├── data
├── example.txt
├── Mask
│ └── example.png
├── Image
│ └── example.png
└── Caption
│ └── example.txt
├── .gitignore
├── asset
└── Teaser.jpg
├── output
└── example.png
├── ip_adapter
├── utils.py
├── __init__.py
├── test_resampler.py
├── resampler.py
└── ip_adapter.py
├── inference.sh
├── requirements.txt
├── README.md
├── dataloader.py
├── inference.py
└── src
├── transformerhacked_garmnet.py
├── transformerhacked_tryon.py
├── attentionhacked_tryon.py
└── attentionhacked_garmnet.py
/data/example.txt:
--------------------------------------------------------------------------------
1 | example.png
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | *.pyc
3 | *.pyo
4 | *.pyd
--------------------------------------------------------------------------------
/asset/Teaser.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lanjiong-Li/AssetDropper/HEAD/asset/Teaser.jpg
--------------------------------------------------------------------------------
/output/example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lanjiong-Li/AssetDropper/HEAD/output/example.png
--------------------------------------------------------------------------------
/data/Mask/example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lanjiong-Li/AssetDropper/HEAD/data/Mask/example.png
--------------------------------------------------------------------------------
/data/Image/example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Lanjiong-Li/AssetDropper/HEAD/data/Image/example.png
--------------------------------------------------------------------------------
/data/Caption/example.txt:
--------------------------------------------------------------------------------
1 | a cheerful green bottle-shaped character holding a top hat from which a vibrant rainbow arches upward
--------------------------------------------------------------------------------
/ip_adapter/utils.py:
--------------------------------------------------------------------------------
1 | import torch.nn.functional as F
2 |
3 |
4 | def is_torch2_available():
5 | return hasattr(F, "scaled_dot_product_attention")
6 |
--------------------------------------------------------------------------------
/inference.sh:
--------------------------------------------------------------------------------
1 | accelerate launch --main_process_port 29521 inference.py \
2 | --num_inference_steps 120 \
3 | --output_dir "./output" \
4 | --data_dir "./data" \
5 | --test_batch_size 8 --guidance_scale 2.0 \
6 | --txt_name "example" \
7 | --pretrained_model_name_or_path "LLanv/AssetDropper" \
8 | --seed 42
--------------------------------------------------------------------------------
/ip_adapter/__init__.py:
--------------------------------------------------------------------------------
1 | from .ip_adapter import IPAdapter, IPAdapterPlus, IPAdapterPlusXL, IPAdapterXL, IPAdapterFull,IPAdapterPlus_Lora,IPAdapterPlus_Lora_up
2 |
3 | __all__ = [
4 | "IPAdapter",
5 | "IPAdapterPlus",
6 | "IPAdapterPlusXL",
7 | "IPAdapterXL",
8 | "IPAdapterFull",
9 | "IPAdapterPlus_Lora",
10 | 'IPAdapterPlus_Lora_up',
11 | ]
12 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | accelerate==1.1.0
2 | certifi==2025.4.26
3 | charset-normalizer==3.4.2
4 | diffusers==0.29.2
5 | einops==0.8.1
6 | filelock==3.13.1
7 | fsspec==2024.6.1
8 | hf-xet==1.1.3
9 | huggingface-hub==0.32.4
10 | idna==3.10
11 | importlib_metadata==8.7.0
12 | Jinja2==3.1.4
13 | MarkupSafe==2.1.5
14 | mpmath==1.3.0
15 | networkx==3.3
16 | numpy==2.1.2
17 | nvidia-cublas-cu11==11.11.3.6
18 | nvidia-cuda-cupti-cu11==11.8.87
19 | nvidia-cuda-nvrtc-cu11==11.8.89
20 | nvidia-cuda-runtime-cu11==11.8.89
21 | nvidia-cudnn-cu11==9.1.0.70
22 | nvidia-cufft-cu11==10.9.0.58
23 | nvidia-curand-cu11==10.3.0.86
24 | nvidia-cusolver-cu11==11.4.1.48
25 | nvidia-cusparse-cu11==11.7.5.86
26 | nvidia-nccl-cu11==2.20.5
27 | nvidia-nvtx-cu11==11.8.86
28 | opencv-python==4.10.0.84
29 | packaging==25.0
30 | pillow==11.0.0
31 | psutil==7.0.0
32 | PyYAML==6.0.2
33 | regex==2024.11.6
34 | requests==2.32.3
35 | safetensors==0.5.3
36 | sympy==1.13.3
37 | tokenizers==0.15.2
38 | tqdm==4.67.1
39 | transformers==4.36.2
40 | triton==3.0.0
41 | typing_extensions==4.12.2
42 | urllib3==2.4.0
43 | zipp==3.22.0
44 |
--------------------------------------------------------------------------------
/ip_adapter/test_resampler.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from resampler import Resampler
3 | from transformers import CLIPVisionModel
4 |
5 | BATCH_SIZE = 2
6 | OUTPUT_DIM = 1280
7 | NUM_QUERIES = 8
8 | NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior)
9 | APPLY_POS_EMB = True # False for no positional embeddings (previous behavior)
10 | IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
11 |
12 |
13 | def main():
14 | image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH)
15 | embedding_dim = image_encoder.config.hidden_size
16 | print(f"image_encoder hidden size: ", embedding_dim)
17 |
18 | image_proj_model = Resampler(
19 | dim=1024,
20 | depth=2,
21 | dim_head=64,
22 | heads=16,
23 | num_queries=NUM_QUERIES,
24 | embedding_dim=embedding_dim,
25 | output_dim=OUTPUT_DIM,
26 | ff_mult=2,
27 | max_seq_len=257,
28 | apply_pos_emb=APPLY_POS_EMB,
29 | num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED,
30 | )
31 |
32 | dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224)
33 | with torch.no_grad():
34 | image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2]
35 | print("image_embds shape: ", image_embeds.shape)
36 |
37 | with torch.no_grad():
38 | ip_tokens = image_proj_model(image_embeds)
39 | print("ip_tokens shape:", ip_tokens.shape)
40 | assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM)
41 |
42 |
43 | if __name__ == "__main__":
44 | main()
45 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # AssetDropper: Asset Extraction via Diffusion Models with Reward-Driven Optimization
2 |
3 | 
4 |
5 | 
6 |
7 |
8 | [](https://huggingface.co/LLanv/AssetDropper)
9 |
10 | ## Installation
11 | ```bash
12 | git clone https://github.com/Lanjiong-Li/AssetDropper.git
13 | cd AssetDropper
14 |
15 | conda create -n assetdropper python=3.10 -y
16 | conda activate assetdropper
17 |
18 | # Install torch, torchvision based on your machine configuration
19 | pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu118
20 |
21 | # Install other dependencies
22 | pip install -r requirements.txt
23 | ```
24 |
25 | ## Usage
26 |
27 | ### Prepare Input
28 | To help you get started with your own images, you should follow this simple data structure:
29 | Put your own **image** (`.jpg` or `.png`) & corresponding **mask** (`.jpg` or `.png`) & **caption** in the subdirectory of data.
30 |
31 | Here is an overview of data structure:
32 |
33 | ```
34 | data
35 | ├── Caption/
36 | │ └── example.txt
37 | ├── Image/
38 | │ └── example.png
39 | ├── Mask/
40 | │ └── example.png
41 | └── example.txt (type in image names you want to process)
42 | ```
43 |
44 | ### Get Asset from Reference Image & Mask
45 |
46 | Run the following command to get asset from the reference image:
47 |
48 | ```bash
49 | python inference.py \
50 | --pretrained_model_name_or_path "LLanv/AssetDropper" \
51 | --data_dir "./data" \
52 | --output_dir "./output" \
53 | --txt_name "example" \
54 | --test_batch_size 8 \
55 | --guidance_scale 2.0 \
56 | --num_inference_steps 120 \
57 | ```
58 | - `--pretrained_model_name_or_path`:Path to the pre-trained AssetDropper model checkpoint.
59 | - `--data_dir`:Path to the directory containing input images & masks.
60 | - `--output_dir`:Path to the output directory.
61 | - `--txt_name`:Name of the file that records the image name you want to process.
62 |
63 | Or simply run:
64 | ```bash
65 | bash inference.sh
66 | ```
67 |
68 | # ToDo List
69 | - [x] Inference code
70 | - [ ] Gradio & Hugging Face demo (Coming Soon)
71 | - [ ] Dataset (Coming Soon)
72 |
73 | ## Citation
74 | If you find this work useful for your research, please consider citing:
75 | ```
76 | @article{li2025assetdropper,
77 | title={AssetDropper: Asset Extraction via Diffusion Models with Reward-Driven Optimization},
78 | author={Li, Lanjiong and Zhao, Guanhua and Zhu, Lingting and Cai, Zeyu and Yu, Lequan and Zhang, Jian and Wang, Zeyu},
79 | journal={arXiv preprint arXiv:2506.07738},
80 | year={2025}
81 | }
82 | ```
--------------------------------------------------------------------------------
/ip_adapter/resampler.py:
--------------------------------------------------------------------------------
1 | # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
2 | # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
3 |
4 | import math
5 |
6 | import torch
7 | import torch.nn as nn
8 | from einops import rearrange
9 | from einops.layers.torch import Rearrange
10 |
11 |
12 | # FFN
13 | def FeedForward(dim, mult=4):
14 | inner_dim = int(dim * mult)
15 | return nn.Sequential(
16 | nn.LayerNorm(dim),
17 | nn.Linear(dim, inner_dim, bias=False),
18 | nn.GELU(),
19 | nn.Linear(inner_dim, dim, bias=False),
20 | )
21 |
22 |
23 | def reshape_tensor(x, heads):
24 | bs, length, width = x.shape
25 | # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
26 | x = x.view(bs, length, heads, -1)
27 | # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
28 | x = x.transpose(1, 2)
29 | # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
30 | x = x.reshape(bs, heads, length, -1)
31 | return x
32 |
33 |
34 | class PerceiverAttention(nn.Module):
35 | def __init__(self, *, dim, dim_head=64, heads=8):
36 | super().__init__()
37 | self.scale = dim_head**-0.5
38 | self.dim_head = dim_head
39 | self.heads = heads
40 | inner_dim = dim_head * heads
41 |
42 | self.norm1 = nn.LayerNorm(dim)
43 | self.norm2 = nn.LayerNorm(dim)
44 |
45 | self.to_q = nn.Linear(dim, inner_dim, bias=False)
46 | self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
47 | self.to_out = nn.Linear(inner_dim, dim, bias=False)
48 |
49 | def forward(self, x, latents):
50 | """
51 | Args:
52 | x (torch.Tensor): image features
53 | shape (b, n1, D)
54 | latent (torch.Tensor): latent features
55 | shape (b, n2, D)
56 | """
57 | x = self.norm1(x)
58 | latents = self.norm2(latents)
59 |
60 | b, l, _ = latents.shape
61 |
62 | q = self.to_q(latents)
63 | kv_input = torch.cat((x, latents), dim=-2)
64 | k, v = self.to_kv(kv_input).chunk(2, dim=-1)
65 |
66 | q = reshape_tensor(q, self.heads)
67 | k = reshape_tensor(k, self.heads)
68 | v = reshape_tensor(v, self.heads)
69 |
70 | # attention
71 | scale = 1 / math.sqrt(math.sqrt(self.dim_head))
72 | weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
73 | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
74 | out = weight @ v
75 |
76 | out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
77 |
78 | return self.to_out(out)
79 |
80 |
81 | class CrossAttention(nn.Module):
82 | def __init__(self, *, dim, dim_head=64, heads=8):
83 | super().__init__()
84 | self.scale = dim_head**-0.5
85 | self.dim_head = dim_head
86 | self.heads = heads
87 | inner_dim = dim_head * heads
88 |
89 | self.norm1 = nn.LayerNorm(dim)
90 | self.norm2 = nn.LayerNorm(dim)
91 |
92 | self.to_q = nn.Linear(dim, inner_dim, bias=False)
93 | self.to_k = nn.Linear(dim, inner_dim, bias=False)
94 | self.to_v = nn.Linear(dim, inner_dim, bias=False)
95 | self.to_out = nn.Linear(inner_dim, dim, bias=False)
96 |
97 |
98 | def forward(self, x, x2):
99 | """
100 | Args:
101 | x (torch.Tensor): image features
102 | shape (b, n1, D)
103 | latent (torch.Tensor): latent features
104 | shape (b, n2, D)
105 | """
106 | x = self.norm1(x)
107 | x2 = self.norm2(x2)
108 |
109 | b, l, _ = x2.shape
110 |
111 | q = self.to_q(x)
112 | k = self.to_k(x2)
113 | v = self.to_v(x2)
114 |
115 | q = reshape_tensor(q, self.heads)
116 | k = reshape_tensor(k, self.heads)
117 | v = reshape_tensor(v, self.heads)
118 |
119 | # attention
120 | scale = 1 / math.sqrt(math.sqrt(self.dim_head))
121 | weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
122 | weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
123 | out = weight @ v
124 |
125 | out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
126 | return self.to_out(out)
127 |
128 |
129 | class Resampler(nn.Module):
130 | def __init__(
131 | self,
132 | dim=1024,
133 | depth=8,
134 | dim_head=64,
135 | heads=16,
136 | num_queries=8,
137 | embedding_dim=768,
138 | output_dim=1024,
139 | ff_mult=4,
140 | max_seq_len: int = 257, # CLIP tokens + CLS token
141 | apply_pos_emb: bool = False,
142 | num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
143 | ):
144 | super().__init__()
145 |
146 | self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
147 |
148 | self.proj_in = nn.Linear(embedding_dim, dim)
149 |
150 | self.proj_out = nn.Linear(dim, output_dim)
151 | self.norm_out = nn.LayerNorm(output_dim)
152 |
153 | self.layers = nn.ModuleList([])
154 | for _ in range(depth):
155 | self.layers.append(
156 | nn.ModuleList(
157 | [
158 | PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
159 | FeedForward(dim=dim, mult=ff_mult),
160 | ]
161 | )
162 | )
163 |
164 | def forward(self, x):
165 |
166 | latents = self.latents.repeat(x.size(0), 1, 1)
167 |
168 | x = self.proj_in(x)
169 |
170 |
171 | for attn, ff in self.layers:
172 | latents = attn(x, latents) + latents
173 | latents = ff(latents) + latents
174 |
175 | latents = self.proj_out(latents)
176 | return self.norm_out(latents)
177 |
178 |
179 |
180 | def masked_mean(t, *, dim, mask=None):
181 | if mask is None:
182 | return t.mean(dim=dim)
183 |
184 | denom = mask.sum(dim=dim, keepdim=True)
185 | mask = rearrange(mask, "b n -> b n 1")
186 | masked_t = t.masked_fill(~mask, 0.0)
187 |
188 | return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
189 |
--------------------------------------------------------------------------------
/dataloader.py:
--------------------------------------------------------------------------------
1 | import os
2 | import torch.nn.functional as F
3 | from torchvision import transforms
4 | from PIL import Image
5 | from transformers import CLIPImageProcessor
6 | from typing import Literal, Tuple
7 | import torch.utils.data as data
8 | import numpy as np
9 | import cv2
10 | import torch
11 |
12 | class AssetDataset(data.Dataset):
13 | def __init__(
14 | self,
15 | dataroot_path: str,
16 | phase: Literal["train", "test"],
17 | size: Tuple[int, int] = (512, 512),
18 | txt_name: str = None,
19 | ):
20 | super(AssetDataset, self).__init__()
21 | self.dataroot = dataroot_path
22 | self.phase = phase
23 | self.height = size[0]
24 | self.width = size[1]
25 | self.size = size
26 | self.txt_name = txt_name
27 |
28 | self.norm = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
29 | self.transform = transforms.Compose(
30 | [
31 | transforms.ToTensor(),
32 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
33 | ]
34 | )
35 | self.transform2D = transforms.Compose(
36 | [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
37 | )
38 |
39 | self.toTensor = transforms.ToTensor()
40 |
41 | image_names = []
42 | caption_names = []
43 | dataroot_names = []
44 |
45 |
46 | if phase == "train":
47 | filename = os.path.join(dataroot_path, f"{phase}.txt")
48 | else:
49 | if txt_name is None:
50 | filename = os.path.join(dataroot_path, f"{phase}.txt")
51 | else:
52 | filename = os.path.join(dataroot_path, f"{txt_name}.txt")
53 |
54 | with open(filename, "r") as f:
55 | for line in f.readlines():
56 |
57 | image_name = line.strip()
58 |
59 | name_no_ext, _ = os.path.splitext(image_name)
60 | caption_name = name_no_ext + ".txt"
61 |
62 | image_names.append(image_name)
63 | caption_names.append(caption_name)
64 | dataroot_names.append(dataroot_path)
65 |
66 | self.image_names = image_names
67 | self.caption_names = caption_names
68 | self.dataroot_names = dataroot_names
69 | self.flip_transform = transforms.RandomHorizontalFlip(p=1)
70 | self.clip_processor = CLIPImageProcessor()
