├── .gitignore ├── Escher maps ├── Amino Acids Metabolism.json ├── Carbohydrates Metabolism.json ├── Energy & Nucleotide Metabolism.json ├── Glycan Metabolism.json ├── Lipids Metabolism.json └── Vitamin & Cofactor Metabolism.json ├── Images ├── CellFie3.png ├── EscherTutorial │ ├── image1.png │ ├── image2.png │ ├── image3.png │ ├── image4.png │ ├── image5.png │ └── image6.png ├── GenePatternTutorial │ ├── GP_image21.png │ ├── GP_image22A.png │ ├── GP_image22B.png │ ├── GP_image22C.png │ ├── GP_image3.png │ └── GP_image31.png └── LogoCellFie.png ├── LICENSE ├── README.md ├── docs ├── GenePattern_Info.docx └── NCBI_Entrez_gene_ID_models.xlsx ├── genepattern ├── Dockerfile ├── bashwrapper.sh ├── build_docker_container.sh ├── cellfieout.mat ├── execCellfie.m ├── global_percentile.yaml ├── global_value.yaml ├── gpunit.yaml ├── local_mean.yaml ├── local_minmaxmean_percentile.yaml ├── local_minmaxmean_value.yaml ├── outtmp │ ├── detailScoring.csv │ ├── score.csv │ ├── score_binary.csv │ └── taskInfo.csv ├── run_cellfie_in_docker.sh └── testexec.m ├── initCellFie.m ├── input ├── CONSENSUS_TASKS.xls ├── CONSENSUS_TASKS_210tasks.xls ├── List_GenesInModels.xlsx ├── MT_iCHOv1_final.mat ├── MT_iHsa.mat ├── MT_iMM1415.mat ├── MT_iRno.mat ├── MT_recon_2_2_entrez.mat ├── essentialRxns │ ├── essRxns_210version │ │ ├── essentialRxnsbyTask210_MT_iCHOv1_final.mat │ │ ├── essentialRxnsbyTask210_MT_iHsa.mat │ │ ├── essentialRxnsbyTask210_MT_iMM1415.mat │ │ ├── essentialRxnsbyTask210_MT_iRno.mat │ │ ├── essentialRxnsbyTask210_MT_inesMouseModel.mat │ │ ├── essentialRxnsbyTask210_MT_quek14.mat │ │ ├── essentialRxnsbyTask210_MT_recon_1.mat │ │ ├── essentialRxnsbyTask210_MT_recon_2.mat │ │ └── essentialRxnsbyTask210_MT_recon_2_2.mat │ ├── essentialRxnsbyTask_Cho_gem.mat │ ├── essentialRxnsbyTask_MT_iCHOv1_final.mat │ ├── essentialRxnsbyTask_MT_iHsa.mat │ ├── essentialRxnsbyTask_MT_iMM1415.mat │ ├── essentialRxnsbyTask_MT_iRno.mat │ ├── essentialRxnsbyTask_MT_inesMouseModel.mat │ ├── essentialRxnsbyTask_MT_quek14.mat │ ├── essentialRxnsbyTask_MT_recon_1.mat │ ├── essentialRxnsbyTask_MT_recon_2.mat │ ├── essentialRxnsbyTask_MT_recon_2_2.mat │ └── essentialRxnsbyTask_MT_recon_2_2_entrez.mat ├── inactive_reactions.csv ├── parsedGPR │ ├── parsedGPR_MT_iCHOv1_final.mat │ ├── parsedGPR_MT_iHsa.mat │ ├── parsedGPR_MT_iMM1415.mat │ ├── parsedGPR_MT_iRno.mat │ ├── parsedGPR_MT_recon_2_2_entrez.mat │ └── test ├── taskStructure.mat └── taskStructure210tasks.mat ├── matlab_compiled.zip ├── matlab_compiled ├── execCellfie.prj └── execCellfie │ ├── PackagingLog.html │ ├── for_redistribution │ ├── MyAppInstaller_web.app │ │ └── Contents │ │ │ ├── Info.plist │ │ │ ├── MacOS │ │ │ ├── setup │ │ │ └── setup.dSYM │ │ │ │ └── Contents │ │ │ │ ├── Info.plist │ │ │ │ └── Resources │ │ │ │ └── DWARF │ │ │ │ └── setup │ │ │ └── Resources │ │ │ ├── bundle.zip │ │ │ ├── en.lproj │ │ │ └── MainMenu.nib │ │ │ ├── installer.icns │ │ │ └── splash.png │ └── MyAppInstaller_web.install │ ├── for_redistribution_files_only │ ├── default_icon.icns │ ├── default_icon_48.png │ ├── execCellfie │ ├── execCellfie.app │ │ └── Contents │ │ │ ├── Info.plist │ │ │ ├── MacOS │ │ │ ├── applauncher │ │ │ ├── execCellfie │ │ │ └── prelaunch │ │ │ └── Resources │ │ │ ├── Base.lproj │ │ │ ├── About.nib │ │ │ ├── MWOpenAccessoryView.nib │ │ │ ├── MWSaveAccessoryView.nib │ │ │ └── MainMenu.nib │ │ │ └── membrane.icns │ ├── readme.txt │ ├── run_execCellfie.sh │ └── splash.png │ └── for_testing │ ├── execCellfie │ ├── execCellfie.app │ └── Contents │ │ ├── Info.plist │ │ ├── MacOS │ │ ├── applauncher │ │ ├── execCellfie │ │ └── prelaunch │ │ └── Resources │ │ ├── Base.lproj │ │ ├── About.nib │ │ ├── MWOpenAccessoryView.nib │ │ ├── MWSaveAccessoryView.nib │ │ └── MainMenu.nib │ │ └── membrane.icns │ ├── mccExcludedFiles.log │ ├── readme.txt │ ├── requiredMCRProducts.txt │ ├── run_execCellfie.sh │ └── splash.png ├── src ├── CellFie.m ├── CellFie_slow.m ├── findRxnIDs.m ├── findUsedGenesLevels.m ├── findUsedGenesLevels_all.m ├── prctile.m ├── runCellFie.m ├── selectGeneFromGPR.m ├── selectGeneFromGPR_all.m ├── tabulate.m └── wide2long.m └── test └── suite ├── EscherDataTest1.csv ├── dataRecon22_global_percentile.detailScoring.csv ├── dataRecon22_global_percentile.mat ├── dataRecon22_global_percentile.score.csv ├── dataRecon22_global_percentile.score_binary.csv ├── dataRecon22_global_percentile.taskInfo.csv ├── dataRecon22_global_value.detailScoring.csv ├── dataRecon22_global_value.mat ├── dataRecon22_global_value.score.csv ├── dataRecon22_global_value.score_binary.csv ├── dataRecon22_global_value.taskInfo.csv ├── dataRecon22_local_mean.detailScoring.csv ├── dataRecon22_local_mean.mat ├── dataRecon22_local_mean.score.csv ├── dataRecon22_local_mean.score_binary.csv ├── dataRecon22_local_mean.taskInfo.csv ├── dataRecon22_local_minmaxmean_percentile.detailScoring.csv ├── dataRecon22_local_minmaxmean_percentile.mat ├── dataRecon22_local_minmaxmean_percentile.score.csv ├── dataRecon22_local_minmaxmean_percentile.score_binary.csv ├── dataRecon22_local_minmaxmean_percentile.taskInfo.csv ├── dataRecon22_local_minmaxmean_value.detailScoring.csv ├── dataRecon22_local_minmaxmean_value.mat ├── dataRecon22_local_minmaxmean_value.score.csv ├── dataRecon22_local_minmaxmean_value.score_binary.csv ├── dataRecon22_local_minmaxmean_value.taskInfo.csv ├── dataTest.csv ├── dataTest.mat ├── dataTest.xlsx ├── detailScoring.csv └── testCellFie.m /.gitignore: -------------------------------------------------------------------------------- 1 | 2 | coverage.json 3 | coverage_html 4 | *.asv 5 | *.m~ 6 | *.mex* 7 | .DS_Store 8 | shinyapp/CellFie/v94/ 9 | -------------------------------------------------------------------------------- /Images/CellFie3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/CellFie3.png -------------------------------------------------------------------------------- /Images/EscherTutorial/image1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/EscherTutorial/image1.png -------------------------------------------------------------------------------- /Images/EscherTutorial/image2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/EscherTutorial/image2.png -------------------------------------------------------------------------------- /Images/EscherTutorial/image3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/EscherTutorial/image3.png -------------------------------------------------------------------------------- /Images/EscherTutorial/image4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/EscherTutorial/image4.png -------------------------------------------------------------------------------- /Images/EscherTutorial/image5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/EscherTutorial/image5.png -------------------------------------------------------------------------------- /Images/EscherTutorial/image6.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/EscherTutorial/image6.png -------------------------------------------------------------------------------- /Images/GenePatternTutorial/GP_image21.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/GenePatternTutorial/GP_image21.png -------------------------------------------------------------------------------- /Images/GenePatternTutorial/GP_image22A.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/GenePatternTutorial/GP_image22A.png -------------------------------------------------------------------------------- /Images/GenePatternTutorial/GP_image22B.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/GenePatternTutorial/GP_image22B.png -------------------------------------------------------------------------------- /Images/GenePatternTutorial/GP_image22C.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/GenePatternTutorial/GP_image22C.png -------------------------------------------------------------------------------- /Images/GenePatternTutorial/GP_image3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/GenePatternTutorial/GP_image3.png -------------------------------------------------------------------------------- /Images/GenePatternTutorial/GP_image31.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/GenePatternTutorial/GP_image31.png -------------------------------------------------------------------------------- /Images/LogoCellFie.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/Images/LogoCellFie.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # **CellFie**: Cellular Functions InferencE 2 | 3 | 4 | 5 | CellFie is a computational framework to quantity a cells' metabolic functions. 6 | 7 | 8 | 9 | This framework is available as a web-based module in the list of tools of [GenePattern](https://www.genepattern.org). See [here](https://github.com/LewisLabUCSD/CellFie/wiki/Tutorial-:-GenePattern-module) information about the GenePattern module 10 | 11 | The [source code](https://github.com/LewisLabUCSD/CellFie/blob/master/src/CellFie.m) is running on Matlab. See [here](https://github.com/LewisLabUCSD/CellFie/wiki/Running-CellFie-in-Matlab) information about how to run Cellfie using Matlab 12 | 13 | Detailed explanations of the methods and tools related to CellFie are available on the [wiki section](https://github.com/LewisLabUCSD/CellFie/wiki) of this repository 14 | 15 | 16 | 17 | We welcome any comments, bug reports, and feature requests. Please send all feedback to arichelleres@gmail.com 18 | 19 | 20 | 21 | **How to cite?** 22 | 23 | A. Richelle, B.P. Kellman, A.T. Wenzel, A.W.T. Chiang, T.Reagan, J.M. Gutierrez, C. Joshi, S. Li, J.K. Liu, H. Masson, J. Lee, Z. Li, L. Heirendt, C. Trefois, E.F. Juarez, T. Bath, D. Borland, J.P. Mesirov, K. Robasky, N.E. Lewis. Model-based assessment of mammalian cells metabolic functionalities using omics data. Cell Reports Methods; doi: https://doi.org/10.1016/j.crmeth.2021.100040 24 | -------------------------------------------------------------------------------- /docs/GenePattern_Info.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/docs/GenePattern_Info.docx -------------------------------------------------------------------------------- /docs/NCBI_Entrez_gene_ID_models.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/docs/NCBI_Entrez_gene_ID_models.xlsx -------------------------------------------------------------------------------- /genepattern/Dockerfile: -------------------------------------------------------------------------------- 1 | ## Copied from https://hub.docker.com/r/spacetimeanalytics/docker-matlab-runtime/dockerfile 2 | ## but changed to Ubuntu 18.04 3 | 4 | ## docker build -f genepattern/Dockerfile -t cellfie . 5 | 6 | FROM ubuntu:18.04 7 | 8 | RUN apt-get update && apt-get install -y zip unzip wget libc6 libxt-dev 9 | 10 | ## R2018a 11 | RUN mkdir /tmp/mcr_installer && \ 12 | cd /tmp/mcr_installer && \ 13 | wget http://ssd.mathworks.com/supportfiles/downloads/R2018a/deployment_files/R2018a/installers/glnxa64/MCR_R2018a_glnxa64_installer.zip && \ 14 | unzip MCR_R2018a_glnxa64_installer.zip && \ 15 | ./install -mode silent -agreeToLicense yes && \ 16 | rm -Rf /tmp/mcr_installer 17 | 18 | RUN ln -sf /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /usr/local/MATLAB/MATLAB_Runtime/v94/sys/os/glnxa64/libstdc++.so.6 19 | 20 | ENV MCRROOT=/usr/local/MATLAB/MATLAB_Runtime/v94 MCR_CACHE_ROOT=/tmp 21 | ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MCRROOT/runtime/glnxa64:$MCRROOT/bin/glnxa64:$MCRROOT/sys/os/glnxa64:$MCRROOT/sys/opengl/lib/glnxa64:$MCRROOT/sys/java/jre/glnxa64/jre/lib/amd64/native_threads:$MCRROOT/sys/java/jre/glnxa64/jre/lib/amd64/server:$MCRROOT/sys/java/jre/glnxa64/jre/lib/amd64 22 | 23 | RUN mkdir CellFie 24 | 25 | COPY ./ /CellFie/ 26 | 27 | CMD [] 28 | -------------------------------------------------------------------------------- /genepattern/bashwrapper.sh: -------------------------------------------------------------------------------- 1 | # RUN: 2 | # cd genepattern/ 3 | # ./bashwrapper.sh 'test/suite/dataTest.mat' 3 'test/suite/MT_recon_2_2_entrez.mat' 'local' 'value' 'minmaxmean' 25 75 4 | ## read parameters 5 | #load('test/suite/dataTest.mat') 6 | DATA=$1 7 | #SampleNumber=3; 8 | SAMP=$2 9 | #ref='test/suite/MT_recon_2_2_entrez.mat'; 10 | REF=$3 11 | #param.ThreshType='local'; 12 | pTHRESH=$4 13 | #param.percentile_or_value='value'; 14 | pPERCVAL=$5 15 | #param.LocalThresholdType='minmaxmean'; 16 | pTYPE=$6 17 | #param.value_low=25; 18 | pLOW=$7 19 | #param.value_high=75; 20 | pHIGH=$8 21 | 22 | #Run 23 | CMD="addpath(genpath('..'));execCellfie('$DATA',$SAMP,'$REF','$pTHRESH','$pPERCVAL','$pTYPE',$pLOW,$pHIGH);exit" 24 | echo $CMD 25 | matlab -nosplash -nodesktop -r $CMD 26 | 27 | 28 | -------------------------------------------------------------------------------- /genepattern/build_docker_container.sh: -------------------------------------------------------------------------------- 1 | docker build -f genepattern/Dockerfile -t cellfie . 2 | -------------------------------------------------------------------------------- /genepattern/cellfieout.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/genepattern/cellfieout.mat -------------------------------------------------------------------------------- /genepattern/execCellfie.m: -------------------------------------------------------------------------------- 1 | function []=execCellfie(DATA,SAMP,REF,pTHRESH,pPERCVAL,pGLOBAL,pTYPE,pLOW,pHIGH,outputdir) 2 | if contains(DATA,'mat') 3 | load(DATA); 4 | elseif( contains(DATA,'csv')||contains(DATA,'tsv')||contains(DATA,'xlsx')||contains(DATA,'xls')) 5 | datatmp=readtable(DATA); 6 | genetmp=table2array(datatmp(:,1)); 7 | tmp = struct('gene',table2array(datatmp(:,1)),'value',table2array(datatmp(:,2:end))); 8 | tmp.gene = num2cell(tmp.gene); 9 | for i=1:length(genetmp) 10 | tmp.gene{i}=int2str(genetmp(i)); 11 | end 12 | data=tmp; 13 | else 14 | error('Your data file must be formatted as: .mat, .csv, .tsv, .xlsx, or .xls with the correct suffix') 15 | end 16 | SampleNumber=str2num(SAMP); 17 | ref=REF; 18 | param.ThreshType=pTHRESH; 19 | param.percentile_or_value=pPERCVAL; 20 | param.LocalThresholdType=pTYPE; 21 | if strcmp(pTHRESH,'local') 22 | if strcmp(pTYPE,'minmaxmean') 23 | if strcmp(pPERCVAL,'percentile') 24 | param.percentile_low=str2num(pLOW); 25 | param.percentile_high=str2num(pHIGH); 26 | elseif strcmp(pPERCVAL,'value') 27 | param.value_low=str2num(pLOW); 28 | param.value_high=str2num(pHIGH); 29 | else 30 | error("cutoff type must be 'percentile' or 'value'") 31 | end 32 | end 33 | elseif strcmp(pTHRESH,'global') 34 | if strcmp(pPERCVAL,'percentile') 35 | param.percentile=str2num(pGLOBAL); 36 | elseif strcmp(pPERCVAL,'value') 37 | param.value=str2num(pGLOBAL); 38 | else 39 | error("cutoff type must be 'percentile' or 'value'") 40 | end 41 | else 42 | error("threshold type must be 'local' or 'global'") 43 | end 44 | 45 | 46 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 47 | 48 | save cellfieout score score_binary taskInfos detailScoring 49 | %saveas(figure(1),'histogram.png') 50 | %close(figure(1)) 51 | 52 | csvwrite(strcat(outputdir,'/score.csv'),score); 53 | csvwrite(strcat(outputdir,'/score_binary.csv'),score_binary); 54 | T = cell2table(taskInfos); 55 | writetable(T,strcat(outputdir,'/taskInfo.csv')); 56 | Var={}; 57 | for i=1:SampleNumber 58 | Var=[Var strcat('SampleID_S',num2str(i)) strcat('TaskID_S',num2str(i)) strcat('TaskScore_S',num2str(i))... 59 | strcat('BinaryTaskScore_S',num2str(i)) strcat('EssentialRxnsTask_S',num2str(i))... 60 | strcat('ExpressionScoreEssentialRxnsTask_S',num2str(i))... 61 | strcat('GeneAssociatedToEssentialRxnsTask_S',num2str(i))... 62 | strcat('GeneExpressionValue_S',num2str(i))]; 63 | end 64 | D = cell2table(detailScoring,'VariableNames',Var); 65 | writetable(D,strcat(outputdir,'/detailScoring.csv')); 66 | 67 | % ./matlab_compiled/execCellfie/for_redistribution_files_only/run_execCellfie.sh \ 68 | % /usr/local/MATLAB/MATLAB_Runtime/v94 test/suite/dataTest.mat 3 \ 69 | % MT_recon_2_2_entrez.mat local value NA minmaxmean 25 75 outtmp 70 | % execCellfie('test/suite/dataTest.xlsx','3','MT_recon_2_2_entrez.mat','local','value','25','minmaxmean','25','75','outtmp') 71 | % execCellfie('test/suite/dataTest.csv','3','MT_recon_2_2_entrez.mat','local','percentile','40','minmaxmean','15','85','outtmp') 72 | % execCellfie('test/suite/dataTest.csv','3','MT_recon_2_2_entrez.mat','local','value','40','mean','15','85','outtmp') 73 | % execCellfie('test/suite/dataTest.csv','3','MT_recon_2_2_entrez.mat','global','percentile','30','minmaxmean','15','85','outtmp') 74 | -------------------------------------------------------------------------------- /genepattern/global_percentile.yaml: -------------------------------------------------------------------------------- 1 | # Based on https://github.com/genepattern/STREAM.DetectTransitionGenes/blob/master/test/stream_detecttransitiongenes.yaml 2 | 3 | # 4 | # ant -f ${GPUNIT_HOME}/build.xml -Dgpunit.diffStripTrailingCR="--strip-trailing-cr" -Dgp.host="beta.genepattern.org" -Dgp.url="https://beta.genepattern.org" -Dgp.user="atwenzel2" -Dgp.password="" -Dgpunit.testfolder=`pwd` gpunit 5 | # 6 | 7 | #load('dataTest.mat') 8 | #SampleNumber=3; 9 | #ref='MT_recon_2_2_entrez.mat'; 10 | #param.ThreshType='global'; 11 | #param.percentile_or_value='percentile'; 12 | #param.percentile=50; 13 | 14 | #csvwrite('dataRecon22_global_percentile.score.csv',score); 15 | #csvwrite('dataRecon22_global_percentile.score_binary.csv',score_binary); 16 | #writetable(T,'dataRecon22_global_percentile.taskInfo.csv'); 17 | 18 | name: global_percentile 19 | module: CellFie 20 | params: 21 | "data": "../test/suite/dataTest.csv" 22 | "SampleNumber": 3 23 | "ref": "MT_recon_2_2_entrez.mat" 24 | "param.ThreshType": "global" 25 | "param.percentile_or_value": "percentile" 26 | "param.percentile_value_low": 50 27 | 28 | assertions: 29 | jobStatus: success 30 | files: 31 | "score.csv": 32 | diff: "../test/suite/dataRecon22_global_percentile.score.csv" 33 | "score_binary.csv": 34 | diff: "../test/suite/dataRecon22_global_percentile.score_binary.csv" 35 | -------------------------------------------------------------------------------- /genepattern/global_value.yaml: -------------------------------------------------------------------------------- 1 | # Based on https://github.com/genepattern/STREAM.DetectTransitionGenes/blob/master/test/stream_detecttransitiongenes.yaml 2 | 3 | # 4 | # ant -f ${GPUNIT_HOME}/build.xml -Dgpunit.diffStripTrailingCR="--strip-trailing-cr" -Dgp.host="beta.genepattern.org" -Dgp.url="https://beta.genepattern.org" -Dgp.user="atwenzel2" -Dgp.password="" -Dgpunit.testfolder=`pwd` gpunit 5 | # 6 | 7 | #load('dataTest.mat') 8 | #SampleNumber=3; 9 | #ref='MT_recon_2_2_entrez.mat'; 10 | #param.ThreshType='global'; 11 | #param.percentile_or_value='value'; 12 | #param.value=50; 13 | 14 | #[score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 15 | #save dataRecon22_global_value score score_binary taskInfos detailScoring 16 | #csvwrite('dataRecon22_global_value.score.csv',score); 17 | #csvwrite('dataRecon22_global_value.score_binary.csv',score_binary); 18 | #T = cell2table(taskInfos); 19 | #writetable(T,'dataRecon22_global_value.taskInfo.csv'); 20 | 21 | name: global_value 22 | module: CellFie 23 | params: 24 | "data": "../test/suite/dataTest.csv" 25 | "SampleNumber": 3 26 | "ref": "MT_recon_2_2_entrez.mat" 27 | "param.ThreshType": "global" 28 | "param.percentile_or_value": "value" 29 | "param.percentile_value_low": 50 30 | job.memory: "8 Gb" 31 | 32 | assertions: 33 | jobStatus: success 34 | files: 35 | "score.csv": 36 | diff: "../test/suite/dataRecon22_global_value.score.csv" 37 | "score_binary.csv": 38 | diff: "../test/suite/dataRecon22_global_value.score_binary.csv" 39 | -------------------------------------------------------------------------------- /genepattern/gpunit.yaml: -------------------------------------------------------------------------------- 1 | # Based on https://github.com/genepattern/STREAM.DetectTransitionGenes/blob/master/test/stream_detecttransitiongenes.yaml 2 | 3 | # 4 | # ant -f ${GPUNIT_HOME}/build.xml -Dgpunit.diffStripTrailingCR="--strip-trailing-cr" -Dgp.host="beta.genepattern.org" -Dgp.url="https://beta.genepattern.org" -Dgp.user="atwenzel2" -Dgp.password="" -Dgpunit.testfolder=`pwd` gpunit 5 | # 6 | 7 | name: CellFie 8 | module: CellFie 9 | params: 10 | "data": "../test/suite/dataTest.csv" 11 | "SampleNumber": 3 12 | "ref": "MT_recon_2_2_entrez.mat" 13 | 14 | assertions: 15 | jobStatus: success 16 | files: 17 | "score.csv": !!null 18 | "cellfieout.mat": !!null 19 | "score_binary.csv": !!null 20 | "taskInfo.csv": !!null 21 | "stdout.txt": !!null 22 | -------------------------------------------------------------------------------- /genepattern/local_mean.yaml: -------------------------------------------------------------------------------- 1 | # Based on https://github.com/genepattern/STREAM.DetectTransitionGenes/blob/master/test/stream_detecttransitiongenes.yaml 2 | 3 | # 4 | # ant -f ${GPUNIT_HOME}/build.xml -Dgpunit.diffStripTrailingCR="--strip-trailing-cr" -Dgp.host="beta.genepattern.org" -Dgp.url="https://beta.genepattern.org" -Dgp.user="atwenzel2" -Dgp.password="" -Dgpunit.testfolder=`pwd` gpunit 5 | # 6 | 7 | #load('dataTest.mat') 8 | #SampleNumber=3; 9 | #ref='MT_recon_2_2_entrez.mat'; 10 | #param.ThreshType='local'; 11 | #param.LocalThresholdType='mean'; 12 | 13 | #[score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 14 | #save dataRecon22_local_mean score score_binary taskInfos detailScoring 15 | #csvwrite('dataRecon22_local_mean.score.csv',score); 16 | #csvwrite('dataRecon22_local_mean.score_binary.csv',score_binary); 17 | #T = cell2table(taskInfos); 18 | #writetable(T,'dataRecon22_local_mean.taskInfo.csv'); 19 | 20 | name: local_mean 21 | module: CellFie 22 | params: 23 | "data": "../test/suite/dataTest.csv" 24 | "SampleNumber": 3 25 | "ref": "MT_recon_2_2_entrez.mat" 26 | "param.ThreshType": "local" 27 | "param.LocalThresholdType": "mean" 28 | job.memory: "8 Gb" 29 | 30 | assertions: 31 | jobStatus: success 32 | files: 33 | "score.csv": 34 | diff: "../test/suite/dataRecon22_local_mean.score.csv" 35 | "score_binary.csv": 36 | diff: "../test/suite/dataRecon22_local_mean.score_binary.csv" 37 | -------------------------------------------------------------------------------- /genepattern/local_minmaxmean_percentile.yaml: -------------------------------------------------------------------------------- 1 | # Based on https://github.com/genepattern/STREAM.DetectTransitionGenes/blob/master/test/stream_detecttransitiongenes.yaml 2 | 3 | # 4 | # ant -f ${GPUNIT_HOME}/build.xml -Dgpunit.diffStripTrailingCR="--strip-trailing-cr" -Dgp.host="beta.genepattern.org" -Dgp.url="https://beta.genepattern.org" -Dgp.user="atwenzel2" -Dgp.password="" -Dgpunit.testfolder=`pwd` gpunit 5 | # 6 | 7 | #load('dataTest.mat') 8 | #SampleNumber=3; 9 | #ref='MT_recon_2_2_entrez.mat'; 10 | #param.ThreshType='local'; 11 | #param.percentile_or_value='percentile'; 12 | #param.LocalThresholdType='minmaxmean'; 13 | #param.percentile_low=25; 14 | #param.percentile_high=75; 15 | 16 | #[score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 17 | #save dataRecon22_local_minmaxmean_percentile score score_binary taskInfos detailScoring 18 | #csvwrite('dataRecon22_local_minmaxmean_percentile.score.csv',score); 19 | #csvwrite('dataRecon22_local_minmaxmean_percentile.score_binary.csv',score_binary); 20 | #T = cell2table(taskInfos); 21 | #writetable(T,'dataRecon22_local_minmaxmean_percentile.taskInfo.csv'); 22 | 23 | name: local_minmaxmean_percentile 24 | module: CellFie 25 | params: 26 | "data": "../test/suite/dataTest.csv" 27 | "SampleNumber": 3 28 | "ref": "MT_recon_2_2_entrez.mat" 29 | "param.ThreshType": "local" 30 | "param.percentile_or_value": "percentile" 31 | "param.LocalThresholdType": "minmaxmean" 32 | "param.percentile_value_low": 25 33 | "param.percentile_value_high": 75 34 | 35 | assertions: 36 | jobStatus: success 37 | files: 38 | "score.csv": 39 | diff: "../test/suite/dataRecon22_local_minmaxmean_percentile.score.csv" 40 | "score_binary.csv": 41 | diff: "../test/suite/dataRecon22_local_minmaxmean_percentile.score_binary.csv" 42 | -------------------------------------------------------------------------------- /genepattern/local_minmaxmean_value.yaml: -------------------------------------------------------------------------------- 1 | # Based on https://github.com/genepattern/STREAM.DetectTransitionGenes/blob/master/test/stream_detecttransitiongenes.yaml 2 | 3 | # 4 | # ant -f ${GPUNIT_HOME}/build.xml -Dgpunit.diffStripTrailingCR="--strip-trailing-cr" -Dgp.host="beta.genepattern.org" -Dgp.url="https://beta.genepattern.org" -Dgp.user="atwenzel2" -Dgp.password="" -Dgpunit.testfolder=`pwd` gpunit 5 | # 6 | 7 | #load('dataTest.mat') 8 | #SampleNumber=3; 9 | #ref='MT_recon_2_2_entrez.mat'; 10 | #param.ThreshType='local'; 11 | #param.percentile_or_value='value'; 12 | #param.LocalThresholdType='minmaxmean'; 13 | #param.value_low=25; 14 | #param.value_high=75; 15 | 16 | #[score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 17 | #save dataRecon22_local_minmaxmean_value score score_binary taskInfos detailScoring 18 | #csvwrite('dataRecon22_local_minmaxmean_value.score.csv',score); 19 | #csvwrite('dataRecon22_local_minmaxmean_value.score_binary.csv',score_binary); 20 | #T = cell2table(taskInfos); 21 | #writetable(T,'dataRecon22_local_minmaxmean_value.taskInfo.csv'); 22 | 23 | name: local_minmaxmean_value 24 | module: CellFie 25 | params: 26 | "data": "../test/suite/dataTest.csv" 27 | "SampleNumber": 3 28 | "ref": "MT_recon_2_2_entrez.mat" 29 | "param.ThreshType": "local" 30 | "param.percentile_or_value": "value" 31 | "param.LocalThresholdType": "minmaxmean" 32 | "param.percentile_value_low": 25 33 | "param.percentile_value_high": 75 34 | 35 | assertions: 36 | jobStatus: success 37 | files: 38 | "score.csv": 39 | diff: "../test/suite/dataRecon22_local_minmaxmean_value.score.csv" 40 | "score_binary.csv": 41 | diff: "../test/suite/dataRecon22_local_minmaxmean_value.score_binary.csv" 42 | -------------------------------------------------------------------------------- /genepattern/outtmp/score.csv: -------------------------------------------------------------------------------- 1 | 1.9292,0.2188,1.7455 2 | 14.588,15.392,12.583 3 | 3.1564,4.8052,2.5293 4 | 7.9268,8.0834,7.0485 5 | 7.1914,7.51,7.189 6 | 12.883,13.731,13.692 7 | 5.2256,4.423,3.5845 8 | 4.2162,4.8506,4.0448 9 | 6.017,6.2811,6.6903 10 | 4.5492,4.4303,4.8479 11 | 6.1462,6.3968,6.7294 12 | 4.5862,4.4057,4.8334 13 | 5.3406,5.6554,6.0687 14 | 4.2999,4.1653,4.6177 15 | 5.9068,6.1794,6.5311 16 | 4.371,4.2487,4.6954 17 | 4.0952,3.9061,4.8207 18 | 6.5882,7.2214,7.5867 19 | 3.8951,5.557,5.3082 20 | 3.8951,5.557,5.3082 21 | 2.8509,4.4869,2.8784 22 | 1.8769,1.8856,2.3173 23 | 0.10462,1.4624,0.97617 24 | 6.4505,5.5063,6.7048 25 | 6.4505,5.5063,6.7048 26 | 10.674,10.611,10.545 27 | 10.902,10.841,10.764 28 | 8.6842,8.0524,7.705 29 | 10.399,10.114,10.047 30 | 8.1936,9.0347,7.4273 31 | 7.3102,4.7707,1.5054 32 | 11.67,12.437,12.344 33 | 8.9386,5.4695,6.0636 34 | 9.5685,7.8261,8.0304 35 | 6.9605,5.8251,6.8178 36 | 10.698,6.9422,8.3225 37 | 8.4999,7.6141,6.1638 38 | 6.3176,3.8984,4.2636 39 | 16.729,19.514,18.668 40 | 6.9969,6.9143,6.1284 41 | 10.317,7.8354,7.4263 42 | 6.3303,8.5976,6.8302 43 | 10.804,8.5024,8.2701 44 | 5.0927,6.2004,6.7366 45 | 6.1615,6.9849,5.9034 46 | 6.0376,6.2296,5.7791 47 | 10.538,8.8841,9.0001 48 | 7.7355,6.8219,6.6233 49 | 10.31,8.6176,8.6551 50 | 3.629,3.7933,2.8042 51 | 10.804,8.5024,8.2701 52 | 9.785,11.195,10.04 53 | 9.6052,10.902,9.896 54 | 4.7623,5.0341,3.6563 55 | 4.7269,5.5772,3.6359 56 | 14.036,14.135,11.452 57 | 4.0971,3.7116,4.7105 58 | 0.67058,0.44327,1.012 59 | 2.7169,2.9278,2.6754 60 | 8.0836,8.5836,7.2189 61 | 10.289,10.329,9.8422 62 | 6.5909,6.558,6.2197 63 | 5.6881,5.139,5.2241 64 | 7.795,8.0552,7.5058 65 | 6.5948,6.6297,6.531 66 | 7.0675,7.1749,6.6013 67 | 3.27,1.8698,2.948 68 | 8.0428,7.0569,6.7233 69 | 6.8023,8.7523,5.9155 70 | 9.7236,9.7102,9.3068 71 | 5.9461,6.0294,5.8358 72 | 9.8711,10.138,9.6575 73 | 6.6083,6.7962,6.3952 74 | 13.204,11.901,11.309 75 | 0.16014,1.0836,0.051989 76 | 6.6653,7.3622,9.9447 77 | 8.0961,8.3257,7.7802 78 | 6.3337,6.2978,6.0377 79 | 3.4814,2.9995,4.034 80 | 0.94934,3.7273,1.4979 81 | 4.5451,5.1485,4.6474 82 | 3.5967,3.3587,2.9536 83 | 11.385,6.6672,3.8786 84 | 10.51,10.75,10.24 85 | 5.9651,6.0122,5.8921 86 | 29.947,20.396,25.011 87 | 3.3175,2.5979,4.9637 88 | 3.3767,4.4693,3.1868 89 | 11.589,11.286,11.061 90 | 6.2266,6.481,6.1985 91 | 7.5895,8.324,6.9001 92 | 8.1487,9.7155,8.1748 93 | 10.754,11.427,10.526 94 | 3.5417,3.7928,3.6756 95 | 2.1407,2.5043,1.7436 96 | 6.226,6.3643,6.1371 97 | 0.67464,2.1184,1.1706 98 | 4.3151,1.6934,7.2033 99 | 6.295,6.5464,6.5616 100 | 1.0453,2.3525,0.81906 101 | 6.1774,6.1958,5.8849 102 | 6.4831,6.6408,6.133 103 | 5.7309,7.2759,4.5314 104 | 6.1034,6.067,5.7739 105 | 3.1046,2.6586,1.5409 106 | 2.1663,2.681,1.7066 107 | 5.2087,5.2132,5.0332 108 | 5.7678,7.0011,7.476 109 | 6.0505,6.1943,5.9823 110 | 7.7602,9.9385,8.5603 111 | 9.028,9.4909,10.476 112 | 11.397,12.289,11.219 113 | 3.7115,3.6473,3.5356 114 | 6.2643,6.3695,5.9965 115 | 0.89997,1.3746,0.42344 116 | 1.0489,1.125,0.54729 117 | 0.11071,1.826,0.0063698 118 | 9.8682,9.8319,9.7039 119 | 6.3544,6.4338,6.2826 120 | 6.3984,6.6847,7.8258 121 | 6.2359,6.2571,5.9842 122 | 5.9522,6.0248,5.7922 123 | 1.1448,0.32149,3.3967 124 | 2.3476,1.4609,2.9125 125 | 2.7748,1.7493,3.8465 126 | 1.2782,0.86482,3.4321 127 | 2.9911,2.2619,4.3839 128 | 0.18655,0.89091,0.50711 129 | 3.609,4.7403,1.8299 130 | 6.4202,6.4594,6.1467 131 | 1.4508,10.052,1.3445 132 | 0.065835,0.85025,0.19341 133 | 5.3724,5.2751,3.6765 134 | 6.0702,6.2311,5.8913 135 | 4.6946,5.6384,3.3233 136 | 10.124,11.541,10.42 137 | 4.2849,5.9043,4.0928 138 | 9.785,11.195,10.04 139 | 3.5673,6.4117,4.9972 140 | 4.0546,4.8494,4.2206 141 | 12.527,2.3026,1.0967 142 | 5.0283,4.7765,4.2615 143 | 4.9777,4.7342,4.1676 144 | 4.9588,4.7069,4.156 145 | 4.8684,4.5977,3.8401 146 | 4.9495,4.8165,4.06 147 | 4.8615,4.361,3.7296 148 | 4.984,4.8306,4.4564 149 | 4.7663,4.5818,4.0924 150 | 5.8508,6.2759,5.8278 151 | 2.0543,2.2747,1.7726 152 | 4.7957,5.1362,4.2664 153 | 2.1992,2.0852,1.5832 154 | 4.7771,5.218,4.4816 155 | 3.0509,3.455,2.6761 156 | 4.7771,5.218,4.4816 157 | 2.1411,2.4149,1.8531 158 | 2.228,2.4361,2.1027 159 | 3.3034,3.6629,2.8044 160 | 0.85116,1.361,0.88818 161 | 3.3526,3.6634,2.8259 162 | 6.1615,6.4208,6.233 163 | 2.1994,2.159,1.5809 164 | 8.9927,9.8046,8.7583 165 | 7.1432,7.4853,6.844 166 | 1.1418,1.1664,0.99696 167 | 2.6862,2.6859,2.7185 168 | 1.4441,1.2511,1.185 169 | 1.4441,1.2511,1.185 170 | 5.03,4.5181,6.7381 171 | 4.6117,4.3874,3.9211 172 | 3.4849,3.3713,2.6503 173 | 3.3702,3.2731,2.5968 174 | 10.932,8.6956,11.487 175 | 8.0951,9.2381,9.2406 176 | 3.2958,3.8485,3.4605 177 | 4.3755,6.1271,4.5156 178 | 1.9961,0.90326,1.9448 179 | 5.6369,4.1133,4.1513 180 | 15.682,12.044,12.914 181 | 6.6612,7.5934,6.2015 182 | 5.7534,5.9166,6.6948 183 | 1.9685,2.2515,2.2244 184 | 5.2044,5.3317,6.4975 185 | 3.8996,4.0564,4.8366 186 | 7.1174,6.3544,8.3787 187 | 4.0052,4.0915,6.2331 188 | 11.612,12.274,12.403 189 | 0.81884,1.1648,0.78307 190 | 0.81884,1.1648,0.78307 191 | 0.72173,0.81833,0.80956 192 | 0.57244,0.52871,0.54631 193 | -------------------------------------------------------------------------------- /genepattern/outtmp/score_binary.csv: -------------------------------------------------------------------------------- 1 | 1,0,1 2 | 1,1,1 3 | 1,1,1 4 | 1,1,1 5 | 1,1,1 6 | 1,1,1 7 | 1,1,1 8 | 1,1,1 9 | 1,1,1 10 | 1,1,1 11 | 1,1,1 12 | 1,1,1 13 | 1,1,1 14 | 1,1,1 15 | 1,1,1 16 | 1,1,1 17 | 1,1,1 18 | 1,1,1 19 | 1,1,1 20 | 1,1,1 21 | 1,1,1 22 | 1,1,1 23 | 0,0,0 24 | 1,1,1 25 | 1,1,1 26 | 1,1,1 27 | 1,1,1 28 | 1,1,1 29 | 1,1,1 30 | 1,1,1 31 | 1,1,1 32 | 1,1,1 33 | 1,1,1 34 | 1,1,1 35 | 1,1,1 36 | 1,1,1 37 | 1,1,1 38 | 1,1,1 39 | 1,1,1 40 | 1,1,1 41 | 1,1,1 42 | 1,1,1 43 | 1,1,1 44 | 1,1,1 45 | 1,1,1 46 | 1,1,1 47 | 1,1,1 48 | 1,1,1 49 | 1,1,1 50 | 1,1,1 51 | 1,1,1 52 | 1,1,1 53 | 1,1,1 54 | 1,1,1 55 | 1,1,1 56 | 1,1,1 57 | 1,1,1 58 | 1,0,1 59 | 1,1,1 60 | 1,1,1 61 | 1,1,1 62 | 1,1,1 63 | 1,1,1 64 | 1,1,1 65 | 1,1,1 66 | 1,1,1 67 | 1,1,1 68 | 1,1,1 69 | 1,1,1 70 | 1,1,1 71 | 1,1,1 72 | 1,1,1 73 | 1,1,1 74 | 1,1,1 75 | 0,0,0 76 | 1,1,1 77 | 1,1,1 78 | 1,1,1 79 | 1,1,1 80 | 0,1,1 81 | 1,1,1 82 | 1,1,1 83 | 1,1,1 84 | 1,1,1 85 | 1,1,1 86 | 1,1,1 87 | 1,1,1 88 | 1,1,1 89 | 1,1,1 90 | 1,1,1 91 | 1,1,1 92 | 1,1,1 93 | 1,1,1 94 | 1,1,1 95 | 1,1,1 96 | 1,1,1 97 | 0,0,0 98 | 1,1,1 99 | 1,1,1 100 | 0,1,0 101 | 1,1,1 102 | 1,1,1 103 | 1,1,1 104 | 1,1,1 105 | 1,1,1 106 | 1,1,1 107 | 1,1,1 108 | 1,1,1 109 | 1,1,1 110 | 1,1,1 111 | 1,1,1 112 | 1,1,1 113 | 1,1,1 114 | 1,1,1 115 | 1,1,1 116 | 1,1,1 117 | 0,1,0 118 | 1,1,1 119 | 1,1,1 120 | 1,1,1 121 | 1,1,1 122 | 1,1,1 123 | 1,0,1 124 | 1,1,1 125 | 1,1,1 126 | 1,0,1 127 | 1,1,1 128 | 0,1,0 129 | 1,1,1 130 | 1,1,1 131 | 0,1,0 132 | 0,1,0 133 | 1,1,1 134 | 1,1,1 135 | 1,1,1 136 | 1,1,1 137 | 1,1,1 138 | 1,1,1 139 | 1,1,1 140 | 1,1,1 141 | 1,1,0 142 | 1,1,1 143 | 1,1,1 144 | 1,1,1 145 | 1,1,1 146 | 1,1,1 147 | 1,1,1 148 | 1,1,1 149 | 1,1,1 150 | 1,1,1 151 | 1,1,1 152 | 1,1,1 153 | 1,1,1 154 | 1,1,1 155 | 1,1,1 156 | 1,1,1 157 | 1,1,1 158 | 1,1,1 159 | 1,1,1 160 | 1,1,1 161 | 1,1,1 162 | 1,1,1 163 | 1,1,1 164 | 1,1,1 165 | 1,1,1 166 | 1,1,1 167 | 1,1,1 168 | 1,1,1 169 | 1,1,1 170 | 1,1,1 171 | 1,1,1 172 | 1,1,1 173 | 1,1,1 174 | 1,1,1 175 | 1,1,1 176 | 1,1,1 177 | 1,1,1 178 | 1,1,1 179 | 1,1,1 180 | 1,1,1 181 | 1,1,1 182 | 1,1,1 183 | 1,1,1 184 | 1,1,1 185 | 1,1,1 186 | 1,1,1 187 | 1,1,1 188 | 1,1,1 189 | 1,1,1 190 | 1,1,1 191 | 1,1,1 192 | 1,1,1 193 | -------------------------------------------------------------------------------- /genepattern/run_cellfie_in_docker.sh: -------------------------------------------------------------------------------- 1 | docker run --rm -v $PWD:/IO atwenzel/cellfie:1.3 /usr/local/MATLAB/MATLAB_Runtime/v94 test/suite/dataTest.mat 3 MT_recon_2_2_entrez.mat local value minmaxmean 25 75 2 | -------------------------------------------------------------------------------- /genepattern/testexec.m: -------------------------------------------------------------------------------- 1 | 2 | % ./matlab_compiled/execCellfie/for_redistribution_files_only/run_execCellfie.sh /usr/local/MATLAB/MATLAB_Runtime/v94 test/suite/dataTest.mat 3 MT_recon_2_2_entrez.mat local value NA minmaxmean 25 75 outtmp 3 | % ./matlab_compiled/execCellfie/for_redistribution_files_only/run_execCellfie.sh /usr/local/MATLAB/MATLAB_Runtime/v94 test/suite/dataTest.csv 3 MT_recon_2_2_entrez.mat local value NA minmaxmean 25 75 outtmp 4 | % ./matlab_compiled/execCellfie/for_redistribution_files_only/run_execCellfie.sh /usr/local/MATLAB/MATLAB_Runtime/v94 test/suite/dataTest.xlsx 3 MT_recon_2_2_entrez.mat local value NA minmaxmean 25 75 outtmp 5 | % ./matlab_compiled/execCellfie/for_redistribution_files_only/run_execCellfie.sh /usr/local/MATLAB/MATLAB_Runtime/v94 test/suite/dataTest.mat 3 MT_recon_2_2_entrez.mat local value NA minmaxmean 25 75 outtmp 6 | 7 | execCellfie('../test/suite/dataTest.xlsx','3','MT_recon_2_2_entrez.mat','local','value','25','minmaxmean','25','75','outtmp') 8 | execCellfie('../test/suite/dataTest.csv','3','MT_recon_2_2_entrez.mat','local','percentile','40','minmaxmean','15','85','outtmp') 9 | execCellfie('../test/suite/dataTest.csv','3','MT_recon_2_2_entrez.mat','local','value','40','mean','15','85','outtmp') 10 | execCellfie('../test/suite/dataTest.csv','3','MT_recon_2_2_entrez.mat','global','percentile','30','minmaxmean','15','85','outtmp') 11 | -------------------------------------------------------------------------------- /initCellFie.m: -------------------------------------------------------------------------------- 1 | % % set the cellfie directory 2 | % CELLFIEDIR = fileparts(mfilename('fullpath')); 3 | % 4 | % % initialize the COBRA Toolbox 5 | % if exist('CBTDIR', 'var') 6 | % cd(CBTDIR); 7 | % initCobraToolbox 8 | % else 9 | % error('Please initialize the COBRA Toolbox or set the main directory of the COBRA Toolbox CBTDIR'); 10 | % end 11 | % 12 | % % change to the cellfie main directory 13 | % cd(CELLFIEDIR); 14 | % 15 | % % add the entire cellfie repository to the MATLAB path 16 | % addpath(genpath(CELLFIEDIR)); 17 | -------------------------------------------------------------------------------- /input/CONSENSUS_TASKS.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/CONSENSUS_TASKS.xls -------------------------------------------------------------------------------- /input/CONSENSUS_TASKS_210tasks.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/CONSENSUS_TASKS_210tasks.xls -------------------------------------------------------------------------------- /input/List_GenesInModels.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/List_GenesInModels.xlsx -------------------------------------------------------------------------------- /input/MT_iCHOv1_final.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/MT_iCHOv1_final.mat -------------------------------------------------------------------------------- /input/MT_iHsa.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/MT_iHsa.mat -------------------------------------------------------------------------------- /input/MT_iMM1415.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/MT_iMM1415.mat -------------------------------------------------------------------------------- /input/MT_iRno.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/MT_iRno.mat -------------------------------------------------------------------------------- /input/MT_recon_2_2_entrez.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/MT_recon_2_2_entrez.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iCHOv1_final.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iCHOv1_final.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iHsa.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iHsa.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iMM1415.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iMM1415.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iRno.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_iRno.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_inesMouseModel.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_inesMouseModel.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_quek14.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_quek14.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_recon_1.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_recon_1.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_recon_2.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_recon_2.mat -------------------------------------------------------------------------------- /input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_recon_2_2.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essRxns_210version/essentialRxnsbyTask210_MT_recon_2_2.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_Cho_gem.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_Cho_gem.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_iCHOv1_final.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_iCHOv1_final.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_iHsa.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_iHsa.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_iMM1415.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_iMM1415.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_iRno.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_iRno.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_inesMouseModel.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_inesMouseModel.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_quek14.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_quek14.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_recon_1.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_recon_1.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_recon_2.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_recon_2.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_recon_2_2.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_recon_2_2.mat -------------------------------------------------------------------------------- /input/essentialRxns/essentialRxnsbyTask_MT_recon_2_2_entrez.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/essentialRxns/essentialRxnsbyTask_MT_recon_2_2_entrez.mat -------------------------------------------------------------------------------- /input/inactive_reactions.csv: -------------------------------------------------------------------------------- 1 | index,v1,v2,v3 2 | 7,ATP generation from ions,ENERGY METABOLISM,ATP GENERATION 3 | 82,Cysteine synthesis,AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 4 | 99,Histidine synthesis,AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 5 | 103,Homocysteine synthesis,AMINO ACIDS METABOLISM,HOMOCYSTEINE METABOLISM 6 | 106,Isoleucine synthesis,AMINO ACIDS METABOLISM,ISOLEUCINE METABOLISM 7 | 108,Leucine synthesis,AMINO ACIDS METABOLISM,LEUCINE METABOLISM 8 | 111,Lysine synthesis,AMINO ACIDS METABOLISM,LYSINE METABOLISM 9 | 115,Methionine synthesis,AMINO ACIDS METABOLISM,METHIONINE METABOLISM 10 | 123,Phenylalanine synthesis,AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 11 | 131,Threonine synthesis,AMINO ACIDS METABOLISM,THREONINE METABOLISM 12 | 133,Tryptophan synthesis,AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 13 | 141,Tyrosine synthesis,AMINO ACIDS METABOLISM,TYROSINE METABOLISM 14 | 147,Valine synthesis,AMINO ACIDS METABOLISM,VALINE METABOLISM 15 | 172,Linolenate synthesis,LIPIDS METABOLISM,FATTY ACID METABOLISM 16 | 174,Linoleate synthesis,LIPIDS METABOLISM,FATTY ACID METABOLISM 17 | -------------------------------------------------------------------------------- /input/parsedGPR/parsedGPR_MT_iCHOv1_final.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/parsedGPR/parsedGPR_MT_iCHOv1_final.mat -------------------------------------------------------------------------------- /input/parsedGPR/parsedGPR_MT_iHsa.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/parsedGPR/parsedGPR_MT_iHsa.mat -------------------------------------------------------------------------------- /input/parsedGPR/parsedGPR_MT_iMM1415.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/parsedGPR/parsedGPR_MT_iMM1415.mat -------------------------------------------------------------------------------- /input/parsedGPR/parsedGPR_MT_iRno.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/parsedGPR/parsedGPR_MT_iRno.mat -------------------------------------------------------------------------------- /input/parsedGPR/parsedGPR_MT_recon_2_2_entrez.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/parsedGPR/parsedGPR_MT_recon_2_2_entrez.mat -------------------------------------------------------------------------------- /input/parsedGPR/test: -------------------------------------------------------------------------------- 1 | test 2 | -------------------------------------------------------------------------------- /input/taskStructure.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/taskStructure.mat -------------------------------------------------------------------------------- /input/taskStructure210tasks.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/input/taskStructure210tasks.mat -------------------------------------------------------------------------------- /matlab_compiled.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled.zip -------------------------------------------------------------------------------- /matlab_compiled/execCellfie.prj: -------------------------------------------------------------------------------- 1 | 2 | 3 | execCellfie 4 | 5 | 6 | 0.7 7 | Richelle, Kellman 8 | bkellman@eng.ucsd.edu 9 | 10 | An alternative approach to capture the breadth of cellular functions by performing a functional analysis of existing biological networks. 11 | CellFie: Cellular Functions InferencE 12 | 13 | 14 | An alternative approach for the interpretation of omics data (e.g., differentially expressed genes) that captures the simplicity of enrichment analyses, while providing deeper mechanistic insights into how differential expression impacts specific cellular functions. This approach enables the investigation of hundreds of metabolic tasks curated from literature covering 7 major metabolic activities of a cell (energy generation, nucleotide, carbohydrate, amino acid, lipid, vitamin & cofactor and glycan metabolism) and 4 mammalian organisms (human, rat, mouse and CHO cells). This platform can be used to predict the activity of these metabolic functions from transcriptomic data to comprehensively quantify the propensity of a cell line or tissue to express a metabolic function. 15 | 16 | We welcome any comments, bug reports, and feature requests. Please send all feedback to arichelleres@gmail.com 17 | 18 | For issues with the GenePattern module, please contact atwenzel@eng.ucsd.edu 19 | 20 | Updates 21 | 8/04/20 - remove cobratoolbox dependency 22 | 3/26/2020 - added detailScores.csv output 23 | 4/09/2020 - fixed percentile setting in line 23-25 24 | 4/09/2020 - added explicit "global" parameter 25 | 4/19/2020 - fixed execCellfie parameter bug 26 | 27 | 28 | /execCellfie/ 29 | option.installpath.systemwideapp 30 | 31 | 32 | In the following directions, replace MR/v95 by the directory on the target machine where MATLAB is installed, or MR by the directory where the MATLAB Runtime is installed. 33 | 34 | If the environment variable DYLD_LIBRARY_PATH is undefined, set it to the following string: 35 | 36 | MR/v95/runtime/maci64:MR/v95/sys/os/maci64:MR/v95/bin/maci64 37 | 38 | If it is defined, set it to the following: 39 | 40 | ${DYLD_LIBRARY_PATH}:MR/v95/runtime/maci64:MR/v95/sys/os/maci64:MR/v95/bin/maci64 41 | ${PROJECT_ROOT}/execCellfie/for_testing 42 | ${PROJECT_ROOT}/execCellfie/for_redistribution_files_only 43 | ${PROJECT_ROOT}/execCellfie/for_redistribution 44 | ${PROJECT_ROOT}/execCellfie 45 | false 46 | 47 | subtarget.standalone 48 | 49 | true 50 | false 51 | false 52 | MyAppInstaller_web 53 | MyAppInstaller_mcr 54 | MyAppInstaller_app 55 | false 56 | false 57 | 58 | false 59 | false 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/genepattern/execCellfie.m 96 | 97 | 98 | /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/input 99 | 100 | 101 | 102 | /Users/helenmasson/Dropbox/LewisLab/dev_CellFie/NewCellFie_May29/src/CellFie.m 103 | /Users/helenmasson/Dropbox/LewisLab/dev_CellFie/NewCellFie_May29/src/prctile.m 104 | /Users/helenmasson/Dropbox/LewisLab/dev_CellFie/NewCellFie_May29/src/tabulate.m 105 | /Users/helenmasson/cobratoolbox/src/analysis/exploration/findRxnIDs.m 106 | /Users/helenmasson/cobratoolbox/src/dataIntegration/transcriptomics/preprocessing/GPRparser.m 107 | /Users/helenmasson/cobratoolbox/src/dataIntegration/transcriptomics/preprocessing/findUsedGenesLevels.m 108 | /Users/helenmasson/cobratoolbox/src/dataIntegration/transcriptomics/preprocessing/mapExpressionToReactions.m 109 | /Users/helenmasson/cobratoolbox/src/dataIntegration/transcriptomics/preprocessing/selectGeneFromGPR.m 110 | /Users/helenmasson/cobratoolbox/src/reconstruction/refinement/GPRLogic/AndNode.m 111 | /Users/helenmasson/cobratoolbox/src/reconstruction/refinement/GPRLogic/FormulaParser.m 112 | /Users/helenmasson/cobratoolbox/src/reconstruction/refinement/GPRLogic/LiteralNode.m 113 | /Users/helenmasson/cobratoolbox/src/reconstruction/refinement/GPRLogic/Node.m 114 | /Users/helenmasson/cobratoolbox/src/reconstruction/refinement/GPRLogic/OrNode.m 115 | /Users/helenmasson/cobratoolbox/src/reconstruction/refinement/GPRLogic/combineChildren.m 116 | 117 | 118 | /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/run_execCellfie.sh 119 | /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/readme.txt 120 | /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/splash.png 121 | /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/execCellfie.app 122 | 123 | 124 | 125 | /Applications/MATLAB_R2018b.app 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | true 135 | 136 | 137 | 138 | 139 | true 140 | 141 | 142 | 143 | 144 | true 145 | 146 | 147 | 148 | 149 | true 150 | 151 | 152 | 153 | 154 | true 155 | true 156 | false 157 | false 158 | false 159 | false 160 | false 161 | false 162 | 10.15.7 163 | false 164 | true 165 | maci64 166 | true 167 | 168 | 169 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/PackagingLog.html: -------------------------------------------------------------------------------- 1 |
 2 | mcc -o execCellfie -W main:execCellfie -T link:exe -d /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing -v /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/genepattern/execCellfie.m -a /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/input 
 3 | Compiler version: 7.0 (R2018b)
 4 | 
 5 | Dependency analysis by REQUIREMENTS.
 6 | 
 7 | Parsing file "/Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/genepattern/execCellfie.m"
 8 | 	(Referenced from: "Compiler Command Line").
 9 | Deleting 0 temporary MEX authorization files.
10 | Generating file "/Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/readme.txt".
11 | Generating file "/Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/run_execCellfie.sh".
12 | Packaging...
13 | Adding custom icon /Applications/MATLAB_R2018b.app/toolbox/compiler/Resources/default_icon.icns to /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_testing/execCellfie.app.
14 | Creating the bundle...
15 | Copying /Applications/MATLAB_R2018b.app/toolbox/compiler/maci64/setup.app to /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app.
16 | Copying /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_redistribution/bundle.zip to /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/bundle.zip.
17 | Copying /Applications/MATLAB_R2018b.app/toolbox/compiler/Resources/default_splash.png to /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/splash.png.
18 | Copying /Applications/MATLAB_R2018b.app/toolbox/compiler/Resources/default_icon.icns to /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/installer.icns.
19 | Web based installer created at /Users/helenmasson/Desktop/SenateExam/Aim2_CellFie/Final_compiledCellFIE/CellFie/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app.
20 | Packaging complete.
21 | Elapsed packaging time was: 1 minutes and 4 seconds.
