├── .gitignore
├── 3D
├── laser.max
└── laser2.blend
├── LICENSE
├── README.md
├── code
├── experiments
│ ├── append.py
│ ├── crop-numpy.py
│ ├── extrema.py
│ ├── global_registration_tutorial.py
│ ├── image-difference.py
│ ├── interactive-matplotlib.py
│ ├── non-blocking-viz.py
│ ├── numpy-sort.py
│ ├── open3d-with-numpy.py
│ ├── scatterplot.py
│ ├── test_data
│ │ ├── cloud_bin_0.pcd
│ │ ├── cloud_bin_1.pcd
│ │ └── cloud_bin_2.pcd
│ ├── vector-intersection.py
│ ├── video.py
│ └── weighted-average.py
├── lib
│ ├── __init__.py
│ ├── image.py
│ ├── mesh.py
│ ├── pointcloud.py
│ ├── registration.py
│ ├── transformation.py
│ ├── visualization.py
│ └── visualization_mpl.py
├── linescanner.py
├── meshing_test.py
└── registration_test.py
├── doc
├── calculation.jpg
├── example_input.jpg
├── example_result.jpg
├── laser1a_daylight-difference.jpg
├── laser1a_source.jpg
├── laser1a_striped_720.jpg
└── squeeze-problem.jpg
├── export
├── icp.ply
├── laser1_reference.obj
├── laser1a_2048.pcd
├── laser1a_720.pcd
└── laser1b_720.pcd
├── images
├── laser1_2048_horizontal.mp4
├── laser1_2048_horizontal_config.json
├── laser1_RGB_horizontal.jpg
├── laser1_RGB_vertikal.jpg
├── laser1a_2048.mp4
├── laser1a_2048_config.json
├── laser1a_2048_daylight.mp4
├── laser1a_2048_daylight_horizontal.mp4
├── laser1a_720.mp4
├── laser1a_720_config.json
├── laser1b_720.mp4
├── laser1b_720_config.json
├── laser2.mp4
├── laser2_RGB.jpg
└── laser2_config.json
└── requirements.txt
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | Thumbs.db
3 |
4 | /tmp/
5 | /3D/laser_*
6 |
--------------------------------------------------------------------------------
/3D/laser.max:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/3D/laser.max
--------------------------------------------------------------------------------
/3D/laser2.blend:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/3D/laser2.blend
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # LineScanner | work-in-progress
2 |
3 | ### working principle
4 | A stepper motor sweeps a linelaser across the view of a camera. The script tries to detect a laser line
5 | in each row of the camera frame, repeating for each frame during the laser's motion.
6 | It uses frame subtraction to detect subtle changes in brightness and can therefore be used even in bright daylight.
7 |
8 | 
9 |
10 | It then triangulates the 3D position of each point of the laser line using:
11 | * distance between camera <-> laser
12 | * current angle of the laser's stepper motor
13 | * camera intrinic parameters (currently only field-of-view, later also distortion)
14 |
15 | Each point is colored (Vertex Color) either by the point's grayscale-value ( = "Laser-Illuminated")
16 | or by providing a clean image for texturing (e.g. first frame of daylight shooting).
17 |
18 | 
19 | -----------
20 |
21 |
22 |
23 | LINKS:
24 | Vector Intersection based on [geomalgorithms.com](https://web.archive.org/web/20210428000731/http://geomalgorithms.com/a05-_intersect-1.html)
25 | https://stackoverflow.com/questions/5666222/3d-line-plane-intersection
26 |
27 | indices of max-values in numpy array
28 | https://www.w3resource.com/python-exercises/numpy/python-numpy-exercise-31.php
29 |
30 | weighted average
31 | https://stackoverflow.com/questions/30057046/weighted-mean-in-numpy-python#30057626
32 |
33 |
34 |
35 |
36 | color:
37 | https://github.com/isl-org/Open3D/issues/614
38 |
39 | pcd = PointCloud()
40 | pcd.points = Vector3dVector(np_points)
41 | pcd.colors = Vector3dVector(np_colors)
42 |
--------------------------------------------------------------------------------
/code/experiments/append.py:
--------------------------------------------------------------------------------
1 | import open3d as o3d
2 | import numpy as np
3 |
4 |
5 | # open3D visualisation
6 | vis = o3d.visualization.Visualizer()
7 | vis.create_window()
8 |
9 |
10 | pcd = o3d.geometry.PointCloud()
11 | new_pcd = o3d.geometry.PointCloud()
12 |
13 | points = np.random.rand(100, 3) # np.array([[0.0, 10.0, 10.0], [2.0, 5.0, 2.0]], dtype=np.float64)
14 | pcd.points = o3d.utility.Vector3dVector(points)
15 | pcd.colors = o3d.utility.Vector3dVector(points)
16 | vis.add_geometry(pcd)
17 |
18 | for i in range(200):
19 | points = np.random.rand(100, 3)
20 | colors = np.random.rand(100, 3)
21 |
22 | # append pcd to pcd
23 | new_pcd.points = o3d.utility.Vector3dVector(points)
24 | new_pcd.colors = o3d.utility.Vector3dVector(colors)
25 | pcd += new_pcd
26 |
27 | # # append numpy-array to pcd
28 | # o3d.utility.Vector3dVector.extend(pcd.points, points)
29 |
30 | # update 3D-view each line
31 | vis.update_geometry(pcd)
32 | vis.poll_events()
33 | vis.update_renderer()
34 |
35 | vis.destroy_window()
36 |
--------------------------------------------------------------------------------
/code/experiments/crop-numpy.py:
--------------------------------------------------------------------------------
1 |
2 | # https://moonbooks.org/Articles/How-to-remove-array-rows-that-contain-only-0-in-python/
3 |
4 | import numpy as np
5 | im = np.array([ [0,0,0,0,0,0],
6 | [0,0,1,1,1,0],
7 | [0,0,0,0,0,0],
8 | [0,0,1,0,1,0],
9 | [0,0,0,0,0,0]])
10 |
11 | data = im[~np.all(im == 0, axis=1)]
12 |
13 | print(data)
14 |
15 |
16 |
--------------------------------------------------------------------------------
/code/experiments/extrema.py:
--------------------------------------------------------------------------------
1 | '''
2 | https://stackoverflow.com/questions/4624970/finding-local-maxima-minima-with-numpy-in-a-1d-numpy-array#9667121
3 | https://stackoverflow.com/questions/4624970/finding-local-maxima-minima-with-numpy-in-a-1d-numpy-array
4 | https://stackoverflow.com/questions/53466504/finding-singulars-sets-of-local-maxima-minima-in-a-1d-numpy-array-once-again
5 | '''
6 | import numpy as np
7 | from scipy.signal import find_peaks # 2
8 | # from scipy.signal import argrelmax, argrelmin # 3
9 | # from scipy.signal import square
10 |
11 |
12 | # DATA
13 | x = np.linspace(0, 10, 100, endpoint=False)
14 |
15 | # 1 interference
16 | data = .2 * np.sin(10 * x) + np.exp(-np.abs(2 - x / 3) ** 2)
17 |
18 | # 2 square function
19 | sig = np.sin(2 * np.pi * x)
20 | # data = square(2 * np.pi * x / 2, duty=(sig + 1)/2)
21 |
22 |
23 | # SMOOTH
24 | def smooth_line(array, blur=5, window='hamming'):
25 | """
26 | https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html
27 | 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
28 | """
29 | s = np.r_[array[blur - 1:0:-1], array, array[-2:-blur - 1:-1]]
30 | if window == 'flat':
31 | w = np.ones(blur, 'd')
32 | else:
33 | w = eval('np.' + window + '(blur)')
34 | array = np.convolve(w / w.sum(), s, mode='valid')
35 | array = array[blur - 1:]
36 | return array
37 |
38 |
39 | data = smooth_line(data)
40 |
41 |
42 | # EXTREMA
43 |
44 | # # 1 detects both plateau flanks
45 | # maxima = (np.diff(np.sign(np.diff(data))) < 0).nonzero()[0] + 1
46 | # minima = (np.diff(np.sign(np.diff(data))) > 0).nonzero()[0] + 1
47 |
48 | # # 2 detects center of plateau
49 | maxima, _ = find_peaks(data, height=0.2, distance=5)
50 |
51 | # # 3 does not detect plateaus!
