├── Analysis_Music_Playlist ├── Report.ipynb ├── chinook.db_.zip └── readme.md ├── Analysis_of_the_2015_World_population ├── Analysis.ipynb ├── factbook.db └── readme.md ├── Analyze International Debt Statistics ├── Analyzing_International_Debt.ipynb ├── datasets │ └── international_debt.zip └── readme.md └── README.md /Analysis_Music_Playlist/Report.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Music playlist database" 8 | ] 9 | }, 10 | { 11 | "cell_type": "markdown", 12 | "metadata": {}, 13 | "source": [ 14 | "The project relies on the Chinook playlist database provided by Udacity. It answers three simple questions to show my proficiency in SQL for data mining. Here is the ERD of the database in order to understand how tables are joined to one another: " 15 | ] 16 | }, 17 | { 18 | "attachments": {}, 19 | "cell_type": "markdown", 20 | "metadata": {}, 21 | "source": [ 22 | "![ERD-Chinook.png](https://loicchamplong.com/wp-content/uploads/2020/03/ERD-Chinook.png)" 23 | ] 24 | }, 25 | { 26 | "cell_type": "markdown", 27 | "metadata": {}, 28 | "source": [ 29 | "## What are the three most preferred genres?\n" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": null, 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "SELECT\n", 39 | "\n", 40 | " music_type,\n", 41 | "\n", 42 | " SUM(avg_total_sales) AS sum_avg_total_sales_by_genre,\n", 43 | "\n", 44 | " CASE\n", 45 | "\n", 46 | " WHEN SUM(avg_total_sales) >= 20 THEN 'Top'\n", 47 | "\n", 48 | " WHEN SUM(avg_total_sales) > 10 AND\n", 49 | "\n", 50 | " SUM(avg_total_sales) <= 20 THEN 'Medium'\n", 51 | "\n", 52 | " ELSE 'Low'\n", 53 | "\n", 54 | " END AS level_sales\n", 55 | "\n", 56 | "FROM (SELECT DISTINCT\n", 57 | "\n", 58 | " Artist.Name AS artist_name,\n", 59 | "\n", 60 | " Genre.Name AS music_type,\n", 61 | "\n", 62 | " COUNT(Album.AlbumId) AS total_album,\n", 63 | "\n", 64 | " AVG(InvoiceLine.UnitPrice * InvoiceLine.Quantity) AS avg_total_sales\n", 65 | "\n", 66 | "FROM Artist\n", 67 | "\n", 68 | "JOIN Album\n", 69 | "\n", 70 | " ON Artist.ArtistId = Album.ArtistId\n", 71 | "\n", 72 | "JOIN Track\n", 73 | "\n", 74 | " ON Album.AlbumId = Track.AlbumId\n", 75 | "\n", 76 | "JOIN Genre\n", 77 | "\n", 78 | " ON Track.GenreId = Genre.GenreId\n", 79 | "\n", 80 | "JOIN InvoiceLine\n", 81 | "\n", 82 | " ON Track.TrackId = InvoiceLine.TrackId\n", 83 | "\n", 84 | "JOIN Invoice\n", 85 | "\n", 86 | " ON InvoiceLine.InvoiceId = Invoice.InvoiceId\n", 87 | "\n", 88 | "GROUP BY Artist.Name) sub\n", 89 | "\n", 90 | "GROUP BY music_type\n", 91 | "\n", 92 | "ORDER BY sum_avg_total_sales_by_genre DESC;" 93 | ] 94 | }, 95 | { 96 | "attachments": {}, 97 | "cell_type": "markdown", 98 | "metadata": {}, 99 | "source": [ 100 | "![Screen-Shot-2020-03-21-at-12.50.11-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-12.50.11-PM.png)" 101 | ] 102 | }, 103 | { 104 | "cell_type": "markdown", 105 | "metadata": {}, 106 | "source": [ 107 | "We looked into the Chinook database to find out what was the volume of sales for each genre and found out what was the most important. It turns out that Rock is by far the most popular music with an average of 47.52 USD in the total of sales. \n", 108 | "\n", 109 | "It is almost 70 percent more than their second most profitable genre: Classical (32,67 USD average). The third most popular genre is Latin with 23,76 USD on average. \n", 110 | "\n", 111 | "It is an important insight in terms of sales and marketing efforts, the company can put more efforts and budget into the most popular genres to boost the sales. " 112 | ] 113 | }, 114 | { 115 | "attachments": {}, 116 | "cell_type": "markdown", 117 | "metadata": {}, 118 | "source": [ 119 | "![Screen-Shot-2020-03-21-at-12.50.11-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-12.27.19-PM.png)" 120 | ] 121 | }, 122 | { 123 | "cell_type": "markdown", 124 | "metadata": {}, 125 | "source": [ 126 | "## Which country was the best buyer in 2009?" 127 | ] 128 | }, 129 | { 130 | "cell_type": "code", 131 | "execution_count": null, 132 | "metadata": {}, 133 | "outputs": [], 134 | "source": [ 135 | "SELECT\n", 136 | "\n", 137 | " Customer.Country,\n", 138 | "\n", 139 | " SUM(InvoiceLine.UnitPrice * InvoiceLine.Quantity) AS Total_sales\n", 140 | "\n", 141 | "FROM Artist\n", 142 | "\n", 143 | "JOIN Album\n", 144 | "\n", 145 | " ON Artist.ArtistId = Album.ArtistId\n", 146 | "\n", 147 | "JOIN Track\n", 148 | "\n", 149 | " ON Album.AlbumId = Track.AlbumId\n", 150 | "\n", 151 | "JOIN Genre\n", 152 | "\n", 153 | " ON Track.GenreId = Genre.GenreId\n", 154 | "\n", 155 | "JOIN InvoiceLine\n", 156 | "\n", 157 | " ON Track.TrackId = InvoiceLine.TrackId\n", 158 | "\n", 159 | "JOIN Invoice\n", 160 | "\n", 161 | " ON InvoiceLine.InvoiceId = Invoice.InvoiceId\n", 162 | "\n", 163 | "JOIN Customer\n", 164 | "\n", 165 | " ON Invoice.CustomerId = Customer.CustomerId\n", 166 | "\n", 167 | "WHERE Invoice.InvoiceDate BETWEEN '2009-01-01' AND '2009-12-26'\n", 168 | "\n", 169 | "GROUP BY 1\n", 170 | "\n", 171 | "ORDER BY 2 DESC;" 172 | ] 173 | }, 174 | { 175 | "attachments": {}, 176 | "cell_type": "markdown", 177 | "metadata": {}, 178 | "source": [ 179 | "![Screen-Shot-2020-03-21-at-12.50.11-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-12.34.50-PM.png)" 180 | ] 181 | }, 182 | { 183 | "cell_type": "markdown", 184 | "metadata": {}, 185 | "source": [ 186 | "Looking at the total sales in 2009 from our InvoiceLine database, it turns out that the United-States were far ahead in terms of turnover with 104 USD in total. It is 54,8 percent more than their second market, Canada (57 USD). It makes the USA a major market in 2009 in terms of sales. \n", 187 | "\n", 188 | "If the company wished to organize a concert with musics related to the 2000s, we can tell them that the USA, Canada and Germany should be the top 3 regions to put their marketing efforts. " 189 | ] 190 | }, 191 | { 192 | "attachments": {}, 193 | "cell_type": "markdown", 194 | "metadata": {}, 195 | "source": [ 196 | "![SQL-Chinook-insight1.png](https://loicchamplong.com/wp-content/uploads/2020/03/SQL-Chinook-insight1.png)" 197 | ] 198 | }, 199 | { 200 | "cell_type": "markdown", 201 | "metadata": {}, 202 | "source": [ 203 | "## Which was the most popular album ever sold on the playlist?" 204 | ] 205 | }, 206 | { 207 | "cell_type": "code", 208 | "execution_count": null, 209 | "metadata": {}, 210 | "outputs": [], 211 | "source": [ 212 | "SELECT Genre.Name AS Music_Genre, \n", 213 | "Artist.Name AS Artist_Name, \n", 214 | "Album.Title AS Album_Title, \n", 215 | "SUM (InvoiceLine.InvoiceId) AS Total_Buy\n", 216 | "\n", 217 | "FROM Artist\n", 218 | "\n", 219 | "JOIN Album\n", 220 | "\n", 221 | " ON Artist.ArtistId = Album.ArtistId\n", 222 | "\n", 223 | "JOIN Track\n", 224 | "\n", 225 | " ON Album.AlbumId = Track.AlbumId\n", 226 | "\n", 227 | "JOIN Genre\n", 228 | "\n", 229 | " ON Track.GenreId = Genre.GenreId\n", 230 | "\n", 231 | "JOIN InvoiceLine\n", 232 | "\n", 233 | " ON Track.TrackId = InvoiceLine.TrackId\n", 234 | "\n", 235 | "JOIN Invoice\n", 236 | "\n", 237 | " ON InvoiceLine.InvoiceId = Invoice.InvoiceId\n", 238 | "\n", 239 | "JOIN Customer\n", 240 | "\n", 241 | " ON Invoice.CustomerId = Customer.CustomerId\n", 242 | "\n", 243 | " GROUP BY Music_Genre, Artist_Name, Album_Title\n", 244 | "\n", 245 | " ORDER BY Total_Buy DESC\n", 246 | "\n", 247 | "LIMIT 15;" 248 | ] 249 | }, 250 | { 251 | "attachments": {}, 252 | "cell_type": "markdown", 253 | "metadata": {}, 254 | "source": [ 255 | "![Screen-Shot-2020-03-21-at-12.55.52-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-12.55.52-PM.png)" 256 | ] 257 | }, 258 | { 259 | "cell_type": "markdown", 260 | "metadata": {}, 261 | "source": [ 262 | "Looking into the Chinook database, we asked what was the best album ever sold since the beginning. It turns out that the album with the most sales is My Generation - The Very Best Of The Who from the Group The Who, released in 1996. It is a Rock Type music and collaborates or other insights as Rock being the most popular genre in the database.