71 |
72 | def _crop_and_resize_by_mask(
73 | self,
74 | image: Image.Image,
75 | mask: Image.Image,
76 | output_size=(512, 512)
77 | ) -> Tuple[Image.Image, Image.Image]:
78 |
79 | mask_np = np.array(mask.convert("L"))
80 | if mask_np.max() == 0:
81 | return image.resize(output_size), mask.resize(output_size)
82 |
83 | ys, xs = np.nonzero(mask_np)
84 | min_x, max_x = xs.min(), xs.max()
85 | min_y, max_y = ys.min(), ys.max()
86 |
87 | box_width = max_x - min_x
88 | box_height = max_y - min_y
89 | box_size = max(box_width, box_height)
90 |
91 | center_x = (min_x + max_x) // 2
92 | center_y = (min_y + max_y) // 2
93 | half_size = box_size // 2
94 |
95 | left = max(center_x - half_size, 0)
96 | upper = max(center_y - half_size, 0)
97 | right = min(center_x + half_size, image.width)
98 | lower = min(center_y + half_size, image.height)
99 |
100 | if right - left < box_size:
101 | if left == 0:
102 | right = min(left + box_size, image.width)
103 | else:
104 | left = max(right - box_size, 0)
105 |
106 | if lower - upper < box_size:
107 | if upper == 0:
108 | lower = min(upper + box_size, image.height)
109 | else:
110 | upper = max(lower - box_size, 0)
111 |
112 | crop_box = (left, upper, right, lower)
113 |
114 | cropped_image = image.crop(crop_box).resize(output_size, resample=Image.BICUBIC)
115 | cropped_mask = mask.crop(crop_box).resize(output_size, resample=Image.NEAREST)
116 |
117 | return cropped_image, cropped_mask
118 |
119 | def __getitem__(self, index):
120 | image_name = self.image_names[index]
121 | caption_name = self.caption_names[index]
122 |
123 | #1 image
124 | image = Image.open(os.path.join(self.dataroot, "Image", image_name))
125 |
126 | if image.mode == 'RGBA':
127 | white_bg = Image.new("RGB", image.size, (255, 255, 255))
128 | white_bg.paste(image, (0, 0), image)
129 | image = white_bg
130 | else:
131 | image = image.convert('RGB')
132 |
133 | image = image.resize((512, 512))
134 |
135 | mask_name_without_ext = os.path.splitext(image_name)[0]
136 | print(f"mask_name_without_ext:{mask_name_without_ext}")
137 |
138 | possible_ext = ['.jpg', '.png']
139 |
140 | for ext in possible_ext:
141 | test_path = os.path.join(self.dataroot, "Mask", mask_name_without_ext + ext)
142 | if os.path.exists(test_path):
143 | mask_path = test_path
144 | break
145 |
146 | if mask_path is None:
147 | raise FileNotFoundError(f"Missing Mask: {image_name}")
148 |
149 | #2 mask
150 | mask = Image.open(mask_path).resize((512,512))
151 |
152 | image, mask = self._crop_and_resize_by_mask(image, mask, output_size=(512, 512))
153 |
154 | #3 pattern
155 | pattern = self.toTensor(image)
156 |
157 | image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
158 | mask_cv = np.array(mask.convert("L"))
159 |
160 | #4 masked_image for IP-Adapter
161 | masked_image_cv = cv2.bitwise_and(image_cv, image_cv, mask=mask_cv)
162 | masked_image = Image.fromarray(cv2.cvtColor(masked_image_cv, cv2.COLOR_BGR2RGB)).resize((512, 512))
163 | mask_img_trim = self.clip_processor(images=masked_image, return_tensors="pt").pixel_values
164 |
165 | #5 edgemap
166 | image_gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
167 | kernel = np.ones((3, 3), np.uint8)
168 | eroded_mask = cv2.erode(mask_cv, kernel, iterations=3)
169 | sobelx = cv2.Sobel(image_gray, cv2.CV_64F, 1, 0, ksize=3)
170 | sobely = cv2.Sobel(image_gray, cv2.CV_64F, 0, 1, ksize=3)
171 | gradient = cv2.addWeighted(cv2.convertScaleAbs(sobelx), 0.5, cv2.convertScaleAbs(sobely), 0.5, 0)
172 | gradient[eroded_mask == 0] = 0
173 | edgemap = Image.fromarray(gradient).resize((512, 512))
174 |
175 | mask = self.toTensor(mask)
176 | edgemap = self.toTensor(edgemap)
177 | mask = mask[:1]
178 | edgemap = edgemap[:1]
179 |
180 | pattern = self.norm(pattern)
181 | image = self.transform(image) #norm [-1, 1]
182 |
183 | #caption
184 | with open(f"{self.dataroot}/Caption/{caption_name}","r") as f:
185 | caption = f.readline().strip()
186 |
187 | result = {}
188 |
189 | result["image_name"] = image_name
190 | result["image"] = image
191 | result["mask"] = mask
192 | result["edgemap"] = edgemap
193 | result["masked_image"] = mask_img_trim
194 | result["pattern"] = pattern
195 | result["caption_pattern"] = f"The pattern is {caption}"
196 | result["caption_gen"] = f"A normalized square pattern of {caption}"
197 |
198 | return result
199 |
200 | def __len__(self):
201 | return len(self.image_names)
--------------------------------------------------------------------------------
/inference.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
15 | from ip_adapter.ip_adapter import Resampler
16 |
17 | import argparse
18 | import logging
19 | import os
20 | import torch.utils.data as data
21 | import torchvision
22 | import json
23 | import accelerate
24 | import numpy as np
25 | import torch
26 | from PIL import Image
27 | import torch.nn.functional as F
28 | import transformers
29 | from accelerate import Accelerator
30 | from accelerate.logging import get_logger
31 | from accelerate.utils import ProjectConfiguration, set_seed
32 | from packaging import version
33 | from torchvision import transforms
34 | import diffusers
35 | from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline
36 | from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
37 | import random
38 | from diffusers.utils.import_utils import is_xformers_available
39 |
40 | from src.unet_hacked_tryon import UNet2DConditionModel
41 | from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
42 | from src.assetdropper_pipeline import StableDiffusionXLInpaintPipeline as AssetDropperPipeline
43 | from huggingface_hub import snapshot_download
44 | from dataloader import AssetDataset
45 |
46 | logger = get_logger(__name__, log_level="INFO")
47 |
48 | def parse_args():
49 | parser = argparse.ArgumentParser(description="paras for inference.")
50 | parser.add_argument("--pretrained_model_name_or_path",type=str,default="",required=False,)
51 | parser.add_argument("--width",type=int,default=512,)
52 | parser.add_argument("--height",type=int,default=512,)
53 | parser.add_argument("--Pwidth",type=int,default=512,)
54 | parser.add_argument("--Pheight",type=int,default=512,)
55 | parser.add_argument("--txt_name",type=str,default=None)
56 | parser.add_argument("--num_inference_steps",type=int,default=50,)
57 | parser.add_argument("--output_dir",type=str,default="./output",)
58 | parser.add_argument("--data_dir",type=str,default="./dataset")
59 | parser.add_argument("--seed", type=int, default=42,)
60 | parser.add_argument("--test_batch_size", type=int, default=2,)
61 | parser.add_argument("--guidance_scale",type=float,default=2.0,)
62 | parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
63 | parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
64 | args = parser.parse_args()
65 |
66 | return args
67 |
68 | def pil_to_tensor(images):
69 | images = np.array(images).astype(np.float32) / 255.0
70 | images = torch.from_numpy(images.transpose(2, 0, 1))
71 | return images
72 |
73 |
74 | def main():
75 | args = parse_args()
76 | accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
77 | accelerator = Accelerator(
78 | mixed_precision=args.mixed_precision,
79 | project_config=accelerator_project_config,
80 | )
81 | if accelerator.is_local_main_process:
82 | transformers.utils.logging.set_verbosity_warning()
83 | diffusers.utils.logging.set_verbosity_info()
84 | else:
85 | transformers.utils.logging.set_verbosity_error()
86 | diffusers.utils.logging.set_verbosity_error()
87 |
88 | if args.seed is not None:
89 | set_seed(args.seed)
90 |
91 | if accelerator.is_main_process:
92 | if args.output_dir is not None:
93 | os.makedirs(args.output_dir, exist_ok=True)
94 |
95 | weight_dtype = torch.float16
96 |
97 | # Load scheduler, tokenizer and models.
98 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="checkpoint-37500/scheduler")
99 |
100 | vae = AutoencoderKL.from_pretrained(
101 | args.pretrained_model_name_or_path,
102 | subfolder="checkpoint-37500/vae",
103 | torch_dtype=torch.float16,
104 | )
105 |
106 | unet_dir = snapshot_download(
107 | repo_id="LLanv/AssetDropper",
108 | repo_type="model",
109 | allow_patterns=["checkpoint-37500/unet/*"],
110 | )
111 | unet_path = os.path.join(unet_dir, "checkpoint-37500/unet")
112 | unet = UNet2DConditionModel.from_pretrained(
113 | pretrained_model_name_or_path=unet_path,
114 | use_safetensors=True,
115 | low_cpu_mem_usage=True
116 | )
117 |
118 | image_encoder = CLIPVisionModelWithProjection.from_pretrained(
119 | args.pretrained_model_name_or_path,
120 | subfolder="checkpoint-37500/image_encoder",
121 | torch_dtype=torch.float16,
122 | )
123 | unet_encoder = UNet2DConditionModel_ref.from_pretrained(
124 | 'stabilityai/stable-diffusion-xl-base-1.0',
125 | subfolder="unet"
126 | )
127 | unet_encoder.config.addition_embed_type = None
128 | unet_encoder.config["addition_embed_type"] = None
129 |
130 | text_encoder_one = CLIPTextModel.from_pretrained(
131 | args.pretrained_model_name_or_path,
132 | subfolder="checkpoint-37500/text_encoder",
133 | torch_dtype=torch.float16,
134 | )
135 | text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
136 | args.pretrained_model_name_or_path,
137 | subfolder="checkpoint-37500/text_encoder_2",
138 | torch_dtype=torch.float16,
139 | )
140 | tokenizer_one = AutoTokenizer.from_pretrained(
141 | args.pretrained_model_name_or_path,
142 | subfolder="checkpoint-37500/tokenizer",
143 | revision=None,
144 | use_fast=False,
145 | )
146 | tokenizer_two = AutoTokenizer.from_pretrained(
147 | args.pretrained_model_name_or_path,
148 | subfolder="checkpoint-37500/tokenizer_2",
149 | revision=None,
150 | use_fast=False,
151 | )
152 |
153 | unet.requires_grad_(False)
154 | vae.requires_grad_(False)
155 | image_encoder.requires_grad_(False)
156 | unet_encoder.requires_grad_(False)
157 | text_encoder_one.requires_grad_(False)
158 | text_encoder_two.requires_grad_(False)
159 | unet_encoder.to(accelerator.device, weight_dtype)
160 | unet.eval()
161 | unet_encoder.eval()
162 |
163 | conv_new_encoder = torch.nn.Conv2d(
164 | in_channels=6,
165 | out_channels=unet_encoder.conv_in.out_channels,
166 | kernel_size=3,
167 | padding=1,
168 | )
169 | torch.nn.init.kaiming_normal_(conv_new_encoder.weight)
170 | conv_new_encoder.weight.data = conv_new_encoder.weight.data * 0.
171 | conv_new_encoder.weight.data[:, :4] = unet_encoder.conv_in.weight.data[:, :4]
172 | conv_new_encoder.bias.data = unet_encoder.conv_in.bias.data
173 | unet_encoder.conv_in = conv_new_encoder # replace conv layer in unet
174 | unet_encoder.config['in_channels'] = 6 # update config
175 | unet_encoder.config.in_channels = 6 # update config
176 |
177 | if args.enable_xformers_memory_efficient_attention:
178 | if is_xformers_available():
179 | import xformers
180 |
181 | xformers_version = version.parse(xformers.__version__)
182 | if xformers_version == version.parse("0.0.16"):
183 | logger.warn(
184 | "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
185 | )
186 | unet.enable_xformers_memory_efficient_attention()
187 | else:
188 | raise ValueError("xformers is not available. Make sure it is installed correctly")
189 |
190 | test_dataset = AssetDataset(
191 | dataroot_path=args.data_dir,
192 | phase="test",
193 | size=(args.height, args.width),
194 | txt_name=args.txt_name,
195 | )
196 |
197 | test_dataloader = torch.utils.data.DataLoader(
198 | test_dataset,
199 | shuffle=False,
200 | batch_size=args.test_batch_size,
201 | num_workers=4,
202 | )
203 |
204 | newpipe = AssetDropperPipeline.from_pretrained(
205 | args.pretrained_model_name_or_path,
206 | unet=unet,
207 | vae=vae,
208 | feature_extractor= CLIPImageProcessor(),
209 | text_encoder = text_encoder_one,
210 | text_encoder_2 = text_encoder_two,
211 | tokenizer = tokenizer_one,
212 | tokenizer_2 = tokenizer_two,
213 | scheduler = noise_scheduler,
214 | image_encoder=image_encoder,
215 | unet_encoder = unet_encoder,
216 | torch_dtype=torch.float16,
217 | add_watermarker=False,
218 | safety_checker=None,
219 | ).to(accelerator.device)
220 |
221 | with torch.no_grad():
222 | with torch.cuda.amp.autocast():
223 | with torch.no_grad():
224 | for sample in test_dataloader:
225 |
226 | masked_image_emb_list = []
227 |
228 | for i in range(sample['masked_image'].shape[0]):
229 | masked_image_emb_list.append(sample['masked_image'][i])
230 |
231 | masked_image_embeds = torch.cat(masked_image_emb_list, dim=0)
232 |
233 | prompt = sample["caption_pattern"]
234 | num_prompts = sample['image'].shape[0]
235 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
236 |
237 | if not isinstance(prompt, List):
238 | prompt = [prompt] * num_prompts
239 | if not isinstance(negative_prompt, List):
240 | negative_prompt = [negative_prompt] * num_prompts
241 |
242 | with torch.inference_mode():
243 | (
244 | prompt_embeds,
245 | negative_prompt_embeds,
246 | pooled_prompt_embeds,
247 | negative_pooled_prompt_embeds,
248 | ) = newpipe.encode_prompt(
249 | prompt,
250 | num_images_per_prompt=1,
251 | do_classifier_free_guidance=True,
252 | negative_prompt=negative_prompt,
253 | )
254 |
255 | prompt = sample["caption_gen"]
256 | num_prompts = sample['image'].shape[0]
257 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
258 |
259 | if not isinstance(prompt, List):
260 | prompt = [prompt] * num_prompts
261 | if not isinstance(negative_prompt, List):
262 | negative_prompt = [negative_prompt] * num_prompts
263 |
264 |
265 | with torch.inference_mode():
266 | (
267 | prompt_embeds_c,
268 | _,
269 | _,
270 | _,
271 | ) = newpipe.encode_prompt(
272 | prompt,
273 | num_images_per_prompt=1,
274 | do_classifier_free_guidance=False,
275 | negative_prompt=negative_prompt,
276 | )
277 |
278 | seed = args.seed
279 | generator = torch.Generator(newpipe.device).manual_seed(seed)
280 |
281 | images = newpipe(
282 | prompt_embeds=prompt_embeds,
283 | negative_prompt_embeds=negative_prompt_embeds,
284 | pooled_prompt_embeds=pooled_prompt_embeds,
285 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
286 | num_inference_steps=args.num_inference_steps,
287 | generator=generator,
288 | strength = 1.0,
289 | reference_image_embed=prompt_embeds_c, #reference_image_embed
290 | image = sample["image"].to(accelerator.device),
291 | mask = sample['mask'],
292 | edgemap = sample['edgemap'],
293 | pattern = sample['pattern'],
294 | height=args.height,
295 | width=args.width,
296 | P_height=args.Pheight,
297 | P_width=args.Pwidth,
298 | guidance_scale=args.guidance_scale,
299 | ip_adapter_image = masked_image_embeds,
300 | )[0]
301 |
302 | for i in range(len(images)):
303 | x_sample = pil_to_tensor(images[i])
304 | save_path = os.path.join(args.output_dir, f"{sample['image_name'][i]}")
305 | torchvision.utils.save_image(x_sample, save_path)
306 |
307 | torch.cuda.empty_cache()
308 |
309 |
310 |
311 |
312 | if __name__ == "__main__":
313 | main()
314 |
--------------------------------------------------------------------------------
/src/transformerhacked_garmnet.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from dataclasses import dataclass
15 | from typing import Any, Dict, Optional
16 |
17 | import torch
18 | import torch.nn.functional as F
19 | from torch import nn
20 |
21 | from diffusers.configuration_utils import ConfigMixin, register_to_config
22 | from diffusers.models.embeddings import ImagePositionalEmbeddings
23 | from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
24 | from src.attentionhacked_garmnet import BasicTransformerBlock
25 | from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
26 | from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
27 | from diffusers.models.modeling_utils import ModelMixin
28 | from diffusers.models.normalization import AdaLayerNormSingle
29 |
30 |
31 | @dataclass
32 | class Transformer2DModelOutput(BaseOutput):
33 | """
34 | The output of [`Transformer2DModel`].
35 |
36 | Args:
37 | sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
38 | The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
39 | distributions for the unnoised latent pixels.
40 | """
41 |
42 | sample: torch.FloatTensor
43 |
44 |
45 | class Transformer2DModel(ModelMixin, ConfigMixin):
46 | """
47 | A 2D Transformer model for image-like data.
48 |
49 | Parameters:
50 | num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
51 | attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
52 | in_channels (`int`, *optional*):
53 | The number of channels in the input and output (specify if the input is **continuous**).
54 | num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
55 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
56 | cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
57 | sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
58 | This is fixed during training since it is used to learn a number of position embeddings.
59 | num_vector_embeds (`int`, *optional*):
60 | The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
61 | Includes the class for the masked latent pixel.
62 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
63 | num_embeds_ada_norm ( `int`, *optional*):
64 | The number of diffusion steps used during training. Pass if at least one of the norm_layers is
65 | `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
66 | added to the hidden states.
67 |
68 | During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
69 | attention_bias (`bool`, *optional*):
70 | Configure if the `TransformerBlocks` attention should contain a bias parameter.
71 | """
72 |
73 | _supports_gradient_checkpointing = True
74 |
75 | @register_to_config
76 | def __init__(
77 | self,
78 | num_attention_heads: int = 16,
79 | attention_head_dim: int = 88,
80 | in_channels: Optional[int] = None,
81 | out_channels: Optional[int] = None,
82 | num_layers: int = 1,
83 | dropout: float = 0.0,
84 | norm_num_groups: int = 32,
85 | cross_attention_dim: Optional[int] = None,
86 | attention_bias: bool = False,
87 | sample_size: Optional[int] = None,
88 | num_vector_embeds: Optional[int] = None,
89 | patch_size: Optional[int] = None,
90 | activation_fn: str = "geglu",
91 | num_embeds_ada_norm: Optional[int] = None,
92 | use_linear_projection: bool = False,
93 | only_cross_attention: bool = False,
94 | double_self_attention: bool = False,
95 | upcast_attention: bool = False,
96 | norm_type: str = "layer_norm",
97 | norm_elementwise_affine: bool = True,
98 | norm_eps: float = 1e-5,
99 | attention_type: str = "default",
100 | caption_channels: int = None,
101 | ):
102 | super().__init__()
103 | self.use_linear_projection = use_linear_projection
104 | self.num_attention_heads = num_attention_heads
105 | self.attention_head_dim = attention_head_dim
106 | inner_dim = num_attention_heads * attention_head_dim
107 |
108 | conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
109 | linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
110 |
111 | # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
112 | # Define whether input is continuous or discrete depending on configuration
113 | self.is_input_continuous = (in_channels is not None) and (patch_size is None)
114 | self.is_input_vectorized = num_vector_embeds is not None
115 | self.is_input_patches = in_channels is not None and patch_size is not None
116 |
117 | if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
118 | deprecation_message = (
119 | f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
120 | " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
121 | " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
122 | " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
123 | " would be very nice if you could open a Pull request for the `transformer/config.json` file"
124 | )
125 | deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
126 | norm_type = "ada_norm"
127 |
128 | if self.is_input_continuous and self.is_input_vectorized:
129 | raise ValueError(
130 | f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
131 | " sure that either `in_channels` or `num_vector_embeds` is None."
132 | )
133 | elif self.is_input_vectorized and self.is_input_patches:
134 | raise ValueError(
135 | f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
136 | " sure that either `num_vector_embeds` or `num_patches` is None."
137 | )
138 | elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
139 | raise ValueError(
140 | f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
141 | f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
142 | )
143 |
144 | # 2. Define input layers
145 | if self.is_input_continuous:
146 | self.in_channels = in_channels
147 |
148 | self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
149 | if use_linear_projection:
150 | self.proj_in = linear_cls(in_channels, inner_dim)
151 | else:
152 | self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
153 | elif self.is_input_vectorized:
154 | assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
155 | assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
156 |
157 | self.height = sample_size
158 | self.width = sample_size
159 | self.num_vector_embeds = num_vector_embeds
160 | self.num_latent_pixels = self.height * self.width
161 |
162 | self.latent_image_embedding = ImagePositionalEmbeddings(
163 | num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
164 | )
165 | elif self.is_input_patches:
166 | assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
167 |
168 | self.height = sample_size
169 | self.width = sample_size
170 |
171 | self.patch_size = patch_size
172 | interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
173 | interpolation_scale = max(interpolation_scale, 1)
174 | self.pos_embed = PatchEmbed(
175 | height=sample_size,
176 | width=sample_size,
177 | patch_size=patch_size,
178 | in_channels=in_channels,
179 | embed_dim=inner_dim,
180 | interpolation_scale=interpolation_scale,
181 | )
182 |
183 | # 3. Define transformers blocks
184 | self.transformer_blocks = nn.ModuleList(
185 | [
186 | BasicTransformerBlock(
187 | inner_dim,
188 | num_attention_heads,
189 | attention_head_dim,
190 | dropout=dropout,
191 | cross_attention_dim=cross_attention_dim,
192 | activation_fn=activation_fn,
193 | num_embeds_ada_norm=num_embeds_ada_norm,
194 | attention_bias=attention_bias,
195 | only_cross_attention=only_cross_attention,
196 | double_self_attention=double_self_attention,
197 | upcast_attention=upcast_attention,
198 | norm_type=norm_type,
199 | norm_elementwise_affine=norm_elementwise_affine,
200 | norm_eps=norm_eps,
201 | attention_type=attention_type,
202 | )
203 | for d in range(num_layers)
204 | ]
205 | )
206 |
207 | # 4. Define output layers
208 | self.out_channels = in_channels if out_channels is None else out_channels
209 | if self.is_input_continuous:
210 | # TODO: should use out_channels for continuous projections
211 | if use_linear_projection:
212 | self.proj_out = linear_cls(inner_dim, in_channels)
213 | else:
214 | self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
215 | elif self.is_input_vectorized:
216 | self.norm_out = nn.LayerNorm(inner_dim)
217 | self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
218 | elif self.is_input_patches and norm_type != "ada_norm_single":
219 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
220 | self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
221 | self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
222 | elif self.is_input_patches and norm_type == "ada_norm_single":
223 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
224 | self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
225 | self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
226 |
227 | # 5. PixArt-Alpha blocks.
228 | self.adaln_single = None
229 | self.use_additional_conditions = False
230 | if norm_type == "ada_norm_single":
231 | self.use_additional_conditions = self.config.sample_size == 128
232 | # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
233 | # additional conditions until we find better name
234 | self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
235 |
236 | self.caption_projection = None
237 | if caption_channels is not None:
238 | self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
239 |
240 | self.gradient_checkpointing = False
241 |
242 | def _set_gradient_checkpointing(self, module, value=False):
243 | if hasattr(module, "gradient_checkpointing"):
244 | module.gradient_checkpointing = value
245 |
246 | def forward(
247 | self,
248 | hidden_states: torch.Tensor,
249 | encoder_hidden_states: Optional[torch.Tensor] = None,
250 | timestep: Optional[torch.LongTensor] = None,
251 | added_cond_kwargs: Dict[str, torch.Tensor] = None,
252 | class_labels: Optional[torch.LongTensor] = None,
253 | cross_attention_kwargs: Dict[str, Any] = None,
254 | attention_mask: Optional[torch.Tensor] = None,
255 | encoder_attention_mask: Optional[torch.Tensor] = None,
256 | return_dict: bool = True,
257 | ):
258 | """
259 | The [`Transformer2DModel`] forward method.
260 |
261 | Args:
262 | hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
263 | Input `hidden_states`.
264 | encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
265 | Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
266 | self-attention.
267 | timestep ( `torch.LongTensor`, *optional*):
268 | Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
269 | class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
270 | Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
271 | `AdaLayerZeroNorm`.
272 | cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
273 | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
274 | `self.processor` in
275 | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
276 | attention_mask ( `torch.Tensor`, *optional*):
277 | An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
278 | is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
279 | negative values to the attention scores corresponding to "discard" tokens.
280 | encoder_attention_mask ( `torch.Tensor`, *optional*):
281 | Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
282 |
283 | * Mask `(batch, sequence_length)` True = keep, False = discard.
284 | * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
285 |
286 | If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
287 | above. This bias will be added to the cross-attention scores.
288 | return_dict (`bool`, *optional*, defaults to `True`):
289 | Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
290 | tuple.
291 |
292 | Returns:
293 | If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
294 | `tuple` where the first element is the sample tensor.
295 | """
296 | # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
297 | # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
298 | # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
299 | # expects mask of shape:
300 | # [batch, key_tokens]
301 | # adds singleton query_tokens dimension:
302 | # [batch, 1, key_tokens]
303 | # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
304 | # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
305 | # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
306 | if attention_mask is not None and attention_mask.ndim == 2:
307 | # assume that mask is expressed as:
308 | # (1 = keep, 0 = discard)
309 | # convert mask into a bias that can be added to attention scores:
310 | # (keep = +0, discard = -10000.0)
311 | attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
312 | attention_mask = attention_mask.unsqueeze(1)
313 |
314 | # convert encoder_attention_mask to a bias the same way we do for attention_mask
315 | if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
316 | encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
317 | encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
318 |
319 | # Retrieve lora scale.
320 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
321 |
322 | # 1. Input
323 | if self.is_input_continuous:
324 | batch, _, height, width = hidden_states.shape
325 | # print("1111hidden_states.shape",hidden_states.shape)
326 | residual = hidden_states
327 |
328 | hidden_states = self.norm(hidden_states)
329 | if not self.use_linear_projection:
330 | hidden_states = (
331 | self.proj_in(hidden_states, scale=lora_scale)
332 | if not USE_PEFT_BACKEND
333 | else self.proj_in(hidden_states)
334 | )
335 | inner_dim = hidden_states.shape[1]
336 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
337 | else:
338 | inner_dim = hidden_states.shape[1]
339 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
340 | hidden_states = (
341 | self.proj_in(hidden_states, scale=lora_scale)
342 | if not USE_PEFT_BACKEND
343 | else self.proj_in(hidden_states)
344 | )
345 |
346 | elif self.is_input_vectorized:
347 | hidden_states = self.latent_image_embedding(hidden_states)
348 | elif self.is_input_patches:
349 | height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
350 | hidden_states = self.pos_embed(hidden_states)
351 |
352 | if self.adaln_single is not None:
353 | if self.use_additional_conditions and added_cond_kwargs is None:
354 | raise ValueError(
355 | "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
356 | )
357 | batch_size = hidden_states.shape[0]
358 | timestep, embedded_timestep = self.adaln_single(
359 | timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
360 | )
361 |
362 | # 2. Blocks
363 | if self.caption_projection is not None:
364 | batch_size = hidden_states.shape[0]
365 | encoder_hidden_states = self.caption_projection(encoder_hidden_states)
366 | encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
367 | # print("1:encoder_hidden_states.shape",encoder_hidden_states.shape)
368 |
369 | garment_features = []
370 | for block in self.transformer_blocks:
371 | if self.training and self.gradient_checkpointing:
372 |
373 | def create_custom_forward(module, return_dict=None):
374 | def custom_forward(*inputs):
375 | if return_dict is not None:
376 | return module(*inputs, return_dict=return_dict)
377 | else:
378 | return module(*inputs)
379 |
380 | return custom_forward
381 |
382 | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
383 | hidden_states,out_garment_feat = torch.utils.checkpoint.checkpoint(
384 | create_custom_forward(block),
385 | hidden_states,
386 | attention_mask,
387 | encoder_hidden_states,
388 | encoder_attention_mask,
389 | timestep,
390 | cross_attention_kwargs,
391 | class_labels,
392 | **ckpt_kwargs,
393 | )
394 | else:
395 | #print("transformer.shape",encoder_hidden_states.shape)
396 | hidden_states,out_garment_feat = block(
397 | hidden_states,
398 | attention_mask=attention_mask,
399 | encoder_hidden_states=encoder_hidden_states,
400 | encoder_attention_mask=encoder_attention_mask,
401 | timestep=timestep,
402 | cross_attention_kwargs=cross_attention_kwargs,
403 | class_labels=class_labels,
404 | )
405 | garment_features += out_garment_feat
406 | # 3. Output
407 | if self.is_input_continuous:
408 | if not self.use_linear_projection:
409 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
410 | hidden_states = (
411 | self.proj_out(hidden_states, scale=lora_scale)
412 | if not USE_PEFT_BACKEND
413 | else self.proj_out(hidden_states)
414 | )
415 | else:
416 | hidden_states = (
417 | self.proj_out(hidden_states, scale=lora_scale)
418 | if not USE_PEFT_BACKEND
419 | else self.proj_out(hidden_states)
420 | )
421 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
422 |
423 | output = hidden_states + residual
424 | elif self.is_input_vectorized:
425 | hidden_states = self.norm_out(hidden_states)
426 | logits = self.out(hidden_states)
427 | # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
428 | logits = logits.permute(0, 2, 1)
429 |
430 | # log(p(x_0))
431 | output = F.log_softmax(logits.double(), dim=1).float()
432 |
433 | if self.is_input_patches:
434 | if self.config.norm_type != "ada_norm_single":
435 | conditioning = self.transformer_blocks[0].norm1.emb(
436 | timestep, class_labels, hidden_dtype=hidden_states.dtype
437 | )
438 | shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
439 | hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
440 | hidden_states = self.proj_out_2(hidden_states)
441 | elif self.config.norm_type == "ada_norm_single":
442 | shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
443 | hidden_states = self.norm_out(hidden_states)
444 | # Modulation
445 | hidden_states = hidden_states * (1 + scale) + shift
446 | hidden_states = self.proj_out(hidden_states)
447 | hidden_states = hidden_states.squeeze(1)
448 |
449 | # unpatchify
450 | if self.adaln_single is None:
451 | height = width = int(hidden_states.shape[1] ** 0.5)
452 | hidden_states = hidden_states.reshape(
453 | shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
454 | )
455 | hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
456 | output = hidden_states.reshape(
457 | shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
458 | )
459 |
460 | if not return_dict:
461 | return (output,) ,garment_features
462 |
463 | return Transformer2DModelOutput(sample=output),garment_features
464 |
--------------------------------------------------------------------------------
/src/transformerhacked_tryon.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from dataclasses import dataclass
15 | from typing import Any, Dict, Optional
16 |
17 | import torch
18 | import torch.nn.functional as F
19 | from torch import nn
20 |
21 | from diffusers.configuration_utils import ConfigMixin, register_to_config
22 | from diffusers.models.embeddings import ImagePositionalEmbeddings
23 | from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
24 | from src.attentionhacked_tryon import BasicTransformerBlock
25 | from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
26 | from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
27 | from diffusers.models.modeling_utils import ModelMixin
28 | from diffusers.models.normalization import AdaLayerNormSingle
29 |
30 |
31 | @dataclass
32 | class Transformer2DModelOutput(BaseOutput):
33 | """
34 | The output of [`Transformer2DModel`].
35 |
36 | Args:
37 | sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
38 | The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
39 | distributions for the unnoised latent pixels.
40 | """
41 |
42 | sample: torch.FloatTensor
43 |
44 |
45 | class Transformer2DModel(ModelMixin, ConfigMixin):
46 | """
47 | A 2D Transformer model for image-like data.
48 |
49 | Parameters:
50 | num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
51 | attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
52 | in_channels (`int`, *optional*):
53 | The number of channels in the input and output (specify if the input is **continuous**).
54 | num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
55 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
56 | cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
57 | sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
58 | This is fixed during training since it is used to learn a number of position embeddings.
59 | num_vector_embeds (`int`, *optional*):
60 | The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
61 | Includes the class for the masked latent pixel.
62 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
63 | num_embeds_ada_norm ( `int`, *optional*):
64 | The number of diffusion steps used during training. Pass if at least one of the norm_layers is
65 | `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
66 | added to the hidden states.
67 |
68 | During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
69 | attention_bias (`bool`, *optional*):
70 | Configure if the `TransformerBlocks` attention should contain a bias parameter.