52 | # maxima = argrelmax(data)
53 | # minima = argrelmin(data)
54 |
55 |
56 | # VISUALIZE
57 | def plot_row(row, points):
58 | from matplotlib import pyplot as plt
59 | length = len(row)
60 | x = np.linspace(0, length, length, endpoint=False)
61 | print(x)
62 | plt.plot(x, row, "bo", ms=3)
63 | plt.plot(x, row, "b")
64 | plt.plot(x[points], row[points], "rD", ms=4, label="selected")
65 | plt.legend()
66 | plt.show()
67 |
68 |
69 | plot_row(data, maxima)
70 |
--------------------------------------------------------------------------------
/code/experiments/global_registration_tutorial.py:
--------------------------------------------------------------------------------
1 | """
2 | https://www.open3d.org/docs/latest/tutorial/Advanced/global_registration.html
3 | """
4 |
5 | import open3d as o3d
6 | import numpy as np
7 | import copy
8 |
9 |
10 | def visualize_simple(mesh1, mesh2, transformation, uniform_colors=True):
11 | mesh1_temp = copy.deepcopy(mesh1)
12 | mesh2_temp = copy.deepcopy(mesh2)
13 |
14 | if uniform_colors:
15 | mesh1_temp.paint_uniform_color([1, 0.706, 0])
16 | mesh2_temp.paint_uniform_color([0, 0.651, 0.929])
17 |
18 | mesh1_temp.transform(transformation)
19 | o3d.visualization.draw_geometries([mesh1_temp, mesh2_temp],
20 | zoom=0.4559,
21 | front=[0.6452, -0.3036, -0.7011],
22 | lookat=[1.9892, 2.0208, 1.8945],
23 | up=[-0.2779, -0.9482, 0.1556],
24 | mesh_show_back_face=True)
25 |
26 | def estimate_point_normals(pcd, radius=0.1, max_nn=30):
27 | search_param = o3d.geometry.KDTreeSearchParamHybrid(radius=radius, max_nn=max_nn)
28 | pcd.estimate_normals(search_param=search_param)
29 | return pcd
30 |
31 | def fpfh_from_pointcloud(pcd, radius=0.25, max_nn=100):
32 | ''' Fast Point Feature Histograms (FPFH) descriptor'''
33 | search_param = o3d.geometry.KDTreeSearchParamHybrid(radius=radius, max_nn=max_nn)
34 | return o3d.pipelines.registration.compute_fpfh_feature(pcd, search_param)
35 |
36 | def preprocess_point_cloud(pcd, voxel_size):
37 | # downsample
38 | pcd_down = pcd.voxel_down_sample(voxel_size)
39 |
40 | # estimate normals
41 | radius_normal = voxel_size * 2
42 | pcd_down = estimate_point_normals(pcd_down, radius=radius_normal, max_nn=30)
43 |
44 | # compute FPFH feature
45 | radius_feature = voxel_size * 5
46 | pcd_fpfh = fpfh_from_pointcloud(pcd_down, radius=radius_feature, max_nn=100)
47 |
48 | return pcd_down, pcd_fpfh
49 |
50 | def prepare_dataset(voxel_size):
51 | source = o3d.io.read_point_cloud("code/experiments/test_data/cloud_bin_0.pcd")
52 | target = o3d.io.read_point_cloud("code/experiments/test_data/cloud_bin_1.pcd")
53 | trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0],
54 | [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]])
55 | source.transform(trans_init)
56 | visualize_simple(source, target, np.identity(4))
57 |
58 | source_down, source_fpfh = preprocess_point_cloud(source, voxel_size)
59 | target_down, target_fpfh = preprocess_point_cloud(target, voxel_size)
60 | return source, target, source_down, target_down, source_fpfh, target_fpfh
61 |
62 | def execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size):
63 | distance_threshold = voxel_size * 1.5
64 | result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
65 | source_down, target_down, source_fpfh, target_fpfh, True, distance_threshold,
66 | o3d.pipelines.registration.TransformationEstimationPointToPoint(False), 4, [
67 | o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
68 | o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_threshold)],
69 | o3d.pipelines.registration.RANSACConvergenceCriteria(4000000, 0.9))
70 |
71 | return result
72 |
73 |
74 | voxel_size = 0.05 # means 5cm for this dataset
75 | source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size)
76 |
77 | result_ransac = execute_global_registration(source_down, target_down,
78 | source_fpfh, target_fpfh,
79 | voxel_size)
80 | print(result_ransac)
81 | visualize_simple(source_down, target_down, result_ransac.transformation)
82 |
--------------------------------------------------------------------------------
/code/experiments/image-difference.py:
--------------------------------------------------------------------------------
1 | # https://stackoverflow.com/questions/21425992/how-to-subtract-two-images-using-python-opencv2-to-get-the-foreground-object
2 | # https://docs.opencv.org/4.x/d5/d69/tutorial_py_non_local_means.html
3 |
4 | import cv2
5 | import numpy as np
6 |
7 | video_path = "images/laser1a_720.mp4"
8 | cap = cv2.VideoCapture(video_path)
9 |
10 | old_frame = np.zeros((960, 540, 3), np.uint8)
11 |
12 | frame_number = 0
13 | while cap.isOpened():
14 | ret, frame = cap.read()
15 | if ret:
16 | frame = cv2.resize(frame, (540, 960), interpolation=cv2.INTER_LINEAR)
17 |
18 | img = cv2.subtract(frame, old_frame)
19 | B, G, R = cv2.split(img.astype(np.float64))
20 |
21 | average = (R + B + G) / 2
22 | average = average.clip(max=255).astype(np.uint8)
23 |
24 | img = cv2.merge([average, average, average])
25 | cv2.imshow('difference', img)
26 |
27 | old_frame = frame
28 |
29 | if cv2.waitKey(1) & 0xFF == ord('q'):
30 | break
31 | else:
32 | break
33 | cap.release()
34 | cv2.destroyAllWindows()
35 |
--------------------------------------------------------------------------------
/code/experiments/interactive-matplotlib.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pylab
3 |
4 | values = np.random.rand(2, 4, 3)
5 | print(values)
6 |
7 | def modify(values):
8 | values = values * 1.1
9 | print("modified", values)
10 | return values
11 |
12 |
13 | class plotter:
14 | def __init__(self, values):
15 | self.values = values
16 | self.fig = pylab.figure()
17 | pylab.gray()
18 | self.ax = self.fig.add_subplot(1, 1, 1, projection="3d")
19 | self.draw()
20 | self.fig.canvas.mpl_connect('key_press_event',self.key)
21 |
22 | def draw(self):
23 | x = self.values[:, 0:1]
24 | y = self.values[:, 1:2]
25 | z = self.values[:, 2:3]
26 |
27 | self.ax.scatter(x, z, y, marker=".", s=1)
28 | pylab.show()
29 |
30 | def key(self, event):
31 | if event.key=='right':
32 | self.values = modify()
33 | elif event.key == 'left':
34 | self.values = modify()
35 |
36 | self.draw()
37 | self.fig.canvas.draw()
38 |
39 |
40 | plot = plotter(values)
41 | plot.draw
--------------------------------------------------------------------------------
/code/experiments/non-blocking-viz.py:
--------------------------------------------------------------------------------
1 | # http://www.open3d.org/docs/0.12.0/tutorial/visualization/non_blocking_visualization.html
2 |
3 | # examples/python/visualization/non_blocking_visualization.py
4 |
5 | import open3d as o3d
6 | import numpy as np
7 | import copy
8 |
9 | if __name__ == "__main__":
10 | o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
11 | source_raw = o3d.io.read_point_cloud("../../open3D/examples/test_data/ICP/cloud_bin_0.pcd")
12 | target_raw = o3d.io.read_point_cloud("../../open3D/examples/test_data/ICP/cloud_bin_1.pcd")
13 | source = source_raw.voxel_down_sample(voxel_size=0.02)
14 | target = target_raw.voxel_down_sample(voxel_size=0.02)
15 | trans = [[0.862, 0.011, -0.507, 0.0], [-0.139, 0.967, -0.215, 0.7],
16 | [0.487, 0.255, 0.835, -1.4], [0.0, 0.0, 0.0, 1.0]]
17 | source.transform(trans)
18 |
19 | flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
20 | source.transform(flip_transform)
21 | target.transform(flip_transform)
22 |
23 | vis = o3d.visualization.Visualizer()
24 | vis.create_window()
25 | vis.add_geometry(source)
26 | vis.add_geometry(target)
27 | threshold = 0.05
28 | icp_iteration = 100
29 | save_image = False
30 |
31 | for i in range(icp_iteration):
32 | reg_p2l = o3d.pipelines.registration.registration_icp(