22 | 
23 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Info.plist: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | CFBundleDevelopmentRegion 6 | en 7 | CFBundleExecutable 8 | setup 9 | CFBundleIconFile 10 | installer.icns 11 | CFBundleIdentifier 12 | com.mathworks.toolbox.compiler.setup 13 | CFBundleInfoDictionaryVersion 14 | 6.0 15 | CFBundlePackageType 16 | APPL 17 | CFBundleShortVersionString 18 | 1.0 19 | CFBundleSignature 20 | ???? 21 | CFBundleVersion 22 | 1 23 | LSMinimumSystemVersion 24 | 10.4 25 | NSMainNibFile 26 | MainMenu 27 | NSPrincipalClass 28 | NSApplication 29 | NSAppTransportSecurity 30 | 31 | NSExceptionDomains 32 | 33 | mathworks.com 34 | 35 | NSIncludesSubdomains 36 | 37 | NSThirdPartyExceptionRequiresForwardSecrecy 38 | 39 | 40 | 41 | 42 | 43 | 44 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/MacOS/setup: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/MacOS/setup -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/MacOS/setup.dSYM/Contents/Info.plist: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | CFBundleDevelopmentRegion 6 | English 7 | CFBundleIdentifier 8 | com.apple.xcode.dsym.com.mathworks.toolbox.compiler.setup 9 | CFBundleInfoDictionaryVersion 10 | 6.0 11 | CFBundlePackageType 12 | dSYM 13 | CFBundleSignature 14 | ???? 15 | CFBundleShortVersionString 16 | 1.0 17 | CFBundleVersion 18 | 1 19 | 20 | 21 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/MacOS/setup.dSYM/Contents/Resources/DWARF/setup: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/MacOS/setup.dSYM/Contents/Resources/DWARF/setup -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/bundle.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/bundle.zip -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/en.lproj/MainMenu.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/en.lproj/MainMenu.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/installer.icns: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/installer.icns -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/splash.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.app/Contents/Resources/splash.png -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.install: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution/MyAppInstaller_web.install -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/default_icon.icns: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/default_icon.icns -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/default_icon_48.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/default_icon_48.png -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Info.plist: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | CFBundleDevelopmentRegion 6 | English 7 | CFBundleExecutable 8 | prelaunch 9 | CFBundleIconFile 10 | membrane.icns 11 | CFBundleIdentifier 12 | execCellfie 13 | CFBundleInfoDictionaryVersion 14 | 6.0 15 | CFBundleName 16 | execCellfie 17 | CFBundlePackageType 18 | APPL 19 | CFBundleSignature 20 | execCellfie 21 | CFBundleVersion 22 | 1 23 | CFBundleVersionString 24 | 1.0 25 | CFResourcesFileMapped 26 | 27 | LSMinimumSystemVersion 28 | 10.9.0 29 | NSMainNibFile 30 | MainMenu 31 | NSPrincipalClass 32 | NSApplication 33 | 34 | 35 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/MacOS/applauncher: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/MacOS/applauncher -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/MacOS/execCellfie: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/MacOS/execCellfie -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/MacOS/prelaunch: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/MacOS/prelaunch -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/About.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/About.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/MWOpenAccessoryView.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/MWOpenAccessoryView.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/MWSaveAccessoryView.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/MWSaveAccessoryView.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/MainMenu.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/Base.lproj/MainMenu.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/membrane.icns: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/execCellfie.app/Contents/Resources/membrane.icns -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/readme.txt: -------------------------------------------------------------------------------- 1 | execCellfie Executable 2 | 3 | 1. Prerequisites for Deployment 4 | 5 | Verify that version 9.5 (R2018b) of the MATLAB Runtime is installed. 6 | If not, you can run the MATLAB Runtime installer. 7 | To find its location, enter 8 | 9 | >>mcrinstaller 10 | 11 | at the MATLAB prompt. 12 | NOTE: You will need administrator rights to run the MATLAB Runtime installer. 13 | 14 | Alternatively, download and install the Macintosh version of the MATLAB Runtime for R2018b 15 | from the following link on the MathWorks website: 16 | 17 | http://www.mathworks.com/products/compiler/mcr/index.html 18 | 19 | For more information about the MATLAB Runtime and the MATLAB Runtime installer, see 20 | "Distribute Applications" in the MATLAB Compiler documentation 21 | in the MathWorks Documentation Center. 22 | 23 | 2. Files to Deploy and Package 24 | 25 | Files to Package for Standalone 26 | ================================ 27 | -run_execCellfie.sh (shell script for temporarily setting environment variables and 28 | executing the application) 29 | -to run the shell script, type 30 | 31 | ./run_execCellfie.sh 32 | 33 | at Linux or Mac command prompt. is the directory 34 | where version 9.5 of the MATLAB Runtime is installed or the directory where 35 | MATLAB is installed on the machine. is all the 36 | arguments you want to pass to your application. For example, 37 | 38 | If you have version 9.5 of the MATLAB Runtime installed in 39 | /mathworks/home/application/v95, run the shell script as: 40 | 41 | ./run_execCellfie.sh /mathworks/home/application/v95 42 | 43 | If you have MATLAB installed in /mathworks/devel/application/matlab, 44 | run the shell script as: 45 | 46 | ./run_execCellfie.sh /mathworks/devel/application/matlab 47 | -MCRInstaller.zip 48 | Note: if end users are unable to download the MATLAB Runtime using the 49 | instructions in the previous section, include it when building your 50 | component by clicking the "Runtime included in package" link in the 51 | Deployment Tool. 52 | -The Macintosh bundle directory structure execCellfie.app 53 | Note: this can be stored in an archive file with the zip command 54 | zip -r execCellfie.zip execCellfie.app 55 | or the tar command 56 | tar -cvf execCellfie.tar execCellfie.app 57 | -This readme file 58 | 59 | 60 | 61 | 3. Definitions 62 | 63 | For information on deployment terminology, go to 64 | http://www.mathworks.com/help and select MATLAB Compiler > 65 | Getting Started > About Application Deployment > 66 | Deployment Product Terms in the MathWorks Documentation 67 | Center. 68 | 69 | 4. Appendix 70 | 71 | A. Mac systems: 72 | In the following directions, replace MR/v95 by the directory on the target machine where 73 | MATLAB is installed, or MR by the directory where the MATLAB Runtime is installed. 74 | 75 | If the environment variable DYLD_LIBRARY_PATH is undefined, set it to the following 76 | string: 77 | 78 | MR/v95/runtime/maci64:MR/v95/sys/os/maci64:MR/v95/bin/maci64 79 | 80 | If it is defined, set it to the following: 81 | 82 | ${DYLD_LIBRARY_PATH}:MR/v95/runtime/maci64:MR/v95/sys/os/maci64:MR/v95/bin/maci64 83 | 84 | For more detailed information about setting the MATLAB Runtime paths, see Package and 85 | Distribute in the MATLAB Compiler documentation in the MathWorks Documentation Center. 86 | 87 | 88 | 89 | NOTE: To make these changes persistent after logout on Linux 90 | or Mac machines, modify the .cshrc file to include this 91 | setenv command. 92 | NOTE: The environment variable syntax utilizes forward 93 | slashes (/), delimited by colons (:). 94 | NOTE: When deploying standalone applications, you can 95 | run the shell script file run_execCellfie.sh 96 | instead of setting environment variables. See 97 | section 2 "Files to Deploy and Package". 98 | 99 | 100 | 101 | 5. Launching application using Macintosh finder 102 | 103 | If the application is purely graphical, that is, it doesn't read from standard in or 104 | write to standard out or standard error, it may be launched in the finder just like any 105 | other Macintosh application. 106 | 107 | 108 | 109 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/run_execCellfie.sh: -------------------------------------------------------------------------------- 1 | #!/bin/sh 2 | # script for execution of deployed applications 3 | # 4 | # Sets up the MATLAB Runtime environment for the current $ARCH and executes 5 | # the specified command. 6 | # 7 | exe_name=$0 8 | exe_dir=`dirname "$0"` 9 | echo "------------------------------------------" 10 | if [ "x$1" = "x" ]; then 11 | echo Usage: 12 | echo $0 \ args 13 | else 14 | echo Setting up environment variables 15 | MCRROOT="$1" 16 | echo --- 17 | DYLD_LIBRARY_PATH=.:${MCRROOT}/runtime/maci64 ; 18 | DYLD_LIBRARY_PATH=${DYLD_LIBRARY_PATH}:${MCRROOT}/bin/maci64 ; 19 | DYLD_LIBRARY_PATH=${DYLD_LIBRARY_PATH}:${MCRROOT}/sys/os/maci64; 20 | export DYLD_LIBRARY_PATH; 21 | echo DYLD_LIBRARY_PATH is ${DYLD_LIBRARY_PATH}; 22 | shift 1 23 | args= 24 | while [ $# -gt 0 ]; do 25 | token=$1 26 | args="${args} \"${token}\"" 27 | shift 28 | done 29 | eval "\"${exe_dir}/execCellfie.app/Contents/MacOS/execCellfie\"" $args 30 | fi 31 | exit 32 | 33 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_redistribution_files_only/splash.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_redistribution_files_only/splash.png -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Info.plist: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | CFBundleDevelopmentRegion 6 | English 7 | CFBundleExecutable 8 | prelaunch 9 | CFBundleIconFile 10 | membrane.icns 11 | CFBundleIdentifier 12 | execCellfie 13 | CFBundleInfoDictionaryVersion 14 | 6.0 15 | CFBundleName 16 | execCellfie 17 | CFBundlePackageType 18 | APPL 19 | CFBundleSignature 20 | execCellfie 21 | CFBundleVersion 22 | 1 23 | CFBundleVersionString 24 | 1.0 25 | CFResourcesFileMapped 26 | 27 | LSMinimumSystemVersion 28 | 10.9.0 29 | NSMainNibFile 30 | MainMenu 31 | NSPrincipalClass 32 | NSApplication 33 | 34 | 35 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/MacOS/applauncher: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/MacOS/applauncher -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/MacOS/execCellfie: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/MacOS/execCellfie -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/MacOS/prelaunch: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/MacOS/prelaunch -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/About.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/About.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/MWOpenAccessoryView.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/MWOpenAccessoryView.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/MWSaveAccessoryView.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/MWSaveAccessoryView.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/MainMenu.nib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/Base.lproj/MainMenu.nib -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/membrane.icns: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/execCellfie.app/Contents/Resources/membrane.icns -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/mccExcludedFiles.log: -------------------------------------------------------------------------------- 1 | The List of Excluded Files 2 | Excluded files Exclusion Message ID Reason For Exclusion Exclusion Rule 3 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/readme.txt: -------------------------------------------------------------------------------- 1 | execCellfie Executable 2 | 3 | 1. Prerequisites for Deployment 4 | 5 | Verify that version 9.5 (R2018b) of the MATLAB Runtime is installed. 6 | If not, you can run the MATLAB Runtime installer. 7 | To find its location, enter 8 | 9 | >>mcrinstaller 10 | 11 | at the MATLAB prompt. 12 | NOTE: You will need administrator rights to run the MATLAB Runtime installer. 13 | 14 | Alternatively, download and install the Macintosh version of the MATLAB Runtime for R2018b 15 | from the following link on the MathWorks website: 16 | 17 | http://www.mathworks.com/products/compiler/mcr/index.html 18 | 19 | For more information about the MATLAB Runtime and the MATLAB Runtime installer, see 20 | "Distribute Applications" in the MATLAB Compiler documentation 21 | in the MathWorks Documentation Center. 22 | 23 | 2. Files to Deploy and Package 24 | 25 | Files to Package for Standalone 26 | ================================ 27 | -run_execCellfie.sh (shell script for temporarily setting environment variables and 28 | executing the application) 29 | -to run the shell script, type 30 | 31 | ./run_execCellfie.sh 32 | 33 | at Linux or Mac command prompt. is the directory 34 | where version 9.5 of the MATLAB Runtime is installed or the directory where 35 | MATLAB is installed on the machine. is all the 36 | arguments you want to pass to your application. For example, 37 | 38 | If you have version 9.5 of the MATLAB Runtime installed in 39 | /mathworks/home/application/v95, run the shell script as: 40 | 41 | ./run_execCellfie.sh /mathworks/home/application/v95 42 | 43 | If you have MATLAB installed in /mathworks/devel/application/matlab, 44 | run the shell script as: 45 | 46 | ./run_execCellfie.sh /mathworks/devel/application/matlab 47 | -MCRInstaller.zip 48 | Note: if end users are unable to download the MATLAB Runtime using the 49 | instructions in the previous section, include it when building your 50 | component by clicking the "Runtime included in package" link in the 51 | Deployment Tool. 52 | -The Macintosh bundle directory structure execCellfie.app 53 | Note: this can be stored in an archive file with the zip command 54 | zip -r execCellfie.zip execCellfie.app 55 | or the tar command 56 | tar -cvf execCellfie.tar execCellfie.app 57 | -This readme file 58 | 59 | 60 | 61 | 3. Definitions 62 | 63 | For information on deployment terminology, go to 64 | http://www.mathworks.com/help and select MATLAB Compiler > 65 | Getting Started > About Application Deployment > 66 | Deployment Product Terms in the MathWorks Documentation 67 | Center. 68 | 69 | 4. Appendix 70 | 71 | A. Mac systems: 72 | In the following directions, replace MR/v95 by the directory on the target machine where 73 | MATLAB is installed, or MR by the directory where the MATLAB Runtime is installed. 74 | 75 | If the environment variable DYLD_LIBRARY_PATH is undefined, set it to the following 76 | string: 77 | 78 | MR/v95/runtime/maci64:MR/v95/sys/os/maci64:MR/v95/bin/maci64 79 | 80 | If it is defined, set it to the following: 81 | 82 | ${DYLD_LIBRARY_PATH}:MR/v95/runtime/maci64:MR/v95/sys/os/maci64:MR/v95/bin/maci64 83 | 84 | For more detailed information about setting the MATLAB Runtime paths, see Package and 85 | Distribute in the MATLAB Compiler documentation in the MathWorks Documentation Center. 86 | 87 | 88 | 89 | NOTE: To make these changes persistent after logout on Linux 90 | or Mac machines, modify the .cshrc file to include this 91 | setenv command. 92 | NOTE: The environment variable syntax utilizes forward 93 | slashes (/), delimited by colons (:). 94 | NOTE: When deploying standalone applications, you can 95 | run the shell script file run_execCellfie.sh 96 | instead of setting environment variables. See 97 | section 2 "Files to Deploy and Package". 98 | 99 | 100 | 101 | 5. Launching application using Macintosh finder 102 | 103 | If the application is purely graphical, that is, it doesn't read from standard in or 104 | write to standard out or standard error, it may be launched in the finder just like any 105 | other Macintosh application. 106 | 107 | 108 | 109 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/requiredMCRProducts.txt: -------------------------------------------------------------------------------- 1 | 35000 35010 -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/run_execCellfie.sh: -------------------------------------------------------------------------------- 1 | #!/bin/sh 2 | # script for execution of deployed applications 3 | # 4 | # Sets up the MATLAB Runtime environment for the current $ARCH and executes 5 | # the specified command. 6 | # 7 | exe_name=$0 8 | exe_dir=`dirname "$0"` 9 | echo "------------------------------------------" 10 | if [ "x$1" = "x" ]; then 11 | echo Usage: 12 | echo $0 \ args 13 | else 14 | echo Setting up environment variables 15 | MCRROOT="$1" 16 | echo --- 17 | DYLD_LIBRARY_PATH=.:${MCRROOT}/runtime/maci64 ; 18 | DYLD_LIBRARY_PATH=${DYLD_LIBRARY_PATH}:${MCRROOT}/bin/maci64 ; 19 | DYLD_LIBRARY_PATH=${DYLD_LIBRARY_PATH}:${MCRROOT}/sys/os/maci64; 20 | export DYLD_LIBRARY_PATH; 21 | echo DYLD_LIBRARY_PATH is ${DYLD_LIBRARY_PATH}; 22 | shift 1 23 | args= 24 | while [ $# -gt 0 ]; do 25 | token=$1 26 | args="${args} \"${token}\"" 27 | shift 28 | done 29 | eval "\"${exe_dir}/execCellfie.app/Contents/MacOS/execCellfie\"" $args 30 | fi 31 | exit 32 | 33 | -------------------------------------------------------------------------------- /matlab_compiled/execCellfie/for_testing/splash.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/matlab_compiled/execCellfie/for_testing/splash.png -------------------------------------------------------------------------------- /src/CellFie.m: -------------------------------------------------------------------------------- 1 | function[score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param) 2 | % Compute the score associated to each metabolic task listed in taskstructure based on transcriptomic data 3 | % 4 | % USAGE: 5 | % [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param) 6 | % 7 | % INPUTS: 8 | % data 9 | % .gene cell array containing GeneIDs in the same 10 | % format as model.genes 11 | % .value mRNA expression data structure (genes x samples)associated to each gene metioned in data.gene 12 | % SampleNumber Number of samples 13 | % ref Reference model used to compute the 14 | % metabolic task scores (e.g.,'MT_recon_2_2_entrez.mat') 15 | % OPTIONAL INPUTS: 16 | % param.ThreshType Type of thresholding approach used 17 | % (i.e.,'global' or 'local') (default - local) 18 | % related to the use of a GLOBAL thresholding approach - the threshold value is the same for all the genes 19 | % param.percentile_or_value the threshold can be defined using a value introduced by the user ('value') 20 | % or based on a percentile of the distribution of expression value for all the 21 | % genes and across all samples of your 22 | % dataset ('percentile') 23 | % param.percentile percentile from the distribution of 24 | % expression values for all the genes and across all samples that will be 25 | % used to define the threshold value 26 | % param.value expression value for which a gene is 27 | % considered as active or not (e.g., 5) 28 | % 29 | % related to the use of a LOCAL thresholding approach - the threshold value is different for all the genes 30 | % param.percentile_or_value the threshold can be defined using a value introduced by the user ('value') 31 | % or based on a percentile of the distribution of expression value of a 32 | % specific gene across all samples of your 33 | % dataset ('percentile'-default) 34 | % param.LocalThresholdType option to define the type of local thresholding approach to use 35 | % - 'minmaxmean' (default options )- the threshold for a gene is determined by the mean of expression 36 | % values observed for that gene among all the samples, tissues, or conditions BUT 37 | % the threshold :(i) must be higher or equal to a lower bound and (ii) must be lower 38 | % or equal to an upper bound. 39 | % - 'mean' -the threshold for a gene is defined as the mean expression value 40 | % of this gene across all the samples, tissues, or conditions 41 | % param.percentile_low lower percentile used to define which gene 42 | % are always inactive in the case of use 'MinMaxMean' local thresholding 43 | % approach (default = 25) 44 | % param.percentile_high upper percentile used to define which gene 45 | % are always active in the case of use 'MinMaxMean' local thresholding 46 | % approach (default= 75) 47 | % param.value_low lower expression value used to define which gene 48 | % are always inactive in the case of use 'MinMaxMean' local thresholding 49 | % approach (e.g., 5) 50 | % param.value_high upper expression value used to define which gene 51 | % are always active in the case of use 'MinMaxMean' local thresholding 52 | % approach (e.g., 5) 53 | % 54 | % related to the gene mapping approach used 55 | % param.minSum: instead of using min and max, use min for AND and Sum 56 | % for OR (default: false, i.e. use min) 57 | % OUTPUTS: 58 | % score relative quantification of the activity of a metabolic task in a specific condition 59 | % based on the availability of data for multiple conditions 60 | % score_binary binary version of the metabolic task score 61 | % to determine whether a task is active or inactive in specific 62 | % conditions 63 | % taskInfos Description of the metabolic task assessed 64 | % detailScoring Matrix detailing the scoring 65 | % 1st column = sample ID 66 | % 2nd column = task ID 67 | % 3th column = task score for this sample 68 | % 4th column = task score in binary version for this sample 69 | % 5th column = essential reaction associated to this task 70 | % 6th column = expression score associated to the reaction listed in the 5th column 71 | % 7th column = gene used to determine the expression of the reaction listed in the 5th column 72 | % 8th column = original expression value of the gene listed in the 7th column 73 | % 74 | % .. Authors: 75 | % - Anne Richelle, January 2019 76 | if size(data.value,2) ~= SampleNumber 77 | error('The number of samples defined is not the same as the size of the dataset') 78 | end 79 | if size(data.value,1) ~= length(data.gene) 80 | error('data.value does not have the same number of rows as data.gene') 81 | end 82 | if ~exist('ref','var') 83 | error('The reference model has not been defined - please choose a reference model') 84 | end 85 | if ~exist('param','var') 86 | param.ThreshType='local'; 87 | param.percentile_or_value='percentile'; 88 | param.LocalThresholdType='minmaxmean'; 89 | param.percentile_low=25; 90 | param.percentile_high=75; 91 | end 92 | 93 | % f = waitbar(0,'Please wait...'); 94 | % waitbar(.15,f,'Loading your data'); 95 | 96 | %load the info about the task structure 97 | load('taskStructure') 98 | taskInfos=struct2cell(taskStructure); 99 | taskInfos=taskInfos'; 100 | taskInfos(:,5:end)=[]; 101 | 102 | 103 | %load the reference model in matlab 104 | load(ref); 105 | 106 | %% Depending on the model, load the list of reactions associated with the task 107 | % All these files have the following format 108 | % essentialRxnsbyTask_name_of_model and are located in essentialRxns folder 109 | load(strcat('essentialRxns/essentialRxnsbyTask_',ref)); 110 | 111 | % check that at least part of list of gene provided are in the model loaded 112 | ID_model=[]; 113 | gene_notInModel=[]; 114 | for i=1:length(data.gene) 115 | if isempty(find(strcmp(data.gene{i},model.genes))) 116 | gene_notInModel(end+1)=i; 117 | else 118 | tmpid=find(strcmp(data.gene{i},model.genes)==1); 119 | ID_model(end+1)=tmpid(1); 120 | end 121 | end 122 | 123 | % introduce a warning in the webtool about how many of the genes provided are 124 | % actually mapped to the model 125 | if isempty(gene_notInModel) 126 | display('All genes provided in data are included in the reference model') 127 | else 128 | display([num2str(length(gene_notInModel)),' genes provided are not included in the reference model:']) 129 | data.gene(gene_notInModel) 130 | end 131 | 132 | % remove the gene and associated value provided by the user in data that are not in the model 133 | data.gene(gene_notInModel)=[]; 134 | if SampleNumber==1 135 | data.value(gene_notInModel)=[]; 136 | else 137 | data.value(gene_notInModel,:)=[]; 138 | end 139 | 140 | % get the threshold value and the histogram for the complete dataset and 141 | % print a figure 142 | if SampleNumber>1 143 | linData = reshape(data.value,numel(data.value),1); 144 | else 145 | linData=data.value; 146 | end 147 | linData(linData==0)=[]; 148 | 149 | % definition of the thresholds 150 | if strcmp(param.ThreshType,'global') && strcmp(param.percentile_or_value,'percentile') 151 | display('RUN - global: percentile') 152 | l_global = (prctile(log10(linData),param.percentile)); 153 | data.ths=10^l_global; 154 | elseif strcmp(param.ThreshType,'global') && strcmp(param.percentile_or_value,'value') 155 | display('RUN - global: value') 156 | data.ths=param.value; 157 | elseif strcmp(param.ThreshType,'local') && strcmp(param.LocalThresholdType,'mean') 158 | display('RUN - local: mean') 159 | elseif strcmp(param.ThreshType,'local') && strcmp(param.LocalThresholdType,'minmaxmean')&& strcmp(param.percentile_or_value,'percentile') 160 | display('RUN - local: minmaxmean: percentile') 161 | l_high = (prctile(log10(linData),param.percentile_high)); 162 | data.ths_high=10^l_high; 163 | l_low = (prctile(log10(linData),param.percentile_low)); 164 | data.ths_low=10^l_low; 165 | elseif strcmp(param.ThreshType,'local') && strcmp(param.LocalThresholdType,'minmaxmean')&& strcmp(param.percentile_or_value,'value') 166 | display('RUN - local: minmaxmean: value') 167 | data.ths_high=param.value_high; 168 | data.ths_low=param.value_low; 169 | else 170 | error('No analysis triggered') 171 | end 172 | 173 | %% Compute the threshold(s) depending on the approach used 174 | Gene_score=[]; 175 | switch param.ThreshType 176 | case 'local' 177 | if strcmp(param.LocalThresholdType,'mean') 178 | %the threshold for each gene is equal to its mean value over 179 | %all the samples 180 | threshold=mean(data.value,2)'; 181 | else 182 | threshold=[]; 183 | for i=1:length(data.gene) 184 | expressionValue=data.value(i,:); 185 | if mean(expressionValue)>=data.ths_high 186 | threshold(i)=data.ths_high; 187 | else 188 | threshold(i)=max(mean(expressionValue),data.ths_low); 189 | end 190 | end 191 | end 192 | % every single gene is associated to an expression score 193 | for i=1:SampleNumber 194 | Gene_score(:,i)=5.