├── AssetAllocation.ipynb ├── DecisionTreeRegressors.ipynb ├── LICENSE ├── PairsTrading.ipynb └── README.md /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | Copyright (c) 2020 Leonardo Filipe 179 | 180 | Licensed under the Apache License, Version 2.0 (the "License"); 181 | you may not use this file except in compliance with the License. 182 | You may obtain a copy of the License at 183 | 184 | http://www.apache.org/licenses/LICENSE-2.0 185 | 186 | Unless required by applicable law or agreed to in writing, software 187 | distributed under the License is distributed on an "AS IS" BASIS, 188 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 189 | See the License for the specific language governing permissions and 190 | limitations under the License. -------------------------------------------------------------------------------- /PairsTrading.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "This is an illustrative example of a Pairs Trading involving Coca-Cola (KO) and PepsiCo (PEP), despite being fundamentaly different companies, for example, KO has half the sales of PEP but has a higher Net Income however they both manufacture, distribute and sell soft beverages.\n", 8 | "\n", 9 | "But the market already knows past information if any new information is released, specially if affects both companies like for example new regulations affecting the beverage market, its expected that it will affect both companies in the same way therefore the price of each should move in the same direction.\n", 10 | "\n", 11 | "This strategy falls under the expectation that when prices depart from their historic equilibrium (quantified here as rolling correlation), the company that valued less in the last week will catchup during the trade session, being the positions open at open price (slippage & transaction costs can be factored in but aren't accounted for) and sold at close" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 1, 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "# python 3.7\n", 21 | "\n", 22 | "# For yahoo finance\n", 23 | "import io\n", 24 | "import re\n", 25 | "import requests\n", 26 | "\n", 27 | "# The usual suspects\n", 28 | "import numpy as np\n", 29 | "import pandas as pd\n", 30 | "import matplotlib.pyplot as plt\n", 31 | "\n", 32 | "# Fancy graphics\n", 