71 | """
72 |
73 | _supports_gradient_checkpointing = True
74 |
75 | @register_to_config
76 | def __init__(
77 | self,
78 | num_attention_heads: int = 16,
79 | attention_head_dim: int = 88,
80 | in_channels: Optional[int] = None,
81 | out_channels: Optional[int] = None,
82 | num_layers: int = 1,
83 | dropout: float = 0.0,
84 | norm_num_groups: int = 32,
85 | cross_attention_dim: Optional[int] = None,
86 | attention_bias: bool = False,
87 | sample_size: Optional[int] = None,
88 | num_vector_embeds: Optional[int] = None,
89 | patch_size: Optional[int] = None,
90 | activation_fn: str = "geglu",
91 | num_embeds_ada_norm: Optional[int] = None,
92 | use_linear_projection: bool = False,
93 | only_cross_attention: bool = False,
94 | double_self_attention: bool = False,
95 | upcast_attention: bool = False,
96 | norm_type: str = "layer_norm",
97 | norm_elementwise_affine: bool = True,
98 | norm_eps: float = 1e-5,
99 | attention_type: str = "default",
100 | caption_channels: int = None,
101 | ):
102 | super().__init__()
103 | self.use_linear_projection = use_linear_projection
104 | self.num_attention_heads = num_attention_heads
105 | self.attention_head_dim = attention_head_dim
106 | inner_dim = num_attention_heads * attention_head_dim
107 |
108 | conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
109 | linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
110 |
111 | # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
112 | # Define whether input is continuous or discrete depending on configuration
113 | self.is_input_continuous = (in_channels is not None) and (patch_size is None)
114 | self.is_input_vectorized = num_vector_embeds is not None
115 | self.is_input_patches = in_channels is not None and patch_size is not None
116 |
117 | if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
118 | deprecation_message = (
119 | f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
120 | " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
121 | " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
122 | " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
123 | " would be very nice if you could open a Pull request for the `transformer/config.json` file"
124 | )
125 | deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
126 | norm_type = "ada_norm"
127 |
128 | if self.is_input_continuous and self.is_input_vectorized:
129 | raise ValueError(
130 | f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
131 | " sure that either `in_channels` or `num_vector_embeds` is None."
132 | )
133 | elif self.is_input_vectorized and self.is_input_patches:
134 | raise ValueError(
135 | f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
136 | " sure that either `num_vector_embeds` or `num_patches` is None."
137 | )
138 | elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
139 | raise ValueError(
140 | f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
141 | f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
142 | )
143 |
144 | # 2. Define input layers
145 | if self.is_input_continuous:
146 | self.in_channels = in_channels
147 |
148 | self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
149 | if use_linear_projection:
150 | self.proj_in = linear_cls(in_channels, inner_dim)
151 | else:
152 | self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
153 | elif self.is_input_vectorized:
154 | assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
155 | assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
156 |
157 | self.height = sample_size
158 | self.width = sample_size
159 | self.num_vector_embeds = num_vector_embeds
160 | self.num_latent_pixels = self.height * self.width
161 |
162 | self.latent_image_embedding = ImagePositionalEmbeddings(
163 | num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
164 | )
165 | elif self.is_input_patches:
166 | assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
167 |
168 | self.height = sample_size
169 | self.width = sample_size
170 |
171 | self.patch_size = patch_size
172 | interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
173 | interpolation_scale = max(interpolation_scale, 1)
174 | self.pos_embed = PatchEmbed(
175 | height=sample_size,
176 | width=sample_size,
177 | patch_size=patch_size,
178 | in_channels=in_channels,
179 | embed_dim=inner_dim,
180 | interpolation_scale=interpolation_scale,
181 | )
182 |
183 | # 3. Define transformers blocks
184 | self.transformer_blocks = nn.ModuleList(
185 | [
186 | BasicTransformerBlock(
187 | inner_dim,
188 | num_attention_heads,
189 | attention_head_dim,
190 | dropout=dropout,
191 | cross_attention_dim=cross_attention_dim,
192 | activation_fn=activation_fn,
193 | num_embeds_ada_norm=num_embeds_ada_norm,
194 | attention_bias=attention_bias,
195 | only_cross_attention=only_cross_attention,
196 | double_self_attention=double_self_attention,
197 | upcast_attention=upcast_attention,
198 | norm_type=norm_type,
199 | norm_elementwise_affine=norm_elementwise_affine,
200 | norm_eps=norm_eps,
201 | attention_type=attention_type,
202 | )
203 | for d in range(num_layers)
204 | ]
205 | )
206 |
207 | # 4. Define output layers
208 | self.out_channels = in_channels if out_channels is None else out_channels
209 | if self.is_input_continuous:
210 | # TODO: should use out_channels for continuous projections
211 | if use_linear_projection:
212 | self.proj_out = linear_cls(inner_dim, in_channels)
213 | else:
214 | self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
215 | elif self.is_input_vectorized:
216 | self.norm_out = nn.LayerNorm(inner_dim)
217 | self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
218 | elif self.is_input_patches and norm_type != "ada_norm_single":
219 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
220 | self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
221 | self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
222 | elif self.is_input_patches and norm_type == "ada_norm_single":
223 | self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
224 | self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
225 | self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
226 |
227 | # 5. PixArt-Alpha blocks.
228 | self.adaln_single = None
229 | self.use_additional_conditions = False
230 | if norm_type == "ada_norm_single":
231 | self.use_additional_conditions = self.config.sample_size == 128
232 | # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
233 | # additional conditions until we find better name
234 | self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
235 |
236 | self.caption_projection = None
237 | if caption_channels is not None:
238 | self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
239 |
240 | self.gradient_checkpointing = False
241 |
242 | def _set_gradient_checkpointing(self, module, value=False):
243 | if hasattr(module, "gradient_checkpointing"):
244 | module.gradient_checkpointing = value
245 |
246 | def forward(
247 | self,
248 | hidden_states: torch.Tensor,
249 | encoder_hidden_states: Optional[torch.Tensor] = None,
250 | timestep: Optional[torch.LongTensor] = None,
251 | added_cond_kwargs: Dict[str, torch.Tensor] = None,
252 | class_labels: Optional[torch.LongTensor] = None,
253 | cross_attention_kwargs: Dict[str, Any] = None,
254 | attention_mask: Optional[torch.Tensor] = None,
255 | encoder_attention_mask: Optional[torch.Tensor] = None,
256 | garment_features=None,
257 | curr_garment_feat_idx=0,
258 | return_dict: bool = True,
259 | ):
260 | """
261 | The [`Transformer2DModel`] forward method.
262 |
263 | Args:
264 | hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
265 | Input `hidden_states`.
266 | encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
267 | Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
268 | self-attention.
269 | timestep ( `torch.LongTensor`, *optional*):
270 | Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
271 | class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
272 | Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
273 | `AdaLayerZeroNorm`.
274 | cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
275 | A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
276 | `self.processor` in
277 | [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
278 | attention_mask ( `torch.Tensor`, *optional*):
279 | An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
280 | is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
281 | negative values to the attention scores corresponding to "discard" tokens.
282 | encoder_attention_mask ( `torch.Tensor`, *optional*):
283 | Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
284 |
285 | * Mask `(batch, sequence_length)` True = keep, False = discard.
286 | * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
287 |
288 | If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
289 | above. This bias will be added to the cross-attention scores.
290 | return_dict (`bool`, *optional*, defaults to `True`):
291 | Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
292 | tuple.
293 |
294 | Returns:
295 | If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
296 | `tuple` where the first element is the sample tensor.
297 | """
298 | # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
299 | # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
300 | # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
301 | # expects mask of shape:
302 | # [batch, key_tokens]
303 | # adds singleton query_tokens dimension:
304 | # [batch, 1, key_tokens]
305 | # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
306 | # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
307 | # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
308 | if attention_mask is not None and attention_mask.ndim == 2:
309 | # assume that mask is expressed as:
310 | # (1 = keep, 0 = discard)
311 | # convert mask into a bias that can be added to attention scores:
312 | # (keep = +0, discard = -10000.0)
313 | attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
314 | attention_mask = attention_mask.unsqueeze(1)
315 |
316 | # convert encoder_attention_mask to a bias the same way we do for attention_mask
317 | if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
318 | encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
319 | encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
320 |
321 | # Retrieve lora scale.
322 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
323 |
324 | # 1. Input
325 | if self.is_input_continuous:
326 | batch, _, height, width = hidden_states.shape
327 | residual = hidden_states
328 |
329 | hidden_states = self.norm(hidden_states)
330 | if not self.use_linear_projection:
331 | hidden_states = (
332 | self.proj_in(hidden_states, scale=lora_scale)
333 | if not USE_PEFT_BACKEND
334 | else self.proj_in(hidden_states)
335 | )
336 | inner_dim = hidden_states.shape[1]
337 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
338 | else:
339 | inner_dim = hidden_states.shape[1]
340 | hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
341 | hidden_states = (
342 | self.proj_in(hidden_states, scale=lora_scale)
343 | if not USE_PEFT_BACKEND
344 | else self.proj_in(hidden_states)
345 | )
346 |
347 | elif self.is_input_vectorized:
348 | hidden_states = self.latent_image_embedding(hidden_states)
349 | elif self.is_input_patches:
350 | height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
351 | hidden_states = self.pos_embed(hidden_states)
352 |
353 | if self.adaln_single is not None:
354 | if self.use_additional_conditions and added_cond_kwargs is None:
355 | raise ValueError(
356 | "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
357 | )
358 | batch_size = hidden_states.shape[0]
359 | timestep, embedded_timestep = self.adaln_single(
360 | timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
361 | )
362 |
363 | # 2. Blocks
364 | if self.caption_projection is not None:
365 | batch_size = hidden_states.shape[0]
366 | encoder_hidden_states = self.caption_projection(encoder_hidden_states)
367 | encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
368 |
369 |
370 | for block in self.transformer_blocks:
371 | if self.training and self.gradient_checkpointing:
372 |
373 | def create_custom_forward(module, return_dict=None):
374 | def custom_forward(*inputs):
375 | if return_dict is not None:
376 | return module(*inputs, return_dict=return_dict)
377 | else:
378 | return module(*inputs)
379 |
380 | return custom_forward
381 |
382 | ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
383 | hidden_states,curr_garment_feat_idx = torch.utils.checkpoint.checkpoint(
384 | create_custom_forward(block),
385 | hidden_states,
386 | attention_mask,
387 | encoder_hidden_states,
388 | encoder_attention_mask,
389 | timestep,
390 | cross_attention_kwargs,
391 | class_labels,
392 | garment_features,
393 | curr_garment_feat_idx,
394 | **ckpt_kwargs,
395 | )
396 | else:
397 | hidden_states,curr_garment_feat_idx = block(
398 | hidden_states,
399 | attention_mask=attention_mask,
400 | encoder_hidden_states=encoder_hidden_states,
401 | encoder_attention_mask=encoder_attention_mask,
402 | timestep=timestep,
403 | cross_attention_kwargs=cross_attention_kwargs,
404 | class_labels=class_labels,
405 | garment_features=garment_features,
406 | curr_garment_feat_idx=curr_garment_feat_idx,
407 | )
408 |
409 |
410 | # 3. Output
411 | if self.is_input_continuous:
412 | if not self.use_linear_projection:
413 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
414 | hidden_states = (
415 | self.proj_out(hidden_states, scale=lora_scale)
416 | if not USE_PEFT_BACKEND
417 | else self.proj_out(hidden_states)
418 | )
419 | else:
420 | hidden_states = (
421 | self.proj_out(hidden_states, scale=lora_scale)
422 | if not USE_PEFT_BACKEND
423 | else self.proj_out(hidden_states)
424 | )
425 | hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
426 |
427 | output = hidden_states + residual
428 | elif self.is_input_vectorized:
429 | hidden_states = self.norm_out(hidden_states)
430 | logits = self.out(hidden_states)
431 | # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
432 | logits = logits.permute(0, 2, 1)
433 |
434 | # log(p(x_0))
435 | output = F.log_softmax(logits.double(), dim=1).float()
436 |
437 | if self.is_input_patches:
438 | if self.config.norm_type != "ada_norm_single":
439 | conditioning = self.transformer_blocks[0].norm1.emb(
440 | timestep, class_labels, hidden_dtype=hidden_states.dtype
441 | )
442 | shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
443 | hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
444 | hidden_states = self.proj_out_2(hidden_states)
445 | elif self.config.norm_type == "ada_norm_single":
446 | shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
447 | hidden_states = self.norm_out(hidden_states)
448 | # Modulation
449 | hidden_states = hidden_states * (1 + scale) + shift
450 | hidden_states = self.proj_out(hidden_states)
451 | hidden_states = hidden_states.squeeze(1)
452 |
453 | # unpatchify
454 | if self.adaln_single is None:
455 | height = width = int(hidden_states.shape[1] ** 0.5)
456 | hidden_states = hidden_states.reshape(
457 | shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
458 | )
459 | hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
460 | output = hidden_states.reshape(
461 | shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
462 | )
463 |
464 | if not return_dict:
465 | return (output,),curr_garment_feat_idx
466 |
467 | return Transformer2DModelOutput(sample=output),curr_garment_feat_idx
468 |
--------------------------------------------------------------------------------
/src/attentionhacked_tryon.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from typing import Any, Dict, Optional
15 |
16 | import torch
17 | import torch.nn.functional as F
18 | from torch import nn
19 |
20 | from diffusers.utils import USE_PEFT_BACKEND
21 | from diffusers.utils.torch_utils import maybe_allow_in_graph
22 | from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
23 | from diffusers.models.attention_processor import Attention
24 | from diffusers.models.embeddings import SinusoidalPositionalEmbedding
25 | from diffusers.models.lora import LoRACompatibleLinear
26 | from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27 |
28 |
29 | def _chunked_feed_forward(
30 | ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
31 | ):
32 | # "feed_forward_chunk_size" can be used to save memory
33 | if hidden_states.shape[chunk_dim] % chunk_size != 0:
34 | raise ValueError(
35 | f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
36 | )
37 |
38 | num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39 | if lora_scale is None:
40 | ff_output = torch.cat(
41 | [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
42 | dim=chunk_dim,
43 | )
44 | else:
45 | # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
46 | ff_output = torch.cat(
47 | [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
48 | dim=chunk_dim,
49 | )
50 |
51 | return ff_output
52 |
53 |
54 | @maybe_allow_in_graph
55 | class GatedSelfAttentionDense(nn.Module):
56 | r"""
57 | A gated self-attention dense layer that combines visual features and object features.
58 |
59 | Parameters:
60 | query_dim (`int`): The number of channels in the query.
61 | context_dim (`int`): The number of channels in the context.
62 | n_heads (`int`): The number of heads to use for attention.
63 | d_head (`int`): The number of channels in each head.
64 | """
65 |
66 | def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67 | super().__init__()
68 |
69 | # we need a linear projection since we need cat visual feature and obj feature
70 | self.linear = nn.Linear(context_dim, query_dim)
71 |
72 | self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
73 | self.ff = FeedForward(query_dim, activation_fn="geglu")
74 |
75 | self.norm1 = nn.LayerNorm(query_dim)
76 | self.norm2 = nn.LayerNorm(query_dim)
77 |
78 | self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
79 | self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
80 |
81 | self.enabled = True
82 |
83 | def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84 | if not self.enabled:
85 | return x
86 |
87 | n_visual = x.shape[1]
88 | objs = self.linear(objs)
89 |
90 | x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
91 | x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
92 |
93 | return x
94 |
95 |
96 | @maybe_allow_in_graph
97 | class BasicTransformerBlock(nn.Module):
98 | r"""
99 | A basic Transformer block.
100 |
101 | Parameters:
102 | dim (`int`): The number of channels in the input and output.
103 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
104 | attention_head_dim (`int`): The number of channels in each head.
105 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
106 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
107 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
108 | num_embeds_ada_norm (:
109 | obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
110 | attention_bias (:
111 | obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112 | only_cross_attention (`bool`, *optional*):
113 | Whether to use only cross-attention layers. In this case two cross attention layers are used.
114 | double_self_attention (`bool`, *optional*):
115 | Whether to use two self-attention layers. In this case no cross attention layers are used.
116 | upcast_attention (`bool`, *optional*):
117 | Whether to upcast the attention computation to float32. This is useful for mixed precision training.
118 | norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
119 | Whether to use learnable elementwise affine parameters for normalization.
120 | norm_type (`str`, *optional*, defaults to `"layer_norm"`):
121 | The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
122 | final_dropout (`bool` *optional*, defaults to False):
123 | Whether to apply a final dropout after the last feed-forward layer.
124 | attention_type (`str`, *optional*, defaults to `"default"`):
125 | The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
126 | positional_embeddings (`str`, *optional*, defaults to `None`):
127 | The type of positional embeddings to apply to.
128 | num_positional_embeddings (`int`, *optional*, defaults to `None`):
129 | The maximum number of positional embeddings to apply.
130 | """
131 |
132 | def __init__(
133 | self,
134 | dim: int,
135 | num_attention_heads: int,
136 | attention_head_dim: int,
137 | dropout=0.0,
138 | cross_attention_dim: Optional[int] = None,
139 | activation_fn: str = "geglu",
140 | num_embeds_ada_norm: Optional[int] = None,
141 | attention_bias: bool = False,
142 | only_cross_attention: bool = False,
143 | double_self_attention: bool = False,
144 | upcast_attention: bool = False,
145 | norm_elementwise_affine: bool = True,
146 | norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
147 | norm_eps: float = 1e-5,
148 | final_dropout: bool = False,
149 | attention_type: str = "default",
150 | positional_embeddings: Optional[str] = None,
151 | num_positional_embeddings: Optional[int] = None,
152 | ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
153 | ada_norm_bias: Optional[int] = None,
154 | ff_inner_dim: Optional[int] = None,
155 | ff_bias: bool = True,
156 | attention_out_bias: bool = True,
157 | ):
158 | super().__init__()
159 | self.only_cross_attention = only_cross_attention
160 |
161 | self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
162 | self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
163 | self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
164 | self.use_layer_norm = norm_type == "layer_norm"
165 | self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
166 |
167 | if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
168 | raise ValueError(
169 | f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
170 | f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
171 | )
172 |
173 | if positional_embeddings and (num_positional_embeddings is None):
174 | raise ValueError(
175 | "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
176 | )
177 |
178 | if positional_embeddings == "sinusoidal":
179 | self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
180 | else:
181 | self.pos_embed = None
182 |
183 | # Define 3 blocks. Each block has its own normalization layer.