\n", 263 | "\n", 264 | "The turnover generated by My Generation - The Very Best Of The Who was $5,285, it is 83% more than their second best album Acústico MTV (4,409 USD) of Latin genre.\n", 265 | "\n", 266 | "This could be useful from a marketing point of view to promote other albums from the group." 267 | ] 268 | }, 269 | { 270 | "attachments": {}, 271 | "cell_type": "markdown", 272 | "metadata": {}, 273 | "source": [ 274 | "![Screen-Shot-2020-03-21-at-12.58.22-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-12.58.22-PM.png)" 275 | ] 276 | }, 277 | { 278 | "cell_type": "markdown", 279 | "metadata": {}, 280 | "source": [ 281 | "## Who was the employee with the most buys and their favorite genre?" 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "execution_count": null, 287 | "metadata": {}, 288 | "outputs": [], 289 | "source": [ 290 | "SELECT DISTINCT\n", 291 | "\n", 292 | " Employee.FirstName,\n", 293 | "\n", 294 | " Employee.LastName,\n", 295 | "\n", 296 | " Genre.Name AS Music_Type,\n", 297 | "\n", 298 | " SUM(InvoiceLine.UnitPrice * InvoiceLine.Quantity) AS Total_buy\n", 299 | "\n", 300 | "FROM Artist\n", 301 | "\n", 302 | "JOIN Album\n", 303 | "\n", 304 | " ON Artist.ArtistId = Album.ArtistId\n", 305 | "\n", 306 | "JOIN Track\n", 307 | "\n", 308 | " ON Album.AlbumId = Track.AlbumId\n", 309 | "\n", 310 | "JOIN Genre\n", 311 | "\n", 312 | " ON Track.GenreId = Genre.GenreId\n", 313 | "\n", 314 | "JOIN InvoiceLine\n", 315 | "\n", 316 | " ON Track.TrackId = InvoiceLine.TrackId\n", 317 | "\n", 318 | "JOIN Invoice\n", 319 | "\n", 320 | " ON InvoiceLine.InvoiceId = Invoice.InvoiceId\n", 321 | "\n", 322 | "JOIN Customer\n", 323 | "\n", 324 | " ON Invoice.CustomerId = Customer.CustomerId\n", 325 | "\n", 326 | "JOIN Employee\n", 327 | "\n", 328 | " ON Customer.SupportRepId = EmployeeId\n", 329 | "\n", 330 | "GROUP BY 1,\n", 331 | "\n", 332 | " 2,\n", 333 | "\n", 334 | " 3\n", 335 | "\n", 336 | "ORDER BY 4 DESC;" 337 | ] 338 | }, 339 | { 340 | "attachments": {}, 341 | "cell_type": "markdown", 342 | "metadata": {}, 343 | "source": [ 344 | "![Screen-Shot-2020-03-21-at-12.55.52-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-1.01.07-PM.png)" 345 | ] 346 | }, 347 | { 348 | "cell_type": "markdown", 349 | "metadata": {}, 350 | "source": [ 351 | "We asked if employees were also customers. It turns out that out of the 8 employees of the company, 3 (name on the bar charts) from the sales team bought different kind of music genres.\n", 352 | "\n", 353 | "The top three sales were for rock music and Jane Peacock was the employee with the most buys with $ 301 in this music genre.\n", 354 | "\n", 355 | "If the company was to start an internal communication campaign, these employees could be rewarded with some kind of free pass to buy a rock album of their choice for free for instance." 356 | ] 357 | }, 358 | { 359 | "attachments": {}, 360 | "cell_type": "markdown", 361 | "metadata": {}, 362 | "source": [ 363 | "![Screen-Shot-2020-03-21-at-12.58.22-PM.png](https://loicchamplong.com/wp-content/uploads/2020/03/Screen-Shot-2020-03-21-at-1.03.15-PM.png)" 364 | ] 365 | }, 366 | { 367 | "cell_type": "code", 368 | "execution_count": null, 369 | "metadata": {}, 370 | "outputs": [], 371 | "source": [] 372 | } 373 | ], 374 | "metadata": { 375 | "kernelspec": { 376 | "display_name": "Python 3", 377 | "language": "python", 378 | "name": "python3" 379 | }, 380 | "language_info": { 381 | "codemirror_mode": { 382 | "name": "ipython", 383 | "version": 3 384 | }, 385 | "file_extension": ".py", 386 | "mimetype": "text/x-python", 387 | "name": "python", 388 | "nbconvert_exporter": "python", 389 | "pygments_lexer": "ipython3", 390 | "version": "3.7.6" 391 | } 392 | }, 393 | "nbformat": 4, 394 | "nbformat_minor": 4 395 | } 396 | -------------------------------------------------------------------------------- /Analysis_Music_Playlist/chinook.db_.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LoicChamplong/Data-Analysis-SQL/3386adfe02e4751e8bed9012cfbb63da18d590a5/Analysis_Music_Playlist/chinook.db_.zip -------------------------------------------------------------------------------- /Analysis_Music_Playlist/readme.md: -------------------------------------------------------------------------------- 1 | # Analysis of Chinook playlist 2 | The project relies on the Chinook playlist database provided by Udacity. It answers four simple questions to show my proficiency in SQL for data mining. 3 | -------------------------------------------------------------------------------- /Analysis_of_the_2015_World_population/factbook.db: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/LoicChamplong/Data-Analysis-SQL/3386adfe02e4751e8bed9012cfbb63da18d590a5/Analysis_of_the_2015_World_population/factbook.db -------------------------------------------------------------------------------- /Analysis_of_the_2015_World_population/readme.md: -------------------------------------------------------------------------------- 1 | # Analysis of the world population in 2015 2 | 3 | ![header](https://mir-s3-cdn-cf.behance.net/project_modules/max_1200/3ef4c925850873.5634bb924adc1.jpg) 4 | 5 | In this project, we'll work with data from the [CIA World Factbook](https://www.cia.gov/library/publications/the-world-factbook/), a compendium of statistics about all of the countries on Earth. The Factbook contains demographic information like: 6 | 7 | population - The population as of 2015. population_growth - The annual population growth rate, as a percentage. area - The total land and water area. 8 | 9 | In this project, we'll use SQL in Jupyter Notebook to explore and analyze data from this database. 10 | 11 | ### Database: 12 | 13 | The dataset is quite simple and will not allow us to answer complicated question. It is composed of 11 colums and 262 row. 14 | 15 | - id - id number attribuated to a country. 16 | - code - country code, made from the two first letters of the country. 17 | - area - total area of the country (area_water + area_land). 18 | - population - population of the country 19 | - population_growth - ratio of the population growth in 2015 20 | - birth_rate 21 | - death_rate 22 | - migration_rate - ratio of people that left the country to another. 23 | 24 | It is important to note that the last row (id 262) is not a country but "World" (code: xx). In the end the data is only composed of 261 countries. 25 | 26 | ## Notes: 27 | 28 | The database being very simple, we could answer complicated questions. This project was intented to practise my SQL skills and show knowledge of simple and more complicated queries (subqueries). 29 | -------------------------------------------------------------------------------- /Analyze International Debt Statistics/Analyzing_International_Debt.ipynb: -------------------------------------------------------------------------------- 1 | {"cells":[{"metadata":{"dc":{"key":"4"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 1. The World Bank's international debt data\n

