i9zUHG889wYbVmzIOhQzsy4pNiX1EEkzJb0k6fuSRku6k+RtaX/pvhB7npapqfMfdNVUM+tZil0pXAtMBz4FNJLcU5gPTIqIn3RDbD3WmCPGMKB2APNnOimYWc9S7EZz/4i4IV1/VdJXgW9GxI7Sh9WztZa8mOmSF2bWsxS7Uhgg6TBJh0s6HHgLOCRv24rITcmxftl6Vs5ZmXUoZmadVuxKYTnw47ztN/K2AzixVEH1BvklL+oOLI/XhpqZdaRYQbwT2tsnqW9pwuk9aibUMGK/EcybOY+jv3J01uGYmXVKp6ekpq/JPFHSdSTvU7YO5KbkeP3R19m+xSUvzKxn6DApSHq/pKuA10neo/w4cECpA+sN6qfWs23jNhb/cXHWoZiZdUqx5xR+IOk14ArgReAwoDEiboyIps5+gKRqSc9J+k26PVHS05Jek3SbpH5pe/90e266f8KufLFyMOH4CahazL/fU1PNrGcodqVwCfAmcDXwq/TdyrETn/FlYE7e9g+Bn0TEvkATcHHafjHQFBGTgJ+k/Xq0/kP7M/4DLnlhZj1HsaSwJ/AD4BPAXEm/BAZKKjZj6R0kjQNOAa5Lt0Uya+mOtMuNwOnp+mnpNun+yeoFE/xzU3Msf3Y5G1duzDoUM7MOFSuItyMifhcRFwCTgBnAH4GlkqZ38vz/CnwdaE63RwBrIqLlzusSYGy6PhZYnH72dmBt2v8dJF0iaZakWY2NjZ0MIzv1U+ohXPLCzHqGTs0+iojNEXFHRHwK2Bf4n46OkfRxYEVEzM5vLnT6TuzLj+WaiGiIiIa6uvKf/79Xw14MqBngISQz6xHaHQqSdFmbpgBWAk9ExI0FDmnrGOATkj4GDACGklw51Ejqk14NjAOWpf2XAOOBJekQ1TBgdVe+TDmq6lPFxMkTmT9zvktemFnZK3alMKTNMhRoAH4n6ZyOThwR34qIcRExATgHeCgizgceBs5Mu00jGZaCZLpry7ugz0z778yN7bKTm5Jj3ZJ1rHp1VdahmJkVVeyJ5ssLtaev43wAuHUnP/MbwK2Svg88B1yftl8P/FLSXJIrhA4TT09RP/XtkhcjDxiZcTRmZu3r9EyiFhGxuquzgiLiEeCRdH0+cFSBPpuBs7oaT09QO7GW2vpa5s2cx/v/7v1Zh2Nm1q6defPaiSTPF1gX1E+tZ+EjC9mx1ZXHzax8FXui+UVJL7RZlgBXAv+7+0LsHeqn1rNtwzYWP+mSF2ZWvooNH328zXYAqyLCLx7eCRNOeLvkxYTjJmQdjplZQcUeXns9Il4neS7hNJInj9/XXYH1NgOGDWDc+8f5eQUzK2vFho/GS3oW+C4wAZgI/LOk36fF6z7XTTH2GrmpOZbNWsbGVS55YWblqdiN5n8HfhoRx0XEZRFxaUQcB0wHnsT3FbqspeTFgocWZB2KmVlBxZLCARFxQ9vGiLgJGAWcVKqgequxR42l/9D+HkIys7JVLCkU3CepCtgUEStKE1Lv1bbkhZlZuSmWFO6VdK2kwS0N6fp/AveVPLJeKjclx9pFa1n9Wo8v62RmvVCxpPB1kvLVr0uaLWk2sBBYB3ytG2LrlfJLXpiZlZtiU1K3RcRXSSqXXghcBOwTEV+NiK3dFF+vM7x+ODUTa5wUzKwsFZuSeqSkPSNiU0S8CBwK3CLpp2lRPNtJ9VPrWfjwQnZsc8kLMysvxYaP/gvYCiDpWJLyFjeRDCldU/rQeq/6qfVsfWsrS55aknUoZmbvUCwpVEdEy93Qs4FrIuLOiPguyes5bSdNPHEiqpKHkMys7BRNCukb0AAmAw/l7etyyW1724CaAYw9aizz7/d7m82svBRLCrcAj0qaAWwCHgeQNIlkCMl2QW5qjmV/Wsampk1Zh2Jm1qrY7KMfAH8P3AB8KO/VmFXAl0ofWu9WP6WeaA6XvDCzslL0JTsR8VRE3J1fLjsi/hoRz3Z0YkkDJD0j6c+SXpZ0edo+UdLTkl6TdJukfml7/3R7brp/wq59tfI29v1j6Tekn+8rmFlZ6fKb17pgC3BiRLyPZDrrSZKOBn4I/CQi9iV5g9vFaf+LgaaImAT8JO3Xa1X3rWbiiS55YWblpWRJIRJvpZt90yWAE4E70vYbSd7TAMk7G25M1+8AJnf1XdA9TW5KjjUL19A0z283NbPyUOzhtaN39eSSqiU9D6wA7gfmAWsiYnvaZQkwNl0fCywGSPevBUYUOOclkmZJmtXY2LirIWbKJS/MrNwUu1L4j5YVSU/uzMkjYkdEHAqMA44C3lOoW8vHFNmXf85rIqIhIhrq6up2JqyyMXzScIbtM8xJwczKRrGkkP9LesCufEhErAEeAY4GavKefxgHLEvXl5DUWSLdPwzo1aVEJbnkhZmVlaLvU5BUK2lE3vrwlqWjE0uqk1STrg8EPgLMAR4Gzky7TQNmpOv3pNuk+x+KCrgDWz+1ni3rtrD0maVZh2JmVvTJ5GHAbN6+YsifhhpAroNzjwFulFRNknxuj4jfSPoLcKuk7wPPAden/a8HfilpLskVwjld+iY91MQTJ4KS+wp7H7N31uGYWYVrNylExIRdOXFEvAAcVqB9Psn9hbbtm4GzduUze6KBwwcy9sik5MUJl5+QdThmVuGK1jBKHyw7H3gvydXBX4DpEbGlG2KrGLmpOZ644gk2r9nMgJpdun1jZrZLik1JPZAkCRwPLCK5EXw88LKk93ZHcJWiteTFwy55YWbZKnal8G/AFyLi/vxGSR8BfgZ4rGM3GXf0OPrtkZS8eM8ZhWbtmpl1j2Kzj8a2TQgAEfEAsGfpQqo81f2qmXD8BObPdCltM8tWR1NS+7dtlDQAv09ht8tNzdE0v4nV83r1oxlmVuaKJYWbgDvzq5Wm67cDvyxlUJWopeSFX7xjZlkq9j6F7wO/Bx6TtFLSSuBR4P6I+KfuCrBSjNhvBEPHD3XJCzPLVNFhoIj4GfAzSUPS7fXdElUFail58Zc7/sK2TdvoO7Bv1iGZWQXqVOnsiFjvhFB6B59/MFvWbmHGRTOI5l5f4cPMylApX7JjXTTxhIlMvnIyL9/2Mg//48NZh2NmFciziMrMMV8/htWvrebx7z/O8EnDOXTaoVmHZGYVpN2kIOmTxQ6MiLt2fzgmiVOuPoU1C9Zw7+fvpWZCDROOm5B1WGZWIdRedWpJzcDz6QLvfL9CRMRnSxxbhxoaGmLWrFlZh1ESm5o28fMP/py33nyLzz31OUbs966X0JmZ7RRJsyOiodC+YvcUPgX8FTgEWAD8ICIuSpfME0JvN7B2IOf99jyqqquYfsp0Nq7amHVIZlYBij2ncHdEnAMcR/Ju5R9JekLScd0WXYWrzdVyzoxzWLt4LbedcRvbt2zv+CAzs13QmdlHm4G1wDpgMLv4ak7rmvEfHM9pvziNRY8v4t7P30sFvIzOzDJU7EbzCcC5JC/EeQC4KiJ65wB+mTv43INZPXc1j/zDI4zYbwTHfufYrEMys16q2JTUB4EXgCeA/sAFki5o2RkRf1fi2CzPsd85ltWvrebh7z5MbX0tB597cNYhmVkvVCwpfJbkbWs7RdJ4kqJ6ewLNwDURcZWk4cBtwARgIfDpiGiSJOAq4GPARuDCiHi20LkrkSROvfZU1ixcw4yLZlCzTw3jPzg+67DMrJdpd0rqLp9YGgOMiYhn09pJs4HTgQuB1RFxpaRvArUR8Q1JHwO+RJIU3k8yXPX+Yp/Rm6ektmfjqo1cf/T1bF6zmc89/Tlqc7VZh2RmPcxOTUmVdK+ke/KWGZKul/Q3nfnQiFje8pd+WjdpDjAWOA24Me12I0miIG2/KRJPATVpYrE8g0YM4rzfnkfzjmamnzKdzWs2Zx2SmfUixWYf/Qvwo7zlx8BvgDMkXdmVD0nfw3AY8DQwOiKWQ5I4gFFpt7HA4rzDlqRtbc91iaRZkmY1NjZ2JYxeY8R+Izj77rNZPW81t595Ozu27cg6JDPrJYo9p/BogeVu4NPASZ39AEl7AHcCX4mIdcW6FgqjQFzXRERDRDTU1dV1NoxeZ8JxEzj12lNZ8OACfvuF33qqqpntFl0uiBcRO5J7wh2T1JckIdycVyvpTUljImJ5Ojy0Im1fAuTfOR0HLOtqfJXk0GmHJsXzfvA4I/YbwTFfPybrkMyshyt2T2F4gaVe0uXAyx2dOJ1NdD0wJyJ+nLfrHmBauj4NmJHXfoESRwNrW4aZrH0n/NMJvPfs9/LANx5gzl1zsg7HzHq4YlcKs0mGb1ouCwJYBTwCfKET5z4G+AzwoqSWonrfBq4Ebpd0MbAIOCvddx/JzKO5JFNSL+r0t6hgqhKn/eI01r6+lrv+5i4ufPRCxh75rlsxZmadUrIpqd2hEqektmfDig1c9/7r2LZpG59/5vMM23tY1iGZWZna2SmpR0raM2/7gnRa6k/TB9CsjNtwAhAAAA8QSURBVAweNZjzfnse2zdtZ/op09mybkvWIZlZD1RsSup/AVsBJB1LMuxzE0lxvGtKH5p1Vd2BdZx1x1k0zmnkjrPvoHl7c9YhmVkPUywpVEfE6nT9bJIyFXdGxHeBSaUPzXZG/ZR6Trn6FOb+fi6/+/LvPFXVzLqk2I3makl9ImI7MBm4pJPHWcaO+PwRrPrrKp78lycZsd8Ijv7y0VmHZGY9RLFf7rcAj0paCWwCHgeQNIlkCMnK2JQfTqFpbhP/c+n/UJurZf9T9886JDPrAYo90fwD4O+BG4APxdvjEFUkheusjKlKnPGrMxhz+BjuPPdOlj/nRz7MrGNF37wWEU+lr+XckNf2V5e07hn6De7Hufeey8Dagdxy6i2sW1qsyoiZWedex2k92JAxQzjvt+exZe0Wbjn1Fra+tTXrkMysjDkpVIDRh4zmzNvO5M0/v8ld599F8w5PVTWzwpwUKsS+H9uXk646iVfveZX7v3Z/1uGYWZny1NIKctT/OYpVr63iqZ88xfB9h3PkF47MOiQzKzNOChXmoz/+KE3zmvjdl35Hba6WSR/1c4hm9jYPH1WYquoqPnXLpxh10Ch+fdavWfHSio4PMrOK4aRQgfoP6c+5955Lvz36Mf2U6bz1xltZh2RmZcJJoUINGz+Mc+89l40rN3LrabeybeO2rEMyszLgpFDB9jpiLz558ydZ+qel3H3B3USzi+eZVTonhQp3wOkHMOX/TWHOnXN48P8+mHU4ZpaxkiUFST+XtELSS3ltwyXdL+m19Gdt2q705T1zJb0g6fBSxWXv9oHLPsARf3sEf7jyDzz38+eyDsfMMlTKK4UbgJPatH0TeDAi9gUeTLcBTgb2TZdLgKtLGJe1IYmT/+1kclNy/OZvf8OChxZkHZKZZaRkSSEiHgNWt2k+DbgxXb8ROD2v/aZIPAXUSBpTqtjs3ar7VnPWr89ixH4juP1Tt7PylZVZh2RmGejuewqjI2I5QPpzVNo+Flic129J2vYuki6RNEvSrMbGxpIGW2kGDBvAeb89j+p+1Uw/ZTobGjd0fJCZ9SrlcqNZBdoKToWJiGsioiEiGurq6kocVuWpmVDDOTPOYf2y9dx2xm1s37w965DMrBt1d1J4s2VYKP3Z8jjtEmB8Xr9xwLJujs1S444ex+k3nc7iPyzmnovv8XuezSpIdyeFe4Bp6fo0YEZe+wXpLKSjgbUtw0yWjfee9V5OvOJEXpz+Io9e/mjW4ZhZNylZQTxJtwDHAyMlLQH+EbgSuF3SxcAi4Ky0+33Ax4C5wEbgolLFZZ33oW9+iNV/Xc2jlz/K8EnDOeRvDsk6JDMrMfXkoYGGhoaYNWtW1mH0aju27uBXH/0VCx9ZyKCRg6jN1VJbny65WobXD6e2vpYhY4agqkK3hsys3EiaHRENhfa5dLYVVd2vmrP/+2yeu/45Vr66kqZ5TSx5agkv3/byO8pi9BnQh5qJNQyvH05NrqY1WdTmaqmdWEufAf5Pzawn8P+p1qEBwwbwgcs+8I62Hdt2sPb1tTTNb2L1vNU0zWuiaX4TTfOaWPDwArZtyCuwJxg6dujbSaI+vcJI1wcOH4jkqwyzcuCkYDulum81wycNZ/ik4dRT/459EcHGxo2tyWL1vNWsmb+G1fNWM/d3c99Vqrv/sP7vGIrKTxxDxw2lqk+5zJw26/2cFGy3k8TgUYMZPGow4z8w/l37t27YypoFSZJoubpomtfEmy+8ySszXqF5W3Nr36o+VdRMqCl8lZGrpd8e/brzq5n1ek4K1u36De7HqINGMeqgUe/a17yjmXVL1rUmi/yrjKVPL2Xzms3v6D+obhB77LlHaxIqtvQd3NfDVGYdcFKwslJVXUXNPjXU7FPDxBMmvmv/pqZNrcmiaX4TaxasYcOKDWxYsYGlzyxlw4oNbF2/teC5+wzs06nkMahuEIPrBlPdr7rUX9es7DgpWI8ysHYgAxsGslfDXu322bZpGxsbN7Ymi0LL+mXreeP5N9iwYsM7hqvyDagZ8M5kMWpQu4lkYO1AT8m1XsFJwXqdvgP7MmzvYQzbe1iHfSOCLWu3tJs8WpLLyldWsuGxDWxctbFgVS5Vi8F177za6D+0P/2H9qffkH7J+pAi20P6+4a6lQUnBatokhhQM4ABNQMYsd+IDvs3b29m46r2r0I2rkj2NS1oYsu6LWxZt4UdW3Z0KpY+A/u0mzz6De1XPKm02a6qdoKxneOkYNYFVX2q2GP0Huwxeo9OH7Nj6w62rN/C1vVbk0SxPkkW7W1vXb+1tW3d4nXv6NPZBNN3UN92r0iqB1TTZ0CfZOmf/KzuX110u6M+VX2rfBO/l3BSMCux6n7VDBoxiEEjBu3yuXYqwaTtLQlm+5btbN+8nR1bdrB983aatxe+p9IlotMJ5B3bbfYV7FfsHG32VferdnLaRU4KZj3I7kwwLZp3NLcmiLYJo73tjvrs2LzjXX23rt/KxpUb2z1f7Ng9ddiq+1V3Ltm02dde/6q+VVT1abNUF2grsqhaHferriqLyQpOCmYVrqq6iqpBVfQd1DfTONpNToWSTmf7pcmpbf9CV0z5/bKiKnU6kRz3j8dx0NkH7fYYnBTMrCyUS3KKCJq3NbcmiubtzUWX2BEd9nnHsqMLfYucf+DwgSX5/k4KZmZ5JFHdr5rqftX0p3/W4XQ7z1szM7NWTgpmZtaqrJKCpJMkvSpprqRvZh2PmVmlKZukIKka+HfgZOBA4FxJB2YblZlZZSmbpAAcBcyNiPkRsRW4FTgt45jMzCpKOSWFscDivO0laZuZmXWTckoKhR7le9cjjpIukTRL0qzGxsZuCMvMrHKUU1JYAuS/u3EcsKxtp4i4JiIaIqKhrq6u24IzM6sEitg99UZ2laQ+wF+BycBS4E/AeRHxcpFjGoHXd/IjRwIrd/LYUnJcXeO4uq5cY3NcXbMrce0TEQX/qi6bJ5ojYruk/wP8D1AN/LxYQkiP2elLBUmzIqJhZ48vFcfVNY6r68o1NsfVNaWKq2ySAkBE3Afcl3UcZmaVqpzuKZiZWcYqOSlck3UA7XBcXeO4uq5cY3NcXVOSuMrmRrOZmWWvkq8UzMysDScFMzNrVXFJQdLPJa2Q9FLWseSTNF7Sw5LmSHpZ0pezjglA0gBJz0j6cxrX5VnHlE9StaTnJP0m61haSFoo6UVJz0ualXU8LSTVSLpD0ivpf2cfKIOY9k//nVqWdZK+knVcAJIuTf+bf0nSLZIGZB0TgKQvpzG9XIp/q4q7pyDpWOAt4KaI2P0vON1JksYAYyLiWUlDgNnA6RHxl4zjEjA4It6S1Bd4AvhyRDyVZVwtJF0GNABDI+LjWccDSVIAGiKirB54knQj8HhEXCepHzAoItZkHVeLtFLyUuD9EbGzD6XurljGkvy3fmBEbJJ0O3BfRNyQcVwHkRQLPQrYCvwe+EJEvLa7PqPirhQi4jFgddZxtBURyyPi2XR9PTCHMigIGIm30s2+6VIWf0lIGgecAlyXdSzlTtJQ4FjgeoCI2FpOCSE1GZiXdULI0wcYmFZbGESBsjsZeA/wVERsjIjtwKPAGbvzAyouKfQEkiYAhwFPZxtJIh2ieR5YAdwfEWURF/CvwNeB5qwDaSOAmZJmS7ok62BSOaAR+EU63HadpMFZB9XGOcAtWQcBEBFLgX8BFgHLgbURMTPbqAB4CThW0ghJg4CP8c6acbvMSaHMSNoDuBP4SkSsyzoegIjYERGHkhQpPCq9hM2UpI8DKyJidtaxFHBMRBxO8sKoL6ZDllnrAxwOXB0RhwEbgLJ5u2E6nPUJ4NdZxwIgqZbkfS4Tgb2AwZL+JtuoICLmAD8E7icZOvozsH13foaTQhlJx+zvBG6OiLuyjqetdLjhEeCkjEMBOAb4RDp+fytwoqRfZRtSIiKWpT9XAHeTjP9mbQmwJO8q7w6SJFEuTgaejYg3sw4k9RFgQUQ0RsQ24C7ggxnHBEBEXB8Rh0fEsSRD4bvtfgI4KZSN9Ibu9cCciPhx1vG0kFQnqSZdH0jyP8sr2UYFEfGtiBgXERNIhh0eiojM/5KTNDidKEA6PDOV5JI/UxHxBrBY0v5p02Qg00kMbZxLmQwdpRYBR0salP6/OZnkPl/mJI1Kf+4NfJLd/O9WVgXxuoOkW4DjgZGSlgD/GBHXZxsVkPzl+xngxXT8HuDbaZHALI0BbkxnhlQBt0dE2Uz/LEOjgbuT3yP0AaZHxO+zDanVl4Cb06Ga+cBFGccDQDo2PgX426xjaRERT0u6A3iWZHjmOcqn3MWdkkYA24AvRkTT7jx5xU1JNTOz9nn4yMzMWjkpmJlZKycFMzNr5aRgZmatnBTMzKyVk4JVPElv5a1/TNJr6Rzw/D4XSgpJk/Pazkjbzky3H5H0al7FzzvanOPP6ZTo/LYbJC2V1D/dHpk+kIekKkk/TStivijpT5Im7vZ/ALM8Ffecgll70l/4/wZMjYhFBbq8SPKQ1YPp9jkkZQbynR8R7yqXLek9JH+EHStpcERsyNu9A/gscHWbw84mKbFwSEQ0pwUAN2BWQr5SMAMkfRi4FjglIua10+1xktpPfdMaVZOA59vp29Z5wC+BmSQ1fvL9K3BpWo0z3xhgeUQ0A0TEkt39oJJZW04KZtAfmEHy/opiJTwCeAD4KEmxtHsK9Lk5b/jo/+W1nw3cRlKS4Nw2xywiqd3/mTbttwOnpuf6kaTDOv2NzHaSk4JZUi7gj8DFneh7K8mwUXtlns+PiEPT5WsAko4EGtP3BDwIHJ5W4cx3BfA18v6fjIglwP7At0jKgz+Yf0/DrBScFMySX7ifBo6U9O1iHSPiGeAgYGRE/LWT5z8XOCC9gTwPGAp8qs1555IMRX26TfuWiPhdmmCuAE7v5Gea7RTfaDYDImJj+o6GxyW92UGRxG8BmztzXklVwFkkN4uXpm0nAN/h3W+M+wHw27xjDwfeiIhl6XkOAV7o7Hcy2xlOCmapiFgt6STgMUkrI2JGO/1+V+Q0N0valK6vBL4PLG1JCKnHgAPT93Lnn/dlSc/y9nsORgHXtkxXBZ4Bfta1b2XWNa6SamZmrXxPwczMWjkpmJlZKycFMzNr5aRgZmatnBTMzKyVk4KZmbVyUjAzs1b/H8GsBl3Dx8XJAAAAAElFTkSuQmCC\n",
440 | "text/plain": [
441 | ""
442 | ]
443 | },
444 | "metadata": {
445 | "needs_background": "light"
446 | },
447 | "output_type": "display_data"
448 | }
449 | ],
450 | "source": [
451 | "plt.xlabel('K MEANS')\n",
452 | "plt.ylabel('SUM OF SQUARED ERROR')\n",
453 | "plt.title('THE ELBOW ANALYSIS')\n",
454 | "plt.plot(k_rng,sse,color='purple')"
455 | ]
456 | },
457 | {
458 | "cell_type": "markdown",
459 | "metadata": {},
460 | "source": [
461 | "#### ***This show that 3 is optimum number of cluster to form in iris dataset***"
462 | ]
463 | },
464 | {
465 | "cell_type": "code",
466 | "execution_count": 38,
467 | "metadata": {},
468 | "outputs": [
469 | {
470 | "data": {
471 | "text/plain": [
472 | "array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
473 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
474 | " 1, 1, 1, 1, 1, 1, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
475 | " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n",
476 | " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0,\n",
477 | " 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0,\n",
478 | " 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2])"
479 | ]
480 | },
481 | "execution_count": 38,
482 | "metadata": {},
483 | "output_type": "execute_result"
484 | }
485 | ],
486 | "source": [
487 | "km = KMeans(n_clusters=3)\n",
488 | "y_predict = km.fit_predict(x)\n",
489 | "y_predict"
490 | ]
491 | },
492 | {
493 | "cell_type": "markdown",
494 | "metadata": {},
495 | "source": [
496 | "## ***Adding a cluster column to show which cluster does the particular feature belong to***"
497 | ]
498 | },
499 | {
500 | "cell_type": "code",
501 | "execution_count": 43,
502 | "metadata": {},
503 | "outputs": [
504 | {
505 | "data": {
506 | "text/html": [
507 | "\n",
508 | "\n",
521 | "
\n",
522 | " \n",
523 | " \n",
524 | " \n",
525 | " SepalLengthCm \n",
526 | " SepalWidthCm \n",
527 | " PetalLengthCm \n",
528 | " PetalWidthCm \n",
529 | " cluster \n",
530 | " \n",
531 | " \n",
532 | " \n",
533 | " \n",
534 | " 0 \n",
535 | " 5.1 \n",
536 | " 3.5 \n",
537 | " 1.4 \n",
538 | " 0.2 \n",
539 | " 1 \n",
540 | " \n",
541 | " \n",
542 | " 1 \n",
543 | " 4.9 \n",
544 | " 3.0 \n",
545 | " 1.4 \n",
546 | " 0.2 \n",
547 | " 1 \n",
548 | " \n",
549 | " \n",
550 | " 2 \n",
551 | " 4.7 \n",
552 | " 3.2 \n",
553 | " 1.3 \n",
554 | " 0.2 \n",
555 | " 1 \n",
556 | " \n",
557 | " \n",
558 | " 3 \n",