184 | # 1. Self-Attn
185 | if self.use_ada_layer_norm:
186 | self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
187 | elif self.use_ada_layer_norm_zero:
188 | self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
189 | elif self.use_ada_layer_norm_continuous:
190 | self.norm1 = AdaLayerNormContinuous(
191 | dim,
192 | ada_norm_continous_conditioning_embedding_dim,
193 | norm_elementwise_affine,
194 | norm_eps,
195 | ada_norm_bias,
196 | "rms_norm",
197 | )
198 | else:
199 | self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
200 |
201 | self.attn1 = Attention(
202 | query_dim=dim,
203 | heads=num_attention_heads,
204 | dim_head=attention_head_dim,
205 | dropout=dropout,
206 | bias=attention_bias,
207 | cross_attention_dim=cross_attention_dim if only_cross_attention else None,
208 | upcast_attention=upcast_attention,
209 | out_bias=attention_out_bias,
210 | )
211 |
212 | # 2. Cross-Attn
213 | if cross_attention_dim is not None or double_self_attention:
214 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
215 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
216 | # the second cross attention block.
217 | if self.use_ada_layer_norm:
218 | self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
219 | elif self.use_ada_layer_norm_continuous:
220 | self.norm2 = AdaLayerNormContinuous(
221 | dim,
222 | ada_norm_continous_conditioning_embedding_dim,
223 | norm_elementwise_affine,
224 | norm_eps,
225 | ada_norm_bias,
226 | "rms_norm",
227 | )
228 | else:
229 | self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
230 |
231 | self.attn2 = Attention(
232 | query_dim=dim,
233 | cross_attention_dim=cross_attention_dim if not double_self_attention else None,
234 | heads=num_attention_heads,
235 | dim_head=attention_head_dim,
236 | dropout=dropout,
237 | bias=attention_bias,
238 | upcast_attention=upcast_attention,
239 | out_bias=attention_out_bias,
240 | ) # is self-attn if encoder_hidden_states is none
241 | else:
242 | self.norm2 = None
243 | self.attn2 = None
244 |
245 | # 3. Feed-forward
246 | if self.use_ada_layer_norm_continuous:
247 | self.norm3 = AdaLayerNormContinuous(
248 | dim,
249 | ada_norm_continous_conditioning_embedding_dim,
250 | norm_elementwise_affine,
251 | norm_eps,
252 | ada_norm_bias,
253 | "layer_norm",
254 | )
255 | elif not self.use_ada_layer_norm_single:
256 | self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
257 |
258 | self.ff = FeedForward(
259 | dim,
260 | dropout=dropout,
261 | activation_fn=activation_fn,
262 | final_dropout=final_dropout,
263 | inner_dim=ff_inner_dim,
264 | bias=ff_bias,
265 | )
266 |
267 | # 4. Fuser
268 | if attention_type == "gated" or attention_type == "gated-text-image":
269 | self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
270 |
271 | # 5. Scale-shift for PixArt-Alpha.
272 | if self.use_ada_layer_norm_single:
273 | self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
274 |
275 | # let chunk size default to None
276 | self._chunk_size = None
277 | self._chunk_dim = 0
278 |
279 | def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
280 | # Sets chunk feed-forward
281 | self._chunk_size = chunk_size
282 | self._chunk_dim = dim
283 |
284 | def forward(
285 | self,
286 | hidden_states: torch.FloatTensor,
287 | attention_mask: Optional[torch.FloatTensor] = None,
288 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
289 | encoder_attention_mask: Optional[torch.FloatTensor] = None,
290 | timestep: Optional[torch.LongTensor] = None,
291 | cross_attention_kwargs: Dict[str, Any] = None,
292 | class_labels: Optional[torch.LongTensor] = None,
293 | garment_features=None,
294 | curr_garment_feat_idx=0,
295 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
296 | ) -> torch.FloatTensor:
297 | # Notice that normalization is always applied before the real computation in the following blocks.
298 | # 0. Self-Attention
299 | batch_size = hidden_states.shape[0]
300 |
301 |
302 |
303 | if self.use_ada_layer_norm:
304 | norm_hidden_states = self.norm1(hidden_states, timestep)
305 | elif self.use_ada_layer_norm_zero:
306 | norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
307 | hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
308 | )
309 | elif self.use_layer_norm:
310 | norm_hidden_states = self.norm1(hidden_states)
311 | elif self.use_ada_layer_norm_continuous:
312 | norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
313 | elif self.use_ada_layer_norm_single:
314 | shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
315 | self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
316 | ).chunk(6, dim=1)
317 | norm_hidden_states = self.norm1(hidden_states)
318 | norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
319 | norm_hidden_states = norm_hidden_states.squeeze(1)
320 | else:
321 | raise ValueError("Incorrect norm used")
322 |
323 | if self.pos_embed is not None:
324 | norm_hidden_states = self.pos_embed(norm_hidden_states)
325 |
326 | # 1. Retrieve lora scale.
327 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
328 |
329 | # 2. Prepare GLIGEN inputs
330 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
331 | gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
332 |
333 |
334 | modify_norm_hidden_states = torch.cat([norm_hidden_states,garment_features[curr_garment_feat_idx]], dim=1)
335 | curr_garment_feat_idx +=1
336 | attn_output = self.attn1(
337 | #norm_hidden_states,
338 | modify_norm_hidden_states,
339 | encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
340 | attention_mask=attention_mask,
341 | **cross_attention_kwargs,
342 | )
343 | if self.use_ada_layer_norm_zero:
344 | attn_output = gate_msa.unsqueeze(1) * attn_output
345 | elif self.use_ada_layer_norm_single:
346 | attn_output = gate_msa * attn_output
347 |
348 | hidden_states = attn_output[:,:hidden_states.shape[-2],:] + hidden_states
349 |
350 |
351 |
352 |
353 | if hidden_states.ndim == 4:
354 | hidden_states = hidden_states.squeeze(1)
355 |
356 | # 2.5 GLIGEN Control
357 | if gligen_kwargs is not None:
358 | hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
359 |
360 | # 3. Cross-Attention
361 | if self.attn2 is not None:
362 | if self.use_ada_layer_norm:
363 | norm_hidden_states = self.norm2(hidden_states, timestep)
364 | elif self.use_ada_layer_norm_zero or self.use_layer_norm:
365 | norm_hidden_states = self.norm2(hidden_states)
366 | elif self.use_ada_layer_norm_single:
367 | # For PixArt norm2 isn't applied here:
368 | # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
369 | norm_hidden_states = hidden_states
370 | elif self.use_ada_layer_norm_continuous:
371 | norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
372 | else:
373 | raise ValueError("Incorrect norm")
374 |
375 | if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
376 | norm_hidden_states = self.pos_embed(norm_hidden_states)
377 |
378 | attn_output = self.attn2(
379 | norm_hidden_states,
380 | encoder_hidden_states=encoder_hidden_states,
381 | attention_mask=encoder_attention_mask,
382 | **cross_attention_kwargs,
383 | )
384 | hidden_states = attn_output + hidden_states
385 |
386 | # 4. Feed-forward
387 | if self.use_ada_layer_norm_continuous:
388 | norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
389 | elif not self.use_ada_layer_norm_single:
390 | norm_hidden_states = self.norm3(hidden_states)
391 |
392 | if self.use_ada_layer_norm_zero:
393 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
394 |
395 | if self.use_ada_layer_norm_single:
396 | norm_hidden_states = self.norm2(hidden_states)
397 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
398 |
399 | if self._chunk_size is not None:
400 | # "feed_forward_chunk_size" can be used to save memory
401 | ff_output = _chunked_feed_forward(
402 | self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
403 | )
404 | else:
405 | ff_output = self.ff(norm_hidden_states, scale=lora_scale)
406 |
407 | if self.use_ada_layer_norm_zero:
408 | ff_output = gate_mlp.unsqueeze(1) * ff_output
409 | elif self.use_ada_layer_norm_single:
410 | ff_output = gate_mlp * ff_output
411 |
412 | hidden_states = ff_output + hidden_states
413 | if hidden_states.ndim == 4:
414 | hidden_states = hidden_states.squeeze(1)
415 | return hidden_states,curr_garment_feat_idx
416 |
417 |
418 | @maybe_allow_in_graph
419 | class TemporalBasicTransformerBlock(nn.Module):
420 | r"""
421 | A basic Transformer block for video like data.
422 |
423 | Parameters:
424 | dim (`int`): The number of channels in the input and output.
425 | time_mix_inner_dim (`int`): The number of channels for temporal attention.
426 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
427 | attention_head_dim (`int`): The number of channels in each head.
428 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
429 | """
430 |
431 | def __init__(
432 | self,
433 | dim: int,
434 | time_mix_inner_dim: int,
435 | num_attention_heads: int,
436 | attention_head_dim: int,
437 | cross_attention_dim: Optional[int] = None,
438 | ):
439 | super().__init__()
440 | self.is_res = dim == time_mix_inner_dim
441 |
442 | self.norm_in = nn.LayerNorm(dim)
443 |
444 | # Define 3 blocks. Each block has its own normalization layer.
445 | # 1. Self-Attn
446 | self.norm_in = nn.LayerNorm(dim)
447 | self.ff_in = FeedForward(
448 | dim,
449 | dim_out=time_mix_inner_dim,
450 | activation_fn="geglu",
451 | )
452 |
453 | self.norm1 = nn.LayerNorm(time_mix_inner_dim)
454 | self.attn1 = Attention(
455 | query_dim=time_mix_inner_dim,
456 | heads=num_attention_heads,
457 | dim_head=attention_head_dim,
458 | cross_attention_dim=None,
459 | )
460 |
461 | # 2. Cross-Attn
462 | if cross_attention_dim is not None:
463 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
464 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
465 | # the second cross attention block.
466 | self.norm2 = nn.LayerNorm(time_mix_inner_dim)
467 | self.attn2 = Attention(
468 | query_dim=time_mix_inner_dim,
469 | cross_attention_dim=cross_attention_dim,
470 | heads=num_attention_heads,
471 | dim_head=attention_head_dim,
472 | ) # is self-attn if encoder_hidden_states is none
473 | else:
474 | self.norm2 = None
475 | self.attn2 = None
476 |
477 | # 3. Feed-forward
478 | self.norm3 = nn.LayerNorm(time_mix_inner_dim)
479 | self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
480 |
481 | # let chunk size default to None
482 | self._chunk_size = None
483 | self._chunk_dim = None
484 |
485 | def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
486 | # Sets chunk feed-forward
487 | self._chunk_size = chunk_size
488 | # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
489 | self._chunk_dim = 1
490 |
491 | def forward(
492 | self,
493 | hidden_states: torch.FloatTensor,
494 | num_frames: int,
495 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
496 | ) -> torch.FloatTensor:
497 | # Notice that normalization is always applied before the real computation in the following blocks.
498 | # 0. Self-Attention
499 | batch_size = hidden_states.shape[0]
500 |
501 | batch_frames, seq_length, channels = hidden_states.shape
502 | batch_size = batch_frames // num_frames
503 |
504 | hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
505 | hidden_states = hidden_states.permute(0, 2, 1, 3)
506 | hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
507 |
508 | residual = hidden_states
509 | hidden_states = self.norm_in(hidden_states)
510 |
511 | if self._chunk_size is not None:
512 | hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
513 | else:
514 | hidden_states = self.ff_in(hidden_states)
515 |
516 | if self.is_res:
517 | hidden_states = hidden_states + residual
518 |
519 | norm_hidden_states = self.norm1(hidden_states)
520 | attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
521 | hidden_states = attn_output + hidden_states
522 |
523 | # 3. Cross-Attention
524 | if self.attn2 is not None:
525 | norm_hidden_states = self.norm2(hidden_states)
526 | attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
527 | hidden_states = attn_output + hidden_states
528 |
529 | # 4. Feed-forward
530 | norm_hidden_states = self.norm3(hidden_states)
531 |
532 | if self._chunk_size is not None:
533 | ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
534 | else:
535 | ff_output = self.ff(norm_hidden_states)
536 |
537 | if self.is_res:
538 | hidden_states = ff_output + hidden_states
539 | else:
540 | hidden_states = ff_output
541 |
542 | hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
543 | hidden_states = hidden_states.permute(0, 2, 1, 3)
544 | hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
545 |
546 | return hidden_states
547 |
548 |
549 | class SkipFFTransformerBlock(nn.Module):
550 | def __init__(
551 | self,
552 | dim: int,
553 | num_attention_heads: int,
554 | attention_head_dim: int,
555 | kv_input_dim: int,
556 | kv_input_dim_proj_use_bias: bool,
557 | dropout=0.0,
558 | cross_attention_dim: Optional[int] = None,
559 | attention_bias: bool = False,
560 | attention_out_bias: bool = True,
561 | ):
562 | super().__init__()
563 | if kv_input_dim != dim:
564 | self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
565 | else:
566 | self.kv_mapper = None
567 |
568 | self.norm1 = RMSNorm(dim, 1e-06)
569 |
570 | self.attn1 = Attention(
571 | query_dim=dim,
572 | heads=num_attention_heads,
573 | dim_head=attention_head_dim,
574 | dropout=dropout,
575 | bias=attention_bias,
576 | cross_attention_dim=cross_attention_dim,
577 | out_bias=attention_out_bias,
578 | )
579 |
580 | self.norm2 = RMSNorm(dim, 1e-06)
581 |
582 | self.attn2 = Attention(
583 | query_dim=dim,
584 | cross_attention_dim=cross_attention_dim,
585 | heads=num_attention_heads,
586 | dim_head=attention_head_dim,
587 | dropout=dropout,
588 | bias=attention_bias,
589 | out_bias=attention_out_bias,
590 | )
591 |
592 | def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
593 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
594 |
595 | if self.kv_mapper is not None:
596 | encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
597 |
598 | norm_hidden_states = self.norm1(hidden_states)
599 |
600 | attn_output = self.attn1(
601 | norm_hidden_states,
602 | encoder_hidden_states=encoder_hidden_states,
603 | **cross_attention_kwargs,
604 | )
605 |
606 | hidden_states = attn_output + hidden_states
607 |
608 | norm_hidden_states = self.norm2(hidden_states)
609 |
610 | attn_output = self.attn2(
611 | norm_hidden_states,
612 | encoder_hidden_states=encoder_hidden_states,
613 | **cross_attention_kwargs,
614 | )
615 |
616 | hidden_states = attn_output + hidden_states
617 |
618 | return hidden_states
619 |
620 |
621 | class FeedForward(nn.Module):
622 | r"""
623 | A feed-forward layer.
624 |
625 | Parameters:
626 | dim (`int`): The number of channels in the input.
627 | dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
628 | mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
629 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
630 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
631 | final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
632 | bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
633 | """
634 |
635 | def __init__(
636 | self,
637 | dim: int,
638 | dim_out: Optional[int] = None,
639 | mult: int = 4,
640 | dropout: float = 0.0,
641 | activation_fn: str = "geglu",
642 | final_dropout: bool = False,
643 | inner_dim=None,
644 | bias: bool = True,
645 | ):
646 | super().__init__()
647 | if inner_dim is None:
648 | inner_dim = int(dim * mult)
649 | dim_out = dim_out if dim_out is not None else dim
650 | linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
651 |
652 | if activation_fn == "gelu":
653 | act_fn = GELU(dim, inner_dim, bias=bias)
654 | if activation_fn == "gelu-approximate":
655 | act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
656 | elif activation_fn == "geglu":
657 | act_fn = GEGLU(dim, inner_dim, bias=bias)
658 | elif activation_fn == "geglu-approximate":
659 | act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
660 |
661 | self.net = nn.ModuleList([])
662 | # project in
663 | self.net.append(act_fn)
664 | # project dropout
665 | self.net.append(nn.Dropout(dropout))
666 | # project out
667 | self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
668 | # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
669 | if final_dropout:
670 | self.net.append(nn.Dropout(dropout))
671 |
672 | def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
673 | compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
674 | for module in self.net:
675 | if isinstance(module, compatible_cls):
676 | hidden_states = module(hidden_states, scale)
677 | else:
678 | hidden_states = module(hidden_states)
679 | return hidden_states
680 |
--------------------------------------------------------------------------------
/src/attentionhacked_garmnet.py:
--------------------------------------------------------------------------------
1 | # Copyright 2023 The HuggingFace Team. All rights reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from typing import Any, Dict, Optional
15 |
16 | import torch
17 | import torch.nn.functional as F
18 | from torch import nn
19 |
20 | from diffusers.utils import USE_PEFT_BACKEND
21 | from diffusers.utils.torch_utils import maybe_allow_in_graph
22 | from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
23 | from diffusers.models.attention_processor import Attention
24 | from diffusers.models.embeddings import SinusoidalPositionalEmbedding
25 | from diffusers.models.lora import LoRACompatibleLinear
26 | from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27 |
28 |
29 | def _chunked_feed_forward(
30 | ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
31 | ):
32 | # "feed_forward_chunk_size" can be used to save memory
33 | if hidden_states.shape[chunk_dim] % chunk_size != 0:
34 | raise ValueError(
35 | f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
36 | )
37 |
38 | num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39 | if lora_scale is None:
40 | ff_output = torch.cat(
41 | [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
42 | dim=chunk_dim,
43 | )
44 | else:
45 | # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
46 | ff_output = torch.cat(
47 | [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
48 | dim=chunk_dim,
49 | )
50 |
51 | return ff_output
52 |
53 |
54 | @maybe_allow_in_graph
55 | class GatedSelfAttentionDense(nn.Module):
56 | r"""
57 | A gated self-attention dense layer that combines visual features and object features.