It's not that we humans only take debts to manage our necessities. A country may also take debt to manage its economy. For example, infrastructure spending is one costly ingredient required for a country's citizens to lead comfortable lives. The World Bank is the organization that provides debt to countries.

\n

In this notebook, we are going to analyze international debt data collected by The World Bank. The dataset contains information about the amount of debt (in USD) owed by developing countries across several categories. We are going to find the answers to questions like:

\n\n

\"\"

\n

The first line of code connects us to the international_debt database where the table international_debt is residing. Let's first SELECT all of the columns from the international_debt table. Also, we'll limit the output to the first ten rows to keep the output clean.

"},{"metadata":{"dc":{"key":"4"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\npostgresql:///international_debt\n SELECT *\n FROM international_debt\n LIMIT 10;\n \n ","execution_count":269,"outputs":[{"output_type":"stream","text":"10 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":269,"data":{"text/plain":"[('Afghanistan', 'AFG', 'Disbursements on external debt, long-term (DIS, current US$)', 'DT.DIS.DLXF.CD', Decimal('72894453.700000003')),\n ('Afghanistan', 'AFG', 'Interest payments on external debt, long-term (INT, current US$)', 'DT.INT.DLXF.CD', Decimal('53239440.100000001')),\n ('Afghanistan', 'AFG', 'PPG, bilateral (AMT, current US$)', 'DT.AMT.BLAT.CD', Decimal('61739336.899999999')),\n ('Afghanistan', 'AFG', 'PPG, bilateral (DIS, current US$)', 'DT.DIS.BLAT.CD', Decimal('49114729.399999999')),\n ('Afghanistan', 'AFG', 'PPG, bilateral (INT, current US$)', 'DT.INT.BLAT.CD', Decimal('39903620.100000001')),\n ('Afghanistan', 'AFG', 'PPG, multilateral (AMT, current US$)', 'DT.AMT.MLAT.CD', Decimal('39107845')),\n ('Afghanistan', 'AFG', 'PPG, multilateral (DIS, current US$)', 'DT.DIS.MLAT.CD', Decimal('23779724.300000001')),\n ('Afghanistan', 'AFG', 'PPG, multilateral (INT, current US$)', 'DT.INT.MLAT.CD', Decimal('13335820')),\n ('Afghanistan', 'AFG', 'PPG, official creditors (AMT, current US$)', 'DT.AMT.OFFT.CD', Decimal('100847181.900000006')),\n ('Afghanistan', 'AFG', 'PPG, official creditors (DIS, current US$)', 'DT.DIS.OFFT.CD', Decimal('72894453.700000003'))]","text/html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
country_namecountry_codeindicator_nameindicator_codedebt
AfghanistanAFGDisbursements on external debt, long-term (DIS, current US$)DT.DIS.DLXF.CD72894453.700000003
AfghanistanAFGInterest payments on external debt, long-term (INT, current US$)DT.INT.DLXF.CD53239440.100000001
AfghanistanAFGPPG, bilateral (AMT, current US$)DT.AMT.BLAT.CD61739336.899999999
AfghanistanAFGPPG, bilateral (DIS, current US$)DT.DIS.BLAT.CD49114729.399999999
AfghanistanAFGPPG, bilateral (INT, current US$)DT.INT.BLAT.CD39903620.100000001
AfghanistanAFGPPG, multilateral (AMT, current US$)DT.AMT.MLAT.CD39107845
AfghanistanAFGPPG, multilateral (DIS, current US$)DT.DIS.MLAT.CD23779724.300000001
AfghanistanAFGPPG, multilateral (INT, current US$)DT.INT.MLAT.CD13335820
AfghanistanAFGPPG, official creditors (AMT, current US$)DT.AMT.OFFT.CD100847181.900000006
AfghanistanAFGPPG, official creditors (DIS, current US$)DT.DIS.OFFT.CD72894453.700000003
"},"metadata":{}}]},{"metadata":{"dc":{"key":"12"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 2. Finding the number of distinct countries\n

From the first ten rows, we can see the amount of debt owed by Afghanistan in the different debt indicators. But we do not know the number of different countries we have on the table. There are repetitions in the country names because a country is most likely to have debt in more than one debt indicator.

\n

Without a count of unique countries, we will not be able to perform our statistical analyses holistically. In this section, we are going to extract the number of unique countries present in the table.

"},{"metadata":{"dc":{"key":"12"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n COUNT(DISTINCT country_name) AS total_distinct_countries\nFROM international_debt;","execution_count":271,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n1 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":271,"data":{"text/plain":"[(124,)]","text/html":"\n \n \n \n \n \n \n
total_distinct_countries
124
"},"metadata":{}}]},{"metadata":{"dc":{"key":"20"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 3. Finding out the distinct debt indicators\n

We can see there are a total of 124 countries present on the table. As we saw in the first section, there is a column called indicator_name that briefly specifies the purpose of taking the debt. Just beside that column, there is another column called indicator_code which symbolizes the category of these debts. Knowing about these various debt indicators will help us to understand the areas in which a country can possibly be indebted to.

"},{"metadata":{"dc":{"key":"20"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT DISTINCT indicator_code AS distinct_debt_indicators\nFROM international_debt\nORDER BY distinct_debt_indicators;\n","execution_count":273,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n25 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":273,"data":{"text/plain":"[('DT.AMT.BLAT.CD',),\n ('DT.AMT.DLXF.CD',),\n ('DT.AMT.DPNG.CD',),\n ('DT.AMT.MLAT.CD',),\n ('DT.AMT.OFFT.CD',),\n ('DT.AMT.PBND.CD',),\n ('DT.AMT.PCBK.CD',),\n ('DT.AMT.PROP.CD',),\n ('DT.AMT.PRVT.CD',),\n ('DT.DIS.BLAT.CD',),\n ('DT.DIS.DLXF.CD',),\n ('DT.DIS.MLAT.CD',),\n ('DT.DIS.OFFT.CD',),\n ('DT.DIS.PCBK.CD',),\n ('DT.DIS.PROP.CD',),\n ('DT.DIS.PRVT.CD',),\n ('DT.INT.BLAT.CD',),\n ('DT.INT.DLXF.CD',),\n ('DT.INT.DPNG.CD',),\n ('DT.INT.MLAT.CD',),\n ('DT.INT.OFFT.CD',),\n ('DT.INT.PBND.CD',),\n ('DT.INT.PCBK.CD',),\n ('DT.INT.PROP.CD',),\n ('DT.INT.PRVT.CD',)]","text/html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
distinct_debt_indicators
DT.AMT.BLAT.CD
DT.AMT.DLXF.CD
DT.AMT.DPNG.CD
DT.AMT.MLAT.CD
DT.AMT.OFFT.CD
DT.AMT.PBND.CD
DT.AMT.PCBK.CD
DT.AMT.PROP.CD
DT.AMT.PRVT.CD
DT.DIS.BLAT.CD
DT.DIS.DLXF.CD
DT.DIS.MLAT.CD
DT.DIS.OFFT.CD
DT.DIS.PCBK.CD
DT.DIS.PROP.CD
DT.DIS.PRVT.CD
DT.INT.BLAT.CD
DT.INT.DLXF.CD
DT.INT.DPNG.CD
DT.INT.MLAT.CD
DT.INT.OFFT.CD
DT.INT.PBND.CD
DT.INT.PCBK.CD
DT.INT.PROP.CD
DT.INT.PRVT.CD
"},"metadata":{}}]},{"metadata":{"dc":{"key":"28"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 4. Totaling the amount of debt owed by the countries\n

As mentioned earlier, the financial debt of a particular country represents its economic state. But if we were to project this on an overall global scale, how will we approach it?

\n

Let's switch gears from the debt indicators now and find out the total amount of debt (in USD) that is owed by the different countries. This will give us a sense of how the overall economy of the entire world is holding up.

"},{"metadata":{"dc":{"key":"28"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n ROUND(SUM(debt)/1000000, 2) AS total_debt\nFROM international_debt; ","execution_count":275,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n1 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":275,"data":{"text/plain":"[(Decimal('3079734.49'),)]","text/html":"\n \n \n \n \n \n \n
total_debt
3079734.49
"},"metadata":{}}]},{"metadata":{"dc":{"key":"36"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 5. Country with the highest debt\n

\"Human beings cannot comprehend very large or very small numbers. It would be useful for us to acknowledge that fact.\" - Daniel Kahneman. That is more than 3 million million USD, an amount which is really hard for us to fathom.

\n

Now that we have the exact total of the amounts of debt owed by several countries, let's now find out the country that owns the highest amount of debt along with the amount. Note that this debt is the sum of different debts owed by a country across several categories. This will help to understand more about the country in terms of its socio-economic scenarios. We can also find out the category in which the country owns its highest debt. But we will leave that for now.

"},{"metadata":{"dc":{"key":"36"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n country_name, \n SUM (debt) AS total_debt\nFROM international_debt\nGROUP BY country_name\nORDER BY total_debt DESC\nLIMIT 1;","execution_count":277,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n1 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":277,"data":{"text/plain":"[('China', Decimal('285793494734.200001568'))]","text/html":"\n \n \n \n \n \n \n \n \n
country_nametotal_debt
China285793494734.200001568
"},"metadata":{}}]},{"metadata":{"dc":{"key":"44"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 6. Average amount of debt across indicators\n

So, it was China. A more in-depth breakdown of China's debts can be found here.

\n

We now have a brief overview of the dataset and a few of its summary statistics. We already have an idea of the different debt indicators in which the countries owe their debts. We can dig even further to find out on an average how much debt a country owes? This will give us a better sense of the distribution of the amount of debt across different indicators.