33 | source, target, threshold, np.identity(4),
34 | o3d.pipelines.registration.TransformationEstimationPointToPlane(),
35 | o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=1))
36 | source.transform(reg_p2l.transformation)
37 | vis.update_geometry(source)
38 | vis.poll_events()
39 | vis.update_renderer()
40 | if save_image:
41 | vis.capture_screen_image("temp_%04d.jpg" % i)
42 | vis.destroy_window()
43 |
--------------------------------------------------------------------------------
/code/experiments/numpy-sort.py:
--------------------------------------------------------------------------------
1 | # https://stackoverflow.com/questions/2828059/sorting-arrays-in-numpy-by-column
2 |
3 | import numpy as np
4 |
5 |
6 | a = np.array([[5,2,3],[4,5,6],[3,6,4]])
7 |
8 | def sort_numpy_by_column(array, column=0):
9 | return array[array[:,column].argsort()]
10 |
11 | a = sort_numpy_by_column(a, column=2)
12 | print(a)
13 |
--------------------------------------------------------------------------------
/code/experiments/open3d-with-numpy.py:
--------------------------------------------------------------------------------
1 | # https://github.com/intel-isl/Open3D/blob/master/examples/Python/Basic/working_with_numpy.py
2 |
3 | import copy
4 | import numpy as np
5 | import open3d as o3d
6 |
7 | if __name__ == "__main__":
8 |
9 | # generate some neat n times 3 matrix using a variant of sync function
10 | x = np.linspace(-3, 3, 5)
11 | mesh_x, mesh_y = np.meshgrid(x, x)
12 |
13 | z = np.sinc((np.power(mesh_x, 2) + np.power(mesh_y, 2)))
14 | z_norm = (z - z.min()) / (z.max() - z.min())
15 |
16 | xyz = np.zeros((np.size(mesh_x), 3))
17 | xyz[:, 0] = np.reshape(mesh_x, -1)
18 | xyz[:, 1] = np.reshape(mesh_y, -1)
19 | xyz[:, 2] = np.reshape(z_norm, -1)
20 | print('xyz\n', xyz)
21 |
22 | # Pass xyz to Open3D.o3d.geometry.PointCloud and visualize
23 | pcd = o3d.geometry.PointCloud()
24 | pcd.points = o3d.utility.Vector3dVector(xyz)
25 | o3d.io.write_point_cloud("export/sync.ply", pcd)
26 |
27 | # Load saved point cloud and visualize it
28 | pcd_load = o3d.io.read_point_cloud("export/sync.ply")
29 | o3d.visualization.draw_geometries([pcd_load])
30 |
31 | # convert Open3D.o3d.geometry.PointCloud to numpy array
32 | xyz_load = np.asarray(pcd_load.points)
33 | print('xyz_load')
34 | print(xyz_load)
35 |
36 | # # save z_norm as an image (change [0,1] range to [0,255] range with uint8 type)
37 | # img = o3d.geometry.Image((z_norm * 255).astype(np.uint8))
38 | # o3d.io.write_image("3D/export/sync.png", img)
39 | # o3d.visualization.draw_geometries([img])
40 |
41 |
42 | def save_as_ply(xyz, path):
43 | # Pass xyz to Open3D.o3d.geometry.PointCloud
44 | pcd = o3d.geometry.PointCloud()
45 | pcd.points = o3d.utility.Vector3dVector(xyz)
46 | o3d.io.write_point_cloud(path, pcd)
--------------------------------------------------------------------------------
/code/experiments/scatterplot.py:
--------------------------------------------------------------------------------
1 | '''
2 | tutorial:
3 | https://realpython.com/python-opencv-color-spaces/
4 |
5 | original bei matlab
6 | https://www.mathworks.com/help/images/image-segmentation-using-the-color-thesholder-app.html
7 | '''
8 |
9 | import cv2
10 | import numpy as np
11 | from mpl_toolkits.mplot3d import Axes3D
12 | import matplotlib.pyplot as plt
13 |
14 |
15 |
16 |
17 |
18 | points = np.zeros(shape=(10, 4))
19 |
20 |
21 | x = points[:, 1:2]
22 | y = points[:, 2:3]
23 | z = points[:, 3:4]
24 |
25 | # 3D scatterplot
26 | fig = plt.figure()
27 | axis = fig.add_subplot(1, 1, 1, projection="3d")
28 | axis.scatter(x, y, z, marker=".")
29 | axis.set_xlabel("X")
30 | axis.set_ylabel("Y")
31 | axis.set_zlabel("Z")
32 | plt.show()
--------------------------------------------------------------------------------
/code/experiments/test_data/cloud_bin_0.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/code/experiments/test_data/cloud_bin_0.pcd
--------------------------------------------------------------------------------
/code/experiments/test_data/cloud_bin_1.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/code/experiments/test_data/cloud_bin_1.pcd
--------------------------------------------------------------------------------
/code/experiments/test_data/cloud_bin_2.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/code/experiments/test_data/cloud_bin_2.pcd
--------------------------------------------------------------------------------
/code/experiments/vector-intersection.py:
--------------------------------------------------------------------------------
1 | #Based on http://geomalgorithms.com/a05-_intersect-1.html
2 | #https://stackoverflow.com/questions/5666222/3d-line-plane-intersection
3 |
4 | import numpy as np
5 | import math
6 |
7 | def triangulate(pixel, root, rayPoint, planePoint, planeNormal):
8 | #Pixel vector relative to image root point
9 | rayDirection = np.array([pixel[0]+root[0], root[1]-pixel[1], root[2]])
10 | # print(rayDirection)
11 |
12 | ndotu = planeNormal.dot(rayDirection)
13 |
14 | # check if parallel or in-plane
15 | almost_zero=1e-6
16 | if abs(ndotu) < almost_zero:
17 | print ("[WARNING] no intersection or line is within plane")
18 | return False
19 | else:
20 | w = rayPoint - planePoint
21 | si = -planeNormal.dot(w) / ndotu
22 | Psi = w + si * rayDirection + planePoint
23 |
24 | if Psi[2] > 0:
25 | print ("3D position: ", Psi)
26 | return Psi
27 | else:
28 | print("[WARNING] intersection behind camera ?!")
29 | return False
30 |
31 |
32 | pixel = (320, 240)
33 | dims = (640, 480)
34 | c = 10 # cm Camera|Laser
35 | beta_degree = -5. # Laser Angle
36 | fov_degree = 60. # Camera horizontal Field of View
37 |
38 |
39 | #ONCE
40 | deg2rad = math.pi/180
41 | fov = fov_degree * deg2rad
42 | lens_length = dims[0]/(2*math.tan(fov/2))
43 | # print('lens', lens_length)
44 | root = np.array([-dims[0]/2, dims[1]/2, lens_length])
45 | # print('root', root)
46 |
47 | #Laser position
48 | planePoint = np.array([c, 0, 0])
49 | #Camera position
50 | rayPoint = np.array([0, 0, 0])
51 |
52 |
53 | #EACH FRAME
54 | beta = beta_degree * deg2rad
55 | planeNormal = np.array([-1, 0, math.tan(beta)]) #Laser plane normal vector
56 |
57 |
58 | #EACH LINE
59 | point = triangulate(pixel, root, rayPoint, planePoint, planeNormal)
60 |
--------------------------------------------------------------------------------
/code/experiments/video.py:
--------------------------------------------------------------------------------
1 | import cv2
2 |
3 | def canny(gray):
4 | # https://www.geeksforgeeks.org/find-and-draw-contours-using-opencv-python/
5 | # Find Canny edges
6 | edged = gray.copy()
7 | edged = cv2.Canny(gray, 30, 200)
8 | contours, hierarchy = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
9 | return edged, contours, hierarchy
10 |
11 |
12 | videopath = "images/laser1a_720.mp4"
13 |
14 |
15 | camera = cv2.VideoCapture(videopath)
16 |
17 | while True:
18 | # grab the current frame
19 | (grabbed, frame) = camera.read()
20 | if grabbed is False:
21 | break
22 | # cv2.imshow("Frame", frame)
23 |
24 | # Grayscale
25 | gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
26 |
27 | edged, contours, hierarchy = canny(gray)
28 |
29 | cv2.imshow('Canny Edges After Contouring', edged)
30 |
31 | key = cv2.waitKey(1) & 0xFF
32 | if key == ord("q"):
33 | break
34 |
35 | camera.release()
36 | cv2.destroyAllWindows()
37 |
--------------------------------------------------------------------------------
/code/experiments/weighted-average.py:
--------------------------------------------------------------------------------
1 | # https://stackoverflow.com/questions/30057046/weighted-mean-in-numpy-python#30057626
2 |
3 | import numpy as np
4 |