58 |
59 | Parameters:
60 | query_dim (`int`): The number of channels in the query.
61 | context_dim (`int`): The number of channels in the context.
62 | n_heads (`int`): The number of heads to use for attention.
63 | d_head (`int`): The number of channels in each head.
64 | """
65 |
66 | def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67 | super().__init__()
68 |
69 | # we need a linear projection since we need cat visual feature and obj feature
70 | self.linear = nn.Linear(context_dim, query_dim)
71 |
72 | self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
73 | self.ff = FeedForward(query_dim, activation_fn="geglu")
74 |
75 | self.norm1 = nn.LayerNorm(query_dim)
76 | self.norm2 = nn.LayerNorm(query_dim)
77 |
78 | self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
79 | self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
80 |
81 | self.enabled = True
82 |
83 | def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84 | if not self.enabled:
85 | return x
86 |
87 | n_visual = x.shape[1]
88 | objs = self.linear(objs)
89 |
90 | x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
91 | x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
92 |
93 | return x
94 |
95 |
96 | @maybe_allow_in_graph
97 | class BasicTransformerBlock(nn.Module):
98 | r"""
99 | A basic Transformer block.
100 |
101 | Parameters:
102 | dim (`int`): The number of channels in the input and output.
103 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
104 | attention_head_dim (`int`): The number of channels in each head.
105 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
106 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
107 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
108 | num_embeds_ada_norm (:
109 | obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
110 | attention_bias (:
111 | obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112 | only_cross_attention (`bool`, *optional*):
113 | Whether to use only cross-attention layers. In this case two cross attention layers are used.
114 | double_self_attention (`bool`, *optional*):
115 | Whether to use two self-attention layers. In this case no cross attention layers are used.
116 | upcast_attention (`bool`, *optional*):
117 | Whether to upcast the attention computation to float32. This is useful for mixed precision training.
118 | norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
119 | Whether to use learnable elementwise affine parameters for normalization.
120 | norm_type (`str`, *optional*, defaults to `"layer_norm"`):
121 | The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
122 | final_dropout (`bool` *optional*, defaults to False):
123 | Whether to apply a final dropout after the last feed-forward layer.
124 | attention_type (`str`, *optional*, defaults to `"default"`):
125 | The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
126 | positional_embeddings (`str`, *optional*, defaults to `None`):
127 | The type of positional embeddings to apply to.
128 | num_positional_embeddings (`int`, *optional*, defaults to `None`):
129 | The maximum number of positional embeddings to apply.
130 | """
131 |
132 | def __init__(
133 | self,
134 | dim: int,
135 | num_attention_heads: int,
136 | attention_head_dim: int,
137 | dropout=0.0,
138 | cross_attention_dim: Optional[int] = None,
139 | activation_fn: str = "geglu",
140 | num_embeds_ada_norm: Optional[int] = None,
141 | attention_bias: bool = False,
142 | only_cross_attention: bool = False,
143 | double_self_attention: bool = False,
144 | upcast_attention: bool = False,
145 | norm_elementwise_affine: bool = True,
146 | norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
147 | norm_eps: float = 1e-5,
148 | final_dropout: bool = False,
149 | attention_type: str = "default",
150 | positional_embeddings: Optional[str] = None,
151 | num_positional_embeddings: Optional[int] = None,
152 | ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
153 | ada_norm_bias: Optional[int] = None,
154 | ff_inner_dim: Optional[int] = None,
155 | ff_bias: bool = True,
156 | attention_out_bias: bool = True,
157 | ):
158 | super().__init__()
159 | self.only_cross_attention = only_cross_attention
160 |
161 | self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
162 | self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
163 | self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
164 | self.use_layer_norm = norm_type == "layer_norm"
165 | self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
166 |
167 | if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
168 | raise ValueError(
169 | f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
170 | f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
171 | )
172 |
173 | if positional_embeddings and (num_positional_embeddings is None):
174 | raise ValueError(
175 | "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
176 | )
177 |
178 | if positional_embeddings == "sinusoidal":
179 | self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
180 | else:
181 | self.pos_embed = None
182 |
183 | # Define 3 blocks. Each block has its own normalization layer.
184 | # 1. Self-Attn
185 | if self.use_ada_layer_norm:
186 | self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
187 | elif self.use_ada_layer_norm_zero:
188 | self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
189 | elif self.use_ada_layer_norm_continuous:
190 | self.norm1 = AdaLayerNormContinuous(
191 | dim,
192 | ada_norm_continous_conditioning_embedding_dim,
193 | norm_elementwise_affine,
194 | norm_eps,
195 | ada_norm_bias,
196 | "rms_norm",
197 | )
198 | else:
199 | self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
200 |
201 | self.attn1 = Attention(
202 | query_dim=dim,
203 | heads=num_attention_heads,
204 | dim_head=attention_head_dim,
205 | dropout=dropout,
206 | bias=attention_bias,
207 | cross_attention_dim=cross_attention_dim if only_cross_attention else None,
208 | upcast_attention=upcast_attention,
209 | out_bias=attention_out_bias,
210 | )
211 |
212 | # 2. Cross-Attn
213 | if cross_attention_dim is not None or double_self_attention:
214 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
215 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
216 | # the second cross attention block.
217 | if self.use_ada_layer_norm:
218 | self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
219 | elif self.use_ada_layer_norm_continuous:
220 | self.norm2 = AdaLayerNormContinuous(
221 | dim,
222 | ada_norm_continous_conditioning_embedding_dim,
223 | norm_elementwise_affine,
224 | norm_eps,
225 | ada_norm_bias,
226 | "rms_norm",
227 | )
228 | else:
229 | self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
230 |
231 | self.attn2 = Attention(
232 | query_dim=dim,
233 | cross_attention_dim=cross_attention_dim if not double_self_attention else None,
234 | heads=num_attention_heads,
235 | dim_head=attention_head_dim,
236 | dropout=dropout,
237 | bias=attention_bias,
238 | upcast_attention=upcast_attention,
239 | out_bias=attention_out_bias,
240 | ) # is self-attn if encoder_hidden_states is none
241 | else:
242 | self.norm2 = None
243 | self.attn2 = None
244 |
245 | # 3. Feed-forward
246 | if self.use_ada_layer_norm_continuous:
247 | self.norm3 = AdaLayerNormContinuous(
248 | dim,
249 | ada_norm_continous_conditioning_embedding_dim,
250 | norm_elementwise_affine,
251 | norm_eps,
252 | ada_norm_bias,
253 | "layer_norm",
254 | )
255 | elif not self.use_ada_layer_norm_single:
256 | self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
257 |
258 | self.ff = FeedForward(
259 | dim,
260 | dropout=dropout,
261 | activation_fn=activation_fn,
262 | final_dropout=final_dropout,
263 | inner_dim=ff_inner_dim,
264 | bias=ff_bias,
265 | )
266 |
267 | # 4. Fuser
268 | if attention_type == "gated" or attention_type == "gated-text-image":
269 | self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
270 |
271 | # 5. Scale-shift for PixArt-Alpha.
272 | if self.use_ada_layer_norm_single:
273 | self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
274 |
275 | # let chunk size default to None
276 | self._chunk_size = None
277 | self._chunk_dim = 0
278 |
279 | def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
280 | # Sets chunk feed-forward
281 | self._chunk_size = chunk_size
282 | self._chunk_dim = dim
283 |
284 | def forward(
285 | self,
286 | hidden_states: torch.FloatTensor,
287 | attention_mask: Optional[torch.FloatTensor] = None,
288 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
289 | encoder_attention_mask: Optional[torch.FloatTensor] = None,
290 | timestep: Optional[torch.LongTensor] = None,
291 | cross_attention_kwargs: Dict[str, Any] = None,
292 | class_labels: Optional[torch.LongTensor] = None,
293 | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
294 | ) -> torch.FloatTensor:
295 | # Notice that normalization is always applied before the real computation in the following blocks.
296 | # 0. Self-Attention
297 | batch_size = hidden_states.shape[0]
298 | #print("batchsize",batch_size)
299 | if self.use_ada_layer_norm:
300 | norm_hidden_states = self.norm1(hidden_states, timestep)
301 | elif self.use_ada_layer_norm_zero:
302 | norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
303 | hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
304 | )
305 | elif self.use_layer_norm:
306 | norm_hidden_states = self.norm1(hidden_states)
307 | elif self.use_ada_layer_norm_continuous:
308 | norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
309 | elif self.use_ada_layer_norm_single:
310 | shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
311 | self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
312 | ).chunk(6, dim=1)
313 | norm_hidden_states = self.norm1(hidden_states)
314 | norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
315 | norm_hidden_states = norm_hidden_states.squeeze(1)
316 | else:
317 | raise ValueError("Incorrect norm used")
318 |
319 | if self.pos_embed is not None:
320 | norm_hidden_states = self.pos_embed(norm_hidden_states)
321 |
322 | garment_features = []
323 | garment_features.append(norm_hidden_states)
324 |
325 | # 1. Retrieve lora scale.
326 | lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
327 |
328 | # 2. Prepare GLIGEN inputs
329 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
330 | gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
331 |
332 | attn_output = self.attn1(
333 | norm_hidden_states,
334 | encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
335 | attention_mask=attention_mask,
336 | **cross_attention_kwargs,
337 | )
338 | if self.use_ada_layer_norm_zero:
339 | attn_output = gate_msa.unsqueeze(1) * attn_output
340 | elif self.use_ada_layer_norm_single:
341 | attn_output = gate_msa * attn_output
342 | #print("!!!!!!",attn_output.shape)
343 | hidden_states = attn_output + hidden_states
344 | #print("before.shape",hidden_states.shape)
345 | if hidden_states.ndim == 4:
346 | hidden_states = hidden_states.squeeze(1)
347 |
348 | # 2.5 GLIGEN Control
349 | if gligen_kwargs is not None:
350 | hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
351 |
352 | # 3. Cross-Attention
353 | if self.attn2 is not None:
354 | if self.use_ada_layer_norm:
355 | norm_hidden_states = self.norm2(hidden_states, timestep)
356 | elif self.use_ada_layer_norm_zero or self.use_layer_norm:
357 | norm_hidden_states = self.norm2(hidden_states)
358 | elif self.use_ada_layer_norm_single:
359 | # For PixArt norm2 isn't applied here:
360 | # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
361 | norm_hidden_states = hidden_states
362 | elif self.use_ada_layer_norm_continuous:
363 | norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
364 | else:
365 | raise ValueError("Incorrect norm")
366 |
367 | if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
368 | norm_hidden_states = self.pos_embed(norm_hidden_states)
369 | # print("hidden_states.shape",hidden_states.shape)
370 | # print("norm_hidden_states.shape",norm_hidden_states.shape)
371 | # print("encoder_hidden_states.shape",encoder_hidden_states.shape)
372 | attn_output = self.attn2(
373 | norm_hidden_states,
374 | encoder_hidden_states=encoder_hidden_states,
375 | attention_mask=encoder_attention_mask,
376 | **cross_attention_kwargs,
377 | )
378 | #print("attn_output.shape",attn_output.shape)
379 | hidden_states = attn_output + hidden_states
380 |
381 | # 4. Feed-forward
382 | if self.use_ada_layer_norm_continuous:
383 | norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
384 | elif not self.use_ada_layer_norm_single:
385 | norm_hidden_states = self.norm3(hidden_states)
386 |
387 | if self.use_ada_layer_norm_zero:
388 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
389 |
390 | if self.use_ada_layer_norm_single:
391 | norm_hidden_states = self.norm2(hidden_states)
392 | norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
393 |
394 | if self._chunk_size is not None:
395 | # "feed_forward_chunk_size" can be used to save memory
396 | ff_output = _chunked_feed_forward(
397 | self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
398 | )
399 | else:
400 | ff_output = self.ff(norm_hidden_states, scale=lora_scale)
401 |
402 | if self.use_ada_layer_norm_zero:
403 | ff_output = gate_mlp.unsqueeze(1) * ff_output
404 | elif self.use_ada_layer_norm_single:
405 | ff_output = gate_mlp * ff_output
406 |
407 | hidden_states = ff_output + hidden_states
408 | if hidden_states.ndim == 4:
409 | hidden_states = hidden_states.squeeze(1)
410 |
411 | return hidden_states, garment_features
412 |
413 |
414 | @maybe_allow_in_graph
415 | class TemporalBasicTransformerBlock(nn.Module):
416 | r"""
417 | A basic Transformer block for video like data.
418 |
419 | Parameters:
420 | dim (`int`): The number of channels in the input and output.
421 | time_mix_inner_dim (`int`): The number of channels for temporal attention.
422 | num_attention_heads (`int`): The number of heads to use for multi-head attention.
423 | attention_head_dim (`int`): The number of channels in each head.
424 | cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
425 | """
426 |
427 | def __init__(
428 | self,
429 | dim: int,
430 | time_mix_inner_dim: int,
431 | num_attention_heads: int,
432 | attention_head_dim: int,
433 | cross_attention_dim: Optional[int] = None,
434 | ):
435 | super().__init__()
436 | self.is_res = dim == time_mix_inner_dim
437 |
438 | self.norm_in = nn.LayerNorm(dim)
439 |
440 | # Define 3 blocks. Each block has its own normalization layer.
441 | # 1. Self-Attn
442 | self.norm_in = nn.LayerNorm(dim)
443 | self.ff_in = FeedForward(
444 | dim,
445 | dim_out=time_mix_inner_dim,
446 | activation_fn="geglu",
447 | )
448 |
449 | self.norm1 = nn.LayerNorm(time_mix_inner_dim)
450 | self.attn1 = Attention(
451 | query_dim=time_mix_inner_dim,
452 | heads=num_attention_heads,
453 | dim_head=attention_head_dim,
454 | cross_attention_dim=None,
455 | )
456 |
457 | # 2. Cross-Attn
458 | if cross_attention_dim is not None:
459 | # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
460 | # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
461 | # the second cross attention block.
462 | self.norm2 = nn.LayerNorm(time_mix_inner_dim)
463 | self.attn2 = Attention(
464 | query_dim=time_mix_inner_dim,
465 | cross_attention_dim=cross_attention_dim,
466 | heads=num_attention_heads,
467 | dim_head=attention_head_dim,
468 | ) # is self-attn if encoder_hidden_states is none
469 | else:
470 | self.norm2 = None
471 | self.attn2 = None
472 |
473 | # 3. Feed-forward
474 | self.norm3 = nn.LayerNorm(time_mix_inner_dim)
475 | self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
476 |
477 | # let chunk size default to None
478 | self._chunk_size = None
479 | self._chunk_dim = None
480 |
481 | def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
482 | # Sets chunk feed-forward
483 | self._chunk_size = chunk_size
484 | # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
485 | self._chunk_dim = 1
486 |
487 | def forward(
488 | self,
489 | hidden_states: torch.FloatTensor,
490 | num_frames: int,
491 | encoder_hidden_states: Optional[torch.FloatTensor] = None,
492 | ) -> torch.FloatTensor:
493 | # Notice that normalization is always applied before the real computation in the following blocks.