"},{"metadata":{"dc":{"key":"44"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n indicator_code AS debt_indicator,\n indicator_name,\n AVG (debt) AS average_debt\nFROM international_debt\nGROUP BY 1,2\nORDER BY 3 DESC\nLIMIT 10;","execution_count":279,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n10 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":279,"data":{"text/plain":"[('DT.AMT.DLXF.CD', 'Principal repayments on external debt, long-term (AMT, current US$)', Decimal('5904868401.499193612')),\n ('DT.AMT.DPNG.CD', 'Principal repayments on external debt, private nonguaranteed (PNG) (AMT, current US$)', Decimal('5161194333.812658349')),\n ('DT.DIS.DLXF.CD', 'Disbursements on external debt, long-term (DIS, current US$)', Decimal('2152041216.890243888')),\n ('DT.DIS.OFFT.CD', 'PPG, official creditors (DIS, current US$)', Decimal('1958983452.859836046')),\n ('DT.AMT.PRVT.CD', 'PPG, private creditors (AMT, current US$)', Decimal('1803694101.963265321')),\n ('DT.INT.DLXF.CD', 'Interest payments on external debt, long-term (INT, current US$)', Decimal('1644024067.650806481')),\n ('DT.DIS.BLAT.CD', 'PPG, bilateral (DIS, current US$)', Decimal('1223139290.398230108')),\n ('DT.INT.DPNG.CD', 'Interest payments on external debt, private nonguaranteed (PNG) (INT, current US$)', Decimal('1220410844.421518983')),\n ('DT.AMT.OFFT.CD', 'PPG, official creditors (AMT, current US$)', Decimal('1191187963.083064523')),\n ('DT.AMT.PBND.CD', 'PPG, bonds (AMT, current US$)', Decimal('1082623947.653623188'))]","text/html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
debt_indicatorindicator_nameaverage_debt
DT.AMT.DLXF.CDPrincipal repayments on external debt, long-term (AMT, current US$)5904868401.499193612
DT.AMT.DPNG.CDPrincipal repayments on external debt, private nonguaranteed (PNG) (AMT, current US$)5161194333.812658349
DT.DIS.DLXF.CDDisbursements on external debt, long-term (DIS, current US$)2152041216.890243888
DT.DIS.OFFT.CDPPG, official creditors (DIS, current US$)1958983452.859836046
DT.AMT.PRVT.CDPPG, private creditors (AMT, current US$)1803694101.963265321
DT.INT.DLXF.CDInterest payments on external debt, long-term (INT, current US$)1644024067.650806481
DT.DIS.BLAT.CDPPG, bilateral (DIS, current US$)1223139290.398230108
DT.INT.DPNG.CDInterest payments on external debt, private nonguaranteed (PNG) (INT, current US$)1220410844.421518983
DT.AMT.OFFT.CDPPG, official creditors (AMT, current US$)1191187963.083064523
DT.AMT.PBND.CDPPG, bonds (AMT, current US$)1082623947.653623188
"},"metadata":{}}]},{"metadata":{"dc":{"key":"52"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 7. The highest amount of principal repayments\n

We can see that the indicator DT.AMT.DLXF.CD tops the chart of average debt. This category includes repayment of long term debts. Countries take on long-term debt to acquire immediate capital. More information about this category can be found here.

\n

An interesting observation in the above finding is that there is a huge difference in the amounts of the indicators after the second one. This indicates that the first two indicators might be the most severe categories in which the countries owe their debts.

\n

We can investigate this a bit more so as to find out which country owes the highest amount of debt in the category of long term debts (DT.AMT.DLXF.CD). Since not all the countries suffer from the same kind of economic disturbances, this finding will allow us to understand that particular country's economic condition a bit more specifically.

"},{"metadata":{"dc":{"key":"52"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n country_name, \n indicator_name\nFROM international_debt\nWHERE debt= (SELECT \n MAX(debt)\n FROM international_debt\n WHERE indicator_code ='DT.AMT.DLXF.CD');","execution_count":281,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n1 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":281,"data":{"text/plain":"[('China', 'Principal repayments on external debt, long-term (AMT, current US$)')]","text/html":"\n \n \n \n \n \n \n \n \n
country_nameindicator_name
ChinaPrincipal repayments on external debt, long-term (AMT, current US$)
"},"metadata":{}}]},{"metadata":{"dc":{"key":"60"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 8. The most common debt indicator\n

China has the highest amount of debt in the long-term debt (DT.AMT.DLXF.CD) category. This is verified by The World Bank. It is often a good idea to verify our analyses like this since it validates that our investigations are correct.

\n

We saw that long-term debt is the topmost category when it comes to the average amount of debt. But is it the most common indicator in which the countries owe their debt? Let's find that out.

"},{"metadata":{"dc":{"key":"60"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n indicator_code,\n COUNT (indicator_code) AS indicator_count\nFROM international_debt\nGROUP BY indicator_code\nORDER BY indicator_count DESC, indicator_code DESC\nLIMIT 20;","execution_count":283,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n20 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":283,"data":{"text/plain":"[('DT.INT.OFFT.CD', 124),\n ('DT.INT.MLAT.CD', 124),\n ('DT.INT.DLXF.CD', 124),\n ('DT.AMT.OFFT.CD', 124),\n ('DT.AMT.MLAT.CD', 124),\n ('DT.AMT.DLXF.CD', 124),\n ('DT.DIS.DLXF.CD', 123),\n ('DT.INT.BLAT.CD', 122),\n ('DT.DIS.OFFT.CD', 122),\n ('DT.AMT.BLAT.CD', 122),\n ('DT.DIS.MLAT.CD', 120),\n ('DT.DIS.BLAT.CD', 113),\n ('DT.INT.PRVT.CD', 98),\n ('DT.AMT.PRVT.CD', 98),\n ('DT.INT.PCBK.CD', 84),\n ('DT.AMT.PCBK.CD', 84),\n ('DT.INT.DPNG.CD', 79),\n ('DT.AMT.DPNG.CD', 79),\n ('DT.INT.PBND.CD', 69),\n ('DT.AMT.PBND.CD', 69)]","text/html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
indicator_codeindicator_count
DT.INT.OFFT.CD124
DT.INT.MLAT.CD124
DT.INT.DLXF.CD124
DT.AMT.OFFT.CD124
DT.AMT.MLAT.CD124
DT.AMT.DLXF.CD124
DT.DIS.DLXF.CD123
DT.INT.BLAT.CD122
DT.DIS.OFFT.CD122
DT.AMT.BLAT.CD122
DT.DIS.MLAT.CD120
DT.DIS.BLAT.CD113
DT.INT.PRVT.CD98
DT.AMT.PRVT.CD98
DT.INT.PCBK.CD84
DT.AMT.PCBK.CD84
DT.INT.DPNG.CD79
DT.AMT.DPNG.CD79
DT.INT.PBND.CD69
DT.AMT.PBND.CD69
"},"metadata":{}}]},{"metadata":{"dc":{"key":"68"},"deletable":false,"editable":false,"run_control":{"frozen":true},"tags":["context"]},"cell_type":"markdown","source":"## 9. Other viable debt issues and conclusion\n

There are a total of six debt indicators in which all the countries listed in our dataset have taken debt. The indicator DT.AMT.DLXF.CD is also there in the list. So, this gives us a clue that all these countries are suffering from a common economic issue. But that is not the end of the story, a part of the story rather.

\n

Let's change tracks from debt_indicators now and focus on the amount of debt again. Let's find out the maximum amount of debt across the indicators along with the respective country names. With this, we will be in a position to identify the other plausible economic issues a country might be going through. By the end of this section, we will have found out the debt indicators in which a country owes its highest debt.

\n

In this notebook, we took a look at debt owed by countries across the globe. We extracted a few summary statistics from the data and unraveled some interesting facts and figures. We also validated our findings to make sure the investigations are correct.

