├── LICENSE
├── README.md
├── example.ipynb
├── extract.py
├── go.png
└── look.png
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Bert Pretrained Token Embeddings
2 |
3 | BERT([BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)) yields pretrained token (=subword) embeddings. Let's extract and save them in the [word2vec](https://code.google.com/archive/p/word2vec/) format so that they can be used for downstream tasks.
4 |
5 | ## Requirements
6 | * pytorch_pretrained_bert
7 | * NumPy
8 | * tqdm
9 |
10 | ## Extraction
11 | * Check `extract.py`.
12 |
13 | ## Bert (Pretrained) Token Embeddings in word2vec format
14 | | Models | # Vocab | # Dim | Notes |
15 | |--|--|--|--|
16 | |[bert-base-uncased](https://dl.dropboxusercontent.com/s/hcj1oh8ltqhqrk4/bert-base-uncased.30522.768d.vec.tar.gz) | 30,522 | 768 ||
17 | |[bert-large-uncased](https://dl.dropboxusercontent.com/s/kdf932v3taa22zp/bert-large-uncased.30522.1024d.vec.tar.gz) | 30,522 | 1024 ||
18 | |[bert-base-cased](https://dl.dropboxusercontent.com/s/7wb92gvc40jxvz9/bert-base-cased.28996.768d.vec.tar.gz) | 28,996 | 768 ||
19 | | [bert-large-cased](https://dl.dropboxusercontent.com/s/ke68kjw7yui39s7/bert-large-cased.28996.1024d.vec.tar.gz) | 28,996 | 1024 ||
20 | | [bert-base-multilingual-cased](https://dl.dropboxusercontent.com/s/kmyh9cxmu6hb1jx/bert-base-multilingual-cased.119547.768d.vec.tar.gz)| 119,547 | 768 | Recommended |
21 | |[bert-base-multilingual-uncased](https://dl.dropboxusercontent.com/s/j2vz6hue7pze0ae/bert-base-multilingual-uncased.105879.768d.vec.tar.gz)| 30,522 | 768| Not recommended|
22 | |[bert-base-chinese](https://dl.dropboxusercontent.com/s/gzb6kfjipw591vz/bert-base-chinese.21128.768d.vec.tar.gz)|21,128 | 768 ||
23 |
24 | ## Example
25 | * Check `example.ipynb` to see how to load (sub-)word vectors with [gensim](https://github.com/RaRe-Technologies/gensim) and plot them in 2d space using [tSNE](https://lvdmaaten.github.io/tsne/).
26 |
27 | * Related tokens to look
28 |
29 | * Related tokens to ##go
30 |
--------------------------------------------------------------------------------
/example.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 137,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import numpy as np\n",
10 | "import gensim\n",
11 | "import matplotlib.pyplot as plt\n",
12 | "from sklearn.manifold import TSNE\n",
13 | "%matplotlib inline"
14 | ]
15 | },
16 | {
17 | "cell_type": "code",
18 | "execution_count": 150,
19 | "metadata": {},
20 | "outputs": [
21 | {
22 | "data": {
23 | "text/plain": [
24 | "'1.15.4'"
25 | ]
26 | },
27 | "execution_count": 150,
28 | "metadata": {},
29 | "output_type": "execute_result"
30 | }
31 | ],
32 | "source": [
33 | "np.__version__"
34 | ]
35 | },
36 | {
37 | "cell_type": "code",
38 | "execution_count": 151,
39 | "metadata": {},
40 | "outputs": [
41 | {
42 | "data": {
43 | "text/plain": [
44 | "'3.7.0'"
45 | ]
46 | },
47 | "execution_count": 151,
48 | "metadata": {},
49 | "output_type": "execute_result"
50 | }
51 | ],
52 | "source": [
53 | "gensim.__version__"
54 | ]
55 | },
56 | {
57 | "cell_type": "markdown",
58 | "metadata": {},
59 | "source": [
60 | "Let's load pretrained bert token vectors and project them to 2d space using tSNE."
61 | ]
62 | },
63 | {
64 | "cell_type": "markdown",
65 | "metadata": {},
66 | "source": [
67 | "# Load data"
68 | ]
69 | },
70 | {
71 | "cell_type": "code",
72 | "execution_count": 181,
73 | "metadata": {},
74 | "outputs": [],
75 | "source": [
76 | "f = \"bert-base-uncased.30522.768d.vec\"\n",
77 | "# f = 'bert-base-cased.28996.768d.vec'\n",
78 | "# f = 'bert-base-multilingual-uncased.105879.768d.vec'\n",
79 | "# f = 'bert-base-chinese.21128.768d.vec'\n",
80 | "# f = 'bert-base-multilingual-cased.119547.768d.vec'\n",
81 | "# f = 'bert-base-uncased.30522.768d.vec'\n",
82 | "# f = 'bert-large-cased.28996.1024d.vec'"
83 | ]
84 | },
85 | {
86 | "cell_type": "code",
87 | "execution_count": 135,
88 | "metadata": {},
89 | "outputs": [],
90 | "source": [
91 | "model = gensim.models.KeyedVectors.load_word2vec_format(f, binary=False)"
92 | ]
93 | },
94 | {
95 | "cell_type": "markdown",
96 | "metadata": {},
97 | "source": [
98 | "# Find most related tokens"
99 | ]
100 | },
101 | {
102 | "cell_type": "code",
103 | "execution_count": 191,
104 | "metadata": {},
105 | "outputs": [
106 | {
107 | "data": {
108 | "text/plain": [
109 | "[('feel', 0.4074964225292206),\n",
110 | " ('style', 0.3370037078857422),\n",
111 | " ('get', 0.32385802268981934),\n",
112 | " ('think', 0.3120831251144409),\n",
113 | " ('work', 0.3055831491947174),\n",
114 | " ('pose', 0.2996072769165039),\n",
115 | " ('point', 0.2994779348373413),\n",
116 | " ('follow', 0.29945236444473267),\n",
117 | " ('fashion', 0.29616934061050415),\n",
118 | " ('eyes', 0.2930969297885895)]"
119 | ]
120 | },
121 | "execution_count": 191,
122 | "metadata": {},
123 | "output_type": "execute_result"
124 | }
125 | ],
126 | "source": [
127 | "model.most_similar(\"look\")"
128 | ]
129 | },
130 | {
131 | "cell_type": "markdown",
132 | "metadata": {},
133 | "source": [
134 | "# Plot"
135 | ]
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": 183,
140 | "metadata": {},
141 | "outputs": [],
142 | "source": [
143 | "\n",
144 | "def tsne(query, topn=10):\n",
145 | " results = model.wv.similar_by_word(query, topn=topn)\n",
146 | " words = [query]+[r[0] for r in results]\n",
147 | " wordvectors = np.array(model[query]+[model[w] for w in words], np.float32)\n",
148 | " reduced = TSNE(n_components=2).fit_transform(wordvectors)\n",
149 | " plt.figure(figsize=(20, 20), dpi=100)\n",
150 | " max_x = np.amax(reduced, axis=0)[0]\n",
151 | " max_y = np.amax(reduced, axis=0)[1]\n",
152 | " plt.xlim((-max_x, max_x))\n",
153 | " plt.ylim((-max_y, max_y))\n",
154 | " plt.scatter(reduced[:, 0], reduced[:, 1], s=20, c=[\"r\"] + [\"b\"]*(len(reduced)-1))\n",
155 | " \n",
156 | " for i in range(len(words)):\n",
157 | " target_word = words[i]\n",
158 | " # print(target_word)\n",
159 | " x = reduced[i, 0]\n",
160 | " y = reduced[i, 1]\n",
161 | " plt.annotate(target_word, (x, y))\n",
162 | " plt.axis('off')\n",
163 | "\n",
164 | " plt.show()"
165 | ]
166 | },
167 | {
168 | "cell_type": "code",
169 | "execution_count": 182,
170 | "metadata": {},
171 | "outputs": [
172 | {
173 | "name": "stderr",
174 | "output_type": "stream",
175 | "text": [
176 | "/Users/ryan/pytorch1.0/lib/python3.6/site-packages/ipykernel_launcher.py:3: DeprecationWarning: Call to deprecated `wv` (Attribute will be removed in 4.0.0, use self instead).\n",
177 | " This is separate from the ipykernel package so we can avoid doing imports until\n"
178 | ]
179 | },
180 | {
181 | "data": {
182 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAByUAAAaPCAYAAAA38jIyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm0ZVVh5/Hfj8lWQJxQMB0bLeOwtNsJO2qpKAodh7CMU2dpDNoriSYtBqOJ0agxnWWitg3YCd1OKFFxXu3YDjRG1GAS51nRqBgVCDghKKDI7j/uLXk8q6QCtd+r4n0+a9W6756zz7n78A/wvrX37RgjAAAAAAAAALPstt4TAAAAAAAAAK7eREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAADYQLrw4rbfaTva3n4H3PPUtsftiPkBAABXT3us9wQAAACANfUrSR6d5F5JvpLkW+s5GQAAYGMQJQEAAGBj2ZTkrDHGB9d7IgAAwMZh+1YAAADYINqemOSvktxkuXXrGW13a/vUtl9te2HbT7Z96Krrbtv2nW0vaPsvbV/Z9gbr8hAAAMAuSZQEAACAjeP3kzwzyTeSHJjkzkmemuQ3kzwuyW2SHJvkVW0PSZK210nyt0k+nuTgLLZ/vVGS16/15AEAgF2X7VsBAABggxhjnNf2/CQ/GWOc3fYaSZ6W5L5jjL9fDvtK27sneWyS9yV5fJKPjzGetuU+bf9Lkq+3vcUY44tr/BgAAMAuSJQEAACAjevmSa6V5P+1XXl8ryxWRibJ7ZLcu+0FW7l+UxJREgAAuEKiJAAAAGxc+yxfH5Dkm6vOXbxizNuSPGUr1581aV4AAMDVjCgJAAAAG9fnsoiPNxljvG8bYz6W5CFJzhhjXLJmMwMAAK5WdlvvCQAAAADrY4xxfpLnJzm27ZFtN7W9Y9uj2h65HHZ8kusleU3bOy/H/Ke2L2+7+7pNHgAA2KVYKQkAAAAb2zOSnJvkqUluluR7WayO/IskGWOc2XZzkucmOTnJNZJ8Lcm7kly6HhMGAAB2PR1jrPccAAAAgB2szdOTPCvJ6tWMI8npY+TWaz4pAABgw7J9KwAAAFw9vSzJj/Kzqxmb5Ji1nw4AALCRiZIAAABwNTRGzkzygCTfWnH4kiTPTvLSdZkUAACwYdm+FQAAAK7G2uyZ5J5J9k1y2hg5d52nBAAAbECiJAAAAAAAADCV7VsBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAAAAAAAAYCpREgAAAAAAAJhKlAQAAAAAAACmEiUBAAAAAACAqURJAGCn1faMtkev9zwAAAAAgKumY4z1ngMAwFa13T/JD8YYP1zvuQAAAAAAV54oCQAAAAAAAExl+1YA4Epru2/bk9r+oO1ZbZ/Y9tS2xy3PP6rtR9qe3/bstq9ue8MV15/Ydmzlz72W5y+3fevy3G+1fVPbH7b9UtsjVs3piOXxi9q+t+2Ry+uus0b/WAAAAACAVURJAOCqOCbJ5iRHJDksyT2S3HHF+T2TPCPJ7ZI8KMlBSU5ccf73kxy44s8LkpyT5As/5zP/NMnrk/yHJO9IclLb6yVJ25smeWOSNy8/80VJnn3lHw8AAAAA2BH2WO8JAAC7prb7JjkyySPGGO9ZHntMkjO3jBljvGzFJV9p+4QkH267zxjjgjHGeUnOW1774CSPTXLfMcbZP+ejTxxjvGZ5zdOSPCHJf0zyruX1p48x/nA59vS2t03yJ1f9iQEAAACAK8tKSQDgyrpZFishP7TlwDIynr7lfds7tX1b239ue36S9y1P3WTljdreIckrkzx+jHHaFXzup1Z83g+SfD/Jli1hb5nkw6vGfygAAAAAwLoSJQGA7dLmgDZ/1ebMNmcm73jKzx/fvZO8O4to+Mgkd07ya8vTe60Yd0CStyZ56RjjhO2Yyo9XvR/x3zQAAAAAsFPzCzwA4Aq1uUEWKw5/Nz/9/sfND18slNx06GXjul+SWyzf3irJ9ZP88RjjA2OML+SyFY1bxv+bJG/J4jsk/2AHTPX0JAevOnbnHXBfAAAAAOAqECUBgO1xVJIbJ9n9skPX3j35zZF895i29257myQnJLk0i9WL/5zkR0mOanuztkckecaq+74oyS9m8b2Q+7c9YPlnr1w5L0pyq7bPbXuLtg9P8ujluXEl7wkAAAAAXEWiJACwPe6fywXJLY5tcrdLk7w9ySlJTkvy+SQXjTHOzSIIPizJ55L8cZInr7rBIVmsvPxckrNW/LnblZnkGOOrSR6a5MFZfPfk7yZ59vL0xVfmngAAAADAVdcxLBoAAH6+NqcmuUd+9i80jSSnjpFDF+O6d5JvJnnSdn4/5HRt/yTJ48YYv7jecwEAAACAjcpKSQBge7w2W/3vho83Oeqf2m5qe8ckJy1PvGUN53Y5bX+v7Z2XW8Y+KskfJvmb9ZoPAAAAAGClJACwHdrsmeStSX4lyU+Wh3dPTj0tOfSaybhlFt8f+dEkfzDG+PQ6TTVtj03yn5NcL4vvtXxlkr8cY1yyXnMCAAAAgI1OlAQAtkubPZI8aPlnZLEa8k1j/DRSAgAAAABslSgJAAAAAAAATOU7JQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAADYybQ9o+3R6z0PANhRREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAABYY233bXtS2x+0PavtE9ue2va4bYy/TtuXtj237ffb/m3b2604v6ntW9r+S9sL2n647X1X3eOMtk9v+4rlmK+1PaLt/strL2j7qbYHz35+ADYeURIAAAAAYO0dk2RzkiOSHJbkHknu+HPGvyHJDZPcL8mdknwsyXvaXm