559 | " 4.6 \n",
560 | " 3.1 \n",
561 | " 1.5 \n",
562 | " 0.2 \n",
563 | " 1 \n",
564 | " \n",
565 | " \n",
566 | " 4 \n",
567 | " 5.0 \n",
568 | " 3.6 \n",
569 | " 1.4 \n",
570 | " 0.2 \n",
571 | " 1 \n",
572 | " \n",
573 | " \n",
574 | " ... \n",
575 | " ... \n",
576 | " ... \n",
577 | " ... \n",
578 | " ... \n",
579 | " ... \n",
580 | " \n",
581 | " \n",
582 | " 145 \n",
583 | " 6.7 \n",
584 | " 3.0 \n",
585 | " 5.2 \n",
586 | " 2.3 \n",
587 | " 0 \n",
588 | " \n",
589 | " \n",
590 | " 146 \n",
591 | " 6.3 \n",
592 | " 2.5 \n",
593 | " 5.0 \n",
594 | " 1.9 \n",
595 | " 2 \n",
596 | " \n",
597 | " \n",
598 | " 147 \n",
599 | " 6.5 \n",
600 | " 3.0 \n",
601 | " 5.2 \n",
602 | " 2.0 \n",
603 | " 0 \n",
604 | " \n",
605 | " \n",
606 | " 148 \n",
607 | " 6.2 \n",
608 | " 3.4 \n",
609 | " 5.4 \n",
610 | " 2.3 \n",
611 | " 0 \n",
612 | " \n",
613 | " \n",
614 | " 149 \n",
615 | " 5.9 \n",
616 | " 3.0 \n",
617 | " 5.1 \n",
618 | " 1.8 \n",
619 | " 2 \n",
620 | " \n",
621 | " \n",
622 | "
\n",
623 | "
150 rows × 5 columns
\n",
624 | "
"
625 | ],
626 | "text/plain": [
627 | " SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm cluster\n",
628 | "0 5.1 3.5 1.4 0.2 1\n",
629 | "1 4.9 3.0 1.4 0.2 1\n",
630 | "2 4.7 3.2 1.3 0.2 1\n",
631 | "3 4.6 3.1 1.5 0.2 1\n",
632 | "4 5.0 3.6 1.4 0.2 1\n",
633 | ".. ... ... ... ... ...\n",
634 | "145 6.7 3.0 5.2 2.3 0\n",
635 | "146 6.3 2.5 5.0 1.9 2\n",
636 | "147 6.5 3.0 5.2 2.0 0\n",
637 | "148 6.2 3.4 5.4 2.3 0\n",
638 | "149 5.9 3.0 5.1 1.8 2\n",
639 | "\n",
640 | "[150 rows x 5 columns]"
641 | ]
642 | },
643 | "execution_count": 43,
644 | "metadata": {},
645 | "output_type": "execute_result"
646 | }
647 | ],
648 | "source": [
649 | "df['cluster']=y_predict\n",
650 | "df"
651 | ]
652 | },
653 | {
654 | "cell_type": "code",
655 | "execution_count": 23,
656 | "metadata": {},
657 | "outputs": [
658 | {
659 | "data": {
660 | "text/plain": [
661 | "array([1, 0, 2])"
662 | ]
663 | },
664 | "execution_count": 23,
665 | "metadata": {},
666 | "output_type": "execute_result"
667 | }
668 | ],
669 | "source": [
670 | "df.cluster.unique()"
671 | ]
672 | },
673 | {
674 | "cell_type": "code",
675 | "execution_count": 32,
676 | "metadata": {},
677 | "outputs": [],
678 | "source": [
679 | "df1 = df[df.cluster==0]\n",
680 | "df2 = df[df.cluster==1]\n",
681 | "df3 = df[df.cluster==2]"
682 | ]
683 | },
684 | {
685 | "cell_type": "markdown",
686 | "metadata": {},
687 | "source": [
688 | "## ***Plotting a scatter plot showing the cluster***"
689 | ]
690 | },
691 | {
692 | "cell_type": "code",
693 | "execution_count": 55,
694 | "metadata": {},
695 | "outputs": [
696 | {
697 | "data": {
698 | "text/plain": [
699 | ""
700 | ]
701 | },
702 | "execution_count": 55,
703 | "metadata": {},
704 | "output_type": "execute_result"
705 | },
706 | {
707 | "data": {
708 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df3wU9bXw8c9hk4oBC4p4taBZe6u15Vf4qaKPosEfVdTHXrRcU3/cVtMm1+di+9xbi7xE4EqvvXrF/sLetH2pmFihWG/RWmtBqVJ/PQGpCGprNUEqrRElCog14Tx/zCQmm93MbHZ2dmb3vF+vfSU7MztzZlhOZr9z9oyoKsYYY+JvUKEDMMYYEwxL6MYYUyQsoRtjTJGwhG6MMUXCEroxxhQJS+jGGFMkLKEbkwURaRGRmRGIo0ZEHil0HCZaLKGbrKUmNRGZIyLviMipaZadISIqIj9PmT7Bnb4uhJB9E5GPi8htIrJNRHaLyCvu80MD3MZCEWnMZR2q2qSqZwYVkykOltBNTkTkcuAHwLmq+tsMi7UB00VkRI9plwN/yHd82RCRjwFrgTHA2cDHgenATmBaAUPrRUTKCh2DiSZL6GbARKQW+C/gLFV9sp9F/wb8DzDHfV0CuBhoSlnfcSLyGxF5W0ReFpGLe8w7V0SeE5F3ReR1EVnYY17SPdu/3D2zfktE5veYP01Emt3X/lVEbs0Q52XAUcCFqrpVVfer6puq+u+q+lCa/b9TRG7s8XyGiGzv8fxaEfmziLzn7k+1iJwNXAd8wf0E8Ht32WEi8hMR2eG+5kb3OCEiV4jI70RkqYi8DSx0p63vsS0Vka+KyB/dT0s/EBHpOt4i8l/ucXlNRK52l7c/DEXGEroZqDrg34FqVW32sfxynIQJcBawBXija6aIDAF+A9wDHAb8I7BMRMa4i+xxXz8cOBeoE5H/nbKNk4FPA9XAAhH5jDv9O8B3VPXjwN8DKzPEOBN4WFV3+9iffonIp4GrgamqehDOPreo6sPAt4AVqjpUVSe4L7kL6AA+BUwEzgSu7LHK44FXcY7NkgybnQVMBSbg/ME8y51+FfA5oAqYBKQeN1MkLKGbgToDeBrY7Gdh9wz+EDfRXYaT4HuahZPw7lDVDlXdCNwHzHZfv05VN7tnzc8DPwVSx+wXqer7qvp74Pc4iQ3gQ+BTInKoqu5W1aczhDkC2OFnf3zoBA4APisi5araoqp/SregiPwdTsK9RlX3qOqbwFLcTzSuN1T1e+6xeT/DNm9S1V2qug14DCeBg5Pcv6Oq21X1HeCmAPbPRJAldDNQXwWOBX7c9dHeh7txzlpPA+5PmVcJHC8iu7oeQA1wOICIHC8ij4lIm4i0u9tPvVD5lx6/7wWGur9/2Y31JRH5fyIyK0N8O4EjfO5Lv1T1FeAaYCHwpojcKyKfyLB4JVAO7Oix7/+Nczbe5XUfm820/59Ieb2fdZkYsoRuBupNnKGN/wUs8/mau4F64CFV3Zsy73Xgt6o6vMdjqKrWufPvAVYDR6rqMOCHgK8/JKr6R1X9R5wE+W1glTvEk2oNcFaGeensASp6PD88Zbv3qOrJOAlb3W3j/t7T68AHwKE99v3jqjqm5+p8xpTODmB0j+dH5rAuE2GW0M2AqeobwOnA2SKy1Mfyr+EMk8xPM/tB4FgRuVREyt3H1B7j4AcBb6vqPhGZBlziN04R+aKIjFTV/cAud3JnmkXvxkmu97kXaAeJyAgRuU5Ezkmz/CbgHBE5REQOxzkj79rmp0XkdBE5ANgHvN9jm38FkiIyyD0uO4BHgP9yyyYHicjfS5oy0AFaCcwVkVEiMhy4NqD1moixhG5yoqqv4yT12SLyHz6WX+/+IUid/h7OhcA5OBdL/4JzRnuAu0g9sFhE3gMWkPnCZjpnA1tEZDfOBdI5qrovTQwf4FwYfQnnAu27wLM4QzvPpFnv3Thj9S04CXlFj3kH4IxVv+Xuy2E41S0AP3N/7hSRje7vlwEfA7YC7wCrCGj4B/iRG9/zwHPAQzgXYNP9UTMxJnaDC2NKi4h8DvihqlYWOhYTLDtDN6bIiciBInKOiJSJyCjgBvpelDZFwM7QjSlyIlIB/BY4Dmcs/5fAXFV9t6CBmcBZQjfGmCJhQy7GGFMkCtbL4dBDD9VkMlmozRtjTCxt2LDhLVUdmW6e74TuNgpqBv6sqrNS5l0B3Az82Z30fVX9cX/rSyaTNDf7aQFijDGmi4i0ZpqXzRn6XOBFnJai6axQ1auzCcwYY0xwfI2hi8honA53/Z51G2OMKRy/F0VvA74B7O9nmX8QkedFZJWIpO0VISK1bl/q5ra2tmxjNcYY0w/PIRe3M92bqrpBRGZkWOwB4Keq+oGIfBWnt/PpqQupagPQADBlyhSrlzQmAj788EO2b9/Ovn19uiGYAho8eDCjR4+mvLzc92v8jKGfBJzvNicaDHxcRBpV9YtdC6jqzh7L/4iPusoZYyJu+/btHHTQQSSTSfx3Qjb5pKrs3LmT7du3c/TRR/t+neeQi6rOU9XRqprEaZz0aM9kDiAiPZsInY9z8dQYEwP79u1jxIgRlswjREQYMWJE1p+aBlyHLiKLgWZVXQ38i4icj9PB7W3gioGu1xgTPkvm0TOQf5Osvinq3gZslvv7AjeZd53Fj1HVCap6mqq+lHUkpqQ1bW4ieVuSQYsGkbwtSdPmJu8XGWN6sa/+m4Jr2txE7QO1tLa3oiit7a3UPlBrSb2EDB06NOO86dOn52273/rWt/K27kKwhG4Kbv7a+ez9sPcd6fZ+uJf5a9Pd2MiUis5O5/4bTz75ZN62YQndmIBta9+W1XRTYE1NkEzCoEHOz6bgPkmtW7eO0047jUsuuYRx48YBH52979ixg1NOOYWqqirGjh3LE0880ef1W7ZsYdq0aVRVVTF+/Hj++Mc/AtDY2Ng9/Stf+QqdnZ1885vf5P3336eqqoqamhoAbr31VsaOHcvYsWO57bbbANizZw/nnnsuEyZMYOzYsaxY4dyYavHixUydOpWxY8dSW1tLJDrXqmpBHpMnT1ZjVFUrl1YqC+nzqFxaWejQSsLWrVv9L9zYqFpRoQofPSoqnOk5GDJkiKqqPvbYY1pRUaGvvvpqn3m33HKL3njjjaqq2tHRoe+++26f9Vx99dXa6MbywQcf6N69e3Xr1q06a9Ys/dvf/qaqqnV1dXrXXXf1WreqanNzs44dO1Z3796t7733nn72s5/VjRs36qpVq/TKK6/sXm7Xrl2qqrpz587uaV/84hd19erVOR2DdNL92+AUo6TNq3aGbgpuSfUSKsorek2rKK9gSfWSAkVkMpo/H/b2Hh5j715nekCmTZuWtvZ66tSp3HHHHSxcuJDNmzdz0EEH9VnmxBNP5Fvf+hbf/va3aW1t5cADD2Tt2rVs2LCBqVOnUlVVxdq1a3n11Vf7vHb9+vVceOGFDBkyhKFDh/L5z3+eJ554gnHjxrFmzRquvfZannjiCYYNGwbAY489xvHHH8+4ceN49NFH2bJlS2DHYKAsoZuCqxlXQ8N5DVQOq0QQKodV0nBeAzXjagodmkm1LcMwWKbpAzBkyJC000855RQef/xxRo0axaWXXsry5cu5//77qaqqoqqqiubmZi655BJWr17NgQceyFlnncWjjz6KqnL55ZezadMmNm3axMsvv8zChQv7rF8zDJkce+yxbNiwgXHjxjFv3jwWL17Mvn37qK+vZ9WqVWzevJmrrroqGt+0zXTqnu+HDbkYEw1ZDblUVvYebul6VFbmFEPPIZdzzz037byWlhb98MMPVVV16dKlOnfu3D7r+dOf/qT79+9XVdW5c+fq0qVLdcuWLfqpT31K//rXv6qqM1TS0tKiqqrDhw/vHorZsGGDjhs3Tvfs2aO7d+/WMWPG6MaNG/XPf/6zvv/++6qqev/99+sFF1yg77zzjh522GG6d+9efe+993TMmDF6ww035HQM0sl2yKVgN7gwxsTQkiVQW9t72KWiwpmeZ+vWrePmm2+mvLycoUOHsnz58j7LrFixgsbGRsrLyzn88MNZsGABhxxyCDfeeCNnnnkm+/fvp7y8nB/84AdUVlZSW1vL+PHjmTRpEk1NTVxxxRVMmzYNgCuvvJKJEyfy61//mn/7t39j0KBBlJeXc/vttzN8+HCuuuoqxo0bRzKZZOrUqXnffz8Kdk/RKVOmqN3gwpjCe/HFF/nMZz7j/wVNTc6Y+bZtcNRRTjKvseGxfEj3byMiG1R1Srrl7QzdGJOdmhpL4BFlF0WNMaZIWEI3xpgiYQndGGOKhCV0Y4wpEpbQjTGmSFhCN4GwfuYmF/lun7t69WpuuummrF/nZ9tXXnklW7duHUhYgbM6dJOzrn7mPVvgVpRX2Nf3YyLrOvQ8GDp0KLt37+41rbOzk0QikdftdnR0UFYW3ertbOvQ7Qzd5Mz6mZeWfH4ay7V97vHHH9+rSdaMGTPYsGEDd955J1dffTUAV1xxBV//+tc57bTTuPbaa2lra+OMM85g0qRJfOUrX6GyspK33nqr17bXrVvHjBkzmD17Nscddxw1NTXdvV9mzJhB18npww8/zKRJk5gwYQLV1dUAPPvss0yfPp2JEycyffp0Xn755cCOV6ro/mkysWH9zEtH6qexrrtLAYF9Gnv22Wd54YUX+nRcvOeeezjrrLOYP38+nZ2d7E3t+gjMmTOHlStXsmjRInbs2MEbb7zB5MmT2bx5c6/l/vCHP7BmzRoSiQRXX301p59+OvPmzePhhx+moaEhbVzPPfccW7Zs4ROf+AQnnXQSv/vd7zj55JO757e1tXHVVVfx+OOPc/TRR/P2228DcNxxx/H4449TVlbGmjVruO6667jvvvtyPUxp2Rm6ydlRw47KarqJrzA+jeXSPvfiiy/mZz/7GQArV67koosuSruNiy66qHs4Z/369cyZMweAs88+m4MPPjhjXKNHj2bQoEFUVVXR0tLSa/7TTz/NKaec0h37IYccAkB7ezsXXXQRY8eO5Wtf+1pe2+xaQjc5s37mpSOMT2O5tM8dNWoUI0aM4Pnnn2fFihXdibq/bfi9jnjAAQd0/55IJOjo6Og1X1URkT6vu/766znttNN44YUXeOCBB/LaZtcSusmZ9TMvHYX8NNba2sphhx3GVVddxZe//GU2btzIhRde2N3nfMoU5zrhnDlz+M///E/a29u7x+H7c/LJJ7Ny5UoAHnnkEd55550BxXfiiSfy29/+ltdeew2ge8ilvb2dUaNGAXDnnXcOaN1+WUI3gagZV0PLNS3sv2E/Lde0WDIvUoX8