"},{"metadata":{"dc":{"key":"68"},"tags":["sample_code"],"trusted":true},"cell_type":"code","source":"%%sql\nSELECT \n country_name, \n indicator_code, \n MAX (debt) AS maximum_debt\nFROM international_debt\nGROUP BY 1,2\nORDER BY 3 DESC\nLIMIT 10;\n","execution_count":285,"outputs":[{"output_type":"stream","text":" * postgresql:///international_debt\n10 rows affected.\n","name":"stdout"},{"output_type":"execute_result","execution_count":285,"data":{"text/plain":"[('China', 'DT.AMT.DLXF.CD', Decimal('96218620835.699996948')),\n ('Brazil', 'DT.AMT.DLXF.CD', Decimal('90041840304.100006104')),\n ('China', 'DT.AMT.DPNG.CD', Decimal('72392986213.800003052')),\n ('Russian Federation', 'DT.AMT.DLXF.CD', Decimal('66589761833.5')),\n ('Turkey', 'DT.AMT.DLXF.CD', Decimal('51555031005.800003052')),\n ('South Asia', 'DT.AMT.DLXF.CD', Decimal('48756295898.199996948')),\n ('Brazil', 'DT.AMT.PRVT.CD', Decimal('43598697498.599998474')),\n ('Russian Federation', 'DT.AMT.DPNG.CD', Decimal('42800154974.900001526')),\n ('Brazil', 'DT.AMT.DPNG.CD', Decimal('41831444053.300003052')),\n ('Least developed countries: UN classification', 'DT.DIS.DLXF.CD', Decimal('40160766261.599998474'))]","text/html":"\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
country_nameindicator_codemaximum_debt
ChinaDT.AMT.DLXF.CD96218620835.699996948
BrazilDT.AMT.DLXF.CD90041840304.100006104
ChinaDT.AMT.DPNG.CD72392986213.800003052
Russian FederationDT.AMT.DLXF.CD66589761833.5
TurkeyDT.AMT.DLXF.CD51555031005.800003052
South AsiaDT.AMT.DLXF.CD48756295898.199996948
BrazilDT.AMT.PRVT.CD43598697498.599998474
Russian FederationDT.AMT.DPNG.CD42800154974.900001526
BrazilDT.AMT.DPNG.CD41831444053.300003052
Least developed countries: UN classificationDT.DIS.DLXF.CD40160766261.599998474
"},"metadata":{}}]}],"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.6.7","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat":4,"nbformat_minor":2} 2 | -------------------------------------------------------------------------------- /Analyze International Debt Statistics/datasets/international_debt.zip: -------------------------------------------------------------------------------- 1 | PK!`�Ninternational_debt.csvUX BE�\�{�\���m�Ǒ.���?��`v����/�%J�,R(J^��E�K�>��}�_#�{8��U��QՔ���K������d�`#d�p�����;����Z]����pKh����޼�������ɣ o���9�1G�/a�I���=�L�,�����ׯ� �����k��Z�����ڣ�|��^����/�^���,�/��{|�����yu�a�]�.�򛻿��o�ͯ$xw����k��f��]⑘�U� ���D�w������D����O�^?���{���A�~�S�$�H�C�иd.Cq@Z�}-�Al�4%�;�} g�����W����yݼ�?|����]��^~���k���.m��O�^ݾ}{u7�T����~�/>�v�fIX�'�wq��#z��!�K�#6~�=`� )�9�Q�b��9� ��RVb]<8뼻7/��a���%k,��+�30��1��~d�q�K*�=߈��GgY<�۔B�,�)��߯�>*;ѫ����?L���m��U����q�u.�y˗��y �qA�� b�`���,Z��@���:$���ك<���1d���-��3p����)D���OԈLj�7��`��z�ea"�o~��#�O~y�1á��L���>���y�꽒VI\�s�M��H�8͡��;Xr�d��t?�8͉!����#i��J`O+�x}`�f���p�`�����d�'�rJg�e�Dg�eFg��ND�&��Vx�3�0��˗iUe%['\g�霽e,���"GKf��[�(�K]i����+ٛ�nߐ�|����+;Ol�d8�hH������9!�,��Q�7�}&����m�m̾�H� 1dc�^��O6�z#1G�wV��Ô:�����s��2�ƨY�А���>��>��m&�b�H�4�$:t�t"~C��_��'�|`/���Q���%�4e�C��F�k �qj?�Tg�=+ZM:�1��o��#>�çs���mбr��rbN��j��B���a�*��暰,�ý�r�K��A���L���V 3 | ;SKo@Y E��DV���t�}d����mo�X�\.}�5��﷊`x�0;\z�*g[~�U$ƑO�7��Mß�禛��n���E�B'y%���L瘞枋se�绛���^_�����O6�5������NEnNk��tm�O�n3�)�ԵqD�0]�c��R�d�m.�j��p��6&bۑsOPV��8�e��,���x"p���o����pT�@��Cr�c��ͳId�s��@��>Чώ�a�s��>:����f�ϗ6�.�-+,��h���j!�q�zMm�eգK��/����<�5�J 4 | c=�+�J�kC \xn�?�����û�ϟ���;���������S��ҥ�\�zP�̕��E<�^Wv�|Eh��ȕ1]��q��Ŕ@h�>�L���/y*|�ϝ��z °����]�3G\m�Ɂ4�\J폪a����S�a�?L� �,��q�$y2Q듡s�+ � }$���Eg�ǡ�p1a����}��Md8�2�<����[�pVԦs�4:WU��y�U,"�$O�w�u9{ѻ���Rjj�30rc���:���3�I� 5 | �Ap��e�=�����9~٘� xGb�aV 6 | ;CO0ү#/����,Ě>ˏr�Y�p��T� ��T0��j ������S )'q���ο'qW�I��^"�T �C� �(�p\7B�`[`}�A���`���w@��VHu�� ��~ ���o>�����ҪL�G7i�H]u��M�U��pz>��Nz"g珌��ЕF�r#?������/���������Q9l�mo��t=l}7>�S�����a���XX:f�C���@����bM��H���& 4A�5�i�}m�{�}c„�qB�n�����5ia �ؐ��\�\��ڠ�(6��c �1�1��k˽Bt��io�2�- ��=r���kU�W��b����:S�x�U~���+[�g�9LCg3��j��< ��[� K�a�*�WH۾��s�Ϣ̴������b����1n,���̤�<��(0d)3��C��j3��Oݖ�}ws�{��y��뫻_�v���z�o�޼���u�!}s6�ΐ2Y/w%%A�h �Ɠh��Rd�ʖ���aK�5������� � � 11 | �u%������+*D7G7ڊ@5�'��1n�h� �~ރ�g�'!���W�`�@�tl��� �C�ч8t�u|ȗ�H��r�5�$T�*y�@,9:�/��tIJÓ��J}��C�Ͻr����H ��zw�S�� 12 | ɱBݛ�����c��zx%����Z��Aoo\b��D��� 7Y�u` J`�9 �����&7My煇(ŷ������򂡚bۅ�ku�m�tt�E3��D!"f�Ę�j�� X��[��Y_��꽙Qk��eP]?k�)U�b�n%ĜG�n���7���Z {�$��Uk)� 3�,�˚��l�2WG�3؏q*e+JdL�@�̚����6��+���^��^��)�#�m�� 13 | ��ޟ@��@fo&���<��S�PU@�i\,:c):rm��|�<4t?ʜ7k$tͯ��M>�Mٙ*�s =�!��6Eo�gt�I˼���s�/bԒGr�9o͓� @kC&��5�v��KH������c!�V^R ͗�f,$r�p�J�8�� ����{0�ɚ��Vîߴkej$�����a<��,;T������nE$�g񆉀#��]�U9PW�`�)j5-��SXe)W��vsa���� ���7��V�-�ٰ���+�m�W]HՐ�ω�����3�}gH���;k���:3n������7�G_���^|��־|����s�-s�1��L^SN1>��#D $h�Rb�-�P �����ٴ"M�$��í6�5)/?�x�5p�5D!��#�Gc������ 14 | )���C��� �%YӤ!���Y(�ه����?�� -m�8wZJ�>k���۾��)��^���u��N����(���$tE=��s@�:$XKμ���TAs�C�wU⦃*�ې7��,����BNn� 15 | a 4H��I�,�s��g���_o�|u����~�~�o��^�c��k�!�U-+m��*4��!����S��F9q[��j_�xgy:1�@̂��'p�O��UMt�񰦴/�� 16 | �tܸ�hr���>�5�����!��K�W,�;�v�{��r�%�c.����l�[;gr�� B���{�u��K��Rwo�n��59� 17 | 1����*�����������8��#��.