95fp8k70hynyR3SPKuJG9re5NV93liktOWY/5vklcmeUWSVy0//8tJXtG2V/H5AOByOsZY7zkAAAAAAGwYbfdN8u0kjxhjvHF5bL8kZyZ5yRjj6LZnJDlujHFc27tnERBvOMa4eMV9/inJ88YYL97G53wmyQvHGH+9fH9Gkg+MMR61fH9AkrOS/PkY45nLY3dJ8vdJDhxjnL3jnx6AjWqP9Z4AAAAAAMDVXZtrJjk8ybWT3/hW8qo9k3xoy/kxxnltT9/G5bfLYiXkt1ctYLxmkk2L+3efJM9K8oAkB2bxu99rJlm9UvJTK37+l+Xrp7dy7IZJREkAdhhREgAAAABgojaHJ3ldkussjjxpLHZLvcH2fr3WPlmsaLzXVs59b/n6/Cy2gX1ykn9KcmGSNybZa9X4H2/5YYwxlpHzxyvOb9laz1d/AbBDiZIAAAAAAJO0uXGStybZ87Kjm7p4+9g/S3LkYlz3S3KLJO/fym0+luSAJJeMMc7YxkdtTnLiGONNy/vtk+SgHfEMALAj+NsuAAAAAADzHJlFgVzxu9h9l4df+ci29257myQnJLk0l61UXOmULL7n8c1tD297UNu7tX1224OXY76U5MFtb9/2dkleHb//BWAn4l9KAAAAAADz3CTJT3728DFJNu+W5O1ZRMfTknw+yUWrR44xRpL7Z7GK8uVJvpjktUn+XS77Dsg/SPLdJB9M8rYk785ihSUA7BS6+PcZAAAAAAA7WpvfS/LXSbrq1KVJPj9GbrsY172TfDPJk8YYJ6ztLAFgPislAQAAAADmOSnJufmZ1ZIf3y35nfe23dT2jstxSfKWtZ0eAKwNURIAAAAAYJIxcl6Se+XyW6l+L/nMc5KX3C3JJ7PYvnXvJPcYY3xr7WcJAPPZvhUAAAAAYA202ZRkvySfG+NnvzsSAK7OREkAAAAAAABgKtu3AgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAAAAAAAATCVKAgAAAAAAAFOJkgAAAAAAAMBUoiQAAAAAAAAwlSgJAADsVNo+te2H257f9py2b257y1VjNrV9U9tz236/7evb3mgb97tG20+0HW1vvzZPAQAAAKwkSgIAADubQ5Icn+QuSQ5LsmeSk9vunSTL15OTjCSHJtmcZK8kb2u7tf/HeV6SM9dg3gAAAMA2dIyx3nMAAADYprb7JzknySFjjPe3PTzJO5Ncd4zx/eWY/ZJ8N8nhY4xTVlx7vyTHJHlIks8mucMY4xNr/QwAAACw0VkpCQAA7Oz2W75+Z/l6jSxWSV68YsxFSS5NcvctB5bbub4kyaOS/HD+NAEAAIBtESUBAICd1nI71uOSnDbG+Mzy8D8k+UGS57a91nI71+cn2T3JgcvrmuTEJC8cY3xkzScOAAAAXI4oCQAA7BTa7N/moPZy/59yfJLbJvn1LQfGGOcmeViSX01yQZLzklwnyceyWC2ZJEcl2TfJX67B1AEAAIArsMd6TwAAANjY2tw0yYuSHLY89PU2T0m6OckDk9xzjPGNldeMMU5OsqntDZJcMsb4Xtuzk3xlOeTQJHdNcvFi0eRPfaTtSWOMIyc+EgAAALBKxxjrPQcAAGCDarNPki8kOSCL7Vez+LrIo5Kc8J3koruMMb50xffpoUlOSXLrMcbpbW+S5Norhtw4ybuTPDTJP66OnAAAAMBcVkoCAADr6ZFZBMMVyxn/a5JXJ3njOckDz297wPLEeWOMC5Ok7WOSfD7JuVmsiHxBkmPHGKcnyRjjn1d+SNsLlj9+WZAEAACAtSdKAgAA6+lOSS5Jsudlh/738vWBt0py1oqxj0ly4vLnW2bxfZHXS3JGkmcnOXbmRAEAAIArz/atAADAumnzrCRPz0+3br2cb46Rf7u2MwIAAABm2G29JwAAAGxof5PFl0iu/tuSI8n/WvvpAAAAADOIkgAAwLoZI19N8ogkF285tHx9XZL/vi6TAgAAAHY427cCAADrrs11kzwoyb5JTh0jn1rnKQEAAAA7kCgJAAAAAAAATGX7VgAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAAAAgKlESQAAAAAAAGAqURIAAAAAAACYSpQEAAAAAAAAphIlAQAAAK6itqe2PW4H3u+MtkfvqPsBAMB6EyUBAAAAAACAqURJAAAAAAAAYCpREgAAAGAHanvdtq9o+922P2z7zra/tGrMQ9p+tu3Fy61an3QF9/yttt9re5/l+4e2/XTbC9t+u+0pbfee+VwAAHBViJIAAAAAO9aJSQ5OckSSuyZpkne03TNJ2t4pyeuTvDbJv0/yrCR/3vbRW7tZ2z9K8pwkh48x3tP2wCSvSfKyJLdOcq8k/2f5OQAAsFPqGGO95wAAAACwS2t7apJPJDk+yReTbB5jfHB57vpJvp7kyDHGG9qelGT/McbhK65/XpIHjDFus3x/RpLjkhyY5FFJDhtjfHZ57o5JPprkoDHG19bmCQEA4KrZY70nAAAAALCrabM5yW8nuXGSjyTXvEZyYbJYuXhJkn/cMnaM8e22py/PbRnzllW3PC3J0W13H2P8ZHnsSUn2TnLwGOMrK8Z+Msl7kny67buTnJzkjWOM7+7IZwQAgB3J9q0AAAAA/wptjk7yd0kemeSwJH+UHHzn5Kb77+CP+kCS3ZM8fOXBZbQ8LMn9knwuyVFJTm970x38+QAAsMOIkgAAAADbqc2Nkzx/+XbLDlS7J7vtnhxyaJLPL4//8mXX9PpJbplFQMxyzOZVt96c5IsrVkkmyYeyCI9Pa/vklYPHwmljjD9NcockP0rya1f1+QAAYBbbtwIAAABsvyOyzb/kvd8ByTg/6VuSvKTtY5Ocn+Q5Sb6Zy7Zs/R9JPtz2GUlel+SuSR6f5PdW33GM8cG290/yzraXjDGOa/vLSe6Txbat52QRQPfPInYCAMBOSZQEAAAA2H5X9LuUPZM8JskLkrw9yV5J3p/k/mOMHyfJGONjbR+e5L8leUaSs5I8c4xx4tZuOMb4u7YPSPKOtj9JckqSeyY5Osm1k3wtyZPGGO+8is8GAADTdIyx3nMAAAAA2CW0+aUkX9zKqUuTnJ7kNmPEL1sAAGAV3ykJAAAAsJ3GyJeSHLN8e+ny9ZLlz08QJAEAYOuslAQAAAD4V2jTJI9M8rgkv5DkQ0meN0Y+uq4TAwCAnZgoCQAAAAAAAExl+1YAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAAAAmEqUBAAAAAAAAKYSJQEAAAAAAICpREkAAAAAAABgKlESAAAAAABgA2v71LYfbnt+23PavrntLVeN2dT2TW3Pbfv9tq9ve6MV5w9qe0Lbr7a9sO2X2/5Z273W/onYGYmSAAAAAAAAG9shSY5PcpckhyXZM8nJbfdOkuXryUlGkkOTbE6yV5K3td3Smm6VRXd6bJLbJHlikscl+Yu1ewx2Zh1jrPccAAAAAAAA2Em03T/JOUkOGWO8v+3hSd6Z5LpjjO8vx+yX5LtJDh9jnLKN+/xhkt8dY9xsjabOTsxKSQAAAAAAAFbab/n6neXrNbJYJXnxijEXJbk0yd2v4D7f+Tnn2UBESQAAAAAAAJIky+1Yj0ty2hjjM8vD/5DkB0me2/Zay+1cn59k9yQHbuM+N09yVJIXzZ81uwJREgAAAAAAYANqs3ebG7TpisPHJ7ltkl/fcmCMcW6ShyX51SQXJDkvyXWSfCyL1ZKr7ttfSPKuJG8YY7xk3hOwK9ljvScAAAAAAADA2mlzYJL/meTBWSxg+2KbpyS9b5IHJrnnGOMbK68ZY5ycZFPbGyS5ZIzxvbZnJ/nK5e/dGyd5b5IPJvmd+U/DrqJjjPWeAwAAAAAAAGugzTWTfCrJQfnp4rVLR/KEJid8O7normOML13xfXpoklOS3HqMcfry2C9kESQ/muQ3xhg/mfIQ7JKslAQAAAAAANg4Hp7k5pc/9Pgmr07yxnOSB57f9oDlifPGGBcmSdvHJPl8knOT3DXJC5IcuypInprka0menGT/drEr7Bjj7LmPxK7ASkkAAAAAAIANos3xSX47yZ4rjm5r+GPGGCcurutzkjw6yfWSnJHkhVlEybE8/+gkL9/aTcYY2/wANg5REgAAAAAAYINo86wkT0+y+1ZOf2uM7L+2M2Kj2G29JwAAAAAAAMCaeWW2vjTy0iQvXuO5sIGIkgAAAAAAABvEGPlyFtuwXpJFiLxkeer/s3fv0brVdb3HP9/NRUWQsDCwIo6oeMFEsVNGIqmYqcNL4mWACoqmI7U0ygJvKKlEJtTQkydkHESwm5W3wAwCL+BJFAXMnVKCVxRkCwIiCPt7/niefXhYrLX3BvZvrb32er3GeMZaz5y/OZ/f3H8wFuu9fnN+LMnRSzQtVgC3bwUAAAAAAFhhqrJLkmcmuUeSTyT5VHdEI4YRJQEAAAAAAICh3L4VAAAAAAAAGEonh+XGAAAgAElEQVSUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAYJOqqkur6pVLPQ8AAAAAYPMhSgIAAAAAAABDiZIAwGalqraqKj+jAAAAAMAWxC/8AIDbpap2qKpTq+q6qrqsql5VVWdX1fELjP+9qrpoOv4bVfW/qmr7mf2HVtVVVfWUqvpSkhuS7Dbd96KqWl1VP6qq/6yq316cqwQAAAAANiVREgC4vd6eZN8kT0lyQJJHJXn4esavTfI7SR6c5JAkj0ly7Jwx2yX5wyQvmo67vKoOTvKmJK9J8sAkRyY5uqoO2WRXAgAAAAAsiq2XegIAwPJRVTtkEhYP6u4zp9tekOTbCx3T3bMrKC+tqtcmeVeS2VWP2yT57e6+YOaz3pjk8O7+x+mmS6rqQUlekuQ9m+J6AAAAAIDFIUoCALfHfTIJiJ9Zt6G7r66qLy90QFU9LskRSR6Q5B6Z/Pxx16rarrt/OB12Y5ILZ465e5I9kpxYVSfMnG7rJFdvomsBAAAAABaJ27cCAOtVladW5TNVuSH5zGmTrT+1UT9DVNXuST6SSXB8RpJ9krxsunvbmaHXd3fPvF/3zMkXJ9l75rVXkl++I9cBAAAAACwdKyUBgAVV5XlJTs7kuZCrkgfce7JQ8jUnJnnsZEztmOT+ST4xzyn2mRyXw7t77XT8szb0ud393ar6dpL7dPepm+RiAAAAAIAlI0oCAPOqytZJjp2+na6MXPdIyb94TNVZz08+9Lkkb8wkWvY8p/mvTCrmK6rqw0n2TfLSjZzCG5L8RVVdneSjSe6S5BFJdurut9+RawIAAAAAlobbtwIAC7lPkl1uu/ntSR6Z5LQTkpyR5Jwkq5P8aO7I7r4gye8l+cMkX0xycCbPl9yg7n53khcleUGSi5J8PMmhSS65ndcBAAAAACyxuvXjmwAAJqpy7yTfWs+Qg7vzvqq6+3Tc4d194uLMDgAAAABYTqyUBADm1Z1vJ/lUkptvvef8Tk65IXnMf1TVw5Ose+bjBxd3hgAAAADAcmGlJACwoKrcP8knk+ycSZysSZQ84OvJmp9OcmOSzyX5ve6+aAmnCgAAAABsxkRJAGC9qrJjkucneWgmt2k9qdtzHQEAAACAjSdKAgAAAAAAAEN5piQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAAMBQoiQAAAAAAAAwlCgJAAAAAAAADCVKAgAAAAAAAEOJkgAAAAAAW6CqOruqjl/qeQBAIkoCAAAAAGw2quqPqqrni4k1cfp0/9Nmtu8/3fYTiztbANh4oiQAAAAAwGagqn4xyUuSXLjAkFcm6cWbEQBsOqIkAAAAAMASq6rtk5ya5MVJvj/P/r2THJ7khXO2757krOnb709XTJ40M2RVVR1bVWuq6jtVddSmnz0AbJgoCQAAAACw9N6Z5J+7+4y5O6pquyTvS/Ky7v7OnN3fSPKM6fd7Jtk1ye/O7D8kyXVJfinJq5O8vqoO2MRzB4ANEiUBAIAtSlUdUVXnVdU1VXV5VX2gqvac2b/7dAXBfK9nTsccup4x91q6qwMAtkRV9ZwkD09yxAJDjktybnd/cO6O7r45yZrp28u7+zvdffXMkAu7+43dfXF3n5zks0keuwmnDwAbZeulngAAAMAm9uhMVhqcl8n/87wlyceq6kHdfV0mqwl2nXPMbyX5gySnT9//bZKPzhlzUpK7dvflg+YNAKwwVdk6ueuuSf48yQHd/aPbjqmnJHlMkofdwY+Z+3zKy5L4IysAFp0oCQAAbFG6+wmz76vq0CSXJ9knySemqwm+M2fM05P8XXdfOz3H9Umun9m/cya/DDxs6OQBgBWhKs9P8tok90vee03yrB2SnF9V64ZslWS/qnp5kr9MskeSq2b2J8k/VNUnu3v/DXzcj+e877iDHgBLQJQEAAC2dDtOv66Zb2dV7ZNk7yQvW885np/kh0nev2mnBgCsNFV5WZJ3ZBIHkzxhh+TCtcma05P9192+9f8k+c8kf5Lke0n+95zTXJTkVUk+PH1/4/TrVuNmDgB3jigJAABssapqVZLjk5zT3V9cYNhhSVZ397nrOdVhSd43XUEJAHCHVGXbJG9a93byZYckD1mV5MlJv7o7q6vquiRXzvz8MvcuD0ny9e6+ZLrpa5lEzidX1WlJrl93BwgA2FxYpg8AAGzJ3plkryTPmW9nVd0tyUFJTlzoBFX1yCQPXN8YAICNdP8k91zP/n3vyEm7+1tJ3pDkmCTfzWQlJgBsVqq7l3oOAAAAd1hV9kny+iS/luTqTG53dkxSxyZ5apL9ZlYRzDm2npdJbPyZ7r5igTEnJnl4dz9sxPwBgJWjKj+b5BvrGXJgd/5hseYDAItJlAQAAJatqvzPJJ/M5PlJ02corV2bPO87yfuSZP/uvnjh4+vsJN/r7gMX2L99ksuSHNHdVhwAAHdaVc7OZEXk7KO11ia5Jsmu3XG7eAC2SG7fCgAALGdvzq2CZJK8fFXyz/dOjnxHkmuqapfp626zB1bVfZPsl+Td6zn/szP5heEpm3riAMCK9cLc8ozIH2cSJG9I8kxBEoAtmZWSAADAslSVSnJTbvPHlrXQIS/o7pNuOb7ekuS5SXbv7rXzf0adm+SS7j74zs8YAGCiKtsleVaSX0jyzSSndOfypZ0VAIwlSgIAAMvSNEpem2S7eXbflORPu3Pk4s4KAAAAmI/btwIAAMtSdzqT26rePM/urZP8zeLOCAAAAFiIKAkAACxnr01y8fT7mzNZIZkkr+/OhUszJQAAAGAut28FAACWtekzmQ5Ksl+Sq5O8tzufWdpZAQAAALNESQAAAAAAAGAot28FAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlAQAAAAAAgKFESQAAAAAAAGAoURIAAAAAAAAYSpQEAAAAAAAAhhIlgTulqnavqq6qvZd6LgAAAAAAwOapunup5wAsY1W1VZKdk3yvu29a6vkAAAAAAACbH1ESuMOqatvuvnGp5wEAAAAAAGze3L4V+P+qaoeqOrWqrquqy6rqVVV1dlUdP91/aVW9rqpOrqofJPmrubdvrar9p+9/vao+X1XXV9W/VdW9quo3qmp1Vf2gqt5XVdvNfPYTqupTVXVVVV1ZVR+pqj3mzO9nq+qvq2rNdI6frapfmtn/1Ko6v6p+VFVfrao3VNXWi/TPBwAAAAAALECUBGa9Pcm+SZ6S5IAkj0ry8Dljfj/JBUkeluTo9ZzrqCQvT/IrSX4uyd8leWWSg5I8Kcnjk7xiZvzdp5//iCSPTbI2yT9V1aokqartk3w8yc9M5/fQJMdm+t+xqnpUkpOT/HmSByV5SZJDk7zmdlw/AAAAAAAwgNu3AkkmqySTXJnkoO5+/3Tbjkm+neSE7n5lVV2a5PPd/fSZ43ZPckmSh3X3F6pq/yRnJXlcd585HfNHSd6aZI/u/up027uS7N7dT1hgPj+V5IokD+nuL1bVbyV52/SYNfOMPyPJmd391pltz01ybHff+47/ywAAAAAAAHeWlZKwwlVlVVW2SXKfJNsk+cy6fd19dZIvzznksxt56gtnvv9ukh+uC5Iz2+51yzzqftNbs351emvYS6e7dpt+3TuTIHqbIDn10CSvr6pr172SnJBk19nbxAIAAAAAAIvPs9ZgharKzkmOSXJwkrsk51wwuXPrBl23kR/x45nve877ddtm/zDiw0m+luTFmazOXJXki0m2ne6/fgOft32SNyT5x3n2/WjjpgwAAAAAAIxgpSSsQFW5W5JPJDkkyV0mW/d6yGSh5DOed8u42jHJ/cfPp34yyZ5J/ri7z+zu1Ul2mjPswiR7V9U9FzjN+Un27O7/mue1duD0AQAAAACADbBSElamZyd5wK033WNV8vxOTntNVZ2b5PIkb0yyNpNVjSN9P5PnWf5WVV2WyS1bj5kz5q+THJnkA1V1RJLLkjwsybe7+9NJ3pTkI1X19STvn877oUn26u7XDp4/AAAAAACwHlZKwsq0b5Kbbrv5uEoevW2SjyQ5I8k5SVZn8O1PpysZn5Nkn0xu2Xpckj+YM+bGJI/PJJaeluSiJH+U5Obp/n9J8uTpmPOS/N8kr8rklrAAAACLoqpOqqoPLPU8AABgc1PdoxdAAZubqhybSbCbb7X0d7uzy2Rc3T3Jt5Ic3t0nLuIUAQAAlqWqOinJT3T30+7kebad/nEmAABsEayUhJXpvZk3SJ6/Nnn9p6tqj6p6eJJTpzs+uIhzAwAA2OxV1YFVdVFVXV9VV1bVGVX1p0kOSfLUqurpa//p+D+pqq9U1Q+r6qtVdXRVbTNzvqOq6gtV9aKquiTTO9ZU1aqqOqKqLpl+1gVVdeBSXDMAANwZnikJK1B3LqrKq5K8PZNnL65Nsk1y7eeTN/98kguS3Jjkc0ke1d3fW7rZAgAAbF6qatdMnnv/6iT/lGSHJI9KcnKS3ZLcI8kLpsPXTL9ek+TQJN9O8pAkJ0y3HTtz6vsmeUaS38z0URVJjkjy3CQvTXJxkv2SnFJVV3T3xzf91QEAwBhu3worWFXul8mzHHdIclaSf+nO2qWdFQAAwOZtemeZzyXZvbu/NmffSdmI27dW1e8neU53P2L6/qgkRyb5me6+YrrtLplEzcd196dnjn13ku26+6BNdlEAADCYlZKwgnXn4iRHL/U8AAAAlouqbJU8+oLk42cmuaiq/iXJx5K8v7u/v/Bx9ewkv5NkjyTbZ/I7mR/MGfa1dUFy6r5Jtkvyr1U1O27bJJ+/0xcDAACLyDMlAQAAADagKr9ZlQuT3JScfUVy83nJLk9N8qUkr0jy5ar6H/MfW49McmqS05I8OcnDkrw5k7g467o577effn1Skr1nXg9K4rmSAAAsK1ZKAgAAAKxHVQ7KJCquewbOTsmqVyeX/UKSJyf1piRfS/L0JDcm2WrOKX4lk1WQb77lnPXzG/HRX0pyQ5LdPD8SAIDlTpQEAAAAWEBVViV567q3ky//nuTMVcnjn5hc9JRMVjzunGR1krsm+fWq2jPJlUmuTnJxkt2q6jlJzstk5ePTN/TZ3X1NVb0tyXFVtSrJp5LsmGTfJD/o7vdsqusEAIDRREkAAACAhe2aZLdbb7pHkk8kOT7Jmvcn+WqSw7v79Kr6bJL9k3w2k9uv/lp3f6iqjkvyjiR3SfLPSY5OctRGfP7rklyR5Igk90lyVZLzk7zlzl0WAAAsruruDY8CAAAAWIGqsmOSNUlWzbO7k7ykOycs7qwAAGD5me8HagAAAACSdOfqJB9KctPcXZk8P/IfFn1SAACwDImSAAAAAOv3siRfm37/4yQ3ZxIpD+7OmiWbFQAALCNu3woAAACwAVW5a5IDkzwiyXeSnNKdby7trAAAYPkQJQEAAAAAAICh3L4VAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQGAFa+qjqiq86rqmqq6vKo+UFV7zuzfvap6gdczp2MeWlV/XVXfqKrrq2p1Vf3u0l0VAAAAAGw+REkAgOTRSd6Z5JeTHJBkmyQfq6q7T/d/I8muc15vSHJtktOnY/ZJcnmS5yZ5cJI3J3lrVb18ka4BAAAAADZb1d1LPQcAgM1KVe2cSWB8dHd/YoExn09yfncftp7zvDPJA7v7MWNmCgAAAADLg5WSAAC3teP065r5dlbVPkn2TnLiRpxn3nMAAAAAwEqy9VJPAABgc1JVq5Icn+Sc7v7iAsMOS7K6u89dz3l+Jcmzkzxp088SAAAAAJYXURIAWJGqcq8kT0+yXZIzunPRdNc7k+yV5FfnP67uluSgJEcvfO7aK8kHk7yxuz+2KecNAAAAAMuRKAkArDhVeWGSd2Xys1AnWVWV9yRbXZfkyUn26+5vLnD4gZmEzJPnP3c9KMmZSf6qu/94k08eAAAAgC1aVZ2d5Avd/cpNdL5Lkxzf3cdvivNNz7l/krOS7NTdV23MMaIkALCiVGWvJO9OUus2TbrkKw5Jtrs6ufYXu/uS9ZzisCQf6u4rbnvuenCSf0vynu5+zaaeOwAAAAAsV6uWegIAAIvsBUluvvWmlyU5JcnfX53kmqraZfq62+yoqrpvkv0yiZqZs2+vTP467GNJ3j5zjp2HXAUAAAAALCOiJACw0uySW1ZJTv1lkquT/MZuSS6beT17zrEvTPLNTMLjXAcm2TnJc+ec47xNNnMAAAAAVpSq2qmqTq6q71fVD6vq9Kq635wxz6iq/6iqG6rq0qo6fAPnfFFVXVVVj52+X1VVR1TVJVV1fVVdUFUHzjnmiVX1len+s5LsfnuvRZQEAFaaz+U2UbKT9M1Jn9HdNfM66Vajuo/s7t26e+3ck3b3UXOOXffafdylAAAAALCFOynJI5I8JckjM/m91mlVtU2SVNU+Sf4uyd8keUiSo5IcXVWHzneyqnp1kmOSPL67z5xuPiLJ85O8NMmDkxyX5JSqevT0mJ9L8o9JPpxk70zuInbM7b2Q6u7bewwAwLJVlZ2S/GeSe+aW52uv+4Hosd05a0kmBgAAAABJqursJF9I8s4kX0myb3efO933k0m+keSQ7v77qjo1yc7d/fiZ449N8qTufvD0/aVJjk+ya5LnJTmgu/9juu8uSdYkeVx3f3rmHO9Osl13H1RVb0ny1HXnm+4/JskfJtmpu6/amOuyUhIAWFG68/0kj0ry8ZnN/53kaYIkAAAAAJuRBya5Kcm/r9vQ3Vcm+fJ037ox58w57pwk96uqrWa2HZ7kxUl+dV2QnLpvku2S/GtVXbvulcnKyT1mPuPfc2ufzu209YaHAABsWbrzlSSPq8pPJrlbkm91x+0jAAAAAFh0VfmNTG6h+gvd+YlBH/PJJE9K8qzc+tar20+/PinJt+Ycc8OmnIAoCQCsWN25cqnnAAAAAMDKVZWDk5yS5OYkW83ZvTqTlvdLSWZv37pnki/NjNl3znH7JvlKd988s+0zSd6R5KNVdVN3v226/UuZxMfduvvjmd/qTJ5pOeuXN3x1tyZKAgAAAAAAwCKrytZJ/mz6dm6QTHdfXFUfTHJCVb0kyTWZrHL8VpIPTof9WZLzqup1Sf42ySOTvDzJb89zvnOr6olJTp+GyeO7+5qqeluS46pqVZJPJdkxk7D5g+5+T5J3JTm8qv40ybuT7JPk0Nt7vZ4pCQAAAAAAAIvvAUl+egNjXpDkc0k+kslzHCvJE7v7x0nS3ednckvW5yT5YpI3JXl9d58038m6+1OZ3Kr1j6vqFdPNr0tydCa3kF2d5KPTMZdMj/l6kmckeVqSC5K8NMmRt/diq9vjkwAAAAAAAGAxVeU+Sf57dlt3aommM5yVkgAAAAAAALDIuvPVJOdn8jzJLZ4oCQAAAAAAAEvjhZk8K3JttvA4ufVSTwAAAAAAAABWou5cUJU9kxyW5CFLPZ+RPFMSAAAAAAAAGMrtWwEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAAelTGcAACAASURBVIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAAAAGEqUBAAAAAAAAIYSJQEAAAAAAIChREkAAAAAAABgKFESAAAAAPh/7N17vK9VXSfwzwcOXrh4j0TLQRRNDVHQvIGiZqWWmVaaxIhNYTHhINhFTcUaLfESFiqhhNZYpjajk6bjSDKaeYVJAQkGjSTEG8j9Epc1f/x+J7bbsznnwHn2b3PO+/167dfez1rrWev77D/gvH6fvdYDADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAAAAAAAwKaEkAAAAAAAAMCmhJAAAAAAAADApoSQAAMAa1fbFbT/X9rK232z7vrb3X9J/l7Z/3Pastle1/WrbP2p7x2XzPLHtP8zn+Xrb17Rdt/pPBAAAwLZKKAkAALB2PS7Jm5I8MsmTkuyQ5CNtd5r332P+9aIkP5zk4CQ/keSE9RO03TvJ3yb5cJKHJnlWkqcl+YNVeQIAAABI0jHGomsAAABgE7T9viTfTPK4McbHVxjzc0n+W5KdxhjXtX11kieNMR6+ZMxPJXl3kl3HGJetQukAAABs4+yUBAAAuPVYfyzrRRsZc+kY47r59W2TXL1szFVJbpdk3y1bHgAAAGyYUBIAAOBWoO12SY5J8skxxukrjLlbkpclOX5J8/9K8ui2v9B2+7b3TPLyed9uU9YMAAAA6wklAQAA1pg2O7W53bLmN2X23shnb/ie3iHJB5N8KclR69vHGB9J8htJjktyTZKzM3vHZJLcsEULBwAAgBUIJQEAANaINo9u86kklye5os372+zR9tgkP5nk8WOMf/3e+7pLkg8nuSzJz4wxrl3aP8Z4Q5I7JblXkrslef+86yvTPQ0AwJbR9sVtP9f2srbfbPu+tvdfNuaQtie3vbTtaHunFeZ6atvPtL2q7Xfavm91ngIAoSQAAMAa0OYhST6W5EfmTdslNzw1OeS0ZLtnJnnCGOOfv/e+3iHJR5L8W5KnjTGWvz8ySTJmvjbGuCrJLyQ5L8mpUzwLAMAW9rjMTo14ZJInJdkhyUfa7rRkzI6Z/ZHWq1eapO0zk/x5khOT7J3kMUn+YqKaAVimY4xF1wAAALDNa/NXSZ6RZN2NrYdm9jnZ7x+fHPqKJcMvGWNctSSQ3DHJzyS5YsmYb40xrp/N3d/I7EO6G+ZrvCzJz48x7AwAAG512n5fkm8medwY4+PL+g7I7A+97jzGuHhJ+7ok5yZ5xRjjhNWrFoD17JQEAABYG/bLdwWSSfKWJJckOfSQJBcs+XrWfMA+SR6RZK8k5ywb84NLJnpykk8k+XySpyb5aYEkAHArdsf594s24559ktwzyQ1t/2/bC9p+qO0Pb/nyANiQdRsfAgAAwCr4VpLdkvTGppEk1yX5szHyn5bfMMY4+bvHb9gY4wlbqEYAgIVqu12SY5J8coxx+mbcusf8+1FJjshs1+SRSU5ue78xxuYEnADcDHZKAgAArA1vW6F9XZK3r2IdAAAL12a7Nndtc5tlXW9K8sNJnr2ZU67/LPxVY4y/HmOckuR5mf0V2M/dsmoB2BRCSQAAgLXhLUneNf/5uiTXz39+6Rj5xGJKAgBYXW3a5pAkX03y7SSXtHlTm53bHpvkJ5M8fozxr5s59QXz719a3zDGuCbJV5LcawuUDsBGOL4VAABgDRgj17c5MMkbM3sH5DVJ3jtG/t9iKwMAWFWHJjl2yfXtkhuenxz4U0m2T3LAGOOfb8a8p2T276v7J/n7JGm7Q5Ldk/zLLaoYgE0ilAQAAFgjxshI8pn5FwDANqXNDpm983GZX98++dAPJoccmhx/Wdu7zzsuGWNcNbu3d09y9yT3nfft1fayJF8dY1w0xri07XFJXtn2vMyCyN+Yj33PZA8FwL/rGGPRNQAAAAAAsI1rs0eSL2+gZ6VbnjfGePvs3h6V5BUbGbNDkt9PclCS22f2h2CHjzHOuEWFA7BJhJIAAAAAACxcmztn9h7J7VYY8otj5J2rWBIAW9BK/3EHAAAAAIBVM0a+k+R9Sa5b1nVDkkvnfQDcSgklAQAAAABYK34tyT/Nf74uyUhyVZKfGSNXLKwqAG4xx7cCAAAAALBmtNk+yVOS7JPkgiTvHiMXL7YqAG4poSQAAAAAAAAwKce3AgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAAAAAAACTEkoCAAAAAAAAkxJKAgAAADCJtue2PXzRdQAAsHhCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAG6Wtru0fWfbK9pe0PaFbU9ue8wK449oe9p8/Hlt39x25yX9B7e9uO2Ptz2z7eVtP9x2t2Xz/FLbM9peM1/32CV9d2r7trbfantp279ru/d0vwUAADaFUBIAAACAm+sNSR6T5GlJnpRk/yT73MT4G5K8IMmDkjw3yROSHL1szI5JXpTkoCSPTXKvJK9b39n215K8KcnxSfaar33Okvvfk2TXJE9Osm+SU5Oc1PYuN+cBAQDYMjrGWHQNAAAAANzKtN0lyYVJnjPGeO+87Y5JvpbkrWOMw9uem+SYMcZKOyd/NslxY4y7za8PTnJikvuOMb48bzs0ycvHGHefX5+f5MQxxu9sYL79knwwya5jjGuWtJ+T5OgxxvFb5OEBANhs6xZdAAAAAABrX5smeXySpyS5LnnJF5NX75Dks+vHjDEuaXvWynP0R5O8OMkPJblDZp9N3a7tjmOMK+fDrlwfSM5dkNnOx7TdNck9kpy0whJ7J9k5yYVtl7bfPsl9NvVZAQDY8oSSAAAAANykNuuSvCvJM5NcN2v9+XXJq5PcdhPn6O5JPpDkLUlemuSiJPslOSHJbZKsDyWvXXbrSLI+YbxqI8vsnFmIecAG+i7epEIBAJiEd0oCAAAAsDGHJHnG/Od1s689kuyQ5Beev37Q/PjW+60wx76ZfRZ15Bjj02OMszPb9bjJxhiXJTk3yRNXGHJqkrsnuW6Mcc6yr29vzloAAGxZQkkAAAAANuZ539u0S5L/OJIP/Ze2j2/7oMx2Pd6Q2e7G5c7JLMU8rO0ebQ9K8qs3o5ajkhzZ9gVt92y7T9vD5n0fTfKpJO9r+2Ntd2/76Lavavuwm7EWAABbiFASAAAAgI25c248QnWJP2zy0EszO5b1o0k+meTMJFcvHznG+EKSI5L8VpLTkxyY2fslN8sY4x1JDk9yaJIz5mvvOe8bmb3z8uNJTkxydmbHzv6HJN/Y3LUAANhyOvu3GgAAAABsWJvjM9stuW5Z1w1JXjFG/utsXHdKcn5mR7SesLpVAgCwltkpCQAAAMDGvDaz3Y/XL2m7Lvnshcm9v9n2Pm33SfLOed/7V71CAADWNKEkAAAAADdpjPy/JI9O8qHMgslrk7w3ef3BybnPT/KFzI5v3SnJ/mOMby+qVgAA1ibHtwIAAACwydpsl2SMER8qAQCwyYSSAAAAAAAAwKQc3woAAAAAAABMSigJAAAAAAAATEooCQAAAAAAAExKKAkAAAAAAABMSigJAAAAAAAATEooCQAAAAAAAExKKAkAAAAAAABMSigJAAAAAAAATEooCQAAAAAAAExKKAkAAAAAAABMSigJAAAAAAAATEooCQAAAAAAAExKKAkAAAAAAABMSigJAAAAAAAATEooCQAAAAAAAExKKAkAAAAAAABMSigJAAAAAAAATEooCQAAAAAAAExKKAmwxrQ9ue0xW3C+c9sevlrrAQAAAADAcusWXQAAC/eMJNcuuggAAAAAALZeQkmAbdwY46JF1wAAAAAAwNbN8a0Aa1jbO7f9s7bfaXtl2w+13XPZmGe2PaPtNfOjWo/cyJy/3Pbitk+cX3/X8a3zOV7S9k/bXtb2q20PWTbHo9v+Y9ur236+7dPbjrYP2ZLPDwAAAADA1kEoCbC2vT3Jw5I8LcmjkjTJ37bdIUna7pvk3UnelWSvJEcl+b22B29osra/meQPkvzYGOOkm1j3yCSfT/LQJG9O8pa295/PcYckf5PktCT7JHlZktfcgmcEAAAAAGAr5/hWgDVqviPyaUkeM8b4h3nbgUnOS/L0JO9JckSSk8YYvze/7ey2D0zyG5kFmkvne02Sg5I8boxxxkaW/9sxxpuX3PfCJI9PclaS5yQZSX5ljHF1ki+1vWeSt96yJwYAAAAAYGtlpyTA2vWAJNcl+cz6hjHGhZkFgw9YMuaTy+77ZJI9226/pO3IJL+SZL9NCCST5ItL1hxJvp5k13nT/ZN8cR5IrvfZTZgTAAAAAIBtlFASYIHatM0vtzmzzdVtTkvu+f0TLPWJJNsn+flNHH/tsusR/88AAAAAAOBm8gEzwGIdldmxp/dPctskD0ru+0PJE/dNcmZmx2w/Yv3gtnedj/3SvOnMJI9ZNudjkpw9xrh+Sdtnkzw5yUvavugW1nxWkr3a3nZJ28Nv4ZwAAAAAAGzFhJIAC9LmbklevP7yu78/8JHJ+HqS9yd5a9v92u6d5L8lOX/eniSvT/LEti9re7+2z03y60let3y9+Xspn5LkFW0PvwWl/0Vm//84vu0D2v54kvVB57gF8wIAAAAAsJUSSgIszqOS7LDhru3WJXlYkuclOSXJB5J8KrPQ8iljjGuTZIxxamZHsj47yelJfjfJy8cYb9/QrGOMv0/y1CT/te1hN6foMcalSX4qyUOS/GOSV83XTZKrV7oPAAAAAIBtV8ewqQVgEdockORjNzHkR8bI51apnFuk7YFJTkxyxzHGVYuuBwAAAACAtUUoCbAgbdYlOS/JrvnunevXJ/mXJHuOkRsWUdvGtP2PSb6S2VGyeyc5NsnJY4xfXGhhAAAAAACsSY5vBViQMXJdZseuXp3khiTXzb9fmeQ5azWQnLt7Zu+3PDPJHyZ5T5JDFloRAAAAAABrlp2SAAvWZrfM3h15nyRnJzlxjHxzsVUBAAAAAMCWI5QEAAAAAAAAJuX4VgAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAAAAAAGBSQkkAAAAAAABgUkJJAAAAAAAAYFJCSQAAbjXantv28EXXsTFtj2r7j4uuAwAAAGCtEEoCAAAAAAAAkxJKAgAAAAAAAJMSSgIAsGa03aXtO9te0faCti9se3LbY1YYf0Tb0+bjz2v75rY7L+k/uO3FbX+87ZltL2/74ba7LZvnl9qe0faa+brHLum7U9u3tf1W20vb/l3bvZfd/9ttv9H2srYnJLndFv7VAAAAANyqCSUBAFhL3pDkMUmeluRJSfZPss9NjL8hyQuSPCjJc5M8IcnRy8bsmORFSQ5K8tgk90ryuvWdbX8tyZuSHJ9kr/na5yy5/z1Jdk3y5CT7Jjk1yUlt7zK//+eTHJXkJUkeluSCJIduzkMDAAAAbO06xlh0DQAAkLa7JLkwyXPGGO+dt90xydeSvHWMcXjbc5McM8ZYaefkzyY5boxxt/n1wUlOTHLfMcaX522HJnn5GOPu8+vzk5w4xvidDcy3X5IPJtl1jHHNkvZzkhw9xji+7T8k+b9jjP+8pP/TSW43xnjILfqlAAAAAGwl7JQEAGCh2tyxzcOTn3tUkh2SfHZ93xjjkiRnrXxvf7TtSW3Pb3tZkj9Pcte2Oy4ZduX6QHLugsx2PqbtrknukeSkFZbYO8nOSS6cH/16edvLk9w7yX3mYx6Q5DPL7vvUTT81AAAAwLZl3aILAABg29RmXZLfT3JYktsmL83spNRD7pbkqxu/v7sn+UCSt2R280VJ9ktyQpLbJLlyPvTaZbeOJJ3/fNVGltk5sxDzgA30XbyxGgEAAACYsVMSAIBFeWWSI5Pcdna5R2YbJR/13nYWGs6Pb73fCvfvm9m/Z48cY3x6jHF2ZrseN9kY47Ik5yZ54gpDTk1y9yTXjTHOWfb17fmYM5M8Ytl9j9ycOgAAAAC2dkJJAABWXZsdkxyeG3csJtklyXOT/O69k8MOb/ugzHY93pDZ7sblzsksxTys7R5tD0ryqzejnKOSHNn2BW33bLtP28PmfR/N7CjW97X9sba7t31021e1fdh8zBuT/FLb57W9X9tXJnnQzagDAAAAYKsllAQAYBF+IMmO39v8hiSPSnLcH2QWCH4ys52IVy8fOcb4QpIjkvxWktOTHJjkxZtbyBjjHZkFpIcmOSOzI2H3nPeNJE9J8vEkJyY5O8m7kvyHJN+Yj/mrJL+X5Ogkp8z73rK5dQAAAABszTr7nAUAAFZPmzsm+XZWfsf5T4+R/9l2pyTnZ3ZE6wmrViAAAAAAW5SdkgAArLoxckmSP0ty/Xf3nHp98vaLkh84q+0+Sd4573j/6lYIAAAAwJa00l+mAwDA1P5Lku9P8tQbm679enLoJclVpyT5t8yOQ91/jPHthVQIAAAAwBbh+FYAABaqzV5JHpLka0lOHmP57kkAAAAAbu2EkgAAAAAAAMCkvFMSAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAACYlFASAAAAAAAAmJRQEgAAAAAAAJiUUBIAAAAAAIA1r+25bQ9f5TVH26ev5ppbq3WLLgAAAAAAAADWqN2SfGfRRWwNhJIAAAAAAACwAWOMry+6hq2F41sBAAAAAABYuLa7tH1n2yvaXtD2hW1PbnvMCuOPaHvafPx5bd/cducl/Qe3vbjtj7c9s+3lbT/cdrdl8/xS2zPaXjNf99glff9+fGvb3efXz2j7sbZXtv1C20ctm+9X5vVc2fZ/zOu8eMv+tm59hJIAAAAAAACsBW9I8pgkT0vypCT7J9nnJsbfkOQFSR6U5LlJnpDk6GVjdkzyoiQHJXlsknsled36zra/luRNSY5Pstd87XM2Uuer5nM8JMnZSf6y7br5fI9JclySN877/3eSl25kvm2C41sBAAAAAABYqLa7ZBYsPmeMcdK87XlJvrbSPWOMpTsoz237O5kFgocuad8hya+OMb48n/PYJC9f0v87SV4/xnjjkrbPbaTc140xPjif7xVJzkhy3yT/lOSwJB8aY6wPPs9u++gkP7mRObd6dkoCAAAAAACwEG3u0ma/5D8dkFmA+Nn1fWOMS5KctfK9/dG2J7U9v+1lSf48yV3b7rhk2JXrA8m5C5LsOr9/1yT3SHLSZpb9xWXzZf2cSe6/9Bnmll9vk4SSAAAAAAAArKo227d5bWah3ieSw/7nrOfF99y0+7t7kg9kFhA+M8m+Sf7zvPs2S4Zeu+zWkaTzn6/a/Mq/Z84x/y5z2wi/IAAAAAAAAFbby5IcmX8PEPfIbKPkA/+6zfr3M94xyf1WuH/fzHKuI8cYnx5jnJ3ZrsdNNsa4LMm5SZ64+eWv6KwkD1/Wtvx6mySUBAAAAAAAYNW0uU2SF+bGHYtJ1r9S8uW7Jb/9m20flOSEJDfkxt2IS52TWYp5WNs92h6U5FdvRjlHJTmy7Qva7tl2n7aH3Yx51vvjJE9pe8R8vucneXI2/AzbFKEkAAAAAAAAq2nXJHf43uY3JHnkSN5wVJKPJvlkkjOTXL185BjjC0mOSPJbSU5PcmCSF29uIWOMdyQ5PMmhSc7I7EjYPTd3niXzfTKzcPSIJF9I8hNJ/jAbeIZtTcfY5oNZAAAAAAAAVkmb2ye5MMntVxjyrDHy7rY7JTk/syNaT1i1Arewtm9N8kNjjP0XXcsi2SkJAAAAAADAqhkjVyX5k8yOZl3i1OuTd1yc3O+0tvskeee84/2rW+Et0/ZFbfdue9/5UbDPTfKORde1aOsWXQAAAAAAAADbnBcn+f4kv3Bj07UXJIdemlz5uST/luSUJPuPMb69kApvvh9J8puZvSjzK0leMMZ422JLWjzHtwIAAAAAALAQbe6bZJ8kX0/y92Ms3z3J1kIoCQAAAAAAAEzKOyUBAABgYm13bzvaPmR+fcD8+k6Lrg0AAGA1eKckAAAATO+8JLslubW9CwcAAGCLEEoCAADAxMYY12f2jhwAAIBtkuNbAQAAYAPa/mzb09pe1fbCth9tu1Pbt7d9X9uXtP1G24vbvrzturavbXtR239t+7wlc33X8a0rrLdf20/M1zuv7R+13Wl1nhYAAGBaQkkAAABYpu1uSf4yyZ8meUCSA5L89ySdD3lCknskeWySI5K8MskHknwnySOSHJfkT9r+wCaud58kH07y10kenORZSfZLcuwWeSAAAIAF6xhj0TUAAADAmtJ2nySnJNl9jPEvy/renllIuccY44Z52z8l+eYY47Hz6+2TXJLkl8cY72q7e5J/TvLQMcY/tj0gyceS3HmMcXHbtyW5fozx/CXr7Jfk/yTZaYxx9YSPCwAAMDnvlAQAAIAkbZpk/yQPTq64INnl75IbTmv7v5J8JMl7xxjfmQ8/Y30gOfeNJKevvxhjIZzqAwAAIABJREFUXN/2wiS7buLyeyd5cNsDl5aU2QlH905y5s17KgAAgLVBKAkAAMA2r81dk3wws6NXR7Jjk2svSH7lsORP90hyWJJXtX3E/JZrl00xVmjb1Nem7JzkT5L80Qb6vrqJcwAAAKxZQkkAAACYBYL7zn+evzdyu12TE16dnLB70t9N8i9Jfmai9U9N8sAxxjkTzQ8AALBQQkkAAAC2aW2+L8kz8u9hZJJ8JslJ2yc/do/k/F9McnmS78vsGNUHT1DGa5J8uu2xSd6W5IokD0zypDHGr0+wHgAAwKoSSgIAALCt+/58VyCZJHdI8vEkxyS56PgkX0ly5BjjQ22ftaULGGN8se3jkrwqySfm9Xw5yV9t6bUAAAAWoWOMRdcAAAAAC9NmxyTfTLLTCkMeOUY+s4olAQAAbHW2W3QBAAAAsEhj5Mokr99A1/VJTk7y2VUtCAAAYCsklAQAAIDklUmOSnLZ/Pq6JH+Z5OljxBFDAAAAt5DjWwEAAGCuze2T/GCSb42R7yy6HgAAgK2FUBIAAAAAAACYlONbAQAAAAAAgEkJJQEAAAAAAIBJCSUBAAAAAACASQklAQAAAAAAgEkJJQEAAAAAAIBJCSUBAAAAAACASQklAQAAAAAAgEkJJQEAAAAAAIBJCSUBAAAAAACASQklAQAAAAAAgEkJJQEAAAAAAIBJCSUBAAAAAACASQklAQAAAAAAgEkJJQEAAAAAAIBJCSUBAAAAAACASQklAQAAAAAAgEkJJQEAAAAAAIBJCSUBAAAAAACASQklAQAAAAAAgEkJJQEAAAAAbuU6s27RdQDASoSSAAAAAABzbX+i7d+3vbjthW0/0PY+877d2462z277D22vbnt628ctuf+A+Zintv3ifMyn2/7wsnX2a/uJtle1Pa/tH7XdaUn/QW0/3/aytl9v+xdtd93AOk9ue0qSa5Ls1/Y+bd/f9httL2/7ubY/umztc9u+pO2fzuf/attDlo35gbZ/2faitlfMa3nEkv6fbnvq/Pm+0vYVQlEAbopQEgAAAADgRjsleUOShyV5YpIbkvyPtks/S31tktcneWiSTyX5m7Z3XTbPa5McmeThSb41H7NDksxDzg8n+eskD07yrCT7JTl2yf07JHlZkr2TPD3J7knevoF6/yDJbyd5QJIvJtk5yd/Oa3/ofJ2/aXuvZfcdmeTz8zFvTvKWtvef17dzkv+T5J5Jnjav4ejMP09uu3+SP0vyxiQPTPL8JAcneekG6gOAJEnHGIuuAQAAAABgTWp7t8xCxb2SXJ7kn5P89hjjNfP+dfO2Px5jHN32gCQfS/LsMcZfzcfcJcm/Jjl4jPHutm9Lcv0Y4/lL1tkvsyBwpzHG1Ruo42FJPpdklzHG5UvWefoY4/0beYbTkxw3xjh2fn1ukk+MMQ6aXzfJ15O8Yoxx3HzX5OuS7D7GuGgD8300yUljjN9f0vaLSY4eY9zjpmoBYNtlOz0AAAAAsM1qs32SfZLcJskpSX8wye8meUSSu+XG0+buleRL858/tf7+McZ1bT+f2U7FpZaOuajtWUvG7J3kwW0PXFrKfK17Jzmz7b5JjpqPvfMKdSSz3Y5Lnqf/n717j/asrO87/vlyEYRB0SgL0orEu4ILRFw1gkpQiDWRaBKrLVWgUWuNWAVN8QaJ1SwvKaIL2hg1YlYQRQq4YioQqZZWa0oBA1iM4pKbgMhlgMidefrHb084HM7IDMz3nJk5r9daZ83s/ey9f8+Pf9Dz5nn2ium+30iyU2a/A37kdN9cF86Z36iqa5Os3h52jyQXLBQk58x/76qauzJy8yRbV9U2Y4zb1nAfAMuYKAkAAAAALEtV2S+zLVGfMJ1amWx/R7LywiRvTHJ1ZjHw4syi5fqyIsmnknxygbErpndLnjn9HJTZSs2dp+P58/j5vOM/SbJ/kncmuTTJ7UlOWeC+u+cdj9wXPm9fi/kfneTUBcYesMoTABJREgAAAABYhqry5MzevbjlfWdv2D5ZmeQPPjbGR86eXVf7LHD785OcM41vkeS5uf/7IFdfc8V0zWOSPC3JJdPY+UmeNca4dOG51bOT/FJm28ReOZ3bay2/2t5JThhjnDbdtyKz91GuiwuTvKGqHruG1ZLnJ3n6muYPAAvZ7MEvAQAAAADY5Lw5s0Ubc35H+pjMWuDF76yqp1TVfkmOWeDe36+qV1XVM5IcP9345/OuOaqqXlJVu2W2GvP6JKdPYx9J8oKqOq6q9qiqp1bVb1XV6rB5RZK7khxWVU+qqgOTvH8tv9cPk/z29Nzdk3wh6/574JMye8fk6VW19zSH36mqX53GP5Dk9VV1dFXtWlXPrKrXVtUH1/FzAFhGREkAAAAAYDl6RmbvQZxjsyRfTHLp4zPbsvXjSd61wL1HTj9/l2SfJAeOMa5f4JpPJDkvyY5JXjHGuCtJxhgXJnlxZqsn/2eSCzILfVdP4z9LckiSV2f2/sgjM9uOdW0cnuSmJN9O8leZbfl6/lrem+nz70pyQJLrMltNetE0h3un8TOT/OZ0zblJvpPkHUkuX5fPAWB5qTHGUs8BAAAAAGBRVeUTSd6SB77i6t4k3xojL37gPbVLkh8nec4Y47sLP7f2TfKNJI8ZY6xcj1MGgI2alZIAAAAAwHL0qSSVZP6qjc2THLv40wGATZsoCQAAAAAsO2Pk/2W2PerNc07fmeRdY+S0pZkVAGy6bN8KAAAAACxbVdk6ya8leUSSc8bITUs8JQDYJImSAAAAAAAAQCvbtwIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAG6CqOrKqRlUdO+fcm6rqm1V1yzS2/To+c1TVK9f/bAEAAAAAfjFREgA2MFX1vCT/NsmF84a2SXJGkj9e9EkBAAAAADwMoiQAbECqakWSE5O8MclNc8fGGMeOMT6c5DtruPcRVXVcVV1TVXdU1eVV9e5p7LLpstOmFZOXLfQMAAAAAIAOoiQAbFiOT/LXY4yvP4R735bkwCT/IsnTkxyU5LJp7HnTn4cm2WnOMQAAAABAuy2WegIAwExVvTbJnnnowXDnJD9M8r/GGCPJ5asHxhg/q6okWTnGuPbhzhUAAAAAYF2IkgCwRKqybZIDkmyVvPUHST6RZP8xxh0P8ZEnJPmbJH9fVWck+eoY46z1MlkAAAAAgIfB9q0AsASq8uok1yY5NclJyUvOTbJDkvOr6p6quifJi5O8bTre/MGeOcY4P8mvJHl/kkcmObmqTmn7EgAAAAAAa0mUBIBFVpVnJflikm3vO/vSzZKLkpzw3iR7TD//N8mJSfYYY9y7Ns8eY9wyxvjSGOONSV6T5Heq6rHT8N1JHjRuAgAAAACsb7ZvBYDF96Ykq3K/fw9vl2S3Vclurxrj4I8kSVX9PMkNY4yLp+Mdk+yY5CnTTc+uqluTXDHGuLGqDk9yTZILpuevXo25crr+siQvqapvJblzjHFT55cEAAAAAFjNSkkAWHw7Z+EVi5tltv3qmrw5s+D46en4nOn4wOn41iR/kNkKy3OT7JLk5WOMVdP4EUn2T3LldB8AAAAAwKKoMcZSzwEAlpWqfDDJkXlgmLw3yTfGyP6LPysAAAAAgD6iJAAssqo8Icn3k2yVB4bJXx8jZy3+rAAAAAAA+ti+FQAW2Ri5MslLk/xozunrk7xekAQAAAAANkVWSgLAEqlKJXlWZismLxojdy/xlAAAAAAAWoiSAAAAAAAAQCvbtwIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAABrrap+t6ouqqrbq+qGqvp6VW07jb2hqi6pqjuq6vtV9ZZ59z6hqk6uqpVVdWNVfaWqdpkzfkJVnV5V76mqn07XHVVVW1TVx6Z7rqqqQxf3WwMAAAAPlygJAACslaraKclJSf48yTOT7Jvk1NlQHZTkA0neO429J8l/rKqDp3u3THJmkluTvDDJ3kn+IckZVfWIOR+zX5JfTvKiJIcn+aMkX01yU5J/luRPk3yqqv5p53cFAAAA1q8aYyz1HAAAgI1AVe2Z5Lwku4wxLp83dmmS948xTppz7n1JXj7GeEFV/esk70vyzDH9n5ApRq5M8soxxllVdUJmofNJY4xV0zXfT3LdGONF0/HmSW5O8oYxxhdbvzAAAACw3myx1BMAAAA2bFXZNcmuyc1XJI8+O8lFVXVmkrOSnJLkriRPTvLZqvr0nFu3yCwgJsnuSZ6S5Naqmvv4rad7V/ve6iA5+WmSi1cfjDHuraobkuywXr4cAAAAsChESQAAYEFV2T7JyUn2n515VJJ7L0hednDyN3skOSzJh5K8YrrljUn+dt5j7p3+XJHZKsuDFvion835+93zxsYaznkVBQAAAGxEREkAAGBNPpPZOx7n2OzZyVlHJ3lOUh9Icnlm74e8OrNtV09cw7POT/KazLZivaVtxgAAAMAGSZQEAAAeoCr/JMlvJ5mz1+rfJjl7i+SA3ZOLfyvJlkken+SSJEcn+WRV3ZzkjCRbJdkryWPGGMckOTHJu5J8paqOSnJVkidOn/HRMcZVi/TVAAAAgCUgSgIAAAvZOfcLksls+9Zzkhyb5IaTk/w4yRFjjK8lSVXdlll4/FiSnye5aLo4Y4zbqupFST6S5NQk2yX5SZKzk1g5CQAAAJu4GmMs9RwAAIANTFV2yGxL1s3XcMmeY+SCRZwSAAAAsBHbbKknAAAAbHjGyHVJPp9k1byhe5KcI0gCAAAA60KUBAAA1uStSf4iyb1zzp2Z2XsgAQAAANaa7VsBAIBfqCo7JnlqkivGyOVLPR+A5aKqLkty7Bjj2KWeCwAAPFxbLPUEAACADdsYuTbJtUs9DwAAAGDjZftWAAAAAAAAoJUoCQAAALAEqmq7qjqxqn5eVddU1Tuq6ptVteB2rVV1eFVdNF1/ZVX956paMWf8kKpaWVW/XlWXVNU/VNUZVbXTvOf8m6r6XlXdOX3ucXPGtq+qz1TVz6rqlqr671W1+5zx3avqG1V16zR+XlXt1fHPBwCATYsoCQAAALA0jkmyd5IDk+yf5IVJ9vwF169K8rYkuyY5OMl+ST4675ptkrwzyeuSvCjJzkn+ZPVgVf27JMcn+bMkz54++9I59385yQ5J/nmS5yY5P8nZVfXYafzEJFcled40/uEkd6/9VwYAYLmqMcZSzwEAAABgWamq7ZLckORfjTFOmc49OsnVST49xnh7VV2W5NgxxppWTv5ukj8dYzxuOj4kyeeSPGWM8aPp3FuSHDXG2HE6/kmSz40x3rfA8/ZJ8tdJdhhj3Dnn/KVJPjrG+LOquiXJYWOMz6+Pfw4AACwfWyz1BAAAAACWi6rslmTP5GPbJO/aMsn/WT02xri5qv5+zffWS5O8O8kzkjwqs9/rbF1V24wxbpsuu211kJxck9nKx1TVDkl+OcnZa/iI3ZOsSHJDVc09/8gkT57+fkySz1TV65J8PcmX530eAAAsSJQEAAAAaFaVbZOclOQVszP7TyOffEaSKx78/tolyVeT/Jck701yY5J9knw2ySOSrI6S87dSHUlWF8bbH+RjVmQWMfddYGxlkowx/rCqvpDkNzLb4vWPquq1Y4zTHuw7AACwvHmnJAAAAEC//5Tk5fcdPinJlkke96WqbJX84/atT1vD/c/N7Pc4R4wxvjPG+EFmqx7X2hjj1iSXJXnJGi45P8mOSe4ZY1w67+f6Oc/5wRjj42OMA5KcmuTQdZkHAADLkygJAAAA0KgqKzILd5vfd3a7JAcnee/2yVFHVtWuma16XJXZ6sb5Ls2sYh5WVU+atk9980OYzh8mOaKq3lZVT62qPavqsGns60n+d5LTq+qAqtqlql5QVR+qqr2q6pFVdVxV7VtVT6yqvZM8L8klD2EeAAAsM6IkAAAAQK/HZbbF6jzHJHn+SD78nsyC4LcyC3x3zL9yjPF3SQ5P8h+SXJzkoMzeL7lOxhifT/L2JG9J8r3MtoR96jQ2MlvNeU6SzyX5QZIvJnlikp8muTfJLyX5i2ns5CRfS3L0us4DAIDlp2b/exMAAACADtP2rNcledQaLnnZGDmzqrZN8pPMtmj97KJNEAAAFoGVkgAAAACNxsidmS2LnPdfhp9/T/LpK5MVP6qqPZOcOA18ZXFnCAAA/bZY6gkAAAAALAMfTLJVknck2Xp26tZzk7dum9z13SR3JTkvyQvHGNcv1SQBAKCL7VsBAAAAFklVHpXkaUl+OkauXOr5AADAYhElAQAAAAAAgFbeKQkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAA2MVX17qo6t6purarrqur0qnr6Gq6tqvpaVY2qeuWc84dM5xb62WHxvg2wKRAlAQAAAABg0/PiJMcneX6S/ZNsmeSsqtp2gWvfnmQscP5LSXaa93Nmkv8xxriuY9LApmuLpZ4AAAAAAACwfo0xXjb3uKoOSXJdkucmOWfO+T2SHJFkryTXzHvG7Ulun3Pt45Psl+T3uuYNbLqslAQAAAAAgE3fo6c/b1x9oqq2SfKFJL8/xrh2LZ7x+iS3JTll/U8P2NSJkgAAAAAAsAmrqs2SHJvkW2OMi+cMfTzJt8cYX1nLR/1eki9MKygB1ontWwEAAAAAYBNRlc2TrBrjfu+IPD7Jbkn2ue+6OjCzrVifs3bPrV9N8swkr1t/swWWEyslAQAAAABgI1eVV1fle0nuSXJDVT5Ula2q6rgkv5nk18YYV825Zb8kT06ysqruqap7pvP/taq+ucBHvCHJd8cY5zV+DWATVmOMB78KAAAAAADYIFXl4CQnJFmVf1yMtGpV8trLky9vlWTfMcYP739P7ZjkcfMedVGSf5/kr8YYP55z7Yok1yR59xjjuKavAWzibN8KAAAAAAAbqWm71j+eDufsjvjWzZKzfiU55E3JCbdOETJJbh5j3D7GuDbJtfd/ViXJFXOD5OQ1mfWEv2z4CsAyYaUkAAAAAABspKqyS5L5ETFJremWQ8cYJyz8rBpJXjXGOH3e+W8n+fEY46CHMVVgmRMlAQAAAABgI1WVxya5PmuukIeOkRMWb0YAC9vswS8BAAAAAAA2RGPkxiT/Lck984eS3JbktEWfFMACREkAAAAAANi4vTnJldPf706yKrNI+S/HyM1LNiuAOWzfCgAAAAAAG7mqbJ3k1Un2THJNkr8cI1cv7awA7iNKAgAAAAAAAK1s3woAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAABr8TbtAAAF7UlEQVQAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREkAAAAAAACglSgJAAAAAAAAtBIlAQAAAAAAgFaiJAAAAAAAANBKlAQAAAAAAABaiZIAAAAAAABAK1ESAAAAAAAAaCVKAgAAAAAAAK1ESQAAAAAAAKCVKAkAAAAAAAC0EiUBAAAAAACAVqIkAAAAAAAA0EqUBAAAAAAAAFqJkgAAAAAAAEArURIAAAAAAABoJUoCAAAAAAAArURJAAAAAAAAoJUoCQAAAAAAALQSJQEAAAAAAIBWoiQAAAAAAADQSpQEAAAAAAAAWomSAAAAAAAAQCtREgAAAAAAAGglSgIAAAAAAACtREn+f3t2LAAAAAAwyN96FPtKIwAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFZSEgAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFZSEgAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFZSEgAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFZSEgAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFZSEgAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFZSEgAAAAAAAFhJSQAAAAAAAGAlJQEAAAAAAICVlAQAAAAAAABWUhIAAAAAAABYSUkAAAAAAABgJSUBAAAAAACAlZQEAAAAAAAAVlISAAAAAAAAWElJAAAAAAAAYCUlAQAAAAAAgJWUBAAAAAAAAFYBfcZhoi8WIL4AAAAASUVORK5CYII=\n",