494 | # 0. Self-Attention
495 | batch_size = hidden_states.shape[0]
496 |
497 | batch_frames, seq_length, channels = hidden_states.shape
498 | batch_size = batch_frames // num_frames
499 |
500 | hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
501 | hidden_states = hidden_states.permute(0, 2, 1, 3)
502 | hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
503 |
504 | residual = hidden_states
505 | hidden_states = self.norm_in(hidden_states)
506 |
507 | if self._chunk_size is not None:
508 | hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
509 | else:
510 | hidden_states = self.ff_in(hidden_states)
511 |
512 | if self.is_res:
513 | hidden_states = hidden_states + residual
514 |
515 | norm_hidden_states = self.norm1(hidden_states)
516 | attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
517 | hidden_states = attn_output + hidden_states
518 |
519 | # 3. Cross-Attention
520 | if self.attn2 is not None:
521 | norm_hidden_states = self.norm2(hidden_states)
522 | attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
523 | hidden_states = attn_output + hidden_states
524 |
525 | # 4. Feed-forward
526 | norm_hidden_states = self.norm3(hidden_states)
527 |
528 | if self._chunk_size is not None:
529 | ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
530 | else:
531 | ff_output = self.ff(norm_hidden_states)
532 |
533 | if self.is_res:
534 | hidden_states = ff_output + hidden_states
535 | else:
536 | hidden_states = ff_output
537 |
538 | hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
539 | hidden_states = hidden_states.permute(0, 2, 1, 3)
540 | hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
541 |
542 | return hidden_states
543 |
544 |
545 | class SkipFFTransformerBlock(nn.Module):
546 | def __init__(
547 | self,
548 | dim: int,
549 | num_attention_heads: int,
550 | attention_head_dim: int,
551 | kv_input_dim: int,
552 | kv_input_dim_proj_use_bias: bool,
553 | dropout=0.0,
554 | cross_attention_dim: Optional[int] = None,
555 | attention_bias: bool = False,
556 | attention_out_bias: bool = True,
557 | ):
558 | super().__init__()
559 | if kv_input_dim != dim:
560 | self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
561 | else:
562 | self.kv_mapper = None
563 |
564 | self.norm1 = RMSNorm(dim, 1e-06)
565 |
566 | self.attn1 = Attention(
567 | query_dim=dim,
568 | heads=num_attention_heads,
569 | dim_head=attention_head_dim,
570 | dropout=dropout,
571 | bias=attention_bias,
572 | cross_attention_dim=cross_attention_dim,
573 | out_bias=attention_out_bias,
574 | )
575 |
576 | self.norm2 = RMSNorm(dim, 1e-06)
577 |
578 | self.attn2 = Attention(
579 | query_dim=dim,
580 | cross_attention_dim=cross_attention_dim,
581 | heads=num_attention_heads,
582 | dim_head=attention_head_dim,
583 | dropout=dropout,
584 | bias=attention_bias,
585 | out_bias=attention_out_bias,
586 | )
587 |
588 | def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
589 | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
590 |
591 | if self.kv_mapper is not None:
592 | encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
593 |
594 | norm_hidden_states = self.norm1(hidden_states)
595 |
596 | attn_output = self.attn1(
597 | norm_hidden_states,
598 | encoder_hidden_states=encoder_hidden_states,
599 | **cross_attention_kwargs,
600 | )
601 |
602 | hidden_states = attn_output + hidden_states
603 |
604 | norm_hidden_states = self.norm2(hidden_states)
605 |
606 | attn_output = self.attn2(
607 | norm_hidden_states,
608 | encoder_hidden_states=encoder_hidden_states,
609 | **cross_attention_kwargs,
610 | )
611 |
612 | hidden_states = attn_output + hidden_states
613 |
614 | return hidden_states
615 |
616 |
617 | class FeedForward(nn.Module):
618 | r"""
619 | A feed-forward layer.
620 |
621 | Parameters:
622 | dim (`int`): The number of channels in the input.
623 | dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
624 | mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
625 | dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
626 | activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
627 | final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
628 | bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
629 | """
630 |
631 | def __init__(
632 | self,
633 | dim: int,
634 | dim_out: Optional[int] = None,
635 | mult: int = 4,
636 | dropout: float = 0.0,
637 | activation_fn: str = "geglu",
638 | final_dropout: bool = False,
639 | inner_dim=None,
640 | bias: bool = True,
641 | ):
642 | super().__init__()
643 | if inner_dim is None:
644 | inner_dim = int(dim * mult)
645 | dim_out = dim_out if dim_out is not None else dim
646 | linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
647 |
648 | if activation_fn == "gelu":
649 | act_fn = GELU(dim, inner_dim, bias=bias)
650 | if activation_fn == "gelu-approximate":
651 | act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
652 | elif activation_fn == "geglu":
653 | act_fn = GEGLU(dim, inner_dim, bias=bias)
654 | elif activation_fn == "geglu-approximate":
655 | act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
656 |
657 | self.net = nn.ModuleList([])
658 | # project in
659 | self.net.append(act_fn)
660 | # project dropout
661 | self.net.append(nn.Dropout(dropout))
662 | # project out
663 | self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
664 | # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
665 | if final_dropout:
666 | self.net.append(nn.Dropout(dropout))
667 |
668 | def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
669 | compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
670 | for module in self.net:
671 | if isinstance(module, compatible_cls):
672 | hidden_states = module(hidden_states, scale)
673 | else:
674 | hidden_states = module(hidden_states)
675 | return hidden_states
676 |
--------------------------------------------------------------------------------
/ip_adapter/ip_adapter.py:
--------------------------------------------------------------------------------
1 | import os
2 | from typing import List
3 |
4 | import torch
5 | from diffusers import StableDiffusionPipeline
6 | from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
7 | from PIL import Image
8 | from safetensors import safe_open
9 | from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
10 |
11 | from .utils import is_torch2_available
12 |
13 | if is_torch2_available():
14 | from .attention_processor import (
15 | AttnProcessor2_0 as AttnProcessor,
16 | )
17 | from .attention_processor import (
18 | CNAttnProcessor2_0 as CNAttnProcessor,
19 | )
20 | from .attention_processor import (
21 | IPAttnProcessor2_0 as IPAttnProcessor,
22 | )
23 | from .attention_processor import IPAttnProcessor2_0_Lora
24 | # else:
25 | # from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor
26 | from .resampler import Resampler
27 | from diffusers.models.lora import LoRALinearLayer
28 |
29 |
30 | class ImageProjModel(torch.nn.Module):
31 | """Projection Model"""
32 |
33 | def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
34 | super().__init__()
35 |
36 | self.cross_attention_dim = cross_attention_dim
37 | self.clip_extra_context_tokens = clip_extra_context_tokens
38 | self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
39 | self.norm = torch.nn.LayerNorm(cross_attention_dim)
40 |
41 | def forward(self, image_embeds):
42 | embeds = image_embeds
43 | clip_extra_context_tokens = self.proj(embeds).reshape(
44 | -1, self.clip_extra_context_tokens, self.cross_attention_dim
45 | )
46 | clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
47 | return clip_extra_context_tokens
48 |
49 |
50 | class MLPProjModel(torch.nn.Module):
51 | """SD model with image prompt"""
52 | def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
53 | super().__init__()
54 |
55 | self.proj = torch.nn.Sequential(
56 | torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
57 | torch.nn.GELU(),
58 | torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
59 | torch.nn.LayerNorm(cross_attention_dim)
60 | )
61 |
62 | def forward(self, image_embeds):
63 | clip_extra_context_tokens = self.proj(image_embeds)
64 | return clip_extra_context_tokens
65 |
66 |
67 | class IPAdapter:
68 | def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
69 | self.device = device
70 | self.image_encoder_path = image_encoder_path
71 | self.ip_ckpt = ip_ckpt
72 | self.num_tokens = num_tokens
73 |
74 | self.pipe = sd_pipe.to(self.device)
75 | self.set_ip_adapter()
76 |
77 | # load image encoder
78 | self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
79 | self.device, dtype=torch.float16
80 | )
81 | self.clip_image_processor = CLIPImageProcessor()
82 | # image proj model
83 | self.image_proj_model = self.init_proj()
84 |
85 | self.load_ip_adapter()
86 |
87 | def init_proj(self):
88 | image_proj_model = ImageProjModel(
89 | cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
90 | clip_embeddings_dim=self.image_encoder.config.projection_dim,
91 | clip_extra_context_tokens=self.num_tokens,
92 | ).to(self.device, dtype=torch.float16)
93 | return image_proj_model
94 |
95 | def set_ip_adapter(self):
96 | unet = self.pipe.unet
97 | attn_procs = {}
98 | for name in unet.attn_processors.keys():
99 | cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
100 | if name.startswith("mid_block"):
101 | hidden_size = unet.config.block_out_channels[-1]
102 | elif name.startswith("up_blocks"):
103 | block_id = int(name[len("up_blocks.")])
104 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
105 | elif name.startswith("down_blocks"):
106 | block_id = int(name[len("down_blocks.")])
107 | hidden_size = unet.config.block_out_channels[block_id]
108 | if cross_attention_dim is None:
109 | attn_procs[name] = AttnProcessor()
110 | else:
111 | attn_procs[name] = IPAttnProcessor(
112 | hidden_size=hidden_size,
113 | cross_attention_dim=cross_attention_dim,
114 | scale=1.0,
115 | num_tokens=self.num_tokens,
116 | ).to(self.device, dtype=torch.float16)
117 | unet.set_attn_processor(attn_procs)
118 | if hasattr(self.pipe, "controlnet"):
119 | if isinstance(self.pipe.controlnet, MultiControlNetModel):
120 | for controlnet in self.pipe.controlnet.nets:
121 | controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
122 | else:
123 | self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
124 |
125 | def load_ip_adapter(self):
126 | if self.ip_ckpt is not None:
127 | if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
128 | state_dict = {"image_proj": {}, "ip_adapter": {}}
129 | with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
130 | for key in f.keys():
131 | if key.startswith("image_proj."):
132 | state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
133 | elif key.startswith("ip_adapter."):
134 | state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
135 | else:
136 | state_dict = torch.load(self.ip_ckpt, map_location="cpu")
137 | self.image_proj_model.load_state_dict(state_dict["image_proj"])
138 | ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
139 | ip_layers.load_state_dict(state_dict["ip_adapter"])
140 |
141 |
142 | # def load_ip_adapter(self):
143 | # if self.ip_ckpt is not None:
144 | # if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors":
145 | # state_dict = {"image_proj_model": {}, "ip_adapter": {}}
146 | # with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f:
147 | # for key in f.keys():
148 | # if key.startswith("image_proj_model."):
149 | # state_dict["image_proj_model"][key.replace("image_proj_model.", "")] = f.get_tensor(key)
150 | # elif key.startswith("ip_adapter."):
151 | # state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
152 | # else:
153 | # state_dict = torch.load(self.ip_ckpt, map_location="cpu")
154 |
155 | # tmp1 = {}
156 | # for k,v in state_dict.items():
157 | # if 'image_proj_model' in k:
158 | # tmp1[k.replace('image_proj_model.','')] = v
159 | # self.image_proj_model.load_state_dict(tmp1, strict=True)
160 | # # ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
161 | # tmp2 = {}
162 | # for k,v in state_dict.ites():
163 | # if 'adapter_mode' in k:
164 | # tmp1[k] = v
165 |
166 | # print(ip_layers.state_dict())
167 | # ip_layers.load_state_dict(state_dict,strict=False)
168 |
169 |
170 | @torch.inference_mode()
171 | def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
172 | if pil_image is not None:
173 | if isinstance(pil_image, Image.Image):
174 | pil_image = [pil_image]
175 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
176 | clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16)).image_embeds
177 | else:
178 | clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
179 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
180 | uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
181 | return image_prompt_embeds, uncond_image_prompt_embeds
182 |
183 | def get_image_embeds_train(self, pil_image=None, clip_image_embeds=None):
184 | if pil_image is not None:
185 | if isinstance(pil_image, Image.Image):
186 | pil_image = [pil_image]
187 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
188 | clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float32)).image_embeds
189 | else:
190 | clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float32)
191 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
192 | uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
193 | return image_prompt_embeds, uncond_image_prompt_embeds
194 |
195 |
196 | def set_scale(self, scale):
197 | for attn_processor in self.pipe.unet.attn_processors.values():
198 | if isinstance(attn_processor, IPAttnProcessor):
199 | attn_processor.scale = scale
200 |
201 | def generate(
202 | self,
203 | pil_image=None,
204 | clip_image_embeds=None,
205 | prompt=None,
206 | negative_prompt=None,
207 | scale=1.0,
208 | num_samples=4,
209 | seed=None,
210 | guidance_scale=7.5,
211 | num_inference_steps=50,
212 | **kwargs,
213 | ):
214 | self.set_scale(scale)
215 |
216 | if pil_image is not None:
217 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
218 | else:
219 | num_prompts = clip_image_embeds.size(0)
220 |
221 | if prompt is None:
222 | prompt = "best quality, high quality"
223 | if negative_prompt is None:
224 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
225 |
226 | if not isinstance(prompt, List):
227 | prompt = [prompt] * num_prompts
228 | if not isinstance(negative_prompt, List):
229 | negative_prompt = [negative_prompt] * num_prompts
230 |
231 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
232 | pil_image=pil_image, clip_image_embeds=clip_image_embeds
233 | )
234 | bs_embed, seq_len, _ = image_prompt_embeds.shape
235 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
236 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
237 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
238 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
239 |
240 | with torch.inference_mode():
241 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
242 | prompt,
243 | device=self.device,
244 | num_images_per_prompt=num_samples,
245 | do_classifier_free_guidance=True,
246 | negative_prompt=negative_prompt,
247 | )
248 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
249 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
250 |
251 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
252 | images = self.pipe(
253 | prompt_embeds=prompt_embeds,
254 | negative_prompt_embeds=negative_prompt_embeds,
255 | guidance_scale=guidance_scale,
256 | num_inference_steps=num_inference_steps,
257 | generator=generator,
258 | **kwargs,
259 | ).images
260 |
261 | return images
262 |
263 |
264 | class IPAdapterXL(IPAdapter):
265 | """SDXL"""
266 |
267 | def generate_test(
268 | self,
269 | pil_image,
270 | prompt=None,
271 | negative_prompt=None,
272 | scale=1.0,
273 | num_samples=4,
274 | seed=None,
275 | num_inference_steps=30,
276 | **kwargs,
277 | ):
278 | self.set_scale(scale)
279 |
280 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
281 |
282 | if prompt is None:
283 | prompt = "best quality, high quality"
284 | if negative_prompt is None:
285 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
286 |
287 | if not isinstance(prompt, List):
288 | prompt = [prompt] * num_prompts
289 | if not isinstance(negative_prompt, List):
290 | negative_prompt = [negative_prompt] * num_prompts
291 |
292 |
293 | with torch.inference_mode():
294 | (
295 | prompt_embeds,
296 | negative_prompt_embeds,
297 | pooled_prompt_embeds,
298 | negative_pooled_prompt_embeds,
299 | ) = self.pipe.encode_prompt(
300 | prompt,
301 | num_images_per_prompt=num_samples,
302 | do_classifier_free_guidance=True,
303 | negative_prompt=negative_prompt,
304 | )
305 |
306 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
307 | images = self.pipe(
308 | prompt_embeds=prompt_embeds,
309 | negative_prompt_embeds=negative_prompt_embeds,
310 | pooled_prompt_embeds=pooled_prompt_embeds,
311 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
312 | num_inference_steps=num_inference_steps,
313 | generator=generator,
314 | **kwargs,
315 | ).images
316 |
317 |
318 | # with torch.autocast("cuda"):
319 | # images = self.pipe(
320 | # prompt_embeds=prompt_embeds,
321 | # negative_prompt_embeds=negative_prompt_embeds,
322 | # pooled_prompt_embeds=pooled_prompt_embeds,
323 | # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
324 | # num_inference_steps=num_inference_steps,
325 | # generator=generator,
326 | # **kwargs,
327 | # ).images
328 |
329 | return images
330 |
331 |
332 | def generate(
333 | self,
334 | pil_image,
335 | prompt=None,
336 | negative_prompt=None,
337 | scale=1.0,
338 | num_samples=4,
339 | seed=None,
340 | num_inference_steps=30,
341 | **kwargs,
342 | ):
343 | self.set_scale(scale)
344 |
345 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
346 |
347 | if prompt is None:
348 | prompt = "best quality, high quality"
349 | if negative_prompt is None:
350 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
351 |
352 | if not isinstance(prompt, List):
353 | prompt = [prompt] * num_prompts
354 | if not isinstance(negative_prompt, List):
355 | negative_prompt = [negative_prompt] * num_prompts
356 |
357 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
358 | bs_embed, seq_len, _ = image_prompt_embeds.shape
359 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
360 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
361 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
362 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
363 |
364 | with torch.inference_mode():
365 | (
366 | prompt_embeds,
367 | negative_prompt_embeds,
368 | pooled_prompt_embeds,
369 | negative_pooled_prompt_embeds,
370 | ) = self.pipe.encode_prompt(
371 | prompt,
372 | num_images_per_prompt=num_samples,
373 | do_classifier_free_guidance=True,
374 | negative_prompt=negative_prompt,
375 | )
376 | prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
377 | negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
378 |
379 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
380 | images = self.pipe(
381 | prompt_embeds=prompt_embeds,
382 | negative_prompt_embeds=negative_prompt_embeds,