������ ��"v~�7~��p�h�m;�h�W�xH���6��M�Շ�� 18 | i� 19 | "���WԪ�sT�G�Kj#݁PW��s�c����̴X%��Lt<^��ݴL�{]W��Dp�y/ϲ��U�Y���ei�_�V��N��/B|�+��)U�-��WL��e�Κ��bH��yʶ����0���@�.��<;����#���LW��:k-bb�|���Z�O�?$�ba��9]�8.��OG�s�>��~w�jw����~}s����_m�/m � 20 | ���oϦ=Y��ԓȋ���#P�K�pqt�a�0LקH:<��&D��BF&��/��|<-��x���!M�t��3t�&���Йz��\�$�w��~ٲ��x�q������b���p��B6ob/;F�]sb<ܯY�~�Ւ��;8�ATk�y֓����#��\�`pJd�u��3�V5r�����S�a�/X�0�j�r�^U��qN�LGtrԾ9Mȣ�y�i��;��L�FRA�(h��e$�|].hL���r����1�f�6�*�%��GS���|�3���N�����55��u��5+׀-��j��)�8�\u]2���y�q霜�48�������F��h*i5n�9L(�w�~q�������(�L���y9l,w���o�����xӰ��<�n�a�X-|��x���+�����0!�|�l�J���ݐiQ��g@�̈���~R[�t]F��B�J!�r�� �."�2/�K��5�� �ռ)+-(U}n�[c���9��2��ʑ ]`AS�@%���;�����m�j`� �26�ܾ�<��,��le�w�.+�5]��֑����0@��-}���g 23 | ͻ��Q "q�j���Y�ͤ�B��'j�ӯ�k�ղ!�Ӑ�/n���ݾ#�[Wӧ���oޮ�lN 2yu)O��R�� 7XRD��ӷ��gު~��-�d#a�{ 24 | 4����a��&�ȤW��+W ��1�/K9����#"0�K�{eN� 25 | �tnϱ��|����ţ'Wo/9�v���:�р�ri��$o��E��K��$]ӱ�k���I )���ӫ ��A���M@(�Mtո�<�j��h{��L��W�>�^����h0c�eGǀ���D�><$��Qٍ�������+��#zbUwڨF���\mm����s�mf����[�I����o���2.�V��g�*,E 26 | &Nc̩>h ����R�V�,���4W�(�/c����я�x�1���2Y6����e市L��g�X�Z�C�"�mU�&y�l���K }�l�E��Ho��!�Hʂ��YS�������f����p�<���8L�Aƪ5����ݣׯv_��|�1H�B�s=�x�A�@��hT H�ؕy ��v�֨���=�q�6�MRT�_D 27 | s�l���� 28 | ����9a�=v ����`��叠1p<��Ԏ u2@�.�]8�8�}�I���+zE� /a�����O�P�:wsu1�=�.���$�k�=)�*"���Ӈ�t�� 29 | t� ���/j���$��.�Ѽ(���~� ;=Kqd ��}�5:�kȬM$_'{ �����?o��.��f��[�f ~��#~"� sA�Ƈ3���Q ^I��'������'QTCL�����r�0� �X�O��!��9�T�`��ǵ����h� 30 | �!�&ƺ�}uԦr�a�&�>�p �nv��ʠ�\��,#*'v�{�#a_L�m�j�5���N���5;��l�?�|�Q1�JHwhcX@V�i�)YB텊%�螦$���_���k�S+{�Iw<�1�H���>���_o?���x��}rO��j������8z�܅i2L-Ja.S2�b.}�6��nC�Q�e����7��Q�%[���`�f��E� dk�І'Zz�\dS&�����-��6j�Q��'4�ܷ5����D�0�f+I�\2��{uW�E����K�3$�'U�7w��&<���o�o��{�|� < 31 | /���l��>�\*|,i\'�"�ִ�$��0bH� xg���-���&��-�i� ��ۻl��jb_�;�`~ 32 | 18^&m�|,�]X�TK�Ga��{D��!���:�FW����t��fX��yRpi�{3�z�!D�Gq�^\-���tv)�kE�g.�x4�X��]:��wȞ�#��#W y�yqs��Z,���3 ����V�=׈_�5�f(��" O��¶�X��*�n)|��$����� �H��T�i�y����o�c`R���ҍ0ې�}��R$-S|��V���>+���}��ӫۻ߮wO��^ir��{�a|��7��B��H��'�j����v<4tٚf�@���4� <+:�B���p�gR��s���/m9z*�������~�<ؔ�-i͘Al� l�.k���a���s��85m�����A�-Ÿ#���EYN��;�V>���r€�-��Wv�o�.��⧍ d����W]��+q۳G^�|B[&��e��N����W�hM7(DR�e;r��ɛ���A�찉)���iDp=L)�`\r�� 33 | ���&�C��)����L�x(�5J��t�~/���uH��y�z�r٧��d cJ�Ӌ(�oV2Yx��ɥ���ia�������N��@�w9j�\E$&B���!�3�@�Ͳo]��_�w\��p�V��4����tT��p�O������r�ϴt��� ������hL�]�������5M}��}�۟��ݯ���/��mcҒiL�`j0X�=q��C�h� ][������a���j��3�:�bx�2�\�!�0�Ɂ4f쁎� ���&��̡��T�b��m�P�A)��V>���z�Ǥ�W�Ǽ��k�ǣ�a���4,�6����cc�,Ȇ9<@�%�jJP_"[)�~�氀>M�HD$�h���Â���\$^(��<����4�����$x߅��Oе�qO�K#�κHѰ�PQ���%��5C\s����q�(� �$<,{� Wk̿|���ݛN���g[w"8Ͻ��U���g��1DU ��?Ј];���){+"^QJl�՛e�^VP�C�1"D�|��I�=w(�/��{0�xr��@͋l|L�(K}�Х���5+�z/>����#���Ȟ�%�aN�S�R5�\-H�t�W7�I-hc���24�⚎F�Bh<��2,& ):�9܋�O��s��ٕ.� V�&^2�����H�������Z�� 34 | s6EO��w]ׄ��^�i����艞'�&WN�׊^K��@�}Iɗw���v_n>�!:�:�#] 35 | پO#�k�^ 36 | R�x�Ϭ��>�p�ƕ����I R͓M=A�\K'�<��_8�T������v�+�[@4�'�j�����*C2�����£�#�0w���k������ǿ��y+{�S_ *��m��Ng,V��"5��Lr�-�Kۘ��q��m���jCD���8������Y��?�.1��P�(��ef2�]��@��/n#��Zw-��$� �ySwlb[�h1��\Y 37 | ��рK1?d_�J���0r�Lg�BrΤj�]2D3D�/�D �-{�3-�{�W�7�:K�sebD�+�C��T� }�*�`�&ѕ��N6-\e��g�ÿ�0�\І1AH�+�q��,[^Rʜ ��&8m�N��)���l~u���_m>%��d;�Y��6�"|# ��eL��T�~���q���V�Ͻ*E�b& ���a���%�#��j��p��1�Yn_�5.��P2{ȴ�bF�*��s���Ը��1,ie�%L˃�<�ѥ�x���-�L��,�r!l{`x�3Ӣ���i�!G�8��>[j�H ٩���"Y��8�����->�� ��e�[-"͸y�x%��,��D�m5��y��89�3_kM��a��1���W���P��&��:������s�y�rJUI��ݴ����߯>�x�|kÚ��&�j������k"���O�����d��q�V((u�S�ueVOܷ�.���ZY@��� Q���}��E��gR=$~ܷ���ÎU��[�D؂ӷS������nx�e�yDBߘ �� 39 | �F7�8������m��o���,?unZ�T��UHn�*���М� �~o�Itx�I���\AC��m��c퐐`��/�Z R�94!��b�-L��@�عz�� �G���}�-��Ϳ~�S�y���jj$�}�8��W_(p�|䭀��Ka�a�N4�K`�<���wNY�2�z�h� :�,� �oU��D�"��h�o�C":]*Ϥy�T���7W�T��j�s䐈5XrJ�sH�h��\�—�~����n�1��|�3��� ��� e�66"~\�V����f8�(Ď��0eg`��h�e���3����5bD��pF ��� 40 | �Ҁξl�u��E�j� ]��^UUT� �7��� ��UT�w�V�q�/S���A���=o�˭7������w��������e['AY� n"6����a Rv��)�*�v �b��o�u4�ۊ��D��cMbPA�5D�<� j���7̃�ٶT�2�/���~�=�z�0����wt��Azx9�K �����Ɓ���k�����̆��}{��GkWPg�j?�u�ۢ�'LD� /���p���r�� ��<�8�dr�K�Z7Q�y#T�T�J�|����Z,k�s !�������3�*�k��#�����+z�o��|u zo���VJ��ɲ����2٥ E7��f�h�ml��������Σ �� ��9�!�:�ǂ�H�#(�h��j@۠/��gKǮ�5MԾM�b��㎰�f$ �j �Z2%�s��؏iO���vH��~�\�ÉZ�r�����w�O�ۺB�l7#��b�T�&}��~gč+Vޗh/�_���#=|�S�����m*��� �d�M�s=$��6ʎdva]~�~2`A�g�m�۟Z�� ڠzYNQ�6���љ�Szv���@��h � Z@I6��;�h����QQ�r��e�����W_>��d��2v ��͊�f_�����4�!�#� fڏ�� &�i�b�B (=�y�2(Ǡ:��[�jM'��+ў2X�=��>��+����r��ܙ���_Y�U�۞esq��ၰF�ڌ�~2���׏�D�#V��6f_Ef���{*s9mLA�77/a�>�5E]��~5�|h,�AQ�����9�|��ZXk��^��U$e��x�"�94>��1���Xbۑx`�H�����3�M�����*�$O���X硕-�"�����5t�系��ї�z��a VP������q�b���NW�ھº=�Sc��%>GӨe{ 4ާɣ��0t r�l�y�$����'��15�w�c�=l� 41 | ٟH�~-W�����е��l��@.���P��r<����S�s!%�a&T[>۰�,pC)z��Ê���r%���L.���%J���ÐNn��A�\��HƲ�C�'6�dR+桴n�x�ʰ�=G:d��)f�GَOɛ��cg�ҁ�;t΀\��@�.� �=QR�����:�7�����H�BGv&�.˾���b�>��ք���b��;���"������="���B��Rc��z彃ij"�y�tl)�3��rH� ]B�"�z.���\�.���d�Mhh�s��p����vܢ��)�G#�7��w�l�0���ܝ}&'�ĝ����e���8��"W���՗a?����H�zZ��'LeJP��)!