├── Fig └── teaser.png └── README.md /Fig/teaser.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LiXin97/Co-Planar-Parametrization/79803d5392cc7474d3d90ef76ba6a27fc4361ce9/Fig/teaser.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Co-Planar Parametrization 2 | 3 | #### OUR VIO BRANCH IS RELEARSE IN https://github.com/LiXin97/Co-Planar-Parametrization-VIO 4 | 5 | Co-Planar Parametrization (CP-Param) provides a new parametrization for co-planar points and lines, which leverages specific geometric constraints to improve camera pose optimization in terms of both efficiency and accuracy. Based on the parametrization, we implement a framework for Stereo SLAM and Visual-Inertial Odometry. 6 | 7 | ![teaser](Fig/teaser.png) 8 | 9 | We provide examples to run CP-Param in the [EuRoC dataset](http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets) using stereo or VIO. Considering that not every developer has a GPU for plane instance segmentation, we also provide our [segmentation results](https://drive.google.com/drive/folders/1yf_nSMm0lbcTm04J7g2RkAbriEWCNlbq?usp=sharing) of the EuRoc dataset. Please cite it if you use the repo in academic work. 10 | 11 | ``` 12 | @article{Li2020cpparam, 13 | author = {Li, Xin and Li, Yanyan and \"{O}rnek, Evin Pınar and Lin, Jinlong and Tombari, Federico}, 14 | title = {Co-Planar Parametrization for Stereo-SLAM and Visual-Inertial Odometry}, 15 | journal = {IEEE Robotics and Automation Letters}, 16 | year = {2020}, 17 | publisher={IEEE} 18 | } 19 | ``` 20 | 21 | # 1. License 22 | 23 | CP-Param is released under a [GPLv3 license](https://github.com/raulmur/StructureSLAM/blob/master/License-gpl.txt). For a closed-source version of CP-Param for commercial purposes, please contact me lixin97@pku.edu.cn 24 | 25 | # 2. Prerequisites 26 | 27 | We have tested the library in **Ubuntu** **16.04**, but it should be easy to compile in other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results. 28 | 29 | ## C++11 or C++0x Compiler 30 | 31 | We use the new thread and chrono functionalities of C++11. 32 | 33 | ## Pangolin 34 | 35 | We use [Pangolin](https://github.com/stevenlovegrove/Pangolin) for visualization and user interface. Dowload and install instructions can be found at: https://github.com/stevenlovegrove/Pangolin. 36 | 37 | ## OpenCV 38 | 39 | We use [OpenCV](http://opencv.org) to manipulate images and features. Dowload and install instructions can be found at: http://opencv.org. **Required at least 2.4.3. Tested with OpenCV 3.4.0**. 40 | 41 | ## Eigen3 42 | 43 | Required by g2o (see below). Download and install instructions can be found at: http://eigen.tuxfamily.org. **Required at least 3.1.0**. 44 | 45 | ## DBoW2 and g2o (Included in Thirdparty folder) 46 | 47 | We use modified versions of the [DBoW2](https://github.com/dorian3d/DBoW2) library to perform place recognition and [g2o](https://github.com/RainerKuemmerle/g2o) library to perform non-linear optimizations. Both modified libraries (which are BSD) are included in the *Thirdparty* folder. 48 | 49 | # 3. Test CP-Param 50 | 51 | ## Download and build 52 | 53 | 54 | ## Run on the EuRoc dataset 55 | 56 | 57 | # Acknowledgements 58 | 59 | 60 | 61 | --------------------------------------------------------------------------------