├── .gitignore
├── 0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.Rmd
├── 0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.docx
├── 0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.pdf
├── 0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.tex
├── 0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files
├── figure-docx
│ ├── d-plot-1.pdf
│ ├── d-plot-1.png
│ ├── eta-plot-1.pdf
│ ├── eta-plot-1.png
│ ├── mean-plot-1.pdf
│ ├── mean-plot-1.png
│ ├── mean-plot2-1.pdf
│ ├── mean-plot2-1.png
│ ├── p-plot-1.pdf
│ ├── p-plot-1.png
│ ├── power-plot-1.pdf
│ ├── power-plot-1.png
│ ├── sim-3-1.pdf
│ ├── sim-3-1.png
│ ├── sim-3-2.pdf
│ ├── sim-3-2.png
│ ├── sim-4-1.pdf
│ ├── sim-4-1.png
│ ├── sim-holm-1.pdf
│ ├── sim-holm-1.png
│ ├── sim-interaction-2-1.pdf
│ └── sim-interaction-2-1.png
└── figure-latex
│ ├── d-plot-1.pdf
│ ├── d-plot-1.png
│ ├── eta-plot-1.pdf
│ ├── eta-plot-1.png
│ ├── mean-plot-1.pdf
│ ├── mean-plot-1.png
│ ├── mean-plot-2.pdf
│ ├── mean-plot-2.png
│ ├── mean-plot-3.pdf
│ ├── mean-plot-3.png
│ ├── mean-plot-4.pdf
│ ├── mean-plot-4.png
│ ├── mean-plot-5.pdf
│ ├── mean-plot-5.png
│ ├── mean-plot2-1.pdf
│ ├── mean-plot2-1.png
│ ├── p-plot-1.pdf
│ ├── p-plot-1.png
│ ├── power-plot-1.pdf
│ ├── power-plot-1.png
│ ├── sim-3-1.pdf
│ ├── sim-3-1.png
│ ├── sim-3-2.pdf
│ ├── sim-3-2.png
│ ├── sim-4-1.pdf
│ ├── sim-4-1.png
│ ├── sim-holm-1.pdf
│ ├── sim-holm-1.png
│ ├── sim-interaction-2-1.pdf
│ └── sim-interaction-2-1.png
├── 0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_old.pdf
├── ANOVA_design.R
├── ANOVA_power.R
├── ANOVA_power_manova_temp.R
├── ANOVA_power_simulation.R
├── ANOVA_power_simulation.Rproj
├── Appendix
├── 2019_set_seed.PNG
├── ANOVApowerInput.PNG
├── DataEntry.PNG
├── DataEntry2.PNG
├── DataEntry3.PNG
├── DesignInput1_3b1Sim.PNG
├── DesignInput2_3b1Sim.PNG
├── DesignInput_2bSim.PNG
├── DesignInput_3wSim.PNG
├── DesignInput_Inter1Sim.PNG
├── DesignOutput_2bSim.PNG
├── DesignOutput_3b1Sim.PNG
├── DesignOutput_3wSim.PNG
├── DesignOutput_Inter1Sim.PNG
├── DownloadReport.PNG
├── FactorLabels_2bSim.PNG
├── Means_2bSim.PNG
├── Num_Simulations.PNG
├── PowerInput_2bSim.PNG
├── PowerInput_3b1Sim.PNG
├── Report_2bSim.pdf
├── Report_3b1Sim.pdf
├── Report_3wSim.pdf
├── Report_Inter1.pdf
├── Report_Inter2.pdf
├── Report_Multi.pdf
├── SetSimulationSeed_default.PNG
├── SimInput_3w.PNG
├── SimInput_Multi.PNG
├── SimResult_2bSim.PNG
├── SimResult_3b1Sim.PNG
├── SimResult_3wSim.PNG
├── SimResult_Inter1Sim.PNG
├── SimResult_Inter2Sim.PNG
├── SimResult_MultiSim.PNG
├── SizeSDCorr_2bSim.PNG
└── TestOutput.PNG
├── Appendix_R_Functions.Rmd
├── Appendix_R_Functions.html
├── Appendix_R_Functions.pdf
├── Appendix_Shiny_App.Rmd
├── Appendix_Shiny_App.html
├── Appendix_Shiny_App.log
├── Appendix_Shiny_App.pdf
├── Appendix_Shiny_App.tex
├── LICENSE
├── README.Rmd
├── README.md
├── README_files
├── figure-gfm
│ ├── mean-plot-1.png
│ ├── sim-interaction-2-1.png
│ ├── sim-interaction-3-1.png
│ ├── sim-interaction-3-2.png
│ ├── unnamed-chunk-1-1.png
│ ├── unnamed-chunk-11-1.png
│ ├── unnamed-chunk-12-1.png
│ ├── unnamed-chunk-18-1.png
│ ├── unnamed-chunk-19-1.png
│ ├── unnamed-chunk-21-1.png
│ ├── unnamed-chunk-25-1.png
│ ├── unnamed-chunk-27-1.png
│ ├── unnamed-chunk-28-1.png
│ ├── unnamed-chunk-31-1.png
│ ├── unnamed-chunk-4-1.png
│ ├── unnamed-chunk-6-1.png
│ ├── unnamed-chunk-7-1.png
│ └── unnamed-chunk-8-1.png
└── figure-markdown_github
│ ├── unnamed-chunk-2-1.png
│ ├── unnamed-chunk-2-2.png
│ ├── unnamed-chunk-3-1.png
│ ├── unnamed-chunk-3-2.png
│ └── unnamed-chunk-4-1.png
├── TEST3WAY.R
├── anova_power.bib
├── calc_f_d_eta.R
├── check_effect_size.R
├── conf_limits_nct.R
├── d_to_dz.R
├── dz_to_d.R
├── effect_size_d_independent_function.R
├── effect_size_d_paired_function.R
├── helper_functions
├── calc_error_rate.R
├── cor_mat_examples.xlsx
├── f_to_eta.R
├── loop_over_variables.R
├── plot_power_2x2_within.R
├── plot_power_oneway_between.R
├── plot_power_oneway_within.R
├── plot_power_twoway_between.R
├── power_2x2_within.R
├── power_oneway_between.R
├── power_oneway_within.R
├── power_threeway_between.R
└── power_twoway_between.R
├── mu_from_ES.R
├── p_d_ttest.R
├── power_for_interactions.Rmd
├── program_temp_file.R
├── render_validation_files.R
├── screenshots
├── 3x6_correlation_matrix.png
├── PS2000.png
├── gpower_1.png
├── gpower_10.png
├── gpower_11.png
├── gpower_12.png
├── gpower_13.png
├── gpower_14.png
├── gpower_15.png
├── gpower_2.png
├── gpower_3.png
├── gpower_4.png
├── gpower_5.png
├── gpower_6.png
├── gpower_7.png
├── gpower_8.png
├── gpower_9.png
├── maturing.svg
└── orcid.png
├── shiny_app
├── app.R
└── report.Rmd
├── to_do.R
├── try_out single test.R
└── validation_files
├── 1.1_validation_power_between_1x2.Rmd
├── 1.1_validation_power_between_1x2.md
├── 1.1_validation_power_between_1x2.pdf
├── 1.1_validation_power_between_1x2.tex
├── 1.2_validation_power_between_1x3.Rmd
├── 1.2_validation_power_between_1x3.md
├── 1.2_validation_power_between_1x3.pdf
├── 1.2_validation_power_between_1x3.tex
├── 1.3_validation_power_between_Brysbaert_1x3.Rmd
├── 1.3_validation_power_between_Brysbaert_1x3.md
├── 1.3_validation_power_between_Brysbaert_1x3.pdf
├── 1.3_validation_power_between_Brysbaert_1x3.tex
├── 1.3_validation_power_between_Brysbaert_1x3_files
├── figure-gfm
│ ├── unnamed-chunk-10-1.png
│ ├── unnamed-chunk-4-1.png
│ └── unnamed-chunk-7-1.png
└── figure-latex
│ └── unnamed-chunk-4-1.pdf
├── 2.1_validation_power_within_2x1.Rmd
├── 2.1_validation_power_within_2x1.md
├── 2.1_validation_power_within_2x1.pdf
├── 2.1_validation_power_within_2x1.tex
├── 2.2_validation_power_within_3x1.Rmd
├── 2.2_validation_power_within_3x1.md
├── 2.2_validation_power_within_3x1.pdf
├── 2.2_validation_power_within_3x1.tex
├── 2.3_validation_power_within_Brysbaert_3x1.Rmd
├── 2.3_validation_power_within_Brysbaert_3x1.md
├── 2.3_validation_power_within_Brysbaert_3x1.pdf
├── 3.1_validation_power_between_within_2x2.Rmd
├── 3.1_validation_power_between_within_2x2.md
├── 3.1_validation_power_between_within_2x2.pdf
├── 3.1_validation_power_between_within_2x2.tex
├── 3.2_validation_power_within_within_2x2_Amsel.Rmd
├── 3.2_validation_power_within_within_2x2_Amsel.md
├── 3.3_validation_power_within_within_3x6.Rmd
├── 3.3_validation_power_within_within_Provin_Schutz_Not_Complete.Rmd
├── 3.3_validation_power_within_within_Provin_Schutz_Not_Complete.md
├── 4.1_error_control_in_exploratory_ANOVA.Rmd
├── 4.1_error_control_in_exploratory_ANOVA.md
├── 4.1_error_control_in_exploratory_ANOVA.tex
├── 4.1_error_control_in_exploratory_ANOVA_files
└── figure-latex
│ └── unnamed-chunk-1-1.pdf
├── 4.2_power_for_interactions.Rmd
├── 4.2_power_for_interactions.pdf
├── 4.2_power_for_interactions.tex
├── 4.3_analytic_power_functions.Rmd
├── 4.3_analytic_power_functions.md
├── 4.3_analytic_power_functions.pdf
├── 4.3_analytic_power_functions_files
└── figure-latex
│ ├── unnamed-chunk-1-1.pdf
│ ├── unnamed-chunk-10-1.pdf
│ ├── unnamed-chunk-5-1.pdf
│ └── unnamed-chunk-8-1.pdf
├── 4.4_power_curves_2x2_within.Rmd
├── 4.4_power_curves_2x2_within.md
├── 4.4_power_curves_2x2_within.tex
├── 4.4_power_curves_2x2_within_files
└── figure-latex
│ └── unnamed-chunk-2-1.pdf
├── 4.5_power_for_design_variations.Rmd
├── 4.5_power_for_design_variations.md
├── 4.5_power_for_design_variations.pdf
├── 4.5_power_for_design_variations.tex
├── 4.6_threeway_interactions.Rmd
├── 4.6_threeway_interactions.md
├── 4.6_threeway_interactions.pdf
├── 4.6_threeway_interactions.tex
├── 4.6_threeway_interactions_files
└── figure-markdown_github
│ ├── unnamed-chunk-1-1.png
│ ├── unnamed-chunk-3-1.png
│ ├── unnamed-chunk-4-1.png
│ └── unnamed-chunk-5-1.png
├── 4.7_f_in_threeway_interactions.Rmd
├── 5.1_tutorial_entering_correlation_matrix.Rmd
├── 6.1_educational_stuff.Rmd
├── 6.1_educational_stuff.md
├── 6.1_educational_stuff_files
└── figure-markdown_github
│ ├── unnamed-chunk-1-1.png
│ └── unnamed-chunk-5-1.png
├── Validation.Rmd
├── Validation.md
├── Validation_files
└── figure-markdown_github
│ ├── unnamed-chunk-10-1.png
│ ├── unnamed-chunk-3-1.png
│ ├── unnamed-chunk-4-1.png
│ └── unnamed-chunk-7-1.png
├── comments_Aaron.R
├── conversion_SPSS_partial_eta.pdf
├── final_pdf
├── 1.1_validation_power_between_1x2.pdf
├── 1.2_validation_power_between_1x3.pdf
├── 1.3_validation_power_between_Brysbaert_1x3.pdf
├── 2.1_validation_power_within_2x1.pdf
├── 2.2_validation_power_within_3x1.pdf
├── 2.3_validation_power_within_Brysbaert_3x1.pdf
├── 3.1_validation_power_between_within_2x2.pdf
├── 3.2_validation_power_within_within_2x2_Amsel.pdf
├── 3.3_validation_power_within_within_Provin_Schutz_Not_Complete.pdf
├── 4.1_error_control_in_exploratory_ANOVA.pdf
├── 4.3_analytic_power_functions.pdf
└── 4.4_power_curves_2x2_within.pdf
├── power_code_brysbaert
├── Power ANCOVA Bayesian pre-post design.R
├── Power ANCOVA pre-post design.R
├── Power ANOVA 2x2 related groups.R
├── Power ANOVA 2x2 split-plot design.R
├── Power ANOVA three related groups.R
├── Power ANOVA three unrelated groups.R
├── Power Toster analysis correlation.R
├── Power Toster analysis related samples.R
├── Power Toster analysis unrelated samples.R
├── Power correlation test.R
├── Power t test related samples.R
└── Power t test unrelated samples.R
├── pwr2ppl
├── DESCRIPTION
├── NAMESPACE
├── R
│ ├── Chi2x2.R
│ ├── Chi2x3.R
│ ├── ChiES.R
│ ├── ChiGOF.R
│ ├── LRcat.R
│ ├── LRcont.R
│ ├── MANOVA1f.R
│ ├── MRC.R
│ ├── MRC_all.R
│ ├── MRC_short2.R
│ ├── MRC_shortcuts.R
│ ├── R2_prec.R
│ ├── R2ch.R
│ ├── anc.R
│ ├── anova1f_3.R
│ ├── anova1f_3c.R
│ ├── anova1f_4.R
│ ├── anova1f_4c.R
│ ├── anova2x2.R
│ ├── anova2x2_se.R
│ ├── corr.R
│ ├── d_prec.R
│ ├── depb.R
│ ├── depcorr0.R
│ ├── depcorr1.R
│ ├── indR2.R
│ ├── indb.R
│ ├── indcorr.R
│ ├── indt.R
│ ├── lmm1F.R
│ ├── lmm1Ftrends.R
│ ├── lmm1w1b.R
│ ├── lmm2F.R
│ ├── lmm2Fse.R
│ ├── md_precision.R
│ ├── med.R
│ ├── pairt.R
│ ├── prop1.R
│ ├── propind.R
│ ├── r_prec.R
│ ├── regint.R
│ ├── regintR2.R
│ ├── tfromd.R
│ ├── win1F.R
│ ├── win1Ftrends.R
│ ├── win1bg1.R
│ ├── win2F.R
│ └── win2Fse.R
├── README.md
├── man
│ ├── Chi2X3.Rd
│ ├── Chi2x2.Rd
│ ├── ChiES.Rd
│ ├── ChiGOF.Rd
│ ├── LRcat.Rd
│ ├── LRcont.Rd
│ ├── MANOVA1f.Rd
│ ├── MRC.Rd
│ ├── MRC_all.Rd
│ ├── MRC_short2.Rd
│ ├── R2_prec.Rd
│ ├── R2ch.Rd
│ ├── anc.Rd
│ ├── anova1f_3.Rd
│ ├── anova1f_3c.Rd
│ ├── anova1f_4.Rd
│ ├── anova1f_4c.Rd
│ ├── anova2x2.Rd
│ ├── anova2x2_se.Rd
│ ├── corr.Rd
│ ├── d_prec.Rd
│ ├── depb.Rd
│ ├── depcorr0.Rd
│ ├── depcorr1.Rd
│ ├── hello.Rd
│ ├── indR2.Rd
│ ├── indb.Rd
│ ├── indcorr.Rd
│ ├── indt.Rd
│ ├── lmm1F.Rd
│ ├── lmm1Ftrends.Rd
│ ├── lmm1w1b.Rd
│ ├── lmm2F.Rd
│ ├── lmm2Fse.Rd
│ ├── md_prec.Rd
│ ├── med.Rd
│ ├── mrc_shortcuts.Rd
│ ├── packrat
│ │ ├── init.R
│ │ ├── packrat.lock
│ │ └── packrat.opts
│ ├── pairt.Rd
│ ├── prop1.Rd
│ ├── propind.Rd
│ ├── r_prec.Rd
│ ├── regint.Rd
│ ├── regintR2.Rd
│ ├── tfromd.Rd
│ ├── win1F.Rd
│ ├── win1Ftrends.Rd
│ ├── win1bg1.Rd
│ ├── win2F.Rd
│ └── win2Fse.Rd
├── pwr2ppl.Rproj
└── pwr2ppl_0.1.0.tar.gz
├── screenshots
├── 3x6_correlation_matrix.png
├── PS2000.png
├── gpower_1.png
├── gpower_10.png
├── gpower_11.png
├── gpower_12.png
├── gpower_13.png
├── gpower_14.png
├── gpower_15.png
├── gpower_2.png
├── gpower_3.png
├── gpower_4.png
├── gpower_5.png
├── gpower_6.png
├── gpower_7.png
├── gpower_8.png
└── gpower_9.png
├── transforming_effect_sizes.R
├── try_out_variable_cors.R
├── validation_calc_f_d_eta.Rmd
├── validation_calc_f_d_eta.md
├── validation_effect_sizes_between.Rmd
├── validation_effect_sizes_between.md
├── validation_effect_sizes_between_files
└── figure-markdown_github
│ ├── unnamed-chunk-4-1.png
│ ├── unnamed-chunk-6-1.png
│ └── unnamed-chunk-8-1.png
├── validation_mlm.R
├── validation_power_between.Rmd
├── validation_power_between.md
├── validation_power_between_files
└── figure-markdown_github
│ ├── unnamed-chunk-4-1.png
│ ├── unnamed-chunk-6-1.png
│ ├── unnamed-chunk-8-1.png
│ └── unnamed-chunk-9-1.png
├── validation_power_between_within.Rmd
├── validation_power_between_within.md
├── validation_power_between_within_files
└── figure-markdown_github
│ ├── unnamed-chunk-2-1.png
│ └── unnamed-chunk-3-1.png
├── validation_power_within.md
├── validation_power_within_Brysbaert.Rmd
├── validation_power_within_Brysbaert.md
├── validation_power_within_Brysbaert_files
└── figure-markdown_github
│ ├── unnamed-chunk-4-1.png
│ └── unnamed-chunk-8-1.png
└── validation_power_within_files
└── figure-markdown_github
├── gpower_1.png
└── unnamed-chunk-4-1.png
/.gitignore:
--------------------------------------------------------------------------------
1 | .Rhistory
2 | .RData
3 | .Ruserdata
4 | .httr-oauth
5 | Other/**
6 | .Rproj.user
7 | sim_data
8 |
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.docx
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/d-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/d-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/d-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/d-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/eta-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/eta-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/eta-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/eta-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot2-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot2-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/mean-plot2-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/p-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/p-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/p-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/p-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/power-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/power-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/power-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/power-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-2.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-3-2.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-4-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-4-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-4-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-holm-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-holm-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-holm-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-holm-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-interaction-2-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-interaction-2-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-interaction-2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-docx/sim-interaction-2-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/d-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/d-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/d-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/d-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/eta-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/eta-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/eta-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/eta-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-2.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-2.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-3.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-3.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-3.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-4.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-4.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-4.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-5.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-5.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot-5.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot2-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot2-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/mean-plot2-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/p-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/p-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/p-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/p-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/power-plot-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/power-plot-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/power-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/power-plot-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-2.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-3-2.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-4-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-4-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-4-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-holm-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-holm-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-holm-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-holm-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-interaction-2-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-interaction-2-1.pdf
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-interaction-2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_files/figure-latex/sim-interaction-2-1.png
--------------------------------------------------------------------------------
/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_old.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/0.1_Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs_old.pdf
--------------------------------------------------------------------------------
/ANOVA_power_simulation.Rproj:
--------------------------------------------------------------------------------
1 | Version: 1.0
2 |
3 | RestoreWorkspace: Default
4 | SaveWorkspace: Default
5 | AlwaysSaveHistory: Default
6 |
7 | EnableCodeIndexing: Yes
8 | UseSpacesForTab: Yes
9 | NumSpacesForTab: 2
10 | Encoding: UTF-8
11 |
12 | RnwWeave: Sweave
13 | LaTeX: pdfLaTeX
14 |
--------------------------------------------------------------------------------
/Appendix/2019_set_seed.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/2019_set_seed.PNG
--------------------------------------------------------------------------------
/Appendix/ANOVApowerInput.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/ANOVApowerInput.PNG
--------------------------------------------------------------------------------
/Appendix/DataEntry.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DataEntry.PNG
--------------------------------------------------------------------------------
/Appendix/DataEntry2.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DataEntry2.PNG
--------------------------------------------------------------------------------
/Appendix/DataEntry3.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DataEntry3.PNG
--------------------------------------------------------------------------------
/Appendix/DesignInput1_3b1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignInput1_3b1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignInput2_3b1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignInput2_3b1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignInput_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignInput_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignInput_3wSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignInput_3wSim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignInput_Inter1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignInput_Inter1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignOutput_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignOutput_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignOutput_3b1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignOutput_3b1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignOutput_3wSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignOutput_3wSim.PNG
--------------------------------------------------------------------------------
/Appendix/DesignOutput_Inter1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DesignOutput_Inter1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/DownloadReport.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/DownloadReport.PNG
--------------------------------------------------------------------------------
/Appendix/FactorLabels_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/FactorLabels_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/Means_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Means_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/Num_Simulations.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Num_Simulations.PNG
--------------------------------------------------------------------------------
/Appendix/PowerInput_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/PowerInput_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/PowerInput_3b1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/PowerInput_3b1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/Report_2bSim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Report_2bSim.pdf
--------------------------------------------------------------------------------
/Appendix/Report_3b1Sim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Report_3b1Sim.pdf
--------------------------------------------------------------------------------
/Appendix/Report_3wSim.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Report_3wSim.pdf
--------------------------------------------------------------------------------
/Appendix/Report_Inter1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Report_Inter1.pdf
--------------------------------------------------------------------------------
/Appendix/Report_Inter2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Report_Inter2.pdf
--------------------------------------------------------------------------------
/Appendix/Report_Multi.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/Report_Multi.pdf
--------------------------------------------------------------------------------
/Appendix/SetSimulationSeed_default.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SetSimulationSeed_default.PNG
--------------------------------------------------------------------------------
/Appendix/SimInput_3w.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimInput_3w.PNG
--------------------------------------------------------------------------------
/Appendix/SimInput_Multi.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimInput_Multi.PNG
--------------------------------------------------------------------------------
/Appendix/SimResult_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimResult_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/SimResult_3b1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimResult_3b1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/SimResult_3wSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimResult_3wSim.PNG
--------------------------------------------------------------------------------
/Appendix/SimResult_Inter1Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimResult_Inter1Sim.PNG
--------------------------------------------------------------------------------
/Appendix/SimResult_Inter2Sim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimResult_Inter2Sim.PNG
--------------------------------------------------------------------------------
/Appendix/SimResult_MultiSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SimResult_MultiSim.PNG
--------------------------------------------------------------------------------
/Appendix/SizeSDCorr_2bSim.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/SizeSDCorr_2bSim.PNG
--------------------------------------------------------------------------------
/Appendix/TestOutput.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix/TestOutput.PNG
--------------------------------------------------------------------------------
/Appendix_R_Functions.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix_R_Functions.pdf
--------------------------------------------------------------------------------
/Appendix_Shiny_App.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/Appendix_Shiny_App.pdf
--------------------------------------------------------------------------------
/README.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | output: github_document
3 | ---
4 |
5 | ```{r setup, include=FALSE}
6 | knitr::opts_chunk$set(echo = TRUE)
7 | ```
8 |
9 | # This project is depracated
10 |
11 | The alpha version of ANOVApower has been transformed into Superpower together with Aaron Caldwell. The new GitHub repository is at: https://github.com/arcaldwell49/Superpower.