����2� ˳ܑLH����K<��N�T�|NP���L"�=�i��@���e�#K 42 | ������}�>�BB��v�����,���@/�_��yNO���ap8�R��Gj'�c�Lt�#&�}�iw�dzZ�P��F�u��i8&���+����D�����s*TERx)2�:���t�j���U���r��Oʅ6%�Y��Ŝ�f��~�0�z�@Wxno���<ٺ����X�j���C<9� G�yT���;R<6��I����P$�p���P�mXA�5Qf�Q8��۰&y_�6/��9T)��LDC��7N��AGꋋ(�r�U�}F0����y �B6X;�"�>��Ƒ-�j���p7���@r�w��B�z9�~��;�}~�+#LG��XY� �o ���� ��!4"�1.hm�$�t�‘'q������l�d���ӈAd�&�k[��+���wއ��rN�nH r ���!B�x�T|+DSd��yu3�- a����`^&[�c�S��)�'����}�t�>������7����^�z�����.�y�5��l��s��m�>Ì�i�^�����q&d��*_�*�Z�h��zTr_���H�r����ա/��}�x�� ��!���j5z{DD��{���N������o�i&� J㌼b�s�#��=|ru3ZǏ�nĸ�장����`�8�e�vw�jw�ǛO�I)�j3S%n�����B�P� 43 | ��:��Ǹ*��F&C�Ү􊚐�ѩ.��c����)�Z9rҔ%�3��}�<ϸ�Z�x��A4���ИO�'9SPulJ����T[�����p|�0�� 44 | 'W@��r�-����Q��[��F韢*�:��0� ���m+�i"\py�T��m�D�/�pN�� �K9z��Zc�8��oo9i�3�0����`m3���஑���#����n�^����/�����戒��^!m�wDsY'�ĕ&?b���R��2��{���l@ 45 | ~DO����ׂ����,�j�l?9E��{w�%,��<���`DU�A�.�~����zD���ҹޱ�p�7"����n��� w6f#��.� �OʄXG���T7�ԔM���l�@�h\p��y�ԣ<��)W��{I�&�|�a���d!e�H:{�tl�ԥ�ـa����Ż�s�n M��J�~�<�t�\�q�+9��4q�ow�����w���}����*�p��S9�`@ 46 | r,Kz4bW��;xc��ŏ�Oz��J��C���[�l��aV��ώ>�ue[�<�@�j @���=�v�c������(���}+��6��� �ѴN�M t��ޑ�/�b}��P +�5]O.��E�f_;&P 47 | &H�6��9j�#��f"ڇO�o#Q�^[�#ӯ���sw�헛פ�<9���b�B����m�a��)�܃W�(:�� O0n��"�u�>hx��.2r�"�@}�D.���8�r�#5Cx�fC�y��E�3_8�h���N��4��\B��w}`A9�O�[���1����l��䲚� *�"�Z#n.�e�KUd�� ��&?�*3�&��E7F((#�� ���O v��"y��(��A�,#=�#g�L����2՟��ʸ:���x^,S��>��T^r�U��%2�M��_��m$��/��O���q��������^�׷[�Q�ܟ�é�͹�iȌT[jG���w���R���D�y|�8Ǥ��v�(r��x�"�N�Tsx{�t��h}�L�����ܯ�����|G �������V��:�}k�'�&�r�,�|���sY !�$���� 48 | 3��}�9<]c���Mȟ?��0,��W_`��T]kX2������?���f~}s���ۧ��e��P\�����3�����]u���W��Fh��q������h�? �EO>I��U�-��B2�$WY�E��]t1���'DDM'�Rx�u��F��希� ��%��}\��Wҙ��,0��o��p�����MY�.��N �c�������FI�t���#������;���BL9GI#v%9ʜsD�H��;:M��~TE.�$��MzϮv�8^_������4�n?ܼ���z���ݣWov��]�޽����x�䋭Ȇ^o ������ꩶ�k��'S�������j����0�|�FaG�/0�y �E ��%�&3g���Q��H���\�68���V��OGC5�l�gT0DG�>F�i�͆��̟��}����e��83�`�Ə!���S�Ƈ5bE��%f�Vu7��ЍC�)D��jXT�o�}��Fǔx�Ym t��SvL>bXi��SZ�Ice^'���}����TS�]�a��|�Y$) R���I(�llL��N���Y&��q�^5�� 50 | �ȼ�Ρ*K�Rt�ȡZe$Pé�`��N�]xP�s3W� d$s=0�ε�0.vmy�a>��"V�m%�AR��V �R��H �������Ϟ�^]����x���^|v��ۭ7��U"/�B�2k^��,gxP�j��W�>�`��:�a\�F��o���� d�l8�E��dn2pA���7�1��a�j� p���'��F��P� �Db_1e�jR�����a��C��z ��XⶔT���KZ�9�{p���%H�ιޱVmŀ�Ti�t�mu���3�,���7�`�1D5�!� !+��xԵ���l+]�2�?C*y옌~|nP5�|<�gn!��9Q�������,"�d==Vi��׻�v�^��.�?y�u ��P�;�����'Y�8��bN�F�Zv5EmNEkR�q<����=TA�!�3Q����`ń��?�r��c�6�.g���1�ʵD�d�W�R�`B�bI}��)�����bud;H<�ɹR��+�ϐK����^0���`wG��HV�����qeJ�U�h~�P�8%�\��C�S�K�p����4vX�u0�9Y��*r�{� �� �gAϲ�%��Uk�����i�)[������_������akpDR�~a)� �>�6F84n��%��Z��B���s=Z��zy�o�cBC�l�����r���Gz� *p� �V��6MT����]��T3`ڍ��9�G�R-�&/�U���c~������?�ޑ��y�e�~�Pu���&mpg},�ҳH��kQJ�\������Dg#_a^�cK6�De���6K8�]�sA�a���EQ94@����eB�ݙ��<9���'��`=,��Q� x�yZV *��#����:�N� � �gW�t�;Zzj��){v�jk| �c��c�������x���ɉv�ěJ�� �7V��o�*?ۚK�i����Yۏ�=B���m�����"㵌'�K�k����'K��L!7�{��%����>U�o� ʰ�7����&����1�0��q�f_���.��C��2�e���|��{�}3й�k� 52 | �.�ns�Ti��D��I� ����T�����gW��x�u�ӴD�)*���%n_T��+��y����g-��� �a%� 53 | �2�Ss�6� �����M�%�A��{o�s���u䓺�-B��Ȃ�8:z!�+�Gg��Sj-�To��{B|Aˋ���Ё�{r��x_��Q���������>T%o{F7 $�����#?I�%�l�w%\�-#� �4]��= 54 | (?��hB4M|8�5��m�4f�^f)������0�8\�Ll=�ҏ�+[w>�p<����P�)�r>F���d���*�� k���Ǫ�j]�I;�V�X<��?D�Y�<�����v�8�9�}_���{������[� uH�}����v��� ���8(�5��\i�x0��.�T�*BQ��#���j�ߥ��:�!�Lj�o�8�V�XO�3�"?�n���9��z�h}@W�:T�I����Ϩ��-�����Sb��ɦ��9�7 �}����������� 56 | ��0��'`�VM��"7h�����J�8�@"��aUjA 57 | �_-3 W��-HA ��%���:ER����t_(���o���%sp� o� {�'��1�[$;�G8��J�����np"�gb]�.� �Tƪ\L���� ���л}ܵ� 60 | H˰*� �mM72� �j�j�R�.�Y���YH=˰�e��c���cx������1V1 ��g�-V[D�����b��_d��b���SN�̃I>��4bײ���H"��u���{�����������٘�������m7��tL�ʢs�SKU԰�Hw֚� +��v ��Ō�_k]<�r�7�:�y�~�� 63 | �}��5�sw�gk=�<�|������R���0�A�)�A�Q��g�L&����h��ş2� "�YG<+,~E�����0�4� ڔW���5A\|��[�,o� ��ݑ���y"R��!� 64 | �kӆ]�s�V�o}�i���k�l=�W�:�}����.�T��f(� O� �9$Zͩ d?|�A�i 65 | ���k-��$p#a] 66 | �^��]}`Q�9�>V#�怵��s�7��Ӥ��y��QZ� k�f6L^��H���d\��ÂFY��:�~I�����L�-�+;W��tQ-�"q�^�vQ/��+K���c�c�MȻ�r� ^�d���6,�������:�,�ں���{��Q��C�S̉xaنV�S��,O�/C� @I�0�V� Y+�EDQ�0��ю��E���^������E����A�  ��R�4�1�� Iu�j�/�LN�܇5='���ݩK/��ӭ[�m�\�ˢ�J��<1 ��kQ 4,s���M�?h�{���,�l�7��� 67 | -�ՎG���Wi!ې�M夺ȁB�ſ�W!@2����?�X]�<�%����+��F\�@1������>/ٿ��ޤS��8)� ���k���5�`��k�"$A���y=Gd,��!���ŭ�M���!L�?��q��������n=� �����rj��� g*�gD9�q�+� D,�'��=n���Fr�R��KQRϛr-+�6V��D�S��h\p�9P�չ�-�6��!s�%� 0�x]&���/s"lI �����Eݏ�l .��ac�BYA��b���{:J��4j�=����T��fp�Ƙ�r$S�,$�L`%-��(����^&���rmH�q�W��b�%T]q�q�p��'[Y '�����gP�� 5U�� [P4yjA4U:D.� ��nR*�� l�ȹ`�����iBd����h6��}��,�g�e�{P���D�����bZ�u�ȗ3e�!D7&Ot�T6������9��;����Q�D V���'��mJ�y�Ë�m=I� ҿt���9 ^ɛ���u>�|�ށ,e+��I/y\͂[��@:8���M�o���;r� 68 | i����/�y?�a�ܯ���Q�e@�����v n8�O\��%�����+0���݉D��@WPM�I!�g9��*K�_�^E�\�.�i���������3ZjE5L��*��!�A�%���G(�*�k�e֒1A�pu�����Vl4A��2��Q��q~̎|r����!���`�0��r����ZrU}Ⱦ2����a��"�&t'����ȝ���c<�<��<g�Im#9��a��Q��ȃ/L>}��01F^�e:� *�%NKzl|H���@�U��WN\Y�O�h�5!ko��x��Nz����.�I���?��h>K������1#�2�n)O6��������?