33 | "plt.style.use('seaborn')\n", 34 | "\n", 35 | "# Getting Yahoo finance data\n", 36 | "def getdata(tickers,start,end,frequency):\n", 37 | " OHLC = {}\n", 38 | " cookie = ''\n", 39 | " crumb = ''\n", 40 | " res = requests.get('https://finance.yahoo.com/quote/SPY/history')\n", 41 | " cookie = res.cookies['B']\n", 42 | " pattern = re.compile('.*\"CrumbStore\":\\{\"crumb\":\"(?P[^\"]+)\"\\}')\n", 43 | " for line in res.text.splitlines():\n", 44 | " m = pattern.match(line)\n", 45 | " if m is not None:\n", 46 | " crumb = m.groupdict()['crumb']\n", 47 | " for ticker in tickers:\n", 48 | " url_str = \"https://query1.finance.yahoo.com/v7/finance/download/%s\"\n", 49 | " url_str += \"?period1=%s&period2=%s&interval=%s&events=history&crumb=%s\"\n", 50 | " url = url_str % (ticker, start, end, frequency, crumb)\n", 51 | " res = requests.get(url, cookies={'B': cookie}).text\n", 52 | " OHLC[ticker] = pd.read_csv(io.StringIO(res), index_col=0,\n", 53 | " error_bad_lines=False).replace('null', np.nan).dropna()\n", 54 | " OHLC[ticker].index = pd.to_datetime(OHLC[ticker].index)\n", 55 | " OHLC[ticker] = OHLC[ticker].apply(pd.to_numeric)\n", 56 | " return OHLC\n", 57 | "\n", 58 | "# Assets under consideration\n", 59 | "tickers = ['PEP','KO']\n", 60 | "\n", 61 | "data = None\n", 62 | "while data is None:\n", 63 | " try:\n", 64 | " data = getdata(tickers,'946685000','1687427200','1d')\n", 65 | " except:\n", 66 | " pass\n", 67 | "\n", 68 | "KO = data['KO']\n", 69 | "PEP = data['PEP']" 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "execution_count": 2, 75 | "metadata": {}, 76 | "outputs": [], 77 | "source": [ 78 | "#tc = -0.0005 # Transaction costs\n", 79 | "\n", 80 | "pairs = pd.DataFrame({'TPEP':PEP['Close'].shift(1)/PEP['Close'].shift(2)-1,\n", 81 | " 'TKO':KO['Close'].shift(1)/KO['Close'].shift(2)-1})\n", 82 | "\n", 83 | "# Criteria to select which asset we're gonna buy, in this case, the one that had the lowest return yesterday\n", 84 | "pairs['Target'] = pairs.min(axis=1)\n", 85 | "\n", 86 | "# Signal that triggers the purchase of the asset\n", 87 | "pairs['Correlation'] = ((PEP['Close'].shift(1)/PEP['Close'].shift(20)-1).rolling(window=9)\n", 88 | " .corr((KO['Close'].shift(1)/KO['Close'].shift(20)-1)))\n", 89 | "\n", 90 | "Signal = pairs['Correlation'] < 0.9\n", 91 | "\n", 92 | "# We're holding positions that weren't profitable yesterday\n", 93 | "HoldingYesterdayPosition = ((pairs['Target'].shift(1).isin(pairs['TPEP']) &\n", 94 | " (PEP['Close'].shift(1)/PEP['Open'].shift(1)-1 < 0)) |\n", 95 | " (pairs['Target'].shift(1).isin(pairs['TKO']) &\n", 96 | " (KO['Close'].shift(1)/KO['Open'].shift(1)-1 < 0))) # if tc, add here\n", 97 | "\n", 98 | "# Since we aren't using leverage, we can't enter on a new position if\n", 99 | "# we entered on a position yesterday (and if it wasn't profitable)\n", 100 | "NoMoney = Signal.shift(1) & HoldingYesterdayPosition\n", 101 | "\n", 102 | "pairs['PEP'] = np.where(NoMoney,\n", 103 | " np.nan,\n", 104 | " np.where(PEP['Close']/PEP['Open']-1 < 0,\n", 105 | " PEP['Close'].shift(-1)/PEP['Open']-1,\n", 106 | " PEP['Close']/PEP['Open']-1))\n", 107 | "\n", 108 | "pairs['KO'] = np.where(NoMoney,\n", 109 | " np.nan,\n", 110 | " np.where(KO['Close']/KO['Open']-1 < 0,\n", 111 | " KO['Close'].shift(-1)/KO['Open']-1,\n", 112 | " KO['Close']/KO['Open']-1))\n", 113 | "\n", 114 | "pairs['Returns'] = np.where(Signal,\n", 115 | " np.where(pairs['Target'].isin(pairs['TPEP']),\n", 116 | " pairs['PEP'],\n", 117 | " pairs['KO']),\n", 118 | " np.nan) # if tc, add here\n", 119 | "\n", 120 | "pairs['CumulativeReturn'] = pairs['Returns'].dropna().cumsum()" 121 | ] 122 | }, 123 | { 124 | "cell_type": "code", 125 | "execution_count": 3, 126 | "metadata": {}, 127 | "outputs": [], 128 | "source": [ 129 | "# Pepsi returns\n", 130 | "ReturnPEP = PEP['Close']/PEP['Open']-1\n", 131 | "BuyHoldPEP = PEP['Adj Close']/float(PEP['Adj Close'][:1])-1\n", 132 | "\n", 133 | "# Coca Cola returns\n", 134 | "ReturnKO = KO['Close']/KO['Open']-1\n", 135 | "BuyHoldKO = KO['Adj Close']/float(KO['Adj Close'][:1])-1\n", 136 | "\n", 137 | "# Benchmark\n", 138 | "ReturnBoth = (ReturnPEP+ReturnKO)/2\n", 139 | "BuyHoldBoth = ((BuyHoldPEP+BuyHoldKO)/2).fillna(method='ffill')" 140 | ] 141 | }, 142 | { 143 | "cell_type": "code", 144 | "execution_count": 4, 145 | "metadata": {}, 146 | "outputs": [ 147 | { 148 | "data": { 149 