383 | pooled_prompt_embeds=pooled_prompt_embeds,
384 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
385 | num_inference_steps=num_inference_steps,
386 | generator=generator,
387 | **kwargs,
388 | ).images
389 |
390 |
391 | # with torch.autocast("cuda"):
392 | # images = self.pipe(
393 | # prompt_embeds=prompt_embeds,
394 | # negative_prompt_embeds=negative_prompt_embeds,
395 | # pooled_prompt_embeds=pooled_prompt_embeds,
396 | # negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
397 | # num_inference_steps=num_inference_steps,
398 | # generator=generator,
399 | # **kwargs,
400 | # ).images
401 |
402 | return images
403 |
404 |
405 | class IPAdapterPlus(IPAdapter):
406 | """IP-Adapter with fine-grained features"""
407 |
408 | def generate(
409 | self,
410 | pil_image=None,
411 | clip_image_embeds=None,
412 | prompt=None,
413 | negative_prompt=None,
414 | scale=1.0,
415 | num_samples=4,
416 | seed=None,
417 | guidance_scale=7.5,
418 | num_inference_steps=50,
419 | **kwargs,
420 | ):
421 | self.set_scale(scale)
422 |
423 | if pil_image is not None:
424 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
425 | else:
426 | num_prompts = clip_image_embeds.size(0)
427 |
428 | if prompt is None:
429 | prompt = "best quality, high quality"
430 | if negative_prompt is None:
431 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
432 |
433 | if not isinstance(prompt, List):
434 | prompt = [prompt] * num_prompts
435 | if not isinstance(negative_prompt, List):
436 | negative_prompt = [negative_prompt] * num_prompts
437 |
438 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
439 | pil_image=pil_image, clip_image=clip_image_embeds
440 | )
441 | bs_embed, seq_len, _ = image_prompt_embeds.shape
442 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
443 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
444 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
445 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
446 |
447 | with torch.inference_mode():
448 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
449 | prompt,
450 | device=self.device,
451 | num_images_per_prompt=num_samples,
452 | do_classifier_free_guidance=True,
453 | negative_prompt=negative_prompt,
454 | )
455 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
456 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
457 |
458 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
459 | images = self.pipe(
460 | prompt_embeds=prompt_embeds,
461 | negative_prompt_embeds=negative_prompt_embeds,
462 | guidance_scale=guidance_scale,
463 | num_inference_steps=num_inference_steps,
464 | generator=generator,
465 | **kwargs,
466 | ).images
467 |
468 | return images
469 |
470 |
471 | def init_proj(self):
472 | image_proj_model = Resampler(
473 | dim=self.pipe.unet.config.cross_attention_dim,
474 | depth=4,
475 | dim_head=64,
476 | heads=12,
477 | num_queries=self.num_tokens,
478 | embedding_dim=self.image_encoder.config.hidden_size,
479 | output_dim=self.pipe.unet.config.cross_attention_dim,
480 | ff_mult=4,
481 | ).to(self.device, dtype=torch.float16)
482 | return image_proj_model
483 |
484 | @torch.inference_mode()
485 | def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
486 | if pil_image is not None:
487 | if isinstance(pil_image, Image.Image):
488 | pil_image = [pil_image]
489 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
490 | clip_image = clip_image.to(self.device, dtype=torch.float16)
491 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
492 | else:
493 | clip_image = clip_image.to(self.device, dtype=torch.float16)
494 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
495 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
496 | uncond_clip_image_embeds = self.image_encoder(
497 | torch.zeros_like(clip_image), output_hidden_states=True
498 | ).hidden_states[-2]
499 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
500 | return image_prompt_embeds, uncond_image_prompt_embeds
501 |
502 |
503 |
504 |
505 | class IPAdapterPlus_Lora(IPAdapter):
506 | """IP-Adapter with fine-grained features"""
507 |
508 | def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
509 | self.rank = rank
510 | super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
511 |
512 |
513 | def generate(
514 | self,
515 | pil_image=None,
516 | clip_image_embeds=None,
517 | prompt=None,
518 | negative_prompt=None,
519 | scale=1.0,
520 | num_samples=4,
521 | seed=None,
522 | guidance_scale=7.5,
523 | num_inference_steps=50,
524 | **kwargs,
525 | ):
526 | self.set_scale(scale)
527 |
528 | if pil_image is not None:
529 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
530 | else:
531 | num_prompts = clip_image_embeds.size(0)
532 |
533 | if prompt is None:
534 | prompt = "best quality, high quality"
535 | if negative_prompt is None:
536 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
537 |
538 | if not isinstance(prompt, List):
539 | prompt = [prompt] * num_prompts
540 | if not isinstance(negative_prompt, List):
541 | negative_prompt = [negative_prompt] * num_prompts
542 |
543 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
544 | pil_image=pil_image, clip_image=clip_image_embeds
545 | )
546 | bs_embed, seq_len, _ = image_prompt_embeds.shape
547 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
548 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
549 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
550 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
551 |
552 | with torch.inference_mode():
553 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
554 | prompt,
555 | device=self.device,
556 | num_images_per_prompt=num_samples,
557 | do_classifier_free_guidance=True,
558 | negative_prompt=negative_prompt,
559 | )
560 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
561 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
562 |
563 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
564 | images = self.pipe(
565 | prompt_embeds=prompt_embeds,
566 | negative_prompt_embeds=negative_prompt_embeds,
567 | guidance_scale=guidance_scale,
568 | num_inference_steps=num_inference_steps,
569 | generator=generator,
570 | **kwargs,
571 | ).images
572 |
573 | return images
574 |
575 |
576 | def init_proj(self):
577 | image_proj_model = Resampler(
578 | dim=self.pipe.unet.config.cross_attention_dim,
579 | depth=4,
580 | dim_head=64,
581 | heads=12,
582 | num_queries=self.num_tokens,
583 | embedding_dim=self.image_encoder.config.hidden_size,
584 | output_dim=self.pipe.unet.config.cross_attention_dim,
585 | ff_mult=4,
586 | ).to(self.device, dtype=torch.float16)
587 | return image_proj_model
588 |
589 | @torch.inference_mode()
590 | def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
591 | if pil_image is not None:
592 | if isinstance(pil_image, Image.Image):
593 | pil_image = [pil_image]
594 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
595 | clip_image = clip_image.to(self.device, dtype=torch.float16)
596 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
597 | else:
598 | clip_image = clip_image.to(self.device, dtype=torch.float16)
599 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
600 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
601 | uncond_clip_image_embeds = self.image_encoder(
602 | torch.zeros_like(clip_image), output_hidden_states=True
603 | ).hidden_states[-2]
604 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
605 | return image_prompt_embeds, uncond_image_prompt_embeds
606 |
607 | def set_ip_adapter(self):
608 | unet = self.pipe.unet
609 | attn_procs = {}
610 | unet_sd = unet.state_dict()
611 |
612 | for attn_processor_name, attn_processor in unet.attn_processors.items():
613 | # Parse the attention module.
614 | cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
615 | if attn_processor_name.startswith("mid_block"):
616 | hidden_size = unet.config.block_out_channels[-1]
617 | elif attn_processor_name.startswith("up_blocks"):
618 | block_id = int(attn_processor_name[len("up_blocks.")])
619 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
620 | elif attn_processor_name.startswith("down_blocks"):
621 | block_id = int(attn_processor_name[len("down_blocks.")])
622 | hidden_size = unet.config.block_out_channels[block_id]
623 | if cross_attention_dim is None:
624 | attn_procs[attn_processor_name] = AttnProcessor()
625 | else:
626 | layer_name = attn_processor_name.split(".processor")[0]
627 | weights = {
628 | "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
629 | "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
630 | }
631 | attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
632 | attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
633 |
634 | attn_module = unet
635 | for n in attn_processor_name.split(".")[:-1]:
636 | attn_module = getattr(attn_module, n)
637 |
638 | attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
639 | attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
640 | attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
641 | attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
642 |
643 | unet.set_attn_processor(attn_procs)
644 | if hasattr(self.pipe, "controlnet"):
645 | if isinstance(self.pipe.controlnet, MultiControlNetModel):
646 | for controlnet in self.pipe.controlnet.nets:
647 | controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
648 | else:
649 | self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
650 |
651 |
652 |
653 | class IPAdapterPlus_Lora_up(IPAdapter):
654 | """IP-Adapter with fine-grained features"""
655 |
656 | def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, rank=32):
657 | self.rank = rank
658 | super().__init__(sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens)
659 |
660 |
661 | def generate(
662 | self,
663 | pil_image=None,
664 | clip_image_embeds=None,
665 | prompt=None,
666 | negative_prompt=None,
667 | scale=1.0,
668 | num_samples=4,
669 | seed=None,
670 | guidance_scale=7.5,
671 | num_inference_steps=50,
672 | **kwargs,
673 | ):
674 | self.set_scale(scale)
675 |
676 | if pil_image is not None:
677 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
678 | else:
679 | num_prompts = clip_image_embeds.size(0)
680 |
681 | if prompt is None:
682 | prompt = "best quality, high quality"
683 | if negative_prompt is None:
684 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
685 |
686 | if not isinstance(prompt, List):
687 | prompt = [prompt] * num_prompts
688 | if not isinstance(negative_prompt, List):
689 | negative_prompt = [negative_prompt] * num_prompts
690 |
691 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(
692 | pil_image=pil_image, clip_image=clip_image_embeds
693 | )
694 | bs_embed, seq_len, _ = image_prompt_embeds.shape
695 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
696 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
697 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
698 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
699 |
700 | with torch.inference_mode():
701 | prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt(
702 | prompt,
703 | device=self.device,
704 | num_images_per_prompt=num_samples,
705 | do_classifier_free_guidance=True,
706 | negative_prompt=negative_prompt,
707 | )
708 | prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1)
709 | negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1)
710 |
711 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
712 | images = self.pipe(
713 | prompt_embeds=prompt_embeds,
714 | negative_prompt_embeds=negative_prompt_embeds,
715 | guidance_scale=guidance_scale,
716 | num_inference_steps=num_inference_steps,
717 | generator=generator,
718 | **kwargs,
719 | ).images
720 |
721 | return images
722 |
723 |
724 | def init_proj(self):
725 | image_proj_model = Resampler(
726 | dim=self.pipe.unet.config.cross_attention_dim,
727 | depth=4,
728 | dim_head=64,
729 | heads=12,
730 | num_queries=self.num_tokens,
731 | embedding_dim=self.image_encoder.config.hidden_size,
732 | output_dim=self.pipe.unet.config.cross_attention_dim,
733 | ff_mult=4,
734 | ).to(self.device, dtype=torch.float16)
735 | return image_proj_model
736 |
737 | @torch.inference_mode()
738 | def get_image_embeds(self, pil_image=None, clip_image=None, uncond= None):
739 | if pil_image is not None:
740 | if isinstance(pil_image, Image.Image):
741 | pil_image = [pil_image]
742 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
743 | clip_image = clip_image.to(self.device, dtype=torch.float16)
744 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
745 | else:
746 | clip_image = clip_image.to(self.device, dtype=torch.float16)
747 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
748 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
749 | uncond_clip_image_embeds = self.image_encoder(
750 | torch.zeros_like(clip_image), output_hidden_states=True
751 | ).hidden_states[-2]
752 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
753 | return image_prompt_embeds, uncond_image_prompt_embeds
754 |
755 | def set_ip_adapter(self):
756 | unet = self.pipe.unet
757 | attn_procs = {}
758 | unet_sd = unet.state_dict()
759 |
760 | for attn_processor_name, attn_processor in unet.attn_processors.items():
761 | # Parse the attention module.
762 | cross_attention_dim = None if attn_processor_name.endswith("attn1.processor") else unet.config.cross_attention_dim
763 | if attn_processor_name.startswith("mid_block"):
764 | hidden_size = unet.config.block_out_channels[-1]
765 | elif attn_processor_name.startswith("up_blocks"):
766 | block_id = int(attn_processor_name[len("up_blocks.")])
767 | hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
768 | elif attn_processor_name.startswith("down_blocks"):
769 | block_id = int(attn_processor_name[len("down_blocks.")])
770 | hidden_size = unet.config.block_out_channels[block_id]
771 | if cross_attention_dim is None:
772 | attn_procs[attn_processor_name] = AttnProcessor()
773 | else:
774 | layer_name = attn_processor_name.split(".processor")[0]
775 | weights = {
776 | "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
777 | "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
778 | }
779 | attn_procs[attn_processor_name] = IPAttnProcessor2_0_Lora(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=self.num_tokens)
780 | attn_procs[attn_processor_name].load_state_dict(weights,strict=False)
781 |
782 | attn_module = unet
783 | for n in attn_processor_name.split(".")[:-1]:
784 | attn_module = getattr(attn_module, n)
785 |
786 |
787 | if "up_blocks" in attn_processor_name:
788 | attn_module.q_lora = LoRALinearLayer(in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=self.rank)
789 | attn_module.k_lora = LoRALinearLayer(in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=self.rank)
790 | attn_module.v_lora = LoRALinearLayer(in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=self.rank)
791 | attn_module.out_lora = LoRALinearLayer(in_features=attn_module.to_out[0].in_features, out_features=attn_module.to_out[0].out_features, rank=self.rank)
792 |
793 |
794 |
795 | unet.set_attn_processor(attn_procs)
796 | if hasattr(self.pipe, "controlnet"):
797 | if isinstance(self.pipe.controlnet, MultiControlNetModel):
798 | for controlnet in self.pipe.controlnet.nets:
799 | controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
800 | else:
801 | self.pipe.controlnet.set_attn_processor(CNAttnProcessor(num_tokens=self.num_tokens))
802 |
803 |
804 |
805 | class IPAdapterFull(IPAdapterPlus):
806 | """IP-Adapter with full features"""
807 |
808 | def init_proj(self):
809 | image_proj_model = MLPProjModel(
810 | cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
811 | clip_embeddings_dim=self.image_encoder.config.hidden_size,
812 | ).to(self.device, dtype=torch.float16)
813 | return image_proj_model
814 |
815 |
816 | class IPAdapterPlusXL(IPAdapter):
817 | """SDXL"""
818 |
819 | def init_proj(self):
820 | image_proj_model = Resampler(
821 | dim=1280,
822 | depth=4,
823 | dim_head=64,
824 | heads=20,
825 | num_queries=self.num_tokens,
826 | embedding_dim=self.image_encoder.config.hidden_size,
827 | output_dim=self.pipe.unet.config.cross_attention_dim,
828 | ff_mult=4,
829 | ).to(self.device, dtype=torch.float16)
830 | return image_proj_model
831 |
832 | @torch.inference_mode()
833 | def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
834 | if pil_image is not None:
835 | if isinstance(pil_image, Image.Image):
836 | pil_image = [pil_image]
837 | clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
838 | clip_image = clip_image.to(self.device, dtype=torch.float16)
839 | clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
840 | else:
841 | clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.float16)
842 | image_prompt_embeds = self.image_proj_model(clip_image_embeds)
843 | uncond_clip_image_embeds = self.image_encoder(
844 | torch.zeros_like(clip_image), output_hidden_states=True
845 | ).hidden_states[-2]
846 | uncond_image_prompt_embeds = self.image_proj_model(uncond_clip_image_embeds)
847 | return image_prompt_embeds, uncond_image_prompt_embeds
848 |
849 | def generate(
850 | self,
851 | pil_image,
852 | prompt=None,
853 | negative_prompt=None,
854 | scale=1.0,
855 | num_samples=4,
856 | seed=None,
857 | num_inference_steps=30,
858 | **kwargs,
859 | ):
860 | self.set_scale(scale)
861 |
862 | num_prompts = 1 if isinstance(pil_image, Image.Image) else len(pil_image)
863 |
864 | if prompt is None:
865 | prompt = "best quality, high quality"
866 | if negative_prompt is None:
867 | negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
868 |
869 | if not isinstance(prompt, List):
870 | prompt = [prompt] * num_prompts
871 | if not isinstance(negative_prompt, List):
872 | negative_prompt = [negative_prompt] * num_prompts
873 |
874 | image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(pil_image)
875 | bs_embed, seq_len, _ = image_prompt_embeds.shape
876 | image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
877 | image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
878 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
879 | uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
880 |
881 | with torch.inference_mode():
882 | (
883 | prompt_embeds,
884 | negative_prompt_embeds,
885 | pooled_prompt_embeds,
886 | negative_pooled_prompt_embeds,
887 | ) = self.pipe.encode_prompt(
888 | prompt,
889 | num_images_per_prompt=num_samples,
890 | do_classifier_free_guidance=True,
891 | negative_prompt=negative_prompt,
892 | )
893 | prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1)
894 | negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1)
895 |
896 | generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
897 | images = self.pipe(
898 | prompt_embeds=prompt_embeds,
899 | negative_prompt_embeds=negative_prompt_embeds,
900 | pooled_prompt_embeds=pooled_prompt_embeds,
901 | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
902 | num_inference_steps=num_inference_steps,
903 | generator=generator,
904 | **kwargs,
905 | ).images
906 |
907 | return images
908 |
--------------------------------------------------------------------------------