*log(1+(data.value(:,i)./threshold')); 195 | end 196 | case 'global' 197 | Gene_score=5.*log(1+(data.value./data.ths)); 198 | end 199 | 200 | % Mapping of the expression data to the model 201 | expression.gene=data.gene; 202 | expression.Rxns=[]; 203 | expression.gene_used=[]; 204 | expression.count=[]; 205 | minSum = false; 206 | 207 | %waitbar(.25,f,'Load GPR parse'); 208 | %% load parsedGPR for each model 209 | load(strcat('parsedGPR/parsedGPR_',ref)); 210 | %%parsedGPR = GPRparser(model,minSum);%code to compute the parsed GPR using 211 | %%cobratoolbox 212 | 213 | %waitbar(.45,f,'Mapping of the expression data to the model'); 214 | 215 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 216 | % run all samples at the same time 217 | expression.value=Gene_score; 218 | % Find wich genes in expression data are used in the model 219 | [gene_id, gene_expr] = findUsedGenesLevels_all(model,expression); 220 | % Link the gene to the model reactions 221 | [expressionRxns, gene_used] = selectGeneFromGPR_all(model, gene_id, gene_expr, parsedGPR, minSum); 222 | 223 | for zz = 1:SampleNumber 224 | gene_all=[]; 225 | for j=1:length(gene_used(:,zz)) 226 | if ~isempty(gene_used{j,zz}) 227 | gene_all(end+1)=str2num(gene_used{j,zz}{1}); 228 | end 229 | end 230 | countGene = tabulate(gene_all); 231 | count=[]; 232 | for k=1:length(gene_used(:,zz)) 233 | if ~isempty(gene_used{k,zz}) 234 | tmp=countGene(str2num(gene_used{k,zz}{1}),2); 235 | count(k)=tmp; 236 | else 237 | count(k)=0; 238 | end 239 | end 240 | expression.count=[expression.count count']; 241 | end 242 | expression.Rxns = expressionRxns; 243 | expression.gene_used = gene_used; 244 | 245 | 246 | 247 | %% Compute the score 248 | expressionRxns=expression.Rxns; 249 | significance=1./expression.count; 250 | significance(isinf(significance))=0; 251 | ScorebyTask=[]; 252 | ScorebyTask_binary=[]; 253 | %waitbar(.75,f,'Compute the task activity score'); 254 | for i=1:size(taskInfos,1) 255 | if ~isempty(essentialRxns{i}) 256 | rxns=essentialRxns{i}; 257 | rxnID=findRxnIDs(model,rxns); 258 | rxnID(rxnID==0)=[]; 259 | if ~isempty(rxnID) 260 | expValue=expressionRxns(rxnID,:); 261 | signValue=significance(rxnID,:); 262 | % if no gene is associated with one of the reaction - 263 | % remove the reactions from the count 264 | if ~isempty(find(sum(expValue,2)==-SampleNumber)) 265 | signValue(find(sum(expValue,2)==-SampleNumber),:)=[]; 266 | expValue(find(sum(expValue,2)==-SampleNumber),:)=[]; 267 | end 268 | if ~isempty(expValue) 269 | if size(expValue,1)>1 270 | ScorebyTask(i,:)=sum(expValue.*signValue)./size(expValue,1); 271 | Val=sum(expValue)./size(expValue,1); 272 | ID_up=find(Val>=5*log(2)); 273 | ScorebyTask_binary(i,:)=zeros(1,SampleNumber); 274 | ScorebyTask_binary(i,ID_up)=1; 275 | else 276 | ScorebyTask(i,:)=expValue.*signValue; 277 | ID_up=find(expValue>=5*log(2)); 278 | ScorebyTask_binary(i,:)=zeros(1,SampleNumber); 279 | ScorebyTask_binary(i,ID_up)=1; 280 | end 281 | else 282 | ScorebyTask(i,:)=-1.*ones(1,SampleNumber); 283 | ScorebyTask_binary(i,:)=-1.*ones(1,SampleNumber); 284 | end 285 | else 286 | ScorebyTask(i,:)=-1.*ones(1,SampleNumber); 287 | ScorebyTask_binary(i,:)=-1.*ones(1,SampleNumber); 288 | end 289 | else 290 | ScorebyTask(i,:)=-1.*ones(1,SampleNumber); 291 | ScorebyTask_binary(i,:)=-1.*ones(1,SampleNumber); 292 | end 293 | end 294 | 295 | detailScoring={}; 296 | 297 | tmpSampNum = {}; 298 | for j=1:SampleNumber 299 | tmpSampNum{j} = int2str(j); 300 | incR.(['incR',tmpSampNum{j}])=1; 301 | end 302 | 303 | for i=1:size(taskInfos,1) 304 | if ~isempty(essentialRxns{i}) 305 | rxns=essentialRxns{i}; 306 | rxnID=findRxnIDs(model,rxns); 307 | rxnID(rxnID==0)=[]; 308 | for j=1:SampleNumber 309 | if ~isempty(rxnID) 310 | for k=1:length(rxnID) 311 | %1st column = sample ID 312 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+1}=j; 313 | %2nd column = task ID 314 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+2}=i; 315 | %3th column = task score for this sample 316 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+3}=ScorebyTask(i,j); 317 | %4th column = task score in binary version for this sample 318 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+4}=ScorebyTask_binary(i,j); 319 | %5th column = essential reaction associated to this 320 | %task 321 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+5}=rxns(k); 322 | %6th column = expression score associated to the 323 | %reaction listed in the 5th column 324 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+6}=expression.Rxns(rxnID(k),j); 325 | %7th column = gene used to determine the expression of the 326 | %reaction listed in the 5th column 327 | geneName=expression.gene_used(rxnID(k),j); 328 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+7}=geneName; 329 | %8th column = original expression value of the gene 330 | %listed in the 7th column 331 | detailScoring{incR.(['incR',tmpSampNum{j}]),((j-1)*8)+8}=data.value((strcmp(data.gene,geneName{1})),j); % 8.64 332 | incR.(['incR',tmpSampNum{j}])=incR.(['incR',tmpSampNum{j}])+1; 333 | end 334 | end 335 | end 336 | end 337 | score=ScorebyTask; 338 | score_binary=ScorebyTask_binary; 339 | end 340 | end 341 | 342 | 343 | %close(f) -------------------------------------------------------------------------------- /src/CellFie_slow.m: -------------------------------------------------------------------------------- 1 | function[score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param) 2 | % Compute the score associated to each metabolic task listed in taskstructure based on transcriptomic data 3 | % 4 | % USAGE: 5 | % [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param) 6 | % 7 | % INPUTS: 8 | % data 9 | % .gene cell array containing GeneIDs in the same 10 | % format as model.genes 11 | % .value mRNA expression data structure (genes x samples)associated to each gene metioned in data.gene 12 | % SampleNumber Number of samples 13 | % ref Reference model used to compute the 14 | % metabolic task scores (e.g.,'MT_recon_2_2_entrez.mat') 15 | % OPTIONAL INPUTS: 16 | % param.ThreshType Type of thresholding approach used 17 | % (i.e.,'global' or 'local') (default - local) 18 | % related to the use of a GLOBAL thresholding approach - the threshold value is the same for all the genes 19 | % param.percentile_or_value the threshold can be defined using a value introduced by the user ('value') 20 | % or based on a percentile of the distribution of expression value for all the 21 | % genes and across all samples of your 22 | % dataset ('percentile') 23 | % param.percentile percentile from the distribution of 24 | % expression values for all the genes and across all samples that will be 25 | % used to define the threshold value 26 | % param.value expression value for which a gene is 27 | % considered as active or not (e.g., 5) 28 | % 29 | % related to the use of a LOCAL thresholding approach - the threshold value is different for all the genes 30 | % param.percentile_or_value the threshold can be defined using a value introduced by the user ('value') 31 | % or based on a percentile of the distribution of expression value of a 32 | % specific gene across all samples of your 33 | % dataset ('percentile'-default) 34 | % param.LocalThresholdType option to define the type of local thresholding approach to use 35 | % - 'minmaxmean' (default options )- the threshold for a gene is determined by the mean of expression 36 | % values observed for that gene among all the samples, tissues, or conditions BUT 37 | % the threshold :(i) must be higher or equal to a lower bound and (ii) must be lower 38 | % or equal to an upper bound. 39 | % - 'mean' -the threshold for a gene is defined as the mean expression value 40 | % of this gene across all the samples, tissues, or conditions 41 | % param.percentile_low lower percentile used to define which gene 42 | % are always inactive in the case of use 'MinMaxMean' local thresholding 43 | % approach (default = 25) 44 | % param.percentile_high upper percentile used to define which gene 45 | % are always active in the case of use 'MinMaxMean' local thresholding 46 | % approach (default= 75) 47 | % param.value_low lower expression value used to define which gene 48 | % are always inactive in the case of use 'MinMaxMean' local thresholding 49 | % approach (e.g., 5) 50 | % param.value_high upper expression value used to define which gene 51 | % are always active in the case of use 'MinMaxMean' local thresholding 52 | % approach (e.g., 5) 53 | % 54 | % related to the gene mapping approach used 55 | % param.minSum: instead of using min and max, use min for AND and Sum 56 | % for OR (default: false, i.e. use min) 57 | % OUTPUTS: 58 | % score relative quantification of the activity of a metabolic task in a specific condition 59 | % based on the availability of data for multiple conditions 60 | % score_binary binary version of the metabolic task score 61 | % to determine whether a task is active or inactive in specific 62 | % conditions 63 | % taskInfos Description of the metabolic task assessed 64 | % detailScoring Matrix detailing the scoring 65 | % 1st column = sample ID 66 | % 2nd column = task ID 67 | % 3th column = task score for this sample 68 | % 4th column = task score in binary version for this sample 69 | % 5th column = essential reaction associated to this task 70 | % 6th column = expression score associated to the reaction listed in the 5th column 71 | % 7th column = gene used to determine the expression of the reaction listed in the 5th column 72 | % 8th column = original expression value of the gene listed in the 7th column 73 | % 74 | % .. Authors: 75 | % - Anne Richelle, January 2019 76 | if size(data.value,2) ~= SampleNumber 77 | error('The number of samples defined is not the same as the size of the dataset') 78 | end 79 | if size(data.value,1) ~= length(data.gene) 80 | error('data.value does not have the same number of rows as data.gene') 81 | end 82 | if ~exist('ref','var') 83 | error('The reference model has not been defined - please choose a reference model') 84 | end 85 | if ~exist('param','var') 86 | param.ThreshType='local'; 87 | param.percentile_or_value='percentile'; 88 | param.LocalThresholdType='minmaxmean'; 89 | param.percentile_low=25; 90 | param.percentile_high=75; 91 | end 92 | 93 | f = waitbar(0,'Please wait...'); 94 | waitbar(.15,f,'Loading your data'); 95 | 96 | %load the info about the task structure 97 | load('taskStructure') 98 | taskInfos=struct2cell(taskStructure); 99 | taskInfos=taskInfos'; 100 | taskInfos(:,5:end)=[]; 101 | 102 | 103 | %load the reference model in matlab 104 | load(ref); 105 | 106 | %% Depending on the model, load the list of reactions associated with the task 107 | % All these files have the following format 108 | % essentialRxnsbyTask_name_of_model and are located in essentialRxns folder 109 | load(strcat('essentialRxns/essentialRxnsbyTask_',ref)); 110 | 111 | % check that at least part of list of gene provided are in the model loaded 112 | ID_model=[]; 113 | gene_notInModel=[]; 114 | for i=1:length(data.gene) 115 | if isempty(find(strcmp(data.gene{i},model.genes))) 116 | gene_notInModel(end+1)=i; 117 | else 118 | tmpid=find(strcmp(data.gene{i},model.genes)==1); 119 | ID_model(end+1)=tmpid(1); 120 | end 121 | end 122 | 123 | % introduce a warning in the webtool about how many of the genes provided are 124 | % actually mapped to the model 125 | if isempty(gene_notInModel) 126 | display('All genes provided in data are included in the reference model') 127 | else 128 | display([num2str(length(gene_notInModel)),' genes provided are not included in the reference model:']) 129 | data.gene(gene_notInModel) 130 | end 131 | 132 | % remove the gene and associated value provided by the user in data that are not in the model 133 | data.gene(gene_notInModel)=[]; 134 | if SampleNumber==1 135 | data.value(gene_notInModel)=[]; 136 | else 137 | data.value(gene_notInModel,:)=[]; 138 | end 139 | 140 | % get the threshold value and the histogram for the complete dataset and 141 | % print a figure 142 | if SampleNumber>1 143 | linData = reshape(data.value,numel(data.value),1); 144 | else 145 | linData=data.value; 146 | end 147 | linData(linData==0)=[]; 148 | 149 | % definition of the thresholds 150 | if strcmp(param.ThreshType,'global') && strcmp(param.percentile_or_value,'percentile') 151 | display('RUN - global: percentile') 152 | l_global = (prctile(log10(linData),param.percentile)); 153 | data.ths=10^l_global; 154 | elseif strcmp(param.ThreshType,'global') && strcmp(param.percentile_or_value,'value') 155 | display('RUN - global: value') 156 | data.ths=param.value; 157 | elseif strcmp(param.ThreshType,'local') && strcmp(param.LocalThresholdType,'mean') 158 | display('RUN - local: mean') 159 | elseif strcmp(param.ThreshType,'local') && strcmp(param.LocalThresholdType,'minmaxmean')&& strcmp(param.percentile_or_value,'percentile') 160 | display('RUN - local: minmaxmean: percentile') 161 | l_high = (prctile(log10(linData),param.percentile_high)); 162 | data.ths_high=10^l_high; 163 | l_low = (prctile(log10(linData),param.percentile_low)); 164 | data.ths_low=10^l_low; 165 | elseif strcmp(param.ThreshType,'local') && strcmp(param.LocalThresholdType,'minmaxmean')&& strcmp(param.percentile_or_value,'value') 166 | display('RUN - local: minmaxmean: value') 167 | data.ths_high=param.value_high; 168 | data.ths_low=param.value_low; 169 | else 170 | error('No analysis triggered') 171 | end 172 | 173 | %% Compute the threshold(s) depending on the approach used 174 | Gene_score=[]; 175 | switch param.ThreshType 176 | case 'local' 177 | if strcmp(param.LocalThresholdType,'mean') 178 | %the threshold for each gene is equal to its mean value over 179 | %all the samples 180 | threshold=mean(data.value,2)'; 181 | else 182 | threshold=[]; 183 | for i=1:length(data.gene) 184 | expressionValue=data.value(i,:); 185 | if mean(expressionValue)>=data.ths_high 186 | threshold(i)=data.ths_high; 187 | else 188 | threshold(i)=max(mean(expressionValue),data.ths_low); 189 | end 190 | end 191 | end 192 | % every single gene is associated to an expression score 193 | for i=1:SampleNumber 194 | Gene_score(:,i)=5.*log(1+(data.value(:,i)./threshold')); 195 | end 196 | case 'global' 197 | Gene_score=5.*log(1+(data.value./data.ths)); 198 | end 199 | 200 | % Mapping of the expression data to the model 201 | expression.gene=data.gene; 202 | expression.Rxns=[]; 203 | expression.gene_used=[]; 204 | expression.count=[]; 205 | minSum = false; 206 | 207 | waitbar(.25,f,'Load GPR parse'); 208 | %% load parsedGPR for each model 209 | load(strcat('parsedGPR/parsedGPR_',ref)); 210 | %%parsedGPR = GPRparser(model,minSum);%code to compute the parsed GPR using 211 | %%cobratoolbox 212 | 213 | waitbar(.45,f,'Mapping of the expression data to the model'); 214 | for i=1:SampleNumber 215 | if SampleNumber==1 216 | expression.value=Gene_score; 217 | else 218 | expression.value=Gene_score(:,i); 219 | end 220 | % Find wich genes in expression data are used in the model 221 | [gene_id, gene_expr] = findUsedGenesLevels(model,expression); 222 | % Link the gene to the model reactions 223 | [expressionRxns, gene_used] = selectGeneFromGPR(model, gene_id, gene_expr, parsedGPR, minSum); 224 | 225 | gene_all=[]; 226 | for j=1:length(gene_used) 227 | if ~isempty(gene_used{j}) 228 | gene_all(end+1)=str2num(gene_used{j}{1}); 229 | end 230 | end 231 | countGene = tabulate(gene_all); 232 | count=[]; 233 | for k=1:length(gene_used) 234 | if ~isempty(gene_used{k}) 235 | tmp=countGene(str2num(gene_used{k}{1}),2); 236 | count(k)=tmp; 237 | else 238 | count(k)=0; 239 | end 240 | end 241 | expression.Rxns=[expression.Rxns expressionRxns]; 242 | expression.gene_used=[expression.gene_used gene_used']; 243 | expression.count=[expression.count count']; 244 | end 245 | 246 | %% Compute the score 247 | expressionRxns=expression.Rxns; 248 | significance=1./expression.count; 249 | significance(isinf(significance))=0; 250 | ScorebyTask=[]; 251 | ScorebyTask_binary=[]; 252 | waitbar(.75,f,'Compute the task activity score'); 253 | for i=1:size(taskInfos,1) 254 | if ~isempty(essentialRxns{i}) 255 | rxns=essentialRxns{i}; 256 | rxnID=findRxnIDs(model,rxns); 257 | rxnID(rxnID==0)=[]; 258 | if ~isempty(rxnID) 259 | expValue=expressionRxns(rxnID,:); 260 | signValue=significance(rxnID,:); 261 | % if no gene is associated with one of the reaction - 262 | % remove the reactions from the count 263 | if ~isempty(find(sum(expValue,2)==-SampleNumber)) 264 | signValue(find(sum(expValue,2)==-SampleNumber),:)=[]; 265 | expValue(find(sum(expValue,2)==-SampleNumber),:)=[]; 266 | end 267 | if ~isempty(expValue) 268 | if size(expValue,1)>1 269 | ScorebyTask(i,:)=sum(expValue.*signValue)./size(expValue,1); 270 | Val=sum(expValue)./size(expValue,1); 271 | ID_up=find(Val>=5*log(2)); 272 | ScorebyTask_binary(i,:)=zeros(1,SampleNumber); 273 | ScorebyTask_binary(i,ID_up)=1; 274 | else 275 | ScorebyTask(i,:)=expValue.*signValue; 276 | ID_up=find(expValue>=5*log(2)); 277 | ScorebyTask_binary(i,:)=zeros(1,SampleNumber); 278 | ScorebyTask_binary(i,ID_up)=1; 279 | end 280 | else 281 | ScorebyTask(i,:)=-1.*ones(1,SampleNumber); 282 | ScorebyTask_binary(i,:)=-1.*ones(1,SampleNumber); 283 | end 284 | else 285 | ScorebyTask(i,:)=-1.*ones(1,SampleNumber); 286 | ScorebyTask_binary(i,:)=-1.*ones(1,SampleNumber); 287 | end 288 | else 289 | ScorebyTask(i,:)=-1.*ones(1,SampleNumber); 290 | ScorebyTask_binary(i,:)=-1.*ones(1,SampleNumber); 291 | end 292 | end 293 | 294 | detailScoring={}; 295 | waitbar(1,f,'Format the score'); 296 | for j=1:SampleNumber 297 | incR=1; 298 | for i=1:size(taskInfos,1) 299 | if ~isempty(essentialRxns{i}) 300 | rxns=essentialRxns{i}; 301 | rxnID=findRxnIDs(model,rxns); 302 | rxnID(rxnID==0)=[]; 303 | if ~isempty(rxnID) 304 | for k=1:length(rxnID) 305 | %1st column = sample ID 306 | detailScoring{incR,((j-1)*8)+1}=j; 307 | %2nd column = task ID 308 | detailScoring{incR,((j-1)*8)+2}=i; 309 | %3th column = task score for this sample 310 | detailScoring{incR,((j-1)*8)+3}=ScorebyTask(i,j); 311 | %4th column = task score in binary version for this sample 312 | detailScoring{incR,((j-1)*8)+4}=ScorebyTask_binary(i,j); 313 | %5th column = essential reaction associated to this 314 | %task 315 | detailScoring{incR,((j-1)*8)+5}=rxns(k); 316 | %6th column = expression score associated to the 317 | %reaction listed in the 5th column 318 | detailScoring{incR,((j-1)*8)+6}=expression.Rxns(rxnID(k),j); 319 | %7th column = gene used to determine the expression of the 320 | %reaction listed in the 5th column 321 | geneName=expression.gene_used(rxnID(k),j); 322 | detailScoring{incR,((j-1)*8)+7}=geneName; 323 | %8th column = original expression value of the gene 324 | %listed in the 7th column 325 | detailScoring{incR,((j-1)*8)+8}=data.value(find(strcmp(data.gene,geneName{1})),j); 326 | incR=incR+1; 327 | end 328 | end 329 | end 330 | end 331 | score=ScorebyTask; 332 | score_binary=ScorebyTask_binary; 333 | end 334 | close(f) 335 | -------------------------------------------------------------------------------- /src/findRxnIDs.m: -------------------------------------------------------------------------------- 1 | function rxnID = findRxnIDs(model, rxnList) 2 | % Finds reaction numbers in a model 3 | % 4 | % USAGE: 5 | % 6 | % rxnID = findRxnIDs(model, rxnList) 7 | % 8 | % INPUTS: 9 | % model: COBRA model strcture 10 | % rxnList: List of reactions 11 | % 12 | % OUTPUT: 13 | % rxnID: IDs for reactions corresponding to rxnList 14 | % 15 | % .. Author: - Markus Herrgard 4/21/06 16 | 17 | if (iscell(rxnList)) 18 | [tmp,rxnID] = ismember(rxnList,model.rxns); 19 | else 20 | rxnID = find(strcmp(model.rxns,rxnList)); 21 | if (isempty(rxnID)) 22 | rxnID = 0; 23 | end 24 | if (length(rxnID) > 1) 25 | rxnID = rxnID(1); 26 | end 27 | end 28 | -------------------------------------------------------------------------------- /src/findUsedGenesLevels.m: -------------------------------------------------------------------------------- 1 | function [gene_id, gene_expr] = findUsedGenesLevels(model, exprData, printLevel) 2 | % Returns vectors of gene identifiers and corresponding gene expression 3 | % levels for each gene present in the model ('model.genes'). 4 | % 5 | % USAGE: 6 | % [gene_id, gene_expr] = findUsedGenesLevels(model, exprData) 7 | % 8 | % INPUTS: 9 | % 10 | % model: input model (COBRA model structure) 11 | % 12 | % exprData: mRNA expression data structure 13 | % .gene cell array containing GeneIDs in the same 14 | % format as model.genes 15 | % .value Vector containing corresponding expression value (FPKM) 16 | % 17 | % OPTIONAL INPUTS: 18 | % printLevel: Printlevel for output (default 0); 19 | % 20 | % OUTPUTS: 21 | % 22 | % gene_id: vector of gene identifiers present in the model 23 | % that are associated with expression data 24 | % 25 | % gene_expr: vector of expression values associated to each 26 | % 'gened_id' 27 | % 28 | % 29 | % Authors: - S. Opdam & A. Richelle May 2017 30 | 31 | if ~exist('printLevel','var') 32 | printLevel = 0; 33 | end 34 | 35 | gene_expr=[]; 36 | gene_id = model.genes; 37 | 38 | for i = 1:numel(gene_id) 39 | 40 | cur_ID = gene_id{i}; 41 | dataID=find(ismember(exprData.gene,cur_ID)==1); 42 | if isempty (dataID) 43 | gene_expr(i)=-1; 44 | elseif length(dataID)==1 45 | gene_expr(i)=exprData.value(dataID); 46 | elseif length(dataID)>1 47 | if printLevel > 0 48 | disp(['Double for ',num2str(cur_ID)]) 49 | end 50 | gene_expr(i)=mean(exprData.value(dataID)); 51 | end 52 | end 53 | 54 | end 55 | -------------------------------------------------------------------------------- /src/findUsedGenesLevels_all.m: -------------------------------------------------------------------------------- 1 | function [gene_id, gene_expr] = findUsedGenesLevels_all(model, exprData, printLevel) 2 | % Returns vectors of gene identifiers and corresponding gene expression 3 | % levels for each gene present in the model ('model.genes'). 4 | % 5 | % USAGE: 6 | % [gene_id, gene_expr] = findUsedGenesLevels(model, exprData) 7 | % 8 | % INPUTS: 9 | % 10 | % model: input model (COBRA model structure) 11 | % 12 | % exprData: mRNA expression data structure 13 | % .gene cell array containing GeneIDs in the same 14 | % format as model.genes 15 | % .value Vector containing corresponding expression value (FPKM) 16 | % 17 | % OPTIONAL INPUTS: 18 | % printLevel: Printlevel for output (default 0); 19 | % 20 | % OUTPUTS: 21 | % 22 | % gene_id: vector of gene identifiers present in the model 23 | % that are associated with expression data 24 | % 25 | % gene_expr: vector of expression values associated to each 26 | % 'gened_id' 27 | % 28 | % 29 | % Authors: - S. Opdam & A. Richelle May 2017 30 | 31 | if ~exist('printLevel','var') 32 | printLevel = 0; 33 | end 34 | 35 | gene_expr=[]; 36 | gene_id = model.genes; 37 | tmpb = length(exprData.value(1,:)); 38 | for i = 1:numel(gene_id) 39 | 40 | cur_ID = gene_id{i}; 41 | dataID=find(ismember(exprData.gene,cur_ID)==1); 42 | if isempty (dataID) 43 | gene_expr(i,:)=-ones(1,tmpb); 44 | elseif length(dataID)==1 45 | gene_expr(i,:)=exprData.value(dataID,:); 46 | elseif length(dataID)>1 47 | if printLevel > 0 48 | disp(['Double for ',num2str(cur_ID)]) 49 | end 50 | gene_expr(i)=mean(exprData.value(dataID)); 51 | end 52 | end 53 | 54 | end 55 | -------------------------------------------------------------------------------- /src/prctile.m: -------------------------------------------------------------------------------- 1 | function y = prctile(x,p,dim) 2 | %PRCTILE Percentiles of a sample. 3 | % Y = PRCTILE(X,P) returns percentiles of the values in X. P is a scalar 4 | % or a vector of percent values. When X is a vector, Y is the same size 5 | % as P, and Y(i) contains the P(i)-th percentile. When X is a matrix, 6 | % the i-th row of Y contains the P(i)-th percentiles of each column of X. 7 | % For N-D arrays, PRCTILE operates along the first non-singleton 8 | % dimension. 