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAFkCAYAAAD2T7zsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5yWdYE3/s8cmFGGQVHxyRMIKJtWrChLbSqmHch+muZhiik20zzwqAWbCKGA/sQ8vWQtxWNqG6TEZvts29PBTVzxFI+ixsqG/aQ0NTVQzJlRZhDu549+ThIgcDMD9wXv91/OfV/f6/5e98fvMJ+5rvuaqlKpVAoAAAAUQPXWngAAAABsLCUWAACAwlBiAQAAKAwlFgAAgMJQYgEAACgMJRYAAIDCqN3aE1iXpUtbtvYUuk2fPj2zfPkbW3sarId8Kpt8Kpt8Kpt8Kp+MKpt8Kpt8Ktu68unbt7Hs/W3Umdhf/epXGT16dJLk17/+dZqbmzN69OicdtppWbZsWZJkzpw5OeGEE9LU1JR77703SbJixYqce+65aW5uzumnn55XX3217IluK2pra7b2FHgX8qls8qls8qls8ql8Mqps8qls8qlsXZ3PBkvsLbfckgsvvDDt7e1JkksvvTSTJ0/OzJkz8/GPfzy33HJLli5dmpkzZ2b27Nm59dZbM3369HR0dOTOO+/M4MGDc8cdd+T444/P9ddf36WTBwAAYPuywRLbr1+/XHvttZ1fT58+PQcccECSZNWqVamvr8/ChQszdOjQ1NXVpbGxMf369cvixYuzYMGCHH744UmSESNG5OGHH+6mwwAAAGB7sMHPxI4cOTLPP/9859e77757kuSxxx7LrFmz8r3vfS/3339/Ghv/ck1zQ0NDWltb09ra2vl4Q0NDWlo27rOuffr03KYvCdic67/pfvKpbPKpbPKpbPKpfDKqbPKpbPKpbF2ZT1k3dvrJT36SG264ITfffHN22WWX9OrVK21tbZ3Pt7W1pbGxcY3H29ra0rt3743a/7b8oey+fRu36RtXFZ18Kpt8Kpt8Kpt8Kp+MKpt8Kpt8Ktu68un2Gzu907/9279l1qxZmTlzZvbZZ58kyZAhQ7JgwYK0t7enpaUlS5YsyeDBg3PwwQfnvvvuS5LMmzcvhxxySNkTBQAAgE06E7tq1apceuml2WOPPXLuuecmSf7u7/4uX/nKVzJ69Og0NzenVCpl3Lhxqa+vz6hRozJhwoSMGjUqPXr0yNVXX90tBwEAAMD2oapUKpW29iT+2rZ8KYBLHSqbfCqbfCqbfCqbfCqfjCqbfCqbfCpbV19OXNZnYgEAAIri1Mvndun+bpt41Aa3+dKXmtPQ0CtJsueee2XSpKl5/vnncumlF6WqqioDBw7KP/7jhFRX//kTnuefPzZXXnnNJo9LksceezRTpnw9++47IFVVVWlra8uee+6VqVOnpUePHuuc35IlT6el5fUcdNDBm/t2bHFKLAAAQBdqb29Pklx33c1rPH7ttdNz+uljcvDBw3LVVd/I/ffflyOOODIvvfRS3vOePTZ53DsdcsiwXHzxZZ1fX3TRBXnggfty5JEfW+cc//M/78muu+6qxAIAAGzvnn76/8uKFSsybtzZWbVqVc444+y8//0fyFNPLc7QoX++2e2HPvTh/J//Mz9HHHFkHnxwXv7+7w/b5HHrs3LlyrzyyrI0Nv75r8PceON1+dWvHsvq1aV89rOfzwc+MCQ//emPU1vbI4MHvzdTpnw93/veD1JfX58bbrg2/fvvm/e8Z4/ccMO16dGjRz796c/kzjtn5qCDDs6SJU8nSS6/fHpWrlyZqVO/ntWrV2fVqrdy3nmTMmjQft387iqxAAAAXWqHHXbIqFGjc+yxx+e5536f8877Su64466USqVUVVUlSXr2bEhbW2uS5PHHH80xxxyX559/bpPGvdOCBY/mnHPOyGuvLU9VVVU+/ekTMmzY8Dz88IN58cUXcsMNt6W9vT1nnvmlXHvtTTn66GOy66675sAD37/e4+jo6Mgtt/xzkuTb374xH/vYyIwbd34uvvjC/PKXD6Znz4Y0NPTKRRdNy+9+97t1zqs7KLEAAABdaJ99+mXvvfdOVVVV+vXrn5122imvvLJsjc+xvvFGW3r16pUVK1akpqYm9fX1mzTur719OfGf/vRaxo07O3vssWeS5Le/fTpPPbU455xzRpLkrbfeyksvvbjeub/zvr/9+vVf47nBg/8mSbL77v8jHR0dOeqoj+f553+fiRO/ltra2nzxi6eV8W5tuk3+O7EAAACs3//+3z/KtddekyRZtmxp2trasuuuu2X//f8mjz32aJLkl798KH/7t0PzyCO/zCGHDN/kceuz0047Z/LkS3LFFdOybNmy9O+/b4YOHZbrrrs53/rWjTnqqI9lr732SnV1dVav/nNhrauryyuvLEupVMrTT/+mc1/V1VV/tfc1v3788QXZddfd8k//NCNf/OJpuemmGeW/aZvAmVgA2IZsyh04N+bumgBsumOOOS6XXnpRxow5LVVVVfn616ektrY255wzNldeeWluumlG+vffNx/5yEdz9dWX59RTz9jkce9mwICBOemkz+aaa67KJZdcnscfX5