5 | values = np.array([1,2,3,4,5, 417, 418, 419, 420, 421, 422, 423, 424])
6 | intensities = np.array([1,1,1,1,1, 1, 1, 20, 50, 60, 80, 90, 255])
7 |
8 | # normalized brightness as weights
9 | weights = intensities/255
10 | print("weights", weights)
11 |
12 | weighted_average = np.sum(values * weights) / np.sum(weights)
13 | print("weighted average", weighted_average)
14 |
15 | average = np.sum(values) / len(values)
16 | print("average", average)
--------------------------------------------------------------------------------
/code/lib/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/code/lib/__init__.py
--------------------------------------------------------------------------------
/code/lib/image.py:
--------------------------------------------------------------------------------
1 | """
2 | rotate_bound forked from jrosebr1:imutils (MIT license)
3 | https://github.com/PyImageSearch/imutils/blob/master/imutils/convenience.py
4 | """
5 |
6 | import numpy as np
7 | import cv2
8 | from scipy.signal import find_peaks
9 | from matplotlib import pyplot as plt
10 |
11 |
12 | def find_laser(img, channel=2, threshold=180, preview_on_black=False, texture=None, desaturate=False):
13 |
14 | def find_line_maxima(row, threshold=180, distance=5, multi=False):
15 | if multi is False:
16 | max_indices = np.nonzero(row > threshold)
17 | if len(max_indices[0]) == 0:
18 | return 0
19 | else:
20 | # initialize array for pixel intensities
21 | intensities = np.zeros(len(max_indices[0]))
22 | # once for every element in max_indices
23 | for n in range(len(max_indices[0])):
24 | intensity = row[max_indices[0][n]]
25 | intensities[n] = intensity
26 | # WEIGHTED AVERAGE
27 | weights = intensities/255
28 | max_index = np.sum(max_indices * weights) / np.sum(weights)
29 | return max_index
30 |
31 | # find multiple Maxima
32 | else:
33 | row = smooth_line(row, blur=3)
34 | maxima, _ = find_peaks(row, height=threshold, distance=distance)
35 | if len(maxima) == 0:
36 | return 0
37 | else:
38 | return maxima
39 |
40 | def smooth_line(array, blur=5, window='hamming'):
41 | """
42 | https://scipy-cookbook.readthedocs.io/items/SignalSmooth.html
43 | 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
44 | """
45 | s = np.r_[array[blur - 1:0:-1], array, array[-2:-blur - 1:-1]]
46 | if window == 'flat':
47 | w = np.ones(blur, 'd')
48 | else:
49 | w = eval('np.' + window + '(blur)')
50 | array = np.convolve(w / w.sum(), s, mode='valid')
51 | array = array[blur - 1:]
52 | return array
53 |
54 | def draw_point(image, pos, color=(255, 0, 0)):
55 | cv2.line(image, (int(pos[0]), int(pos[1])), (int(pos[0]+2), int(pos[1])), color, 1)
56 | return image
57 |
58 | def plot_row(row, points):
59 | length = len(row)
60 | x = np.linspace(0, length, length, endpoint=False)
61 | plt.plot(x, row, "bo", ms=3)
62 | plt.plot(x, row, "b")
63 | plt.plot(x[points], row[points], "rD", ms=4, label="selected")
64 | plt.legend()
65 | plt.show()
66 |
67 | # extract single color channel for maxima search
68 | img_channel = img[:, :, channel]
69 |
70 | # if texture is not numpy, use image
71 | if not isinstance(texture, np.ndarray):
72 | texture = img
73 | # if texture is grayscale, convert to RGB
74 | elif texture.shape[2] != 3:
75 | texture = cv2.cvtColor(texture, cv2.COLOR_GRAY2BGR)
76 |
77 | if desaturate:
78 | texture = cv2.cvtColor(cv2.cvtColor(texture, cv2.COLOR_BGR2GRAY), cv2.COLOR_GRAY2BGR)
79 |
80 | if preview_on_black:
81 | preview_img = np.zeros((img.shape[0], img.shape[1], 3), np.uint8)
82 | else:
83 | preview_img = cv2.cvtColor(img_channel, cv2.COLOR_GRAY2BGR)
84 |
85 | # # initialize array of 2D (+ later 3D) coordinates + RGB values for this frame
86 | pointlist = np.zeros(shape=(img_channel.shape[0], 8))
87 |
88 | # vertical laser line -> work through all rows and save x and RGB
89 | for y in range(img.shape[0]):
90 | # crop to current row
91 | row = img_channel[y:y + 1, :][0]
92 | # search for brightness maximum, else return -1
93 | x = find_line_maxima(row, threshold=threshold)
94 |
95 | # TODO: now there could be multiple maxima
96 | if isinstance(x, np.ndarray):
97 | x = x[0]
98 |
99 | if x < 0.5: # if nothing found, skip line
100 | continue
101 |
102 | # plot_row(row, x)
103 |
104 | # screenspace coordinates (2D) at [0:2]
105 | pointlist[y][0] = x
106 | pointlist[y][1] = y
107 | # RGB values at [5:8] (reversed opencv order)
108 | pointlist[y][5] = texture[int(y), int(x)][2]
109 | pointlist[y][6] = texture[int(y), int(x)][1]
110 | pointlist[y][7] = texture[int(y), int(x)][0]
111 |
112 | # draw current point into preview image
113 | preview_img = draw_point(preview_img, (x, y))
114 | return pointlist, preview_img
115 |
116 |
117 | def subtract_images(current_frame, previous_frame, return_RGB=True):
118 | img = cv2.subtract(current_frame, previous_frame).astype(np.float64)
119 | average = np.mean(img, axis=2).clip(max=255).astype(np.uint8)
120 |
121 | return cv2.merge([average, average, average]) if return_RGB else average
122 |
123 |
124 | def rotate_bound(image, angle):
125 | # grab the dimensions of the image and then determine the center
126 | (h, w) = image.shape[:2]
127 | (cX, cY) = (w / 2, h / 2)
128 |
129 | # grab the rotation matrix (applying the negative of the angle to rotate clockwise),
130 | # then grab the sine and cosine (i.e., the rotation components of the matrix)
131 | M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
132 | cos = np.abs(M[0, 0])
133 | sin = np.abs(M[0, 1])
134 |
135 | # compute the new bounding dimensions of the image
136 | nW = int((h * sin) + (w * cos))
137 | nH = int((h * cos) + (w * sin))
138 |
139 | # adjust the rotation matrix to take into account translation
140 | M[0, 2] += (nW / 2) - cX
141 | M[1, 2] += (nH / 2) - cY
142 |
143 | # perform the actual rotation and return the image
144 | return cv2.warpAffine(image, M, (nW, nH))
145 |
--------------------------------------------------------------------------------
/code/lib/mesh.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import open3d as o3d
3 | import os
4 |
5 |
6 | def estimate_mesh_normals(mesh):
7 | return mesh.compute_vertex_normals()
8 |
9 | def mesh_optimize(mesh, count=1000000):
10 | mesh = mesh.simplify_quadric_decimation(count)
11 | mesh.remove_degenerate_triangles()
12 | mesh.remove_duplicated_triangles()
13 | mesh.remove_duplicated_vertices()
14 | mesh.remove_non_manifold_edges()
15 | return mesh
16 |
17 | def mesh_from_alpha_shape(pcd, alpha=0.03):
18 | return o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(pcd, alpha)
19 |
20 | def mesh_from_ball_pivoting(pcd):
21 | '''https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba'''
22 | distances = pcd.compute_nearest_neighbor_distance()
23 | avg_dist = np.mean(distances)
24 | radius = avg_dist * 2
25 | ball_radii = o3d.utility.DoubleVector([radius, radius * 2])
26 | mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(pcd, ball_radii)
27 | return mesh
28 |
29 | def mesh_from_poisson(pcd, depth=9, normal_plane=100):
30 | pcd.estimate_normals()
31 | pcd.orient_normals_consistent_tangent_plane(normal_plane)
32 | mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=depth)
33 | return mesh, densities
34 |
35 | def remove_low_density_vertices(mesh, densities, quantile=0.01):
36 | vertices_to_remove = densities < np.quantile(densities, quantile)
37 | return mesh.remove_vertices_by_mask(vertices_to_remove)
38 |
39 |
40 | if __name__ == "__main__":
41 | path0 = "code/experiments/test_data/cloud_bin_0.pcd"
42 | pcd = o3d.io.read_point_cloud(path0)
43 |
44 | mesh, densities = mesh_from_poisson(pcd, depth=10, normal_plane=100)
45 | o3d.visualization.draw_geometries([mesh], mesh_show_back_face=False)
46 |
47 | remove_low_density_vertices(mesh, densities, quantile=0.01)