9 | % 10 | % Y = PRCTILE(X,P,DIM) calculates percentiles along dimension DIM. The 11 | % DIM'th dimension of Y has length LENGTH(P). 12 | % 13 | % Percentiles are specified using percentages, from 0 to 100. For an N 14 | % element vector X, PRCTILE computes percentiles as follows: 15 | % 1) The sorted values in X are taken as the 100*(0.5/N), 100*(1.5/N), 16 | % ..., 100*((N-0.5)/N) percentiles. 17 | % 2) Linear interpolation is used to compute percentiles for percent 18 | % values between 100*(0.5/N) and 100*((N-0.5)/N) 19 | % 3) The minimum or maximum values in X are assigned to percentiles 20 | % for percent values outside that range. 21 | % 22 | % PRCTILE treats NaNs as missing values, and removes them. 23 | % 24 | % Examples: 25 | % y = prctile(x,50); % the median of x 26 | % y = prctile(x,[2.5 25 50 75 97.5]); % a useful summary of x 27 | % 28 | % See also IQR, MEDIAN, NANMEDIAN, QUANTILE. 29 | 30 | % Copyright 1993-2015 The MathWorks, Inc. 31 | 32 | 33 | if ~isvector(p) || numel(p) == 0 || any(p < 0 | p > 100) || ~isreal(p) 34 | error(message('stats:prctile:BadPercents')); 35 | end 36 | 37 | % Figure out which dimension prctile will work along. 38 | sz = size(x); 39 | if nargin < 3 40 | dim = find(sz ~= 1,1); 41 | if isempty(dim) 42 | dim = 1; 43 | end 44 | dimArgGiven = false; 45 | else 46 | % Permute the array so that the requested dimension is the first dim. 47 | nDimsX = ndims(x); 48 | perm = [dim:max(nDimsX,dim) 1:dim-1]; 49 | x = permute(x,perm); 50 | % Pad with ones if dim > ndims. 51 | if dim > nDimsX 52 | sz = [sz ones(1,dim-nDimsX)]; 53 | end 54 | sz = sz(perm); 55 | dim = 1; 56 | dimArgGiven = true; 57 | end 58 | 59 | % If X is empty, return all NaNs. 60 | if isempty(x) 61 | if isequal(x,[]) && ~dimArgGiven 62 | y = nan(size(p),'like',x); 63 | else 64 | szout = sz; szout(dim) = numel(p); 65 | y = nan(szout,'like',x); 66 | end 67 | 68 | else 69 | % Drop X's leading singleton dims, and combine its trailing dims. This 70 | % leaves a matrix, and we can work along columns. 71 | nrows = sz(dim); 72 | ncols = numel(x) ./ nrows; 73 | x = reshape(x, nrows, ncols); 74 | 75 | x = sort(x,1); 76 | n = sum(~isnan(x), 1); % Number of non-NaN values in each column 77 | 78 | % For columns with no valid data, set n=1 to get nan in the result 79 | n(n==0) = 1; 80 | 81 | % If the number of non-nans in each column is the same, do all cols at once. 82 | if all(n == n(1)) 83 | n = n(1); 84 | if isequal(p,50) % make the median fast 85 | if rem(n,2) % n is odd 86 | y = x((n+1)/2,:); 87 | else % n is even 88 | y = (x(n/2,:) + x(n/2+1,:))/2; 89 | end 90 | else 91 | y = interpColsSame(x,p,n); 92 | end 93 | 94 | else 95 | % Get percentiles of the non-NaN values in each column. 96 | y = interpColsDiffer(x,p,n); 97 | end 98 | 99 | % Reshape Y to conform to X's original shape and size. 100 | szout = sz; szout(dim) = numel(p); 101 | y = reshape(y,szout); 102 | end 103 | % undo the DIM permutation 104 | if dimArgGiven 105 | y = ipermute(y,perm); 106 | end 107 | 108 | % If X is a vector, the shape of Y should follow that of P, unless an 109 | % explicit DIM arg was given. 110 | if ~dimArgGiven && isvector(x) 111 | y = reshape(y,size(p)); 112 | end 113 | 114 | 115 | function y = interpColsSame(x, p, n) 116 | %INTERPCOLSSAME An aternative approach of 1-D linear interpolation which is 117 | % faster than using INTERP1Q and can deal with invalid data so long as 118 | % all columns have the same number of valid entries (scalar n). 119 | 120 | % Make p a column vector. Note that n is assumed to be scalar. 121 | if isrow(p) 122 | p = p'; 123 | end 124 | 125 | % Form the vector of index values (numel(p) x 1) 126 | r = (p/100)*n; 127 | k = floor(r+0.5); % K gives the index for the row just before r 128 | kp1 = k + 1; % K+1 gives the index for the row just after r 129 | r = r - k; % R is the ratio between the K and K+1 rows 130 | 131 | % Find indices that are out of the range 1 to n and cap them 132 | k(k<1 | isnan(k)) = 1; 133 | kp1 = bsxfun( @min, kp1, n ); 134 | 135 | % Use simple linear interpolation for the valid precentages 136 | y = bsxfun(@times, 0.5-r, x(k,:)) + bsxfun(@times, 0.5+r, x(kp1,:)); 137 | 138 | % Make sure that values we hit exactly are copied rather than interpolated 139 | exact = (r==-0.5); 140 | if any(exact) 141 | y(exact,:) = x(k(exact),:); 142 | end 143 | 144 | function y = interpColsDiffer(x, p, n) 145 | %INTERPCOLSDIFFER A simple 1-D linear interpolation of columns that can 146 | %deal with columns with differing numbers of valid entries (vector n). 147 | 148 | [nrows, ncols] = size(x); 149 | 150 | % Make p a column vector. n is already a row vector with ncols columns. 151 | if isrow(p) 152 | p = p'; 153 | end 154 | 155 | % Form the grid of index values (numel(p) x numel(n)) 156 | r = (p/100)*n; 157 | k = floor(r+0.5); % K gives the index for the row just before r 158 | kp1 = k + 1; % K+1 gives the index for the row just after r 159 | r = r - k; % R is the ratio between the K and K+1 rows 160 | 161 | % Find indices that are out of the range 1 to n and cap them 162 | k(k<1 | isnan(k)) = 1; 163 | kp1 = bsxfun( @min, kp1, n ); 164 | 165 | % Convert K and Kp1 into linear indices 166 | offset = nrows*(0:ncols-1); 167 | k = bsxfun( @plus, k, offset ); 168 | kp1 = bsxfun( @plus, kp1, offset ); 169 | 170 | % Use simple linear interpolation for the valid precentages. 171 | % Note that NaNs in r produce NaN rows. 172 | y = (0.5-r).*x(k) + (0.5+r).*x(kp1); 173 | 174 | % Make sure that values we hit exactly are copied rather than interpolated 175 | exact = (r==-0.5); 176 | if any(exact(:)) 177 | y(exact) = x(k(exact)); 178 | end 179 | -------------------------------------------------------------------------------- /src/runCellFie.m: -------------------------------------------------------------------------------- 1 | addpath(genpath('/var/www/pinapl-py-site/')) 2 | addpath(genpath('/var/www/MATLAB/lib/')) 3 | addpath(genpath('/var/www/MATLAB/lib/MetTasks/')) 4 | addpath(genpath('/var/www/MATLAB/lib/MetTasks/matlab')) 5 | addpath(genpath('/var/www/MATLAB/lib//MetTasks/matlab/yaml')) 6 | addpath(genpath('/var/www/MATLAB/lib/cobratoolbox/')) 7 | 8 | 9 | yml = YAML.read(config_file); 10 | 11 | dataAll = readtable(data_file); 12 | 'input data head:' 13 | dataAll(1:10,:) 14 | 15 | ThreshType = yml.ThreshType 16 | SampleNumber = yml.SampleNumber 17 | ref = yml.ref 18 | 19 | percentile_or_value = yml.percentile_or_value 20 | percentile = yml.percentile 21 | value = yml.value 22 | 23 | EnoughSamples = yml.EnoughSamples 24 | LocalThresholdType = yml.LocalThresholdType 25 | percentile_low = yml.percentileLow 26 | percentile_high = yml.percentileHigh 27 | value_low = yml.valueLow 28 | value_high = yml.valueHigh 29 | 30 | data = {}; 31 | data.gene = string( table2array( dataAll(:,1) ) ); 32 | data.value = table2array( dataAll(:,2:end) ); 33 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,ThreshType,SampleNumber,ref,percentile_or_value,percentile,value,LocalThresholdType,percentile_low,percentile_high,value_low,value_high) 34 | 35 | rownames=taskInfos(:,2) 36 | colnames=1:SampleNumber 37 | score_long=wide2long(score,rownames,colnames) 38 | 39 | fname='Analysis/Output/' 40 | save 'Analysis/Output/score.mat' score 41 | tab=table(taskInfos,score) 42 | writetable(tab,fullfile(fname, 'score.csv')) 43 | 44 | % write names if present 45 | tableNames = dataAll.Properties.VariableNames 46 | writetable(tab,fullfile(fname, 'annotation.csv')) 47 | 48 | D2 = pdist(score); 49 | Z2 = linkage(D2,'average'); 50 | order2 = optimalleaforder(Z2, D2); 51 | D3 = pdist(score'); 52 | Z3 = linkage(D3,'average'); 53 | order3 = optimalleaforder(Z3, D3); 54 | 55 | score_cluster = score(order2,order3); 56 | 57 | figure(2) 58 | imagesc(score_cluster) 59 | ax=gca; 60 | ax.YTick=1:length(taskInfos(:,2)); 61 | ax.YTickLabel=taskInfos(order2,2); 62 | 63 | ax.XTick=1:length(colnames); 64 | ax.XTickLabel=colnames(order3); 65 | colorbar 66 | saveas(figure(2),'Analysis/Figures/score_heatmap.png') 67 | 68 | figure(3) 69 | dendrogram(Z3) 70 | saveas(figure(3),'Analysis/Figures/score_dendro.png') 71 | 72 | fname='Analysis/Output/' 73 | save 'Analysis/Output/score_binary.mat' score_binary 74 | tab=table(taskInfos,score_binary) 75 | writetable(tab,fullfile(fname, 'score_binary.csv')) 76 | 77 | D2 = pdist(score_binary); 78 | Z2 = linkage(D2,'average'); 79 | order2 = optimalleaforder(Z2, D2); 80 | D3 = pdist(score_binary'); 81 | Z3 = linkage(D3,'average'); 82 | order3 = optimalleaforder(Z3, D3); 83 | 84 | score_bin_cluster = score_binary(order2,order3); 85 | 86 | figure('units','normalized','outerposition',[0 0 1 1]) 87 | imagesc(score_bin_cluster) 88 | ax=gca; 89 | 90 | ax.XTick=1:length(colnames); 91 | ax.XTickLabel=colnames(order3); 92 | colorbar 93 | fig=gcf; 94 | saveas(figure(fig.Number),'Analysis/Figures/score_bin_heatmap.png') 95 | 96 | figure(3) 97 | dendrogram(Z3) 98 | saveas(figure(3),'Analysis/Figures/score_bin_dendro.png') 99 | 100 | save 'Analysis/Output/taskInfos.mat' taskInfos 101 | fname='Analysis/Output/' 102 | tab=table(taskInfos) 103 | writetable(tab,fullfile(fname, 'taskInfos.csv')) 104 | 105 | exit 106 | exit -------------------------------------------------------------------------------- /src/selectGeneFromGPR.m: -------------------------------------------------------------------------------- 1 | function [expressionCol, gene_used] = selectGeneFromGPR(model, gene_names, gene_exp, parsedGPR, minSum) 2 | % Map gene expression to reaction expression using the GPR rules. An AND 3 | % will be replaced by MIN and an OR will be replaced by MAX. 4 | % 5 | % USAGE: 6 | % expressionCol = selectGeneFromGPR(model, gene_names, gene_exp, parsedGPR, minMax) 7 | % 8 | % INPUTS: 9 | % model: COBRA model struct 10 | % gene_names: gene identifiers corresponding to gene_exp. Names must 11 | % be in the same format as model.genes (column vector) 12 | % (as returned by "findUsedGeneLevels.m") 13 | % gene_exp: gene FPKM/expression values, corresponding to names (column vector) 14 | % (as returned by "findUsedGeneLevels.m") 15 | % parsedGPR: GPR matrix as returned by "GPRparser.m" 16 | % 17 | % OPTIONAL INPUTS: 18 | % minSum: instead of using min and max, use min for AND and Sum 19 | % for OR 20 | % 21 | % OUTPUTS: 22 | % expressionCol: reaction expression, corresponding to model.rxns. 23 | % No gene-expression data and orphan reactions will 24 | % be given a value of -1. 25 | % 26 | % AUTHOR: Anne Richelle, May 2017 27 | 28 | 29 | if ~exist('minSum','var') 30 | minSum = false; 31 | end 32 | gene_used={}; 33 | for i=1:length(model.rxns) 34 | gene_used{i}=''; 35 | end 36 | 37 | % -1 means unknown/no data 38 | expressionCol = -1*ones(length(model.rxns),1); 39 | for i = 1:length(model.rxns) 40 | curExprArr=parsedGPR{i}; 41 | curExpr= []; 42 | gene_potential=[]; 43 | for j=1:length(curExprArr) 44 | if length(curExprArr{j})>=1 45 | geneID = find(ismember(gene_names,curExprArr{j})); 46 | %geneID = find(ismember(gene_names,str2num(curExprArr{j}{1}))); 47 | % if the gene is measured 48 | if ~isempty(geneID) 49 | if minSum 50 | % This is an or rule, so we sum up all options. 51 | curExpr= [curExpr, sum(gene_exp(geneID))]; 52 | gene_potential=[gene_potential, gene_names(geneID)']; 53 | else 54 | % If there is data for any gene in 'AND' rule, take the minimum value 55 | [minGenevalue, minID]=min(gene_exp(geneID)); 56 | curExpr= [curExpr, minGenevalue]; %If there is data for any gene in 'AND' rule, take the minimum value 57 | gene_potential=[gene_potential, gene_names(geneID(minID))]; 58 | end 59 | end 60 | end 61 | end 62 | if ~isempty(curExpr) 63 | if minSum 64 | % in case of min sum these are and clauses that are combined, so its the minimum. 65 | [expressionCol(i), ID_min]=min(curExpr); 66 | gene_used{i}=gene_potential(ID_min); 67 | else 68 | % if there is data for any gene in the 'OR' rule, take the maximum value 69 | [expressionCol(i), ID_max]=max(curExpr); 70 | gene_used{i}=gene_potential(ID_max); 71 | end 72 | end 73 | end 74 | 75 | end -------------------------------------------------------------------------------- /src/selectGeneFromGPR_all.m: -------------------------------------------------------------------------------- 1 | function [expressionCol, gene_used] = selectGeneFromGPR_all(model, gene_names, gene_exp, parsedGPR, minSum) 2 | % Map gene expression to reaction expression using the GPR rules. An AND 3 | % will be replaced by MIN and an OR will be replaced by MAX. 4 | % 5 | % USAGE: 6 | % expressionCol = selectGeneFromGPR(model, gene_names, gene_exp, parsedGPR, minMax) 7 | % 8 | % INPUTS: 9 | % model: COBRA model struct 10 | % gene_names: gene identifiers corresponding to gene_exp. Names must 11 | % be in the same format as model.genes (column vector) 12 | % (as returned by "findUsedGeneLevels.m") 13 | % gene_exp: gene FPKM/expression values, corresponding to names (column vector) 14 | % (as returned by "findUsedGeneLevels.m") 15 | % parsedGPR: GPR matrix as returned by "GPRparser.m" 16 | % 17 | % OPTIONAL INPUTS: 18 | % minSum: instead of using min and max, use min for AND and Sum 19 | % for OR 20 | % 21 | % OUTPUTS: 22 | % expressionCol: reaction expression, corresponding to model.rxns. 23 | % No gene-expression data and orphan reactions will 24 | % be given a value of -1. 25 | % 26 | % AUTHOR: Anne Richelle, May 2017 27 | 28 | 29 | if ~exist('minSum','var') 30 | minSum = false; 31 | end 32 | numSamp = length(gene_exp(1,:)); 33 | gene_used={}; 34 | for i=length(model.rxns):-1:1 35 | for zz = 1:numSamp 36 | gene_used{i,zz}=''; 37 | end 38 | end 39 | 40 | SampStr = {}; 41 | for zz = 1:numSamp 42 | SampStr{zz} = int2str(zz); 43 | end 44 | 45 | % -1 means unknown/no data 46 | expressionCol = -1*ones(length(model.rxns),length(gene_exp(1,:))); 47 | for i = 1:length(model.rxns) 48 | curExprArr=parsedGPR{i}; 49 | for zz = 1:numSamp 50 | % tmpzz = int2str(zz); 51 | tmpStuc.(['curExpr',SampStr{zz}])= []; 52 | tmpStuc.(['gene_potential',SampStr{zz}])=[]; 53 | end 54 | for j=1:length(curExprArr) 55 | if length(curExprArr{j})>=1 56 | geneID = find(ismember(gene_names,curExprArr{j})); 57 | %geneID = find(ismember(gene_names,str2num(curExprArr{j}{1}))); 58 | % if the gene is measured 59 | if ~isempty(geneID) 60 | for zz = 1:numSamp 61 | % tmpzz = int2str(zz); 62 | if minSum 63 | % This is an or rule, so we sum up all options. 64 | tmpStuc.(['curExpr',SampStr{zz}])= [tmpStuc.(['curExpr',SampStr{zz}]), sum(gene_exp(geneID,zz))]; 65 | tmpStuc.(['gene_potential',SampStr{zz}])=[tmpStuc.(['gene_potential',SampStr{zz}]), gene_names(geneID,zz)']; 66 | else 67 | % If there is data for any gene in 'AND' rule, take the minimum value 68 | [minGenevalue, minID]=min(gene_exp(geneID,zz)); 69 | tmpStuc.(['curExpr',SampStr{zz}])= [tmpStuc.(['curExpr',SampStr{zz}]), minGenevalue]; %If there is data for any gene in 'AND' rule, take the minimum value 70 | tmpStuc.(['gene_potential',SampStr{zz}])=[tmpStuc.(['gene_potential',SampStr{zz}]), gene_names(geneID(minID))]; 71 | end 72 | end 73 | end 74 | end 75 | end 76 | for zz = 1:numSamp 77 | % tmpzz = int2str(zz); 78 | if ~isempty(tmpStuc.(['curExpr',SampStr{zz}])) 79 | if minSum 80 | % in case of min sum these are and clauses that are combined, so its the minimum. 81 | [expressionCol(i,zz), ID_min]=min(tmpStuc.(['curExpr',SampStr{zz}])); 82 | gene_used{i,zz}=tmpStuc.(['gene_potential',SampStr{zz}])(ID_min); 83 | else 84 | % if there is data for any gene in the 'OR' rule, take the maximum value 85 | [expressionCol(i,zz), ID_max]=max(tmpStuc.(['curExpr',SampStr{zz}])); 86 | gene_used{i,zz}=tmpStuc.(['gene_potential',SampStr{zz}])(ID_max); 87 | end 88 | end 89 | end 90 | end 91 | 92 | end -------------------------------------------------------------------------------- /src/tabulate.m: -------------------------------------------------------------------------------- 1 | function table = tabulate(x) 2 | %TABULATE Frequency table. 3 | % TABLE = TABULATE(X) takes a vector X and returns a matrix, TABLE. 4 | % The first column of TABLE contains the unique values of X. The 5 | % second is the number of instances of each value. The last column 6 | % contains the percentage of each value. If the elements of X are 7 | % non-negative integers, then the output includes 0 counts for any 8 | % integers that are between 1 and max(X) but do not appear in X. 9 | % 10 | % TABLE = TABULATE(X), where X is a categorical variable, character 11 | % array, or a cell array of strings, returns TABLE as a cell array. The 12 | % first column contains the unique string values in X, and the other two 13 | % columns are as above. 14 | % 15 | % TABULATE with no output arguments returns a formatted table 16 | % in the command window. 17 | % 18 | % See also PARETO. 19 | 20 | % Copyright 1993-2011 The MathWorks, Inc. 21 | 22 | 23 | isnum = isnumeric(x); 24 | if isnum && ~isfloat(x) 25 | % use of hist() below requires float 26 | x = double(x); 27 | end 28 | if isnum 29 | if min(size(x)) > 1, 30 | error(message('stats:tabulate:InvalidData')); 31 | end 32 | 33 | y = x(~isnan(x)); 34 | else 35 | y = x; 36 | end 37 | 38 | if ~isnum || any(y ~= round(y)) || any(y < 1); 39 | docell = true; 40 | [y,yn,yl] = grp2idx(y); 41 | maxlevels = length(yn); 42 | else 43 | docell = false; 44 | maxlevels = max(y); 45 | %yn = cellstr(num2str((1:maxlevels)')); 46 | end 47 | 48 | [counts values] = hist(y,(1:maxlevels)); 49 | 50 | total = sum(counts); 51 | percents = 100*counts./total; 52 | 53 | if nargout == 0 54 | if docell 55 | width = max(cellfun('length',yn)); 56 | width = max(5, min(50, width)); 57 | else 58 | width = 5; 59 | end 60 | 61 | % Create format strings similar to: ' %5s %5d %6.2f%%\n' 62 | fmt1 = sprintf(' %%%ds %%5d %%6.2f%%%%\n',width); 63 | fmt2 = sprintf(' %%%ds %%5s %%6s\n',width); 64 | fprintf(1,fmt2,'Value','Count','Percent'); 65 | if docell 66 | for j=1:maxlevels 67 | fprintf(1,fmt1,yn{j},counts(j),percents(j)); 68 | end 69 | else 70 | fprintf(1,' %5d %5d %6.2f%%\n',[values' counts' percents']'); 71 | end 72 | else 73 | if ~docell 74 | table = [values' counts' percents']; 75 | elseif isnum 76 | table = [yl(:) counts' percents']; 77 | else 78 | table = [yn num2cell([counts' percents'])]; 79 | end 80 | end 81 | -------------------------------------------------------------------------------- /src/wide2long.m: -------------------------------------------------------------------------------- 1 | function longm = wide2long(ds,rownames,colnames) 2 | % dstmp=mat2dataset(ds) 3 | % dstmp.row = rownames(:,2) 4 | % dsNew = stack(dstmp,dstmp.Properties.VarNames(1:end-1),... 5 | % 'newDataVarName','Scores') 6 | %ds.Properties.VarNames = colnames 7 | longm = {}; 8 | longm.sample = []; 9 | longm.task = {}; 10 | longm.value = []; 11 | count=1; 12 | for i=1:size(ds,2) 13 | for j=1:size(ds,1) 14 | longm.sample(count) = colnames(i); 15 | longm.task{count} = rownames{j}; 16 | longm.value(count)= ds(j,i); 17 | count=count+1; 18 | end 19 | end 20 | end 21 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_percentile.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataRecon22_global_percentile.mat -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_percentile.score.csv: -------------------------------------------------------------------------------- 1 | 0.49072,0.00016595,0.00023568 2 | 9.3058,10.029,7.5586 3 | 1.6873,2.584,1.2408 4 | 5.0692,5.1587,4.2539 5 | 5.6569,5.9512,5.7515 6 | 11.594,12.177,12.477 7 | 3.8049,3.0388,2.2707 8 | 2.8455,3.4442,2.6871 9 | 3.3483,3.5031,3.8042 10 | 2.4659,2.3686,2.6555 11 | 3.5262,3.6835,3.9291 12 | 2.4976,2.3548,2.6472 13 | 2.9415,3.1434,3.4465 14 | 2.3254,2.2245,2.5262 15 | 3.6881,3.8487,4.1232 16 | 2.6426,2.4814,2.8174 17 | 2.1769,2.0497,2.6668 18 | 4.0329,4.5881,4.9157 19 | 1.9297,3.1712,2.9727 20 | 1.9297,3.1712,2.9727 21 | 1.6443,3.0989,1.6668 22 | 1.233,1.2716,1.5653 23 | 0.032902,0.55107,0.35494 24 | 3.9082,3.1252,4.0782 25 | 3.9082,3.1252,4.0782 26 | 7.8721,7.7428,7.7295 27 | 8.0614,7.9328,7.9076 28 | 6.5057,5.8418,5.4441 29 | 7.5954,7.2938,7.2775 30 | 4.8427,5.7154,4.4122 31 | 5.8558,3.368,0.93205 32 | 10.463,10.971,11.216 33 | 4.6696,3.1009,3.5872 34 | 6.7618,5.1329,5.3198 35 | 4.1184,3.1738,3.9359 36 | 6.0099,3.2975,4.2281 37 | 5.1715,4.4874,3.2655 38 | 4.0906,2.0478,2.3297 39 | 11.256,13.884,13.077 40 | 4.7562,4.657,3.9332 41 | 7.3581,5.0441,4.7382 42 | 3.2496,4.9823,3.6265 43 | 7.3415,5.2471,5.0767 44 | 2.2144,2.8574,3.1666 45 | 3.6357,4.2634,3.4109 46 | 3.5549,3.6842,3.3231 47 | 6.6597,5.324,5.291 48 | 4.878,4.1579,3.9195 49 | 6.3822,5.0555,4.9789 50 | 1.9619,2.1542,1.4581 51 | 7.3415,5.2471,5.0767 52 | 7.6457,8.7332,7.8379 53 | 7.3095,8.2935,7.5293 54 | 2.5918,2.8649,1.918 55 | 2.8087,3.2589,1.9778 56 | 8.8155,8.9032,6.617 57 | 2.4373,2.1198,2.9667 58 | 0.30871,0.2157,0.43275 59 | 1.9196,2.0301,1.8458 60 | 5.764,6.038,4.9479 61 | 8.539,8.2484,7.9899 62 | 4.5082,4.3859,4.0992 63 | 3.2774,2.84,2.9064 64 | 5.9928,6.2025,5.7434 65 | 4.6707,4.6376,4.5634 66 | 4.1542,4.5535,3.8708 67 | 1.5213,0.74164,1.325 68 | 4.7017,3.8949,3.5856 69 | 3.2158,4.5496,2.7535 70 | 7.3014,7.0464,6.7987 71 | 4.187,4.1667,4.0053 72 | 8.2725,8.1988,7.9443 73 | 4.5584,4.6184,4.2798 74 | 8.3799,7.3012,6.5349 75 | 0.050813,0.38908,0.016253 76 | 3.1212,3.5718,5.4223 77 | 7.0733,7.1598,6.554 78 | 4.4648,4.3555,4.1145 79 | 2.1796,1.7667,2.6772 80 | 0.35616,2.1324,0.62167 81 | 2.644,2.981,2.6674 82 | 2.9177,2.7211,2.2149 83 | -1,-1,-1 84 | 10.601,4.5071,1.1237 85 | 8.9175,8.8144,8.539 86 | 4.1981,4.1678,4.0439 87 | 24.125,14.731,19.235 88 | 1.5403,1.2034,2.6011 89 | 1.4758,2.1935,1.3455 90 | 10.087,9.2695,9.3618 91 | 4.3277,4.5102,4.2267 92 | 4.5548,5.317,4.1596 93 | 4.1121,5.2746,4.1713 94 | 7.3062,7.868,7.1441 95 | 2.7958,2.911,2.9186 96 | 2.6364,1.2427,1.7277 97 | 4.2742,4.2994,4.0888 98 | 0.23174,1.0037,0.44504 99 | 1.772,1.0484,3.4671 100 | 3.7663,3.898,3.8501 101 | 0.39937,1.147,0.30196 102 | 4.3509,4.3071,4.0264 103 | 4.3801,4.43,3.9937 104 | 3.1303,4.3897,2.2731 105 | 4.1268,4.0847,3.8258 106 | 1.6486,1.3289,0.64437 107 | 1.2068,1.5802,0.81378 108 | 3.627,3.5802,3.616 109 | 3.3425,4.393,4.8159 110 | 4.2932,4.33,4.1534 111 | 4.5608,6.5114,5.2122 112 | 5.3288,5.4014,6.5762 113 | 7.7732,8.5305,7.6858 114 | 2.8343,2.7068,2.6962 115 | 4.3767,4.3896,4.0351 116 | 0.60252,0.85274,0.1835 117 | 0.67891,0.67049,0.28222 118 | 0.034891,0.72035,0.0019789 119 | 7.8978,7.6529,7.6359 120 | 4.5159,4.5276,4.372 121 | 3.535,4.1571,4.5668 122 | 4.412,4.3696,4.1235 123 | 4.0078,4.0118,3.7923 124 | 0.47751,0.10891,2.1055 125 | 1.1102,0.63961,1.5802 126 | 1.3827,0.78628,2.1577 127 | 0.52721,0.34203,2.0156 128 | 1.3524,0.94785,2.1926 129 | 0.060495,0.5381,0.17796 130 | 2.2608,2.8487,0.88481 131 | 4.5093,4.4696,4.1586 132 | 0.5429,7.0831,0.56908 133 | 0.021762,0.52531,0.071917 134 | 3.1859,2.9929,1.676 135 | 4.3561,4.4168,4.1221 136 | 3.1583,4.1999,1.9746 137 | 8.0899,9.1785,8.3218 138 | 2.4701,3.6634,2.3457 139 | 7.6457,8.7332,7.8379 140 | 1.7111,3.8814,2.7302 141 | 2.1962,2.8072,2.3354 142 | 9.6393,0.96194,0.39446 143 | 3.5976,3.289,2.855 144 | 3.5556,3.2535,2.7757 145 | 3.5601,3.2502,2.7816 146 | 3.353,3.0314,2.4169 147 | 3.4047,3.222,2.585 148 | 3.4195,2.8689,2.3573 149 | 3.4033,3.2169,2.9234 150 | 3.3528,3.1411,2.7321 151 | 4.2567,4.5556,4.2036 152 | 1.3438,1.4971,1.0853 153 | 3.392,3.4796,3.0537 154 | 1.403,1.3051,0.8988 155 | 4.024,4.4055,3.8 156 | 1.9302,2.2707,1.6153 157 | 4.024,4.4055,3.8 158 | 1.365,1.5766,1.0847 159 | 1.5221,1.7147,1.3997 160 | 2.1265,2.4075,1.6991 161 | 0.5315,0.98767,0.54825 162 | 2.1655,2.3978,1.7132 163 | 4.2877,4.4409,4.307 164 | 1.4041,1.3598,0.89755 165 | 6.5507,7.115,6.3307 166 | 4.9448,5.1112,4.6635 167 | 0.52472,0.45373,0.44809 168 | 1.6729,1.6245,1.7379 169 | 0.57897,0.51613,0.40707 170 | 0.57897,0.51613,0.40707 171 | 2.6123,2.252,3.9507 172 | 3.1727,2.9069,2.4571 173 | 2.3915,2.2634,1.6292 174 | 2.3127,2.1812,1.5802 175 | 7.2675,5.3227,8.363 176 | 4.0804,4.9348,4.8917 177 | 1.8308,2.2489,1.9538 178 | 2.0541,3.2725,2.1381 179 | 0.9981,0.35549,0.96297 180 | 3.8083,2.451,2.483 181 | 10.294,7.1071,7.8429 182 | 3.6186,4.442,3.1877 183 | 2.6575,2.7643,3.2177 184 | 0.65251,0.92051,0.77798 185 | 2.7585,2.8018,3.8014 186 | -1,-1,-1 187 | -1,-1,-1 188 | 2.0951,2.188,2.8557 189 | 3.8128,3.4169,4.6459 190 | 2.292,2.4326,3.3945 191 | 6.7481,7.2979,7.4058 192 | 0.45065,0.71456,0.42469 193 | 0.45065,0.71456,0.42469 194 | 0.41137,0.48702,0.47997 195 | 0.30559,0.28727,0.28394 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_percentile.score_binary.csv: -------------------------------------------------------------------------------- 1 | 0,0,0 2 | 1,1,1 3 | 1,1,1 4 | 1,1,1 5 | 1,1,1 6 | 1,1,1 7 | 1,1,1 8 | 1,1,1 9 | 1,1,1 10 | 1,1,1 11 | 1,1,1 12 | 1,1,1 13 | 1,1,1 14 | 1,1,1 15 | 1,1,1 16 | 1,1,1 17 | 1,1,1 18 | 1,1,1 19 | 1,1,1 20 | 1,1,1 21 | 1,1,1 22 | 1,1,1 23 | 0,0,0 24 | 1,1,1 25 | 1,1,1 26 | 1,1,1 27 | 1,1,1 28 | 1,1,1 29 | 1,1,1 30 | 1,1,1 31 | 1,1,1 32 | 1,1,1 33 | 1,1,1 34 | 1,1,1 35 | 1,1,1 36 | 1,0,1 37 | 1,1,1 38 | 1,1,1 39 | 1,1,1 40 | 1,1,1 41 | 1,1,1 42 | 1,1,1 43 | 1,1,1 44 | 0,0,0 45 | 1,1,1 46 | 1,1,1 47 | 1,1,1 48 | 1,1,1 49 | 1,1,1 50 | 1,1,1 51 | 1,1,1 52 | 1,1,1 53 | 1,1,1 54 | 1,1,1 55 | 1,1,1 56 | 1,1,1 57 | 1,1,1 58 | 0,0,0 59 | 1,1,1 60 | 1,1,1 61 | 1,1,1 62 | 1,1,1 63 | 1,1,1 64 | 1,1,1 65 | 1,1,1 66 | 1,1,1 67 | 0,0,0 68 | 1,1,1 69 | 0,1,0 70 | 1,1,1 71 | 1,1,1 72 | 1,1,1 73 | 1,1,1 74 | 1,1,1 75 | 0,0,0 76 | 0,1,1 77 | 1,1,1 78 | 1,1,1 79 | 1,1,1 80 | 0,1,0 81 | 1,1,1 82 | 1,1,1 83 | -1,-1,-1 84 | 1,1,0 85 | 1,1,1 86 | 1,1,1 87 | 1,1,1 88 | 0,0,1 89 | 0,1,0 90 | 1,1,1 91 | 1,1,1 92 | 1,1,1 93 | 1,1,1 94 | 1,1,1 95 | 1,1,1 96 | 1,0,0 97 | 1,1,1 98 | 0,0,0 99 | 0,1,1 100 | 1,1,1 101 | 0,0,0 102 | 1,1,1 103 | 1,1,1 104 | 1,1,1 105 | 1,1,1 106 | 1,1,0 107 | 1,1,0 108 | 1,1,1 109 | 1,1,1 110 | 1,1,1 111 | 1,1,1 112 | 1,1,1 113 | 1,1,1 114 | 1,1,1 115 | 1,1,1 116 | 1,1,0 117 | 1,1,1 118 | 0,0,0 119 | 1,1,1 120 | 1,1,1 121 | 1,1,1 122 | 1,1,1 123 | 1,1,1 124 | 0,0,1 125 | 0,0,1 126 | 0,0,1 127 | 0,0,1 128 | 0,0,1 129 | 0,1,0 130 | 1,1,0 131 | 1,1,1 132 | 0,1,0 133 | 0,1,0 134 | 1,1,0 135 | 1,1,1 136 | 1,1,1 137 | 1,1,1 138 | 1,1,1 139 | 1,1,1 140 | 0,1,1 141 | 1,1,1 142 | 1,0,0 143 | 1,1,1 144 | 1,1,1 145 | 1,1,1 146 | 1,1,1 147 | 1,1,1 148 | 1,1,1 149 | 1,1,1 150 | 1,1,1 151 | 1,1,1 152 | 1,1,1 153 | 1,1,1 154 | 1,1,1 155 | 1,1,1 156 | 1,1,1 157 | 1,1,1 158 | 1,1,1 159 | 1,1,1 160 | 1,1,1 161 | 1,1,1 162 | 1,1,1 163 | 1,1,1 164 | 1,1,1 165 | 1,1,1 166 | 1,1,1 167 | 1,1,1 168 | 1,1,1 169 | 1,1,1 170 | 1,1,1 171 | 1,1,1 172 | 1,1,1 173 | 1,1,1 174 | 1,1,1 175 | 1,1,1 176 | 1,1,1 177 | 1,1,1 178 | 0,1,0 179 | 1,0,1 180 | 1,1,1 181 | 1,1,1 182 | 1,1,1 183 | 0,0,0 184 | 0,1,0 185 | 1,1,1 186 | -1,-1,-1 187 | -1,-1,-1 188 | 1,1,1 189 | 1,1,1 190 | 0,0,1 191 | 1,1,1 192 | 1,1,1 193 | 1,1,1 194 | 1,1,1 195 | 1,1,1 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_value.