12 | An extensive manual for Superpower can be found at: https://aaroncaldwell.us/SuperpowerBook/.
13 | ANOVApower will not be updated. All future development will happen at the SUperpower site.
14 |
15 | The manuscript introducing Superpower can now be found at: https://github.com/Lakens/Simulation_Based_Power_Analysis_For_Factorial_ANOVA_Designs
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # This project is depracated
3 |
4 | The alpha version of ANOVApower has been transformed into Superpower
5 | together with Aaron Caldwell. The new GitHub repository is at:
6 | . An extensive manual for
7 | Superpower can be found at: .
8 | ANOVApower will not be updated. All future development will happen at
9 | the SUperpower site.
10 |
11 | The manuscript introducing Superpower can now be found at:
12 |
13 |
--------------------------------------------------------------------------------
/README_files/figure-gfm/mean-plot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/mean-plot-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/sim-interaction-2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/sim-interaction-2-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/sim-interaction-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/sim-interaction-3-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/sim-interaction-3-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/sim-interaction-3-2.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-1-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-1-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-11-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-11-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-12-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-12-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-18-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-18-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-19-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-19-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-21-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-21-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-25-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-25-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-27-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-27-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-28-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-28-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-31-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-31-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-6-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-6-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-7-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-7-1.png
--------------------------------------------------------------------------------
/README_files/figure-gfm/unnamed-chunk-8-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-gfm/unnamed-chunk-8-1.png
--------------------------------------------------------------------------------
/README_files/figure-markdown_github/unnamed-chunk-2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-markdown_github/unnamed-chunk-2-1.png
--------------------------------------------------------------------------------
/README_files/figure-markdown_github/unnamed-chunk-2-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-markdown_github/unnamed-chunk-2-2.png
--------------------------------------------------------------------------------
/README_files/figure-markdown_github/unnamed-chunk-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-markdown_github/unnamed-chunk-3-1.png
--------------------------------------------------------------------------------
/README_files/figure-markdown_github/unnamed-chunk-3-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-markdown_github/unnamed-chunk-3-2.png
--------------------------------------------------------------------------------
/README_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/README_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/calc_f_d_eta.R:
--------------------------------------------------------------------------------
1 | #This function allows you to calculate f, d and eta squared following Cohen, 1988, p 277
2 | # From Cohen, 1988, p 277
3 | # The patterns are:
4 | # I. Minimum variability: one mean at each end of d, the remaining k- 2 means all at the midpoint.
5 | # 2. Intermediate variability: the k means equally spaced over d.
6 | # 3. Maximum variability: the means all at the end points of d.
7 |
8 | # For each of these patterns, there is a fixed relationship between f and d for any given number of means, k.
9 |
10 | # Pattern 1. For any given range of means, d, the minimum standard
11 | # deviation, f1, results when the remaining k - 2 means are concentrated at
12 | # the mean of the means (0 when expressed in standard units), i.e., half-way
13 | # between the largest and smallest.
14 | #
15 | # Pattern 2. A pattern of medium variability results when the k means
16 | # are equally spaced over the range, and therefore at intervals of d/(k- 1).
17 | #
18 | # Pattern 3. It is demonstrable and intuitively evident that for any given
19 | # range the dispersion which yield~ the maximum standard deviation has the
20 | # k means falling at both extremes of the range. When k is even, !k fall at
21 | # - !d and the other !k fall at + !d; when k is odd, (k + I )/2 of the means
22 | # fall at either end and the (k- 1)/2 remaining means at the other. With this
23 | # pattern, for all even numbers of means, use formula (8.2.12).
24 | # When k is odd, and there is thus one more mean at one extreme than at
25 | # the other, use formula (8.2.13).
26 |
27 | calc_f_d_eta <- function(mu, sd, variability){
28 | if(variability == "minimum"){
29 | k = length(mu)
30 | d <- (max(mu)-min(mu))/sd
31 | f <- d*sqrt(1/(2*k))
32 | f2 <- f^2
33 | ES <- f2/(f2+1)
34 | }
35 | if(variability == "medium"){
36 | k = length(mu)
37 | d <- (max(mu)-min(mu))/sd
38 | f <- (d/2)*sqrt((k+1)/(3*(k-1)))
39 | f2 <- f^2
40 | ES <- f2/(f2+1)
41 | }
42 | if(variability == "maximum"){
43 | k = length(mu)
44 | d <- (max(mu)-min(mu))/sd
45 | f <- ifelse(k %% 2 == 0, .5*d, d*(sqrt(k^2-1)/(2*k)))
46 | f2 <- f^2
47 | ES <- f2/(f2+1)
48 | }
49 | invisible(list(mu = mu,
50 | sd = sd,
51 | d = d,
52 | f = f,
53 | f2 = f2,
54 | ES = ES))
55 | }
--------------------------------------------------------------------------------
/check_effect_size.R:
--------------------------------------------------------------------------------
1 | library(mvtnorm)
2 | library(afex)
3 | library(emmeans)
4 | library(ggplot2)
5 | library(gridExtra)
6 | library(reshape2)
7 |
8 | source("ANOVA_design.R")
9 | source("ANOVA_power.R")
10 |
11 |
12 | #simply repeated effect
13 | design_result <- ANOVA_design(string = "2w",
14 | n = 80,
15 | mu = c(1, 1.4),
16 | sd = 1,
17 | r=0.9,
18 | p_adjust = "none",
19 | labelnames = c("age", "old", "young"))
20 |
21 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = 500)
22 |
23 | #This should return a Cohen's dz of 0.9844.
24 |
25 | #same design, now between effect
26 | design_result <- ANOVA_design(string = "2b",
27 | n = 80,
28 | mu = c(1, 1.4),
29 | sd = 1,
30 | r=0.9,
31 | p_adjust = "none",
32 | labelnames = c("age", "old", "young"))
33 |
34 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = 500)
35 |
36 | #This should return a Cohen's d of 0.4.
37 |
38 | #now again within effect, but r = 0.5
39 | design_result <- ANOVA_design(string = "2w",
40 | n = 80,
41 | mu = c(1, 1.4),
42 | sd = 1,
43 | r=0.5,
44 | p_adjust = "none",
45 | labelnames = c("age", "old", "young"))
46 |
47 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = 500)
48 |
49 | #This should return a Cohen's dz of 0.4 (because the r = 0.5, same as between)
--------------------------------------------------------------------------------
/d_to_dz.R:
--------------------------------------------------------------------------------
1 | #This function allows you to compute d from dz (Morris & DeShon, 2002)
2 |
3 | d_to_dz <- function(d, r){
4 | dz <- d/(sqrt(2*(1-r)))
5 | invisible(list(d = d,
6 | r = r,
7 | dz = dz))
8 | }
--------------------------------------------------------------------------------
/dz_to_d.R:
--------------------------------------------------------------------------------
1 | #This function allows you to compute dz from d (Morris & DeShon, 2002)
2 |
3 | dz_to_d <- function(dz, r){
4 | d <- dz * sqrt(2*(1-r))
5 | invisible(list(d = d,
6 | r = r,
7 | dz = dz))
8 | }
--------------------------------------------------------------------------------
/helper_functions/calc_error_rate.R:
--------------------------------------------------------------------------------
1 | calc_error_rate_main <- function(power_result, alpha_level=0.05){
2 | sum(apply(as.matrix(power_result$sim_data[(1:length(power_result$main_results$power))]), 1,
3 | function(x) round(mean(ifelse(x < alpha_level, 1, 0)),4)) > 0)/power_result$nsims*100
4 | }
5 |
6 | calc_error_rate_pc <- function(power_result, alpha_level=0.05){
7 | sum(apply(as.matrix(power_result$sim_data[(2*length(power_result$main_results$power)+1:length(power_result$pc_results$power))]), 1,
8 | function(x) round(mean(ifelse(x < alpha_level, 1, 0)),4)) > 0)/power_result$nsims*100
9 | }
10 |
11 |
12 | xxxx <- as.matrix(power_result$sim_data[(2*length(power_result$main_results$power)+1:length(power_result$pc_results$power))])
13 |
--------------------------------------------------------------------------------
/helper_functions/cor_mat_examples.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/helper_functions/cor_mat_examples.xlsx
--------------------------------------------------------------------------------
/helper_functions/f_to_eta.R:
--------------------------------------------------------------------------------
1 | # I. Minimum variability: one mean at each end of d, the remaining k- 2 means all at the midpoint
2 | mu = c(2, 0, 0, -2) # population means
3 | sd = 1 #population standard deviations
4 | k = length(mu)
5 | d <- (max(mu)-min(mu))/sd
6 | f <- .5*d
7 | f2 <- f^2
8 | ES <- f2/(f2+1)
9 | ES
10 |
11 |
12 | # 2. A pattern of medium variability results when the k means are equally spaced over the range, and therefore at intervals of d/(k- 1)
13 | mu = c(6, 2, -2, -6) # population means
14 | sd = 1 #population standard deviations
15 | k = length(mu)
16 | d <- (max(mu)-min(mu))/sd
17 | f <- (d/2)*sqrt((k+1)/(3*(k-1)))
18 | f2 <- f^2
19 | ES <- f2/(f2+1)
20 | ES
21 |
22 |
23 |
24 | # 3. Maximum variability: the means all at the end points of d
25 | mu = c(-1, -1, 1, 1) # population means
26 | sd = 1 #population standard deviations
27 | k = length(mu)
28 | d <- (max(mu)-min(mu))/sd
29 | f <- ifelse(k %% 2 == 0, .5*d, d*(sqrt(k^2-1)/(2*k)))
30 | f2 <- f^2
31 | ES <- f2/(f2+1)
32 | ES
33 |
34 |
--------------------------------------------------------------------------------
/helper_functions/loop_over_variables.R:
--------------------------------------------------------------------------------
1 | # Install the two functions from GitHub by running the code below:
2 |
3 | source("https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/master/ANOVA_design.R")
4 | source("https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/master/ANOVA_power.R")
5 |
6 |
7 |
8 |
9 | repeat_sim <- function(x){ANOVA_power(ANOVA_design(string = "2b*2w",
10 | n = x,
11 | mu = c(1.03, 1.21, 0.98, 1.01),
12 | sd = 1.03,
13 | r=0.87,
14 | p_adjust = "none"),
15 | nsims = 100)
16 | }
17 |
18 | repeat_sim(x=20)
--------------------------------------------------------------------------------
/helper_functions/plot_power_oneway_between.R:
--------------------------------------------------------------------------------
1 | plot_power_oneway_between <- function(design_result, max_n){
2 |
3 | string = design_result$string
4 | mu = design_result$mu
5 | sd <- design_result$sd
6 | r <- design_result$r
7 | p_adjust = design_result$p_adjust
8 | labelnames = c(design_result$factornames[[1]], design_result$labelnames[[1]])
9 |
10 | n_vec <- seq(from = 5, to = max_n)
11 |
12 | power_A <- numeric(length(n_vec))
13 |
14 | for (i in 1:length(n_vec)){
15 | design_result <- ANOVA_design(string = string,
16 | n = n_vec[i],
17 | mu = mu,
18 | sd = sd,
19 | r = r,
20 | p_adjust = p_adjust,
21 | labelnames = labelnames)
22 |
23 | power_res <- power_oneway_between(design_result)
24 |
25 | power_A[i] <- power_res$power*100
26 | }
27 |
28 | res_df <- data.frame(n_vec, power_A)
29 |
30 | library(ggplot2)
31 | library(gridExtra)
32 | p1 <- ggplot(data=res_df, aes(x = n_vec, y = power_A)) +
33 | geom_line( size=1.5) +
34 | scale_x_continuous(limits = c(0, max(n_vec))) +
35 | scale_y_continuous(limits = c(0, 100)) +
36 | theme_bw() +
37 | labs(x="Sample size", y = "Power Factor A")
38 |
39 | invisible(list(p1 = p1,
40 | power_df = data.frame(paste("f = ",
41 | round(power_res$Cohen_f,2)),
42 | n_vec,
43 | power_A)))
44 | }
--------------------------------------------------------------------------------
/helper_functions/plot_power_oneway_within.R:
--------------------------------------------------------------------------------
1 | plot_power_oneway_within <- function(design_result, max_n){
2 |
3 | string = design_result$string
4 | mu = design_result$mu
5 | sd <- design_result$sd
6 | r <- design_result$r
7 | p_adjust = design_result$p_adjust
8 | labelnames = c(design_result$factornames[[1]], design_result$labelnames[[1]])
9 |
10 | n_vec <- seq(from = 5, to = max_n)
11 |
12 | power_A <- numeric(length(n_vec))
13 |
14 | for (i in 1:length(n_vec)){
15 | design_result <- ANOVA_design(string = string,
16 | n = n_vec[i],
17 | mu = mu,
18 | sd = sd,
19 | r = r,
20 | p_adjust = p_adjust,
21 | labelnames = labelnames)
22 |
23 | power_res <- power_oneway_within(design_result)
24 |
25 | power_A[i] <- power_res$power*100
26 | }
27 |
28 | res_df <- data.frame(n_vec, power)
29 |
30 | library(ggplot2)
31 | library(gridExtra)
32 | p1 <- ggplot(data=res_df, aes(x = n_vec, y = power_A)) +
33 | geom_line( size=1.5) +
34 | scale_x_continuous(limits = c(0, max(n_vec))) +
35 | scale_y_continuous(limits = c(0, 100)) +
36 | theme_bw() +
37 | labs(x="Sample size", y = "Power Factor A")
38 |
39 | invisible(list(p1 = p1,
40 | power_df = data.frame(paste("f = ",
41 | round(power_res$Cohen_f,2)),
42 | n_vec,
43 | power_A)))
44 | }
--------------------------------------------------------------------------------
/helper_functions/power_oneway_between.R:
--------------------------------------------------------------------------------
1 | power_oneway_between <- function(design_result, alpha_level=0.05){
2 | mean_mat <- t(matrix(design_result$mu,
3 | nrow = length(design_result$mu)/design_result$factors,
4 | ncol = design_result$factors)) #Create a mean matrix
5 | colnames(mean_mat) <- design_result$design_list
6 | rownames(mean_mat) <- design_result$factornames
7 |
8 | # Using the sweep function to remove rowmeans from the matrix
9 | mean_mat_res <- sweep(mean_mat,2, rowMeans(mean_mat))
10 | mean_mat_res
11 | MS_A <- design_result$n * (sum(mean_mat_res^2)/(length(design_result$mu)-1))
12 | SS_A <- design_result$n * sum(mean_mat_res^2)
13 | MS_error <- design_result$sd^2
14 | SS_error <- MS_error * (design_result$n*length(design_result$mu))
15 | df1 <- length(design_result$mu)-1
16 | df2 <- (design_result$n*length(design_result$mu) - length(design_result$mu))
17 | eta_p_2 <- SS_A/(SS_A+SS_error)
18 | f_2 <- eta_p_2/(1-eta_p_2)
19 | lambda <- f_2 * design_result$n * length(design_result$mu)
20 | # Cohen_f <- sqrt(sum(mean_mat_res^2)/length(design_result$mu))/sd #based on G*power manual page 28
21 | # We just take the sqrt(f_2) because formula above assumes maximum difference of means.
22 | Cohen_f <- sqrt(f_2)
23 | F_critical <- qf(alpha_level, df1, df2, lower.tail=FALSE) # Critical F-Value
24 | power <- pf(F_critical, df1, df2, lambda, lower.tail = FALSE) # power
25 |
26 | invisible(list(mu = design_result$mu,
27 | sigma = design_result$sd,
28 | n = design_result$n,
29 | alpha_level = alpha_level,
30 | Cohen_f = Cohen_f,
31 | f_2 = f_2,
32 | lambda = lambda,
33 | F_critical = F_critical,
34 | power = power,
35 | df1 = df1,
36 | df2 = df2,
37 | eta_p_2 = eta_p_2,
38 | mean_mat = mean_mat))
39 | }
--------------------------------------------------------------------------------
/mu_from_ES.R:
--------------------------------------------------------------------------------
1 | # Using the formulas below, we can calculate the means for between designs with one factor (One-Way ANOVA).
2 | # Using the formula also used in Albers & Lakens (2018), we can determine the means that should yield a
3 | # specified effect sizes (expressed in Cohen's f).
4 |
5 | mu_from_ES <- function(K, ES){ # provides the vector of population means for a given population ES and nr of groups
6 | f2 <- ES/(1-ES)
7 | if(K == 2){
8 | a <- sqrt(f2)
9 | muvec <- c(-a,a)
10 | }
11 | if(K == 3){
12 | a <- sqrt(3*f2/2)
13 | muvec <- c(-a, 0, a)
14 | }
15 | if(K == 4){
16 | a <- sqrt(f2)
17 | muvec <- c(-a, -a, a, a)
18 | } # note: function gives error when K not 2,3,4. But we don't need other K.