48 | o3d.visualization.draw_geometries([mesh], mesh_show_back_face=True)
49 |
--------------------------------------------------------------------------------
/code/lib/pointcloud.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import open3d as o3d
3 | import copy
4 |
5 |
6 | def set_verbosity():
7 | o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error) # .Debug
8 |
9 | def sample_poisson_disk(pcd, count=1000000):
10 | return pcd.sample_points_poisson_disk(count)
11 |
12 | def estimate_point_normals(pcd, radius=0.1, max_nn=30):
13 | search_param = o3d.geometry.KDTreeSearchParamHybrid(radius=radius, max_nn=max_nn)
14 | pcd.estimate_normals(search_param=search_param)
15 | return pcd
16 |
17 | def export_pointcloud(pcd, savepath, type="pcd", write_ascii=True, compressed=True):
18 | if type == "pcd" or type == "ply":
19 | if write_ascii:
20 | compressed = False
21 | o3d.io.write_point_cloud(savepath+"."+type, pcd, write_ascii=write_ascii, compressed=compressed),
22 |
23 | elif type == "csv":
24 | if not isinstance(pcd, np.ndarray):
25 | array = np.asarray(pcd.points)
26 | np.savetxt(savepath+"."+type, array, delimiter=",")
27 |
28 | def fpfh_from_pointcloud(pcd, radius=5, max_nn=100):
29 | ''' Fast Point Feature Histograms (FPFH) descriptor'''
30 | search_param = o3d.geometry.KDTreeSearchParamHybrid(radius=radius, max_nn=max_nn)
31 | return o3d.pipelines.registration.compute_fpfh_feature(pcd, search_param)
32 |
33 | def preprocess_point_cloud(pcd, voxel_size=0):
34 | # downsample
35 | if voxel_size > 0:
36 | pcd_down = pcd.voxel_down_sample(voxel_size)
37 | else:
38 | pcd_down = copy.deepcopy(pcd)
39 |
40 | # estimate normals
41 | pcd_down = estimate_point_normals(pcd_down, radius=voxel_size*2, max_nn=30)
42 |
43 | # compute FPFH feature
44 | pcd_fpfh = fpfh_from_pointcloud(pcd_down, radius=voxel_size*5, max_nn=100)
45 |
46 | return pcd_down, pcd_fpfh
47 |
48 |
49 | if __name__ == "__main__":
50 | from visualization import visualize
51 | from mesh import mesh_from_ball_pivoting, mesh_optimize
52 |
53 | pcd = o3d.io.read_point_cloud("export/laser1a_720.pcd")
54 | pcd_down = preprocess_point_cloud(pcd, voxel_size=0) # if voxel_size > 0: return pcd_down, pcd_fpfh
55 |
56 | mesh = mesh_from_ball_pivoting(pcd)
57 | mesh = mesh_optimize(mesh, count=1000000)
58 | visualize([mesh])
59 |
--------------------------------------------------------------------------------
/code/lib/registration.py:
--------------------------------------------------------------------------------
1 | import open3d as o3d
2 | import numpy as np
3 | import copy
4 |
5 |
6 | def global_registration(source_down, target_down, source_fpfh, target_fpfh, distance_threshold, use_fast=False, max_iteration=4000000, confidence=0.9):
7 | if use_fast:
8 | result = o3d.pipelines.registration.registration_fgr_based_on_feature_matching(
9 | source_down, target_down, source_fpfh, target_fpfh,
10 | o3d.pipelines.registration.FastGlobalRegistrationOption(
11 | maximum_correspondence_distance=distance_threshold))
12 |
13 | else: # RANSAC
14 | result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
15 | source_down, target_down, source_fpfh, target_fpfh, True, distance_threshold,
16 | o3d.pipelines.registration.TransformationEstimationPointToPoint(False), 4, [
17 | o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
18 | o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_threshold)],
19 | o3d.pipelines.registration.RANSACConvergenceCriteria(max_iteration, confidence))
20 |
21 | return result
22 |
23 | def ICP_registration(source, target, distance_threshold, transformation, use_p2l=True, p2p_max_iteration=200):
24 | if use_p2l: # point-to-plane ICP
25 | icp_method = o3d.pipelines.registration.TransformationEstimationPointToPlane()
26 |
27 | return o3d.pipelines.registration.registration_icp(
28 | source, target, distance_threshold, transformation, icp_method)
29 |
30 | else: # point-to-point ICP
31 | icp_method = o3d.pipelines.registration.TransformationEstimationPointToPoint()
32 | convergence_criteria = o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=p2p_max_iteration)
33 |
34 | return o3d.pipelines.registration.registration_icp(
35 | source, target, distance_threshold, transformation, icp_method, convergence_criteria)
36 |
37 | def evaluate_registration(source, target, threshold, transformation=None):
38 | source_temp = copy.deepcopy(source)
39 |
40 | if transformation is None:
41 | transformation = np.identity(4)
42 | source_temp.transform(transformation)
43 |
44 | return o3d.pipelines.registration.evaluate_registration(source_temp, target, threshold, transformation)
45 |
--------------------------------------------------------------------------------
/code/lib/transformation.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import copy
3 | from scipy.spatial.transform import Rotation as R
4 |
5 |
6 | def get_transform_vectors(transform_M):
7 | # Extract translation (top-right 3x1 sub-matrix)
8 | translation = transform_M[:3, 3]
9 |
10 | # Extract rotation (top-left 3x3 sub-matrix), make a copy to avoid read only error
11 | rotation_M = np.array(transform_M[:3, :3])
12 | # Convert rotation matrix to Euler angles
13 | r = R.from_matrix(rotation_M)
14 | euler_angles = r.as_euler('xyz', degrees=True)
15 |
16 | return translation, euler_angles
17 |
18 | def transform(pcd, transformation=None, translate=None, euler_rotate_deg=None, pivot=(0,0,0)):
19 | pcd_temp = copy.deepcopy(pcd)
20 |
21 | if transformation is not None:
22 | pcd_temp.transform(transformation)
23 |
24 | if translate is not None:
25 | pcd_temp.translate(translate)
26 |
27 | if euler_rotate_deg is not None:
28 | euler_rotate_rad = np.deg2rad(euler_rotate_deg)
29 | rotation_matrix = pcd_temp.get_rotation_matrix_from_xyz(euler_rotate_rad)
30 | pcd_temp.rotate(rotation_matrix, center=pivot)
31 |
32 | return pcd_temp
33 |
--------------------------------------------------------------------------------
/code/lib/visualization.py:
--------------------------------------------------------------------------------
1 | import open3d as o3d
2 | import copy
3 |
4 | try:
5 | from lib.transformation import transform
6 | except:
7 | from transformation import transform
8 |
9 |
10 | def init_visualizer(width=1920,
11 | height=1080,
12 | left=0,
13 | point_size=1.5,
14 | unlit=False,
15 | backface=True):
16 | vis = o3d.visualization.Visualizer()
17 | vis.create_window(width=width, height=height, left=left)
18 |
19 | render_option = vis.get_render_option()
20 | render_option.point_size = point_size
21 | render_option.light_on = False if unlit else True
22 | render_option.mesh_show_back_face = backface
23 |
24 | # TODO: view_control not working
25 | # view_control = vis.get_view_control()
26 | # view_control.set_zoom(0.4559) # 0.2
27 | # view_control.set_front([0.6452, -0.3036, -0.7011]) # (0.0, 0.0, 0.01)
28 | # view_control.set_lookat([1.9892, 2.0208, 1.8945]) # (0.0, 0.0, -1.0)
29 | # view_control.set_up([-0.2779, -0.9482, 0.1556]) # (0.0, 1.0, 0.0)
30 | return vis
31 |
32 | def update_visualizer(vis, object):
33 | # Update 3D-view each line
34 | vis.update_geometry(object)
35 | vis.poll_events()
36 | vis.update_renderer()
37 |
38 | def visualize(object_list,
39 | transformation=None,
40 | width=1800,
41 | height=1000,
42 | left=0,
43 | point_size=1.5,
44 | uniform_colors=False,
45 | unlit=False):
46 | vis = init_visualizer(width=width, height=height, left=left, point_size=point_size, unlit=unlit)
47 |
48 | object_list = copy.deepcopy(object_list)
49 |
50 | if transformation is not None:
51 | object_list[0] = transform(object_list[0], transformation=transformation)
52 |
53 | if uniform_colors:
54 | object_list = copy.deepcopy(object_list)