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataRecon22_global_value.mat -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_value.score.csv: -------------------------------------------------------------------------------- 1 | 0.11144,3.627e-05,5.151e-05 2 | 3.9127,4.3895,2.8619 3 | 0.54036,0.83375,0.36065 4 | 2.1966,2.2122,1.6435 5 | 2.8024,2.9952,2.8983 6 | 6.312,6.7769,7.1099 7 | 2.1007,1.4797,0.94264 8 | 1.3355,1.7994,1.2216 9 | 1.1914,1.2276,1.3632 10 | 0.86801,0.79657,0.91408 11 | 1.3185,1.3684,1.4783 12 | 0.887,0.79462,0.91379 13 | 1.0276,1.0913,1.2273 14 | 0.81704,0.74768,0.86791 15 | 1.38,1.4299,1.5531 16 | 0.93899,0.83569,0.97391 17 | 0.75223,0.6794,0.92785 18 | 1.576,1.9149,2.1284 19 | 0.56656,1.1093,1.0123 20 | 0.56656,1.1093,1.0123 21 | 0.58427,1.5257,0.59579 22 | 0.48427,0.51828,0.64998 23 | 0.0072247,0.13122,0.083741 24 | 1.5249,1.0981,1.6036 25 | 1.5249,1.0981,1.6036 26 | 4.0695,4.0316,4.1325 27 | 4.1849,4.1467,4.2377 28 | 3.3281,2.8467,2.5053 29 | 3.89,3.7721,3.8644 30 | 1.8145,2.4052,1.6658 31 | 3.9955,1.7377,0.37142 32 | 5.7134,6.1188,6.3949 33 | 1.4542,1.0745,1.3254 34 | 3.4961,2.2753,2.4048 35 | 1.6338,1.0851,1.4587 36 | 2.0556,0.92866,1.2754 37 | 2.0356,1.7109,1.0352 38 | 1.8329,0.64862,0.7788 39 | 5.2499,7.285,6.6352 40 | 2.3837,2.2636,1.7497 41 | 3.9141,2.1758,2.0667 42 | 0.99775,1.7931,1.1665 43 | 3.6142,2.1274,2.0739 44 | 0.58143,0.78689,0.88323 45 | 1.468,1.6979,1.3094 46 | 1.3948,1.4036,1.2382 47 | 2.9292,2.1908,2.0402 48 | 2.1367,1.7494,1.5352 49 | 2.7297,2.0277,1.8757 50 | 0.72787,0.78436,0.52609 51 | 3.6142,2.1274,2.0739 52 | 4.0333,4.6835,4.3125 53 | 3.7939,4.3872,4.067 54 | 0.9652,1.0442,0.69571 55 | 1.1254,1.245,0.69068 56 | 3.6032,3.6577,2.3574 57 | 0.90853,0.74236,1.2186 58 | 0.08753,0.063659,0.11452 59 | 1.1023,1.1411,1.0296 60 | 3.0895,3.1314,2.4527 61 | 4.4036,4.2909,4.2852 62 | 2.1075,1.9632,1.8425 63 | 1.1629,0.94966,0.98082 64 | 2.9673,3.1357,2.9018 65 | 2.1861,2.1126,2.0889 66 | 1.6503,2.014,1.454 67 | 0.4203,0.18192,0.3554 68 | 1.764,1.3299,1.145 69 | 0.90326,1.4141,0.77407 70 | 3.7827,3.504,3.4867 71 | 1.9386,1.8519,1.8096 72 | 4.2963,4.2859,4.2778 73 | 2.1608,2.1137,1.9562 74 | 3.7453,3.0754,2.3524 75 | 0.011194,0.090359,0.0035613 76 | 0.86745,1.0266,1.781 77 | 3.5798,3.6334,3.3987 78 | 2.0697,1.9489,1.8412 79 | 0.88581,0.64823,1.2146 80 | 0.0846,0.74869,0.15704 81 | 0.98509,1.1142,0.99161 82 | 1.1943,1.1142,0.84435 83 | -1,-1,-1 84 | 4.7826,1.3873,0.26807 85 | 4.6409,4.6152,4.6106 86 | 1.9494,1.8587,1.8291 87 | 16.663,7.9881,11.999 88 | 0.43223,0.34253,0.81645 89 | 0.38895,0.66775,0.34401 90 | 5.5657,4.8747,5.179 91 | 1.9286,2.0165,1.8639 92 | 1.778,2.2936,1.6313 93 | 1.233,1.7356,1.2786 94 | 3.6992,4.1145,3.7446 95 | 1.1799,1.2112,1.2272 96 | 1.0203,0.32917,0.49232 97 | 1.9808,1.9107,1.8427 98 | 0.052767,0.2871,0.107 99 | 0.44444,0.41776,0.98882 100 | 1.4297,1.5032,1.4518 101 | 0.095823,0.33625,0.07114 102 | 1.9977,1.9254,1.8052 103 | 2.0185,1.9683,1.7707 104 | 1.038,1.7018,0.68585 105 | 1.8668,1.7952,1.6811 106 | 0.52366,0.39382,0.16363 107 | 0.42555,0.62198,0.23754 108 | 1.7027,1.6917,1.7068 109 | 1.1962,1.7924,2.0623 110 | 2.0109,1.9521,1.8913 111 | 1.6955,2.9753,2.0412 112 | 1.9652,1.9083,2.6962 113 | 3.9671,4.4931,4.0699 114 | 1.1888,1.0962,1.0979 115 | 2.0104,1.9353,1.7881 116 | 0.29571,0.34101,0.049073 117 | 0.30714,0.25687,0.093697 118 | 0.0076674,0.17611,0.00043263 119 | 4.0601,3.98,4.0458 120 | 2.1062,2.0565,2.0005 121 | 1.2438,1.8258,1.7337 122 | 2.0256,1.9494,1.8552 123 | 1.8227,1.7704,1.6831 124 | 0.12104,0.024627,0.8407 125 | 0.32121,0.16994,0.54092 126 | 0.41438,0.21276,0.75833 127 | 0.13264,0.084182,0.74449 128 | 0.37342,0.24369,0.68208 129 | 0.013439,0.21193,0.040959 130 | 0.92924,1.1728,0.25357 131 | 2.0777,1.9784,1.8445 132 | 0.12884,3.6589,0.14597 133 | 0.0048709,0.20912,0.017001 134 | 1.3091,1.0778,0.4619 135 | 1.9903,1.9632,1.8422 136 | 1.1644,1.7711,0.5887 137 | 4.317,4.9764,4.6315 138 | 0.82427,1.439,0.76176 139 | 4.0333,4.6835,4.3125 140 | 0.48637,1.4886,0.89917 141 | 0.73507,1.0497,0.81551 142 | 6.0199,0.2441,0.091684 143 | 1.7137,1.5073,1.2559 144 | 1.6956,1.4919,1.2192 145 | 1.7054,1.4977,1.2267 146 | 1.6047,1.3636,1.011 147 | 1.6023,1.4547,1.0736 148 | 1.6591,1.2454,0.9696 149 | 1.5507,1.4307,1.3017 150 | 1.5562,1.424,1.2233 151 | 2.1455,2.3555,2.2073 152 | 0.65952,0.72687,0.47925 153 | 1.6868,1.7395,1.546 154 | 0.61123,0.55887,0.33087 155 | 2.0627,2.269,1.99 156 | 0.82171,1.0436,0.65444 157 | 2.0627,2.269,1.99 158 | 0.67435,0.77396,0.47424 159 | 0.72763,0.84239,0.63944 160 | 0.93094,1.0956,0.68819 161 | 0.24025,0.54775,0.21932 162 | 0.95124,1.0809,0.69492 163 | 2.2392,2.3003,2.2709 164 | 0.6124,0.58692,0.33053 165 | 3.2959,3.68,3.3594 166 | 2.4626,2.6041,2.4222 167 | 0.25587,0.22401,0.21183 168 | 0.78193,0.79298,0.81846 169 | 0.23431,0.19398,0.15634 170 | 0.23431,0.19398,0.15634 171 | 0.80817,0.66573,1.4453 172 | 1.4222,1.2457,1.0054 173 | 1.0605,0.95611,0.61137 174 | 1.008,0.90657,0.58376 175 | 3.5055,2.182,4.7583 176 | 1.2237,1.5977,1.5479 177 | 0.63533,0.83726,0.68956 178 | 0.57956,1.0745,0.60893 179 | 0.29593,0.086785,0.28258 180 | 1.791,0.91599,0.93366 181 | 4.5718,2.6171,3.0268 182 | 1.2567,1.8218,0.99765 183 | 0.74613,0.78633,0.93306 184 | 0.17449,0.26675,0.21607 185 | 0.89791,0.88487,1.4544 186 | -1,-1,-1 187 | -1,-1,-1 188 | 0.69104,0.71827,1.098 189 | 1.261,1.1652,1.591 190 | 0.81775,0.90595,1.1775 191 | 2.425,2.7179,2.7771 192 | 0.15355,0.29166,0.14292 193 | 0.15355,0.29166,0.14292 194 | 0.14858,0.18757,0.18179 195 | 0.10183,0.097685,0.092369 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_value.score_binary.csv: -------------------------------------------------------------------------------- 1 | 0,0,0 2 | 1,1,0 3 | 0,0,0 4 | 1,1,0 5 | 1,1,1 6 | 1,1,1 7 | 1,1,1 8 | 1,1,1 9 | 0,0,0 10 | 0,0,0 11 | 0,0,0 12 | 0,0,0 13 | 0,0,0 14 | 0,0,0 15 | 0,0,0 16 | 0,0,0 17 | 0,0,0 18 | 0,1,1 19 | 0,0,0 20 | 0,0,0 21 | 0,1,0 22 | 0,0,0 23 | 0,0,0 24 | 0,0,0 25 | 0,0,0 26 | 1,1,1 27 | 1,1,1 28 | 1,1,1 29 | 1,1,1 30 | 0,0,0 31 | 1,1,0 32 | 1,1,1 33 | 0,0,0 34 | 1,1,1 35 | 1,0,1 36 | 0,0,0 37 | 0,0,0 38 | 1,0,0 39 | 1,1,1 40 | 1,1,1 41 | 1,1,1 42 | 0,0,0 43 | 1,1,1 44 | 0,0,0 45 | 1,1,1 46 | 1,1,1 47 | 1,0,1 48 | 1,0,0 49 | 1,0,0 50 | 1,0,0 51 | 1,1,1 52 | 1,1,1 53 | 1,1,1 54 | 1,1,1 55 | 0,0,0 56 | 1,1,0 57 | 0,0,1 58 | 0,0,0 59 | 1,1,1 60 | 1,1,1 61 | 1,1,1 62 | 1,1,0 63 | 0,0,0 64 | 1,1,1 65 | 1,0,0 66 | 0,0,0 67 | 0,0,0 68 | 0,0,0 69 | 0,0,0 70 | 1,1,1 71 | 1,0,0 72 | 1,1,1 73 | 1,1,0 74 | 1,0,0 75 | 0,0,0 76 | 0,0,0 77 | 1,1,1 78 | 1,1,0 79 | 1,0,1 80 | 0,0,0 81 | 0,0,0 82 | 0,0,0 83 | -1,-1,-1 84 | 1,0,0 85 | 1,1,1 86 | 1,0,0 87 | 1,1,1 88 | 0,0,0 89 | 0,0,0 90 | 1,1,1 91 | 1,0,0 92 | 1,1,0 93 | 0,0,0 94 | 1,1,1 95 | 1,0,0 96 | 0,0,0 97 | 1,0,0 98 | 0,0,0 99 | 0,0,0 100 | 0,0,0 101 | 0,0,0 102 | 1,0,0 103 | 1,1,0 104 | 0,0,0 105 | 1,0,0 106 | 0,0,0 107 | 0,0,0 108 | 1,0,0 109 | 0,1,1 110 | 1,1,0 111 | 0,0,0 112 | 0,0,1 113 | 1,1,1 114 | 1,0,0 115 | 1,0,0 116 | 0,0,0 117 | 0,0,0 118 | 0,0,0 119 | 1,1,1 120 | 1,0,0 121 | 0,0,0 122 | 1,0,0 123 | 0,0,0 124 | 0,0,0 125 | 0,0,0 126 | 0,0,0 127 | 0,0,0 128 | 0,0,0 129 | 0,0,0 130 | 0,0,0 131 | 1,0,0 132 | 0,1,0 133 | 0,0,0 134 | 0,0,0 135 | 1,0,0 136 | 0,0,0 137 | 1,1,1 138 | 0,1,0 139 | 1,1,1 140 | 0,0,0 141 | 0,0,0 142 | 1,0,0 143 | 1,1,0 144 | 1,1,0 145 | 1,1,0 146 | 1,1,0 147 | 1,1,0 148 | 1,0,0 149 | 1,0,0 150 | 1,0,0 151 | 1,1,1 152 | 1,1,0 153 | 1,1,1 154 | 1,0,0 155 | 1,1,1 156 | 0,1,0 157 | 1,1,1 158 | 1,1,0 159 | 1,0,0 160 | 1,1,0 161 | 1,1,1 162 | 1,0,0 163 | 1,1,1 164 | 1,0,0 165 | 1,1,1 166 | 1,1,1 167 | 0,0,0 168 | 0,0,0 169 | 0,0,0 170 | 0,0,0 171 | 0,0,0 172 | 1,0,0 173 | 1,0,0 174 | 1,0,0 175 | 1,0,1 176 | 0,0,0 177 | 0,0,0 178 | 0,0,0 179 | 0,0,0 180 | 1,0,0 181 | 1,0,0 182 | 0,0,0 183 | 0,0,0 184 | 0,0,0 185 | 0,0,0 186 | -1,-1,-1 187 | -1,-1,-1 188 | 0,0,0 189 | 0,0,0 190 | 0,0,0 191 | 0,0,0 192 | 0,0,0 193 | 0,0,0 194 | 0,0,0 195 | 0,0,0 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_global_value.taskInfo.csv: -------------------------------------------------------------------------------- 1 | taskInfos1,taskInfos2,taskInfos3,taskInfos4 2 | 1,"Oxidative phosphorylation via NADH-coenzyme Q oxidoreductase (COMPLEX I)",ENERGY METABOLISM,OXYDATIVE PHOSPHORYLATION 3 | 2,"Oxidative phosphorylation via succinate-coenzyme Q oxidoreductase (COMPLEX II)",ENERGY METABOLISM,OXYDATIVE PHOSPHORYLATION 4 | 3,"Krebs cycle - oxidative decarboxylation of pyruvate",ENERGY METABOLISM,KREBS CYCLE 5 | 4,"Krebs cycle - NADH generation",ENERGY METABOLISM,KREBS CYCLE 6 | 5,"ATP regeneration from glucose (normoxic conditions) - glycolysis + krebs cycle",ENERGY METABOLISM,ATP GENERATION 7 | 6,"ATP generation from glucose (hypoxic conditions) - glycolysis",ENERGY METABOLISM,ATP GENERATION 8 | 7,"Reactive oxygen species detoxification (H2O2 to H2O)",ENERGY METABOLISM,OXIDATIVE PHOSPHORYLATION & ROS DETOXIFICATION 9 | 8,"Presence of the thioredoxin system through the thioredoxin reductase activity",ENERGY METABOLISM,REDOX METABOLISM 10 | 9,"Inosine monophosphate synthesis (IMP)",NUCLEOTIDE METABOLISM,IMP SYNTHESIS / PURINE METABOLISM 11 | 10,"Cytidine triphosphate synthesis (CTP)",NUCLEOTIDE METABOLISM,UMP SYNTHESIS 12 | 11,"Guanosine triphosphate synthesis (GTP)",NUCLEOTIDE METABOLISM,IMP SYNTHESIS / PURINE METABOLISM 13 | 12,"Uridine triphosphate synthesis (UTP)",NUCLEOTIDE METABOLISM,UMP SYNTHESIS 14 | 13,"Deoxyadenosine triphosphate synthesis (dATP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 15 | 14,"Deoxycytidine triphosphate synthesis (dCTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 16 | 15,"Deoxyguanosine triphosphate synthesis (dGTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 17 | 16,"Deoxyuridine triphosphate synthesis (dUTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 18 | 17,"Deoxythymidine triphosphate synthesis (dTTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 19 | 18,"AMP salvage from adenine",NUCLEOTIDE METABOLISM,SALVAGE 20 | 19,"IMP salvage from hypoxanthine",NUCLEOTIDE METABOLISM,SALVAGE 21 | 20,"GMP salvage from guanine",NUCLEOTIDE METABOLISM,SALVAGE 22 | 21,"3'-Phospho-5'-adenylyl sulfate synthesis",NUCLEOTIDE METABOLISM,COFACTOR 23 | 22,"Degradation of adenine to urate",NUCLEOTIDE METABOLISM,PURINE CATABOLISM 24 | 23,"Degradation of guanine to urate",NUCLEOTIDE METABOLISM,PURINE CATABOLISM 25 | 24,"Degradation of cytosine",NUCLEOTIDE METABOLISM,PYRIMIDINE CATABOLISM 26 | 25,"Degradation of uracil",NUCLEOTIDE METABOLISM,PYRIMIDINE CATABOLISM 27 | 26,"Gluconeogenesis from pyruvate",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 28 | 27,"Gluconeogenesis from Lactate",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 29 | 28,"Gluconeogenesis from Glycerol",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 30 | 29,"Gluconeogenesis from Alanine",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 31 | 30,"Gluconeogenesis from Glutamine",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 32 | 31,"Ethanol to acetaldehyde",CARBOHYDRATES METABOLISM,GLYCOLYSIS/GLUCONEOGENESIS 33 | 32,"Glucose to lactate conversion",CARBOHYDRATES METABOLISM,PYRUVATE METABOLISM 34 | 33,"Malate to pyruvate conversion",CARBOHYDRATES METABOLISM,PYRUVATE METABOLISM 35 | 34,"Synthesis of fructose-6-phosphate from erythrose-4-phosphate (HMP shunt)",CARBOHYDRATES METABOLISM,PENTOSE PHOSPHATE PATHWAY 36 | 35,"Synthesis of ribose-5-phosphate",CARBOHYDRATES METABOLISM,PENTOSE PHOSPHATE PATHWAY 37 | 36,"Synthesis of lactose",CARBOHYDRATES METABOLISM,GALACTOSE METABOLISM 38 | 37,"Glycogen biosynthesis",CARBOHYDRATES METABOLISM,GLYCOGEN METABOLISM 39 | 38,"Glycogen degradation",CARBOHYDRATES METABOLISM,GLYCOGEN METABOLISM 40 | 39,"Fructose degradation (to glucose-3-phosphate)",CARBOHYDRATES METABOLISM,FRUCTOSE METABOLISM 41 | 40,"Fructose to glucose conversion (via fructose-6-phosphate)",CARBOHYDRATES METABOLISM,FRUCTOSE METABOLISM 42 | 41,"UDP-glucose synthesis",CARBOHYDRATES METABOLISM,NUCLEOTIDE SUGAR 43 | 42,"UDP-galactose synthesis",CARBOHYDRATES METABOLISM,NUCLEOTIDE SUGAR 44 | 43,"UDP-glucuronate synthesis",CARBOHYDRATES METABOLISM,NUCLEOTIDE SUGAR 45 | 44,"GDP-L-fucose synthesis",CARBOHYDRATES METABOLISM,FUCOSE METABOLISM 46 | 45,"Mannose degradation (to fructose-6-phosphate)",CARBOHYDRATES METABOLISM,MANNOSE METABOLISM 47 | 46,"GDP-mannose synthesis",CARBOHYDRATES METABOLISM,MANNOSE METABOLISM 48 | 47,"UDP-N-acetyl D-galactosamine synthesis",CARBOHYDRATES METABOLISM,AMINO SUGARS METABOLISM 49 | 48,"CMP-N-acetylneuraminate synthesis",CARBOHYDRATES METABOLISM,AMINO SUGARS METABOLISM 50 | 49,"N-Acetylglucosamine synthesis",CARBOHYDRATES METABOLISM,AMINO SUGARS METABOLISM 51 | 50,"Glucuronate synthesis (via inositol)",CARBOHYDRATES METABOLISM,PENTOSE AND GLUCURONATE INTERCONVERSION 52 | 51,"Glucuronate synthesis (via udp-glucose)",CARBOHYDRATES METABOLISM,PENTOSE AND GLUCURONATE INTERCONVERSION 53 | 52,"Synthesis of acetone",CARBOHYDRATES METABOLISM,KETOGENESIS 54 | 53,"(R)-3-Hydroxybutanoate synthesis",CARBOHYDRATES METABOLISM,KETOGENESIS 55 | 54,"Synthesis of inositol",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 56 | 55,"Inositol as input for glucuronate-xylulose pathway",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 57 | 56,"Synthesis of phosphatidylinositol from inositol",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 58 | 57,"Conversion of 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate to 1D-myo-inositol 1,4,5-trisphosphate",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 59 | 58,"Starch degradation",CARBOHYDRATES METABOLISM,STARCH DEGRADATION 60 | 59,"Link between glyoxylate metabolism and pentose phosphate pathway (Xylulose to glycolate)",CARBOHYDRATES METABOLISM,GLYOXYLATE METABOLISM 61 | 60,"Synthesis of methylglyoxal",CARBOHYDRATES METABOLISM,METHYLGLYOXAL METABOLISM 62 | 61,"Alanine synthesis",AMINO ACIDS METABOLISM,ALANINE METABOLISM 63 | 62,"Alanine degradation",AMINO ACIDS METABOLISM,ALANINE METABOLISM 64 | 63,"Synthesis of alanine from glutamine",AMINO ACIDS METABOLISM,ALANINE METABOLISM 65 | 64,"Arginine synthesis",AMINO ACIDS METABOLISM,ARGININE METABOLISM 66 | 65,"Arginine degradation",AMINO ACIDS METABOLISM,ARGININE METABOLISM 67 | 66,"Synthesis of arginine from glutamine",AMINO ACIDS METABOLISM,ARGININE METABOLISM 68 | 67,"Synthesis of nitric oxide from arginine",AMINO ACIDS METABOLISM,ARGININE METABOLISM 69 | 68,"Synthesis of aspartate from glutamine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 70 | 69,"Synthesis of creatine from arginine",AMINO ACIDS METABOLISM,ARGININE METABOLISM 71 | 70,"Asparagine synthesis",AMINO ACIDS METABOLISM,ASPARAGINE METABOLISM 72 | 71,"Asparagine degradation",AMINO ACIDS METABOLISM,ASPARAGINE METABOLISM 73 | 72,"Aspartate synthesis",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 74 | 73,"Aspartate degradation",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 75 | 74,"Conversion of aspartate to arginine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 76 | 75,"Conversion of aspartate to beta-alanine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 77 | 76,"Conversion of asparate to asparagine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 78 | 77,"beta-Alanine synthesis",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 79 | 78,"beta-Alanine degradation",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 80 | 79,"Conversion of carnosine to beta-alanine",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 81 | 80,"Beta-alanine to 3-oxopropanoate",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 82 | 81,"Cysteine synthesis (need serine and methionine)",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 83 | 82,"Cysteine degradation",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 84 | 83,"Synthesis of cysteine from cystine",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 85 | 84,"Synthesis of taurine from cysteine",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 86 | 85,"Glutamate synthesis",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 87 | 86,"Glutamate degradation",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 88 | 87,"Conversion of glutamate to glutamine",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 89 | 88,"Conversion of glutamate to proline",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 90 | 89,"Conversion of GABA into succinate",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 91 | 90,"Glutamine synthesis",AMINO ACIDS METABOLISM,GLUTAMINE METABOLISM 92 | 91,"Glutamine degradation",AMINO ACIDS METABOLISM,GLUTAMINE METABOLISM 93 | 92,"Glutaminolysis (glutamine to lactate)",AMINO ACIDS METABOLISM,GLUTAMINE METABOLISM 94 | 93,"Glutathionate synthesis",AMINO ACIDS METABOLISM,GLUTATHIONE METABOLISM 95 | 94,"Glycine synthesis",AMINO ACIDS METABOLISM,GLYCINE METABOLISM 96 | 95,"Glycine degradation",AMINO ACIDS METABOLISM,GLYCINE METABOLISM 97 | 96,"Conversion of glycine to pyruvate",AMINO ACIDS METABOLISM,GLYCINE METABOLISM 98 | 97,"Histidine degradation",AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 99 | 98,"Conversion of histidine to glutamate",AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 100 | 99,"Conversion of histidine to histamine",AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 101 | 100,"Homocysteine synthesis (need methionine)",AMINO ACIDS METABOLISM,HOMOCYSTEINE METABOLISM 102 | 101,"Homocysteine degradation",AMINO ACIDS METABOLISM,HOMOCYSTEINE METABOLISM 103 | 102,"Isoleucine degradation",AMINO ACIDS METABOLISM,ISOLEUCINE METABOLISM 104 | 103,"Leucine degradation",AMINO ACIDS METABOLISM,LEUCINE METABOLISM 105 | 104,"Conversion of leucine to acetyl-coA",AMINO ACIDS METABOLISM,LEUCINE METABOLISM 106 | 105,"Lysine degradation",AMINO ACIDS METABOLISM,LYSINE METABOLISM 107 | 106,"Conversion of lysine to L-Saccharopine",AMINO ACIDS METABOLISM,LYSINE METABOLISM 108 | 107,"Conversion of lysine to L-2-Aminoadipate",AMINO ACIDS METABOLISM,LYSINE METABOLISM 109 | 108,"Methionine degradation",AMINO ACIDS METABOLISM,METHIONINE METABOLISM 110 | 109,"S-adenosyl-L-methionine synthesis",AMINO ACIDS METABOLISM,METHIONINE METABOLISM 111 | 110,"Ornithine degradation",AMINO ACIDS METABOLISM,ORNITHINE METABOLISM 112 | 111,"Synthesis of ornithine from glutamine",AMINO ACIDS METABOLISM,ORNITHINE METABOLISM 113 | 112,"Synthesis of spermidine from ornithine",AMINO ACIDS METABOLISM,ORNITHINE METABOLISM 114 | 113,"Serine synthesis",AMINO ACIDS METABOLISM,SERINE METABOLISM 115 | 114,"Serine degradation",AMINO ACIDS METABOLISM,SERINE METABOLISM 116 | 115,"Phenylalanine degradation",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 117 | 116,"Phenylalanine to phenylacetaldehyde",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 118 | 117,"Phenylalanine to phenylacetyl-L-glutaminate",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 119 | 118,"Phenylalanine to tyrosine",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 120 | 119,"Proline synthesis",AMINO ACIDS METABOLISM,PROLINE METABOLISM 121 | 120,"Proline degradation",AMINO ACIDS METABOLISM,PROLINE METABOLISM 122 | 121,"Synthesis of proline from glutamine",AMINO ACIDS METABOLISM,PROLINE METABOLISM 123 | 122,"Threonine degradation",AMINO ACIDS METABOLISM,THREONINE METABOLISM 124 | 123,"Tryptophan degradation",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 125 | 124,"Synthesis of anthranilate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 126 | 125,"Synthesis of kynate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 127 | 126,"Synthesis of L-kynurenine from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 128 | 127,"Synthesis of N-formylanthranilate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 129 | 128,"Synthesis of quinolinate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 130 | 129,"Synthesis of serotonin from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 131 | 130,"Tyrosine synthesis (need phenylalanine)",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 132 | 131,"Tyrosine degradation",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 133 | 132,"Tyrosine to adrenaline",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 134 | 133,"Tyrosine to dopamine",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 135 | 134,"Tyrosine to acetoacetate and fumarate",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 136 | 135,"Valine degradation",AMINO ACIDS METABOLISM,VALINE METABOLISM 137 | 136,"Valine to succinyl-coA",AMINO ACIDS METABOLISM,VALINE METABOLISM 138 | 137,"Hydroxymethylglutaryl-CoA synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 139 | 138,"Cholesterol synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 140 | 139,"Acetoacetate synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 141 | 140,"Mevalonate synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 142 | 141,"Farnesyl-pyrophosphate synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 143 | 142,"Glycerol-3-phosphate synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 144 | 143,"Phosphatidyl-choline synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 145 | 144,"Phosphatidyl-ethanolamine synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 146 | 145,"Phosphatidyl-serine synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 147 | 146,"Phosphatidyl-inositol synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 148 | 147,"Cardiolipin synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 149 | 148,"Triacylglycerol synthesis",LIPIDS METABOLISM,TRIACYLGLYCEROL METABOLISM 150 | 149,"Sphingomyelin synthesis",LIPIDS METABOLISM,SPHINGOLIPID METABOLISM 151 | 150,"Ceramide synthesis",LIPIDS METABOLISM,SPHINGOLIPID METABOLISM 152 | 151,"Palmitate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 153 | 152,"Palmitate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 154 | 153,"Palmitolate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 155 | 154,"Palmitolate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 156 | 155,"cis-vaccenic acid synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 157 | 156,"cis-vaccenic acid degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 158 | 157,"Elaidate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 159 | 158,"Elaidate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 160 | 159,"Linolenate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 161 | 160,"Linoleate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 162 | 161,"gamma-Linolenate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 163 | 162,"gamma-Linolenate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 164 | 163,"Arachidonate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 165 | 164,"Arachidonate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 166 | 165,"Synthesis of malonyl-coa",LIPIDS METABOLISM,FATTY ACID METABOLISM 167 | 166,"Synthesis of palmitoyl-CoA",LIPIDS METABOLISM,FATTY ACID METABOLISM 168 | 167,"Taurochenodeoxycholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 169 | 168,"Glycochenodeoxycholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 170 | 169,"tauro-cholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 171 | 170,"glyco-cholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 172 | 171,"Synthesis of thromboxane from arachidonate",LIPIDS METABOLISM,EICOSANOID METABOLISM 173 | 172,"Synthesis of galactosyl glucosyl ceramide (link with ganglioside metabolism)",LIPIDS METABOLISM,GANGLIOSIDE METABOLISM 174 | 173,"Synthesis of glucocerebroside",LIPIDS METABOLISM,GANGLIOSIDE METABOLISM 175 | 174,"Synthesis of globoside (link with globoside metabolism)",LIPIDS METABOLISM,GLOBOSIDE METABOLISM 176 | 175,"NAD synthesis from nicotinamide",VITAMIN & COFACTOR METABOLISM,COENZYME NAD BIOSYNTHESIS 177 | 176,"FAD synthesis",VITAMIN & COFACTOR METABOLISM,COENZYME FAD BIOSYNTHESIS 178 | 177,"Synthesis of coenzyme A",VITAMIN & COFACTOR METABOLISM,COENZYME A BIOSYNTHESIS 179 | 178,"Synthesis of ubiquinone from tyrosine",VITAMIN & COFACTOR METABOLISM,UBIQUINONE 10 BIOSYNTHESIS 180 | 179,"Tetrahydrofolate synthesis",VITAMIN & COFACTOR METABOLISM,FOLATE METABOLISM 181 | 180,"Pyridoxal-phosphate synthesis",VITAMIN & COFACTOR METABOLISM,VITAMIN B6 METABOLISM 182 | 181,"Synthesis of bilirubin",VITAMIN & COFACTOR METABOLISM,HEME METABOLISM 183 | 182,"Heme synthesis",VITAMIN & COFACTOR METABOLISM,HEME METABOLISM 184 | 183,"Phosphatidyl-inositol to glucosaminyl-acylphosphatidylinositol",VITAMIN & COFACTOR METABOLISM,GPI ANCHOR BIOSYNTHESIS 185 | 184,"Glucosaminyl-acylphosphatidylinositoll to deacylated-glycophosphatidylinositol (GPI)-anchored protein",GLYCAN METABOLISM,GPI ANCHOR BIOSYNTHESIS 186 | 185,"Degradation of n2m2nmasn",GLYCAN METABOLISM,N-GLYCAN METABOLISM 187 | 186,"Biosynthesis of m4mpdol_U",GLYCAN METABOLISM,N-GLYCAN METABOLISM 188 | 187,"Biosynthesis of g3m8masn",GLYCAN METABOLISM,N-GLYCAN METABOLISM 189 | 188,"Degradation of s2l2fn2m2masn",GLYCAN METABOLISM,N-GLYCAN METABOLISM 190 | 189,"Biosynthesis of core2 (beta-D-Galactosyl-1,3-(N-acetyl-beta-D-glucosaminyl-1,6)-N-acetyl-D-galactosaminyl-R)",GLYCAN METABOLISM,O-GLYCAN METABOLISM 191 | 190,"Biosynthesis of core4 (N-Acetyl-beta-D-glucosaminyl-1,6-(N-acetyl-beta-D-glucosaminyl-1,3)-N-acetyl-D-galactosaminyl-R)",GLYCAN METABOLISM,O-GLYCAN METABOLISM 192 | 191,"Biosynthesis of Tn_antigen (Glycoprotein N-acetyl-D-galactosamine)",GLYCAN METABOLISM,O-GLYCAN METABOLISM 193 | 192,"Keratan sulfate biosynthesis from O-glycan (core 2-linked)",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 194 | 193,"Keratan sulfate biosynthesis from O-glycan (core 4-linked)",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 195 | 194,"Keratan sulfate degradation",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 196 | 195,"Keratan sulfate biosynthesis from N-glycan",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 197 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_mean.