19 | return(muvec)
20 | }
21 |
--------------------------------------------------------------------------------
/p_d_ttest.R:
--------------------------------------------------------------------------------
1 | effect_size_d <- function (x, y, conf.level = 0.95){
2 | sd1 <- sd(x) #standard deviation of measurement 1
3 | sd2 <- sd(y) #standard deviation of measurement 2
4 | n1 <- length(x) #number of pairs
5 | n2 <- length(y) #number of pairs
6 | df <- n1 + n2 - 2
7 | m_diff <- mean(y-x)
8 | sd_pooled <- (sqrt((((n1 - 1) * ((sd1^2))) + (n2 - 1) * ((sd2^2))) / ((n1 + n2 -2)))) #pooled standard deviation
9 | #Calculate Hedges' correction. Uses gamma, unless this yields a nan (huge n), then uses approximation
10 | j <- ifelse(is.na(gamma((n1 + n2 - 2)/2)/(sqrt((n1 + n2 - 2)/2) * gamma(((n1 + n2 - 2) - 1)/2))),
11 | (1 - 3/(4 * (n1 + n2 - 2)-1)),
12 | gamma((n1 + n2 - 2)/2)/(sqrt((n1 + n2 - 2)/2) * gamma(((n1 + n2 - 2) - 1)/2)))
13 | t_value <- m_diff / sqrt(sd_pooled^2 / n1 + sd_pooled^2 / n2)
14 | p_value = 2*pt(-abs(t_value),
15 | df = df)
16 |
17 | d <- m_diff / sd_pooled #Cohen's d
18 | d_unb <- d*j #Hedges g, of unbiased d
19 |
20 | invisible(list(d = d,
21 | d_unb = d_unb,
22 | p_value = p_value))
23 | }
24 |
25 | effect_size_d_paired <- function (x, y, conf.level = 0.95){
26 | sd1 <- sd(x) #standard deviation of measurement 1
27 | sd2 <- sd(y) #standard deviation of measurement 2
28 | s_diff <- sd(x-y) #standard deviation of the difference scores
29 | N <- length(x) #number of pairs
30 | df = N-1
31 | s_av <- sqrt((sd1^2+sd2^2)/2) #averaged standard deviation of both measurements
32 |
33 | #Cohen's d_av, using s_av as standardizer
34 | m_diff <- mean(y-x)
35 | d_av <- m_diff/s_av
36 | d_av_unb <- (1-(3/(4*(N-1)-1)))*d_av
37 |
38 | #get the t-value for the CI
39 | t_value <- m_diff/(s_diff/sqrt(N))
40 | p_value = 2*pt(-abs(t_value),
41 | df = df)
42 | test_res <- t.test(y, x, paired = TRUE)
43 |
44 | #Cohen's d_z, using s_diff as standardizer
45 | d_z <- t_value/sqrt(N)
46 | d_z
47 | d_z_unb <- (1-(3/(4*(N-1)-1)))*d_z
48 |
49 | invisible(list(d_z = d_z,
50 | d_z_unb = d_z_unb,
51 | p_value = p_value))
52 | }
53 |
--------------------------------------------------------------------------------
/program_temp_file.R:
--------------------------------------------------------------------------------
1 | library(MASS)
2 |
3 | design_result <- ANOVA_design(string = "2w*2w",
4 | n = 80,
5 | mu = c(1.03, 1.21, 0.98, 1.01),
6 | sd = 1.03,
7 | r=0.87,
8 | p_adjust = "none",
9 | labelnames = c("age", "old", "young", "speed", "fast", "slow"))
10 |
11 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = 100)
12 |
13 |
14 | #simply repeated effect
15 | design_result <- ANOVA_design(string = "2w",
16 | n = 80,
17 | mu = c(1, 1.4),
18 | sd = 1,
19 | r=0.9,
20 | p_adjust = "none",
21 | labelnames = c("age", "old", "young"))
22 |
23 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = 1000)
24 |
25 | 1/sqrt(2)*0.4
26 |
27 | string = "2b*3w"
28 | n = 20
29 | mu = c(1.03, 1.21, 0.98, 1.01, 1, 1)
30 | sd = 1.03
31 | r=0.87
32 | p_adjust = "none"
33 | labelnames = c("age", "a1", "a2", "speed", "s1", "s2", "s3")
34 |
35 |
36 | alpha <- 0.05
37 | nsims <- 100
38 |
39 | string = "2b*2w*2b"
40 | n = 20
41 | mu = c(1.03, 1.21, 0.98, 1.01, 1.11, 1.03, 1.22, 0.99)
42 | sd = 1.03
43 | r=0.87
44 | p_adjust = "none"
45 | labelnames = c("age", "a1", "a2", "speed", "s1", "s2", "time", "t1", "t2")
46 |
47 |
48 | y <- c("age_*_speed_s1")
49 | x <- glob2rx(c("age_a1_speed_s1", "age_a1_speed_s2", "age_a1_speed_s3", "age_a2_speed_s1", "age_a2_speed_s2", "age_a2_speed_s3"))
50 | grepl(y, x)
51 |
52 |
53 | x <- c("age_a1_speed_s1", "age_a1_speed_s2", "age_a1_speed_s3", "age_a2_speed_s1", "age_a2_speed_s2", "age_a2_speed_s3")
54 |
55 |
56 |
57 | grepl("age_a1_speed_$", x)
58 |
59 |
60 | y <- c("age_a1_speed_s1_time_*")
61 | x <- c("age_a1_speed_s1_time_", "age_a1_speed_s2", "age_a1_speed_s3", "age_a2_speed_s1", "age_a2_speed_s2", "age_a2_speed_s3")
62 | grepl(y, x)
63 |
64 |
--------------------------------------------------------------------------------
/render_validation_files.R:
--------------------------------------------------------------------------------
1 | rmarkdown::render("validation_files/1.1_validation_power_between_1x2.Rmd")
2 | rmarkdown::render("validation_files/1.2_validation_power_between_1x3.Rmd")
3 | rmarkdown::render("validation_files/1.3_validation_power_between_Brysbaert_1x3.Rmd")
4 | rmarkdown::render("validation_files/2.1_validation_power_within_2x1.Rmd")
5 | rmarkdown::render("validation_files/2.2_validation_power_within_3x1.Rmd")
6 | rmarkdown::render("validation_files/2.3_validation_power_within_Brysbaert_3x1.Rmd")
7 | rmarkdown::render("validation_files/3.1_validation_power_between_within_2x2.Rmd")
8 | rmarkdown::render("validation_files/3.2_validation_power_within_within_2x2_Amsel.Rmd")
9 | rmarkdown::render("validation_files/3.3_validation_power_within_within_Provin_Schutz_Not_Complete.Rmd")
10 | rmarkdown::render("validation_files/3.3_validation_power_within_within_Provin_Schutz_Not_Complete.md", output_format = "pdf_document")
11 | rmarkdown::render("validation_files/4.1_error_control_in_exploratory_ANOVA.Rmd")
12 |
13 | rmarkdown::render("validation_files/1.1_validation_power_between_1x2.Rmd", output_format = "pdf_document")
14 | rmarkdown::render("validation_files/1.2_validation_power_between_1x3.Rmd", output_format = "pdf_document")
15 | rmarkdown::render("validation_files/1.3_validation_power_between_Brysbaert_1x3.Rmd", output_format = "pdf_document")
16 | rmarkdown::render("validation_files/2.1_validation_power_within_2x1.Rmd", output_format = "pdf_document")
17 | rmarkdown::render("validation_files/2.2_validation_power_within_3x1.Rmd", output_format = "pdf_document")
18 | rmarkdown::render("validation_files/2.3_validation_power_within_Brysbaert_3x1.md", output_format = "pdf_document")
19 | rmarkdown::render("validation_files/3.1_validation_power_between_within_2x2.Rmd", output_format = "pdf_document")
20 | rmarkdown::render("validation_files/3.2_validation_power_within_within_2x2_Amsel.Rmd", output_format = "pdf_document")
21 | rmarkdown::render("validation_files/4.1_error_control_in_exploratory_ANOVA.Rmd", output_format = "pdf_document")
22 | rmarkdown::render("validation_files/4.2_power_for_interactions.Rmd", output_format = "pdf_document")
23 | rmarkdown::render("validation_files/4.3_analytic_power_functions.Rmd", output_format = "pdf_document")
24 | rmarkdown::render("validation_files/4.4_power_curves_2x2_within.Rmd", output_format = "pdf_document")
25 | rmarkdown::render("validation_files/4.5_power_for_design_variations.Rmd", output_format = "pdf_document")
26 | rmarkdown::render("validation_files/4.6_threeway_interactions.Rmd", output_format = "pdf_document")
27 |
--------------------------------------------------------------------------------
/screenshots/3x6_correlation_matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/3x6_correlation_matrix.png
--------------------------------------------------------------------------------
/screenshots/PS2000.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/PS2000.png
--------------------------------------------------------------------------------
/screenshots/gpower_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_1.png
--------------------------------------------------------------------------------
/screenshots/gpower_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_10.png
--------------------------------------------------------------------------------
/screenshots/gpower_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_11.png
--------------------------------------------------------------------------------
/screenshots/gpower_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_12.png
--------------------------------------------------------------------------------
/screenshots/gpower_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_13.png
--------------------------------------------------------------------------------
/screenshots/gpower_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_14.png
--------------------------------------------------------------------------------
/screenshots/gpower_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_15.png
--------------------------------------------------------------------------------
/screenshots/gpower_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_2.png
--------------------------------------------------------------------------------
/screenshots/gpower_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_3.png
--------------------------------------------------------------------------------
/screenshots/gpower_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_4.png
--------------------------------------------------------------------------------
/screenshots/gpower_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_5.png
--------------------------------------------------------------------------------
/screenshots/gpower_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_6.png
--------------------------------------------------------------------------------
/screenshots/gpower_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_7.png
--------------------------------------------------------------------------------
/screenshots/gpower_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_8.png
--------------------------------------------------------------------------------
/screenshots/gpower_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/gpower_9.png
--------------------------------------------------------------------------------
/screenshots/maturing.svg:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/screenshots/orcid.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/screenshots/orcid.png
--------------------------------------------------------------------------------
/shiny_app/report.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | title: "Simulation Results"
3 | subtitle: "Shiny App developed by Daniël Lakens and Aaron Caldwell"
4 | output: pdf_document
5 | date: '`r format(Sys.time(), "%B %d, %Y")`'
6 | params:
7 | tablePC: NA,
8 | tableMain: NA,
9 | pvalue_plot1: NA,
10 | pvalue_plot2: NA,
11 | means_plot: NA,
12 | n: NA,
13 | padjust: NA,
14 | model: NA,
15 | design: NA,
16 | cor_mat: NA,
17 | sigmatrix: NA
18 | seed_number: NA
19 | nsims: NA
20 | alpha_level: NA
21 | ---
22 |
23 |
24 |
25 |
26 | Below are the results from the ANOVA simulation app. If you encounter any problems please visit our GitHub page (https://github.com/Lakens/ANOVA_power_simulation) to the raise the issue.
27 |
28 | **Study Design**
29 |
30 | `r paste(params$design)`
31 |
32 | **Model Formula**
33 |
34 | `r paste(params$model)`
35 |
36 | The sample size was **`r params$n`** per cell with the following adjustment for multiple comparisons: **`r params$padjust`**.
37 |
38 | **Correlation Matrix**
39 | ```{r echo = FALSE}
40 | knitr::kable(params$cor_mat)
41 | ```
42 |
43 | **Variance-Covariance Matrix**
44 | ```{r echo = FALSE}
45 | knitr::kable(params$sigmatrix)
46 | ```
47 |
48 | ```{r, results='asis', echo=FALSE}
49 | cat("\\newpage")
50 | ```
51 |
52 |
53 | ```{r echo = FALSE}
54 | params$means_plot
55 | ```
56 |
57 |
58 | ```{r, results='asis', echo=FALSE}
59 | cat("\\newpage")
60 | ```
61 |
62 | The seed number for this simulation was set at `r paste(params$seed_number)`.
63 | A total number of `r paste(params$nsims)` simulations with an alpha level of `r paste(params$alpha_level)`.
64 | Please re-use this input to replicate the results below.
65 |
66 | **ANOVA Power (%) and Effect Sizes (Partial Eta Squared)**
67 |
68 | ```{r echo = FALSE}
69 | knitr::kable(params$tableMain)
70 |
71 | params$pvalue_plot1
72 | ```
73 |
74 | **Multiple Comparisons Power (%) and Effect Sizes (Cohen's d~z~)**
75 |
76 | ```{r echo = FALSE}
77 | knitr::kable(params$tablePC)
78 |
79 | params$pvalue_plot2
80 | ```
81 |
82 |
83 |
84 |
--------------------------------------------------------------------------------
/to_do.R:
--------------------------------------------------------------------------------
1 | # https://www.markhw.com/blog/power-twoway
2 | # Can be used to vallidate the 2x2 interaction.
--------------------------------------------------------------------------------
/try_out single test.R:
--------------------------------------------------------------------------------
1 | library(mvtnorm)
2 | library(afex)
3 | library(emmeans)
4 | library(ggplot2)
5 | library(gridExtra)
6 | library(reshape2)
7 |
8 | nsims = 100
9 | K <- 3
10 | mu <- c(0, 0.4, 0.4)
11 | n <- 50
12 | sd <- 1
13 | r <- 0.5
14 | string = paste(K,"w",sep="")
15 | alpha_level <- 0.05
16 | design_result <- ANOVA_design(string = string,
17 | n = n,
18 | mu = mu,
19 | sd = sd,
20 | r = r,
21 | p_adjust = "none",
22 | labelnames = c("factor1", "level1", "level2", "level3"))
23 |
24 |
25 | nsims = 100
26 | mu <- c(0, 0.4, 0.4, 0)
27 | n <- 50
28 | sd <- 1
29 | r <- 0.5
30 | string = "2w*2b"
31 | alpha_level <- 0.05
32 | p_adjust = "none"
33 | labelnames = c("age", "old", "young", "color", "blue", "red")
34 | design_result <- ANOVA_design(string = string,
35 | n = n,
36 | mu = mu,
37 | sd = sd,
38 | r = r,
39 | p_adjust = p_adjust,
40 | labelnames = labelnames)
41 |
42 |
43 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = 100)
44 |
--------------------------------------------------------------------------------
/validation_files/1.1_validation_power_between_1x2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.1_validation_power_between_1x2.pdf
--------------------------------------------------------------------------------
/validation_files/1.2_validation_power_between_1x3.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.2_validation_power_between_1x3.pdf
--------------------------------------------------------------------------------
/validation_files/1.3_validation_power_between_Brysbaert_1x3.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.3_validation_power_between_Brysbaert_1x3.pdf
--------------------------------------------------------------------------------
/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-gfm/unnamed-chunk-10-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-gfm/unnamed-chunk-10-1.png
--------------------------------------------------------------------------------
/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-gfm/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-gfm/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-gfm/unnamed-chunk-7-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-gfm/unnamed-chunk-7-1.png
--------------------------------------------------------------------------------
/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-latex/unnamed-chunk-4-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/1.3_validation_power_between_Brysbaert_1x3_files/figure-latex/unnamed-chunk-4-1.pdf
--------------------------------------------------------------------------------
/validation_files/2.1_validation_power_within_2x1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/2.1_validation_power_within_2x1.pdf
--------------------------------------------------------------------------------
/validation_files/2.2_validation_power_within_3x1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/2.2_validation_power_within_3x1.pdf
--------------------------------------------------------------------------------
/validation_files/2.3_validation_power_within_Brysbaert_3x1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/2.3_validation_power_within_Brysbaert_3x1.pdf
--------------------------------------------------------------------------------
/validation_files/3.1_validation_power_between_within_2x2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/3.1_validation_power_between_within_2x2.pdf
--------------------------------------------------------------------------------
/validation_files/4.1_error_control_in_exploratory_ANOVA_files/figure-latex/unnamed-chunk-1-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.1_error_control_in_exploratory_ANOVA_files/figure-latex/unnamed-chunk-1-1.pdf
--------------------------------------------------------------------------------
/validation_files/4.2_power_for_interactions.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.2_power_for_interactions.pdf
--------------------------------------------------------------------------------
/validation_files/4.3_analytic_power_functions.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.3_analytic_power_functions.pdf
--------------------------------------------------------------------------------
/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-1-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-1-1.pdf
--------------------------------------------------------------------------------
/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-10-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-10-1.pdf
--------------------------------------------------------------------------------
/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-5-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-5-1.pdf
--------------------------------------------------------------------------------
/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-8-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.3_analytic_power_functions_files/figure-latex/unnamed-chunk-8-1.pdf
--------------------------------------------------------------------------------
/validation_files/4.4_power_curves_2x2_within_files/figure-latex/unnamed-chunk-2-1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.4_power_curves_2x2_within_files/figure-latex/unnamed-chunk-2-1.pdf
--------------------------------------------------------------------------------
/validation_files/4.5_power_for_design_variations.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.5_power_for_design_variations.pdf
--------------------------------------------------------------------------------
/validation_files/4.6_threeway_interactions.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.6_threeway_interactions.pdf
--------------------------------------------------------------------------------
/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-1-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-1-1.png
--------------------------------------------------------------------------------
/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-3-1.png
--------------------------------------------------------------------------------
/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-5-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/4.6_threeway_interactions_files/figure-markdown_github/unnamed-chunk-5-1.png
--------------------------------------------------------------------------------
/validation_files/6.1_educational_stuff_files/figure-markdown_github/unnamed-chunk-1-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/6.1_educational_stuff_files/figure-markdown_github/unnamed-chunk-1-1.png
--------------------------------------------------------------------------------
/validation_files/6.1_educational_stuff_files/figure-markdown_github/unnamed-chunk-5-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/6.1_educational_stuff_files/figure-markdown_github/unnamed-chunk-5-1.png
--------------------------------------------------------------------------------
/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-10-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-10-1.png
--------------------------------------------------------------------------------
/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-3-1.png
--------------------------------------------------------------------------------
/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-7-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/Validation_files/figure-markdown_github/unnamed-chunk-7-1.png
--------------------------------------------------------------------------------
/validation_files/conversion_SPSS_partial_eta.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/conversion_SPSS_partial_eta.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/1.1_validation_power_between_1x2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/1.1_validation_power_between_1x2.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/1.2_validation_power_between_1x3.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/1.2_validation_power_between_1x3.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/1.3_validation_power_between_Brysbaert_1x3.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/1.3_validation_power_between_Brysbaert_1x3.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/2.1_validation_power_within_2x1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/2.1_validation_power_within_2x1.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/2.2_validation_power_within_3x1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/2.2_validation_power_within_3x1.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/2.3_validation_power_within_Brysbaert_3x1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/2.3_validation_power_within_Brysbaert_3x1.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/3.1_validation_power_between_within_2x2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/3.1_validation_power_between_within_2x2.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/3.2_validation_power_within_within_2x2_Amsel.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/3.2_validation_power_within_within_2x2_Amsel.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/3.3_validation_power_within_within_Provin_Schutz_Not_Complete.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/3.3_validation_power_within_within_Provin_Schutz_Not_Complete.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/4.1_error_control_in_exploratory_ANOVA.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/4.1_error_control_in_exploratory_ANOVA.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/4.3_analytic_power_functions.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/4.3_analytic_power_functions.pdf
--------------------------------------------------------------------------------
/validation_files/final_pdf/4.4_power_curves_2x2_within.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/final_pdf/4.4_power_curves_2x2_within.pdf
--------------------------------------------------------------------------------
/validation_files/power_code_brysbaert/Power Toster analysis correlation.R:
--------------------------------------------------------------------------------
1 | #TOSTER Power Analysis correlations
2 |
3 | library(TOSTER)
4 | library(MASS)
5 |
6 | r<-0.0 #Set the true effect size of the correlation
7 | N<-860 #Set sample size of your study (number in each group)
8 | nSim<-5000 #Set number of simulations (it takes a while, be patient)
9 | alpha<-.05 #Set the alpha-level
10 |
11 | # make vectors to save the two p-values
12 | p <-numeric(nSim)
13 |
14 | # create progress bar because it might take a while
15 | pb <- winProgressBar(title = "progress bar", min = 0, max = nSim, width = 300)
16 |
17 | for(i in 1:nSim){ #for each simulated experiment
18 | setWinProgressBar(pb, i, title=paste(round(i/nSim*100, 1), "% done"))
19 | data = mvrnorm(n=N, mu=c(0, 0), Sigma=matrix(c(1, r, r, 1), nrow=2))
20 | x = data[, 1] # standard normal (mu=0, sd=1)
21 | y = data[, 2] # standard normal (mu=0, sd=1)
22 | corr <- cor(x,y)
23 | tosttest <- TOSTr(n=N,r=corr,low_eqbound_r=-0.1, high_eqbound_r=0.1,
24 | alpha = 0.05, verbose=FALSE)
25 | #print(tosttest)
26 | p[i] <-max(tosttest$TOST_p1, tosttest$TOST_p2)
27 | }
28 | close(pb)#close progress bar
29 |
30 | supportH0 <- sum(p=alpha)/nSim
39 | #supportH1 <- sum(bf>threshold)/nSim
40 | supportH1 <- sum(p=alpha)/nSim
33 | #supportH1 <- sum(bf>threshold)/nSim
34 | supportH1 <- sum(p=alpha)/nSim
34 | #supportH1 <- sum(bf>threshold)/nSim
35 | supportH1 <- sum(p
7 | Description: Statistical Power Analysis for designs including t-tests, correlations, multiple regression, ANOVA, mediation, and logistic regression.