NLZu3TqqqqqYOHEi9913H3Pnzk273OzZs7n33nu5+OKLfa33hhtu4JFHHmHSpEn86le/4ogjjkg7nONl5MiRNDQ08PnPf54JEybwhS98AYBvfOMbzJs3j5NOOqn7xtf5YmWLRa5pcxPz185nW/s2jhp2FEuql1iyNb1kW7ZYbO+pDz74gEQiQVlZGU899RR1dXVs2rSp0GEB1j7X9BBGRYIpPTXjaorq/bNt2zYuvvhi9u/fz8c+9jF+9KMfFTqkAbOEXsT6q0gopv+QxuTimGOO4bnnnit0GIGwMfQiZvXhxpQWS+hFzOrDjSktltCLmNWHG1NaLKEXMasPN6a0WEIvclYfbuIg3+1zc3XOOeewa9eurF+3cOFCbrnlljxElJ7vhC4iCRF5TkQeTDPvABFZISKviMgzIpIMMkhjwHqul5quL+E8+eSToWwv9av8PT300EMMHz68oDH4kc0Z+lzgxQzzvgy8o6qfApYC384pKmNSdNXUt7a3omh3Tb0l9UJoApI46SPpPg9Gvtrn7tmzhy996UtMnTqViRMn8otf/AJwvop/0UUXcd5553HmmWdm3EYymexuqbt8+XLGjx/PhAkTuPTSSwGnLUF1dTXjx4+nurqabdv6VpJt2rSJE044gfHjx3PhhRd2txiYMWMG1113Haeeeirf+c53cjuAqur5AEYDa4HTgQfTzP81cKL7exnwFu63UDM9Jk+erMb4Vbm0UllIn0fl0spChxZ7W7duzWLpRlWt0N7/nSvc6QM3ZMgQVVV97LHHtKKiQl999dU+82655Ra98cYbVVW1o6ND33333T7rufXWW3XBggWqqvrGG2/oMccco6qq8+bN07vvvltVVd955x095phjdPfu3XrHHXfoqFGjdOfOnf1uo7KyUtva2vSFF17QY489Vtva2lRVu183a9YsvfPOO1VV9Sc/+YlecMEFqqp6ww036M0336yqquPGjdN169apqur111+vc+fOVVXVU089Vevq6tIel3T/NkCzZsirfs/QbwO+AezPMH8U8Lr7B6IDaAdGpC4kIrUi0iwizW1tbT43bYzV1EfHfCC1D/led3ow8tE+95FHHuGmm26iqqqKGTNmsG/fvu6z6DPOOKO71a3XNh599FFmz57NoYceCnzUIvepp57ikksuAeDSSy9l/fr1vV7X3t7Orl27OPXUUwG4/PLLefzxx7vnd/V9yZVnQheRWcCbqrqhv8XSTOvTJEZVG1R1iqpOGTlyZBZhmlJnNfVRkekPaLTb56oq9913X3dnxm3btnX3SOm5vXTb6EkztMhN5WcZP/ucLT9n6CcB54tIC3AvcLqINKYssx04EkBEyoBhwNuBRGgMVlMfHZn+gEa7fe5ZZ53F9773ve7e55m+6p9uGz1VV1ezcuVKdu7cCXzUInf69Once++9ADQ1NfW6kxHAsGHDOPjgg7vH5O++++7us/UgefZyUdV5wDwAEZkB/KuqfjFlsdXA5cBTwGzgUe06csYEoKvcspi6/MXTEqCW3sMuFe70/Fq3bh0333wz5eXlDB06tM/Zc5fZs2czd+5crr/++u5p119/Pddccw3jx49HVUkmkzz4YJ+CPc9tjBkzhvnz53PqqaeSSCSYOHEid955J9/97nf50pe+xM0338zIkSO54447+qz7rrvu4qtf/Sp79+7lk5/8ZNplcpVV+9weCX2WiCzGGZxfLSKDgbuBiThn5nNU9dX+1mXtc42Jhmzb5zpVLfNxhlmOwknm9oc1H/LaPldV1wHr3N8X9Ji+D0h/8z4Te/W/rKdhQwOd2klCEtROrmXZucsKHZYpmBosgUeTtc81/ar/ZT23N9/e/bxTO7ufW1I3Jlrsq/+mXw0bGrKabuLJLnlFz0D+TSyhm351avp7IGaabuJn8ODB7Ny505J6hKgqO3fuZPDgwVm9zoZcTL8SkkibvBOSKEA0Jh9Gjx7N9u3bsS/7RcvgwYMZPXp0Vq+xhG76VTu5ttcYes/ppjiUl5en/WamiR9L6KZfXRc+rcrFmOjLqg49SFaHbowx2euvDt0uisbczOUzkUXS/Zi5fGahQxoQ63VuIq2pCZJJGDTI+dk0gPdnEOvwYAk9xmYun8na19b2mrb2tbWxS+rW69xEWlMT1NZCayuoOj9ra7NLyEGswwcbcokxWZS5o5veEJ8StORtSVrbW/tMrxxWScs1LeEHZExPyaSTgFNVVkJLS3jrcNmQi4k063VuIi3N3Yf6nZ6vdfhgCd0UnPU6N5F2VIb3Yabp+VqHD5bQY6z66OqspkeV9To3kbZkCVT0fn9SUeFMD3MdPlhCj7E1l63pk7yrj65mzWVrChTRwNSMq6HhvAYqh1UiCJXDKmk4r8F6nZtoqKmBhgZnvFvE+dnQ4EwPcx0+2EVRY4yJEbsoWsSCqN/2WofViBsTD/bV/xjrqt/e+6FzO7Cu+m3A93CF1zqC2IYxJhw25BJjQdRve63DasSNiRYbcilSQdRve63DasSNiQ9L6DEWRP221zqsRtyY+LCEHmNB1G97rcNqxI2JD0voMRZE/bbXOqxG3Jj4sIuixhgTI3ZRdACiUnsdlTiMyYsQeoSXEqtDTyMqtddRicOYvOjqEb7XeX939wiHwL8SXypsyCWNqNReRyUOY/IiwB7hpcSGXLIUldrrqMRhTF6E1CO8lFhCTyMqtddRicOYvAipR3gpsYSeRlRqr6MShzF5EVKP8FJiCT2NqNReRyUOY/IipB7hpcQuihpjTIzkdFFURAaLyLMi8nsR2SIii9Isc4WItInIJvdxZRCBG6j/ZT1li8uQRULZ4jLqf1mf1fyw6titXt6YwvNTh/4BcLqq7haRcmC9iPxKVZ9OWW6Fql4dfIilq/6X9dzefHv3807t7H6+7NxlnvPDqmO3enljosHzDF0du92n5e6jMOM0JaZhQ0O/073mz187vzvJdtn74V7mr50fYJThbccY0z9fF0VFJCEim4A3gd+o6jNpFvsHEXleRFaJyJEZ1lMrIs0i0tzW1pZD2KWhUzv7ne41P6w6dquXNyYafCV0Ve1U1SpgNDBNRMamLPIAkFTV8cAa4K4M62lQ1SmqOmXkyJG5xF0SEpLod7rX/LDq2K1e3phoyKpsUVV3AeuAs1Om71TVD9ynPwImBxJdiaudXNvvdK/5YdWxW728MdHgp8plpIgMd38/EJgJvJSyzBE9np4PvBhkkKVq2bnLqJtS1+uMvG5KHcvOXeZrflh17FYvb0w0eNahi8h4nCGUBM4fgJWqulhEFgPNqrpaRP4DJ5F3AG8Ddar6UsaVYnXoxhgzEDnVoavq86o6UVXHq+pYVV3sTl+gqqvd3+ep6hhVnaCqp3kl8zgIoq7aq0Y8iHV4xRmV/YiOJiCJ89ZPus+zebmP/t3W49sUiPVDTyOIumqvGvEg1uEVZ1T2IzqagFqgq8Sy1X0O4ON4+OnfbT2+TQHZV//TCKIPednisrRlhQlJ0LGgI5B1eMUZlf2IjiROEk9VCbT4eHnSu3+39fg2eWb90LMURF21V414EOvwijMq+xEdmfbb5/Hw07/benybArKEnkYQddVeNeJBrMMrzqjsR3Rk2m+fx8NP/27r8W0KyBJ6GkHUVXvViAexDq84o7If0bEESOm/TYU73c/LffTvth7fppBUtSCPyZMna5Q1Pt+olUsrVRaKVi6t1MbnG7NeR92DdZpYlFAWoolFCa17sC7wdXjFGZX9iI5GVa1UVXF/Znk8GhtVKytVRZyfjWle72cZYwYIp1w8bV61i6LGGBMjdlHUGGNKgCX0iAvji0MmYOvrYXsZ7Bfn5/oCfBGrvh7Kypxbu5WVOc9N0bMvFkVYGF8cMgFbXw8Tb4ch7vPRnXDw7bAeODmkL2LV18PtH30ZjM7Oj54vi9uXwUw2bAw9wsL44pAJ2PYyJ4n3mZ6A0SF9EauszEniqRIJ6Ijbl8FMKhtDj6kwvjhkAvaJDF+4yjQ9H9Il8/6mm6JhCT3CwvjikAnYGxm+cJVpej4kMmwr03RTNCyhR1gYXxwyAWuphT0p0/a408NSm2FbmaabomEJPcK8bhxhN5aIoJOXwXN1zpj5fpyfz9WFd0EUnAufdXUfnZEnEs5zuyBa9OyiqDHGxEjJXRQNojbbax1h3fTB6syzkePNK8Lip049jJtkeG3DVwwh3DDE+JepJ0C+H/nq5dL4fKNWLKlQFtL9qFhSkVUPE6911D1Y12te1yPoHidB7EvpaFTVCu39NqvQrHu15NsTdaq7U/477MaZ3qWxUbWiQhU+elRUBNsTxmsbvmLI8ZiHsZ9FiFLq5RJEbbbXOsK66YPVmWcjSU43rwiLnzr1MG6S4bUNXzEkyfsNQ0wfJTXkEkRtttc6wrrpg9WZZyPHm1eExU+dehg3yfDahq8YQrhhiMlK0SX0IGqzvdYR1k0frM48GznevCIsfurUw7hJhtc2fMUQwg1DTFaKLqEHUZvttY6wbvpgdebZyPHmFWHxU6cexk0yvLbhK4YQbhhispNpcD3fj3ze4CKImzp4rSOsmz4EsS+lI8ebV4TliTrV1xOqnTg/n0jz3gnjJhle2/AVQwg3DDG9UEoXRY0xppiV1EXRoIRRyz5z+UxkkXQ/Zi6fGVT4JsrCqL1+aSZ0CKg4P18awHtr5kynn3rXY6a9P6POEnoaXX3GW9tbUbS7z3g2Sd1rHTOXz2Tta2t7vWbta2stqRe7pianp0prq1N53drqPA8yqb80Ez691rnbgeD8/PTa7JL6zJmwtvf7k7VrLalHnA25pBFGLbsskoyv1RsK829iQhBG7XWHpL91TQdQ5vO9JZnfnxQoZxiHDblkKYxadlOiwqi9zlQ9a91zi54l9DTCqGU3JSqM2utM32+z+1sUPUvoaYRRy159dHXa12WabopEGLXXr1RD6qiIutP9qs6wbKbpJhIsoacRRJ9xr3WsuWxNn+RdfXQ1ay5bE+i+mIipqYGGBmfMXMT52dDgTA/KcWvg5WpnzFxxfr5c7Uz3a82avsm7utqZbiLLLooaY0yM5HRRVEQGi8izIvJ7EdkiIovSLHOAiKwQkVdE5BkRSeYedmZe9d1R6SHu1TPdT5zR2Jcg+ozX07uOLrUHeBjb8LMdP+sIgWcNuMd+1NdDWZnz2rIy53mq2PRcD0Fc4vSS6SukXQ+cd/ZQ9/dy4BnghJRl6oEfur/PAVZ4rXegX/336hEelR7iXj3T/cQZjX0Jos94naZ/G3R95T2MbfjZjp91hKC6uneP8K5HdbW7gMd+1NWlf31dHHuuhyAucboI6qv/IlIBrAfqVPWZHtN/DSxU1adEpAz4CzBS+1n5QIdcvOq7o9JD3Ktnup84o7EvSXLvM15G+hKLBM4AbxjbwMd2/KwjBJ414En63Y+yMuhMsx+JBHTEred6COISpyvnOnQRSYjIJuBN4Dc9k7lrFPA6gKp2AO3AiDTrqRWRZhFpbmtry2YfunnVd0el/turZ7qfOKOxL0H0GfeqowtjG362E5d6P4/9SJfMU6fHpud6COISpw++ErqqdqpqFTAamCYiY1MWSXdK0efsXFUbVHWKqk4ZOXJk9tHiXd8dlfpvr57pfuKMxr4E0Wfc65suYWzDz3bi8o0cj/1IZIg3Ecee6yGIS5w+ZFW2qKq7gHXA2SmztgNHArhDLsOAtwOIrw+v+u6o9BD36pnuJ85o7EsQfcYz9Ynvmh7GNvxsx886QuBZA+6xH7UZ4q2NY8/1EMQlTj8yDa53PYCRwHD398Plo5EAAA5mSURBVAOBJ4BZKcv8M70viq70Wm8u/dC9eoRHpYe4V890P3FGY1+C6DNep6oJdf75E9r3QmMY2/CzHT/rCEHqhdHuC6JdPPajrk41kXBem0j0viDavYq49FwPQVzi1BwviorIeOAunM+dg9xkvVhEFrsrXi0ig4G7gYk4Z+ZzVPXV/tZrdejGGJO9nC6KqurzqjpRVcer6lhVXexOX6Cqq93f96nqRar6KVWd5pXM8y0atdumN6/67yDq0MOIw0ecnjXLQexrWMcrAuJSAx4FmU7d8/3I1y3oolG7bXrzqv8Oog49jDh8xOlZsxzEvoZ1vCIgYjXgUUAp3YIuGrXbprck/dd/e82PShxe8/FRs+xjHZ6CWEdMRKwGPAr6G3IpuoQ+aNEgtG/FJIKw/4b9gW/P+DGINFWsONWu+33Mj0ocPuIcNCj9DSBEYH9Q+xrW8YoAz+NZekrqBhfRqN02vXnVfwdRhx5GHD7i9KxZDmJfwzpeERCjGvAoKLqEHo3abdObV/13EHXoYcThI07PmuUg9jWs4xUBcaoBj4JMg+v5fuTroqhqVGq3TW9e9d9B1KGHEYePOD1rloPY17COVwREqAY8Ciili6LGGFPMSmoM3URVEH3Iw6i9DqJvewC9ykPZ1yKpZY9CX/eoyHTqnu9HPodcTNQE0Yc8jNrrIPq2B9CrPJR9LZJa9ij0dQ8ZNuRiCitJ7n3IvdYRhCD6tnss46dXeSj7GsY2QhCFvu4hK6k6dBNFXnXT/dzQoft1YdRee8XhJwaPZTxvXuFjHYEoklr2MOrUI1YLb2PopsCC6EMeRu11EH3bA+hVHsq+FkktexT6ukeIJXQTgiD6kIdRex1E3/YAepWHsq9FUssehb7uUZJpcD3fD7soWmqC6EMeRu11EH3bA+hVHsq+FkktexT6uocIuyhqjDHFwcbQS1pUao2DiGMMzkW7rseYAsWR4zbiUtNsYqes0AGYfGrCGf/d6z5v5aPx4JqYxTEG2Joybas7fUuIceS4jaYmZ7x8rzu/tfWj8fOaMP9NTDGyIZeiliQatcZBxOGntDGMOHLcRsRqmk382JBLydqW5fR8KaU4PLaxLcP8TNONyYIl9KIWlVrjUorDYxsxqmk28WMJvahFpdY4iDg+m+X0fMWR4zbiVNNsYscSelGrARpwxm/F/dlAuBdEg4pjC32T92fxf0E0qDhy3EZNDTQ0OGPmIs7Phga7IGoCYRdFjTEmRuyiqAlBrvXdAfQZD4LViJt0YvK+sDp0E4Bc67v9vD6EGnKrETfpxOh9YUMuJgBJcqvv9vP6XLfhJ4yk1YibviL2vrAhF5NnudZ3+3l9CDXkViNu0onR+8ISuglArvXdAfQZD4LViJt0YvS+sIRuApBrfXcAfcaDYDXiJp0YvS8soZsA5Frf7ef1IdSQW424SSdG7wu7KGqMMTGS00VRETlSRB4TkRdFZIuIzE2zzAwRaReRTe5jQRCBF78g6qrj0u881/lxUo9TESzuz/rwQ4hJ3bQJWKZbGXU9gCOASe7vBwF/AD6bsswM4EGvdfV82C3oGlW1QnsflgrN7jZgQawjCF5x5Do/Tuo0/Vs+3W3m8qSxUbWiwrnFXdejoqKgt00zwSHIW9CJyC+A76vqb3pMmwH8q6rO8rseG3JJkntddRDrCIJXHLnOj5MyoDPN9ATQEU4IEaubNsEKrA5dRJLAROCZNLNPFJHfi8ivRCTtvcFEpFZEmkWkua2tLZtNF6Eg6qrj0mc81/lxki6Z9zc9D2JUN22C5Tuhi8hQ4D7gGlV9N2X2RqBSVScA3wP+J906VLVBVaeo6pSRI0cONOYiEURddVz6jOc6P04SWU7PgxjVTZtg+UroIlKOk8ybVPXnqfNV9V1V3e3+/hBQLiKHBhpp0Qmirjou/c5znR8ntVlOz4MY1U2bgGUaXO964FyqXw7c1s8yh/NRCeQ0nM/K0t967aKoqnPRr1JVxf05kItWQawjCF5x5Do/TupUNaHOWz2hoV4Q7dLYqFpZqSri/LQLokWDXC6KisjJwBPAZmC/O/k63M/DqvpDEbkaqMO56vM+8HVVfbK/9dpFUWOMyV5/F0U92+eq6nr6v+U6qvp94PsDC6+UNQHzcT7QHIUzxBC9b5/5U4/zzc1OnPHiWmBZQSMyptRYP/SCCaG/d2jqgdt7PO/s8dySujFhsV4uBTOfj5J5l73u9LhpyHK