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataRecon22_local_mean.mat -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_mean.score.csv: -------------------------------------------------------------------------------- 1 | 1.8746,0.0048218,0.0068464 2 | 3.233,3.5859,2.477 3 | 1.66,1.624,0.83026 4 | 1.9774,2.0948,1.5775 5 | 1.9198,2.1721,1.8811 6 | 2.6318,3.197,3.1107 7 | 1.2363,0.78654,0.4516 8 | 1.0204,1.1062,0.68701 9 | 2.0124,2.3476,2.5841 10 | 1.7669,1.8446,2.0902 11 | 1.9781,2.2111,2.4181 12 | 1.7778,1.8282,2.0985 13 | 1.8531,2.13,2.3286 14 | 1.6696,1.7332,1.9881 15 | 2.0682,2.3098,2.5375 16 | 1.8871,1.9355,2.2392 17 | 1.5833,1.614,2.1437 18 | 1.4435,1.7627,1.965 19 | 1.1461,2.0572,1.9036 20 | 1.1461,2.0572,1.9036 21 | 0.85525,1.3857,1.0937 22 | 0.5011,0.49689,1.0166 23 | 0.25313,2.8158,1.9344 24 | 2.4241,1.952,2.884 25 | 2.4241,1.952,2.884 26 | 2.4914,2.3842,2.4616 27 | 2.5985,2.5253,2.5897 28 | 2.4004,2.2931,2.2774 29 | 2.5285,2.2824,2.3883 30 | 2.0133,2.5605,1.8188 31 | 1.1552,0.48936,0.84786 32 | 2.4704,2.9589,2.8725 33 | 2.484,3.5245,2.1178 34 | 2.2779,1.7568,2.3002 35 | 2.3303,2.1147,2.5448 36 | 0.21013,3.1039,3.6251 37 | 3.6676,2.2842,1.6707 38 | 2.3279,1.3055,1.4823 39 | 2.6637,4.0486,3.5871 40 | 1.8364,1.7088,1.8455 41 | 2.6702,1.4083,1.7668 42 | 2.4517,3.3549,2.9256 43 | 3.0172,1.8215,2.1299 44 | 3.0842,3.8238,3.9756 45 | 1.7338,2.4143,2.2725 46 | 1.893,2.2276,2.6476 47 | 3.3321,2.7791,2.81 48 | 2.3734,2.1189,2.0086 49 | 3.3945,2.7632,2.8147 50 | 2.3586,2.03,3.1915 51 | 3.0172,1.8215,2.1299 52 | 2.2239,2.9726,2.5231 53 | 2.3109,2.9818,2.6301 54 | 1.7895,2.1668,2.8226 55 | 3.267,2.5178,2.4925 56 | 3.8446,3.9016,2.5353 57 | 2.3105,1.6818,1.9713 58 | 0.9828,0.26054,1.1467 59 | 0.87986,0.88662,0.82824 60 | 1.7702,1.9564,1.9338 61 | 2.6481,2.4483,2.2121 62 | 2.0881,2.1693,1.9288 63 | 1.9226,1.6089,1.6555 64 | 2.4908,2.2296,2.0086 65 | 2.1571,2.1039,2.0423 66 | 2.9237,2.2326,2.3013 67 | 2.1204,1.0965,1.8717 68 | 3.0984,2.7298,2.2592 69 | 3.1514,4.4526,2.5608 70 | 2.3572,2.4021,2.2741 71 | 1.962,2.1346,1.8904 72 | 2.4404,2.4087,2.1288 73 | 2.0032,2.2255,1.9095 74 | 3.9021,3.1571,3.1123 75 | 1.3698,1.5959,0.23853 76 | 2.5712,2.9637,4.6187 77 | 2.2523,2.2832,1.8564 78 | 2.0234,2.1395,1.906 79 | 0.81711,1.9058,1.1299 80 | 0.32811,2.0246,0.57603 81 | 1.8417,2.3809,2.4436 82 | 2.0199,1.7029,1.4958 83 | -1,-1,-1 84 | 6.1647,1.9775,0.40125 85 | 2.6179,2.5723,2.2769 86 | 1.9475,2.0568,1.9105 87 | 5.4557,1.5041,6.0274 88 | 1.5671,1.1004,1.5409 89 | 2.0871,1.436,1.856 90 | 2.8362,2.4902,2.5654 91 | 1.9586,2.1746,1.9458 92 | 1.9449,2.4769,1.8086 93 | 3.1323,3.7746,3.1153 94 | 2.4717,2.817,2.4221 95 | 1.6788,1.587,1.3145 96 | 1.889,0.7521,1.0841 97 | 2.0597,2.1874,2.1445 98 | 1.5382,2.6802,3.1741 99 | 3.1024,0.83685,5.5307 100 | 2.3863,2.6724,3.3624 101 | 0.75231,1.7979,0.60604 102 | 1.9836,2.0694,1.8357 103 | 2.0146,2.1574,1.8622 104 | 1.6743,2.5892,1.1757 105 | 1.8772,1.9495,1.7412 106 | 1.5264,1.2224,0.58309 107 | 1.236,1.4687,1.2187 108 | 1.784,1.884,1.8758 109 | 2.9931,1.8168,1.4382 110 | 1.864,2.0948,1.8549 111 | 1.7312,3.0095,2.1476 112 | 2.8432,2.3516,3.0467 113 | 2.53,3.0235,2.556 114 | 1.7121,1.5122,1.5079 115 | 2.1012,2.2166,1.9992 116 | 0.36181,0.58736,0.20245 117 | 0.38945,0.50339,0.20847 118 | 0.28529,3.3846,0.01697 119 | 2.4635,2.3172,2.0947 120 | 1.9592,2.1493,1.9779 121 | 1.7616,2.2167,1.7955 122 | 1.972,2.2005,1.8709 123 | 1.8964,2.0651,1.9524 124 | 0.31074,0.83204,6.7844 125 | 1.2438,1.2599,3.235 126 | 1.1463,1.0366,4.3476 127 | 0.44374,0.7035,4.3548 128 | 1.7927,1.4779,3.9537 129 | 0.69191,0.70287,1.781 130 | 1.1379,2.8543,0.28679 131 | 2.1567,2.1999,2.0906 132 | 0.2003,3.8871,0.43591 133 | 0.014228,0.91353,0.048139 134 | 2.6622,1.524,2.4046 135 | 1.9509,2.2068,1.9619 136 | 1.6986,2.4446,1.6101 137 | 2.2902,2.7099,2.6313 138 | 1.4113,2.2682,1.5012 139 | 2.2239,2.9726,2.5231 140 | 0.9131,2.4557,1.5895 141 | 1.3357,1.8124,1.4202 142 | 3.44,0.073937,0.027181 143 | 1.7747,1.6961,1.4053 144 | 1.7828,1.7101,1.384 145 | 1.7604,1.6823,1.3688 146 | 1.7207,1.5992,1.2553 147 | 1.7253,1.6148,1.2774 148 | 1.7646,1.5041,1.1799 149 | 1.8388,1.8032,1.5563 150 | 1.7847,1.7155,1.4506 151 | 1.5341,1.897,1.6657 152 | 0.65821,0.85381,0.57403 153 | 1.2948,1.4486,1.2081 154 | 0.75334,0.85461,0.62645 155 | 1.5107,1.8443,1.5435 156 | 1.1695,1.4174,1.0144 157 | 1.5107,1.8443,1.5435 158 | 0.65539,0.84658,0.54895 159 | 0.70318,0.92045,0.60751 160 | 1.1928,1.4912,0.99674 161 | 0.49864,0.9952,0.46954 162 | 1.2099,1.4497,0.99314 163 | 1.4735,1.8164,1.4632 164 | 0.74275,0.85233,0.60991 165 | 2.2992,2.8022,2.4253 166 | 2.0934,2.1725,1.9938 167 | 0.69636,0.63034,0.43077 168 | 0.97314,1.0214,0.76539 169 | 0.49649,0.56259,0.22805 170 | 0.49649,0.56259,0.22805 171 | 1.6672,1.397,2.8385 172 | 1.78,1.6084,1.3351 173 | 1.5463,1.379,0.96961 174 | 1.5477,1.3835,0.98455 175 | 2.7939,1.3297,2.8877 176 | 2.9991,3.6488,3.6333 177 | 1.0313,1.3697,1.1628 178 | 2.1191,3.0601,2.14 179 | 1.0691,0.38796,1.0324 180 | 1.6528,0.82856,0.84494 181 | 4.7216,3.1375,3.4641 182 | 3.1984,3.2099,2.7515 183 | 2.8678,3.279,3.3485 184 | 0.72055,0.71335,0.70889 185 | 1.6911,1.8484,2.4503 186 | -1,-1,-1 187 | -1,-1,-1 188 | 1.1889,1.3518,1.7466 189 | 3.6902,3.4274,4.7013 190 | 2.2478,1.939,5.5821 191 | 6.2587,5.8171,6.435 192 | 0.33333,0.6701,0.28937 193 | 0.33333,0.6701,0.28937 194 | 0.1773,0.21231,0.24055 195 | 0.27072,0.39493,0.28079 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_mean.score_binary.csv: -------------------------------------------------------------------------------- 1 | 0,0,0 2 | 0,1,0 3 | 0,0,0 4 | 1,1,0 5 | 1,1,0 6 | 1,1,1 7 | 1,0,0 8 | 0,1,0 9 | 0,0,1 10 | 1,0,1 11 | 0,0,1 12 | 1,0,1 13 | 0,1,1 14 | 0,0,1 15 | 0,0,1 16 | 1,0,1 17 | 0,0,1 18 | 0,1,1 19 | 0,1,1 20 | 0,1,1 21 | 0,1,1 22 | 0,0,1 23 | 0,0,1 24 | 0,1,1 25 | 0,1,1 26 | 1,1,1 27 | 1,1,1 28 | 1,1,1 29 | 1,1,1 30 | 0,1,0 31 | 1,0,1 32 | 1,1,1 33 | 0,1,1 34 | 1,1,1 35 | 1,0,1 36 | 1,0,1 37 | 1,0,0 38 | 1,0,0 39 | 0,1,1 40 | 1,1,1 41 | 1,0,1 42 | 0,1,1 43 | 1,0,1 44 | 0,1,1 45 | 1,1,1 46 | 1,1,1 47 | 1,0,1 48 | 1,1,0 49 | 1,0,1 50 | 1,0,1 51 | 1,0,1 52 | 0,1,1 53 | 0,1,1 54 | 1,1,1 55 | 1,0,0 56 | 1,1,0 57 | 1,1,1 58 | 0,0,1 59 | 1,1,1 60 | 1,1,1 61 | 1,1,0 62 | 1,1,0 63 | 1,0,0 64 | 1,1,1 65 | 1,0,0 66 | 1,0,0 67 | 1,0,1 68 | 1,1,0 69 | 0,1,0 70 | 1,1,0 71 | 1,1,0 72 | 1,1,0 73 | 1,1,0 74 | 1,0,0 75 | 0,1,0 76 | 0,0,1 77 | 1,1,0 78 | 1,1,0 79 | 0,1,1 80 | 0,1,0 81 | 0,1,0 82 | 1,0,0 83 | -1,-1,-1 84 | 1,0,0 85 | 1,1,1 86 | 1,1,0 87 | 1,0,1 88 | 0,0,1 89 | 0,1,0 90 | 1,0,1 91 | 1,1,0 92 | 1,1,0 93 | 0,1,0 94 | 1,1,1 95 | 1,0,0 96 | 1,0,0 97 | 1,1,0 98 | 0,0,0 99 | 0,1,1 100 | 1,1,1 101 | 0,1,0 102 | 1,1,0 103 | 1,1,0 104 | 0,1,0 105 | 1,1,0 106 | 1,1,0 107 | 0,1,0 108 | 1,1,0 109 | 1,1,0 110 | 1,1,0 111 | 0,1,1 112 | 1,0,1 113 | 1,1,1 114 | 1,0,0 115 | 1,1,0 116 | 0,1,1 117 | 1,1,1 118 | 0,1,0 119 | 1,0,0 120 | 1,0,0 121 | 1,0,0 122 | 1,1,0 123 | 1,1,0 124 | 0,0,1 125 | 0,0,1 126 | 0,0,1 127 | 0,0,1 128 | 0,0,1 129 | 0,1,1 130 | 0,1,0 131 | 1,1,0 132 | 0,1,0 133 | 0,1,0 134 | 1,1,0 135 | 1,1,0 136 | 0,1,0 137 | 0,1,1 138 | 0,1,0 139 | 0,1,1 140 | 0,1,0 141 | 0,1,0 142 | 1,0,0 143 | 1,0,0 144 | 1,0,0 145 | 1,0,0 146 | 1,1,0 147 | 1,1,0 148 | 1,0,0 149 | 1,0,0 150 | 1,0,0 151 | 1,0,0 152 | 1,1,0 153 | 1,0,0 154 | 1,1,0 155 | 1,0,0 156 | 1,1,0 157 | 1,0,0 158 | 1,1,0 159 | 1,1,0 160 | 1,1,0 161 | 1,1,1 162 | 1,1,0 163 | 1,1,1 164 | 1,1,0 165 | 1,1,1 166 | 1,0,0 167 | 1,1,0 168 | 1,1,0 169 | 1,1,0 170 | 1,1,0 171 | 0,0,1 172 | 1,0,0 173 | 1,0,0 174 | 1,0,0 175 | 1,0,1 176 | 0,1,1 177 | 0,1,1 178 | 0,1,0 179 | 1,0,1 180 | 1,0,0 181 | 1,0,0 182 | 1,1,1 183 | 0,0,0 184 | 0,0,0 185 | 0,0,1 186 | -1,-1,-1 187 | -1,-1,-1 188 | 0,0,1 189 | 1,0,1 190 | 0,0,1 191 | 1,1,1 192 | 1,1,1 193 | 1,1,1 194 | 0,1,0 195 | 1,1,1 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_mean.taskInfo.csv: -------------------------------------------------------------------------------- 1 | taskInfos1,taskInfos2,taskInfos3,taskInfos4 2 | 1,"Oxidative phosphorylation via NADH-coenzyme Q oxidoreductase (COMPLEX I)",ENERGY METABOLISM,OXYDATIVE PHOSPHORYLATION 3 | 2,"Oxidative phosphorylation via succinate-coenzyme Q oxidoreductase (COMPLEX II)",ENERGY METABOLISM,OXYDATIVE PHOSPHORYLATION 4 | 3,"Krebs cycle - oxidative decarboxylation of pyruvate",ENERGY METABOLISM,KREBS CYCLE 5 | 4,"Krebs cycle - NADH generation",ENERGY METABOLISM,KREBS CYCLE 6 | 5,"ATP regeneration from glucose (normoxic conditions) - glycolysis + krebs cycle",ENERGY METABOLISM,ATP GENERATION 7 | 6,"ATP generation from glucose (hypoxic conditions) - glycolysis",ENERGY METABOLISM,ATP GENERATION 8 | 7,"Reactive oxygen species detoxification (H2O2 to H2O)",ENERGY METABOLISM,OXIDATIVE PHOSPHORYLATION & ROS DETOXIFICATION 9 | 8,"Presence of the thioredoxin system through the thioredoxin reductase activity",ENERGY METABOLISM,REDOX METABOLISM 10 | 9,"Inosine monophosphate synthesis (IMP)",NUCLEOTIDE METABOLISM,IMP SYNTHESIS / PURINE METABOLISM 11 | 10,"Cytidine triphosphate synthesis (CTP)",NUCLEOTIDE METABOLISM,UMP SYNTHESIS 12 | 11,"Guanosine triphosphate synthesis (GTP)",NUCLEOTIDE METABOLISM,IMP SYNTHESIS / PURINE METABOLISM 13 | 12,"Uridine triphosphate synthesis (UTP)",NUCLEOTIDE METABOLISM,UMP SYNTHESIS 14 | 13,"Deoxyadenosine triphosphate synthesis (dATP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 15 | 14,"Deoxycytidine triphosphate synthesis (dCTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 16 | 15,"Deoxyguanosine triphosphate synthesis (dGTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 17 | 16,"Deoxyuridine triphosphate synthesis (dUTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 18 | 17,"Deoxythymidine triphosphate synthesis (dTTP)",NUCLEOTIDE METABOLISM,DEOXYNUCLEOTIDES SYNTHESIS 19 | 18,"AMP salvage from adenine",NUCLEOTIDE METABOLISM,SALVAGE 20 | 19,"IMP salvage from hypoxanthine",NUCLEOTIDE METABOLISM,SALVAGE 21 | 20,"GMP salvage from guanine",NUCLEOTIDE METABOLISM,SALVAGE 22 | 21,"3'-Phospho-5'-adenylyl sulfate synthesis",NUCLEOTIDE METABOLISM,COFACTOR 23 | 22,"Degradation of adenine to urate",NUCLEOTIDE METABOLISM,PURINE CATABOLISM 24 | 23,"Degradation of guanine to urate",NUCLEOTIDE METABOLISM,PURINE CATABOLISM 25 | 24,"Degradation of cytosine",NUCLEOTIDE METABOLISM,PYRIMIDINE CATABOLISM 26 | 25,"Degradation of uracil",NUCLEOTIDE METABOLISM,PYRIMIDINE CATABOLISM 27 | 26,"Gluconeogenesis from pyruvate",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 28 | 27,"Gluconeogenesis from Lactate",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 29 | 28,"Gluconeogenesis from Glycerol",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 30 | 29,"Gluconeogenesis from Alanine",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 31 | 30,"Gluconeogenesis from Glutamine",CARBOHYDRATES METABOLISM,GLUCONEOGENESIS 32 | 31,"Ethanol to acetaldehyde",CARBOHYDRATES METABOLISM,GLYCOLYSIS/GLUCONEOGENESIS 33 | 32,"Glucose to lactate conversion",CARBOHYDRATES METABOLISM,PYRUVATE METABOLISM 34 | 33,"Malate to pyruvate conversion",CARBOHYDRATES METABOLISM,PYRUVATE METABOLISM 35 | 34,"Synthesis of fructose-6-phosphate from erythrose-4-phosphate (HMP shunt)",CARBOHYDRATES METABOLISM,PENTOSE PHOSPHATE PATHWAY 36 | 35,"Synthesis of ribose-5-phosphate",CARBOHYDRATES METABOLISM,PENTOSE PHOSPHATE PATHWAY 37 | 36,"Synthesis of lactose",CARBOHYDRATES METABOLISM,GALACTOSE METABOLISM 38 | 37,"Glycogen biosynthesis",CARBOHYDRATES METABOLISM,GLYCOGEN METABOLISM 39 | 38,"Glycogen degradation",CARBOHYDRATES METABOLISM,GLYCOGEN METABOLISM 40 | 39,"Fructose degradation (to glucose-3-phosphate)",CARBOHYDRATES METABOLISM,FRUCTOSE METABOLISM 41 | 40,"Fructose to glucose conversion (via fructose-6-phosphate)",CARBOHYDRATES METABOLISM,FRUCTOSE METABOLISM 42 | 41,"UDP-glucose synthesis",CARBOHYDRATES METABOLISM,NUCLEOTIDE SUGAR 43 | 42,"UDP-galactose synthesis",CARBOHYDRATES METABOLISM,NUCLEOTIDE SUGAR 44 | 43,"UDP-glucuronate synthesis",CARBOHYDRATES METABOLISM,NUCLEOTIDE SUGAR 45 | 44,"GDP-L-fucose synthesis",CARBOHYDRATES METABOLISM,FUCOSE METABOLISM 46 | 45,"Mannose degradation (to fructose-6-phosphate)",CARBOHYDRATES METABOLISM,MANNOSE METABOLISM 47 | 46,"GDP-mannose synthesis",CARBOHYDRATES METABOLISM,MANNOSE METABOLISM 48 | 47,"UDP-N-acetyl D-galactosamine synthesis",CARBOHYDRATES METABOLISM,AMINO SUGARS METABOLISM 49 | 48,"CMP-N-acetylneuraminate synthesis",CARBOHYDRATES METABOLISM,AMINO SUGARS METABOLISM 50 | 49,"N-Acetylglucosamine synthesis",CARBOHYDRATES METABOLISM,AMINO SUGARS METABOLISM 51 | 50,"Glucuronate synthesis (via inositol)",CARBOHYDRATES METABOLISM,PENTOSE AND GLUCURONATE INTERCONVERSION 52 | 51,"Glucuronate synthesis (via udp-glucose)",CARBOHYDRATES METABOLISM,PENTOSE AND GLUCURONATE INTERCONVERSION 53 | 52,"Synthesis of acetone",CARBOHYDRATES METABOLISM,KETOGENESIS 54 | 53,"(R)-3-Hydroxybutanoate synthesis",CARBOHYDRATES METABOLISM,KETOGENESIS 55 | 54,"Synthesis of inositol",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 56 | 55,"Inositol as input for glucuronate-xylulose pathway",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 57 | 56,"Synthesis of phosphatidylinositol from inositol",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 58 | 57,"Conversion of 1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate to 1D-myo-inositol 1,4,5-trisphosphate",CARBOHYDRATES METABOLISM,PHOSPHATE INOSITOL METABOLISM 59 | 58,"Starch degradation",CARBOHYDRATES METABOLISM,STARCH DEGRADATION 60 | 59,"Link between glyoxylate metabolism and pentose phosphate pathway (Xylulose to glycolate)",CARBOHYDRATES METABOLISM,GLYOXYLATE METABOLISM 61 | 60,"Synthesis of methylglyoxal",CARBOHYDRATES METABOLISM,METHYLGLYOXAL METABOLISM 62 | 61,"Alanine synthesis",AMINO ACIDS METABOLISM,ALANINE METABOLISM 63 | 62,"Alanine degradation",AMINO ACIDS METABOLISM,ALANINE METABOLISM 64 | 63,"Synthesis of alanine from glutamine",AMINO ACIDS METABOLISM,ALANINE METABOLISM 65 | 64,"Arginine synthesis",AMINO ACIDS METABOLISM,ARGININE METABOLISM 66 | 65,"Arginine degradation",AMINO ACIDS METABOLISM,ARGININE METABOLISM 67 | 66,"Synthesis of arginine from glutamine",AMINO ACIDS METABOLISM,ARGININE METABOLISM 68 | 67,"Synthesis of nitric oxide from arginine",AMINO ACIDS METABOLISM,ARGININE METABOLISM 69 | 68,"Synthesis of aspartate from glutamine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 70 | 69,"Synthesis of creatine from arginine",AMINO ACIDS METABOLISM,ARGININE METABOLISM 71 | 70,"Asparagine synthesis",AMINO ACIDS METABOLISM,ASPARAGINE METABOLISM 72 | 71,"Asparagine degradation",AMINO ACIDS METABOLISM,ASPARAGINE METABOLISM 73 | 72,"Aspartate synthesis",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 74 | 73,"Aspartate degradation",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 75 | 74,"Conversion of aspartate to arginine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 76 | 75,"Conversion of aspartate to beta-alanine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 77 | 76,"Conversion of asparate to asparagine",AMINO ACIDS METABOLISM,ASPARTATE METABOLISM 78 | 77,"beta-Alanine synthesis",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 79 | 78,"beta-Alanine degradation",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 80 | 79,"Conversion of carnosine to beta-alanine",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 81 | 80,"Beta-alanine to 3-oxopropanoate",AMINO ACIDS METABOLISM,BETA-ALANINE METABOLISM 82 | 81,"Cysteine synthesis (need serine and methionine)",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 83 | 82,"Cysteine degradation",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 84 | 83,"Synthesis of cysteine from cystine",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 85 | 84,"Synthesis of taurine from cysteine",AMINO ACIDS METABOLISM,CYSTEINE METABOLISM 86 | 85,"Glutamate synthesis",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 87 | 86,"Glutamate degradation",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 88 | 87,"Conversion of glutamate to glutamine",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 89 | 88,"Conversion of glutamate to proline",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 90 | 89,"Conversion of GABA into succinate",AMINO ACIDS METABOLISM,GLUTAMATE METABOLISM 91 | 90,"Glutamine synthesis",AMINO ACIDS METABOLISM,GLUTAMINE METABOLISM 92 | 91,"Glutamine degradation",AMINO ACIDS METABOLISM,GLUTAMINE METABOLISM 93 | 92,"Glutaminolysis (glutamine to lactate)",AMINO ACIDS METABOLISM,GLUTAMINE METABOLISM 94 | 93,"Glutathionate synthesis",AMINO ACIDS METABOLISM,GLUTATHIONE METABOLISM 95 | 94,"Glycine synthesis",AMINO ACIDS METABOLISM,GLYCINE METABOLISM 96 | 95,"Glycine degradation",AMINO ACIDS METABOLISM,GLYCINE METABOLISM 97 | 96,"Conversion of glycine to pyruvate",AMINO ACIDS METABOLISM,GLYCINE METABOLISM 98 | 97,"Histidine degradation",AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 99 | 98,"Conversion of histidine to glutamate",AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 100 | 99,"Conversion of histidine to histamine",AMINO ACIDS METABOLISM,HISTIDINE METABOLISM 101 | 100,"Homocysteine synthesis (need methionine)",AMINO ACIDS METABOLISM,HOMOCYSTEINE METABOLISM 102 | 101,"Homocysteine degradation",AMINO ACIDS METABOLISM,HOMOCYSTEINE METABOLISM 103 | 102,"Isoleucine degradation",AMINO ACIDS METABOLISM,ISOLEUCINE METABOLISM 104 | 103,"Leucine degradation",AMINO ACIDS METABOLISM,LEUCINE METABOLISM 105 | 104,"Conversion of leucine to acetyl-coA",AMINO ACIDS METABOLISM,LEUCINE METABOLISM 106 | 105,"Lysine degradation",AMINO ACIDS METABOLISM,LYSINE METABOLISM 107 | 106,"Conversion of lysine to L-Saccharopine",AMINO ACIDS METABOLISM,LYSINE METABOLISM 108 | 107,"Conversion of lysine to L-2-Aminoadipate",AMINO ACIDS METABOLISM,LYSINE METABOLISM 109 | 108,"Methionine degradation",AMINO ACIDS METABOLISM,METHIONINE METABOLISM 110 | 109,"S-adenosyl-L-methionine synthesis",AMINO ACIDS METABOLISM,METHIONINE METABOLISM 111 | 110,"Ornithine degradation",AMINO ACIDS METABOLISM,ORNITHINE METABOLISM 112 | 111,"Synthesis of ornithine from glutamine",AMINO ACIDS METABOLISM,ORNITHINE METABOLISM 113 | 112,"Synthesis of spermidine from ornithine",AMINO ACIDS METABOLISM,ORNITHINE METABOLISM 114 | 113,"Serine synthesis",AMINO ACIDS METABOLISM,SERINE METABOLISM 115 | 114,"Serine degradation",AMINO ACIDS METABOLISM,SERINE METABOLISM 116 | 115,"Phenylalanine degradation",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 117 | 116,"Phenylalanine to phenylacetaldehyde",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 118 | 117,"Phenylalanine to phenylacetyl-L-glutaminate",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 119 | 118,"Phenylalanine to tyrosine",AMINO ACIDS METABOLISM,PHENYLALANINE METABOLISM 120 | 119,"Proline synthesis",AMINO ACIDS METABOLISM,PROLINE METABOLISM 121 | 120,"Proline degradation",AMINO ACIDS METABOLISM,PROLINE METABOLISM 122 | 121,"Synthesis of proline from glutamine",AMINO ACIDS METABOLISM,PROLINE METABOLISM 123 | 122,"Threonine degradation",AMINO ACIDS METABOLISM,THREONINE METABOLISM 124 | 123,"Tryptophan degradation",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 125 | 124,"Synthesis of anthranilate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 126 | 125,"Synthesis of kynate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 127 | 126,"Synthesis of L-kynurenine from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 128 | 127,"Synthesis of N-formylanthranilate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 129 | 128,"Synthesis of quinolinate from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 130 | 129,"Synthesis of serotonin from tryptophan",AMINO ACIDS METABOLISM,TRYPTOPHAN METABOLISM 131 | 130,"Tyrosine synthesis (need phenylalanine)",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 132 | 131,"Tyrosine degradation",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 133 | 132,"Tyrosine to adrenaline",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 134 | 133,"Tyrosine to dopamine",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 135 | 134,"Tyrosine to acetoacetate and fumarate",AMINO ACIDS METABOLISM,TYROSINE METABOLISM 136 | 135,"Valine degradation",AMINO ACIDS METABOLISM,VALINE METABOLISM 137 | 136,"Valine to succinyl-coA",AMINO ACIDS METABOLISM,VALINE METABOLISM 138 | 137,"Hydroxymethylglutaryl-CoA synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 139 | 138,"Cholesterol synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 140 | 139,"Acetoacetate synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 141 | 140,"Mevalonate synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 142 | 141,"Farnesyl-pyrophosphate synthesis",LIPIDS METABOLISM,CHOLESTEROL METABOLISM 143 | 142,"Glycerol-3-phosphate synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 144 | 143,"Phosphatidyl-choline synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 145 | 144,"Phosphatidyl-ethanolamine synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 146 | 145,"Phosphatidyl-serine synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 147 | 146,"Phosphatidyl-inositol synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 148 | 147,"Cardiolipin synthesis",LIPIDS METABOLISM,GLYCEROPHOSPHOLIPID METABOLISM 149 | 148,"Triacylglycerol synthesis",LIPIDS METABOLISM,TRIACYLGLYCEROL METABOLISM 150 | 149,"Sphingomyelin synthesis",LIPIDS METABOLISM,SPHINGOLIPID METABOLISM 151 | 150,"Ceramide synthesis",LIPIDS METABOLISM,SPHINGOLIPID METABOLISM 152 | 151,"Palmitate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 153 | 152,"Palmitate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 154 | 153,"Palmitolate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 155 | 154,"Palmitolate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 156 | 155,"cis-vaccenic acid synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 157 | 156,"cis-vaccenic acid degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 158 | 157,"Elaidate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 159 | 158,"Elaidate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 160 | 159,"Linolenate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 161 | 160,"Linoleate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 162 | 161,"gamma-Linolenate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 163 | 162,"gamma-Linolenate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 164 | 163,"Arachidonate synthesis",LIPIDS METABOLISM,FATTY ACID METABOLISM 165 | 164,"Arachidonate degradation",LIPIDS METABOLISM,FATTY ACID METABOLISM 166 | 165,"Synthesis of malonyl-coa",LIPIDS METABOLISM,FATTY ACID METABOLISM 167 | 166,"Synthesis of palmitoyl-CoA",LIPIDS METABOLISM,FATTY ACID METABOLISM 168 | 167,"Taurochenodeoxycholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 169 | 168,"Glycochenodeoxycholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 170 | 169,"tauro-cholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 171 | 170,"glyco-cholate synthesis",LIPIDS METABOLISM,BILE ACID SYNTHESIS 172 | 171,"Synthesis of thromboxane from arachidonate",LIPIDS METABOLISM,EICOSANOID METABOLISM 173 | 172,"Synthesis of galactosyl glucosyl ceramide (link with ganglioside metabolism)",LIPIDS METABOLISM,GANGLIOSIDE METABOLISM 174 | 173,"Synthesis of glucocerebroside",LIPIDS METABOLISM,GANGLIOSIDE METABOLISM 175 | 174,"Synthesis of globoside (link with globoside metabolism)",LIPIDS METABOLISM,GLOBOSIDE METABOLISM 176 | 175,"NAD synthesis from nicotinamide",VITAMIN & COFACTOR METABOLISM,COENZYME NAD BIOSYNTHESIS 177 | 176,"FAD synthesis",VITAMIN & COFACTOR METABOLISM,COENZYME FAD BIOSYNTHESIS 178 | 177,"Synthesis of coenzyme A",VITAMIN & COFACTOR METABOLISM,COENZYME A BIOSYNTHESIS 179 | 178,"Synthesis of ubiquinone from tyrosine",VITAMIN & COFACTOR METABOLISM,UBIQUINONE 10 BIOSYNTHESIS 180 | 179,"Tetrahydrofolate synthesis",VITAMIN & COFACTOR METABOLISM,FOLATE METABOLISM 181 | 180,"Pyridoxal-phosphate synthesis",VITAMIN & COFACTOR METABOLISM,VITAMIN B6 METABOLISM 182 | 181,"Synthesis of bilirubin",VITAMIN & COFACTOR METABOLISM,HEME METABOLISM 183 | 182,"Heme synthesis",VITAMIN & COFACTOR METABOLISM,HEME METABOLISM 184 | 183,"Phosphatidyl-inositol to glucosaminyl-acylphosphatidylinositol",VITAMIN & COFACTOR METABOLISM,GPI ANCHOR BIOSYNTHESIS 185 | 184,"Glucosaminyl-acylphosphatidylinositoll to deacylated-glycophosphatidylinositol (GPI)-anchored protein",GLYCAN METABOLISM,GPI ANCHOR BIOSYNTHESIS 186 | 185,"Degradation of n2m2nmasn",GLYCAN METABOLISM,N-GLYCAN METABOLISM 187 | 186,"Biosynthesis of m4mpdol_U",GLYCAN METABOLISM,N-GLYCAN METABOLISM 188 | 187,"Biosynthesis of g3m8masn",GLYCAN METABOLISM,N-GLYCAN METABOLISM 189 | 188,"Degradation of s2l2fn2m2masn",GLYCAN METABOLISM,N-GLYCAN METABOLISM 190 | 189,"Biosynthesis of core2 (beta-D-Galactosyl-1,3-(N-acetyl-beta-D-glucosaminyl-1,6)-N-acetyl-D-galactosaminyl-R)",GLYCAN METABOLISM,O-GLYCAN METABOLISM 191 | 190,"Biosynthesis of core4 (N-Acetyl-beta-D-glucosaminyl-1,6-(N-acetyl-beta-D-glucosaminyl-1,3)-N-acetyl-D-galactosaminyl-R)",GLYCAN METABOLISM,O-GLYCAN METABOLISM 192 | 191,"Biosynthesis of Tn_antigen (Glycoprotein N-acetyl-D-galactosamine)",GLYCAN METABOLISM,O-GLYCAN METABOLISM 193 | 192,"Keratan sulfate biosynthesis from O-glycan (core 2-linked)",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 194 | 193,"Keratan sulfate biosynthesis from O-glycan (core 4-linked)",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 195 | 194,"Keratan sulfate degradation",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 196 | 195,"Keratan sulfate biosynthesis from N-glycan",GLYCAN METABOLISM,KERATAN SULFATE METABOLISM 197 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_minmaxmean_percentile.