D/+T+/nDfffCMjRhyZnj0b8jd/c0Cuv/6b2XffAWlu/oeMH//VvOc9e6axceP/9M1+++2fKVMmZc6cO1NdXZ0vfen0zXrfNpa/E7uF+RtWlU0+lU0+lU0+lUGJLS5rqLLJp7LJp7J19d+JdTkxAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGP5OLAAAsE07e+75Xbq/GUdd+a7PP/bYo5ky5evZd98BqaqqSnt7ez7xiU/mpJM+t87tX3llWW6//ds577yJGz2H5cuXZ/LkCUmSp5/+TfbZp1/q63fIJz/5qRxzzPEbfzBJpk79eo477sR0dHTk5ZdfynHHnbBJ47c0JRYAAKCLHXLIsFx88WVJko6OjjQ3n5iRI/+fNDau/fdRd911t00qsEnSp0+fXHfdzUmSc845I+PHT0r//vtu1pw/9KEPb9b4LUWJBQAA6EZvvPFGqqurU1NTk8cfX5Dbb78lSbJixYpceOHF6dGjR6ZOnZSbb/5ORo9uyj779E+PHj1y4olNue66a1JbW5vGxsZMnTotPXs2bPD1TjzxmPTvv2/69x+QY489Ltde+09ZvbqU1taWjB17Xj7wgb/NXXfNyY9//L+y6667Zfny5UmSn/zk3/Pss8/k+ONPzEUXXZDdd/8feeGF53Pgge/Leed9Pa+99louvviCrFy5Mvvs0z+PPfZIvv/9/9Wt7926KLEAAABdbMGCR3POOWekuro6tbW1GTdufHr27Jnf/e63mTLlkuy2W99897u35d57f5FPfOLoznFvvvlmTjnltAwe/N7MmPHNHHHEkRk1anQeeGBeXn+9ZaNK7B//+HJuu21Wdtpp59xzz90555xxGTRov9x998/yk5/8ewYMGJR/+ZfZ+e53Z6e6ujqnnfaFtfbx3HO/zz/903Wpr98hTU3H5ZVXluV73/vnHH74R3LCCSfnkUd+mUce+WWXvmcbS4kFAADoYu+8nPid+vbtm2uuuSo77tgzS5f+MR/4wN+utU2/fvsmSUaP/lK++93b8tWvjknfvrvnwAPfv1GvvdNOO2ennXZOkuy22+75zne+nfr6+rzxxhtpaGjIs88+kwEDBqauri5JcsAB71trH3vttXdnYd51193S0dGRZ555JkcffUySZMiQoRs1l+7g7sQAAABbyBVXTMukSVNzwQUXZbfd+q5zm6qqqiTJf/zHT/OpTx2Ta6+9KQMGDMyPfvTDjXqN6uq/1LxvfvOqnHbambnwwoszaNB+KZVK2XPPvfLMM79Ne/uKrFq1Kr/5zVPrncM7DRw4KE8++V9JkkWL/muj5tIdnIkFAADYQkaO/FTOOOOUNDY2pk+fXbNs2dL1bvve974v06ZdlJ49e6a2tjbnn3/BJr/eJz5xdCZO/Fp22WWX9O27e/70p9fSp0+ffPnLZ+Wss07Nzjv3yY477rhR+/rCF07JJZdMydy5/5Hdduub2tqtUyerSqVSaau88rtYurRla0+h2/Tt27hNH1/RyaeyyaeyyacynHr53I3e9raJR3XjTNhU1lBlk09lk8+W8fDDD2TnnfvkgAPel0cemZ+ZM2/Pt7514wbHrSufvn3XvkvzxnImFgAAgA3aY4+9ctll/29qamqyevXqjB173laZhxILAADABu2774DcdNPtW3sabuwEAABAcSixAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGFsVIn91a9+ldGjRydJnn322YwaNSrNzc2ZOnVqVq9enSSZM2dOTjjhhDQ1NeXee+9NkqxYsSLnnntumpubc/rpp+fVV1/tpsMAAABge7DBEnvLLbfkwgsvTHt7e5Lksssuy9ixY3PHHXekVCrlnnvuydKlSzNz5szMnj07t956a6ZPn56Ojo7ceeedGTx4cO64444cf/zxuf7667v9gAAAANh2bbDE9uvXL9dee23n14sWLcrw4cOTJCNGjMhDDz2UhQsXZujQoamrq0tjY2P69euXxYsXZ8GCBTn88MM7t3344Ye76TAAAADYHtRuaIORI0fm+eef7/y6VCqlqqoqSdLQ0JCWlpa0tramsbGxc5uGhoa0trau8fjb226MPn16pra2ZpMOpEj69m3c8EZsNfKpbPKpbPIpFnlVHplUNvlUNvlUtq7MZ4Ml9q9VV//l5G1bW1t69+6dXr16pa2tbY3HGxsb13j87W03xvLlb2zqtAqjb9/GLF26cWWeLU8+lU0+lU0+xSOvymINVTb5VDb5VLZ15bM5pXaT70584IEHZv78+UmSefPmZdiwYRkyZEgWLFiQ9vb2tLS0ZMmSJRk8eHAOPvjg3HfffZ3bHnLIIWVPFAAAADb5TOyECRMyefLkTJ8+PQMHDszIkSNTU1OT0aNHp7m5OaVSKePGjUt9fX1GjRqVCRMmZNSoUenRo0euvvrq7jgGAKCLnHr53E3a/raJR3XTTABg3TaqxO69996ZM2dOkmTAgAGZNWvWWts0NTWlqalpjcd23HHHfOtb3+qCaQIAAEAZlxMDAADA1qLEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhVG7tScAAPzFqZfP3ehtb5t4VDfOBAAqkzOxAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGHUljNo5cqVmThxYl544YVUV1fnkksuSW1tbSZOnJiqqqrsv//+mTp1aqqrqzNnzpzMnj07tbW1GTNmTI488siuPgYAAAC2E2WV2Pvuuy9vvfVWZs+enQcffDDXXHNNVq5cmbFjx+aDH/xgpkyZknvuuScHHXRQZs6cmbvuuivt7e1pbm7OoYcemrq6uq4+DgAAALYDZV1OPGDAgKxatSqrV69Oa2tramtrs2jRogwfPjxJMmLEiDz00ENZuHBhhg4dmrq6ujQ2NqZfv35ZvHhxlx4AAAAA24+yzsT27NkzL7zwQo4++ugsX748N954Yx555JFUVVUlSRoaGtLS0pLW1tY0NjZ2jmtoaEhra+sG99+nT8/U1taUM7VC6Nu3ccMbsdXIp7LJp7LJZ8va3Pe7K/KSedfyflY2+VQ2+VS2rsynrBL7ne98J4cddli+9rWv5cUXX8wXv/jFrFy5svP5tra29O7dO7169UpbW9saj7+z1K7P8uVvlDOtQujbtzFLl7Zs7WmwHvKpbPKpbPLZ8jb3/e6KvGTedayhyiafyiafyraufDan1JZ1OXHv3r07y+hOO+2Ut956KwceeGDmz5+fJJk3b16GDRuWIUOGZMGCBWlvb09LS0uWLFmSwYMHlz1ZAAAAtm9lnYk95ZRTMmnSpDQ3N2flypUZN25c3v/+92fy5MmZPn16Bg4cmJEjR6ampiajR49Oc3NzSqVSxo0bl/r6+q4+BgAAALYTZZXYhoaGfPOb31zr8VmzZq31WFNTU5qamsp5GQAAAFhDWZcTAwAAwNagxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFUbu1JwAAbFvOnnv+Rm8746gru3EmAGyLnIkFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKo7bcgTfddFPmzp2blStXZtSoURk+fHgmTpyYqqqq7L///pk6dWqqq6szZ86czJ49O7W1tRkzZkyOPPLIrpw/AAAA25GyzsTOnz8/jz/+eO68887MnDkzL730Ui677LKMHTs2d9xxR0qlUu65554sXbo0M2fOzOzZs3Prrbdm+vTp6ejo6OpjAAAAYDtRVol94IEHMnjw4Jx99tk566yz8pGPfCSLFi3K8OHDkyQjRozIQw89lIULF2bo0KGpq6tLY2Nj+vXrl8WLF3fpAQAAALD9KOty4uXLl+cPf/hDbrzxxjz//PMZM2ZMSqVSqqqqkiQNDQ1paWlJa2trGhsbO8c1NDSktbV1g/vv06dnamtryplaIfTt27jhjdhq5FPZ5FPZ5LNlbe773RV5VcIctiXej8omn8omn8rWlfmUVWJ33nnnDBw4MHV1dRk4cGDq6+vz0ksvdT7f1taW3r17p1evXmlra1vj8XeW2vVZvvyNcqZVCH37Nmbp0patPQ3WQz6VTT6VTT5b3ua+312RVyXMYVthDVU2+VQ2+VS2deWzOaW2rMuJDznkkNx///0plUp5+eWX8+abb+bv//7vM3/+/CTJvHnzMmzYsAwZMiQLFixIe3t7WlpasmTJkgwePLjsyQIAALB9K+tM7JFHHplHHnkkJ510UkqlUqZMmZK99947kydPzvTp0zNw4MCMHDkyNTU1GT16dJqbm1MqlTJu3LjU19d39TEAAACwnSj7T+ycf/75az02a9astR5rampKU1NTuS8DAAAAncq6nBgAAAC2BiUWAACAwlBiAQAAKAwlFgAAgMJQYgEAACgMJRYAAIDCUGIBAAAoDCUWAACAwlBiAQAAKAwlFgAAgMJQYgEAACgMJRYAAIDCUGIBAAAoDCUWAACAwlBiAQAAKAwlFgAAgMJQYgEAACiM2q09AQCAdzp77vkbve2Mo67sxpkAUImciQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAAqjdmtPAAC2FadePneTtr9t4lHdNBMA2HY5EwsAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUxmaV2FdeeSVHHHFElixZkmeffTajRo1Kc3Nzpk6dmtWrVydJ5syZkxNOOCFNTU259957u2TSAAAAbJ/KLrErV67MlClTssMOOyRJLrvssowdOzZ33HFHSqVS7rnnnixdujQzZ87M7Nmzc+utt2b69Onp6OjosskDAACwfSm7xF5xxRX53Oc+l9133z1JsmjRogwfPjxJMmLEiDz00ENZuHBhhg4dmrq6ujQ2NqZfv35ZvHhx18wcAACA7U5tOYN++MMfZpdddsnhhx+em2++OUlSKpVSVVWVJGloaEhLS0taW1vT2NjYOa6hoSGtra0b3H+fPj1TW1tTztQKoW/fxg1vxFYjn8omn8omn02zue/X1h5fCXPY1v6f29aOZ1sjn8omn8rWlfmUVWLvuuuuVFVV5eGHH86vf/3rTJgwIa+++mrn821tbendu3d69eqVtra2NR5/Z6ldn+XL3yhnWoXQt29jli5t2drTYD3kU9nkU9nks+k29/3a2uMrYQ7b0v9z1lBlk09lk09lW1c+m1Nqy7qc+Hvf+15mzZqVmTNn5oADDsgVV1yRESNGZP78+UmSefPmZdiwYRkyZEgWLFiQ9vb2tLS0ZMmSJRk8eHDZkwUAAGD7VtaZ2HWZMGFCJk+enOnTp2fgwIEZOXJkampqMnr06DQ3N6dUKmXcuHGpr6/vqpcEAABgO7PZJXbmzJmd/z1r1qy1nm9qakpTU9PmvgwAAABs3t+JBQAAgC1JiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACkOJBQAAoDCUWAAAAApDiQUAAKAwlFgAAAAKQ4kFAACgMJRYAAAACqN2a08AACrFqZfP3ehtb5t4VDfOhM1x9tzzN2n7GUdd2U0zAaA7OBMLAABAYSixAAAAFIYSCwAAQGEosQAAABRGWTd2WrlyZSZNmpQXXnghHR0dGTNmTPbbb79MnDgxVVVV2X///TN16tRUV1dnzpw5mT17dmprazNmzJgceeSRXX0MAAAAbCfKKrE/+tGPsvPOO+eqq67K8uXL85nPfCbvfe97M3bs2Hzwgx/MlClTcs899+Sggw7KzJkzc9ddd6W9vT3Nzc059NBDU1dX19XHAQB0gR2H/2wTR7hLMwBbVlkl9pOf/GRGjhzZ+XVNTU0WLVqU4cOHJ0lGjBiRBx98MNXV1Rk6dGjq6upSV1eXfv36ZfHixRkyZEjXzB4AAIDtSlkltqGhIUnS2tqar3zlKxk7dmyuuOKKVFVVdT7f0tKS1tbWNDY2rjGutbV1g/vv06dnamtryplaIfTt27jhjdhq5FPZ5FPZtqd8uuJYN3cfW3t8JcyhEo6hK1XSXFibfCqbfCpbV+ZTVolNkhdffDFnn312mpubc+yxx+aqq67qfK6trS29e/dOr1690tbWtsbj7yy167N8+RvlTqvi9e3bmKVLW7b2NFgP+VQ2+VS27S2frjjWzd3H1h5fCXOohGPoKtvbGioa+VQ2+VS2deWzOaW2rLsTL1u2LKeeemrGjx+fk046KUly4IEHZv78+UmSefPmZdiwYRkyZEgWLFiQ9vb2tLS0ZMmSJRk8eHDZkwUAAGD7VtaZ2BtvvDGvv/56rr/++lx//fVJkgsuuCDTpk3L9OnTM3DgwIwcOTI1NTUZPXp0mpubUyqVMm7cuNTX13fpAQAAALD9KKvEXnjhhbnwwgvXenzWrFlrPdbU1JSmpqZyXgYA2ESbdndhdxYGoHjKupwYAAAAtgYlFgAAgMJQYgEAACgMJRYAAIDCUGIBAAAoDCUWAACAwlBiAQAAKAwlFgAAgMJQYgEAACgMJRYAAIDCUGIBAAAoDCUWAACAwlBiAQAAKAwlFgAAgMJQYgEAACgMJRYAAIDCUGIBAAAojNqtPQEA4C92HP6zTdj6qG6bBwBUKiUWAOCvnD33/I3edsZRV3bjTAD4ay4nBgAAoDCUWAAAAApDiQUAAKAwfCYWgG3GqZfP3ehtb5vopkgAUETOxAIAAFAYSiwAAACFocQCAABQGEosAAAAhaHEAgAAUBhKLAAAAIWhxAIAAFAYSiwAAACFocQCAABQGLVbewIAkCSnXj53k7a/beJR3TST8u04/GebOKLyjgEAKp0SCwDQxc6ee/5GbzvjqCu7cSYA2x