8 | License: GPL (>= 2)
9 | Encoding: UTF-8
10 | LazyData: true
11 | RoxygenNote: 6.1.1
12 | Depends: car,
13 | MASS,
14 | dplyr,
15 | tidyr,
16 | ez,
17 | nlme,
18 | phia,
19 | afex,
20 | lavaan,
21 | MBESS
22 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/NAMESPACE:
--------------------------------------------------------------------------------
1 | # Generated by roxygen2: do not edit by hand
2 |
3 | export(Chi2X3)
4 | export(Chi2x2)
5 | export(ChiES)
6 | export(ChiGOF)
7 | export(LRcat)
8 | export(LRcont)
9 | export(MANOVA1f)
10 | export(MRC)
11 | export(MRC_all)
12 | export(MRC_short2)
13 | export(MRC_shortcuts)
14 | export(R2_prec)
15 | export(R2ch)
16 | export(anc)
17 | export(anova1f_3)
18 | export(anova1f_3c)
19 | export(anova1f_4)
20 | export(anova1f_4c)
21 | export(anova2x2)
22 | export(anova2x2_se)
23 | export(corr)
24 | export(d_prec)
25 | export(depb)
26 | export(depcorr0)
27 | export(depcorr1)
28 | export(indR2)
29 | export(indb)
30 | export(indcorr)
31 | export(indt)
32 | export(lmm1F)
33 | export(lmm1Ftrends)
34 | export(lmm1w1b)
35 | export(lmm2F)
36 | export(lmm2Fse)
37 | export(md_prec)
38 | export(med)
39 | export(pairt)
40 | export(prop1)
41 | export(propind)
42 | export(r_prec)
43 | export(regint)
44 | export(regintR2)
45 | export(tfromd)
46 | export(win1F)
47 | export(win1Ftrends)
48 | export(win1bg1)
49 | export(win2F)
50 | export(win2Fse)
51 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/Chi2x2.R:
--------------------------------------------------------------------------------
1 | #'Compute power for an Chi Square 2x2
2 | #'Takes proportions for each group. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param r1c1 Proportion of overall scores in Row 1, Column 1
4 | #'@param r1c2 Proportion of overall scores in Row 1, Column 2
5 | #'@param r2c1 Proportion of overall scores in Row 2, Column 1
6 | #'@param r2c2 Proportion of overall scores in Row 2, Column 2
7 | #'@param n Total sample size
8 | #'@param alpha Type I error (default is .05)
9 | #'@return Power for 2x2 Chi Square
10 | #'@export
11 | #'
12 | #'
13 |
14 | Chi2x2<-function(r1c1, r1c2, r2c1, r2c2, n, alpha=.05)
15 | {
16 | df<-1 #Defines df
17 | po1<-r1c1 #Proportion Observed for Row 1, Column 1
18 | po2<-r1c2 #Proportion Observed for Row 1, Column 2
19 | po3<-r2c1 #Proportion Observed for Row 2, Column 1
20 | po4<-r2c2 #Proportion Observed for Row 2, Column 2
21 | sum<-po1+po2+po3+po4
22 | pe1<-(r1c1+r1c2)*(r1c1+r2c1) #Proportion Expected for Row 1, Column 1
23 | pe2<-(r1c1+r1c2)*(r1c2+r2c2)
24 | pe3<-(r2c1+r2c2)*(r1c1+r2c1)
25 | pe4<-(r1c1+r1c2)*(r1c2+r2c2)
26 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2)+(((po3-pe3)^2)/pe3)+(((po4-pe4)^2)/pe4))
27 | tabled<-stats::qchisq(1-alpha, df=df)
28 | power<-round(1-stats::pchisq(tabled, df=df, lambda),3)
29 | if(sum!=1.0){stop("Expected proportions must add to 1.0. Check input po values")
30 | }
31 | else {print(paste("Power for n of", n, "=", power))}
32 | }
33 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/Chi2x3.R:
--------------------------------------------------------------------------------
1 | #'Compute power for an Chi Square 2x3
2 | #'Takes proportions for each group. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param r1c1 Proportion of overall scores in Row 1, Column 1
4 | #'@param r1c2 Proportion of overall scores in Row 1, Column 2
5 | #'@param r1c3 Proportion of overall scores in Row 1, Column 3
6 | #'@param r2c1 Proportion of overall scores in Row 2, Column 1
7 | #'@param r2c2 Proportion of overall scores in Row 2, Column 2
8 | #'@param r2c3 Proportion of overall scores in Row 2, Column 3
9 | #'@param n Total sample size
10 | #'@param alpha Type I error (default is .05)
11 | #'@return Power for 2x3 Chi Square
12 | #'@export
13 | #'
14 | #'
15 |
16 | Chi2X3<-function(r1c1, r1c2, r1c3, r2c1, r2c2, r2c3, n, alpha=.05)
17 | {
18 | df<-2
19 | po1<-r1c1
20 | po2<-r1c2
21 | po3<-r1c3
22 | po4<-r2c1
23 | po5<-r2c2
24 | po6<-r2c3
25 | pe1<-(r1c1+r1c2+r1c3)*(r1c1+r2c1)
26 | pe2<-(r1c1+r1c2+r1c3)*(r1c2+r2c2)
27 | pe3<-(r1c1+r1c2+r1c3)*(r1c3+r2c3)
28 | pe4<-(r2c1+r2c2+r2c3)*(r1c1+r2c1)
29 | pe5<-(r2c1+r2c2+r2c3)*(r1c2+r2c2)
30 | pe6<-(r2c1+r2c2+r2c3)*(r1c3+r2c3)
31 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2)+(((po3-pe3)^2)/pe3)+(((po4-pe4)^2)/pe4)+
32 | (((po5-pe5)^2)/pe5)+(((po6-pe6)^2)/pe6))
33 | tabled<-stats::qchisq(1-alpha, df=df)
34 | power<-round(1-stats::pchisq(tabled, df=df, lambda),3)
35 | sum<-po1+po2+po3+po4+po5+po6
36 | if(sum!=1.0){stop("Expected proportions must add to 1.0. Check input po values")
37 | }
38 | else {print(paste("Power for n of", n, "=", power))}
39 | }
40 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/ChiES.R:
--------------------------------------------------------------------------------
1 | #'Compute power for Chi Square Based on Effect Size
2 | #'Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param phi phi coefficient (effect size for 2x2)
4 | #'@param df degrees of freedom
5 | #'@param nlow starting sample size
6 | #'@param nhigh ending sample size
7 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
8 | #'@param alpha Type I error (default is .05)
9 | #'@return Power for Chi Square Based on Effect Size
10 | #'@export
11 | #'
12 | #'
13 |
14 | ChiES<-function(phi, df, nlow, nhigh, by = 1, alpha=.05)
15 | {
16 | {if(phi<0|phi>1.0){stop("Invalid effect size, phi must be between 0 and 1.0")
17 | }
18 | else
19 | for(n in seq(nlow,nhigh, by)){
20 | lambda<-n*phi^2
21 | tabled<-stats::qchisq(1-alpha, df=df)
22 | power<-round(1-stats::pchisq(tabled, df=df, lambda),4)
23 | print(paste("Power for n of", n, "=", power))}
24 | }}
25 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/ChiGOF.R:
--------------------------------------------------------------------------------
1 | #'Compute power for an Chi Square Goodness of Fit
2 | #'Takes proportions for up to six group. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param po1 Proportion observed Group 1
4 | #'@param po2 Proportion observed Group 2
5 | #'@param po3 Proportion observed Group 3
6 | #'@param po4 Proportion observed Group 4
7 | #'@param po5 Proportion observed Group 5
8 | #'@param po6 Proportion observed Group 6
9 | #'@param groups Number of groups
10 | #'@param n Total sample size
11 | #'@param alpha Type I error (default is .05)
12 | #'@return Power for Chi Square Goodness of Fit
13 | #'@export
14 | #'
15 | #'
16 |
17 | ChiGOF<-function(groups, po1, po2, po3=NULL, po4=NULL, po5=NULL, po6=NULL, n, alpha=.05)
18 | {
19 | df<-groups-1
20 | if(groups==2){
21 | pe1<-1/groups
22 | pe2<-1/groups
23 | sum<-po1+po2
24 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2))
25 | }
26 | else if(groups==3)
27 | {
28 | pe1<-1/groups
29 | pe2<-1/groups
30 | pe3<-1/groups
31 | sum<-po1+po2+po3
32 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2)+(((po3-pe3)^2)/pe3))
33 | }
34 | else if(groups==4)
35 | {
36 | pe1<-1/groups
37 | pe2<-1/groups
38 | pe3<-1/groups
39 | pe4<-1/groups
40 | sum<-po1+po2+po3+po4
41 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2)+(((po3-pe3)^2)/pe3)+(((po4-pe4)^2)/pe4))
42 | }
43 | else if(groups==5)
44 | {
45 | pe1<-1/groups
46 | pe2<-1/groups
47 | pe3<-1/groups
48 | pe4<-1/groups
49 | pe5<-1/groups
50 | sum<-po1+po2+po3+po4+po5
51 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2)+(((po3-pe3)^2)/pe3)+(((po4-pe4)^2)/pe4)+(((po5-pe5)^2)/pe5))
52 | }
53 | else if(groups==6)
54 | {
55 | pe1<-1/groups
56 | pe2<-1/groups
57 | pe3<-1/groups
58 | pe4<-1/groups
59 | pe5<-1/groups
60 | pe6<-1/groups
61 | sum<-po1+po2+po3+po4+po5+po6
62 | lambda<-n*((((po1-pe1)^2)/pe1)+(((po2-pe2)^2)/pe2)+(((po3-pe3)^2)/pe3)+(((po4-pe4)^2)/pe4)+(((po5-pe5)^2)/pe5)+(((po6-pe6)^2)/pe6))
63 | }
64 |
65 | tabled<-stats::qchisq(1-alpha, df=df)
66 | power<-round(1-stats::pchisq(tabled, df=df, lambda),3)
67 | if(sum!=1.0){stop("Expected proportions must add to 1.0. Check input po values")
68 | }
69 | else {print(paste("Power for n of", n, "=", power))}
70 | }
71 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/LRcat.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Logistic Regression with a Single Categorical Predictor
2 | #'@param p0 Probability of a Desirable Outcome in the Control Condition
3 | #'@param p1 Probability of a Desirable Outcome in the Treatment Condition
4 | #'@param prop Proportion in the Treatment Condition
5 | #'@param alpha Type I error (default is .05)
6 | #'@param power Desired Power
7 | #'@param R2 How Well Predictor of Interest is Explained by Other Predictors (default is 0)
8 | #'@return Power for Logistic Regression with a Single Categorical Predictor
9 | #'@export
10 | #'
11 | #'
12 |
13 |
14 |
15 | LRcat<-function(p0=NULL, p1=NULL, prop=.50, alpha=.05, power, R2=.00)
16 | {
17 | R<-prop
18 | pbar<-((1-R)*p0)+(R*p1)
19 | zalpha<-stats::qnorm(1-alpha/2)
20 | zbeta<-stats::qnorm(power)
21 | num1<-zalpha*(((pbar*(1-pbar))/R)^.5)
22 | num2<-zbeta*(((p0*(1-p0))+((p1*(1-p1)*(1-R)))/R))^.5
23 | den<-((p0-p1)^2)*(1-R)
24 | n<-((num1+num2)^2/den)/(1-R2)
25 | nprint<-ceiling(n)
26 | OR<-round((p1/(1-p1))/(p0/(1-p0)),3)
27 | print(paste("Sample Size =", nprint, "for Odds Ratio = ", OR))}
28 |
29 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/LRcont.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Logistic Regression with Continuous Predictors
2 | #'@param OR Odds Ratio for Predictor of Interest
3 | #'@param r Correlation for Predictor of Interest
4 | #'@param ER Event Ratio Probability of a Desirable Outcome Overall
5 | #'@param R2 How Well Predictor of Interest is Explained by Other Predictors (default is 0)
6 | #'@param alpha Type I error (default is .05)
7 | #'@param power Desired Power
8 | #'@return Power for Logistic Regression with Continuous Predictors
9 | #'@export
10 | #'
11 | #'
12 |
13 | LRcont<-function(OR = NA, r = NA, ER=NULL, alpha=.05, power=NULL, R2=.00)
14 | {
15 | est<-NA
16 | est[is.na(OR)]<-1 #r
17 | est[is.na(r)]<-2 #OR
18 | if(est=="1"){
19 | tod<-(2*r)/((1-r^2)^.5)
20 | OR<-exp(((tod)*pi)/(3^.5))}
21 | lgOR<-log(OR)
22 | zalpha<-stats::qnorm(1-alpha/2)
23 | zpower<-stats::qnorm(power)
24 | num<-zalpha+zpower
25 | den<-ER*(1-ER)*lgOR^2
26 | n<-(num^2/den)/(1-R2)
27 | nprint<-ceiling(n)
28 | OR<-round((OR),4)
29 | print(paste("Sample Size =", nprint, ", Odds Ratio = ", OR))}
30 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/MRC_shortcuts.R:
--------------------------------------------------------------------------------
1 | #'Compute Mutliple Regression shortcuts with three predictors (will expand to handle two to five)
2 | #'Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)
3 | #'@param ry1 Correlation between DV (y) and first predictor (1)
4 | #'@param ry2 Correlation between DV (y) and second predictor (2)
5 | #'@param ry3 Correlation between DV (y) and third predictor (3)
6 | #'@param r12 Correlation between first (1) and second predictor (2)
7 | #'@param r13 Correlation between first (1) and third predictor (3)
8 | #'@param r23 Correlation between second (2) and third predictor (3)
9 | #'@param n Sample size
10 | #'@param alpha Type I error (default is .05)
11 | #'@param my Mean of DV (default is 0)
12 | #'@param m1 Mean of first predictor (default is 0)
13 | #'@param m2 Mean of second redictor (default is 0)
14 | #'@param m3 Mean of third predictor (default is 0)
15 | #'@param sy Standard deviation of DV (default is 1)
16 | #'@param s1 Standard deviation of first predictor (default is 1)
17 | #'@param s2 Standard deviation of second predictor (default is 1)
18 | #'@param s3 Standard deviation of third predictor (default is 1)
19 | #'@return Mutliple Regression shortcuts with three predictors
20 | #'@export
21 | #'
22 | MRC_shortcuts<-function(ry1=NULL, ry2=NULL, ry3=NULL, r12=NULL, r13=NULL, r23=NULL,n=100, alpha=.05,
23 | my=0, m1=0, m2=0,m3=0,s1=1,s2=1,s3=1,sy=1){
24 | vary<-sy^2; var1<-s1^2;var2<-s2^2;var3<-s3^2
25 | covy1<-ry1*sy*s1
26 | covy2<-ry2*sy*s2
27 | covy3<-ry3*sy*s3
28 | cov12<-r12*s1*s2
29 | cov13<-r13*s1*s3
30 | cov23<-r23*s2*s3
31 | pop <- MASS::mvrnorm(n, mu = c(my, m1, m2, m3), Sigma = matrix(c(vary, covy1, covy2, covy3,
32 | covy1, var1, cov12, cov13,
33 | covy2, cov12,var2,cov23,
34 | covy3, cov13, cov23, var3),
35 | ncol = 4), empirical = TRUE)
36 |
37 |
38 | pop2 = data.frame(pop)
39 | pred<-NA
40 | pred[is.null(r23)]<-2
41 | pred[!is.null(r23)]<-3
42 |
43 | full<-summary(stats::lm(X1~X2+X3+X4, pop2))
44 | print(full)
45 | }
46 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/R2_prec.R:
--------------------------------------------------------------------------------
1 | #'Compute Precision Analyses for R-Squared
2 | #'This approach simply loops a function from MBESS
3 | #'@param R2 R-squared
4 | #'@param pred Number of Predictors
5 | #'@param nlow starting sample size
6 | #'@param nhigh ending sample size
7 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
8 | #'@param ci Type of Confidence Interval (e.g., .95)
9 | #'@return Precision Analyses for R-Squared
10 | #'@export
11 | #'
12 |
13 | R2_prec<-function(R2,nlow, nhigh, pred, ci=.95, by=1)
14 | {
15 | for(n in seq(nlow,nhigh, by)){
16 | df1<-pred
17 | df2<-n-pred-1
18 | a<-MBESS::ci.R2(R2=R2, df.1=df1,df.2=df2, conf.level = .95, Random.Predictors = FALSE)
19 | ll<-a[1]
20 | ul<-a[3]
21 | ll<-round(as.numeric(ll),4)
22 | ul<-round(as.numeric(ul),4)
23 | print(paste("n=",n,"R2 = ",R2,",LL = ",ll,",UL = ",ul,",precision = ",ul-ll ))}}
24 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/anova1f_3.R:
--------------------------------------------------------------------------------
1 | #'Compute power for a One Factor ANOVA with three levels.
2 | #'Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param m1 Mean of first group
4 | #'@param m2 Mean of second group
5 | #'@param m3 Mean of third group
6 | #'@param s1 Standard deviation of first group
7 | #'@param s2 Standard deviation of second group
8 | #'@param s3 Standard deviation of third group
9 | #'@param n1 Sample size for first group
10 | #'@param n2 Sample size for second group
11 | #'@param n3 Sample size for third group
12 | #'@param alpha Type I error (default is .05)
13 | #'@return Power for the One Factor ANOVA
14 | #'@export
15 |
16 |
17 | anova1f_3<-function(m1=NULL,m2=NULL,m3=NULL,s1=NULL,s2=NULL,s3=NULL,n1=NULL,n2=NULL,n3=NULL,alpha=.05){
18 | x<-stats::rnorm(n1,m1,s1)
19 | X<-x
20 | MEAN<-m1
21 | SD<-s1
22 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
23 | y<-MEAN + Z
24 | group<-rep("A1",n1)
25 | l1<-data.frame(y, group)
26 | x<-stats::rnorm(n2,m2,s2)
27 | X<-x
28 | MEAN<-m2
29 | SD<-s2
30 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
31 | y<-MEAN + Z
32 | group<-rep("A2",n2)
33 | l2<-data.frame(y, group)
34 | x<-stats::rnorm(n3,m3,s3)
35 | X<-x
36 | MEAN<-m3
37 | SD<-s3
38 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
39 | y<-MEAN + Z
40 | group<-rep("A3",n3)
41 | l3<-data.frame(y, group)
42 | simdat<-rbind(l1,l2,l3)
43 | anova<-stats::aov(y~group, data=simdat)
44 | anova<-car::Anova(anova, type="III")
45 | SSA<-anova[2,1] #column, row
46 | SSwin<-anova[3,1]
47 | dfwin<-anova[3,2]
48 | dfbg<-anova[2,2]
49 | eta2<-SSA/(SSA+SSwin)
50 | f2<-eta2/(1-eta2)
51 | lambda<-f2*dfwin
52 | minusalpha<-1-alpha
53 | Ft<-stats::qf(minusalpha, dfbg, dfwin)
54 | power<-1-stats::pf(Ft, dfbg,dfwin,lambda)
55 | list(Power = power)}
56 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/anova1f_3c.R:
--------------------------------------------------------------------------------
1 | #'Compute power for a One Factor ANOVA with three levels and contrasts.
2 | #'Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param m1 Mean of first group
4 | #'@param m2 Mean of second group
5 | #'@param m3 Mean of third group
6 | #'@param s1 Standard deviation of first group
7 | #'@param s2 Standard deviation of second group
8 | #'@param s3 Standard deviation of third group
9 | #'@param n1 Sample size for first group
10 | #'@param n2 Sample size for second group
11 | #'@param n3 Sample size for third group
12 | #'@param alpha Type I error (default is .05)
13 | #'@param c1 Weight for Contrast 1 (default is 0)
14 | #'@param c2 Weight for Contrast 2 (default is 0)
15 | #'@param c3 Weight for Contrast 3 (default is 0)
16 | #'@return Power for the One Factor ANOVA
17 | #'@export
18 | #'
19 | #'
20 | anova1f_3c<-function(m1=NULL,m2=NULL,m3=NULL,s1=NULL,s2=NULL,s3=NULL,n1=NULL,n2=NULL,n3=NULL,alpha=.05, c1 =0, c2=0, c3=0)
21 | {
22 | x<-stats::rnorm(n1,m1,s1)
23 | X<-x
24 | MEAN<-m1
25 | SD<-s1
26 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
27 | y<-MEAN + Z
28 | group<-rep("A1",n1)
29 | l1<-data.frame(y, group)
30 | x<-stats::rnorm(n2,m2,s2)
31 | X<-x
32 | MEAN<-m2
33 | SD<-s2
34 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
35 | y<-MEAN + Z
36 | group<-rep("A2",n2)
37 | l2<-data.frame(y, group)
38 | x<-stats::rnorm(n3,m3,s3)
39 | X<-x
40 | MEAN<-m3
41 | SD<-s3
42 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
43 | y<-MEAN + Z
44 | group<-rep("A3",n3)
45 | l3<-data.frame(y, group)
46 | simdat<-rbind(l1,l2,l3)
47 | anova<-stats::aov(y~group, data=simdat)
48 | anova<-car::Anova(anova, type="III")
49 | SSA<-anova[2,1] #column, row
50 | SSwin<-anova[3,1]
51 | dfwin<-anova[3,2]
52 | mswin<-SSwin/dfwin
53 | dfbg<-anova[2,2]
54 | eta2<-SSA/(SSA+SSwin)
55 | f2<-eta2/(1-eta2)
56 | lambda<-f2*dfwin
57 | minusalpha<-1-alpha
58 | Ft<-stats::qf(minusalpha, dfbg, dfwin)
59 | power<-1-stats::pf(Ft, dfbg,dfwin,lambda)
60 | delta=((c1*m1)+(c2*m2)+(c3*m3))/((mswin*((c1^2/n1)+(c2^2/n2)+(c3^2/n3))))^.5
61 | lambda.c=delta^2
62 | Ft.c<-stats::qf(minusalpha, 1, dfwin)
63 | power.contrast<-1-stats::pf(Ft.c, 1,dfwin,lambda.c)
64 | list(Power.for.Contrast = power.contrast)}
65 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/anova1f_4.R:
--------------------------------------------------------------------------------
1 | #'Compute power for a One Factor Between Subjects ANOVA with four levels
2 | #'Takes means, sds, and sample sizes for each group
3 | #'@param m1 Mean of first group
4 | #'@param m2 Mean of second group
5 | #'@param m3 Mean of third group
6 | #'@param m4 Mean of fourth group
7 | #'@param s1 Standard deviation of first group
8 | #'@param s2 Standard deviation of second group
9 | #'@param s3 Standard deviation of third group
10 | #'@param s4 Standard deviation of forth group
11 | #'@param n1 Sample size for first group
12 | #'@param n2 Sample size for second group
13 | #'@param n3 Sample size for third group
14 | #'@param n4 Sample size for fourth grou
15 | #'@param alpha Type I error (default is .05)
16 | #'@return Power for the One Factor Between Subjects ANOVA
17 | #'@export
18 |
19 | anova1f_4<-function(m1=NULL,m2=NULL,m3=NULL,m4=NULL, s1=NULL,s2=NULL,s3=NULL,s4=NULL,
20 | n1=NULL,n2=NULL,n3=NULL,n4=NULL, alpha=.05){
21 | x<-stats::rnorm(n1,m1,s1)
22 | X<-x
23 | MEAN<-m1
24 | SD<-s1
25 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
26 | y<-MEAN + Z
27 | group<-rep("A1",n1)
28 | l1<-data.frame(y, group)
29 | x<-stats::rnorm(n2,m2,s2)
30 | X<-x
31 | MEAN<-m2
32 | SD<-s2
33 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
34 | y<-MEAN + Z
35 | group<-rep("A2",n2)
36 | l2<-data.frame(y, group)
37 | x<-stats::rnorm(n3,m3,s3)
38 | X<-x
39 | MEAN<-m3
40 | SD<-s3
41 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
42 | y<-MEAN + Z
43 | group<-rep("A3",n3)
44 | l3<-data.frame(y, group)
45 | x<-stats::rnorm(n4,m4,s4)
46 | X<-x
47 | MEAN<-m4
48 | SD<-s4
49 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
50 | y<-MEAN + Z
51 | group<-rep("A4",n4)
52 | l4<-data.frame(y, group)
53 | simdat<-rbind(l1,l2,l3,l4)
54 | anova<-stats::aov(y~group, data=simdat)
55 | anova<-car::Anova(anova, type="III")
56 | SSA<-anova[2,1] #column, row
57 | SSwin<-anova[3,1]
58 | dfwin<-anova[3,2]
59 | dfbg<-anova[2,2]
60 | eta2<-SSA/(SSA+SSwin)
61 | f2<-eta2/(1-eta2)
62 | lambda<-f2*dfwin
63 | minusalpha<-1-alpha
64 | Ft<-stats::qf(minusalpha, dfbg, dfwin)
65 | power<-round(1-stats::pf(Ft, dfbg,dfwin,lambda),3)
66 | #list(Power = power)
67 | {print(paste("Power =", power))}
68 | }
69 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/corr.R:
--------------------------------------------------------------------------------
1 | #'Compute power for Pearson's Correlation
2 | #'Takes correlation and range of values
3 | #'@param r Correlation
4 | #'@param nlow Starting sample size
5 | #'@param nhigh Ending sample size
6 | #'@param by Incremental increase in sample size from low ot high
7 | #'@param tails one or two-tailed tests (default is 2)
8 | #'@param alpha Type I error (default is .05)