� ���_o�yf�B �����g�r�37�������WLα�q���Ī��uq�=�\��e�nWy5�AV�f �R{�I����R�,��z���}��9,9g��F@)|?0L�y2>C(LI��΢�������:2���!k�I�1Oh!s�U�>@ ���#N�1�GX&:�`�i��Ri��\"����$� =pin��틽+ Vd� _|�/��w�02@�����y^ k�%l��m��wSm� �y�J��LſbB����9��Y���?�r�1������q_6V���o�%�/��ikV���>+��m��g7���\��x�Gi+��T���`��+�aR�ƙ�g2 69 | 1��C��8e6�$�ܚS^~oR��W�E^��t��d+�L�|teV�,�Y�Z�ߠjȝ���r����ї�y�K����G\��c�Ux��+��$�\�%k=����F�k?��F%&6���8Q�� 70 | �]��a��� �.X�ٕ�c����d���@z�x���7b�^���0�k� ���z�s�o��I>�{w��y���k�c�oo.^�:����O����$� KWyF���C��u�W҄��o��P���R�q2q��6RtA�e:I��nb��?�R����Z^��+��MlUƙ��5B0�G?,G�W�E 71 | >Z��)�M1�f�[b�����������\F������ay�ݤ�M�����פ�0��$�ba�{J�=ͳ&�a��`�a���2 ,i�bc���> ��4(�֋r�� :��%DQ8:�R��̑c 72 | ��X�x���ݼ&��׭���ι}಼߅����� ���χ�y)Pӏn��[�S�*��-DA7 �V��������?��p_2w�1zy����G�W?��as% �/�M�g��'�iB�*��� ���N�PI�a��צ;\��m�>�U�� @�g�DZ�HM�(�Q>��=�o5$:Ht��Dd��,#o^o�ݽ�����6�u�{/��UGI�J��Y�|"�e�Q%R�V���\�hnSR���hr���쫠�rOk����p��Z�-E6��ǽ����$��� 75 |  r?�˧4�d۟W7F ����bN���X[7��pe] 76 | �G��_D�{��<�܇�����r�x}� ����T�$��ʀ�~�\���������%Q�&��v�; Ui�[��y�O�8���`<�9��H��z�����盗�#8)*�m�����+3���L�l93�|�q^�E6.��R�>-��=�bo mHA��W�d�!��:�b%�,G���{Rr��IC�&�e� F��]�q������W>_�{���~K�8�Ś&4Q��#8.m�{���3��ׁ����G��1.dU����4Ȫ�3Ǯ�F,�։��x� 6���1���1'S5�[��g��W����$�\�7��W�a�)��}�>� &��A)�JdA�N]L��hE� �s$C�!%G��X��4d�ə���?^_���=�������ٗS��k/'ǪPH'"7�;t �_�Ɉ�HSd�#B��j�>�d�-�@�4A�&���fNu�<`�JQI�Fc� 77 | ���B�u��*K�����kg�o� 78 | �'�#+ `�6�C�������[���ݛQT��;��w��������6�� ��@:�+�M����L��O����;�X��)�l 81 | -,M����5�����R�~<�{K*v�AU�.%���k ��<�O����1^�ls�~�Z){"��*�mZ��^�R? ^�NM���5��ė�Ze1*�/E𭻯k�!;~*h(˃������W�&.Kd `��}s�y�FD[.�R�^I�CHȳ�1�X�wLKo��L����ʗ=��2��!c^q�^�O-��k9B�`-���xE������2���R��F���xS�����c|��?��M��Y\)S�� �������.F�M�ʈ�0U�H8�����JDی�B�$D0(2XƹT�C�E�D���~�)"HA��e���5��� Z�-zr�E�HqT��e�C&fQ�U����(Fb��U�~e�}J�Ϸ�#U��`�".K��l� w�Bh�w��ȃ�ꪤ`%#B��> ƪ�Q�/���Lv�X[� 83 | �� ����!ae������}� ���3$�O���/ĝ�UƓ��ȩ���bA�;��=�КP����x�%��f�XE�T����K�� �Ҧw���ѳt9.�}�����;�JM[�;C�����IkQ��hk����c ��ޓ` ��!b�} ��Xڪ ҧ��c��Gǿ��k�l ~��'��h�2�9����a)~�6W#@��ɃOi��$ v(Qr�^��� <5|����x^U-<�j71}�9"��_6p�ˌ^IeA2T�ج*� 84 | � ���ىH��P��0�ìY�ӟ+ i�Y4�#_I�E�����u��V#���s���[{����3~x�������Y���w4��A��5XKg��2n@]p��O�U��2����kf�|��,/#�M�7����9�q�m�)���v3\rѳCRP�>uRvi�W��&��ɇ���f@�5e�دЈ��,������� 85 | ~|���ы�?>�����ŏ�z�� �|�J��7�"�m@TZ�4Y���`L�<�r,|\}r3�u��]��3鬛�H��  @,I�,���l�� z2�[ ̔) 86 | ��6A�d_�2� 87 | �|;w���!Sp5��DD�/a��N��A�B���2y��v%%��ӆ𗻛O��^��u��� r��] 88 | �~�'u�y/(�̵( �����ख़��-mP�v�b�AI\��U�� �&���;:���US9ML�gB�93Њ N��ddhvl,��h�#����^��p��*�VIɸ& �:�K9!��Eִ�;��Kֻs�tg��7eMF`��3�Ei���� b� �ڿi����T���S�ܵ R|r������� /�޼��7���'l*ū�m_؛��9މW� ]kl�� ��7�2��E�6���6� ���6�vs˯��j�a��\��~��g���f`4�_�$���i��Ƈ�*���Aׅ��ŗ���6�H_��J�.�7 89 | ���[:8@_g��;�dP}�����}�s�if��&��X6���4dH*'/7#��oo���)�����6o��Y���'z"� #����W���d �֨�I��>4I7#w\�<Ń��S���4Y�G+C蒓�ƝX~g� ���o�/�~��5��xل��ŏ�����H�W�"�)�O�� ��_j::1!.�EA��y��ӅM����q���� � vڿu6ޅĉ>c�!%MH�"C:0�� o��ۧ�T��BN(�~Q��j_���`��U��V��N�n���1<�J���8W� ����﷮�B��h��}��Z�a�d�\%F��C�}E���o�=EѨ:�� �3���t�f�v+f:=0��Gu���P)���σ>F�nB?�*(�侚k�h�v[>���…�RjG'�aP������g��i�%�$��O��+9�ϞF6�코�Q��G ظoZ�$+�L4�)�*��4����@N���ډׄ��+�x 90 | ) 6F8�h��c�RN���E'x��>�:^�^Psr��x�!�� ����:&����yx�5�0�(��P�o޲��)cY�ۃ�x�|UOx 91 | �� ��A�յZ��L�A��,u1�@�.0������� ��i�r*_QB� �B��A�'h$�A&^�"�pIkS���"��G1���s��(� �W�>�_~��pH�R��Xm�$�����9��?��O��n^�.~z�y3`�ه���1�q�������ۭyd:x A4��w���ɝ��W�� �\Kă�5{�Y�������J�� a7��z5���@�G��l�~�x鋍!��3l�Lt>���9�p�%�#�˿�!�C9��V�}ؐ<;s�̐���'�7�4PB"��ռ��>��Џ@����wLWKþHJ�#���6�&c9�y����I���r��F�Z����%efJB���_�C~�e��#����Z��~�6���S|��H]]d����tM�!p�� �%�1D۲��7��g��ʊ�YT��T��t��Cy���Fn)˞�������ym�Ӗ6���7��)5e�S�,iЁ�������:ӌDzx>z��J�>�H۬1�!�/X��* '>�*�:�g�N�d�P,v)%��� �� �ϻ���.~�i���)��p$c���ɔLڕ E��p��b�@��Ec� ������ ��<��ea�Hê�� ���� fO��L��� 94 | 4m��'jO�����[[��ɰ ��g|�&]<�g��q�f>���������.�������ܼo�Y�<}��$vV����ǔz�3���Z�������B��g�h�`��є�\v_�4��`���)78Z 95 | Ӏo���6���~�����C�C�{�jâ7��*�!H��t�ĒM���{ 96 | ��K������ù}���!�t��ʊ�g� {��u�QC�n^�,k�i �"�9&�o�Mɻiߙ�E)�짼p6U��!d��bc�nc���������2�.�=��w��$���lc�BWC�\̜�Oes^��ON1��o��O��kįuF��O� ���W�ovo/~�����+�)��~+5��#y�װXz�"T*jX��*�i����U�, ��2^��{4���=9їU�M�>��]Rݾ*c��g��(�;�4)� 97 | #�NA4*҉��E�{h��C�]5I��7\r��-��z���V�c�փ���ء)�tWP~c��6����|nsF׾K:.|H�>��o�������$(�Z{pX�����C�^s:�,�a�)��蘂r�#/�����%AЈ];:��C��oL.x���g�rkz��xX�B0+jsfcF���H��mH��4�Yܵ���<�W�� >��\�Z���`]��������T�o��� 98 | �l�+�U�g [�~Mr�R뱕^r���0 99 | �{r�]2���e������/�7/�@�ߧ����m)n�>3\���6�<��I���E�E�����n�)�G� ����Q�|W}�\u�BL]^�cA8�^��W��A�ړ6�������W��� 100 | 'N�,�����w0���)�n�� 101 | L w�i�2Y�A�w1f*�qN@��G��y@n��!:�Ғ�\S�A'צ�sS��i��Χě WŤ�s�M�q����C�.玳n��3��y�U>�9�3wIt�##Z���/=�9�Ҏ���^�2­�����j�T����k��Bz!c 102 |  =�g0����p����� 2���%@?���<_�}}?N��z�� 103 | &�������8�Kb����d�}Q��>�E ���~c6Tc=�x{/�=M"��w�[�1KT�TD�=؆�1��R�\{����\G���ԉZ�<�D�� Bn�gB�U>+F����쒅MU�JgC��S�4r@�L?PK\Q;Hg`PK 104 | ��N __MACOSX/UX �E�\�E�\�PK!`�N!__MACOSX/._international_debt.csvUX BE�\�{�\�c`cg`b`�MLV�V�P��'�v �_2CB��L��@���� *.�� �����XP�����X\RZ����X�� U{�%D� 105 | K��J2�R�]oǀi.��� � ,��M�S�LLM���Js�R���PK��s��PK���Ninternational_debt.sqlUX {E�\�D�\�}�� 106 | �@E��og�F�6�2�((�V