55 | object_list[0].paint_uniform_color([1, 0.706, 0])
56 | object_list[1].paint_uniform_color([0, 0.651, 0.929])
57 |
58 | # Add the geometry to the visualization window
59 | for object in object_list:
60 | vis.add_geometry(object)
61 |
62 | vis.run()
63 | vis.destroy_window()
64 |
65 | def visualize_simple(mesh1, mesh2, transformation, uniform_colors=True):
66 | mesh1_temp = copy.deepcopy(mesh1)
67 | mesh2_temp = copy.deepcopy(mesh2)
68 |
69 | if uniform_colors:
70 | mesh1_temp.paint_uniform_color([1, 0.706, 0])
71 | mesh2_temp.paint_uniform_color([0, 0.651, 0.929])
72 |
73 | mesh1_temp.transform(transformation)
74 | o3d.visualization.draw_geometries([mesh1_temp, mesh2_temp],
75 | zoom=0.4559,
76 | front=[0.6452, -0.3036, -0.7011],
77 | lookat=[1.9892, 2.0208, 1.8945],
78 | up=[-0.2779, -0.9482, 0.1556],
79 | mesh_show_back_face=True)
80 |
--------------------------------------------------------------------------------
/code/lib/visualization_mpl.py:
--------------------------------------------------------------------------------
1 | import matplotlib.pyplot as plt
2 | import numpy as np
3 | # from mpl_toolkits.mplot3d import Axes3D
4 |
5 |
6 | def scatterplot(pcd):
7 | array = np.asarray(pcd.points)
8 |
9 | fig = plt.figure()
10 | axis = fig.add_subplot(1, 1, 1, projection="3d")
11 |
12 | # matplotlib is Z-up, I am Y-up
13 | axis.set_xlabel("X")
14 | axis.set_ylabel("Z")
15 | axis.set_zlabel("Y")
16 |
17 | x = array[:, 0:1]
18 | y = array[:, 1:2]
19 | z = array[:, 2:3]
20 |
21 | axis.scatter(x, z, y, marker=".", s=1)
22 |
23 | limit = max(y)
24 | axis.set_xlim3d(-limit/2, limit/2)
25 | axis.set_ylim3d(-limit, 0)
26 | axis.set_zlim3d(0, limit)
27 |
28 | plt.show()
29 |
--------------------------------------------------------------------------------
/code/linescanner.py:
--------------------------------------------------------------------------------
1 | """
2 | ░░ ░░ ░░░ ░░ ░░░░░░░ ░░░░░░░ ░░░░░░ ░░░░░ ░░░ ░░ ░░░ ░░ ░░░░░░░ ░░░░░░
3 | ▒▒ ▒▒ ▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒▒▒ ▒▒ ▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒
4 | ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒▒▒▒ ▒▒▒▒▒▒▒ ▒▒ ▒▒▒▒▒▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒ ▒▒▒▒▒ ▒▒▒▒▒▒
5 | ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓ ▓▓
6 | ███████ ██ ██ ████ ███████ ███████ ██████ ██ ██ ██ ████ ██ ████ ███████ ██ ██
7 | """
8 | import numpy as np
9 | import cv2
10 | import math
11 | import open3d as o3d
12 | import json
13 |
14 | from lib.pointcloud import set_verbosity, estimate_point_normals, export_pointcloud
15 | from lib.visualization import init_visualizer, update_visualizer, visualize
16 | from lib.image import find_laser, subtract_images # , rotate_bound
17 |
18 | class LineScanner:
19 | def __init__(self, config_path):
20 |
21 | # Load settings from JSON file
22 | with open(config_path, 'r') as f:
23 | configs = json.load(f)
24 |
25 | self.video_path = configs['video_path']
26 | self.export_path = configs['export_path']
27 | self.export_type = configs['export_type']
28 | self.cam_pos = np.array(configs['cam_pos'])
29 | self.laser_pos = np.array(configs['laser_pos'])
30 | self.hfov = configs['horizontal_fov']
31 | # self.sweep_direction = configs['sweep_direction'] # TODO: unused
32 |
33 | self.sweep_step = configs['sweep_step']
34 | self.laser_thres = configs['laser_thres']
35 |
36 | self.shrink_x = configs['shrink_x']
37 | self.shrink_y = configs['shrink_y']
38 | self.shrink_preview = configs['shrink_preview']
39 | self.window_size = configs['window_size']
40 | self.verbose = configs['verbose']
41 |
42 | self.sweep_angle = configs['sweep_startangle']
43 | self.frame_index = 0
44 | self.cap = cv2.VideoCapture(self.video_path) # load frame 0 to get dimensions,
45 | self.iterate_frame() # then increment sweep_angle and frame_index
46 |
47 | ret, frame = self.cap.read()
48 | source_h, source_w = frame.shape[:2]
49 | self.input_dims = (source_w, source_h)
50 | self.preview_width = int(source_w / self.shrink_preview)
51 | self.preview_height = int(source_h / self.shrink_preview)
52 | self.width = int(source_w / self.shrink_x)
53 | self.height = int(source_h / self.shrink_y)
54 | self.dims = (self.width, self.height)
55 | self.preview_dims = (self.preview_width, self.preview_height)
56 | self.zero_value = configs['zero_value']
57 | self.KDTree_radius = configs['KDTree_radius']
58 | self.KDTree_max_nn = configs['KDTree_max_nn']
59 |
60 | # load image texture
61 | texpath = configs['texture_path']
62 | self.texture = cv2.resize(cv2.imread(texpath, 1), self.dims, interpolation=cv2.INTER_LINEAR) if texpath != "" else None
63 | self.desaturate = configs['desaturate']
64 |
65 | # reduce vertical resolution
66 | self.vertical_stretch = (source_w / self.width) / (source_h / self.height)
67 |
68 | self.fov_rad = math.radians(self.hfov)
69 | self.lens_length = self.dims[0] / (2 * math.tan(self.fov_rad / 2))
70 |
71 | # project imageplane into 3d space
72 | self.topleft_corner = np.array([-self.dims[0] / 2, self.dims[1] / 2, self.lens_length])
73 |
74 | # init interactive 3D-Viewer
75 | self.vis = init_visualizer(width=self.window_size[0], height=self.window_size[1])
76 |
77 | self.pointcloud = o3d.geometry.PointCloud()
78 | self.pointcloud_frame = o3d.geometry.PointCloud()
79 |
80 | ss = 50 # scenesize TODO: scale seems to be sensitive; will require scale-to-fit and wider clipping plane
81 | self.pointcloud.points = o3d.utility.Vector3dVector(np.array([[-ss, -ss, -ss], [ss, ss, ss]]))
82 | self.pointcloud.colors = o3d.utility.Vector3dVector(np.array([[1, 0, 0], [1, 0, 0]]))
83 | self.vis.add_geometry(self.pointcloud)
84 |
85 | def triangulate(self, pixel, plane_normal):
86 | # Pixel vector relative to image topleft_corner point
87 | rayDirection = np.array([pixel[0] + self.topleft_corner[0], self.topleft_corner[1] - pixel[1], self.topleft_corner[2]])
88 |
89 | dotProduct = plane_normal.dot(rayDirection)
90 |
91 | # check if parallel or in-plane
92 | if abs(dotProduct) < self.zero_value:
93 | print("[WARNING] no intersection at line", pixel[1])
94 | return np.array([0, 0, 0])
95 | else:
96 | w = self.cam_pos - self.laser_pos
97 | si = -plane_normal.dot(w) / dotProduct
98 | intersection = w + si * rayDirection + self.laser_pos
99 |
100 | if intersection[2] > 0:
101 | return intersection
102 | # print("[WARNING] intersection behind camera")
103 | return np.array([0, 0, 0])
104 |
105 | # def sort_numpy_by_column(array, column=0):
106 | # return array[array[:, column].argsort()]
107 |
108 | def scan(self):
109 | previous_frame = self.init_framebuffer()
110 |
111 | # MAIN LOOP
112 | while True:
113 | # calculate current normal-vector of laserplane
114 | plane_normal = self.calculate_plane_normal()
115 | if self.verbose:
116 | print(f"frame {self.frame_index} | laser-angle {self.sweep_angle}°")
117 |
118 | difference_map, frame = self.read_and_resize_frame(previous_frame)
119 | if difference_map is None:
120 | break
121 |
122 | pointlist = self.process_frame(difference_map, frame, plane_normal)
123 | self.append_points(pointlist)
124 |
125 | # update preview for each frame
126 | update_visualizer(self.vis, self.pointcloud)
127 |
128 | self.iterate_frame()
129 | previous_frame = frame
130 |
131 | if cv2.waitKey(1) & 0xFF == ord('q'):
132 | break
133 |
134 | self.vis.destroy_window()
135 | cv2.destroyAllWindows()
136 |
137 | # calculate point normals
138 | self.pointcloud = estimate_point_normals(self.pointcloud, radius=self.KDTree_radius, max_nn=self.KDTree_max_nn)
139 |
140 | # export PCD, PLY or CSV model
141 | export_pointcloud(self.pointcloud, self.export_path, type=self.export_type, write_ascii=True)
142 | print("export successful.")