9 | #'@return Power for Pearson's Correlation
10 | #'@export
11 | #'
12 | #'
13 | corr<-function(r,nlow, nhigh, alpha=.05, tails=2, by=1)
14 | {
15 | d<-abs(2*abs(r))/(1-r^2)^.5
16 | for(n in seq(nlow,nhigh, by)){
17 | delta<-(d*(n-2)^.5)/2
18 | alphatails<-alpha/tails
19 | tabled<-stats::qt(1-alphatails, df=n-2)
20 | t<-1-stats::pt(alphatails, 1, n-2)
21 | Power<-round(1-stats::pt(tabled, n-2,delta),4)
22 | print(paste("Power for n of", n, "=", Power))}
23 | }
24 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/d_prec.R:
--------------------------------------------------------------------------------
1 | #'Compute Precision Analyses for Standardized Mean Differences
2 | #'@param d Standardized means difference between groups
3 | #'@param nlow starting sample size
4 | #'@param nhigh ending sample size
5 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
6 | #'@param propn1 Proportion in First Group
7 | #'@param ci Type of Confidence Interval (e.g., .95)
8 | #'@param tails number of tails for test (default is 2)
9 | #'@return Precision Analyses for Standardized Mean Differences
10 | #'@export
11 | #'
12 |
13 |
14 | d_prec<-function(d,nlow, nhigh, propn1= .5, ci=.95, tails=2, by=1)
15 | {
16 | for(n in seq(nlow,nhigh, by)){
17 | n1<-n * propn1
18 | n2<-n * (1-propn1)
19 | a<-MBESS::ci.smd(smd=d, n.1=n1,n.2=n2, conf.level = .95)
20 | ll<-a[1]
21 | ul<-a[3]
22 | ll<-round(as.numeric(ll),4)
23 | ul<-round(as.numeric(ul),4)
24 | print(paste("n1=",n1,",n2 =",n2,"d = ",d,",LL = ",ll,",UL = ",ul,",precision =",ul-ll ))}
25 | }
26 |
27 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/depcorr0.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Comparing Two Dependent Correlations, No Variables in Common
2 | #'Takes correlations and range of values. First variable in each pair is termed predictor, second is DV
3 | #'@param r12 Correlation between the predictor and DV (first set of measures)
4 | #'@param rxy Correlation between the predictor and DV (second set of measures)
5 | #'@param r1x Correlation between the predictor (first measure) and the predictor variable (first measure)
6 | #'@param r2x Correlation between the DV (first measure) and the predictor variable (first measure)
7 | #'@param r1y Correlation between the predictor (first measure) and the dependent variable (second measure)
8 | #'@param r2y Correlation between the DV (first measure) and the dependent variable (second measure)
9 | #'@param nlow Starting sample size
10 | #'@param nhigh Ending sample size
11 | #'@param by Incremental increase in sample size from low ot high
12 | #'@param tails one or two-tailed tests (default is 2)
13 | #'@param alpha Type I error (default is .05)
14 | #'@return Power for Comparing Two Dependent Correlations, No Variables in Common
15 | #'@export
16 | #'
17 | #'
18 | depcorr0<-function(r12,rxy,r1x,r1y,r2x,r2y, nlow, nhigh, alpha=.05, tails=2, by=1)
19 | {
20 | for(n in seq(nlow,nhigh, by)){
21 | zr12<-0.5*(log((1+r12)/(1-r12)))
22 | zrxy<-0.5*(log((1+rxy)/(1-rxy)))
23 | zdiff<-abs(zr12-zrxy)
24 | rave<-(r12+rxy)/2
25 | denom <-(1-rave^2)^2
26 | numer1<-(r1x -(r12*r2x))*(r2y-(r2x*rxy))
27 | numer2<-(r1y -(r1x*rxy))*(r2x-(r12*r1x))
28 | numer3<-(r1x -(r1y*rxy))*(r2y-(r12*r1y))
29 | numer4<-(r1y -(r12*r2y))*(r2x-(r2y*rxy))
30 | numer<-(numer1 + numer2 +numer3+numer4)/2
31 | sd<-numer /denom
32 | z<-(zdiff*((n-3)^.5)) / ((2-(2*sd))^.5)
33 | alphatails<-alpha/tails
34 | tabled<-stats::qnorm(1-alphatails)
35 | zpower<-tabled-z
36 | Power<-round((1-stats::pnorm(zpower)),4)
37 | print(paste("Power for n of", n, "=", Power))}
38 | }
39 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/depcorr1.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Comparing Two Dependent Correlations, One Variable in Common
2 | #'Takes correlations and range of values
3 | #'@param r1y Correlation between the first predictor and the dependent variable
4 | #'@param r2y Correlation between the second predictor and the dependent variable
5 | #'@param r12 Correlation between the first predictor and the second predictor
6 | #'@param nlow Starting sample size
7 | #'@param nhigh Ending sample size
8 | #'@param by Incremental increase in sample size from low ot high
9 | #'@param tails one or two-tailed tests (default is 2)
10 | #'@param alpha Type I error (default is .05)
11 | #'@return Power for Comparing Dependent Correlations, One Variable in Common
12 | #'@export
13 | #'
14 | #'
15 | depcorr1<-function(r1y,r2y,r12, nlow, nhigh, alpha=.05, tails=2, by=1)
16 | {
17 | for(n in seq(nlow,nhigh, by)){
18 | df<-n-3
19 | rdiff<-abs(r1y-r2y)
20 | rave<-(r1y+r2y)/2
21 | rdet<-1-(r1y**2)-(r2y**2)-(r12**2)+(2*r1y*r2y*r12)
22 | numer<-(n-1)*(1+r12)
23 | denom1<-((2*(n-1))/(n-3))*rdet
24 | denom2<-(rave**2)*((1-r12)**3)
25 | denom<-denom1+denom2
26 | delta<-rdiff*((numer/denom)^.5)
27 | alphatails<-alpha/tails
28 | tabled <- stats::qt(1-alphatails, df)
29 | Power<-round(1-stats::pt(tabled, df,delta),4)
30 | print(paste("Power for n of", n, "=", Power))}
31 | }
32 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/indcorr.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Comparing Two Independent Correlations
2 | #'Takes correlations and range of values
3 | #'@param r1 Correlation for Group 1
4 | #'@param r2 Correlation for Group 2
5 | #'@param nlow Starting sample size
6 | #'@param nhigh Ending sample size
7 | #'@param by Incremental increase in sample size from low ot high
8 | #'@param propn1 Proportion of sample in first group (default is .50 for equally size groups)
9 | #'@param tails one or two-tailed tests (default is 2)
10 | #'@param alpha Type I error (default is .05)
11 | #'@return Power for Comparing Two Independent Correlations
12 | #'@export
13 | #'
14 | #'
15 | indcorr<-function(r1,r2,nlow, nhigh, propn1= .5, alpha=.05, tails=2, by=1)
16 | {
17 | for(n in seq(nlow,nhigh, by)){
18 | n1<-n*propn1
19 | n2<-n*(1-propn1)
20 | zr1<-0.5*(log((1+r1)/(1-r1)))
21 | zr2<-0.5*(log((1+r2)/(1-r2)))
22 | zdiff<-abs(zr1-zr2)
23 | sdz<-((1/(n1-3))+(1/(n2-3)))^.5
24 | z<-zdiff/sdz
25 | alphatails<-alpha/tails
26 | tabled<-stats::qnorm(1-alphatails)
27 | zpower<-tabled-z
28 | Power<-round((1-stats::pnorm(zpower)),4)
29 | print(paste("Power for n of", n, "=", Power))}
30 | }
31 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/indt.R:
--------------------------------------------------------------------------------
1 | #'Compute power for an Independent Samples t-test
2 | #'Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param m1 Mean of first group
4 | #'@param m2 Mean of second group
5 | #'@param s1 Standard deviation of first group
6 | #'@param s2 Standard deviation of second group
7 | #'@param n1 Sample size for first group
8 | #'@param n2 Sample size for second group
9 | #'@param alpha Type I error (default is .05)
10 | #'@return Power for Independent Samples t-test
11 | #'@export
12 | #'
13 | #'
14 | indt<-function(m1=NULL,m2=NULL, s1=NULL,s2=NULL, n1=NULL,n2=NULL, alpha=.05){
15 | x<-stats::rnorm(n1,m1,s1)
16 | X<-x
17 | MEAN<-m1
18 | SD<-s1
19 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
20 | y<-MEAN + Z
21 | group<-rep("A1",n1)
22 | l1<-data.frame(y, group)
23 | x<-stats::rnorm(n2,m2,s2)
24 | X<-x
25 | MEAN<-m2
26 | SD<-s2
27 | Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD
28 | y<-MEAN + Z
29 | group<-rep("A2",n2)
30 | l2<-data.frame(y, group)
31 | simdat<-rbind(l1,l2)
32 | anova<-stats::aov(y~group, data=simdat)
33 | anova<-car::Anova(anova, type="III")
34 | SSA<-anova[2,1] #column, row
35 | SSwin<-anova[3,1]
36 | dfwin<-anova[3,2]
37 | mswin<-SSwin/dfwin
38 | dfbg<-anova[2,2]
39 | eta2<-SSA/(SSA+SSwin)
40 | f2<-eta2/(1-eta2)
41 | lambda<-f2*dfwin
42 | d<-round((m1-m2)/(mswin^.5),3)
43 | minusalpha<-1-alpha
44 | Ft<-stats::qf(minusalpha, dfbg, dfwin)
45 | Power<-1-stats::pf(Ft, dfbg,dfwin,lambda)
46 | sx1_un <- s1/(n1^.5)
47 | sx2_un <- s2/(n2^.5)
48 | sx1x2_un <- ((sx1_un^2)+(sx2_un^2))^.5
49 | t_un <- (m1-m2)/sx1x2_un
50 | d_un <- round(t_un * sqrt((n1+n2)/(n1*n2)),3)
51 | n_harm <- ((2*n1*n2)/(n1+n2))
52 | var1<-s1^2
53 | var2<-s2^2
54 | sat_num <- ((var1/n1)+(var2/n2))*((var1/n1)+(var2/n2))
55 | sat_denom <- ((((s1^2/n1)^2))/(n1-1)) +((((s2^2/n2)^2))/(n2-1))
56 | df_un <- round(sat_num/sat_denom,3)
57 | delta_un <-(d_un*((n_harm/2)^.5))
58 | lambda_un <-delta_un^2
59 | Ft_un<-stats::qf(minusalpha, dfbg, df_un)
60 | Power_unequal<-1-stats::pf(Ft_un, dfbg,df_un,lambda_un)
61 | pe<-round(Power,3)
62 | pu<-round(Power_unequal,3)
63 | {print(paste("Equal Variance Power for n1 =",n1,",", "n2 =",n2, "with d =", d, "=", pe))}
64 | {print(paste("Unequal Variance Power for n1 =",n1,",", "n2 =",n2, "with d =", d_un, "=", pu))}
65 | }
66 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/md_precision.R:
--------------------------------------------------------------------------------
1 | #'Compute Precision Analyses for Mean Differences
2 | #'@param m1 Mean of first group
3 | #'@param m2 Mean of second group
4 | #'@param s1 Standard deviation of first group
5 | #'@param s2 Standard deviation of second group
6 | #'@param nlow starting sample size
7 | #'@param nhigh ending sample size
8 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
9 | #'@param propn1 Proportion in First Group
10 | #'@param ci Type of Confidence Interval (e.g., .95)
11 | #'@return Precision Analyses for Mean Differences
12 | #'@export
13 | #'
14 |
15 | md_prec<-function(m1,m2,s1,s2,nlow, nhigh, propn1= .5, ci=.95, by=1)
16 |
17 | {
18 | for(n in seq(nlow,nhigh, by)){
19 | n1<-n * propn1
20 | n2<-n * (1-propn1)
21 | var1 <- s1*s1
22 | var2 <- s2*s2
23 | nxs1 <- (n1-1)*(var1)
24 | nxs2 <- (n2-1)*(var2)
25 | s2p<-(nxs1+nxs2)/(n1+n2-2)
26 | sp <- sqrt(s2p)
27 | d<-(m1-m2)/sp
28 | a<-MBESS::ci.smd(smd=d, n.1=n1,n.2=n2, conf.level = .95)
29 | ll<-a[1]
30 | ul<-a[3]
31 | ll<-as.numeric(ll)
32 | ul<-as.numeric(ul)
33 | ll_m<-ll*sp
34 | ul_m<-ul*sp
35 | ll_m<-round((ll_m),4)
36 | ul_m<-round((ul_m),4)
37 | print(paste("n1=",n1,",n2 =",n2,",d = ",d,",LL = ",ll_m,",UL = ",ul_m,",precision =",ul_m-ll_m ))}
38 | }
39 |
40 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/pairt.R:
--------------------------------------------------------------------------------
1 | #'Compute power for a Paired t-test
2 | #'Takes means, sd, and sample sizes. Alpha is .05 by default, alterative values may be entered by user.
3 | #'correlation (r) defaults to .50.
4 | #'@param m1 Mean for Pre Test
5 | #'@param m2 Mean for Post Test
6 | #'@param s Standard deviation
7 | #'@param r Correlation pre-post measures (default is .50)
8 | #'@param n Sample size
9 | #'@param alpha Type I error (default is .05)
10 | #'@return Power for the Paired t-test
11 | #'@export
12 |
13 | pairt<-function(m1=NULL,m2=NULL, s=NULL, n=NULL, r = NULL, alpha=.05)
14 | {
15 | cov<-s^2
16 | corr<-r*cov
17 | data <- MASS::mvrnorm(n, mu = c(m1,m2), Sigma = matrix(c(cov,corr,corr,cov), ncol = 2),
18 | empirical = TRUE)
19 | data<-as.data.frame(data)
20 | t<-stats::t.test(data$V1,data$V2, paired=TRUE)
21 | lambda<-abs(t$statistic)^2
22 | minusalpha<-1-alpha
23 | Ft<-stats::qf(minusalpha, 1, n-1)
24 | Power<-round(1-stats::pf(Ft, 1,n-1,lambda),4)
25 | values<-list(Power = Power, lambda=lambda)
26 | print(paste("Power for n = ", n, "is", Power))
27 | }
28 |
29 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/prop1.R:
--------------------------------------------------------------------------------
1 | #'Compute power for a single sample proportion test
2 | #'Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param p1 expected proportion (a.k.a. alternative proportion)
4 | #'@param p0 null proportion
5 | #'@param nlow starting sample size
6 | #'@param nhigh ending sample size
7 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
8 | #'@param alpha Type I error (default is .05)
9 | #'@param tails number of tails for test (default is 2)
10 | #'@return Power for Tests of Single Proportion
11 | #'@export
12 | #'
13 | #'
14 |
15 | prop1<-function(p1,p0,nlow, nhigh, alpha=.05, tails=2, by=1)
16 | {
17 | {if(p1<0|p1>1.0|p0<0|p0>1.0){stop("Invalid proportions, must be between 0 and 1.0")
18 | }
19 | else
20 | p1a<-2*asin(p1^.5)
21 | p0a<-2*asin(p0^.5)
22 | h = abs(p1a-p0a)
23 | for(n in seq(nlow,nhigh, by)){
24 | zlambda<-h*(n^.5)
25 | prob<-1-(alpha/tails)
26 | tabled<-abs(stats::qnorm(prob))
27 | zpower<-tabled-zlambda
28 | power<-round(1-stats::pnorm(zpower),4)
29 | print(paste("Power for n of", n, "=", power))}
30 | }}
31 |
32 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/propind.R:
--------------------------------------------------------------------------------
1 | #'Compute power for Tests of Two Independent Proportions
2 | #'Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user
3 | #'@param p1 expected proportion Group 1
4 | #'@param p2 expected proportion Group 2
5 | #'@param nlow starting sample size
6 | #'@param nhigh ending sample size
7 | #'@param nratio ratio of sample size of first group to second (default is .5 for equally sized groups)
8 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
9 | #'@param alpha Type I error (default is .05)
10 | #'@param tails number of tails for test (default is 2)
11 | #'@return Power for Tests of Two Independent Proportions
12 | #'@export
13 | #'
14 | #'
15 |
16 | propind<-function(p1,p2,nlow, nhigh, nratio=0.5, alpha=.05, tails=2, by=1)
17 | {
18 | {if(p1<0|p1>1.0|p2<0|p2>1.0){stop("Invalid proportions, must be between 0 and 1.0")
19 | }
20 | else
21 | p1a<-2*asin(p1^.5)
22 | p2a<-2*asin(p2^.5)
23 | h<- abs(p1a-p2a)
24 | for(n in seq(nlow,nhigh, by)){
25 | n1<-n*nratio
26 | n2<-n-n1
27 | nharm<-(2*n1*n2)/(n1+n2)
28 | zlambda<-h*((nharm/2)^.5)
29 | prob<-1-(alpha/tails)
30 | tabled<-abs(stats::qnorm(prob))
31 | zpower<-tabled-zlambda
32 | power<-round(1-stats::pnorm(zpower),4)
33 | #print(c(p1a,p2a))}
34 | print(paste("Power for sample sizes of ", n1, n2, "=", power))}
35 |
36 | }}
37 |
38 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/r_prec.R:
--------------------------------------------------------------------------------
1 | #'Compute Precision Analyses for Correlations
2 | #'This approach simply loops a function from MBESS
3 | #'@param r Correlation
4 | #'@param nlow starting sample size
5 | #'@param nhigh ending sample size
6 | #'@param by Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
7 | #'@param ci Type of Confidence Interval (e.g., .95)
8 | #'@return Precision Analyses for Correlations
9 | #'@export
10 | #'
11 |
12 | r_prec<-function(r,nlow, nhigh, ci=.95, by=1)
13 | {
14 | for(n in seq(nlow,nhigh, by)){
15 | a<-MBESS::ci.cc(r, n, ci)
16 | ll<-a[1]
17 | ul<-a[3]
18 | ll<-round(as.numeric(ll),4)
19 | ul<-round(as.numeric(ul),4)
20 | print(paste("n=",n,"r = ",r,",LL = ",ll,",UL = ",ul,",precision = ",ul-ll ))}}
21 |
22 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/regint.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Regression Interaction (Correlation/Coefficient Approach)
2 | #'@param Group1 Estimates (r or b) for Group 1
3 | #'@param Group2 Estimates (r or b) for Group 2
4 | #'@param Prop_n1 Proportion of Sample in First Group (defaults to equal sample sizes)
5 | #'@param Estimates 1 for Correlations (default), 2 for coefficients
6 | #'@param sx1 Standard deviation of predictor, group 1 (defaults to 1)
7 | #'@param sx2 Standard deviation of predictor, group 2 (defaults to 1)
8 | #'@param sy1 Standard deviation of outcome, group 1 (defaults to 1)
9 | #'@param sy2 Standard deviation of outcome, group 2 (defaults to 1)
10 | #'@param nlow starting sample size
11 | #'@param nhigh ending sample size
12 | #'@param by incrimental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
13 | #'@param alpha Type I error (default is .05)
14 | #'@return Power for Regression Interaction (Correlation/Coefficient Approach)
15 | #'@export
16 | #'
17 | #'
18 |
19 |
20 | regint<-function(Group1,Group2, sx1=1, sx2=1, sy1=1, sy2=1, nlow, nhigh, alpha=.05, Prop_n1=.5, by=2, Estimates=1){
21 | for(n in seq(nlow,nhigh, by)){
22 | n1 <- n * Prop_n1
23 | n2 <- n * (1-Prop_n1)
24 | if (Estimates=="1"){
25 | r1 <- Group1
26 | r2 <- Group2}
27 | if (Estimates=="2"){
28 | r1 <- Group1*(sx1/sy1)
29 | r2 <- Group2*(sx2/sy2)}
30 | sx1_sq <- sx1^2
31 | sx2_sq <- sx2^2
32 | sy1_sq <- sy1^2
33 | sy2_sq <- sy2^2
34 | r1_sq <- r1^2
35 | r2_sq <- r2^2
36 | numer1 <- ((n1-1)*r1_sq* sy1_sq) + ((n2-1)*r2_sq* sy2_sq)
37 | numer2 <- (((n1-1)*r1 * sx1 * sy1)+ ((n2-1)*r2 * sx2 * sy2))^2
38 | numer3 <- ((n1-1)* sx1_sq)+ ((n2-1)* sx2_sq)
39 | numer <- numer1 - (numer2 / numer3)
40 | denom <- ((n1-2)*(1-r1_sq)* sy1_sq) + ((n2-2)*(1-r2_sq)* sy2_sq)
41 | f2 <- numer/denom
42 | df1 <- 1
43 | df2 <- n-4
44 | lambda <- f2 * df2
45 | minusalpha<-1-alpha
46 | Ft<-stats::qf(minusalpha, df1, df2)
47 | Power<-round(1-stats::pf(Ft, df1,df2,lambda),4)
48 | R2<-round((f2/(1+f2)),4)
49 | print(paste("Power with n1 = ", n1, "n2 = ", n2, "= ", Power))}
50 | print(paste("Effect size (R2 Change/Squared Semi Partial) = ", R2))}
51 |
52 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/regintR2.R:
--------------------------------------------------------------------------------
1 | #'Compute Power for Regression Interaction (R2 Change Approach)
2 | #'@param R2Mod Full Model R2
3 | #'@param R2Ch Change in R2 Added by Interaction
4 | #'@param mod_pred Full Model Number of Predictors
5 | #'@param ch_pred Change Model Number of Predictors
6 | #'@param nlow starting sample size
7 | #'@param nhigh ending sample size
8 | #'@param by incrimental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)
9 | #'@param alpha Type I error (default is .05)
10 | #'@return Power for Regression Interaction (R2 Change Approach)
11 | #'@export
12 | #'
13 | #'
14 |
15 |
16 | regintR2<-function(R2Mod, R2Ch, mod_pred, ch_pred,nlow, nhigh, by =1, alpha=.05)
17 | {
18 | for(n in seq(nlow,nhigh, by)){
19 | df_denom <- (n - mod_pred)-1
20 | f2 <- R2Ch/(1-R2Mod)
21 | lambda = f2*df_denom
22 | minusalpha<-1-alpha
23 | Ft<-stats::qf(minusalpha, ch_pred, df_denom)
24 | Power<-round(1-stats::pf(Ft, ch_pred, df_denom,lambda),4)
25 | print(paste("Power with n = ", n, "= ", Power))}
26 | }
27 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/R/tfromd.R:
--------------------------------------------------------------------------------
1 | #'Compute power for a t test using d statistic
2 | #'Takes d, sample size range, type of test, and tails.
3 | #'@param d standardize mean difference (Cohen's d)
4 | #'@param nlow Starting sample size
5 | #'@param nhigh Ending sample size
6 | #'@param by Incremental increase in sample size from low ot high
7 | #'@param tails one or two-tailed tests (default is 2)
8 | #'@param test "I" for independent, "P" for paired
9 | #'@param alpha Type I error (default is .05)
10 | #'@return Power for the t-test from d statistic
11 | #'@export
12 | #'
13 | #'
14 |
15 | tfromd<-function(d,nlow, nhigh, alpha=.05, test="I", tails=2, by=1)
16 | {
17 | if (test=="I") {
18 | d<-abs(d)
19 | for(n in seq(nlow,nhigh, by)){
20 | ncalc<-n/2
21 | delta<-d*(ncalc^.5)
22 | lambda<-delta^2
23 | minusalpha<-1-alpha
24 | Ft<-stats::qf(minusalpha, 1, n-2)
25 | Power<-round(1-stats::pf(Ft, 1,n-2,lambda),4)
26 | print(paste("Power a per group n of (Independent)", n, "=", Power))}
27 | }
28 | else if (test=="P")
29 | for(n in seq(nlow,nhigh, by)){
30 | d<-abs(d)
31 | delta<-d*(n^.5)
32 | lambda<-delta^2
33 | minusalpha<-1-alpha
34 | Ft<-stats::qf(minusalpha, 1, n-1)
35 | Power<-round(1-stats::pf(Ft, 1,n-2,lambda),3)
36 | print(paste("Power for total n of (Paired)", n, "=", Power))}
37 | }
38 |
39 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/README.md:
--------------------------------------------------------------------------------
1 | prw2ppl Readme
2 | ================
3 | Chris Aberson
4 | May 19, 2018
5 |
6 | pwr2ppl
7 | =======
8 |
9 | pwr2ppl contains protocols for running a wide range of power analyses. Analyses range from simple approaches such as t-test and correlations to multifactor ANOVA (between and within subjects, linear mixed model approaches) and regression-based approaches (basic multiple regression, moderated regression, mediation, and logistic regression).
10 |
11 | These protocols accompany the book *Applied Power Analysis for the Behavioral Sciences (2nd ed.)*. The book should be out in 2019. The book gives lots of illustritive examples of using the code but is not necessary for using the package.
12 |
13 | Getting Started
14 | ---------------
15 |
16 | Install the entire package (pwr2ppl\_0.1.0.tar.gz). At present devtools::install_github is not working.