183 | "text/plain": [
184 | ""
185 | ]
186 | },
187 | "metadata": {
188 | "needs_background": "light"
189 | },
190 | "output_type": "display_data"
191 | }
192 | ],
193 | "source": [
194 | "tsne(\"look\", 30)"
195 | ]
196 | },
197 | {
198 | "cell_type": "code",
199 | "execution_count": 176,
200 | "metadata": {
201 | "scrolled": false
202 | },
203 | "outputs": [
204 | {
205 | "name": "stderr",
206 | "output_type": "stream",
207 | "text": [
208 | "/Users/ryan/pytorch1.0/lib/python3.6/site-packages/ipykernel_launcher.py:3: DeprecationWarning: Call to deprecated `wv` (Attribute will be removed in 4.0.0, use self instead).\n",
209 | " This is separate from the ipykernel package so we can avoid doing imports until\n"
210 | ]
211 | },
212 | {
213 | "data": {
214 | "image/png": "iVBORw0KGgoAAAANSUhEUgAABmMAAAYcCAYAAAD+Kv74AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xm0bWldmOv3V42AgCgRacRSEQNII60ISKMRBEEFW0KigGQMgXjV2AXlioiaoGA0RlRuNDaI3dUIMaI0NsEGaUWQvmjl0hZQSpUUUFXf/WOtks2mqrA58+w65zzPGHucteb85lzfrFGj6uz97vnNWWsFAAAAAADANk476gkAAAAAAACczMQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAwClhZh49M+vQ1ysP7L/OzDxpZt42M+fPzItm5isOneOaM/PkmfnbmTl3Zn52Zq52/K8GAAA4kZxx1BMAAAA4jl5WfeGB9xceeP2L1cdXX1qdUz2g+vWZue1a6y/2Y55cXbe6e3Vm9XPV/7MfCwAAcKlmrXXUcwAAANjczDy6uu9a65aXsf+86mFrrScd2Pau6j+utX5mZm5Svby63VrrBfv996yeVl1/rfWWra8BAAA4MVmmDAAAOJV85sy8ZWZet19u7KwD+/6s+pr9UmSnzcz9qytXf7Tff4fq3EtCzN6zqour2x+PyQMAACcmMQYAADhVPLd6UHXP6mHVp1d/PDNX3+//6nZLj72ren/1xOp+a62z9/uvU73j4AnXWhdW797vAwAAuFSeGQMAAJwS1lq/e+DtS2bmudUb20WYn62+v90zY76w3TNj7tvumTF3Xmu99HjPFwAAOHmIMQAAwClprXXuzLy6uuHMfEb1jdXN1lov2w/5y5m5c/Xvq4dWb6s+6eA5ZuaM6pr7fQAAAJfKMmUAAMApaWauVn1G9dbqY/ebLz407KI+9H3Tc6qPn5nbHNj/Bfv9z91wqgAAwAlu1lpHPQcAAIDNzczjq99utzTZ9arvq25ZfVZ1bvXydmHm29s9N+a+1eOq+6y1nrY/x+9W1253p8yZ1c9VL1hrPeC4XgwAAHBCEWMAAICTzkx/XH3eh2+9f/Xs6pxVH3xL9SfVI9dar90dM59ZPXZ/3NWqs6vHr7We9KHzzjWrn6i+pN1dNL9ZfdNa67yNLwkAADiBiTEAAMBJZ6bHtrvD5fRDuy6s/sdafcPxnxUAAHCqEmMAAICTzkzXr15aXb0PBZmLqvdXt1qrVx/V3AAAgFPPaR99CAAAwIllrd5c3an6/eqS30D74+ouQgwAAHC8uTMGAAA4qc30sdVpa+W5LgAAwJEQYwAAAAAAADZkmTIAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAABwhTQzj5iZNTM/dmDbE2fmtTPzvpl558w8dWZufOi4s2bmd2bm72bmHTPzuJk54/hfAQDsiDEAAAAAXOHMzO2qb6hecmjXC6sHVzepvqia6hkzc/r+uNOr36k+prpj9cDqQdVjjsvEAeBSzFrrqOcAAAAAAH9vZq5Wvah6ePV/Vy9ea33LZYy9RfWX1Q3XWq+dmXtV/7u63lrr7fsxD61+qLrWWusDx+MaAOAgd8YAAAAAcEXzhOp31lrPurxBM3PVdnfJvL766/3mO1QvvSTE7D29+rjqphvMFQA+KjEGAAAAgCuMmbl/devquy5nzMNn5rzqvOpe1d0P3PFynerthw55+4F9AHDceXAZAAAAAEdmpjOre1c3qKeeUz2uXVy54HIOe3L1zOq61bdXvz4zd/ooxwDAkRFjAAAAADgSM92oekZ1VnVxrUtWcXnRzFwy7PTqLjPzjdWV1loXrbX+pvqb6jUz8+fVe6r7Vb9Sva36nEMfde39n2/b7GIA4HJYpgwAAACA426mqZ5SXW+/6bT6V9VLLqznvrS65f7rBe3uhLnlWuuiSzvV/utK+/fPqW4+M590YMzdq7+tXn7MLwQA/gHcGQMAAADAUfjc6sYfvunq1c3PqG5Z68K1euXMnF+9a631VzNzg+pr2t1N887q+tUjqvdVT9uf5BntosuTZuY72z0n5geqJ6y13r/5VQHApXBnDAAAAABH4br/hP0XVHduF17Orn6tem91x7XWO6r2d8/cp7qo3V0yv1T9YvWoYzNtAPjHm7XWUc8BAAAAgFPMTJ9evbbdEmOHXVhdb63eeXxnBQDbcGcMAAAAAMfdWr2++pXq4sO7qp8WYgA4mYgxAAAAAByVh1Q/0W75sarzqx+uvvXIZgQAG7BMGQAAAABHaqarVteu3rpW7zvq+QDAsSbGAAAAAAAAbMgyZQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMA4AQwM9eamQ/MzFVn5syZOX9mzrqMsV81M3+2f33HmXnd8Z0tAAAAAAeJMQBwYrhD9ZdrrfOrW1fvXmu96XLG/un+9Z0PvAYAAADgCIgxAHBiuGMfiiqf1+UHlo86dma+dGZeMzMXzMwfzswDZ2bNzMcfGPMVM/OymXn/zLxhZr7tGF0LAAAAwCll1lpHPQcA4FLslyF7yf7tx1YXVe+vrlKt6oLql9daD5+ZB1Q/uR/7cdX5+/FXr95XXVg9fK31yzPz6dWrqv9a/Ux1q+rx1SdXn7DWOndmblM9r3p09WvtAs9P7s/x8xteNgAAAMBJR4wBgCuomTmjun67uPKC6rbtIsuLq3tXb6rOW2udMzNXqz6x+sLqW6r7VLeofrpdSKk6Z6113sw8trr3WuvmBz7rB6pH9qEY8+TqWmutexwY88P742665XUDAAAAnGwsUwYAVxQzX9PMnzXztmZ+f9UXrrXeUN24ev5a6yXVdaq3r7WevdZ6w1rrnKq11nn7sbeunrp/ffPqaftxb1hrnbf/pBtVzz/06c879P4mfeTyZn9afebMnH5sLhgAAADg1HDGUU8AAKhmvrv6weridr8s8Yk3rS949cz7q6lOm5nz2v2/+4z96zeutW66X87s5fszXbm6cGa+ubpSdfHM3L/6pbXWQ4/zVQEAAACQGAMAR2/mE9s9m6U+dNfq6U+rLqgLblx/U31n9cLqV6ufr36v+uB+7FuqW7a7a+ZZ+9ent1vO7M7Vu6u/PfCJr6q++NAsbnfo/SuqOx3adqfq1Wuti/5R1wcAAABwirNMGQAcvbtUZx7e+KnVNeoas4ssT63+urpp9ZtrrbPXWm+sWmtduNY6u93zZZ671npl9S+q1621nrcf+44Dp35ideOZ+aGZ+Zcz89XVg/b7LnmY3I9U/2pmvmc/5oHVN1aPP8bXDgAAAHDSE2MA4Oi9/7J2/FF19XrZWuuC6nOqN6+13noZw+9WPXv/+q4HXn+Ytdbrq6+svrx6SfWwdkuk/f1c1lovqr66un/1V9VjqkettX7+H3hNAAAAAOzNWuujjwIAtjNzleqt1ce1ez7MJS6u3ljdsLUu3nYK88jqoWutT9nycwAAAABORe6MAYCjttb7qgdXF1UXtlsq7KJ2d6k8aIsQMzMPn5nbzcwNZuZrq++ofuFYfw4AAAAA7owBgCuOmRtX31B9WvWK6ontnwtz7D9qfrT6muqa1ZuqJ1X/ea114RafBwAAAHAqE2MAAAAAAAA2ZJkyAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAOMHNzHfNzPNn5r0z846ZecrM3OjQmCfOzGtn5n0z886ZeerM3PjQmNvNzO/PzLkz856ZefrMfPbxvRoAgJOPGAMAAAAnvrtWT6g+t7p7dWb1jJm56oExL6weXN2k+qJq9mNOr5qZq1W/V72pun31edV7q6fPzJnH6ToAAE5Ks9Y66jkAAAAAx9DMXKt6R3XXtdazL2PMLaq/rG641nrtzNy2en511lrrr/djbl69pPrMtdbZx2f2AAAnH3fGAAAAwMnnGvs/331pO/d3zDy4en311/vNr6reVT1kZj5mZq5SPaR6RfWGTWcLAHCSE2MAAADgJDIzp1U/Vv3pWuuvDu17+MycV51X3au6+1rrA1VrrfdWd6v+bfW+/Zh7Vvdaa114/K4AAODkY5kyAAAAOAHN9PHV51cXVn+wVufvts9PtQstn7fWevOHHzPXqD6pum717dUnV3daa12wvxPmj6pXVj9Rnb4fc+Pqdmut9x2P6wIAOBmJMQAAAHCCmembqx+qrrTfdF71DTV3rL6susta6/WXf475mOo91b9ba/3KzDyk+k/VdddaFx8a85C11q9uczUAACe/M456AgAAAMA/3Exf3G4ZsgMuvmp905PrzHfWB+/00ULMJafaf10SdD62urg6+Fubl7y3zDkAwD+Dv0wBAADAieWbqos+fNM3Tv1S9QvPq947M9fZf12lamZuMDPfNTO3mZmzZuaO1f/b7tkwT9uf5JnVJ1RPmJmbzMxNq59rtwzaHx6PCwMAOFlZpgwAAABOIDOdXX3Goa2XNfzBa62fn5nrVT9T3aZdcHl79ezqMWutV33o3HP36nurm7W7K+Yvqkeutf782F4FAMCpRYwBAACAE8hMv1Xdp49cevzC6qfX6v86/rMCAODyiDEAAABwApnpztX/6cNvh7m43dJlt1irVx7JxAAAuEyeGQMAAAAnkLX64+oB1TkHNr+luo8QAwBwxeTOGAAAADgBzXRmdet2y5O9eK0uOuIpAQBwGcQYAAAAAACADVmmDAAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAOMXMzF1m5rdn5i0zs2bmvpcy5iYz879m5m9m5vyZef7MnHVg/xNn5rUz876ZeefMPHVmbnzoHGfNzO/MzN/NzDtm5nEzc8bxuEa4IhFjAAAAAABOPVet/rL695e2c2Y+o/qT6pXV3apbVN9fXXBg2AurB1c3qb6omuoZM3P6/hynV79TfUx1x+qB1YOqxxzri4ErullrHfUcAAAAAAA4IjOzqvuttZ5yYNuvVh9ca33tP+I8t2gXeG641nrtzNyr+t/V9dZab9+PeWj1Q9W11lofOJbXAVdk7owBAAAAAODvzcxp1b2rV8/M0/fLiz330pYyO3DMVdvdJfP66q/3m+9QvfSSELP39OrjqptuM3u4YhJjAAAAAAA46JOqq1WPqH6vukf1W9X/nJm7Hhw4Mw+fmfOq86p7VXc/cMfLdaqDIaYD76+z0dzhCkmMAQAAAAA4Bcz0GTPdfqarf5Shl/zc+KlrrR9da714rfXYdkuOPfTQ2CdXt6ruWr26+vWZufIxnTicBMQYAAAAAICT2EyfNtOfVGdXf169Y6bvm2ku45Bzqgurlx/a/orqrIMb1lp/s9Z6zVrr2dVXVjeu7rff/bbq2ofOce0D++CUIcYAAMBxMDMPm5mXzMzf7r+es3+g6SX7rzMzT5qZt83M+TPzopn5ikPneMPMrENfjzj+VwMAwIlipo+p/rC6/YHNV64eVX3bpR2zX2bs+dWNDu36l9UbL+/j9l9X2r9/TnXzmfmkA2PuXv1tHxl64KR2xlFPAAAAThFvbrfm9mvafYP6wOqpM3OrtdbLql+sPr760na/ifiAdks83Hat9RcHzvOo6r8feP/e4zF5AABOWF9WfdpHbj6veuV3z3z+H+w3fPrM3LJ691rrTdXjql+bmWe3izn3rL6kulvVzNyg+prqGdU7q+u3+/vu+6qn7c/5jHbR5Ukz853tnhPzA9UT1lrvP8bXCVdos9Y66jkAAMApaWbeXX3HWutn9w89fdha60kH9r+r+o9rrZ/Zv39D9WNrrR87kgkDAHDCmenR1XdXZ374nj+qPv/SDvmFtdaDdsfO11ff1S60vKr63rXWU/f7rlf9THWb6hOqt1fPrh6z1nrVhz5/PrX6qXYR5/zqF6pHrLUuPBbXBycKMQYAAI6zmTm9+qp234jeaq318pl5RvWB6uuqc6uvrn62+uy11tn7497QbkmJM6s3Vb9c/ahvZAEAuCwzPaj6ucvYfV51zbX64PGbEZyaLFMGAADHyczcvN262Vdu943v/dZal6yV/dXVr1Xvavew1L/b7z/7wCl+vHpR9e7qjtV/rq5bfetxuQAAAE5Ev1H9SHWN6vQD2y+uniDEwPHhzhgAANjITFeu7tLuTpY/rrmgOqvdN8JfWf276q77O2P+W/U57ZaQOKe6b/UfqjuvtV566eefr6+eWF3NmtsAAFyWmW5bPaX65AObn1x9/Vp94GhmBacWMQYAADYw01dU/73d+tm1e5Dpd6zVEz40Zp5Vvbb64ers6mZrrZcd2n/2Wuuhl/4Zc9Pqr6obH1yXGwAADpvpjHYPiblW9by1OvujHAIcQ5YpAwCAY2ymW7Rbcuy0A5uvUv3ETK9bq9/dbzutulL1sfv3Fx861UWHznHYLffHvOOfPWkAAE5qa3Vh9cyjngecqsQYAAA49h5WrWo+tOm7qnteVJ/4iJmbvbl6QHW36ouqV7a7M+aJM/Pt7Z4bc9/q7tV9qmbmDtXtqz+s3lvdofrR6pfWWu85HhcFAADAP40YAwAAx95n9BF/135H9cDT6613qX6/ekn1RWutZ1bNzBdXj61+u7pauzjzwLXW0/YneH91/+rR7e6meX27GPNftr0UAAAA/rk8MwYAAI6xmf5b9dA+8pefLqqevlb3Pv6zAgAA4Khc3vrTAADAP81Ptlum7PBvPp2eO1kAAABOOWIMAAAcY2v1iurLqrcf2Hxu9eC1+v2jmRUAAABHxTJlAACwkZnOqD6n3XJlz1urC454SgAAABwBMQYAAAAAAGBDlikDAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwnhJm51sx8YGauOjNnzsz5M3PWZYz9qpn5s/3rO87M647vbAEAAAAA4EPEGE4Ud6j+cq11fnXr6t1rrTddztg/3b++84HXAAAAAABw3IkxnCju2Ieiyud1+YHlo46dmS+dmdfMzAUz84cz88CZWTPz8QfGfMXMvGxm3j8zb5iZbzt0jocfOMfbZ+Y3/llXCAAAAADASUmM4QprZs6amXNn5tzqW6tv2L/+T9V99/t+cj/2AQfGfk71pP3rL64ev9/3gP3YT69+o3pK9dnVE6sfPPTZt6l+vfrV6ubVo6vvn5kH7ffftvrx6lHVjap7Vs/e7B8GcIUyM3eZmd+embfsQ+59D+1fl/H1HQfG/K+ZedM+6L51Zp40M9c7dJ6ZmW+fmVfvw/D/NzOPPF7XCQAAAMCxMWuto54DXKqZOaO6fvVx1Quq21bnVy+u7l29qTpvrXXOzFyt+sTqC6tvqe5T3aL66XZ3ylSds9Y6b2YeW917rXXzA5/1A9Ujq09Ya507M0+urrXWuseBMT+8P+6mM/Pl1c9V119rvXe7fwrAFdHM3Ku6U/XC6n9W91trPeXA/uscOuRe1c9WN1xrvW4/5j9Uz6neWn1y9fiqtdYdD5znx6t7VN9ZvbS6ZnXNtdYzt7kyAAAAALZwxlFPAA6a6XrVp1avXWu9o3rDzHx19fy11ktm5k7V29daH3YXylrrvOq8mbl19dS11htm5t9UT1trveHQx9yoev6hbc879P4m1VMPbfvT6ltm5vTqmdUbq9fNzO9Vv1f91lrr7/4Jlw2cYNZav1v9btXMXNr+tx18PzNfVv3hJSFmP+ZHDwx54z4UP2VmzlxrfXBmblI9rLrZWutV+3GvP7ZXAgAAAMDxIMZwhTDTNdr91viXV1NdNPMp7603n1mdWZ02M+e1+3f2jP3rN+7vUjmrevn+VFeuLpyZb66uVF08M/evfmmt9dBjNd+11nv34edu7X5r/THVo2fmdmutc4/V5wAnvpm5dru7+R54OWOuWf2b6s/WWh/cb/6S6nXVffbRd6pnVd+51nr3trMGAAAA4FjyzBiuKH61um+7HzZWnV5/fPV63jOqt1X/trpl9VftliG7ZbvnwVS9Zf/+ntWF+9e33++78/79ow581qvaLXl20O0OvX9FuyWIDrpT9eq11kVVa60L11rPWmt9Z7sl0T6t+oJ/+CUDp4gHVu9tt5zZh5mZH5qZ86t3VWdVX3Zg9w3a3Sn4VdXXVQ+qbtPumVcAAAAAnEDcGcORm+mz2oWUQz7t9LrSl1UfbLdk2KpuWv3mWuutl4xaa11YnT0zt62eu9Z65czcpXrdWuvw8mNVT6y+dWZ+qN3dOLds90PO9p9R9SPV82fme6pfq+5QfWP18N2c5z7IvWm7AAAgAElEQVTtflD67Oo97cLQae1CD3CSmekq7YLxWe2i8O+t1UX/wMO/vnryWuuCS9n3uHb/HfrU6nurX5yZ+6zdA91Oa3eH39ettV69m8c8pHrhzNzowNJlAAAAAFzBiTFcEXzWZe/6P6fVNV+91rsumJk7V28+GGIOuVu7OFJ11wOvP8xa6/Uz85Xtgss3t3uA9g9WP1W9fz/mRftn1Tym+p52D9h+1Frr5/enObfdkmqPbrc02muqf73WetlHv1zgRDLTrds9F+pa1UXV6dXLZ7r7Wr3l8o+dO7d7TtXXXNr+tdY51TnVq2fmFdVfV5/b7r9Lb60uvCTE7L1i/+dZib8AAAAAJ4zZ/fItHJ2Zbls9/3KG3GCtbR9aPTOPrB661vqULT8HOLHMdEb1xura7SLMJS6s/mCtvmhmVnW/tdZTPvL4+fnqZmutw0sjXspnzVn7z/r8tdYfzcw9qqdXN1xrvXY/5rOrF1c3OhRpAAAAALgC88wYrgheWL2g3Q83D7qw+t0tQszMPHxmbjczN5iZr62+o/qFY/05wAnv7tX1+vAQU513Rr34HjNffo/9hk+fmVvug0pVM/Nx7Z738jOHTzozt5+Zb9wf86kz8wXVr1SvbXdXTNWzqhdV/2NmbjUzt2m3zOIzhRgAAACAE4sYw5Fbq1Xdr3rpoV3PaffQ6i18Zrvn0Ly83TJkP9JuyTGAg6596ZtfUN2q+q2n7zf8l+ov2i1teIn7V9Mushz2d+2WOvz9dsuN/Wz1kuqua61Llku8uPqSdsuYPbv6nXbLlN3/n3E9AAAAABwBy5RxhTHTVLevblC9cq1edMRTAk5xM92sjwzFl/i76tprdd5xnBIAAAAAJyAxBgAux0xPre7TR95N+pi1+t4jmBIAAAAAJxjLlAHA5fvX1U9XF+zfv6f67ur7jmxGAAAAAJxQ3BkDAP8AM12l+hfV29fqg0c9HwAAAABOHGIMAAAAAADAhixTBgAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAADg/2fvzqM1S+vC3n9/dDcgo7QoIIgMKgqYhQwiM6KIBDEggogxTA6giUYSEiT3ejXBgRUFnEKMohJAjIC2YhywFc29igqIIKIGlEGmNKNNA93a9HP/eN+S6tNVDd30rqqu+nzWetc5Zz/P3u+z/+heb53v2XsDAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAnFBm5p4z8+KZefvMrJl50IHxdZTXEw+b8x9m5g9m5kMz8/5Lea9HzcxrZub8mTlnZn58y3MD4NQkxgAAAABworlm9erqW48yfqMDr8dUq3rRYXOuWr2geubR3mRmnlB9b/UD1W2qL61+8xNcOwBcwqy1jvcaAAAAAOCIZmZVD15rnXUpc86qrr3W+pIjjD2qesZa65MPbL9e9bbqgWut375iVw0AF+fKGAAAAACutGbmBtUDqmddxl3v2+53Yzeemb+YmbfOzC/MzGdc4YsE4JQnxgAAAABwZfbI6gPVL17G/W7R7ndjT67+dfXV1ZnVb83MVa/QFQJwyhNjAAAAADhuZpqZ/vlMfzzTOTP91kz3vQyHeEz1vLXW+Zfxra9SnVF921rrN9daf1h9bfXZ1RdfxmMBwKUSYwAAAAA4nr6nek51h+pT24WQl8z0zz/WjjNzj+pW1U9djvd9x/7r6w5tWGu9q3p3ddPLcTwAOCoxBgAAAIDjYqYbtbtNWH3091SnVat62kxnfIxDPLZ65Vrr1Zfj7X9///VWH13PnFldv3rz5TgeABzV6cd7AQAAAACcsr64XXw54LypN3xqPfer9htuPjO3q9671npL1cxcp3po9W+OdOCZuWm7Z8DctDptv3/VG9Za5621/vfM/HL1wzPzTdW51fdXf1m99Io6QQComrXW8V4DAAAAAKegmb6qetElR363ozy25dlrrUft9p1vqp5R3Wit9XeXPPb8bPXIIxzji9dav7ufc53q6dVXVRdVv1d9+1rrby/jqQDApRJjAAAAADguZrpW9c7qGtUcNvSR6vXVrdfKL68AuNLzzBgAAAAAjou1Oq96TLtnxFy4//qR6vzq0UIMACcLV8YAAAAAcFzNdOvqm9o93+XPq59Yq7ce31UBwBVHjAEAAAAAANiQ25QBAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAABcZjPzqTPz9zNzzZk5Y2Y+ODM3Pcrch87MH+y/v+vM/M2xXS0AABxfYgwAAACXx12qV6+1PljdvnrvWustlzL39/ff3+Ow7wEA4JQgxgAAAHB53LWPRpW7d+mB5WPOnZmvnJnXz8z5M/PSmXnkzKyZ+eT9+KfMzPNn5m0z86GZ+bOZ+dor8HwAAGAzs9Y63msAAADgSmB/G7LX7H+8RvWR6oLqk6pVnV/93FrrW2bmEdV/2c+9TvXB/fxrVx+uLqy+Za31czNz8+qvqh+ufqr6guoHqxtX11trvX9mblx9bXV2dW71gOrp1V3XWn+86YkDAMAnSIwBAADg4zIzp1c3aRdXXlHdsV1k+dN2ceQt1XlrrXfPzLWq61dfWv3r6iuqf1L913ZXylS9e6113sz8QPWAtdbnH/ZeT6n+Q/sYc5T1/Gr1l2utf3uFnywAAFyBTj/eCwAAAODENNO0Cye3rt5U63fW6k0z87Dq5Wut18zM3ar/s9b6X4fvu9Y6rzpvZm5f/fJa600z83XVr6213nTgrW5VvfzAtotd7TIzp1VPrh7W7oqZq1ZXqz50BZwqAABsSowBAADgEmb61OpXqy/86NbP+fuZN1zY7t+SV5mZ8/bfn77//s1rrdvsb2f2uv1OV68unJlvbxdPLpqZh1fPXWs97jIs6YnVt7e7yubP2l2R84x2UQYAAE5oYgwAAABH8uzq9hff9JKr1IfeUbc5o/p31Surn69+tvqN6h/2E99e3a66YbtnvNyuOq3d7czuUb233XNfDvmr6p8eeP87Hfj5bu2usHlu1cxcpfqcPhp9AADghHWV470AAAAATiwzfWZ1/y7xB3w3O73OvGXNDatfrv62uk31orXWG9Zab65aa1241npDu+fL/NFa6y+rT6n+Zq31x/u55xx24J+oPndmnjozn7O/Ddqj9mOHHnT6+uq+M3PXmfm8/T43uMJPHgAANiDGAAAAcNCnH33od6sbvnGtdX67W5i9da31jqNMvnd16Fky9zrs+4tZa72x+urqq6rXVI+vvnc/fMH+61OqP6l+c7+Id1ZnfexTAQCA42/WWh97FgAAAKeMmT6lXew42q2tP3+tXrvtGuY/VI9ba33Glu8DAADHgitjAAAAuJi1ek+724Ad/Ou9j1S/vkWImZlvmZk7zcwtZubrqye2e24NAABc6R3tr5wAAAA4tT2hurB6XHW1diHm+dW3bPR+n139X9WZ1VuqH6q+f6P3AgCAY8ptygAAADiqma5T3ax62/6KGQAA4DISYwAAAAAAADbkmTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAICTzsx858y8fGY+MDPnzMxZM3OrA3NuODPPmZl3zswHZ+ZPZuYhB+a8aWbWgdeTLstaxBgAAAAAAOBkdK/qx6svqu5bnVG9ZGauedic/17dqvrK6vOrX6x+YWa+4MCxvqu60WGvH70sC5m11uU5AQAAAAAAgCuNmfnU6pzqXmut/7Xfdl71+LXWcw6b957q36+1fmr/85uqZ6y1nnF539uVMQAAAAAAwKnguvuv7z1s2x9UXzMzZ87MVWbm4dXVq989sO+TZuY9M/OqmXnizJx+Wd74Mk0GAAAAAAC4spmZq1TPqH5/rfXaw4YeVv2P6j3VhdWHqgevtd5w2Jwfqf6kXcS5a/X97W5V9oSP+/3dpgwAAAAAALiym+nG7QLJ/dbqthcfm2dW96/uvtZ662Hbf7T6wurJ1burB1XfUd1jrfVnR36feUz1E9W11loXfFxrE2MAAAAAAIArs5luVv1xdWZ12lrNR8fmx6p/Vt1zrfXGw7bfsnpDddu11p8ftv3s6g1rrccd+b3mNtVrq89da/3Vx7M+tykDAAAAAACu7L6rul512qENMzPVj1YPru59eIjZu8b+60UHtn+kusqlvNft9vuc8/EuTowBAAAAAACu7B7cJZvHj1ePaHdVzAdm5ob77X+31vpw9Zftroz5iZn5t+2eG/Og6r7VV1TNzF2qO1cvrT5Q3aV6evXctdb7Pt7FuU0ZAAAAAABwpTbTu6tPOfTzWs3MHC2APHqt9bO7/eazqx+o7l5dq12c+cG11nP247ev/kv1udXVqjdWz6me9vE+L6bEGACAU9LM3Lh6aruHF16j3YfNR6+1XjEzZ1RPqf5pdYvq76qzqyettd5+2DHObHe59wPbXZ79ourb11rnHctzAQAAgJmeWX1j+9uUHf7MmBPBpd3zDACAk9DMXK/6/eof2sWYW1f/pjp0efU1qttX/2n/9auqW1W/cuBQz6tu00cv375n9d82Xj4AAAAcyX+s3tYln/9yQnBlDADAKWZmfqC621rrHpdhnztVf1x95lrrLTPzedXrqjuttV6xn/Pl1a9VNzn8ChoAAAA4Fmb6lOpx1X3X6t7HeTkX48oYAIBTz1dWr5iZF8zMOTPzqpn5xo+xz3WrVb1///NdqvcfCjF7Z7f7C6Q7X+ErBgAAgI9hrd6zVt97ooWYEmMAAE5Ft6geX72+ul/1zOpHZuaRR5o8M1dv93yZ56+1zt1vvmF1zuHz1loXVu/djwEAAAB7px/vBQAAsL2ZprpjdfOa02q9fK315P3wq2bmtu0u5X72xfebM6pfqKZdwAEAAAAuIzEGAOAkN9ONq7PaxZjqM6o73mymM9fqvftpf1E95OL7/WOI+czqPoddFVP1zurTDsw/vTpzPwYAAADsuU0ZAMBJbH9FzFnV7T669W7VOTfq4lfBfE715o/u948h5rOrL11rvefAoV9WffLM3OGwbfdp9/nyj664MwAAAIArv1lrHe81AACwkZnuWL384ltfXt21+p7qHfeqH7tJ9ZPVN621nrcPMS+sbl99RfV/Dtv5vWutv98de369ukG725udUf1M9Yq11iO2PCcAAAC4shFjAABOYjN9dfWCS478avWd1Z//fa2/qZ621vrJ3T5zs+qNRznkF6+1fnc/78zqx6oHVhdVL6q+ba113hV5DgAAAHBlJ8YAAJzEZrpt9WdHGb6ouslaveMYLgkAAABOOZ4ZAwBwElur11ZnVx85MHRR9XNCDAAAAGxPjAEAOPk9rN19yQ5dEn1R9bzqm4/bigAAAOAU4jZlAACniJk+o/rM6g1r9c7jvR4AAAA4VYgxAAAAAAAAG3KbMgAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAI6zmXn8zLxmZs7dv142M/c/bPyWM/NLM/Ou/fgvzMwNDhzjTTOzDryedOzPBgAAAAA4SIwBOP7eWj2pukN1x+p3ql+emdvMzDWrl1Sruk91t+qq1Ytn5uD/w7+rutFhrx89NssHAAAAAC7NrLWO9xoAOGBm3ls9sfrb6ter6621zt2PXbd6X/Vla62z99veVD1jrfWM47NiAAAAAOBoXBkDcAKZmdNm5uHVNauXVVdrd1XMBYdNO7+6qLr7gd2fNDPvmZlXzcwTZ+b0Y7JoAAAAAOBS+UUdwAlgZj6/XXy5enVe9eC11utm5l3VB6unzsyTq6l+oDqt3a3IDvmR6k+q91Z3rb5/P/6EY3YSAAAAAMARuU0ZwDE201RfXn19dZ3q9+rsZ9d9r1Ndt/rq6huqe+2DzJdVz6xu3u6KmOdXt67+eK31+CO/xzym+onqWmutC440BwAAAAA4NsQYgGNsph+uvq36SLsrXC6q3lrdZa3evpszZ1d/vdb65o/uN9evLlxrvX9m3ln90FrrPx/5PeY21Wurz11r/dWmJwQAAAAAXCrPjAE4hmb6onYhpnYhpnb/L/706imHTb1Ku+fF/KO11rv3IeY+1adVv3Ipb3W7dpHnnCti3QAAAADA5eeZMQDH1kOrC7vY/3+/s7r/6XWTh8/c8unVI6p7V/ermplHV39Rvau6S/XD1dMPXfEyM3ep7ly9tPrAfs7Tq+eutd53LE4KAAAAADg6MQbg2DqjOnB/yHOqf1G945Oq365eU91vrfVb+wm3qr6/OrN6U/W97WLLIRdUD6++u93VNG/cjz9tkzMAAAAAAC4Tz4wBOIZmun/1a0cY+kj14rV68DFeEgAAAACwMTEG4Bia6SrVi6v7H9rU7rZl51dftFZ/frzWBgAAAABsQ4wBOMZmumr1rdWjqutWZ1dPXavXH891AQAAAADbEGMAAAAAAAA2dJXjvQAAAAAAAICTmRgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAOCUMzP3nJkXz8zbZ2bNzIMOjK+jvJ542JxfmZm3zMz5M/OOmXnOzHz6gePcb2b+cGY+MDPvmpkXzczNjs1ZAicKMQYAAAAAOBVds3p19a1HGb/RgddjqlW96LA5L60eVt2qekh1y+qFhwZn5ubVL1e/U92uul91/eoXr8DzAK4EZq11vNcAAAAAAHDczMyqHrzWOutS5pxVXXut9SWXMucrq7Oqq621/mFmvrp6/v7ni/ZzHtgu0FxtrfUPV+R5ACcuV8YAAAAAAFyKmblB9YDqWZcy58zq66o/OCyyvLK6qHr0zJw2M9etvr46W4iBU4sYAwAAAABw6R5ZfaAj3F5sZp46Mx+s3lPdtPpnh8bWWm+svqz6vuqC6v3VTdrd2gw4hYgxAAAAAMBJb6YzZ/pXMz1tpm+e6dqXYffHVM9ba51/hLH/XH1Bu+jykeq/z8zs3nNuWP1k9ezqTtW9qr+vXnhoDnBq8MwYAAAAAOCkNtMXVb9ZXbu6sDq9end1n7V67aU9M2Zm7lH9r+p2a61XX/r7zE2qv63uutZ62cz8p+rL11p3OsKcu6y1/vCKOUPgROfKGAAAAADgpDXTadULq2tVU52x/3pm9fMzfawrVB5bvfJjhZi9Q79vvdr+6zXaPTPmcB85MBc4BfgPHgAAAAA4md2zunGX+F3oeafVn96mvv0h+w03n5nbzcxND82YmetUD61+6uBBZ+bOM/Mv9/t85szcp3p+9dfVy/bT/md1p5n5rpn57Jm5ffUz1ZurV12hZwmc0MQYAAAAAOBkdr0jb35Fu0e9/MgL9hue1i6Q/MfDJj283VU0zz/CAT5UfVX129VfVc+qXlPda611QdVa63eqR1QP2h/7N6oL2t267MOfwDkBVzKeGQMAAAAAnLRm+vR2z2g50h+mn1/dYK3OPbarAk41rowBAAAAAE5aa/X26seqw/8q/dD33yfEAMeCK2MAAAAAgJPaTKdVT9i/bli9pXpq9cy18gtSYHNiDAAAAABwypjpjLX6h+O9DuDUIsYAAAAAAABsyDNjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAJwUZubxM/OamTl3/3rZzNz/sPFbzswvzcy79uO/MDM3OHCMM2fmefvx98/Ms2bmWsf+bACAk8kpHWNm5sYz89yZec/MfHhm/mxm7njY+HfPzF/OzAdn5n0zc/bM3PnAMXxIAwAAgBPDW6snVXeo7lj9TvXLM3Obmblm9ZJqVfep7lZdtXrxzBz++5HnVbep7lt9RXXP6r8dszMAAE5Ks9Y63ms4LmbmetWrqpdWz6zeVX129ddrrb/ez3lEdU71N9UnVd9RPbT6rLXWu/Zzfr26UfXN1RnVz1QvX2s94pieEAAAAHAJM/Pe6onV31a/Xl1vrXXufuy61fuqL1trnT0zn1e9rrrTWusV+zlfXv1adZO11tuPxzkAAFd+p3KM+YHqbmute1yGfa5T/V31pWut3/YhDQAAAE5MM3Nauz+ofHb1BdUtq1+qrrnWumA/52rVB6unrLW+e2YeU/3QWut6hx3n9Or86qFrrV86xqcBAJwkTuXblH1l9YqZecHMnDMzr5qZbzza5Jm5avVN7WLMq/eb71K9/1CI2Tu7uqi6cwAAAMAxNTOfPzPnVRdU/7V68FrrddUftgsvT52Za+xvW/aD1Wnt7nhRdcN2d8j4R2utC6v37scAAC6XUznG3KJ6fPX66n7tblX2IzPzyMMnzcxX7D/End/uNmX3XWu9ez/sQxoAAAAcJzPNTHef6Rkz/ZeZHlgPeX11u3Z/JPnM6tkzc+v97cYfWj2wOq/dH1t+cvUn7f6oEgBgM6cf7wUcSzPdsbpH9f52IeoVa60n74dfNTO3rR7X7hLmQ17a7kPc9atvrH5hZu681rpYhAEAAACOnZmm+pHqX1YX7jc/vl74kuor19U79/8AACAASURBVOoN1Stn5k7Vt1ffvNZ6SXXLmbl+deFa6/0z8852z4qtemf1aRd/nzm9OnM/BgBwuZwSV8bMdPWZfqV6ebtLkH+6PuP0uvV5B6b+RXXTwzestT641nrDWusP11qPbfcB77H7YR/SAAAA4Pi4f7sQU7s/Nj30B6f3rf7VYfOuUl3t8B3XWu/eh5j7tPt3/a/sh15WffLM3OGw6ffZH+OPrtjlAwCnklMixlTfVT1g//3+nO8+db0vnenTD5v3OdWbP8axDv8Q50MaAAAAHB9fV33k4pu+s/q96n9/w/7ZMd9f3bt6XtXMPHpmvmhmbjkz/7x6QfX0tdZfVa21/qL6jeonZ+YLZ+Zu1Y9VP7/WevuxOS0A4GR00seY/WXLj+sS5/od1R9Nfc1Pz8xnzcwjqm+qfny331xzZr5v/yHtM2fmDjPz09WN231Y8yENAAAAjp9rd4l/659TPXLq829V/XZ1p+p+a63f2k+4VXVWuztjfFf1vdW/PXDcr6v+cr//r1X/X7vfFwAAXG6z1jrea9jUTKdX/3Dk0RdfWI//u3rbtao3Vk9ba/3kbr+5evVz7R74d/3qPe1uc/aUtdbLP3r8ObNdgHlguwf+vaj6trXWwVugAQAAAFeQmZ7Q7lbkc2DowurZa/UNx35VAABHdtLHmKqZXlt9Xke+Eujr1+q5x3hJAAAAwCdgputWr6o+o48+L+bC6sPVHdbq9cdrbQAAB530tynb+54uea4XVn9TvfDYLwcAAAD4RKzV31V3rX66OrddhDmrurMQAwCcaE6JK2OqZvoX7e4Fe5N2txP7n9W3rNVbj+vCAAAAAACAk9opE2OqZjqtXYw5d63ed7zXAwAAAAAAnPxOqRgDAAAAAABwrJ0qz4wBAAAAAAA4LsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAgCuVmbnnzLx4Zt4+M2tmHnRgfB3l9cQD8x4wM380Mx+emffNzFmHjT3qUo7zacfqXAEAgJPD6cd7AQAAAJfRNatXVz9d/eIRxm904Of7V8+qXnRow8w8pPrJ6snV77T7t9FtD9vnf1S/ceA4P1tdfa11ziewdgAA4BQ0a63jvQYAAIDLZWZW9eC11lmXMues6tprrS/Z/3x69abq/1lrPevjfJ9Prd5WPXat9ZxPeOEAAMApxW3KAACAk9bM3KB6QLsrYw65fXXj6qKZedXMvGNmfn1mbnvEg+z8i+pD1Qu3Wy0AAHCyEmMAAICT2SOrD3Tx25ndYv/1u6unVF9Rva/63Zk58yjHeWz1c2utD2+0TgAA4CQmxgAAACe0