143 |
144 | # display static scene
145 | visualize([self.pointcloud], width=self.window_size[0], height=self.window_size[1], left=1000)
146 |
147 | def init_framebuffer(self):
148 | return np.zeros((self.dims[1], self.dims[0], 3), np.uint8)
149 |
150 | def calculate_plane_normal(self):
151 | laser_angle_rad = math.radians(self.sweep_angle) # beta
152 | return np.array([-1, 0, math.tan(laser_angle_rad)])
153 |
154 | def read_and_resize_frame(self, previous_frame):
155 | (grabbed, frame) = self.cap.read()
156 | if grabbed is False: # check if file is finished
157 | return None, previous_frame
158 | frame = cv2.resize(frame, self.dims, interpolation=cv2.INTER_LINEAR)
159 | difference_map = subtract_images(frame, previous_frame, return_RGB=True)
160 | return difference_map, frame
161 |
162 | def process_frame(self, difference_map, frame, plane_normal):
163 | # use texture if available
164 | tex = frame if self.texture is None else self.texture
165 |
166 | # search frame for laserline, returns ndarray and preview image.
167 | # format: ndarray[height, 8]->[[x_2d,y_2d,x,y,z,r,g,b]..] with y_2d as index
168 | pointlist, preview_img = find_laser(difference_map, channel=2, threshold=self.laser_thres, texture=tex, desaturate=self.desaturate)
169 | preview_img = cv2.resize(preview_img, self.preview_dims, interpolation=cv2.INTER_NEAREST)
170 | cv2.imshow('preview', preview_img)
171 |
172 | # run through each row to triangulate a 3D point
173 | for y, values in enumerate(pointlist):
174 | x = values[0]
175 | if x < 0.5: # skip lines without matches
176 | continue
177 |
178 | point3d = self.triangulate((x, y), plane_normal)
179 |
180 | # add 3D coordinates to pointlist
181 | pointlist[y][2] = point3d[0]
182 | pointlist[y][3] = point3d[1] / self.vertical_stretch
183 | pointlist[y][4] = point3d[2] * -1
184 |
185 | # remove empty rows
186 | pointlist = pointlist[~np.all(pointlist == 0, axis=1)]
187 | return pointlist
188 |
189 | def append_points(self, pointlist):
190 | def to_vector3d(data):
191 | return o3d.utility.Vector3dVector(data)
192 |
193 | # Update points and colors
194 | self.pointcloud_frame.points = to_vector3d(pointlist[:, 2:5])
195 | self.pointcloud_frame.colors = to_vector3d(pointlist[:, 5:8] / 255)
196 | self.pointcloud += self.pointcloud_frame
197 |
198 | def iterate_frame(self):
199 | self.frame_index += 1
200 | self.sweep_angle += self.sweep_step
201 |
202 |
203 | if __name__ == '__main__':
204 | set_verbosity()
205 |
206 | # config = 'images/laser1a_2048_config.json'
207 | # config = 'images/laser1a_720_config.json'
208 | # config = 'images/laser1b_720_config.json'
209 | config = 'images/laser2_config.json'
210 |
211 | linescanner = LineScanner(config)
212 | linescanner.scan()
213 |
--------------------------------------------------------------------------------
/code/meshing_test.py:
--------------------------------------------------------------------------------
1 | """
2 | http://www.open3d.org/docs/latest/tutorial/Advanced/surface_reconstruction.html
3 |
4 | normals: http://www.open3d.org/docs/release/python_api/open3d.geometry.PointCloud.html
5 | """
6 |
7 | import open3d as o3d
8 | from lib.mesh import mesh_from_alpha_shape, estimate_mesh_normals
9 | from lib.pointcloud import sample_poisson_disk
10 |
11 |
12 | bunny = o3d.data.BunnyMesh()
13 | mesh = o3d.io.read_triangle_mesh(bunny.path)
14 | estimate_mesh_normals(mesh)
15 |
16 | pcd = sample_poisson_disk(mesh, count=1000)
17 | o3d.visualization.draw_geometries([mesh, pcd])
18 |
19 | mesh = mesh_from_alpha_shape(pcd)
20 | estimate_mesh_normals(mesh)
21 | o3d.visualization.draw_geometries([mesh, pcd], mesh_show_back_face=True)
22 |
--------------------------------------------------------------------------------
/code/registration_test.py:
--------------------------------------------------------------------------------
1 | """
2 | http://www.open3d.org/docs/release/tutorial/visualization/non_blocking_visualization.html
3 | http://www.open3d.org/docs/latest/tutorial/Basic/transformation.html
4 |
5 | https://www.open3d.org/docs/latest/tutorial/Advanced/global_registration.html
6 | https://www.open3d.org/docs/latest/tutorial/Basic/icp_registration.html
7 | """
8 |
9 | import open3d as o3d
10 | import os
11 | import time
12 |
13 | from lib.transformation import get_transform_vectors, transform
14 | from lib.pointcloud import set_verbosity, preprocess_point_cloud, export_pointcloud
15 | from lib.registration import global_registration, ICP_registration
16 | from lib.visualization import visualize # visualize_simple
17 |
18 |
19 | # # LINESCANNER GROUND-TRUTH
20 | # groundtruth_translation = (50, 0, 100)
21 | # groundtruth_euler = (0.0, 20.0, 0)
22 | # # groundtruth_source = transform(source, translate=translate, euler_rotate_deg=rotate)
23 |
24 | set_verbosity()
25 |
26 | voxel_size = 0.05 # meter units # 3 # cm units
27 | gr_max_iteration = 1000000
28 | gr_confidence = 0.9
29 |
30 | icp_threshold = voxel_size * 0.4
31 | p2p_max_iteration = 200
32 |
33 | verbose = False
34 |
35 | basedir = "code/experiments/test_data" # "export"
36 | path0 = os.path.join(basedir, "cloud_bin_0.pcd") # "laser1a_720.pcd"
37 | path1 = os.path.join(basedir, "cloud_bin_1.pcd") # "laser1b_720.pcd"
38 | path2 = os.path.join(basedir, "cloud_bin_2.pcd")
39 |
40 | # TODO: 0 <> 2 not working with P2L
41 | source = o3d.io.read_point_cloud(path2)
42 | target = o3d.io.read_point_cloud(path0)
43 |
44 | # downsample, compute normals, and compute FPFH feature
45 | source_down, source_fpfh = preprocess_point_cloud(source, voxel_size)
46 | target_down, target_fpfh = preprocess_point_cloud(target, voxel_size)
47 |
48 | visualize([source, target], uniform_colors=True)
49 | visualize([source_down, target_down], uniform_colors=True)
50 | # visualize_simple(source, target, np.identity(4))
51 | # visualize_simple(source_down, target_down, np.identity(4))
52 |
53 |
54 |
55 | ########################################
56 | # GLOBAL REGISTRATION
57 | ########################################
58 | # FAST
59 |
60 | # start = time.time()
61 | # distance_threshold = voxel_size * 0.5
62 | # reg_fast = global_registration(source_down, target_down, source_fpfh, target_fpfh, distance_threshold,
63 | # use_fast=True, max_iteration=gr_max_iteration, confidence=gr_confidence)
64 |
65 | # print(f"FAST global registration took {time.time() - start:.3f} sec.")
66 | # # print(reg_fast)
67 |
68 | # visualize([source_down, target_down], transformation=reg_fast.transformation, uniform_colors=True)
69 | # # visualize_simple(source_down, target_down, reg_fast.transformation)
70 |
71 |
72 | # # print(evaluate_registration(source, target, icp_threshold, transform=reg_ransac.transformation))
73 |
74 | # visualize([source, target], transformation=reg_fast.transformation, uniform_colors=True)
75 | # # visualize_simple(source, target, reg_fast.transformation)
76 |
77 |
78 | # ########################################
79 | # RANSAC
80 |
81 | start = time.time()
82 | distance_threshold = voxel_size * 1.5
83 | reg_ransac = global_registration(source_down, target_down, source_fpfh, target_fpfh, distance_threshold,
84 | use_fast=False, max_iteration=gr_max_iteration, confidence=gr_confidence)
85 |
86 | print(f"\nRANSAC global registration took {time.time() - start:.3f} sec.")