6MSYfLKEXjNVeG2OCZQm9YKz22hgTLEvoBWO118aYYFlCL5gQ+nuHZhlO1WrXGXnCfW4XRI0Jk1W5FFQN8Uzg6SzDErgxhVWyZ+hNm5tI3pZk0KJBJG9L0rQ5qv2i49InPC5xhsGOhSmMkjxDb9rcRO0Dtez90CkbbG1vpfYBZ7y3ZlyUzpjjUqselzjDYMfCFE5J3oIueVuS1va+/aIrh1XSck1L+AFllCQefcKTxCPOMCSxY2HyKbB+6MViW3v6Wu9M0wsnLrXqcYkzDHYsTOGUZEI/alj6Wu9M0wsnLrXqcYkzDHYsTOGUZEJfUr2EivLeNeAV5RUsqY5aDXhcatXjEmcY7FiYwinJhF4zroaG8xqoHFaJIFQOq6ThvIaIXRCF+NSqxyXOMNixMIVTkhdFjTEmruyiqDHd6nGqdcX9WZ/l663G3ERXSdahm1KVa992qzE30WZn6KaE5Nq3vZh62JtiZAndlJBc+7ZbjbmJNkvopoTk2rfdasxNtFlCNyUk177tVmNuos0SuikhufZttxpzE21W5WJKTK5924uph70pNnaGbowxRcISujHGFAlL6MYYUyQsoRtjTJGwhG6MMUXCEroxxhQJS+jGGFMkLKEbY0yR8EzoInKkiDwmIi+KyBYRmZtmGRGR74rIKyLyvIhMyk+4pcj6bxtj/PHzTdEO4P+q6kYROQjYICK/UdWtPZb5HHCM+zgep8n08YFHW3Ks/7Yxxj/PM3RV3aGqG93f3wNeBEalLHYBsFwdTwPDReSIwKMtOdZ/2xjjX1Zj6CKSBCYCz6TMGgW83uP5dvomfUSkVkSaRaS5ra0tu0hLkvXfNsb45zuhi8hQ4D7gGlV9N3V2mpf0ufu0qjao6hRVnTJy5MjsIi1J1n/bGOOfr4QuIuU4ybxJVX+eZpHtwJE9no8G3sg9vFJn/beNMf75qXIR4CfAi6p6a4bFVgOXudUuJwDtqrojwDhLlPXfNsb456fK5STgUmCziGxyp12H+7lfVX8IPAScA7yCc9Xun4IPtVRZ/21jjD+eCV1V15N+jLznMgr8c1BBGWOMyZ59U9QYY4qEJXRjjCkSltCNMaZIWEI3xpgiYQndGGOKhCV0Y4wpEpbQjTGmSIhTQl6ADYu04fSDLbRDgbcKHYQPFmewLM5gxSHOOMQI3nFWqmraZlgFS+hRISLNqjql0HF4sTiDZXEGKw5xxiFGyC1OG3IxxpgiYQndGGOKhCV0p31hHFicwbI4gxWHOOMQI+QQZ8mPoRtjTLGwM3RjjCkSltCNMaZIlExCF5GEiDwnIg+mmXeFiLSJyCb3cWUhYnRjaRGRzW4czWnmi4h8V0ReEZHnRWRSBGOcISLtPY7ngrBjdOMYLiKrROQlEXlRRE5MmV/wY+kzzoIfTxH5dI/tbxKRd0XkmpRlCn48fcZZ8OPpxvE1EdkiIi+IyE9FZHDK/ANEZIV7PJ8RkaTnSlW1JB7A14F7gAfTzLsC+H6hY3RjaQEO7Wf+OcCvcG46cgLwTARjnJHuOBcgzruAK93fPwYMj9qx9BlnJI5nj3gSwF9wvuASuePpI86CH09gFPAacKD7fCVwRcoy9cAP3d/nACu81lsSZ+giMho4F/hxoWMJwAXAcnU8DQwXkSMKHVTUiMjHgVNw7oeLqv5NVXelLFbwY+kzzqipBv6kqqnf9C748UyRKc6oKAMOFJEynLu/v5Ey/wKcP/YAq4Bq9x7PGZVEQgduA74B7O9nmX9wPyauEpEjQ4orHQUeEZENIlKbZv4o4PUez7e708LkFSPAiSLyexH5lYiMCTM41yeBNuAOd6jtxyIyJGWZKBxLP3FC4Y9nT3OAn6aZHoXj2VOmOKHAx1NV/wzcAmwDdgDtqvpIymLdx1NVO4B2YER/6y36hC4is4A3VXVDP4s9ACRVdTywho/+KhbCSao6Cfgc8M8ickrK/HR/ocOuPfWKcSPOx9wJwPeA/wk5PnDOfiYBt6vqRGAP8M2UZaJwLP3EGYXjCYCIfAw4H/hZutlpphWkLtojzoIfTxE5GOcM/GjgE8AQEfli6mJpXtrv8Sz6hA6cBJwvIi3AvcDpItLYcwFV3amqH7hPfwRMDjfEXrG84f58E7gfmJayyHag5yeI0fT9qJZXXjGq6ruqutv9/SGgXEQODTNGnOO0XVWfcZ+vwkmcqcsU9FjiI86IHM8unwM2qupf08yLwvHskjHOiBzPmcBrqtqmqh8CPwempyzTfTzdYZlhwNv9rbToE7qqzlPV0aqaxPkI9qiq9vpLmDLOdz7wYogh9oxjiIgc1PU7cCbwQspiq4HL3IqCE3A+qu2IUowicnjXWJ+ITMN5n+0MK0YAVf0L8LqIfNqdVA1sTVmsoMfSb5xROJ49/COZhzEKfjx7yBhnRI7nNuAEEalwY6mmb95ZDVzu/j4bJ3f1e4ZeFniYMSEii4FmVV0N/IuInA904PwFvKJAYf0dcL/7XisD7lHVh0XkqwCq+kPgIZxqgleAvcA/RTDG2UCdiHQA7wNzvN6IefJ/gCb34/erwD9F7Fj6jTMSx1NEKoAzgK/0mBa54+kjzoIfT1V9RkRW4Qz/dADPAQ0peeknwN0i8gpOXprjtV776r8xxhSJoh9yMcaYUmEJ3RhjioQldGOMKRKW0I0xpkhYQjfGmCJhCd0YY4qEJXRjjCkS/x+V3v3WOYmDqAAAAABJRU5ErkJggg==\n",
709 | "text/plain": [
710 | ""
711 | ]
712 | },
713 | "metadata": {
714 | "needs_background": "light"
715 | },
716 | "output_type": "display_data"
717 | }
718 | ],
719 | "source": [
720 | "plt.title('K Means Clustering')\n",
721 | "plt.scatter(x[y_predict==0,0],x[y_predict==0,1],c='red',label='Iris-setosa')\n",
722 | "plt.scatter(x[y_predict==1,0],x[y_predict==1,1],c='green',label='Iris-virginica')\n",
723 | "plt.scatter(x[y_predict==2,0],x[y_predict==2,1],c='yellow',label='Iris-versicolor')\n",
724 | "plt.legend(loc='best')"
725 | ]
726 | },
727 | {
728 | "cell_type": "markdown",
729 | "metadata": {},
730 | "source": [
731 | "# ***THANK YOU FOR WATCHING***"
732 | ]
733 | }
734 | ],
735 | "metadata": {
736 | "kernelspec": {
737 | "display_name": "Python 3",
738 | "language": "python",
739 | "name": "python3"
740 | },
741 | "language_info": {
742 | "codemirror_mode": {
743 | "name": "ipython",
744 | "version": 3
745 | },
746 | "file_extension": ".py",
747 | "mimetype": "text/x-python",
748 | "name": "python",
749 | "nbconvert_exporter": "python",
750 | "pygments_lexer": "ipython3",
751 | "version": "3.7.6"
752 | }
753 | },
754 | "nbformat": 4,
755 | "nbformat_minor": 4
756 | }
757 |
--------------------------------------------------------------------------------