me4w0w/P9NyZvmWma1+G3R9TPW+tdf5h2w79O+h711ovWmu9snp0taqHXvL95y7V53Xxq2sAAAA+bqcf7wUAAAAczUxPqH6ourCa6hHVv5vpbmv1tkvfd+5R3ar6mgND79h/fd2hDWutC2bmb6qbHuFQ31D96T7aAAAAXGaujAEAAE5IM31W9YP7H0+vTmsXZG7cLtB8LI+tXrnWevWB7a+sLmgXavbvNWdUN6vefPE1zLWqh+WqGAAA4BMgxgAAACeqh1UXXXLzeafXqx4yc/077jfcfGZuNzP/eFXLzFyn3S3Hfurg3mutc6v/Wn3PzHzZzNyqeuZ++AUHpn9NuxD03E/wXAAAgFOY25QBAAAnqmu0e47LAa+ovvj06uX7DU/bf3129aj99w9vdxXN849y7Ce2u/XZc6pPqv6ous9a630H5j22+sW11vsvzwkAAABUzVpH+LcNAADAcTbTvauXHmHoourla/VFx3ZFAAAAl4/blAEAACeq36v+Zxe/VdlH9j//++OyIgAAgMtBjAEAAE5Ia7Wqh1T/d/XG6tzqN6u7r9XvHc+1AQAAXBZuUwYAAAAAALAhV8YAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAOCYmJl7zsyLZ+btM7Nm5kEHxtdRXk/cj99sZp41M2+cmQ/PzF/PzPfMzFWP8n6fNTMfmJn3H4vzAwAAADgaMQYAOFauWb26+tajjN/owOsx1apetB//3HafXb65uk31HdXjqu87eKCZOaN6fvX/XnHLBwAAALh8Zq11vNcAAJxiZmZVD15rnXUpc86qrr3W+pJLmfPE6vFrrVsc2P7U6tOr366esdb65Ctm5QAAAACXnStjAIATzszcoHpA9ayPMfW61XsP7Huf6qEd/QocAAAAgGNKjAEATkSPrD5Q/eLRJszMZ1X/qvqJw7Z9SvWz1aPWWuduvEYAAACAj4sYA8D/z969R1t31oW9//5yARFE1JaA0rRyRwSjgBAEQYUC3kHpsbRHEFuL0IvWW4tHj5f2iHUMsVVqLSiIoFaLghW5FC9FBSJEbgqIgkI15KIYkESEJM/5Y6232dm8ERLf+e5cPp8x1lhrz2fOuZ75zzuS/d3PnHDCzXTKTF8506/M9PqZ/tNMf+8anOLx1XPXWu8//vnnk6oXVz+71nr6gaGnVz+51nr5tZ48AAAAwAnmmTEAwAk101Q/Vj2uuqLdH39cVl1a3X+tfveve2bMzDywenl11lrr9ccZ/8Tq16pXtVsBc8WBsYurWxzcff/9l1dfs9b6sRNxjQAAAADXxGlHPQEA4Abnfu1CTF25Cve06ubV91Zf+GGO/+rq3KsJMZ9U/Wp1bvVVB0PM3tnVqQd+/pLqW6r7V3/ykV8CAAAAwIkjxgAAJ9oXtVsJc+i/M953av3+I2Y+9177DZ88M2dV715rvbNqZm5ZPbr6hsMn3YeYX6veUX1j9bdnpqq11vn79zcfOube1RVrrd85QdcGAAAAcI2JMQDAiXY190B9TfU5p+w/VH3//v3Hu3IlzVe0u7XYTx3nBA+t7rh//fGhsbm2kwUAAADYmmfGAAAn1Ez3qX7rOEOXVb+4Vo88yVMCAAAAOFKnfPhdAAA+cmv16uo/73+8/MD7e9o9vwUAAADgRsXKGADghJtpqke1u/3YJ1T/q/rBtTrvKOcFAAAAcBTEGAAAAAAAgA25TRkAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAgCM3M98xM+vQ6y2H9jl7Zn5lZi6ZmffOzMtn5mYHxj9+Zp67H7t4Zn50Zm5x8q/mqk476gkAAAAAAADs/W71kAM/X3bsw8ycXb24+p7qX+zHPq264sD+z61uWz20Or16ZvVfq8dsOusPY9ZaR/n9AAAAAAAAzcx3VF+61jrrasZfVf3Ptda3Xc343ao3VfdZa71mv+3h1S9Vt1trnbfJxD8CblMGAAAAAABcV9xpZs6bmbfvbzd2ZtXM3Lq6b3XhzLxiZi6Ymf81Mw84cOzZ1cXHQszey9qtnLnvSbuC4xBjAAAAAACA64JzqsdVD6++tvrk6tdn5mOq2+/3+Y7q6ft9frv65Zm5037sNtWFB0+41rqsevd+7Mh4ZgwAAAAAAHAkZjqlund1s1ovX6tL9kNvmJlzqndU/6B68377j6y1nrn//NqZ+bzq8dW/PZnzvqasjAEAAAAAAE66mR5Yvb3diphfq86f6Z8fG19rXVy9tbpj9a795jcdOs2bqzP3n8+vbn3V75jTqo/fjx0ZMQYAAAAAADipZrpd9eLq7xzYfIvqB2d61G6fuUV1h3Yh5o+q86q7HDrVndutnql6ZXWrmbnXgfHPbddCzjnBl3CNuE0ZAAAAAABwsv3T6qZdZdHIN1ZfeEXd5ltn7nZ+9Z3V5dVPrbXWzHxf9Z0z8/rqddVjq7tWX1611nrzzLy4evrMPKE6vfqh6qfXWuedtCs7DjEGAAAAAAA42e5SzVU3/XH1mFPqzz6j+pnqN6r7rbUuqlpr/cDMfFT11Ha3Hnt99dC11tsOnOQftQswv1xdUT2v+pebXslHYNZaRz0HAAAAAADgRmSmf199S3XqoaErqt9eq/uc/FltxzNjAAAAAACAk+0Z7W5BdsWh7ae0W/lygyLGAAAAAAAAJ9Va/WH1xdW7D2z+QPWt1U8dyaQ25DZlAAAAAADAkZjpJtVnVzerfnOtq8SZGwwxBgAAAAAAYENuUwYAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDnFAz80kz85yZ+bOZ+cuZeePM3PvA+Bkz86yZOW9mLp2ZF8/MnQ6d46Nm5mn7c7xvZp43M2ec/KsBAAAAAPibE2OAE2ZmPq76zeqD1SOqT6m+ofrz/fhUz69uX31J9enVO6qXzczND5zqqdUXVY+uHlR9YvVzJ+cqAAAAAABOrFlrHfUcgBuImXlK9VlrrQdezfidq9+rPnWt9bv7badU51dPXms9Y2Y+trqoesxa67/v97lr9ebq7LXWq07CpQAAAAAAnDBWxgAn0hdXr5mZn52ZC2fmtTPzTw+M33T//v5jG9ZaV1R/VT1gv+le1enVyw7s85bqndXZW04eAAAAAGALYgxwIt2++trq96uHVT9c/aeZeex+/FhU+Z6Z+biZucnMfEt1u+q2+31uU31grXXxoXNfsB8DAAAAALheOe2oJwBcf8001ee0e7bLTeuU02q9eq0rnrzf5bUz86nVE6ofX2t9cGYeVf1o9e7q8nYrYF5Uzcm/AgAAAACA7YkxwLWyDzH/uV1ouWy39Xan1n0+eaaPXqtL97u+ufqyY8ettc6tzto/G+Yma62LZuac6jX7Xc6vbjIztzq0OuaM/RgAAAAAwPWK25QB19bD24WY2oXd0+qzqgvOqP71gf3uXL3j8MFrrffsQ8ydqntXL9gPnVt9sPq8Y/vOzF2qM6tXnuiLAAAAAADY2qy1jnoOwPXQTM+u/mFXWWH36ur+1Tf/af1/Z1efWT29+pq11nN3x82jq4vaPTvmHtV/rM5da33ZleeeH64+v3pc9d7qB6vWWvff+LIAAAAAAE44tykDrq2b9yGr6+5T/Xz1Tbeqfqf6w+rrjoWYvdtW39/utmPvqp5dffehc399dUX1vOqm1UuqJ57oCwAAAAAAOBmsjAGulZmeWP1QNYeGLquevVZfffJnBQAAAABw3SPGANfKTDevXlPdqTp1v/my6tLqXmv1B0c1NwAAAACA65JTPvwuAB9qrS6pHtDueS4XVu+p/lv1mUIMAAAAAMCVrIwBAAAAAADYkJUxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAANjIzHzHzKxDr7fsx/7eccaOvR594BxnzswLZ+bSmblwZr5vZk47uqsCAOCa8h9vAAAAsK3frR5y4OfL9u//u7rtoX2/pvqm6kVVM3Nq9cLq/Or++/2fXX2wevJ2UwYA4ESyMgYAAAC2ddla6/wDrz+tWmtdfmj7+dUjq59Za71vf+zfrz6l+sdrrdettV5UfVv1pJm5yZFcDXBSzMxnz8z/mJnz9ivmvvQ4+9xtZn5hZt4zM5fMzKtn5swD4x81M0+bmT+bmffNzPNm5oyr+b5PmJk/3n/Xrba8NoAbIzEGAAAAtnWn/S9T3z4zzz34i9KDZuZe1VnVjx7YfHb1xrXWBQe2vaS6ZXX3zWYMXBfcvHp99aTjDc7MHarfqN5SPbi6Z/Xd1fsP7PbU6ouqR1cPqj6x+rmr+b4frd5wAuYNwHG4TRkAAABs55zqcdXvtbvF2P9b/frMfOpa6y8O7fvV1ZvXWq84sO021QWH9rvgwBhwA7VfCXfsloXH2+XfV7+01vrmA9veduzDzHxsu39XHrPW+pX9tq+q3jwz91trverAvl9b3ar6ruoRJ/hSAMjKGAAAADhhZrrLTD8802/P9MJap9f672utN6y1XlJ9frtfeP6Dqx43N6se01VXxQAc18ycUn1B9daZecnMXDgz5xy6ldm9qtOrlx3bsNZ6S/XOdqvujp3rU6pvr76yuuJkzB/gxkiMAQAAgBNgpvtVr63+SfXp1cOqF7T7S/Oq1loXV2+t7njo8C+vPrp69qHt51eHn+9wxoEx4Mbp1tUtqn9Tvbjd86V+vvq5mXnQfp/bVB/Y/7tz0AX7sWbmptVPVd+01nrnyZg4wI2VGAMAAAAnxg9VN+3KW4Kfun//1pk+uWpmblHdoXrXoWO/uvqFtdZFh7a/srrHzNz6wLaHVu+t3nQC5w4coZlmpr8/0w/N9IMzfd5Mx7032d6x3+m9YK311LXW69ZaT6l+sXrCNfjq72l3e8TnXNu5A/CREWMAAADgb2imM9rdEujQ/2d/Y/Vr1a89dmbu3+4v1y9v95fo+2PnjtVnV884zqlf2i66/MTMfNrMPKz6d9XT1lp/dcIvBDjpZjqt+m/VS6p/1i6mvKx6zsz/ibqH/Wl1WR8aZd9cnbn/fH51k5m51aF9zujKlXWfWz16Zi6bmcuqXz52/pn5zmt5SQAchxgDAAAAm/nj6jFTD/nW6meqP6vud2gFzOP3O7708NFrrcurL2wXcF5ZPafdrcy+feOJAyfPV1aP3n8+rStX1z2m+ofHO2Ct9YHq1dVdDg3duXrH/vO51Qerzzs2ODN3aRdrXrnf9GXVp1Vn7V//ZL/9gdXTrtXVAHBcs9Y66jkAAADA9d5Mr273rJjDf8m+qjus1R+e/FkB13Uz/Vq7+HHoj6b/4op67Tn1oCe2ex7Vv65+tXr3WuudM/PIditqnrTf/vDqB6oHr7V+Y3fu+eHq86vHtbu94Q9WrbXuf/y5zIP35/q44zxrBoC/AStjAAAA4MT459UH2t06qHarWaq+W4gB/hof23F/R3fuKfWgs9uFmKrv33/+rqq11s+3u6XZN1dvbLeq5cuOhZi9r2/3HJnnVS9vd3uyR21xEQD89ayMAQAAgBNkpjtV/6q6X/Un1dPX6hePdlbAddlM/6HdqpfDq+our56yVv/PyZ8VACeaGAMAAAAAR2SmT6peV92qK58Xc1m7Z0x92lpdcFRzA+DEcZsyAAAAADgia/Un1X2rn64urS6pfrK6rxADcMNhZQwAAAAAAMCGrIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAnGQz8x0zsw693nKc/WZmXrQf/9JDY2fOzAtn5tKZuXBmvm9mTjt5VwEAAMBHyv+sAQDA0fjd6iEHfr7sOPt8XbUOb5yZU6sXVudX969uWz27+mD15BM+UwAAAP5GxBgAADgal621zr+6wZk5q/qG6t7Vuw4N//3qU6qHrLUuqF43M99Wfe/MfMda6wNbTRoAAIBrzm3KAADgaNxpZs6bmbfPzHNn5sxjAzPz0dVPVk+6mmBzdvXGfYg55iXVLau7bzprAAAArjExBgAATr5zqsdVD6++tvrk6tdn5mP240+tXrHWesHVHH+b6oJD2y44MAYAAMB1iNuUAQDASTDT36r+YXVGrddUP79Wl1VvmJlzqndU/2BmLqo+t/r0o5stAAAAJ5IYAwAAG5vp86vnVTetLqtOr35nps9dq4vWWhfPzFurO1b3qO5QXTwzB0/zvJn59bXWg6vzq8889DVn7N+v9jk0AAAAHA23KQMAgA3NdKvqZ9uFmGkXYqruWv3gbp+5RbsA867qKdU9q7MOvKq+vvqq/edXVveYmVsf+KqHVu+t3rTVtQAAAHDtWBkDAADbelR1s3YhZu8bqy86rc788pnPf0j1LdXl1U+ttS7q0OqW/QqZd661/nC/6aXtostPzMw3t3tOzL+rnrbW+qtNrwYAAIBrzMoYAADY1idUV1x10x+3e3zMXU+t3/+J6s+q++1DzIe11rq8+sJ2AeeV1XOqZ1fffsJmDQAAwAkza62jngMAANxgzfTA6uVXM/wn1d9dq8tP4pQAAAA4yayMAQCAbf1G9St1leBy7C+ivl2IAQAAuOETYwAAYENrtaovqX64unS/+Y+qr1yrHzuqeQEAAHDyuE0ZAACcJDOdVn109Rf7SAMAAMCNgBgDAAAAAACwIbcpAwAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAQDPzVaCQnAAAIABJREFUt2fmAzNz85k5fWYumZkzr2bfR8/MK/af7z8zbz80/vMz87rjvN46M3c4GdcDAAAAcF1y2lFPAAC4Tji7ev1a65KZuW/17rXWO/+afX9z//mBBz4fc9u11lmHD5qZZ1Wnn6D5AgAAAFxvWBkDAFTdvyujygP60MBybfcFAAAAuNGzMgYAbqT2tyF7w/7Hj64un5nHVTer1sxcXP3kWuuJM/OY6j/v971l9RMzc3n1MdXnzMxTqieutX7ypF4EAAAAwPWAGAMANxIznV49vLpd9cb6jFfVb5/VLq68prpvdUn1uuoLqndW79sf/gvVK6qHVF9XfWF1z+q/tFspU/WnJ+dKAAAAAK5fxBgAuBGY6VOrF7ULMXvnnlN9Qc1nVq9ea71hZj6rumCt9fKDx6+13le9b2Y+o3rBWuuPZuYfVb+01vqjk3QZAAAAANdLYgwA3MDNdFr1wuq2Vx25+33r7RdUl1enzMz72v23wWn7z+9Ya919fzuzN+0P+qjqspn5V9VNqytm5iuq56y1nnBSLggAAADgekaMAYAbvodUZ37o5l+qPnBK3e1ddfk3VudWP109q3px9cH9judVZ1W3qV62/3xqu9uZPbB6d/XeLS8AAAAA4PpMjAGAG75POv7mv1udP3XFrasXVKu6e/W8tda7ju211rqs+oOZuXd1zlrrLTPz2dXb11q/tfXkAQAAAK7vTjnqCQAAm3vd1Q/9ygfrlHPXWu+vPrP644Mh5pAHV8eeJfOgA58BAAAA+GvMWuuo5wAAbGymX24XUE49sHlV37tW//bEfte8aq11v+Nsf1b1lLXWW07k9wEAAABc11kZAwA3Do9q9zyYy/c/X1p9T/X/HNmMAAAAAG4krIwBgBuRmT6+uk31jrW6ZJvvmGdW97ia4S9ba71ji+8FAAAAuK4SYwAAAAAAADbkNmUAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAAAACADYkxAAAAAAAAGxJjAAAAAAAANiTGAAAAAAAAbEiMAQAAAAAA2JAYAwAAAAAAsCExBgAAAAAAYENiDAAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAAAAAADYkBgDAAAAAACwITEGAAAAAABgQ2IMAAAAAADAhsQYAAAA4EZhZj5pZp4zM382M385M2+cmXsfGF9X8/qmA/t8/Mw8d2beOzMXz8yPzswtjuaKAIDri9OOegIAAAAAW5uZj6t+s/rV6hHVRdWdqj8/sNttDx32iOpHq+cd2Pbc/X4PrU6vnln91+oxm0wcALhBmLXWUc8BAAAAYFMz85Tqs9ZaD7wGxzy/+pi11uftf75b9abqPmut1+y3Pbz6pep2a63zTvzMAYAbArcpAwAAAG4Mvrh6zcz87MxcODOvnZl/enU7z8wZ1Re0WxlzzNnVxcdCzN7Lqiuq+24xaQDghkGMAQAAAG4Mbl99bfX71cOqH67+08w89mr2f2z1F9XPHdh2m+rCgzuttS6r3r0fAwA4Ls+MAQAAAG5wZjqr+pbqs6oL65TT6orfWms9eb/La2fmU6snVD9+nFM8vnruWuv9J2fGAMANmZUxAAAAwA3KTA+ozqm+vPo71WfU7U6th3/CoV3fXJ35ocfPA6u7VM84NHR+detD+55Wffx+DOBGaWY+e2b+x8ycNzNrZr700PgZM/Os/filM/PimbnTcc5z9sz8ysxcMjPvnZmXz8zNTt6VwHbEGAAAAOCG5vvb3Q3k2B1BZrdA5n13nunTD+x35+odxzn+q6tz11qvP7T9ldWtZuZeB7Z9brvfr5xzQmYOcP108+r11ZMOD8zMVM9vd7vIL6k+vd2/vS+bmZsf2O/s6sXVS6vPrO5T/VC753LB9d6stY56DgAAAAAnxEy3qv78Q0deXd2/+rKX1n97Urtf9D29+pq11nOvPH5uWb2r+oa11n/50PPPi6oz2t3e7PTqmdVr1lqPOeEXA3A9NDOreuRa6/n7n+9c/V71qWut391vO6XdisInr7Wesd/2qup/rrW+7WhmDtuyMgYAAAC4IbmsOs5fnt6n+rkr6lfvWf1O9W3V1x0MMXtfUU31U1dz/n9UvaX65eqXqt+ovuZETBzgBuqm+/f/8wyutdYV1V9VD6iamVtX960unJlXzMwFM/O/ZuYBJ322sBErYwAAAIAblJleXD2kOvXQ0KruuFZvP/mzArhxOM7KmNOrP2h3O8d/Vl1SfX31lOqla62Hzcz92t0K8t3VN1avq76yemK7FTW/f9IvBE4wK2MAAACAG5p/VV3clc8ZuGz//mQhBuBvZqZTZvqXM711pktneuVMX3R1+6+1Plg9qt1zut5dXVp9TvWirvx3+tjvqX9krfXMtdZr11pf3+72Zo/f7GLgJDrtw+8CAAAAcP2xVr83093b3T7svtVF1TPX6uVHOzOAG4Qfqr623WrDafcMrl+Y6XFr9ePHO2CtdW511sx8bHWTtdZFM3NO9Zr9Lu/av7/p0KFvrs480RcAR0GMAQAAAG5w1uqC6ruPeh4ANyQz3aF6wrEf9+/HVrX8h5kOP4frKtZa79mdZ+5U3bvd87uq/qg6r7rLoUPu3G4FDVzviTEAAAAAAHwkHtyVEeaA91V/cOt6xhfvN3zyzJxVvXut9c6ZeXS7VYrvrO5R/cfq+Wutl1attdbMfF/1nTPz+nbPjHlsddfqyze9IjhJxBgAAAAAAD4Slxx/82vaPQam5+03fP/+/cerx1W33