87 | # print(reg_ransac)
88 |
89 | ransac_translation, ransac_euler = get_transform_vectors(reg_ransac.transformation)
90 | print(f"[RANSAC] translate:\t{ransac_translation})")
91 | print(f"[RANSAC] rotate:\t{ransac_euler})")
92 |
93 | visualize([source, target], transformation=reg_ransac.transformation, uniform_colors=True)
94 | # visualize_simple(source_down, target_down, reg_ransac.transformation)
95 |
96 |
97 |
98 | ########################################
99 | # ICP REGISTRATION
100 | ########################################
101 | # # P2P
102 |
103 | # start = time.time()
104 | # reg_p2p = ICP_registration(source, target, icp_threshold,
105 | # reg_ransac.transformation, use_p2l=False, p2p_max_iteration=p2p_max_iteration)
106 |
107 | # print(f"P2P ICP took {time.time() - start:.3f} sec.")
108 | # # print(reg_p2p)
109 |
110 | # visualize([source, target], transformation=reg_p2p.transformation, uniform_colors=True)
111 | # # visualize_simple(source, target, reg_p2p.transformation)
112 |
113 |
114 | # ########################################
115 | # P2L
116 |
117 | start = time.time()
118 | reg_p2l = ICP_registration(source, target, icp_threshold,
119 | reg_ransac.transformation, use_p2l=True)
120 |
121 | print(f"\nP2L ICP took {time.time() - start:.3f} sec.")
122 | # print(reg_p2l)
123 |
124 | icp_translation, icp_euler = get_transform_vectors(reg_p2l.transformation)
125 | print(f"[P2L ICP] translate:\t{icp_translation}")
126 | print(f"[P2L ICP] rotate:\t{icp_euler}")
127 |
128 | visualize([source, target], transformation=reg_p2l.transformation, uniform_colors=True)
129 | # visualize_simple(source, target, reg_p2l.transformation)
130 |
131 |
132 |
133 | ########################################
134 | # EXPORT
135 | ########################################
136 |
137 | export_pointcloud(source + target, "export/icp", type="ply")
138 |
--------------------------------------------------------------------------------
/doc/calculation.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/calculation.jpg
--------------------------------------------------------------------------------
/doc/example_input.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/example_input.jpg
--------------------------------------------------------------------------------
/doc/example_result.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/example_result.jpg
--------------------------------------------------------------------------------
/doc/laser1a_daylight-difference.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/laser1a_daylight-difference.jpg
--------------------------------------------------------------------------------
/doc/laser1a_source.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/laser1a_source.jpg
--------------------------------------------------------------------------------
/doc/laser1a_striped_720.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/laser1a_striped_720.jpg
--------------------------------------------------------------------------------
/doc/squeeze-problem.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/doc/squeeze-problem.jpg
--------------------------------------------------------------------------------
/images/laser1_2048_horizontal.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1_2048_horizontal.mp4
--------------------------------------------------------------------------------
/images/laser1_2048_horizontal_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "video_path": "images/laser1_2048_horizontal.mp4",
3 | "texture_path": "images/laser1_RGB_horizontal.jpg",
4 | "desaturate": false,
5 |
6 | "export_path": "export/laser1_2048",
7 | "export_type" : "pcd",
8 |
9 | "cam_pos": [0, 0, 0],
10 | "laser_pos" : [6.5, 0, 0],
11 | "horizontal_fov" : 46.73,
12 |
13 | "sweep_direction" : "up",
14 | "sweep_startangle" : -15.0,
15 | "sweep_step": 0.5,
16 |
17 | "laser_thres": 100,
18 |
19 | "shrink_x": 1,
20 | "shrink_y": 3,
21 | "shrink_preview": 3,
22 | "window_size" : [800, 800],
23 | "verbose": false,
24 | "zero_value" : 1e-6,
25 |
26 | "KDTree_radius" : 5,
27 | "KDTree_max_nn" : 30
28 | }
29 |
--------------------------------------------------------------------------------
/images/laser1_RGB_horizontal.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1_RGB_horizontal.jpg
--------------------------------------------------------------------------------
/images/laser1_RGB_vertikal.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1_RGB_vertikal.jpg
--------------------------------------------------------------------------------
/images/laser1a_2048.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1a_2048.mp4
--------------------------------------------------------------------------------
/images/laser1a_2048_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "video_path": "images/laser1a_2048.mp4",
3 | "texture_path": "images/laser1_RGB_vertikal.jpg",
4 | "desaturate": false,
5 |
6 | "export_path": "export/laser1a_2048",
7 | "export_type" : "pcd",
8 |
9 | "cam_pos": [0, 0, 0],
10 | "laser_pos" : [10, 0, 0],
11 | "horizontal_fov" : 48,
12 |
13 | "sweep_direction" : "right",
14 | "sweep_startangle" : -28.0,
15 | "sweep_step": 0.17578,
16 |
17 | "laser_thres": 100,
18 |
19 | "shrink_x": 1,
20 | "shrink_y": 3,
21 | "shrink_preview": 3,
22 | "window_size" : [800, 800],
23 | "verbose": false,
24 | "zero_value" : 1e-6,
25 |
26 | "KDTree_radius" : 5,
27 | "KDTree_max_nn" : 30
28 | }
29 |
--------------------------------------------------------------------------------
/images/laser1a_2048_daylight.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1a_2048_daylight.mp4
--------------------------------------------------------------------------------
/images/laser1a_2048_daylight_horizontal.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1a_2048_daylight_horizontal.mp4
--------------------------------------------------------------------------------
/images/laser1a_720.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1a_720.mp4
--------------------------------------------------------------------------------
/images/laser1a_720_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "video_path": "images/laser1a_720.mp4",
3 | "texture_path": "images/laser1_RGB_vertikal.jpg",
4 | "desaturate": false,
5 |
6 | "export_path": "export/laser1a_720",
7 | "export_type" : "pcd",
8 |
9 | "cam_pos": [0, 0, 0],
10 | "laser_pos" : [10, 0, 0],
11 | "horizontal_fov" : 48,
12 |
13 | "sweep_direction" : "right",
14 | "sweep_startangle" : -28.0,
15 | "sweep_step": 0.5,
16 |
17 | "laser_thres": 100,
18 |
19 | "shrink_x": 1,
20 | "shrink_y": 3,
21 | "shrink_preview": 3,
22 | "window_size" : [800, 800],
23 | "verbose": false,
24 | "zero_value" : 1e-6,
25 |
26 | "KDTree_radius" : 5,
27 | "KDTree_max_nn" : 30
28 | }
29 |
--------------------------------------------------------------------------------
/images/laser1b_720.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser1b_720.mp4
--------------------------------------------------------------------------------
/images/laser1b_720_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "video_path": "images/laser1b_720.mp4",
3 | "texture_path": "",
4 | "desaturate": true,
5 |
6 | "export_path": "export/laser1b_720",
7 | "export_type" : "pcd",
8 |
9 | "cam_pos": [0, 0, 0],
10 | "laser_pos" : [10, 0, 0],
11 | "horizontal_fov" : 48,
12 |
13 | "sweep_direction" : "right",
14 | "sweep_startangle" : -28.0,
15 | "sweep_step": 0.5,
16 |
17 | "laser_thres": 100,
18 |
19 | "shrink_x": 1,
20 | "shrink_y": 3,
21 | "shrink_preview": 3,
22 | "window_size" : [800, 800],
23 | "verbose": false,
24 | "zero_value" : 1e-6,
25 |
26 | "KDTree_radius" : 5,
27 | "KDTree_max_nn" : 30
28 | }
29 |
--------------------------------------------------------------------------------
/images/laser2.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser2.mp4
--------------------------------------------------------------------------------
/images/laser2_RGB.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/LaserBorg/LineScanner/97b9af350d1e634c98f7dd0f27aed92378467cb3/images/laser2_RGB.jpg
--------------------------------------------------------------------------------
/images/laser2_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "video_path": "images/laser2.mp4",
3 | "texture_path": "images/laser2_RGB.jpg",
4 | "desaturate": false,
5 |
6 | "export_path": "export/laser2",
7 | "export_type" : "ply",
8 |
9 | "cam_pos": [0, 0, 0],
10 | "laser_pos" : [10, 0, 0],
11 | "horizontal_fov" : 28.12,
12 |
13 | "sweep_direction" : "right",
14 | "sweep_startangle" : -17.0,
15 | "sweep_step": 0.23622,
16 |
17 | "laser_thres": 100,
18 |
19 | "shrink_x": 1,
20 | "shrink_y": 3,
21 | "shrink_preview": 3,
22 | "window_size" : [800, 800],
23 | "verbose": true,
24 | "zero_value" : 1e-6,
25 |
26 | "KDTree_radius" : 5,
27 | "KDTree_max_nn" : 30
28 | }
29 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | open3d>=0.18.0
2 | opencv-python
3 | numpy
4 | matplotlib
5 | scipy
6 |
--------------------------------------------------------------------------------