17 | In RStudio choose install - from package archive then direct to where you stored the downloaded tar.gz file
18 |
19 | ### Prerequisites
20 |
21 | I built this under R 3.5.0
22 |
23 | Authors
24 | -------
25 |
26 | - **Chris Aberson** [chrisaberson](https://github.com/chrisaberson)
27 |
28 | License
29 | -------
30 |
31 | This project is licensed under the MIT License - see the [LICENSE.md](LICENSE.md) file for details
32 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/Chi2X3.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Chi2x3.R
3 | \name{Chi2X3}
4 | \alias{Chi2X3}
5 | \title{Compute power for an Chi Square 2x3
6 | Takes proportions for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | Chi2X3(r1c1, r1c2, r1c3, r2c1, r2c2, r2c3, n, alpha = 0.05)
9 | }
10 | \arguments{
11 | \item{r1c1}{Proportion of overall scores in Row 1, Column 1}
12 |
13 | \item{r1c2}{Proportion of overall scores in Row 1, Column 2}
14 |
15 | \item{r1c3}{Proportion of overall scores in Row 1, Column 3}
16 |
17 | \item{r2c1}{Proportion of overall scores in Row 2, Column 1}
18 |
19 | \item{r2c2}{Proportion of overall scores in Row 2, Column 2}
20 |
21 | \item{r2c3}{Proportion of overall scores in Row 2, Column 3}
22 |
23 | \item{n}{Total sample size}
24 |
25 | \item{alpha}{Type I error (default is .05)}
26 | }
27 | \value{
28 | Power for 2x3 Chi Square
29 | }
30 | \description{
31 | Compute power for an Chi Square 2x3
32 | Takes proportions for each group. Alpha is .05 by default, alterative values may be entered by user
33 | }
34 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/Chi2x2.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Chi2x2.R
3 | \name{Chi2x2}
4 | \alias{Chi2x2}
5 | \title{Compute power for an Chi Square 2x2
6 | Takes proportions for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | Chi2x2(r1c1, r1c2, r2c1, r2c2, n, alpha = 0.05)
9 | }
10 | \arguments{
11 | \item{r1c1}{Proportion of overall scores in Row 1, Column 1}
12 |
13 | \item{r1c2}{Proportion of overall scores in Row 1, Column 2}
14 |
15 | \item{r2c1}{Proportion of overall scores in Row 2, Column 1}
16 |
17 | \item{r2c2}{Proportion of overall scores in Row 2, Column 2}
18 |
19 | \item{n}{Total sample size}
20 |
21 | \item{alpha}{Type I error (default is .05)}
22 | }
23 | \value{
24 | Power for 2x2 Chi Square
25 | }
26 | \description{
27 | Compute power for an Chi Square 2x2
28 | Takes proportions for each group. Alpha is .05 by default, alterative values may be entered by user
29 | }
30 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/ChiES.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/ChiES.R
3 | \name{ChiES}
4 | \alias{ChiES}
5 | \title{Compute power for Chi Square Based on Effect Size
6 | Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | ChiES(phi, df, nlow, nhigh, by = 1, alpha = 0.05)
9 | }
10 | \arguments{
11 | \item{phi}{phi coefficient (effect size for 2x2)}
12 |
13 | \item{df}{degrees of freedom}
14 |
15 | \item{nlow}{starting sample size}
16 |
17 | \item{nhigh}{ending sample size}
18 |
19 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
20 |
21 | \item{alpha}{Type I error (default is .05)}
22 | }
23 | \value{
24 | Power for Chi Square Based on Effect Size
25 | }
26 | \description{
27 | Compute power for Chi Square Based on Effect Size
28 | Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user
29 | }
30 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/ChiGOF.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/ChiGOF.R
3 | \name{ChiGOF}
4 | \alias{ChiGOF}
5 | \title{Compute power for an Chi Square Goodness of Fit
6 | Takes proportions for up to six group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | ChiGOF(groups, po1, po2, po3 = NULL, po4 = NULL, po5 = NULL,
9 | po6 = NULL, n, alpha = 0.05)
10 | }
11 | \arguments{
12 | \item{groups}{Number of groups}
13 |
14 | \item{po1}{Proportion observed Group 1}
15 |
16 | \item{po2}{Proportion observed Group 2}
17 |
18 | \item{po3}{Proportion observed Group 3}
19 |
20 | \item{po4}{Proportion observed Group 4}
21 |
22 | \item{po5}{Proportion observed Group 5}
23 |
24 | \item{po6}{Proportion observed Group 6}
25 |
26 | \item{n}{Total sample size}
27 |
28 | \item{alpha}{Type I error (default is .05)}
29 | }
30 | \value{
31 | Power for Chi Square Goodness of Fit
32 | }
33 | \description{
34 | Compute power for an Chi Square Goodness of Fit
35 | Takes proportions for up to six group. Alpha is .05 by default, alterative values may be entered by user
36 | }
37 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/LRcat.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/LRcat.R
3 | \name{LRcat}
4 | \alias{LRcat}
5 | \title{Compute Power for Logistic Regression with a Single Categorical Predictor}
6 | \usage{
7 | LRcat(p0 = NULL, p1 = NULL, prop = 0.5, alpha = 0.05, power,
8 | R2 = 0)
9 | }
10 | \arguments{
11 | \item{p0}{Probability of a Desirable Outcome in the Control Condition}
12 |
13 | \item{p1}{Probability of a Desirable Outcome in the Treatment Condition}
14 |
15 | \item{prop}{Proportion in the Treatment Condition}
16 |
17 | \item{alpha}{Type I error (default is .05)}
18 |
19 | \item{power}{Desired Power}
20 |
21 | \item{R2}{How Well Predictor of Interest is Explained by Other Predictors (default is 0)}
22 | }
23 | \value{
24 | Power for Logistic Regression with a Single Categorical Predictor
25 | }
26 | \description{
27 | Compute Power for Logistic Regression with a Single Categorical Predictor
28 | }
29 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/LRcont.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/LRcont.R
3 | \name{LRcont}
4 | \alias{LRcont}
5 | \title{Compute Power for Logistic Regression with Continuous Predictors}
6 | \usage{
7 | LRcont(OR = NA, r = NA, ER = NULL, alpha = 0.05, power = NULL,
8 | R2 = 0)
9 | }
10 | \arguments{
11 | \item{OR}{Odds Ratio for Predictor of Interest}
12 |
13 | \item{r}{Correlation for Predictor of Interest}
14 |
15 | \item{ER}{Event Ratio Probability of a Desirable Outcome Overall}
16 |
17 | \item{alpha}{Type I error (default is .05)}
18 |
19 | \item{power}{Desired Power}
20 |
21 | \item{R2}{How Well Predictor of Interest is Explained by Other Predictors (default is 0)}
22 | }
23 | \value{
24 | Power for Logistic Regression with Continuous Predictors
25 | }
26 | \description{
27 | Compute Power for Logistic Regression with Continuous Predictors
28 | }
29 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/MRC.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/MRC.R
3 | \name{MRC}
4 | \alias{MRC}
5 | \title{Compute power for Multiple Regression with up to Five Predictors
6 | Example code below for three predictors. Expand as needed for four or five}
7 | \usage{
8 | MRC(ry1 = NULL, ry2 = NULL, ry3 = NULL, ry4 = NULL, ry5 = NULL,
9 | r12 = NULL, r13 = NULL, r14 = NULL, r15 = NULL, r23 = NULL,
10 | r24 = NULL, r25 = NULL, r34 = NULL, r35 = NULL, r45 = NULL,
11 | n = NULL, alpha = 0.05, rep = 10000)
12 | }
13 | \arguments{
14 | \item{ry1}{Correlation between DV (y) and first predictor (1)}
15 |
16 | \item{ry2}{Correlation between DV (y) and second predictor (2)}
17 |
18 | \item{ry3}{Correlation between DV (y) and third predictor (3)}
19 |
20 | \item{ry4}{Correlation between DV (y) and fourth predictor (4)}
21 |
22 | \item{ry5}{Correlation between DV (y) and fifth predictor (5)}
23 |
24 | \item{r12}{Correlation between first (1) and second predictor (2)}
25 |
26 | \item{r13}{Correlation between first (1) and third predictor (3)}
27 |
28 | \item{r14}{Correlation between first (1) and fourth predictor (4)}
29 |
30 | \item{r15}{Correlation between first (1) and fifth predictor (5)}
31 |
32 | \item{r23}{Correlation between second (2) and third predictor (3)}
33 |
34 | \item{r24}{Correlation between second (2) and fourth predictor (4)}
35 |
36 | \item{r25}{Correlation between second (2) and fifth predictor (5)}
37 |
38 | \item{r34}{Correlation between third (3) and fourth predictor (4)}
39 |
40 | \item{r35}{Correlation between third (3) and fifth predictor (5)}
41 |
42 | \item{r45}{Correlation between fourth (4) and fifth predictor (5)}
43 |
44 | \item{n}{Sample size}
45 |
46 | \item{alpha}{Type I error (default is .05)}
47 |
48 | \item{rep}{number of replications (default is 10000)}
49 | }
50 | \value{
51 | Power for Multiple Regression with Two to Five Predictors
52 | }
53 | \description{
54 | Compute power for Multiple Regression with up to Five Predictors
55 | Example code below for three predictors. Expand as needed for four or five
56 | }
57 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/MRC_all.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/MRC_all.R
3 | \name{MRC_all}
4 | \alias{MRC_all}
5 | \title{Compute power for Mutliple Regression with Three Predictors
6 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)}
7 | \usage{
8 | MRC_all(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL,
9 | r13 = NULL, r23 = NULL, n = NULL, alpha = 0.05, rep = 10000,
10 | my = 0, m1 = 0, m2 = 0, m3 = 0, sy = 1, s1 = 1, s2 = 1,
11 | s3 = 1)
12 | }
13 | \arguments{
14 | \item{ry1}{Correlation between DV (y) and first predictor (1)}
15 |
16 | \item{ry2}{Correlation between DV (y) and second predictor (2)}
17 |
18 | \item{ry3}{Correlation between DV (y) and third predictor (3)}
19 |
20 | \item{r12}{Correlation between first (1) and second predictor (2)}
21 |
22 | \item{r13}{Correlation between first (1) and third predictor (3)}
23 |
24 | \item{r23}{Correlation between second (2) and third predictor (3)}
25 |
26 | \item{n}{Sample size}
27 |
28 | \item{alpha}{Type I error (default is .05)}
29 |
30 | \item{rep}{number of replications (default is 10000)}
31 | }
32 | \value{
33 | Power for Multiple Regression (ALL)
34 | }
35 | \description{
36 | Compute power for Mutliple Regression with Three Predictors
37 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)
38 | }
39 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/R2_prec.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/R2_prec.R
3 | \name{R2_prec}
4 | \alias{R2_prec}
5 | \title{Compute Precision Analyses for R-Squared
6 | This approach simply loops a function from MBESS}
7 | \usage{
8 | R2_prec(R2, nlow, nhigh, pred, ci = 0.95, by = 1)
9 | }
10 | \arguments{
11 | \item{R2}{R-squared}
12 |
13 | \item{nlow}{starting sample size}
14 |
15 | \item{nhigh}{ending sample size}
16 |
17 | \item{pred}{Number of Predictors}
18 |
19 | \item{ci}{Type of Confidence Interval (e.g., .95)}
20 |
21 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
22 | }
23 | \value{
24 | Precision Analyses for R-Squared
25 | }
26 | \description{
27 | Compute Precision Analyses for R-Squared
28 | This approach simply loops a function from MBESS
29 | }
30 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/R2ch.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/R2ch.R
3 | \name{R2ch}
4 | \alias{R2ch}
5 | \title{Compute power for R2 change in Mutliple Regression (up to three predictors)
6 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)
7 | Example code below for three predictors. Expand as needed for four or five}
8 | \usage{
9 | R2ch(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL, r13 = NULL,
10 | r23 = NULL, n = NULL, alpha = 0.05, my = 0, m1 = 0, m2 = 0,
11 | m3 = 0, s1 = 1, s2 = 1, s3 = 1, sy = 1)
12 | }
13 | \arguments{
14 | \item{ry1}{Correlation between DV (y) and first predictor (1)}
15 |
16 | \item{ry2}{Correlation between DV (y) and second predictor (2)}
17 |
18 | \item{ry3}{Correlation between DV (y) and third predictor (3)}
19 |
20 | \item{r12}{Correlation between first (1) and second predictor (2)}
21 |
22 | \item{r13}{Correlation between first (1) and third predictor (3)}
23 |
24 | \item{r23}{Correlation between second (2) and third predictor (3)}
25 |
26 | \item{n}{Sample size}
27 |
28 | \item{alpha}{Type I error (default is .05)}
29 |
30 | \item{my}{Mean of DV (default is 0)}
31 |
32 | \item{m1}{Mean of first predictor (default is 0)}
33 |
34 | \item{m2}{Mean of second redictor (default is 0)}
35 |
36 | \item{m3}{Mean of third predictor (default is 0)}
37 |
38 | \item{s1}{Standard deviation of first predictor (default is 1)}
39 |
40 | \item{s2}{Standard deviation of second predictor (default is 1)}
41 |
42 | \item{s3}{Standard deviation of third predictor (default is 1)}
43 |
44 | \item{sy}{Standard deviation of DV (default is 1)}
45 | }
46 | \value{
47 | Power for R2 change in Mutliple Regression (up to three predictors)
48 | }
49 | \description{
50 | Compute power for R2 change in Mutliple Regression (up to three predictors)
51 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)
52 | Example code below for three predictors. Expand as needed for four or five
53 | }
54 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anc.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anc.R
3 | \name{anc}
4 | \alias{anc}
5 | \title{Compute Power for One or Two Factor ANCOVA with a single covariate
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | anc(m1.1, m2.1, m1.2, m2.2, m1.3 = NULL, m2.3 = NULL, m1.4 = NULL,
9 | m2.4 = NULL, s1.1, s2.1, s1.2, s2.2, s1.3 = NULL, s2.3 = NULL,
10 | s1.4 = NULL, s2.4 = NULL, r, s = NULL, alpha = 0.05, factors, n)
11 | }
12 | \arguments{
13 | \item{m1.1}{Cell mean for First level of Factor A, First level of Factor B}
14 |
15 | \item{m2.1}{Cell mean for Second level of Factor A, First level of Factor B}
16 |
17 | \item{m1.2}{Cell mean for First level of Factor A, Second level of Factor B}
18 |
19 | \item{m2.2}{Cell mean for Second level of Factor A, Second level of Factor B}
20 |
21 | \item{m1.3}{Cell mean for First level of Factor A, Third level of Factor B}
22 |
23 | \item{m2.3}{Cell mean for Second level of Factor A, Third level of Factor B}
24 |
25 | \item{m1.4}{Cell mean for First level of Factor A, Fourth level of Factor B}
26 |
27 | \item{m2.4}{Cell mean for Second level of Factor A, Fourth level of Factor B}
28 |
29 | \item{s1.1}{Cell standard deviation for First level of Factor A, First level of Factor B}
30 |
31 | \item{s2.1}{Cell standard deviation for Second level of Factor A, First level of Factor B}
32 |
33 | \item{s1.2}{Cell standard deviation for First level of Factor A, Second level of Factor B}
34 |
35 | \item{s2.2}{Cell standard deviation for Second level of Factor A, Second level of Factor B}
36 |
37 | \item{s1.3}{Cell standard deviation for First level of Factor A, Third level of Factor B}
38 |
39 | \item{s2.3}{Cell standard deviation for Second level of Factor A, Third level of Factor B}
40 |
41 | \item{s1.4}{Cell standard deviation for First level of Factor A, Fourth level of Factor B}
42 |
43 | \item{s2.4}{Cell standard deviation for Second level of Factor A, Fourth level of Factor B}
44 |
45 | \item{r}{Correlation between covariate and dependent variable.}
46 |
47 | \item{s}{Overall standard deviation. Sets all cell sds equal}
48 |
49 | \item{alpha}{Type I error (default is .05)}
50 |
51 | \item{factors}{Number of factors (1 or 2)}
52 |
53 | \item{n}{Sample Size per cell}
54 | }
55 | \value{
56 | Power for One or Two Factor ANCOVA with a single covariate
57 | }
58 | \description{
59 | Compute Power for One or Two Factor ANCOVA with a single covariate
60 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
61 | }
62 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anova1f_3.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anova1f_3.R
3 | \name{anova1f_3}
4 | \alias{anova1f_3}
5 | \title{Compute power for a One Factor ANOVA with three levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | anova1f_3(m1 = NULL, m2 = NULL, m3 = NULL, s1 = NULL, s2 = NULL,
9 | s3 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, alpha = 0.05)
10 | }
11 | \arguments{
12 | \item{m1}{Mean of first group}
13 |
14 | \item{m2}{Mean of second group}
15 |
16 | \item{m3}{Mean of third group}
17 |
18 | \item{s1}{Standard deviation of first group}
19 |
20 | \item{s2}{Standard deviation of second group}
21 |
22 | \item{s3}{Standard deviation of third group}
23 |
24 | \item{n1}{Sample size for first group}
25 |
26 | \item{n2}{Sample size for second group}
27 |
28 | \item{n3}{Sample size for third group}
29 |
30 | \item{alpha}{Type I error (default is .05)}
31 | }
32 | \value{
33 | Power for the One Factor ANOVA
34 | }
35 | \description{
36 | Compute power for a One Factor ANOVA with three levels.
37 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
38 | }
39 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anova1f_3c.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anova1f_3c.R
3 | \name{anova1f_3c}
4 | \alias{anova1f_3c}
5 | \title{Compute power for a One Factor ANOVA with three levels and contrasts.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | anova1f_3c(m1 = NULL, m2 = NULL, m3 = NULL, s1 = NULL, s2 = NULL,
9 | s3 = NULL, n1 = NULL, n2 = NULL, n3 = NULL, alpha = 0.05,
10 | c1 = 0, c2 = 0, c3 = 0)
11 | }
12 | \arguments{
13 | \item{m1}{Mean of first group}
14 |
15 | \item{m2}{Mean of second group}
16 |
17 | \item{m3}{Mean of third group}
18 |
19 | \item{s1}{Standard deviation of first group}
20 |
21 | \item{s2}{Standard deviation of second group}
22 |
23 | \item{s3}{Standard deviation of third group}
24 |
25 | \item{n1}{Sample size for first group}
26 |
27 | \item{n2}{Sample size for second group}
28 |
29 | \item{n3}{Sample size for third group}
30 |
31 | \item{alpha}{Type I error (default is .05)}
32 |
33 | \item{c1}{Weight for Contrast 1 (default is 0)}
34 |
35 | \item{c2}{Weight for Contrast 2 (default is 0)}
36 |
37 | \item{c3}{Weight for Contrast 3 (default is 0)}
38 | }
39 | \value{
40 | Power for the One Factor ANOVA
41 | }
42 | \description{
43 | Compute power for a One Factor ANOVA with three levels and contrasts.
44 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
45 | }
46 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anova1f_4.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anova1f_4.R
3 | \name{anova1f_4}
4 | \alias{anova1f_4}
5 | \title{Compute power for a One Factor Between Subjects ANOVA with four levels
6 | Takes means, sds, and sample sizes for each group}
7 | \usage{
8 | anova1f_4(m1 = NULL, m2 = NULL, m3 = NULL, m4 = NULL, s1 = NULL,
9 | s2 = NULL, s3 = NULL, s4 = NULL, n1 = NULL, n2 = NULL,
10 | n3 = NULL, n4 = NULL, alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{m1}{Mean of first group}
14 |
15 | \item{m2}{Mean of second group}
16 |
17 | \item{m3}{Mean of third group}
18 |
19 | \item{m4}{Mean of fourth group}
20 |
21 | \item{s1}{Standard deviation of first group}
22 |
23 | \item{s2}{Standard deviation of second group}
24 |
25 | \item{s3}{Standard deviation of third group}
26 |
27 | \item{s4}{Standard deviation of forth group}
28 |
29 | \item{n1}{Sample size for first group}
30 |
31 | \item{n2}{Sample size for second group}
32 |
33 | \item{n3}{Sample size for third group}
34 |
35 | \item{n4}{Sample size for fourth grou}
36 |
37 | \item{alpha}{Type I error (default is .05)}
38 | }
39 | \value{
40 | Power for the One Factor Between Subjects ANOVA
41 | }
42 | \description{
43 | Compute power for a One Factor Between Subjects ANOVA with four levels
44 | Takes means, sds, and sample sizes for each group
45 | }
46 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anova1f_4c.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anova1f_4c.R
3 | \name{anova1f_4c}
4 | \alias{anova1f_4c}
5 | \title{Compute power for a One Factor ANOVA with four levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | anova1f_4c(m1 = NULL, m2 = NULL, m3 = NULL, m4 = NULL, s1 = NULL,
9 | s2 = NULL, s3 = NULL, s4 = NULL, n1 = NULL, n2 = NULL,
10 | n3 = NULL, n4 = NULL, alpha = 0.05, c1 = 0, c2 = 0, c3 = 0,
11 | c4 = 0)
12 | }
13 | \arguments{
14 | \item{m1}{Mean of first group}
15 |
16 | \item{m2}{Mean of second group}
17 |
18 | \item{m3}{Mean of third group}
19 |
20 | \item{m4}{Mean of fourth group}
21 |
22 | \item{s1}{Standard deviation of first group}
23 |
24 | \item{s2}{Standard deviation of second group}
25 |
26 | \item{s3}{Standard deviation of third group}
27 |
28 | \item{s4}{Standard deviation of forth group}
29 |
30 | \item{n1}{Sample size for first group}
31 |
32 | \item{n2}{Sample size for second group}
33 |
34 | \item{n3}{Sample size for third group}
35 |
36 | \item{n4}{Sample size for fourth grou}
37 |
38 | \item{alpha}{Type I error (default is .05)}
39 |
40 | \item{c1}{Weight for Contrast 1 (default is 0)}
41 |
42 | \item{c2}{Weight for Contrast 2 (default is 0)}
43 |
44 | \item{c3}{Weight for Contrast 3 (default is 0)}
45 |
46 | \item{c4}{Weight for Contrast 4 (default is 0)}
47 | }
48 | \value{
49 | Power for the One Factor ANOVA
50 | }
51 | \description{
52 | Compute power for a One Factor ANOVA with four levels.
53 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
54 | }
55 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anova2x2.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anova2x2.R
3 | \name{anova2x2}
4 | \alias{anova2x2}
5 | \title{Compute power for a Two by Two Between Subjects ANOVA with four levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | anova2x2(m1.1 = NULL, m1.2 = NULL, m2.1 = NULL, m2.2 = NULL,
9 | s1.1 = NULL, s1.2 = NULL, s2.1 = NULL, s2.2 = NULL,
10 | n1.1 = NULL, n1.2 = NULL, n2.1 = NULL, n2.2 = NULL,
11 | alpha = 0.05, all = "OFF")
12 | }
13 | \arguments{
14 | \item{m1.1}{Cell mean for First level of Factor A, First level of Factor B}
15 |
16 | \item{m1.2}{Cell mean for First level of Factor A, Second level of Factor B}
17 |
18 | \item{m2.1}{Cell mean for Second level of Factor A, First level of Factor B}
19 |
20 | \item{m2.2}{Cell mean for Second level of Factor A, Second level of Factor B}
21 |
22 | \item{s1.1}{Cell standard deviation for First level of Factor A, First level of Factor B}
23 |
24 | \item{s1.2}{Cell standard deviation for First level of Factor A, Second level of Factor B}
25 |
26 | \item{s2.1}{Cell standard deviation for Second level of Factor A, First level of Factor B}
27 |
28 | \item{s2.2}{Cell standard deviation for Second level of Factor A, Second level of Factor B}
29 |
30 | \item{n1.1}{Cell sample size for First level of Factor A, First level of Factor B}
31 |
32 | \item{n1.2}{Cell sample size for First level of Factor A, Second level of Factor B}
33 |
34 | \item{n2.1}{Cell sample size for Second level of Factor A, First level of Factor B}
35 |
36 | \item{n2.2}{Cell sample size for Second level of Factor A, Second level of Factor B}
37 |
38 | \item{alpha}{Type I error (default is .05)}
39 |
40 | \item{all}{Power(ALL) - Power for detecting all predictors in the model at once (default is "OFF")}
41 | }
42 | \value{
43 | Power for the One Factor ANOVA
44 | }
45 | \description{
46 | Compute power for a Two by Two Between Subjects ANOVA with four levels.