W87o90tyZ7dodWLa60fmJmPqp5afXz1+uqha623ncD5w5GZtdZRzwEAAAAAgOu4mT6mXUz56K66Quby6ty1uu+RTAyuB0758LsAAAAAAHBjt1Z/UX1lu/hyeXVZdUX159Xjj3BqcJ1nZQwAAAAAAB+xmW7fLr7crnpD9ay1evfRzgqu28QYAAAAAACADblNGQAAAAAAwIbEGAAAAAAAgA2JMQAAAAAAABsSYwAAAAAAADYkxgAAAAAAAGxIjAEAAAAAANiQGAMAAAAAALAhMQYAAAAAAGBDYgwAAAAAAMCGxBgAAAAAAIANiTEAAAAAAAAbEmMAAAAAAAA2JMYAAAAAAABsSIwBAACuE2bmj2ZmHef1tP34j8zM22bmL2fmopl5wczc9dA5zpyZF87MpTNz4cx838ycdjRXBAAAsCPGAAAA1xX3qW574PXQ/faf3b+fW31VdbfqYdVUL52ZU6v27y+sblLdv3ps9bjqu07O9AEAAI5v1lpHPQcAAIAPMTM/UH1hdad1nP9xmZl7Vq+v7rjWetvMPKL6xeoT11oX7Pd5QvW91d9ea33g5M0eAADgSlbGAAAA1zkzc5PqH1c/djUh5ubtVsn8YfW/95vPrt54LMTsvaS6ZXX3bWcMAABw9cQYAADguuhLq1tVzzq4cWaeODPvq95XPaJ66IEVL7epDoaYDvx8m+2mCgAA8NcTYwAAgCMx02kzPXKmp870nTPd5cDwV1cvWmudd+iw51afXj2oemv1MzPzUSdpygAAANeKGAPXUTPz2TPzP2bmvJlZM/Olx9nnbjPzCzPznpm5ZGZePTNnHhj/kZl528z85cxcNDMvmJm7HjrHOs7rK07GNQIAN14z3bJ6RfVz1ZOqJ1dvnulfzMzfrR5SPePwcWut96y1fn+t9fLqy6u7Vo/cD59fnXHokDMOjAEAABwJMQauu27e7oG0Tzre4MzcofqN6i3Vg6t7Vt9dvf/Abue2u5f63aqHVVO9dGZOPXS6r6pue+D1/BN1EQAAV+O7qs/Yfz69Oq3df6v8x7r9N1UXVi/8MOeY/eum+59fWd1jZm59YJ+HVu+t3nSC5g0AAHCNzXGehQlcx8zMqh651nr+gW0/XX1wrfV/X4Pz3LNd4LnjWuttV3duAICtzXRx9bEfOnL5ZfW3LqmL/8ta699cuf/cvvq/qpdWF1W3q/5N9VnV3dZaF+7/4OR11XnVN7d7TsxPVM9Yaz152ysCAAC4elbGwPXQzJxSfUH11pl5ycxcODPnHO9WZgeOuXm7FTB/WP3vQ8NPm5k/nZnfmpnHz8xsN3sA4MZupqk+5vijL6su/tjqxw4NvP//b+/ug3Wt63qPf76yiwp8wpIHiROSWlMZxzRHBBRUYkJKS+15RJpxzhyrOTMen87x2MlmCtPSTs3kSFSiZFoqQg9mPiA9iJkZzinFLBVHSjEEEURg7+/547734d5rPyCwvmutvffrNXPPXut3/a5r/a6/YK/3vn5XklOS/GmSjyd5Y5Ibk5zU3Z9Lku7enuTJSbZn8ZTM65NcmOQl630PAAAAd4UnY2A/sPbplao6Ksm/Jbk5yYuTvCfJmUl+Kclp3f3elXP/a5JfyWLbs6uSnLXzqZjl8f+V5N3La52R5BeSPL+7/88G3BoAcJCqyl8mOSl7/gdiz+jOH27wkgAAAMaIMbDFVOXQJNu7c/sdY7vFmGOSfCbJG7r7x1fmXZLkpu7+sZWx+yZ5YBbvgvnvSR6U5LHdvfpumZWfXy9N8qzu/uZ1vzkAgKWqPC7Ju7J458vOILM9yYeTPLo7t23W2gAAANabbcpgi6jKyVX56yy24Li5KhdV5Zi9TP98ktuz+4toP5LkuNWB7r6hu/+5uy9P8rQk35bkqftYyvuTHFtVh+5jDgDAPdKd9yZ5YhbbiXWSm5K8OsnpQgwAAHCg2bbZCwCSqnxvFluFHbIc+pokz0hyUlUevnZ+d99aVR9I8rA1hx6a5FP7+lHLz75Cy4lJvtDdX/kqlw8AcLd057IkJ1flXkm6Ox7bBwAADkhiDGwNL87iSbWVp9W+tC355/+U/OOLlgPHV9WJSa7r7quTvDzJG6vq8tzxzpizkzw+SarqwUl+JMk7klyb5NgkL0zy5SxefJuqOjvJkUmuyOKJnCcl+R9JXjF3qwAAu+rOjs1eAwAAwCTvjIEtoCpfSHK/XUcvS3Lanqa/trvPWZxX5yZ5URah5aokP9/db1seOybJbyf5niT3T/LZJJcneWl3X7Wcc2aSX07yrVk8MfPxJL+V5Pzu9ksRAAAAAIB1IMbAFlCVf0ny4D0cuj3Jq7vzsxu8JAAAAAAA1sm97nwKsAEuSPa4R/q2JBdu8FoAAAAAAFhHYgxsDb+a5O3Lr29Psn359Qu684HNWRIAAAAAAOvBNmWwRVSlsnhJzBOT3JzkTd352OauCgAAAACAe0qMAQAAAAAAGGSbMgAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGANh0VXVqVV1aVddUVVfVU/Yw59ur6pKquqGqbqqqD1TVcSvHT6iqt1bVtVX1xap6U1UdueYaj6iqv6iq66vqP6rqNVV1+EbcIwAAAHDwEmMAgK3gsCRXJnnOng5W1QlJ/irJR5M8PsnDk/xikluWxw9L8o4kneT0JI9N8rVJLq2qey3nHJPknUk+nuTRSc5M8h1Jfm/mlgAAAAAWqrs3ew0AAP9fVXWSp3b3xStjf5Dktu7+qb2cc0aSP0ty/+7+4nLsvkm+kOSM7n5nVT07i4BzdHfvWM75riQfTvKQ7v745H0BAAAABy9PxgAAW9ryyZazknysqv68qj5XVe9fs5XZoVk8FfOVlbFbkuxIcvLKnFt3hpilLy//PDkAAAAAQ8QYAGCre2CSw5O8MMnbk5yR5K1J3lJVj1vOuSLJTUleVlXfsNy27BVJDkly9HLOu5McVVXPq6qvrar7JzlveWznHAAAAIB1J8YAABuuKlWVY6u+qgiy8/9X3tbdr+zuf+ju85L8cZL/kiTdfW2Spyc5O8mXktyQ5H5J/j6Lp2PS3f+Y5JlJnpvk5iT/nuQTST67cw4AAADABDEGANhQVTkti/e0fDrJNVX526o8ch+nfD7J7Un+ac34R5Ict/Ob7n5Hd5+QxZM037h8v8yDkvzrypzf7+6jluMPSPK/k3zT6hwAAACA9bZtsxcAABw8qvLdSf48i+3DdnpEksuq8p3d+eTac7r71qr6QJKHrTn00CSf2sP8zy9+Vp2eRZi5ZA9zPrucc24W75b5i7tzPwAAAABfDTEGANhIz01S2fXp3EOSG78uee8vVJ39yuXY8VV1YpLruvvqJC9P8saqujzJe5KcmcWWZI/feZGqelYWT8tcm+QxSX49ySu7+6qVOT+T5G+y2MrsScvrvrC7r5+4WQAAAIAkqe7e7DUAAAeJqnwsyUN2P3JZktP2dMpru/ucxbl1bpIXJTk2yVVJfr6733bHteu8JOckOSLJJ5O8OosY0ytzLkxyVpLDk3w0ySu6+3X38LYAAAAA9kmMAQA2TFXeneTU7LpNWbJ4J8ybuvMTG78qAAAAgFn3uvMpAADr5tXZPcQki61Tz9/gtQAAAABsCDEGANhIf5jkV5L0ymdHkud357JNXBcAAADAGNuUAQAbrioPTvL9SbYnuaQ7n9nkJQEAAACMEWMAAAAAAAAG2aYMAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAA4YFTVqVV1aVVdU1VdVU9Zc7z38nneypwjquqiqvpiVV1fVRdU1eFrrvN9VXVFVd1YVddW1Zur6ls25i4B2N+IMQAAAAAcSA5LcmWS5+zl+NFrPucm6SRvXplzUZLvSPKkJE9OcmqS1+w8WFXHJ3lbkncnOTHJ9yX5xiRvWcf7AOAAUt292WsAAAAAgHVXVZ3kqd198T7mXJzk3t39hOX3357kn5I8qrv/bjl2ZpI/TXJsd19TVU9L8oYkh3b3juWcs7MINId2922T9wXA/seTMQAAAAAclKrqyCRnJblgZfgxSa7fGWKW3plkR5JHL7//4PL7Z1XVIVV13yQ/leSdQgwAeyLGAAAAAHCwemaSG7Pr9mJHJfnc6qTuvj3Jdctj6e5PJDkjyS8l+UqS65Mcm+QZ80sGYH8kxgAAAACwX6vKYVU5tSqPrLpLv+86N8lF3X3LXft5dVSS85O8Nsmjkjwuya1J/qiq6q5cC4CDw7bNXgAAAAAA3F1V+Zkkv5zk8OXQJ6vyk935632fV6ckeViSH1lz6N+TPHDN3G1JjlgeS5LnJLmhu5+/Mucnk3w6i63Mrrh7dwPAgcqTMQAAAADsl6rytCS/kTtCTJJ8c5J3VOVBd3L6Tyf5YHdfuWb8fUnuV1XfszJ2eha/R3v/8vtvyOKdMau2L//0+zYAduM/DgAAAADsr56X3aLIlw5JPnRo8pb/uRw4vqpOrKrjds6oqvskeXqS3157we7+SJK3Jzm/qr63qh6b5DeT/EF3X7Oc9idJHlVVL6mqh1TVI5L8bpJPJfnQut4hAAeE6u7NXgMAAAAA3GVVuSHJfXYdvSzJaXua/truPmdxXj07yauSHN3dN+x+3ToiiwBzdhax581Jfq67v7Qy50eTPD/JQ5PcnMUTNS/o7o/es7sC4EAkxgAAAACwX6rKh5I8PLvv/rI9yXndefHGrwoAdmebMgAAAAD2V7+W3X+/tSOLGLPbFmQAsFnEGAAAAAD2V69P8pIkt62MXZfkB7rzyU1ZEQDsgW3KAAAAANivVeUBSU7O4t0t7+3OrZu8JADYhRgDAAAAAAAwyDZlAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAOwHqurUqrq0qq6pqq6qp6w53nv5PG9lziVVdXVV3VJV/1ZVr6uqY/by8761qm6squun7w0AAA50YgwAAMD+4bAkVyZ5zl6OH73mc26STvLmlTnvSfKMJA9L8sNJTkjyR2svVFVfk+QNSf5yndYOAAAHteruzV4DAAAAd0FVdZKndvfF+5hzcZJ7d/cT9jHnB5JcnOTQ7r5tZfxlSY5J8q4kr+ru+63b4gEA4CDkyRgAAIADTFUdmeSsJBfsY84RSX4iyd+sCTGnJ3l69v4EDgAAcBeJMQAAAAeeZya5Mclb1h6oqpdV1U1J/iPJcUl+cOXYA5L8XpJzuvuLG7NUAAA48IkxAAAAW1BVtlXl1KqcUZV738XTz01yUXffsodjL0/yn5OckWR7kgurqpbHzk/y+919+d1eOAAAsBvvjAEAANhiqnJGkguTHLkc+nKSF3Xn1xfH9/7OmKo6JcnlSU7s7iv3/XPq2CSfTnJSd7+vqq5PcvjqlCz+Ed/2JM/u7t+5Z3cGAAAHp22bvQAAAACge43/AAAGpElEQVTuUJUHJ7k0u/597euTvKoqV3fnrXdyiZ9O8sE7CzFLO3dLOHT552OSHLJy/AeTvCDJSUk+81VcDwAA2AMxBgAAYGt5dhaRZM220jduT658SdUpn1gOHF9VJya5rruvTpKquk+Spyd57tqLVtWjkzwqyV8l+UKSE5L8YpJ/SfK+JOnuj6w555FJdnT3/12vmwMAgIORd8YAAABsLQ/Jrk+nLH3wkOSUE5N8aDnwa8uvX7oy6Uez2FrsDXu47s1JfijJu5JcleSCJB9O8rju/so6rR0AANgD74wBAADYQqpyXhZPtqzdyWB7kiu6c/LGrwoAALgnPBkDAACwtbwmyY7lZ9UhSX5145cDAADcU2IMAADAFtKdf03y5CTXrgzfnOS/deetm7MqAADgnrBNGQAAwBZUlW1JTkrydUne150bN3lJAADA3STGAAAAAAAADLJNGQAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAIDEGAAAAAABgkBgDAAAAAAAwSIwBAAAAAAAYJMYAAAAAAAAMEmMAAAAAAAAGiTEAAAAAAACDxBgAAAAAAIBBYgwAAAAAAMAgMQYAAAAAAGCQGAMAAAAAADBIjAEAAAAAABgkxgAAAAAAAAwSYwAAAAAAAAaJMQAAAAAAAIPEGAAAAAAAgEFiDAAAAAAAwCAxBgAAAAAAYJAYAwAAAAAAMEiMAQAAAAAAGCTGAAAAAAAADBJjAAAAAAAABokxAAAAAAAAg8QYAAAAAACAQWIMAAAAAADAoP8HIueR1j0nMnkAAAAASUVORK5CYII=\n",
215 | "text/plain": [
216 | ""
217 | ]
218 | },
219 | "metadata": {
220 | "needs_background": "light"
221 | },
222 | "output_type": "display_data"
223 | }
224 | ],
225 | "source": [
226 | "tsne(\"##go\", 30)"
227 | ]
228 | },
229 | {
230 | "cell_type": "code",
231 | "execution_count": null,
232 | "metadata": {},
233 | "outputs": [],
234 | "source": []
235 | }
236 | ],
237 | "metadata": {
238 | "kernelspec": {
239 | "display_name": "Python 3",
240 | "language": "python",
241 | "name": "python3"
242 | },
243 | "language_info": {
244 | "codemirror_mode": {
245 | "name": "ipython",
246 | "version": 3
247 | },
248 | "file_extension": ".py",
249 | "mimetype": "text/x-python",
250 | "name": "python",
251 | "nbconvert_exporter": "python",
252 | "pygments_lexer": "ipython3",
253 | "version": "3.6.4"
254 | }
255 | },
256 | "nbformat": 4,
257 | "nbformat_minor": 2
258 | }
259 |
--------------------------------------------------------------------------------
/extract.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | np.set_printoptions(threshold=np.nan)
4 | from multiprocessing import Pool
5 | import re
6 | from tqdm import tqdm
7 |
8 | import os
9 | os.system("pip install pytorch_pretrained_bert")
10 | from pytorch_pretrained_bert import BertTokenizer, BertModel
11 |
12 | def get_embeddings(mname):
13 | '''Gets pretrained embeddings of Bert-tokenized tokens or subwords
14 | mname: string. model name.
15 | '''
16 | print("# Model name:", mname)
17 |
18 | print("# Load pre-trained model tokenizer (vocabulary)")
19 | tokenizer = BertTokenizer.from_pretrained(mname)
20 |
21 | print("# Construct vocab")
22 | vocab = [token for token in tokenizer.vocab]
23 |
24 | print("# Load pre-trained model")
25 | model = BertModel.from_pretrained(mname)
26 |
27 | print("# Load word embeddings")
28 | emb = model.embeddings.word_embeddings.weight.data
29 | emb = emb.numpy()
30 |
31 | print("# Write")
32 | with open("{}.{}.{}d.vec".format(mname, len(vocab), emb.shape[-1]), "w") as fout:
33 | fout.write("{} {}\n".format(len(vocab), emb.shape[-1]))
34 | assert len(vocab)==len(emb), "The number of vocab and embeddings MUST be identical."
35 | for token, e in zip(vocab, emb):
36 | e = np.array2string(e, max_line_width=np.inf)[1:-1]
37 | e = re.sub("[ ]+", " ", e)
38 | fout.write("{} {}\n".format(token, e))
39 |
40 | if __name__ == "__main__":
41 | mnames = (
42 | "bert-base-uncased",
43 | "bert-large-uncased",
44 | "bert-base-cased",
45 | "bert-large-cased",
46 | "bert-base-multilingual-cased",
47 | "bert-base-multilingual-uncased",
48 | "bert-base-chinese"
49 | )
50 |
51 | p = Pool(16)
52 | with tqdm(total=len(mnames)) as pbar:
53 | for _ in tqdm(p.imap(get_embeddings, mnames)):
54 | pbar.update()
--------------------------------------------------------------------------------
/go.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Kyubyong/bert-token-embeddings/73d68466be290551b4a9a31d4a02a7330cac4ce3/go.png
--------------------------------------------------------------------------------
/look.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Kyubyong/bert-token-embeddings/73d68466be290551b4a9a31d4a02a7330cac4ce3/look.png
--------------------------------------------------------------------------------