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataRecon22_local_minmaxmean_percentile.mat -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_minmaxmean_percentile.score.csv: -------------------------------------------------------------------------------- 1 | 2.259,0.00091904,0.0013052 2 | 5.5001,6.08,4.1739 3 | 1.2377,1.624,0.8793 4 | 3.0918,3.1573,2.4148 5 | 3.7972,3.956,3.822 6 | 8.0164,8.5346,8.856 7 | 2.6567,1.9678,1.3312 8 | 1.8016,2.3271,1.6681 9 | 2.1935,2.4633,2.6072 10 | 1.9139,1.9196,2.0723 11 | 2.2841,2.5266,2.6475 12 | 1.9353,1.9086,2.0793 13 | 1.9889,2.2169,2.3459 14 | 1.8074,1.8035,1.9713 15 | 2.3911,2.6428,2.7796 16 | 2.0567,2.022,2.2186 17 | 1.7058,1.6766,2.1288 18 | 2.2737,2.699,2.9599 19 | 1.1461,2.0572,1.9036 20 | 1.1461,2.0572,1.9036 21 | 0.87024,2.0202,1.0937 22 | 0.72839,0.73881,1.2653 23 | 0.17748,2.1544,1.4875 24 | 2.376,1.6329,2.6045 25 | 2.376,1.6329,2.6045 26 | 5.3802,5.2564,5.4926 27 | 5.5178,5.3946,5.6195 28 | 4.5695,3.8248,3.821 29 | 5.211,4.9495,5.2028 30 | 2.7406,3.7361,2.4951 31 | 4.6293,2.2586,0.53221 32 | 7.247,7.6991,7.9642 33 | 2.484,3.5245,2.1178 34 | 4.5402,3.1366,3.2909 35 | 2.7606,2.3313,2.6459 36 | 0.21013,2.3823,3.1268 37 | 3.5026,2.7276,1.896 38 | 2.7799,1.3055,1.4823 39 | 7.0991,9.405,8.6819 40 | 3.2672,3.1574,2.5653 41 | 5.0174,3.025,2.8421 42 | 2.4702,3.3812,2.9475 43 | 4.7776,3.034,2.9364 44 | 2.7698,3.5449,3.9756 45 | 2.1809,2.5817,1.9944 46 | 2.1911,2.3392,2.4622 47 | 4.5491,3.6533,3.5353 48 | 3.3181,2.8308,2.5722 49 | 4.5362,3.5984,3.4493 50 | 1.6625,1.7391,2.0827 51 | 4.7776,3.034,2.9364 52 | 5.3107,6.3934,5.8816 53 | 5.1602,6.1394,5.7303 54 | 2.0876,2.2784,2.6372 55 | 2.5723,2.6469,1.7578 56 | 5.1168,5.1848,3.5083 57 | 1.3984,1.6818,1.9713 58 | 0.48151,0.2456,0.98373 59 | 1.5924,1.8149,1.5657 60 | 3.9429,4.0519,3.4234 61 | 5.7985,5.579,5.5317 62 | 3.1407,3.1484,2.8997 63 | 1.9226,1.6089,1.6555 64 | 4.3295,4.343,4.0549 65 | 3.2967,3.2406,3.1666 66 | 3.4468,3.1281,2.7778 67 | 2.1204,1.0965,1.8717 68 | 3.0848,2.7298,2.2406 69 | 3.1514,4.4526,2.5608 70 | 5.0288,4.8029,4.7321 71 | 2.9239,2.9827,2.8262 72 | 5.5863,5.5416,5.454 73 | 3.1535,3.3194,2.9901 74 | 5.7639,4.842,4.2924 75 | 0.26927,0.82363,0.088718 76 | 2.5712,2.9637,4.6187 77 | 4.7304,4.8187,4.41 78 | 3.0453,3.1038,2.8531 79 | 1.2605,1.2739,1.6598 80 | 0.32811,2.0246,0.57603 81 | 1.684,2.2784,2.2564 82 | 2.1269,1.9455,1.7497 83 | -1,-1,-1 84 | 6.5497,2.1586,0.44461 85 | 6.0308,5.964,5.8731 86 | 2.922,2.9356,2.8525 87 | 19.209,10.177,14.43 88 | 1.5671,1.1004,1.5409 89 | 2.0871,2.7069,1.856 90 | 7.0445,6.288,6.5313 91 | 2.8917,3.1461,2.8994 92 | 2.6307,3.5004,2.3983 93 | 3.1323,3.7746,3.1153 94 | 5.1927,5.7179,5.1495 95 | 2.0011,1.9988,1.9475 96 | 1.889,0.7521,1.0841 97 | 3.0161,3.0708,3.006 98 | 0.88874,1.9946,1.5167 99 | 3.1024,0.83685,5.5307 100 | 2.1499,2.5187,3.0816 101 | 0.75231,1.7979,0.60604 102 | 2.9909,3.0688,2.8105 103 | 3.0118,3.1541,2.785 104 | 1.7426,3.3956,1.2356 105 | 2.794,2.84,2.6258 106 | 1.5264,1.2224,0.58309 107 | 0.96188,1.4014,0.83702 108 | 2.6028,2.6647,2.7751 109 | 1.7776,2.547,2.8797 110 | 2.9092,3.0011,2.8636 111 | 2.669,4.2265,3.1751 112 | 2.8908,2.8417,3.822 113 | 5.5231,6.2145,5.5561 114 | 1.9831,1.8603,2.0403 115 | 3.0709,3.1807,2.926 116 | 0.39675,0.60714,0.20245 117 | 0.42237,0.52589,0.2296 118 | 0.1874,2.6179,0.01094 119 | 5.4476,5.2243,5.1772 120 | 3.0894,3.2314,3.053 121 | 2.568,2.8478,2.4905 122 | 3.0151,3.0932,2.8624 123 | 2.7883,2.8589,2.7905 124 | 0.31074,0.32349,6.7844 125 | 1.2438,1.0904,3.235 126 | 1.1463,0.78233,4.3476 127 | 0.44374,0.44923,4.3548 128 | 1.7927,1.3762,3.9537 129 | 0.21507,0.49348,0.54693 130 | 1.4035,2.8137,0.40749 131 | 3.1642,3.2004,3.0199 132 | 0.23159,4.8116,0.43591 133 | 0.014228,0.42451,0.048139 134 | 2.5942,2.4605,1.9625 135 | 2.9708,3.1382,2.8557 136 | 2.0511,2.9164,1.1738 137 | 5.6575,6.4417,6.2951 138 | 1.5269,2.5008,1.5171 139 | 5.3107,6.3934,5.8816 140 | 0.9131,2.4557,1.5895 141 | 1.4876,2.0257,1.6048 142 | 7.2359,0.39929,0.1529 143 | 2.5801,2.4259,2.074 144 | 2.5809,2.4329,2.0434 145 | 2.5682,2.4137,2.0362 146 | 2.429,2.1799,1.7605 147 | 2.3868,2.2233,1.7777 148 | 2.4405,2.0001,1.6091 149 | 2.5228,2.4684,2.1756 150 | 2.4995,2.4092,2.0641 151 | 3.0262,3.3447,3.139 152 | 1.0001,1.1992,0.8381 153 | 2.4171,2.5739,2.2191 154 | 1.0368,1.0574,0.70404 155 | 2.9248,3.3219,2.901 156 | 1.4511,1.8208,1.2607 157 | 2.9248,3.3219,2.901 158 | 1.0069,1.2404,0.81874 159 | 1.1112,1.3157,1.0213 160 | 1.5984,1.9183,1.3059 161 | 0.32224,0.75834,0.31331 162 | 1.6354,1.9148,1.3258 163 | 2.9575,3.1577,3.0437 164 | 1.0377,1.0916,0.70366 165 | 4.7001,5.2787,4.8269 166 | 3.8007,3.9065,3.662 167 | 0.45342,0.37612,0.37225 168 | 1.2301,1.1264,1.1804 169 | 0.48398,0.27665,0.30313 170 | 0.48398,0.27665,0.30313 171 | 1.6672,1.397,2.8385 172 | 2.3042,2.1044,1.7655 173 | 1.8053,1.6446,1.1424 174 | 1.7835,1.6254,1.1419 175 | 5.5681,3.3555,6.2308 176 | 2.9991,3.6488,3.6333 177 | 1.1641,1.5165,1.2951 178 | 1.9206,3.0647,1.9868 179 | 1.0691,0.38796,1.0324 180 | 2.4142,1.3418,1.3649 181 | 6.2977,3.8523,4.385 182 | 3.1951,3.6725,2.7059 183 | 2.8678,3.279,3.3485 184 | 0.72055,0.71335,0.70889 185 | 1.8379,1.9809,2.6511 186 | -1,-1,-1 187 | -1,-1,-1 188 | 1.3078,1.4681,1.9107 189 | 3.6902,3.2771,4.541 190 | 2.2102,1.939,4.3801 191 | 6.2587,5.8171,5.9539 192 | 0.333,0.65227,0.29003 193 | 0.333,0.65227,0.29003 194 | 0.22257,0.30819,0.2969 195 | 0.27032,0.32525,0.27332 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_minmaxmean_percentile.score_binary.csv: -------------------------------------------------------------------------------- 1 | 0,0,0 2 | 1,1,1 3 | 1,0,0 4 | 1,1,1 5 | 1,1,1 6 | 1,1,1 7 | 1,1,1 8 | 1,1,1 9 | 1,1,1 10 | 1,1,1 11 | 1,1,1 12 | 1,1,1 13 | 1,1,1 14 | 1,1,1 15 | 1,1,1 16 | 1,1,1 17 | 1,1,1 18 | 1,1,1 19 | 0,1,1 20 | 0,1,1 21 | 1,1,1 22 | 0,0,1 23 | 0,0,1 24 | 0,0,1 25 | 0,0,1 26 | 1,1,1 27 | 1,1,1 28 | 1,1,1 29 | 1,1,1 30 | 1,1,1 31 | 1,1,1 32 | 1,1,1 33 | 0,1,1 34 | 1,1,1 35 | 1,1,1 36 | 1,0,0 37 | 1,1,0 38 | 1,0,0 39 | 1,1,1 40 | 1,1,1 41 | 1,1,1 42 | 0,1,1 43 | 1,1,1 44 | 0,1,1 45 | 1,1,1 46 | 1,1,1 47 | 1,1,1 48 | 1,1,1 49 | 1,1,1 50 | 1,1,1 51 | 1,1,1 52 | 1,1,1 53 | 1,1,1 54 | 1,1,1 55 | 1,0,0 56 | 1,1,1 57 | 1,1,1 58 | 0,0,1 59 | 1,1,1 60 | 1,1,1 61 | 1,1,1 62 | 1,1,1 63 | 1,0,0 64 | 1,1,1 65 | 1,1,1 66 | 1,1,1 67 | 1,0,1 68 | 1,1,0 69 | 0,1,0 70 | 1,1,1 71 | 1,1,1 72 | 1,1,1 73 | 1,1,1 74 | 1,1,1 75 | 0,0,0 76 | 0,0,1 77 | 1,1,1 78 | 1,1,1 79 | 1,1,1 80 | 0,1,0 81 | 0,1,0 82 | 1,1,1 83 | -1,-1,-1 84 | 1,0,0 85 | 1,1,1 86 | 1,1,1 87 | 1,1,1 88 | 0,0,1 89 | 0,1,0 90 | 1,1,1 91 | 1,1,1 92 | 1,1,1 93 | 0,1,0 94 | 1,1,1 95 | 1,1,1 96 | 1,0,0 97 | 1,1,1 98 | 0,0,0 99 | 0,1,1 100 | 0,1,1 101 | 0,1,0 102 | 1,1,1 103 | 1,1,1 104 | 0,1,0 105 | 1,1,1 106 | 1,1,0 107 | 0,1,0 108 | 1,1,1 109 | 1,1,1 110 | 1,1,1 111 | 1,1,1 112 | 1,1,1 113 | 1,1,1 114 | 1,1,1 115 | 1,1,1 116 | 1,1,1 117 | 1,1,1 118 | 0,1,0 119 | 1,1,1 120 | 1,1,1 121 | 1,0,1 122 | 1,1,1 123 | 1,1,1 124 | 0,0,1 125 | 0,0,1 126 | 0,0,1 127 | 0,0,1 128 | 0,0,1 129 | 0,1,0 130 | 0,1,0 131 | 1,1,1 132 | 0,1,0 133 | 0,0,0 134 | 0,1,0 135 | 1,1,1 136 | 1,1,0 137 | 1,1,1 138 | 1,1,0 139 | 1,1,1 140 | 0,1,0 141 | 0,1,1 142 | 1,0,0 143 | 1,1,1 144 | 1,1,1 145 | 1,1,1 146 | 1,1,1 147 | 1,1,1 148 | 1,1,1 149 | 1,1,1 150 | 1,1,1 151 | 1,1,1 152 | 1,1,1 153 | 1,1,1 154 | 1,1,1 155 | 1,1,1 156 | 1,1,1 157 | 1,1,1 158 | 1,1,1 159 | 1,1,1 160 | 1,1,1 161 | 1,1,1 162 | 1,1,1 163 | 1,1,1 164 | 1,1,1 165 | 1,1,1 166 | 1,1,1 167 | 1,1,1 168 | 1,1,0 169 | 0,1,0 170 | 0,1,0 171 | 0,0,1 172 | 1,1,1 173 | 1,1,1 174 | 1,1,1 175 | 1,1,1 176 | 0,1,1 177 | 0,1,1 178 | 0,1,0 179 | 1,0,1 180 | 1,1,1 181 | 1,1,1 182 | 1,1,0 183 | 0,0,0 184 | 0,0,0 185 | 1,1,1 186 | -1,-1,-1 187 | -1,-1,-1 188 | 0,1,1 189 | 1,0,1 190 | 0,0,1 191 | 1,1,1 192 | 1,1,1 193 | 1,1,1 194 | 1,1,1 195 | 1,1,1 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_minmaxmean_value.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataRecon22_local_minmaxmean_value.mat -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_minmaxmean_value.score.csv: -------------------------------------------------------------------------------- 1 | 0.22045,7.2539e-05,0.00010302 2 | 3.233,3.5859,2.477 3 | 0.94776,1.4579,0.65698 4 | 2.0896,1.9819,1.5294 5 | 2.4146,2.5576,2.4772 6 | 5.1137,5.5284,5.8661 7 | 1.7052,1.1509,0.69986 8 | 1.0268,1.4326,0.93026 9 | 1.7281,1.9502,2.0191 10 | 1.2883,1.3564,1.4083 11 | 1.7649,1.9092,1.977 12 | 1.3026,1.3502,1.3955 13 | 1.5334,1.7576,1.8623 14 | 1.2141,1.2734,1.34 15 | 1.8431,1.9914,2.0738 16 | 1.3754,1.4211,1.4847 17 | 1.1304,1.1628,1.4483 18 | 1.4435,1.7627,1.965 19 | 1.0281,1.875,1.7309 20 | 1.0281,1.875,1.7309 21 | 0.77407,1.3857,0.99761 22 | 0.467,0.48825,0.6513 23 | 0.014431,0.2559,0.16364 24 | 1.9699,1.5852,2.0283 25 | 1.9699,1.5852,2.0283 26 | 3.6678,3.4812,3.657 27 | 3.7626,3.5761,3.7423 28 | 2.906,2.4116,2.3328 29 | 3.5849,3.2856,3.4465 30 | 1.9989,2.3697,1.7887 31 | 3.514,1.3775,0.329 32 | 4.6338,4.9954,5.2765 33 | 2.484,1.7622,2.1178 34 | 2.7735,1.72,1.8283 35 | 2.133,1.8456,1.9959 36 | 3.5082,1.7116,2.2906 37 | 2.5986,2.1328,1.491 38 | 2.033,1.0995,1.2722 39 | 4.0288,5.8085,5.2306 40 | 2.096,2.0035,1.534 41 | 3.3453,1.612,1.6949 42 | 1.6669,2.8356,1.9078 43 | 3.5236,1.9743,2.0759 44 | 1.0979,1.4612,1.6335 45 | 2.0013,2.4233,1.8246 46 | 2.0023,2.0769,1.8765 47 | 3.2959,2.3983,2.3529 48 | 2.3789,1.9004,1.7245 49 | 3.184,2.3033,2.2316 50 | 1.058,1.195,0.74979 51 | 3.5236,1.9743,2.0759 52 | 3.5442,3.9673,3.7114 53 | 3.4022,3.7809,3.5825 54 | 1.4001,1.5902,0.98825 55 | 1.395,1.3154,0.80586 56 | 3.8446,3.9016,2.5353 57 | 1.1483,1.1948,1.9149 58 | 0.16037,0.11512,0.21517 59 | 0.97116,1.0287,0.94086 60 | 2.6181,2.7772,2.2659 61 | 3.8884,3.6722,3.6243 62 | 2.2202,1.9949,1.9085 63 | 1.9226,1.6089,1.6555 64 | 2.6815,2.8187,2.5617 65 | 2.2022,2.1128,2.1047 66 | 1.6269,1.873,1.4997 67 | 0.78001,0.35149,0.6665 68 | 2.8091,2.2433,1.963 69 | 1.666,2.5088,1.4251 70 | 3.4181,3.1831,3.1039 71 | 2.0374,1.9485,1.877 72 | 3.7135,3.6493,3.6002 73 | 2.2155,2.1145,1.9878 74 | 3.5732,2.8843,2.5909 75 | 0.022338,0.17757,0.0071174 76 | 1.6064,1.878,3.0916 77 | 3.1488,3.115,2.903 78 | 2.1994,2.0307,1.9286 79 | 0.81711,0.59379,1.1299 80 | 0.16511,1.2635,0.30055 81 | 1.2134,1.3835,1.3049 82 | 1.5583,1.2685,1.0209 83 | -1,-1,-1 84 | 6.1647,1.9775,0.40125 85 | 4.0035,3.9163,3.8672 86 | 2.0631,1.9636,1.9165 87 | 14.724,6.4427,10.194 88 | 0.79612,0.62702,1.4427 89 | 0.73359,1.1877,0.65575 90 | 4.8282,4.1107,4.3538 91 | 2.0772,2.0806,1.9744 92 | 1.9083,2.2315,1.7088 93 | 2.2192,3.0073,2.2789 94 | 3.4309,3.8371,3.4275 95 | 1.2624,1.1507,1.2546 96 | 1.6486,0.62001,0.90345 97 | 2.1073,1.9559,1.9341 98 | 0.1043,0.5255,0.20798 99 | 0.85258,0.66594,1.814 100 | 1.7268,1.7705,1.8878 101 | 0.18644,0.60952,0.13918 102 | 2.0848,2.0238,1.8764 103 | 2.1355,1.9918,1.8534 104 | 1.594,1.8368,1.11 105 | 1.9976,1.9017,1.7688 106 | 0.92152,0.71215,0.31262 107 | 0.59594,0.84638,0.35463 108 | 1.6616,1.6167,1.6567 109 | 1.2144,1.8168,2.0891 110 | 2.0526,2.0174,1.9236 111 | 1.5932,2.7352,1.9731 112 | 2.3985,2.3516,3.2094 113 | 3.6092,4.1589,3.6799 114 | 1.3551,1.1026,1.1774 115 | 2.123,2.0041,1.8755 116 | 0.28483,0.48891,0.075897 117 | 0.28871,0.37982,0.13369 118 | 0.015311,0.34063,0.00086519 119 | 3.5731,3.4033,3.4844 120 | 2.2117,2.1026,2.0691 121 | 1.3972,1.7283,1.9195 122 | 2.1502,2.0842,1.9376 123 | 1.9448,1.8379,1.7786 124 | 0.23139,0.048778,1.3388 125 | 0.5843,0.31945,0.91674 126 | 0.74503,0.39754,1.2732 127 | 0.25419,0.16242,1.2263 128 | 0.69137,0.46325,1.2018 129 | 0.026755,0.33906,0.080695 130 | 1.0029,1.3323,0.27873 131 | 2.1786,2.0254,1.9253 132 | 0.15465,3.597,0.27791 133 | 0.0096762,0.33345,0.03323 134 | 1.5599,1.4267,0.72035 135 | 2.0963,2.064,1.9467 136 | 1.4175,2.0847,0.94456 137 | 3.7305,4.1218,3.9276 138 | 1.1585,1.9798,1.1564 139 | 3.5442,3.9673,3.7114 140 | 0.89336,2.4152,1.5591 141 | 1.0651,1.4391,1.1351 142 | 5.1162,0.16535,0.061494 143 | 1.7045,1.5501,1.2863 144 | 1.6888,1.5383,1.247 145 | 1.6893,1.5345,1.2484 146 | 1.5657,1.3682,1.0275 147 | 1.622,1.5041,1.1487 148 | 1.5858,1.2625,1.0179 149 | 1.6682,1.5579,1.3786 150 | 1.662,1.5311,1.2803 151 | 2.0008,2.1538,1.9727 152 | 0.71136,0.70504,0.49238 153 | 1.6129,1.6069,1.436 154 | 0.7491,0.61391,0.41618 155 | 1.9491,2.0643,1.8029 156 | 1.0678,1.1103,0.774 157 | 1.9491,2.0643,1.8029 158 | 0.733,0.73373,0.48925 159 | 0.77779,0.8152,0.61787 160 | 1.1837,1.1652,0.81286 161 | 0.34032,0.4824,0.34477 162 | 1.2004,1.1619,0.81421 163 | 1.9336,2.0498,1.9895 164 | 0.76006,0.63495,0.41929 165 | 3.1255,3.2777,3.0152 166 | 2.399,2.3517,2.2338 167 | 0.24365,0.22277,0.20388 168 | 0.75904,0.7701,0.76268 169 | 0.27091,0.26301,0.17312 170 | 0.27091,0.26301,0.17312 171 | 1.4372,1.2049,2.394 172 | 1.529,1.4021,1.0909 173 | 1.1422,1.0597,0.68696 174 | 1.1145,1.0294,0.67531 175 | 2.9838,1.7912,3.9614 176 | 2.202,2.7852,2.7281 177 | 0.85501,1.126,0.93574 178 | 1.0564,1.8451,1.1016 179 | 0.53504,0.16793,0.51291 180 | 1.6528,0.82856,0.84494 181 | 4.7216,3.1375,3.4641 182 | 1.6988,2.1995,1.4683 183 | 1.3732,1.4397,1.6975 184 | 0.32757,0.48647,0.40024 185 | 1.2989,1.3363,1.9897 186 | -1,-1,-1 187 | -1,-1,-1 188 | 0.97861,1.0427,1.4803 189 | 2.075,1.6748,2.4838 190 | 1.2691,1.1859,1.7639 191 | 3.751,3.5576,3.8856 192 | 0.23942,0.39778,0.22247 193 | 0.23942,0.39778,0.22247 194 | 0.18151,0.18658,0.22732 195 | 0.15554,0.16018,0.14069 196 | -------------------------------------------------------------------------------- /test/suite/dataRecon22_local_minmaxmean_value.score_binary.csv: -------------------------------------------------------------------------------- 1 | 0,0,0 2 | 0,1,0 3 | 0,0,0 4 | 1,1,0 5 | 1,1,1 6 | 1,1,1 7 | 1,1,0 8 | 1,1,1 9 | 0,0,1 10 | 0,0,0 11 | 1,0,1 12 | 0,0,0 13 | 0,0,1 14 | 0,0,0 15 | 1,0,1 16 | 0,0,0 17 | 0,0,0 18 | 0,1,1 19 | 0,1,0 20 | 0,1,0 21 | 0,1,1 22 | 0,0,0 23 | 0,0,0 24 | 0,0,0 25 | 0,0,0 26 | 1,1,1 27 | 1,1,1 28 | 1,1,1 29 | 1,1,1 30 | 0,1,0 31 | 1,1,0 32 | 1,1,1 33 | 0,1,1 34 | 1,0,1 35 | 1,0,1 36 | 1,0,0 37 | 1,0,0 38 | 1,0,0 39 | 1,1,1 40 | 1,1,1 41 | 1,1,1 42 | 0,1,0 43 | 1,1,1 44 | 0,0,0 45 | 1,1,1 46 | 1,1,1 47 | 1,0,1 48 | 1,0,0 49 | 1,0,0 50 | 1,0,0 51 | 1,1,1 52 | 1,1,1 53 | 1,1,1 54 | 1,1,1 55 | 0,0,0 56 | 1,1,0 57 | 0,1,1 58 | 0,0,0 59 | 1,1,1 60 | 1,1,1 61 | 1,1,1 62 | 1,1,0 63 | 1,0,0 64 | 1,1,1 65 | 1,0,0 66 | 0,0,0 67 | 0,0,0 68 | 0,1,0 69 | 0,0,0 70 | 1,1,1 71 | 1,0,0 72 | 1,1,1 73 | 1,1,0 74 | 1,0,0 75 | 0,0,0 76 | 0,0,0 77 | 1,1,1 78 | 1,1,0 79 | 0,0,1 80 | 0,1,0 81 | 0,0,0 82 | 0,0,0 83 | -1,-1,-1 84 | 1,0,0 85 | 1,1,1 86 | 1,0,0 87 | 1,1,1 88 | 0,0,0 89 | 0,0,0 90 | 1,1,1 91 | 1,0,0 92 | 1,1,1 93 | 0,0,0 94 | 1,1,1 95 | 1,0,0 96 | 1,0,0 97 | 1,0,0 98 | 0,0,0 99 | 0,1,0 100 | 0,0,0 101 | 0,0,0 102 | 1,0,0 103 | 1,1,0 104 | 0,1,0 105 | 1,0,0 106 | 0,0,0 107 | 0,0,0 108 | 1,0,0 109 | 0,1,1 110 | 1,1,0 111 | 0,1,0 112 | 0,0,1 113 | 1,1,1 114 | 1,0,0 115 | 1,0,0 116 | 0,1,0 117 | 1,1,0 118 | 0,0,0 119 | 1,1,1 120 | 1,0,0 121 | 0,0,0 122 | 1,1,0 123 | 1,0,0 124 | 0,0,1 125 | 0,0,0 126 | 0,0,1 127 | 0,0,1 128 | 0,0,0 129 | 0,0,0 130 | 0,0,0 131 | 1,0,0 132 | 0,1,0 133 | 0,0,0 134 | 0,0,0 135 | 1,0,0 136 | 0,1,0 137 | 1,1,1 138 | 0,1,0 139 | 1,1,1 140 | 0,1,0 141 | 0,0,0 142 | 1,0,0 143 | 1,1,0 144 | 1,1,0 145 | 1,1,0 146 | 1,1,0 147 | 1,1,0 148 | 1,0,0 149 | 1,0,0 150 | 1,0,0 151 | 1,1,1 152 | 1,1,0 153 | 1,1,0 154 | 1,0,0 155 | 1,1,1 156 | 1,1,0 157 | 1,1,1 158 | 1,1,0 159 | 1,1,0 160 | 1,1,0 161 | 1,1,1 162 | 1,1,0 163 | 1,1,1 164 | 1,1,0 165 | 1,1,1 166 | 1,0,0 167 | 0,0,0 168 | 0,0,0 169 | 0,0,0 170 | 0,0,0 171 | 0,0,1 172 | 1,0,0 173 | 1,0,0 174 | 1,0,0 175 | 0,0,1 176 | 0,0,0 177 | 0,0,0 178 | 0,0,0 179 | 0,0,0 180 | 1,0,0 181 | 1,0,0 182 | 0,0,0 183 | 0,0,0 184 | 0,0,0 185 | 0,0,0 186 | -1,-1,-1 187 | -1,-1,-1 188 | 0,0,0 189 | 0,0,0 190 | 0,0,0 191 | 1,1,1 192 | 0,0,0 193 | 0,0,0 194 | 0,1,0 195 | 0,0,0 196 | -------------------------------------------------------------------------------- /test/suite/dataTest.mat: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataTest.mat -------------------------------------------------------------------------------- /test/suite/dataTest.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LewisLabUCSD/CellFie/208727ebdeb6146cb5f00a1f863583596aa853cf/test/suite/dataTest.xlsx -------------------------------------------------------------------------------- /test/suite/testCellFie.m: -------------------------------------------------------------------------------- 1 | % Generation of all the potential results 2 | 3 | %% dataRecon22_local_minmaxmean_value 4 | load('dataTest.mat') 5 | SampleNumber=3; 6 | ref='MT_recon_2_2_entrez.mat'; 7 | param.ThreshType='local'; 8 | param.percentile_or_value='value'; 9 | param.LocalThresholdType='minmaxmean'; 10 | param.value_low=25; 11 | param.value_high=75; 12 | 13 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 14 | save dataRecon22_local_minmaxmean_value score score_binary taskInfos detailScoring 15 | csvwrite('dataRecon22_local_minmaxmean_value.score.csv',score); 16 | csvwrite('dataRecon22_local_minmaxmean_value.score_binary.csv',score_binary); 17 | T = cell2table(taskInfos); 18 | writetable(T,'dataRecon22_local_minmaxmean_value.taskInfo.csv'); 19 | Var={}; 20 | for i=1:SampleNumber 21 | Var=[Var strcat('SampleID_S',num2str(i)) strcat('TaskID_S',num2str(i)) strcat('TaskScore_S',num2str(i))... 22 | strcat('BinaryTaskScore_S',num2str(i)) strcat('EssentialRxnsTask_S',num2str(i))... 23 | strcat('ExpressionScoreEssentialRxnsTask_S',num2str(i))... 24 | strcat('GeneAssociatedToEssentialRxnsTask_S',num2str(i))... 25 | strcat('GeneExpressionValue_S',num2str(i))]; 26 | end 27 | D = cell2table(detailScoring,'VariableNames',Var); 28 | writetable(D,'dataRecon22_local_minmaxmean_value.detailScoring.csv') 29 | 30 | %% dataRecon22_local_minmaxmean_percentile 31 | load('dataTest.mat') 32 | SampleNumber=3; 33 | ref='MT_recon_2_2_entrez.mat'; 34 | param.ThreshType='local'; 35 | param.percentile_or_value='percentile'; 36 | param.LocalThresholdType='minmaxmean'; 37 | param.percentile_low=25; 38 | param.percentile_high=75; 39 | 40 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 41 | save dataRecon22_local_minmaxmean_percentile score score_binary taskInfos detailScoring 42 | csvwrite('dataRecon22_local_minmaxmean_percentile.score.csv',score); 43 | csvwrite('dataRecon22_local_minmaxmean_percentile.score_binary.csv',score_binary); 44 | T = cell2table(taskInfos); 45 | writetable(T,'dataRecon22_local_minmaxmean_percentile.taskInfo.csv'); 46 | Var={}; 47 | for i=1:SampleNumber 48 | Var=[Var strcat('SampleID_S',num2str(i)) strcat('TaskID_S',num2str(i)) strcat('TaskScore_S',num2str(i))... 49 | strcat('BinaryTaskScore_S',num2str(i)) strcat('EssentialRxnsTask_S',num2str(i))... 50 | strcat('ExpressionScoreEssentialRxnsTask_S',num2str(i))... 51 | strcat('GeneAssociatedToEssentialRxnsTask_S',num2str(i))... 52 | strcat('GeneExpressionValue_S',num2str(i))]; 53 | end 54 | D = cell2table(detailScoring,'VariableNames',Var); 55 | writetable(D,'dataRecon22_local_minmaxmean_percentile.detailScoring.csv'); 56 | 57 | %% dataRecon22_local_mean 58 | load('dataTest.mat') 59 | SampleNumber=3; 60 | ref='MT_recon_2_2_entrez.mat'; 61 | param.ThreshType='local'; 62 | param.LocalThresholdType='mean'; 63 | 64 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 65 | save dataRecon22_local_mean score score_binary taskInfos detailScoring 66 | csvwrite('dataRecon22_local_mean.score.csv',score); 67 | csvwrite('dataRecon22_local_mean.score_binary.csv',score_binary); 68 | T = cell2table(taskInfos); 69 | writetable(T,'dataRecon22_local_mean.taskInfo.csv'); 70 | Var={}; 71 | for i=1:SampleNumber 72 | Var=[Var strcat('SampleID_S',num2str(i)) strcat('TaskID_S',num2str(i)) strcat('TaskScore_S',num2str(i))... 73 | strcat('BinaryTaskScore_S',num2str(i)) strcat('EssentialRxnsTask_S',num2str(i))... 74 | strcat('ExpressionScoreEssentialRxnsTask_S',num2str(i))... 75 | strcat('GeneAssociatedToEssentialRxnsTask_S',num2str(i))... 76 | strcat('GeneExpressionValue_S',num2str(i))]; 77 | end 78 | D = cell2table(detailScoring,'VariableNames',Var); 79 | writetable(D,'dataRecon22_local_mean.detailScoring.csv'); 80 | 81 | %% dataRecon22_global_value 82 | load('dataTest.mat') 83 | SampleNumber=3; 84 | ref='MT_recon_2_2_entrez.mat'; 85 | param.ThreshType='global'; 86 | param.percentile_or_value='value'; 87 | param.value=50; 88 | 89 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 90 | save dataRecon22_global_value score score_binary taskInfos detailScoring 91 | csvwrite('dataRecon22_global_value.score.csv',score); 92 | csvwrite('dataRecon22_global_value.score_binary.csv',score_binary); 93 | T = cell2table(taskInfos); 94 | writetable(T,'dataRecon22_global_value.taskInfo.csv'); 95 | Var={}; 96 | for i=1:SampleNumber 97 | Var=[Var strcat('SampleID_S',num2str(i)) strcat('TaskID_S',num2str(i)) strcat('TaskScore_S',num2str(i))... 98 | strcat('BinaryTaskScore_S',num2str(i)) strcat('EssentialRxnsTask_S',num2str(i))... 99 | strcat('ExpressionScoreEssentialRxnsTask_S',num2str(i))... 100 | strcat('GeneAssociatedToEssentialRxnsTask_S',num2str(i))... 101 | strcat('GeneExpressionValue_S',num2str(i))]; 102 | end 103 | D = cell2table(detailScoring,'VariableNames',Var); 104 | writetable(D,'dataRecon22_global_value.detailScoring.csv'); 105 | 106 | %% dataRecon22_global_percentile 107 | load('dataTest.mat') 108 | SampleNumber=3; 109 | ref='MT_recon_2_2_entrez.mat'; 110 | param.ThreshType='global'; 111 | param.percentile_or_value='percentile'; 112 | param.percentile=50; 113 | 114 | [score, score_binary ,taskInfos, detailScoring]=CellFie(data,SampleNumber,ref,param); 115 | save dataRecon22_global_percentile score score_binary taskInfos detailScoring 116 | csvwrite('dataRecon22_global_percentile.score.csv',score); 117 | csvwrite('dataRecon22_global_percentile.score_binary.csv',score_binary); 118 | T = cell2table(taskInfos); 119 | writetable(T,'dataRecon22_global_percentile.taskInfo.csv'); 120 | 121 | Var={}; 122 | for i=1:SampleNumber 123 | Var=[Var strcat('SampleID_S',num2str(i)) strcat('TaskID_S',num2str(i)) strcat('TaskScore_S',num2str(i))... 124 | strcat('BinaryTaskScore_S',num2str(i)) strcat('EssentialRxnsTask_S',num2str(i))... 125 | strcat('ExpressionScoreEssentialRxnsTask_S',num2str(i))... 126 | strcat('GeneAssociatedToEssentialRxnsTask_S',num2str(i))... 127 | strcat('GeneExpressionValue_S',num2str(i))]; 128 | end 129 | D = cell2table(detailScoring,'VariableNames',Var); 130 | writetable(D,'dataRecon22_global_percentile.detailScoring.csv'); 131 | 132 | 133 | --------------------------------------------------------------------------------