47 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
48 | }
49 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/anova2x2_se.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/anova2x2_se.R
3 | \name{anova2x2_se}
4 | \alias{anova2x2_se}
5 | \title{Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | anova2x2_se(m1.1 = NULL, m1.2 = NULL, m2.1 = NULL, m2.2 = NULL,
9 | s1.1 = NULL, s1.2 = NULL, s2.1 = NULL, s2.2 = NULL,
10 | n1.1 = NULL, n1.2 = NULL, n2.1 = NULL, n2.2 = NULL,
11 | alpha = 0.05)
12 | }
13 | \arguments{
14 | \item{m1.1}{Cell mean for First level of Factor A, First level of Factor B}
15 |
16 | \item{m1.2}{Cell mean for First level of Factor A, Second level of Factor B}
17 |
18 | \item{m2.1}{Cell mean for Second level of Factor A, First level of Factor B}
19 |
20 | \item{m2.2}{Cell mean for Second level of Factor A, Second level of Factor B}
21 |
22 | \item{s1.1}{Cell standard deviation for First level of Factor A, First level of Factor B}
23 |
24 | \item{s1.2}{Cell standard deviation for First level of Factor A, Second level of Factor B}
25 |
26 | \item{s2.1}{Cell standard deviation for Second level of Factor A, First level of Factor B}
27 |
28 | \item{s2.2}{Cell standard deviation for Second level of Factor A, Second level of Factor B}
29 |
30 | \item{n1.1}{Cell sample size for First level of Factor A, First level of Factor B}
31 |
32 | \item{n1.2}{Cell sample size for First level of Factor A, Second level of Factor B}
33 |
34 | \item{n2.1}{Cell sample size for Second level of Factor A, First level of Factor B}
35 |
36 | \item{n2.2}{Cell sample size for Second level of Factor A, Second level of Factor B}
37 |
38 | \item{alpha}{Type I error (default is .05)}
39 | }
40 | \value{
41 | Power for Simple Effects Tests in a Two By Two ANOVA
42 | }
43 | \description{
44 | Compute power for Simple Effects in a Two by Two Between Subjects ANOVA with two levels for each factor.
45 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
46 | }
47 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/corr.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/corr.R
3 | \name{corr}
4 | \alias{corr}
5 | \title{Compute power for Pearson's Correlation
6 | Takes correlation and range of values}
7 | \usage{
8 | corr(r, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)
9 | }
10 | \arguments{
11 | \item{r}{Correlation}
12 |
13 | \item{nlow}{Starting sample size}
14 |
15 | \item{nhigh}{Ending sample size}
16 |
17 | \item{alpha}{Type I error (default is .05)}
18 |
19 | \item{tails}{one or two-tailed tests (default is 2)}
20 |
21 | \item{by}{Incremental increase in sample size from low ot high}
22 | }
23 | \value{
24 | Power for Pearson's Correlation
25 | }
26 | \description{
27 | Compute power for Pearson's Correlation
28 | Takes correlation and range of values
29 | }
30 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/d_prec.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/d_prec.R
3 | \name{d_prec}
4 | \alias{d_prec}
5 | \title{Compute Precision Analyses for Standardized Mean Differences}
6 | \usage{
7 | d_prec(d, nlow, nhigh, propn1 = 0.5, ci = 0.95, tails = 2, by = 1)
8 | }
9 | \arguments{
10 | \item{d}{Standardized means difference between groups}
11 |
12 | \item{nlow}{starting sample size}
13 |
14 | \item{nhigh}{ending sample size}
15 |
16 | \item{propn1}{Proportion in First Group}
17 |
18 | \item{ci}{Type of Confidence Interval (e.g., .95)}
19 |
20 | \item{tails}{number of tails for test (default is 2)}
21 |
22 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
23 | }
24 | \value{
25 | Precision Analyses for Standardized Mean Differences
26 | }
27 | \description{
28 | Compute Precision Analyses for Standardized Mean Differences
29 | }
30 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/depb.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/depb.R
3 | \name{depb}
4 | \alias{depb}
5 | \title{Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors
6 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)}
7 | \usage{
8 | depb(ry1, ry2, ry3 = NULL, r12, r13 = NULL, r23 = NULL, n = NULL,
9 | alpha = 0.05)
10 | }
11 | \arguments{
12 | \item{ry1}{Correlation between DV (y) and first predictor (1)}
13 |
14 | \item{ry2}{Correlation between DV (y) and second predictor (2)}
15 |
16 | \item{ry3}{Correlation between DV (y) and third predictor (3)}
17 |
18 | \item{r12}{Correlation between first (1) and second predictor (2)}
19 |
20 | \item{r13}{Correlation between first (1) and third predictor (3)}
21 |
22 | \item{r23}{Correlation between second (2) and third predictor (3)}
23 |
24 | \item{n}{Sample size}
25 |
26 | \item{alpha}{Type I error (default is .05)}
27 | }
28 | \value{
29 | Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors
30 | }
31 | \description{
32 | Power for Comparing Dependent Coefficients in Multiple Regression with Two or Three Predictors
33 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)
34 | }
35 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/depcorr0.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/depcorr0.R
3 | \name{depcorr0}
4 | \alias{depcorr0}
5 | \title{Compute Power for Comparing Two Dependent Correlations, No Variables in Common
6 | Takes correlations and range of values. First variable in each pair is termed predictor, second is DV}
7 | \usage{
8 | depcorr0(r12, rxy, r1x, r1y, r2x, r2y, nlow, nhigh, alpha = 0.05,
9 | tails = 2, by = 1)
10 | }
11 | \arguments{
12 | \item{r12}{Correlation between the predictor and DV (first set of measures)}
13 |
14 | \item{rxy}{Correlation between the predictor and DV (second set of measures)}
15 |
16 | \item{r1x}{Correlation between the predictor (first measure) and the predictor variable (first measure)}
17 |
18 | \item{r1y}{Correlation between the predictor (first measure) and the dependent variable (second measure)}
19 |
20 | \item{r2x}{Correlation between the DV (first measure) and the predictor variable (first measure)}
21 |
22 | \item{r2y}{Correlation between the DV (first measure) and the dependent variable (second measure)}
23 |
24 | \item{nlow}{Starting sample size}
25 |
26 | \item{nhigh}{Ending sample size}
27 |
28 | \item{alpha}{Type I error (default is .05)}
29 |
30 | \item{tails}{one or two-tailed tests (default is 2)}
31 |
32 | \item{by}{Incremental increase in sample size from low ot high}
33 | }
34 | \value{
35 | Power for Comparing Two Dependent Correlations, No Variables in Common
36 | }
37 | \description{
38 | Compute Power for Comparing Two Dependent Correlations, No Variables in Common
39 | Takes correlations and range of values. First variable in each pair is termed predictor, second is DV
40 | }
41 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/depcorr1.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/depcorr1.R
3 | \name{depcorr1}
4 | \alias{depcorr1}
5 | \title{Compute Power for Comparing Two Dependent Correlations, One Variable in Common
6 | Takes correlations and range of values}
7 | \usage{
8 | depcorr1(r1y, r2y, r12, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)
9 | }
10 | \arguments{
11 | \item{r1y}{Correlation between the first predictor and the dependent variable}
12 |
13 | \item{r2y}{Correlation between the second predictor and the dependent variable}
14 |
15 | \item{r12}{Correlation between the first predictor and the second predictor}
16 |
17 | \item{nlow}{Starting sample size}
18 |
19 | \item{nhigh}{Ending sample size}
20 |
21 | \item{alpha}{Type I error (default is .05)}
22 |
23 | \item{tails}{one or two-tailed tests (default is 2)}
24 |
25 | \item{by}{Incremental increase in sample size from low ot high}
26 | }
27 | \value{
28 | Power for Comparing Dependent Correlations, One Variable in Common
29 | }
30 | \description{
31 | Compute Power for Comparing Two Dependent Correlations, One Variable in Common
32 | Takes correlations and range of values
33 | }
34 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/hello.Rd:
--------------------------------------------------------------------------------
1 | \name{hello}
2 | \alias{hello}
3 | \title{Hello, World!}
4 | \usage{
5 | hello()
6 | }
7 | \description{
8 | Prints 'Hello, world!'.
9 | }
10 | \examples{
11 | hello()
12 | }
13 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/indR2.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/indR2.R
3 | \name{indR2}
4 | \alias{indR2}
5 | \title{Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors
6 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)}
7 | \usage{
8 | indR2(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL,
9 | n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL,
10 | n2, alpha = 0.05, tails = 2)
11 | }
12 | \arguments{
13 | \item{ry1_1}{Correlation between DV (y) and first predictor (1), first test}
14 |
15 | \item{ry2_1}{Correlation between DV (y) and second predictor (2), first test}
16 |
17 | \item{ry3_1}{Correlation between DV (y) and third predictor (3), first test}
18 |
19 | \item{r12_1}{Correlation between first (1) and second predictor (2), first test}
20 |
21 | \item{r13_1}{Correlation between first (1) and third predictor (3), first test}
22 |
23 | \item{r23_1}{Correlation between second (2) and third predictor (3), first test}
24 |
25 | \item{n1}{Sample size first test}
26 |
27 | \item{ry1_2}{Correlation between DV (y) and first predictor (1), second test}
28 |
29 | \item{ry2_2}{Correlation between DV (y) and second predictor (2), second test}
30 |
31 | \item{ry3_2}{Correlation between DV (y) and third predictor (3), second test}
32 |
33 | \item{r12_2}{Correlation between first (1) and second predictor (2), second test}
34 |
35 | \item{r13_2}{Correlation between first (1) and third predictor (3), second test}
36 |
37 | \item{r23_2}{Correlation between second (2) and third predictor (3), second test}
38 |
39 | \item{n2}{Sample size second test}
40 |
41 | \item{alpha}{Type I error (default is .05)}
42 |
43 | \item{tails}{number of tails for test (default is 2)}
44 | }
45 | \value{
46 | Power for Comparing R2 Coefficients in Multiple Regression
47 | }
48 | \description{
49 | Power for Comparing Independent R2 in Multiple Regression with Two or Three Predictors
50 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)
51 | }
52 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/indb.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/indb.R
3 | \name{indb}
4 | \alias{indb}
5 | \title{Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors
6 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)}
7 | \usage{
8 | indb(ry1_1, ry2_1, ry3_1 = NULL, r12_1, r13_1 = NULL, r23_1 = NULL,
9 | n1, ry1_2, ry2_2, ry3_2 = NULL, r12_2, r13_2 = NULL, r23_2 = NULL,
10 | n2, alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{ry1_1}{Correlation between DV (y) and first predictor (1), first test}
14 |
15 | \item{ry2_1}{Correlation between DV (y) and second predictor (2), first test}
16 |
17 | \item{ry3_1}{Correlation between DV (y) and third predictor (3), first test}
18 |
19 | \item{r12_1}{Correlation between first (1) and second predictor (2), first test}
20 |
21 | \item{r13_1}{Correlation between first (1) and third predictor (3), first test}
22 |
23 | \item{r23_1}{Correlation between second (2) and third predictor (3), first test}
24 |
25 | \item{n1}{Sample size first test}
26 |
27 | \item{ry1_2}{Correlation between DV (y) and first predictor (1), second test}
28 |
29 | \item{ry2_2}{Correlation between DV (y) and second predictor (2), second test}
30 |
31 | \item{ry3_2}{Correlation between DV (y) and third predictor (3), second test}
32 |
33 | \item{r12_2}{Correlation between first (1) and second predictor (2), second test}
34 |
35 | \item{r13_2}{Correlation between first (1) and third predictor (3), second test}
36 |
37 | \item{r23_2}{Correlation between second (2) and third predictor (3), second test}
38 |
39 | \item{n2}{Sample size second test}
40 |
41 | \item{alpha}{Type I error (default is .05)}
42 | }
43 | \value{
44 | Power for Comparing Independent Coefficients in Multiple Regression
45 | }
46 | \description{
47 | Power for Comparing Independent Coefficients in Multiple Regression with Two or Three Predictors
48 | Requires correlations between all variables as sample size. Means, sds, and alpha are option. Also computes Power(All)
49 | }
50 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/indcorr.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/indcorr.R
3 | \name{indcorr}
4 | \alias{indcorr}
5 | \title{Compute Power for Comparing Two Independent Correlations
6 | Takes correlations and range of values}
7 | \usage{
8 | indcorr(r1, r2, nlow, nhigh, propn1 = 0.5, alpha = 0.05, tails = 2,
9 | by = 1)
10 | }
11 | \arguments{
12 | \item{r1}{Correlation for Group 1}
13 |
14 | \item{r2}{Correlation for Group 2}
15 |
16 | \item{nlow}{Starting sample size}
17 |
18 | \item{nhigh}{Ending sample size}
19 |
20 | \item{propn1}{Proportion of sample in first group (default is .50 for equally size groups)}
21 |
22 | \item{alpha}{Type I error (default is .05)}
23 |
24 | \item{tails}{one or two-tailed tests (default is 2)}
25 |
26 | \item{by}{Incremental increase in sample size from low ot high}
27 | }
28 | \value{
29 | Power for Comparing Two Independent Correlations
30 | }
31 | \description{
32 | Compute Power for Comparing Two Independent Correlations
33 | Takes correlations and range of values
34 | }
35 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/indt.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/indt.R
3 | \name{indt}
4 | \alias{indt}
5 | \title{Compute power for an Independent Samples t-test
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | indt(m1 = NULL, m2 = NULL, s1 = NULL, s2 = NULL, n1 = NULL,
9 | n2 = NULL, alpha = 0.05)
10 | }
11 | \arguments{
12 | \item{m1}{Mean of first group}
13 |
14 | \item{m2}{Mean of second group}
15 |
16 | \item{s1}{Standard deviation of first group}
17 |
18 | \item{s2}{Standard deviation of second group}
19 |
20 | \item{n1}{Sample size for first group}
21 |
22 | \item{n2}{Sample size for second group}
23 |
24 | \item{alpha}{Type I error (default is .05)}
25 | }
26 | \value{
27 | Power for Independent Samples t-test
28 | }
29 | \description{
30 | Compute power for an Independent Samples t-test
31 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
32 | }
33 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/lmm1F.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/lmm1F.R
3 | \name{lmm1F}
4 | \alias{lmm1F}
5 | \title{Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | lmm1F(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12,
9 | r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n,
10 | alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{m1}{Mean of first time point}
14 |
15 | \item{m2}{Mean of second time point}
16 |
17 | \item{m3}{Mean of third time point}
18 |
19 | \item{m4}{Mean of fourth time point}
20 |
21 | \item{s1}{Standard deviation of first time point}
22 |
23 | \item{s2}{Standard deviation of second time point}
24 |
25 | \item{s3}{Standard deviation of third time point}
26 |
27 | \item{s4}{Standard deviation of forth time point}
28 |
29 | \item{r12}{correlation Time 1 and Time 2}
30 |
31 | \item{r13}{correlation Time 1 and Time 3}
32 |
33 | \item{r14}{correlation Time 1 and Time 4}
34 |
35 | \item{r23}{correlation Time 2 and Time 3}
36 |
37 | \item{r24}{correlation Time 2 and Time 4}
38 |
39 | \item{r34}{correlation Time 3 and Time 4}
40 |
41 | \item{n}{Sample size for first group}
42 |
43 | \item{alpha}{Type I error (default is .05)}
44 | }
45 | \value{
46 | Power for the One Factor Within Subjects Linear Mixed Model
47 | }
48 | \description{
49 | Compute power for a One Factor Within Subjects Linear Mixed Model with up to four levels.
50 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
51 | }
52 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/lmm1Ftrends.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/lmm1Ftrends.R
3 | \name{lmm1Ftrends}
4 | \alias{lmm1Ftrends}
5 | \title{Compute power for a One Factor Within Subjects LMM Trends with up to four levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | lmm1Ftrends(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL,
9 | r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL,
10 | r34 = NULL, n, alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{m1}{Mean of first time point}
14 |
15 | \item{m2}{Mean of second time point}
16 |
17 | \item{m3}{Mean of third time point}
18 |
19 | \item{m4}{Mean of fourth time point}
20 |
21 | \item{s1}{Standard deviation of first time point}
22 |
23 | \item{s2}{Standard deviation of second time point}
24 |
25 | \item{s3}{Standard deviation of third time point}
26 |
27 | \item{s4}{Standard deviation of forth time point}
28 |
29 | \item{r12}{correlation Time 1 and Time 2}
30 |
31 | \item{r13}{correlation Time 1 and Time 3}
32 |
33 | \item{r14}{correlation Time 1 and Time 4}
34 |
35 | \item{r23}{correlation Time 2 and Time 3}
36 |
37 | \item{r24}{correlation Time 2 and Time 4}
38 |
39 | \item{r34}{correlation Time 3 and Time 4}
40 |
41 | \item{n}{Sample size for first group}
42 |
43 | \item{alpha}{Type I error (default is .05)}
44 | }
45 | \value{
46 | Power for the One Factor Within Subjects LMM Trends
47 | }
48 | \description{
49 | Compute power for a One Factor Within Subjects LMM Trends with up to four levels.
50 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
51 | }
52 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/md_prec.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/md_precision.R
3 | \name{md_prec}
4 | \alias{md_prec}
5 | \title{Compute Precision Analyses for Mean Differences}
6 | \usage{
7 | md_prec(m1, m2, s1, s2, nlow, nhigh, propn1 = 0.5, ci = 0.95, by = 1)
8 | }
9 | \arguments{
10 | \item{m1}{Mean of first group}
11 |
12 | \item{m2}{Mean of second group}
13 |
14 | \item{s1}{Standard deviation of first group}
15 |
16 | \item{s2}{Standard deviation of second group}
17 |
18 | \item{nlow}{starting sample size}
19 |
20 | \item{nhigh}{ending sample size}
21 |
22 | \item{propn1}{Proportion in First Group}
23 |
24 | \item{ci}{Type of Confidence Interval (e.g., .95)}
25 |
26 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
27 | }
28 | \value{
29 | Precision Analyses for Mean Differences
30 | }
31 | \description{
32 | Compute Precision Analyses for Mean Differences
33 | }
34 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/med.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/med.R
3 | \name{med}
4 | \alias{med}
5 | \title{Compute Power for Mediated (Indirect) Effects
6 | Requires correlations between all variables as sample size.}
7 | \usage{
8 | med(rxm1, rxm2 = 0, rxm3 = 0, rxm4 = 0, rxy, rym1, rym2 = 0,
9 | rym3 = 0, rym4 = 0, rm1m2 = 0, rm1m3 = 0, rm1m4 = 0,
10 | rm2m3 = 0, rm2m4 = 0, rm3m4 = 0, alpha = 0.05, mvars, n)
11 | }
12 | \arguments{
13 | \item{rxm1}{Correlation between predictor (x) and first mediator (m1)}
14 |
15 | \item{rxm2}{Correlation between predictor (x) and second mediator (m2)}
16 |
17 | \item{rxm3}{Correlation between predictor (x) and third mediator (m3)}
18 |
19 | \item{rxm4}{Correlation between predictor (x) and fourth mediator (m4)}
20 |
21 | \item{rxy}{Correlation between DV (y) and predictor (x)}
22 |
23 | \item{rym1}{Correlation between DV (y) and first mediator (m1)}
24 |
25 | \item{rym2}{Correlation between DV (y) and second mediator (m2)}
26 |
27 | \item{rym3}{Correlation DV (y) and third mediator (m3)}
28 |
29 | \item{rym4}{Correlation DV (y) and fourth mediator (m4)}
30 |
31 | \item{rm1m2}{Correlation first mediator (m1) and second mediator (m2)}
32 |
33 | \item{rm1m3}{Correlation first mediator (m1) and third mediator (m3)}
34 |
35 | \item{rm1m4}{Correlation first mediator (m1) and fourth mediator (m4)}
36 |
37 | \item{rm2m3}{Correlation second mediator (m2) and third mediator (m3)}
38 |
39 | \item{rm2m4}{Correlation second mediator (m2) and fourth mediator (m4)}
40 |
41 | \item{rm3m4}{Correlation third mediator (m3) and fourth mediator (m4)}
42 |
43 | \item{alpha}{Type I error (default is .05)}
44 |
45 | \item{mvars}{Number of Mediators}
46 |
47 | \item{n}{Sample size}
48 | }
49 | \value{
50 | Power for Mediated (Indirect) Effects
51 | }
52 | \description{
53 | Compute Power for Mediated (Indirect) Effects
54 | Requires correlations between all variables as sample size.
55 | }
56 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/mrc_shortcuts.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/MRC_shortcuts.R
3 | \name{mrc_shortcuts}
4 | \alias{mrc_shortcuts}
5 | \title{Compute Mutliple Regression shortcuts with three predictors (will expand to handle two to five)
6 | Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)}
7 | \usage{
8 | mrc_shortcuts(ry1 = NULL, ry2 = NULL, ry3 = NULL, r12 = NULL,
9 | r13 = NULL, r23 = NULL, n = 100, alpha = 0.05, my = 0, m1 = 0,
10 | m2 = 0, m3 = 0, s1 = 1, s2 = 1, s3 = 1, sy = 1)
11 | }
12 | \arguments{
13 | \item{ry1}{Correlation between DV (y) and first predictor (1)}
14 |
15 | \item{ry2}{Correlation between DV (y) and second predictor (2)}
16 |
17 | \item{ry3}{Correlation between DV (y) and third predictor (3)}
18 |
19 | \item{r12}{Correlation between first (1) and second predictor (2)}
20 |
21 | \item{r13}{Correlation between first (1) and third predictor (3)}
22 |
23 | \item{r23}{Correlation between second (2) and third predictor (3)}
24 |
25 | \item{n}{Sample size}
26 |
27 | \item{alpha}{Type I error (default is .05)}
28 |
29 | \item{my}{Mean of DV (default is 0)}
30 |
31 | \item{m1}{Mean of first predictor (default is 0)}
32 |
33 | \item{m2}{Mean of second redictor (default is 0)}
34 |
35 | \item{m3}{Mean of third predictor (default is 0)}
36 |
37 | \item{s1}{Standard deviation of first predictor (default is 1)}
38 |
39 | \item{s2}{Standard deviation of second predictor (default is 1)}
40 |
41 | \item{s3}{Standard deviation of third predictor (default is 1)}
42 |
43 | \item{sy}{Standard deviation of DV (default is 1)}
44 |
45 | \item{rep}{number of replications (default is 10000)}
46 | }
47 | \value{
48 | Mutliple Regression shortcuts with three predictors
49 | }
50 | \description{
51 | Compute Mutliple Regression shortcuts with three predictors (will expand to handle two to five)
52 | Requires correlations between all variables as sample size. Means and sds are option. Also computes Power(All)
53 | }
54 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/packrat/packrat.opts:
--------------------------------------------------------------------------------
1 | auto.snapshot: FALSE
2 | use.cache: FALSE
3 | print.banner.on.startup: auto
4 | vcs.ignore.lib: TRUE
5 | vcs.ignore.src: FALSE
6 | external.packages:
7 | car
8 | MASS
9 | dplyr
10 | tidyr
11 | ez
12 | nlme
13 | phia
14 | afex
15 | lavaan
16 | MBESS
17 | local.repos:
18 | load.external.packages.on.startup: TRUE
19 | ignored.packages:
20 | ignored.directories:
21 | data
22 | inst
23 | quiet.package.installation: TRUE
24 | snapshot.recommended.packages: FALSE
25 | snapshot.fields:
26 | Imports
27 | Depends
28 | LinkingTo
29 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/pairt.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/pairt.R
3 | \name{pairt}
4 | \alias{pairt}
5 | \title{Compute power for a Paired t-test
6 | Takes means, sd, and sample sizes. Alpha is .05 by default, alterative values may be entered by user.
7 | correlation (r) defaults to .50.}
8 | \usage{
9 | pairt(m1 = NULL, m2 = NULL, s = NULL, n = NULL, r = NULL,
10 | alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{m1}{Mean for Pre Test}
14 |
15 | \item{m2}{Mean for Post Test}
16 |
17 | \item{s}{Standard deviation}
18 |
19 | \item{n}{Sample size}
20 |
21 | \item{r}{Correlation pre-post measures (default is .50)}
22 |
23 | \item{alpha}{Type I error (default is .05)}
24 | }
25 | \value{
26 | Power for the Paired t-test
27 | }
28 | \description{
29 | Compute power for a Paired t-test
30 | Takes means, sd, and sample sizes. Alpha is .05 by default, alterative values may be entered by user.
31 | correlation (r) defaults to .50.
32 | }
33 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/prop1.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/prop1.R
3 | \name{prop1}
4 | \alias{prop1}
5 | \title{Compute power for a single sample proportion test
6 | Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | prop1(p1, p0, nlow, nhigh, alpha = 0.05, tails = 2, by = 1)
9 | }
10 | \arguments{
11 | \item{p1}{expected proportion (a.k.a. alternative proportion)}
12 |
13 | \item{p0}{null proportion}
14 |
15 | \item{nlow}{starting sample size}
16 |
17 | \item{nhigh}{ending sample size}
18 |
19 | \item{alpha}{Type I error (default is .05)}
20 |
21 | \item{tails}{number of tails for test (default is 2)}
22 |
23 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
24 | }
25 | \value{
26 | Power for Tests of Single Proportion
27 | }
28 | \description{
29 | Compute power for a single sample proportion test
30 | Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user
31 | }
32 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/propind.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/propind.R
3 | \name{propind}
4 | \alias{propind}
5 | \title{Compute power for Tests of Two Independent Proportions
6 | Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | propind(p1, p2, nlow, nhigh, nratio = 0.5, alpha = 0.05, tails = 2,
9 | by = 1)
10 | }
11 | \arguments{
12 | \item{p1}{expected proportion Group 1}
13 |
14 | \item{p2}{expected proportion Group 2}
15 |
16 | \item{nlow}{starting sample size}
17 |
18 | \item{nhigh}{ending sample size}
19 |
20 | \item{nratio}{ratio of sample size of first group to second (default is .5 for equally sized groups)}
21 |
22 | \item{alpha}{Type I error (default is .05)}
23 |
24 | \item{tails}{number of tails for test (default is 2)}
25 |
26 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
27 | }
28 | \value{
29 | Power for Tests of Two Independent Proportions
30 | }
31 | \description{
32 | Compute power for Tests of Two Independent Proportions
33 | Takes phi, degrees of freedom, and a range of sameple sizes. Alpha is .05 by default, alterative values may be entered by user
34 | }
35 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/r_prec.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/r_prec.R
3 | \name{r_prec}
4 | \alias{r_prec}
5 | \title{Compute Precision Analyses for Correlations
6 | This approach simply loops a function from MBESS}
7 | \usage{
8 | r_prec(r, nlow, nhigh, ci = 0.95, by = 1)
9 | }
10 | \arguments{
11 | \item{r}{Correlation}
12 |
13 | \item{nlow}{starting sample size}
14 |
15 | \item{nhigh}{ending sample size}
16 |
17 | \item{ci}{Type of Confidence Interval (e.g., .95)}
18 |
19 | \item{by}{Incremental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
20 | }
21 | \value{
22 | Precision Analyses for Correlations
23 | }
24 | \description{
25 | Compute Precision Analyses for Correlations
26 | This approach simply loops a function from MBESS
27 | }
28 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/regint.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/regint.R
3 | \name{regint}
4 | \alias{regint}
5 | \title{Compute Power for Regression Interaction (Correlation/Coefficient Approach)}
6 | \usage{
7 | regint(Group1, Group2, sx1 = 1, sx2 = 1, sy1 = 1, sy2 = 1, nlow,
8 | nhigh, alpha = 0.05, Prop_n1 = 0.5, by = 2, Estimates = 1)
9 | }
10 | \arguments{
11 | \item{Group1}{Estimates (r or b) for Group 1}
12 |
13 | \item{Group2}{Estimates (r or b) for Group 2}
14 |
15 | \item{sx1}{Standard deviation of predictor, group 1 (defaults to 1)}
16 |
17 | \item{sx2}{Standard deviation of predictor, group 2 (defaults to 1)}
18 |
19 | \item{sy1}{Standard deviation of outcome, group 1 (defaults to 1)}
20 |
21 | \item{sy2}{Standard deviation of outcome, group 2 (defaults to 1)}
22 |
23 | \item{nlow}{starting sample size}
24 |
25 | \item{nhigh}{ending sample size}
26 |
27 | \item{alpha}{Type I error (default is .05)}
28 |
29 | \item{Prop_n1}{Proportion of Sample in First Group (defaults to equal sample sizes)}
30 |
31 | \item{by}{incrimental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
32 |
33 | \item{Estimates}{1 for Correlations (default), 2 for coefficients}
34 | }
35 | \value{
36 | Power for Regression Interaction (Correlation/Coefficient Approach)
37 | }
38 | \description{
39 | Compute Power for Regression Interaction (Correlation/Coefficient Approach)
40 | }
41 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/regintR2.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/regintR2.R
3 | \name{regintR2}
4 | \alias{regintR2}
5 | \title{Compute Power for Regression Interaction (R2 Change Approach)}
6 | \usage{
7 | regintR2(R2Mod, R2Ch, mod_pred, ch_pred, nlow, nhigh, by = 1,
8 | alpha = 0.05)
9 | }
10 | \arguments{
11 | \item{R2Mod}{Full Model R2}
12 |
13 | \item{R2Ch}{Change in R2 Added by Interaction}
14 |
15 | \item{mod_pred}{Full Model Number of Predictors}
16 |
17 | \item{ch_pred}{Change Model Number of Predictors}
18 |
19 | \item{nlow}{starting sample size}
20 |
21 | \item{nhigh}{ending sample size}
22 |
23 | \item{by}{incrimental increase in sample (e.g. nlow = 10, nhigh = 24, by = 2, produces estimates of 10, 12, and 14)}
24 |
25 | \item{alpha}{Type I error (default is .05)}
26 | }
27 | \value{
28 | Power for Regression Interaction (R2 Change Approach)
29 | }
30 | \description{
31 | Compute Power for Regression Interaction (R2 Change Approach)
32 | }
33 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/tfromd.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/tfromd.R
3 | \name{tfromd}
4 | \alias{tfromd}
5 | \title{Compute power for a t test using d statistic
6 | Takes d, sample size range, type of test, and tails.}
7 | \usage{
8 | tfromd(d, nlow, nhigh, alpha = 0.05, test = "I", tails = 2, by = 1)
9 | }
10 | \arguments{
11 | \item{d}{standardize mean difference (Cohen's d)}
12 |
13 | \item{nlow}{Starting sample size}
14 |
15 | \item{nhigh}{Ending sample size}
16 |
17 | \item{alpha}{Type I error (default is .05)}
18 |
19 | \item{test}{"I" for independent, "P" for paired}
20 |
21 | \item{tails}{one or two-tailed tests (default is 2)}
22 |
23 | \item{by}{Incremental increase in sample size from low ot high}
24 | }
25 | \value{
26 | Power for the t-test from d statistic
27 | }
28 | \description{
29 | Compute power for a t test using d statistic
30 | Takes d, sample size range, type of test, and tails.
31 | }
32 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/win1F.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/win1F.R
3 | \name{win1F}
4 | \alias{win1F}
5 | \title{Compute power for a One Factor Within Subjects ANOVA with up to four levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | win1F(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL, r12,
9 | r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL, r34 = NULL, n,
10 | alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{m1}{Mean of first time point}
14 |
15 | \item{m2}{Mean of second time point}
16 |
17 | \item{m3}{Mean of third time point}
18 |
19 | \item{m4}{Mean of fourth time point}
20 |
21 | \item{s1}{Standard deviation of first time point}
22 |
23 | \item{s2}{Standard deviation of second time point}
24 |
25 | \item{s3}{Standard deviation of third time point}
26 |
27 | \item{s4}{Standard deviation of forth time point}
28 |
29 | \item{r12}{correlation Time 1 and Time 2}
30 |
31 | \item{r13}{correlation Time 1 and Time 3}
32 |
33 | \item{r14}{correlation Time 1 and Time 4}
34 |
35 | \item{r23}{correlation Time 2 and Time 3}
36 |
37 | \item{r24}{correlation Time 2 and Time 4}
38 |
39 | \item{r34}{correlation Time 3 and Time 4}
40 |
41 | \item{n}{Sample size for first group}
42 |
43 | \item{alpha}{Type I error (default is .05)}
44 | }
45 | \value{
46 | Power for the One Factor Within Subjects ANOVA
47 | }
48 | \description{
49 | Compute power for a One Factor Within Subjects ANOVA with up to four levels.
50 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
51 | }
52 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/man/win1Ftrends.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/win1Ftrends.R
3 | \name{win1Ftrends}
4 | \alias{win1Ftrends}
5 | \title{Compute power for a One Factor Within Subjects Trends with up to four levels.
6 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user}
7 | \usage{
8 | win1Ftrends(m1, m2, m3 = NA, m4 = NA, s1, s2, s3 = NULL, s4 = NULL,
9 | r12, r13 = NULL, r14 = NULL, r23 = NULL, r24 = NULL,
10 | r34 = NULL, n, alpha = 0.05)
11 | }
12 | \arguments{
13 | \item{m1}{Mean of first time point}
14 |
15 | \item{m2}{Mean of second time point}
16 |
17 | \item{m3}{Mean of third time point}
18 |
19 | \item{m4}{Mean of fourth time point}
20 |
21 | \item{s1}{Standard deviation of first time point}
22 |
23 | \item{s2}{Standard deviation of second time point}
24 |
25 | \item{s3}{Standard deviation of third time point}
26 |
27 | \item{s4}{Standard deviation of forth time point}
28 |
29 | \item{r12}{correlation Time 1 and Time 2}
30 |
31 | \item{r13}{correlation Time 1 and Time 3}
32 |
33 | \item{r14}{correlation Time 1 and Time 4}
34 |
35 | \item{r23}{correlation Time 2 and Time 3}
36 |
37 | \item{r24}{correlation Time 2 and Time 4}
38 |
39 | \item{r34}{correlation Time 3 and Time 4}
40 |
41 | \item{n}{Sample size for first group}
42 |
43 | \item{alpha}{Type I error (default is .05)}
44 | }
45 | \value{
46 | Power for the One Factor Within Subjects Trends
47 | }
48 | \description{
49 | Compute power for a One Factor Within Subjects Trends with up to four levels.
50 | Takes means, sds, and sample sizes for each group. Alpha is .05 by default, alterative values may be entered by user
51 | }
52 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/pwr2ppl.Rproj:
--------------------------------------------------------------------------------
1 | Version: 1.0
2 |
3 | RestoreWorkspace: No
4 | SaveWorkspace: No
5 | AlwaysSaveHistory: Default
6 |
7 | EnableCodeIndexing: Yes
8 | UseSpacesForTab: Yes
9 | NumSpacesForTab: 2
10 | Encoding: UTF-8
11 |
12 | RnwWeave: Sweave
13 | LaTeX: pdfLaTeX
14 |
15 | AutoAppendNewline: Yes
16 | StripTrailingWhitespace: Yes
17 |
18 | BuildType: Package
19 | PackageUseDevtools: Yes
20 | PackageInstallArgs: --no-multiarch --with-keep.source
21 | PackageRoxygenize: rd,collate,namespace,vignette
22 |
--------------------------------------------------------------------------------
/validation_files/pwr2ppl/pwr2ppl_0.1.0.tar.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/pwr2ppl/pwr2ppl_0.1.0.tar.gz
--------------------------------------------------------------------------------
/validation_files/screenshots/3x6_correlation_matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/3x6_correlation_matrix.png
--------------------------------------------------------------------------------
/validation_files/screenshots/PS2000.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/PS2000.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_1.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_10.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_11.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_12.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_13.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_14.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_15.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_2.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_3.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_4.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_5.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_6.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_7.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_8.png
--------------------------------------------------------------------------------
/validation_files/screenshots/gpower_9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/screenshots/gpower_9.png
--------------------------------------------------------------------------------
/validation_files/validation_effect_sizes_between_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_effect_sizes_between_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/validation_files/validation_effect_sizes_between_files/figure-markdown_github/unnamed-chunk-6-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_effect_sizes_between_files/figure-markdown_github/unnamed-chunk-6-1.png
--------------------------------------------------------------------------------
/validation_files/validation_effect_sizes_between_files/figure-markdown_github/unnamed-chunk-8-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_effect_sizes_between_files/figure-markdown_github/unnamed-chunk-8-1.png
--------------------------------------------------------------------------------
/validation_files/validation_mlm.R:
--------------------------------------------------------------------------------
1 | library(tidyverse) # for data wrangling and visualisation
2 | library(afex) # for LMEM and ANOVA
3 | library(faux) # devtools::install_github("debruine/faux")
4 | library(broom.mixed) # for extracting data from mixed effect models
5 | set.seed(8675309) # this makes sure your script uses the same set of random numbers each time you run the full script
6 | # (never set this inside a function or loop)
7 | #
8 | iat_data <- readr::read_csv("iat_data.csv")
9 | iat_data <- readr::read_csv("https://raw.githubusercontent.com/debruine/sim_mem/master/iat_data.csv")
10 |
11 |
12 | agg_data <- iat_data %>%
13 | group_by(sub_id, condition) %>%
14 | summarise(rt = mean(rt)) %>%
15 | ungroup()
16 |
17 | agg_data %>%
18 | ggplot(aes(condition, rt, fill = condition)) +
19 | geom_violin(trim = FALSE, show.legend = FALSE) +
20 | geom_boxplot(fill = "white", width = 0.2, show.legend = FALSE) +
21 | scale_fill_manual(values = c("red", "dodgerblue"))
22 |
23 | t.test(rt~condition, agg_data, paired = TRUE)
24 |
25 | vars <- agg_data %>%
26 | unite(var, condition) %>%
27 | spread(var, rt) %>%
28 | select(-sub_id)
29 |
30 | sub_n <- nrow(vars)
31 | m1 <- mean(vars$congruent)
32 | m2 <- mean(vars$incongruent)
33 | sd1 <- sd(vars$congruent)
34 | sd2 <- sd(vars$incongruent)
35 | r <- cor(vars$congruent, vars$incongruent)
36 |
37 | design_result_5 <- ANOVA_design(string = "2w",
38 | n = 20,
39 | mu = c(m1, m2), sd = mean(c(sd1, sd2)),
40 | r = r,
41 | labelnames = c("condition", "congruent", "incongruent"))
42 | power_result_5 <- ANOVA_power(design_result_5, alpha_level = 0.01, p_adjust = "none", nsims = nsims, seed = 2019, verbose = TRUE)
43 |
--------------------------------------------------------------------------------
/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-6-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-6-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-8-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-8-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-9-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_between_files/figure-markdown_github/unnamed-chunk-9-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_between_within.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | output: github_document
3 | ---
4 |
5 | ```{r setup, include=TRUE}
6 | knitr::opts_chunk$set(echo = TRUE)
7 | nsims <- 10000 #set number of simulations
8 | library(mvtnorm)
9 | library(afex)
10 | library(emmeans)
11 | library(ggplot2)
12 | library(gridExtra)
13 | library(reshape2)
14 |
15 | ```
16 |
17 | ## Validation of Power in Mixed ANOVA
18 |
19 | We install the functions:
20 |
21 | ```{r}
22 | # Install the two functions from GitHub by running the code below:
23 |
24 | source("https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/master/ANOVA_design.R")
25 | source("https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/master/ANOVA_power.R")
26 | ```
27 |
28 | ## Two by two ANOVA, within-between design
29 |
30 | We can simulate a Two-Way ANOVA with a specific alpha, sample size and effect size, to achieve a specified statistical power. We wil try to reproduce the power analysis by g*power for an F-test, ANOVA: Repeated measures, within-between interaction.
31 |
32 | 
33 |
34 | For the 2way interaction, the result should be a power of 91.25% is we have a total samplesize of 46. Since we have 2 groups in the between factor that means the sample size per group is 2 (and both these groups collect 2 repeated measures).
35 |
36 | ```{r}
37 | mu <- c(-0.25, 0.25, 0.25, -0.25)
38 | n <- 23
39 | sd <- 1
40 | r <- 0.5
41 | string = "2w*2b"
42 | alpha_level <- 0.05
43 | p_adjust = "none"
44 | labelnames = c("age", "old", "young", "color", "blue", "red")
45 | design_result <- ANOVA_design(string = string,
46 | n = n,
47 | mu = mu,
48 | sd = sd,
49 | r = r,
50 | p_adjust = p_adjust,
51 | labelnames = labelnames)
52 |
53 |
54 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = nsims)
55 |
56 | ```
57 |
58 | ## Two by two ANOVA, within-between design Variation 1
59 |
60 | We can simulate the same Two-Way ANOVA increasing the correlation to 0.7.
61 |
62 | 
63 |
64 |
65 | ```{r}
66 | mu <- c(-0.25, 0.25, 0.25, -0.25)
67 | n <- 23
68 | sd <- 1
69 | r <- 0.7
70 | string = "2w*2b"
71 | alpha_level <- 0.05
72 | p_adjust = "none"
73 | labelnames = c("age", "old", "young", "color", "blue", "red")
74 | design_result <- ANOVA_design(string = string,
75 | n = n,
76 | mu = mu,
77 | sd = sd,
78 | r = r,
79 | p_adjust = p_adjust,
80 | labelnames = labelnames)
81 |
82 |
83 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = nsims)
84 |
85 | ```
86 |
--------------------------------------------------------------------------------
/validation_files/validation_power_between_within.md:
--------------------------------------------------------------------------------
1 |
2 | Validation of Power in Mixed ANOVA
3 | ----------------------------------
4 |
5 | We install the functions:
6 |
7 | ``` r
8 | # Install the two functions from GitHub by running the code below:
9 |
10 | source("https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/master/ANOVA_design.R")
11 | source("https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/master/ANOVA_power_ttest.R")
12 | ```
13 |
14 | Two by two ANOVA, within-between design
15 | ---------------------------------------
16 |
17 | We can simulate a Two-Way ANOVA with a specific alpha, sample size and effect size, to achieve a specified statistical power.
18 |
19 | ``` r
20 | mu_from_ES <- function(K, ES){ # provides the vector of population means for a given population ES and nr of groups
21 | f2 <- ES/(1-ES)
22 | if(K == 2){
23 | a <- sqrt(f2)
24 | muvec <- c(-a,a)
25 | }
26 | if(K == 3){
27 | a <- sqrt(3*f2/2)
28 | muvec <- c(-a, 0, a)
29 | }
30 | if(K == 4){
31 | a <- sqrt(f2)
32 | muvec <- c(-a, -a, a, a)
33 | } # note: function gives error when K not 2,3,4. But we don't need other K.
34 | return(muvec)
35 | }
36 | ```
37 |
38 | ``` r
39 | mu <- c(-0.25, 0.25, 0.25, -0.25)
40 | n <- 23
41 | sd <- 1
42 | r <- 0.5
43 | string = "2w*2b"
44 | alpha_level <- 0.05
45 | p_adjust = "none"
46 | labelnames = c("age", "old", "young", "color", "blue", "red")
47 | design_result <- ANOVA_design(string = string,
48 | n = n,
49 | mu = mu,
50 | sd = sd,
51 | r = r,
52 | p_adjust = p_adjust,
53 | labelnames = labelnames)
54 | ```
55 |
56 | 
57 |
58 | ``` r
59 | simulation_result <- ANOVA_power(design_result, alpha = 0.05, nsims = nsims)
60 | ```
61 |
62 | ## Power and Effect sizes for ANOVA tests
63 | ## power effect size
64 | ## anova_color 5.05 0.0101
65 | ## anova_age 5.28 0.0104
66 | ## anova_color:age 91.40 0.2085
67 | ##
68 | ## Power and Effect sizes for contrasts
69 | ## power effect size
70 | ## p_age_old_color_blue_age_old_color_red 38.05 0.5115
71 | ## p_age_old_color_blue_age_young_color_blue 62.38 0.5171
72 | ## p_age_old_color_blue_age_young_color_red 5.15 0.0008
73 | ## p_age_old_color_red_age_young_color_blue 4.85 -0.0033
74 | ## p_age_old_color_red_age_young_color_red 63.47 -0.5184
75 | ## p_age_young_color_blue_age_young_color_red 38.08 -0.5068
76 |
--------------------------------------------------------------------------------
/validation_files/validation_power_between_within_files/figure-markdown_github/unnamed-chunk-2-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_between_within_files/figure-markdown_github/unnamed-chunk-2-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_between_within_files/figure-markdown_github/unnamed-chunk-3-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_between_within_files/figure-markdown_github/unnamed-chunk-3-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_within_Brysbaert_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_within_Brysbaert_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_within_Brysbaert_files/figure-markdown_github/unnamed-chunk-8-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_within_Brysbaert_files/figure-markdown_github/unnamed-chunk-8-1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_within_files/figure-markdown_github/gpower_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_within_files/figure-markdown_github/gpower_1.png
--------------------------------------------------------------------------------
/validation_files/validation_power_within_files/figure-markdown_github/unnamed-chunk-4-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lakens/ANOVA_power_simulation/bca1463e738f2500d2fbb8b85d2193c0bf4169b3/validation_files/validation_power_within_files/figure-markdown_github/unnamed-chunk-4-1.png
--------------------------------------------------------------------------------