6XEwMAAFAYSiwAAACFocQCAABQGEosAAAAheHGTgDw/9u0uwu7szAAbA1KLABd4tiv/dtGb1uJfx4HACgGlxMDAABQGEosAAAAheFyYgC2GT7Tyrbi1MvnbtL2LtEHtidKLABJNu2HZj8wQ/fatF/IJH4pA2xPlFgAgG3Q2XPP3+htZxx1ZTfOBKBrKbEA24Bt4dJDZ56gsrg6A6hU3V5iV69enYsuuihPPfVU6urqMm3atPTv37+7XxagUPywCFQanzEHKlW3l9hf/OIX6ejoyPe///088cQTufzyy3PDDTd098sCbFFb+7K9SjiL6QdeoKv5BR+wLt1eYhcsWJDDDz88SXLQQQflySef7O6XBApmcwvg5v6QUwmX4lZCAayEOQDbjk353p6s+/v75n5f2tx/X7riGLa2Svg3js0nxzVVlUqlUne+wAUXXJBPfOITOeKII5IkH/nIR/KLX/witbU+jgsAAMCmqe7uF+jVq1fa2to6v169erUCCwAAQFm6vcQefPDBmTdvXpLkiSeeyN1EPsUAAAmcSURBVODBg7v7JQEAANhGdfvlxG/fnfg3v/lNSqVSvvGNb2TQoEHd+ZIAAABso7q9xAIAAEBX6fbLiQEAAKCrKLEAAAAUhtsEd5EVK1Zk/PjxeeWVV9LQ0JArrrgiu+yyy1rbvfrqq/nc5z6Xf//3f099ff16xz3xxBO59NJLU1NTk8MOOyznnHPOVjiqbcfG5DNnzpzMnj07tbW1GTNmTI488sjcfPPNuf/++5Mkr7/+epYtW5YHH3wwd999d6688srsscceSZJzzz03w4cP3+LHta0oN59SqZQRI0Zk3333TfLnv0X9ta99zfrpYuXm09LSkvHjx6e1tTUrV67MxIkTM3ToUOuni7x9z4mnnnoqdXV1mTZtWvr379/5/Ny5czNjxozU1tbmxBNPTFNT03rHPPvss5k4cWKqqqqy//77Z+rUqamu9nvuzVFOPitXrsykSZPywgsvpKOjI2PGjMlHP/rRLFq0KGeddVbn97pRo0blU5/61FY6sm1HORklyfHHH5/GxsYkyd57753LLrvMGuoG5eTzwx/+MP/6r/+aJGlvb8+vf/3rPPjgg3nuueesoS62oXyS5M0338yXvvSlXHrppRk0aFDX/htUokvcdtttpW9961ulUqlU+vGPf1y65JJL1tpm3rx5peOOO640dOjQ0ooVK9513Kc//enSs88+W1q9enXpy1/+cunJJ5/cQkeybdpQPn/84x9LxxxzTKm9vb30+uuvd/73O51xxhmlefPmlUqlUmn69Omln/3sZ1tm8tuBcvN55plnSmeeeeZa+7N+ula5+Xzzm98s3X777aVSqVRasmRJ6fjjjy+VStZPV/n5z39emjBhQqlUKpUef/zx0llnndX5XEdHR+ljH/tY6bXXXiu1t7eXTjjhhNIf//jH9Y4588wzS7/85S9LpVKpNHny5NLdd9+9hY9m21NOPj/4wQ9K06ZNK5VKpdKrr75aOuKII0qlUqk0Z86c0q233rrFj2FbV05GK1asKB133HFr7csa6nrl5PNOF110UWn27NmlUska6g7vlk+pVCotXLiw9JnPfKb04Q9/uPT000+/65hy1o9fEXWRBQsW5PDDD0+SjBgxIg8//PBa21RXV+f222/Pzjvv/K7jWltb09HRkX79+qWqqiqHHXbYOvfHxttQPgsXLszQoUNTV1eXxsbG9OvXL4sXL+58/u67707v3r0797Fo0aLcddddaW5uzuWXX5633npryx3MNqjcfBYtWpSXX345o0ePzumnn57f/va31k83KDefU045JZ/73OeSJKtWrUp9fX0S66ervDOXgw46KE8++WTnc0uWLEm/fv2y0047pa6uLoccckgeffTR9Y5ZtGhR59nwESNG5KGHHtrCR7PtKSefT37yk/nqV7/auV1NTU2S5Mknn8x//ud/5vOf/3wmTZqU1tbWLXsw26hyMlq8eHHefPPNnHrqqfmHf/iHPPHEE0msoe5QTj5v+6//+q88/fTT+exnP5vEGuoO75ZPknR0dGTGjBkZOHDgBseUs35cTlyGf/mXf8k///M/r/HYrrvu2nlpSUNDQ1paWtYad+ihh671WGtr61rjWltb06tXr85tGhoa8txzz3XlIWzTysnnnTm8vc07v8HddNNNmT59eufXhx56aD72sY9l7733ztSpUzN79ux84Qtf6I7D2eZ0ZT59+/bNGWeckaOPPjqPPvpoxo8fnxkzZlg/m6Er8+ndu3eSZOnSpRk/fnwmTZqUxPrpKn/9b0VNTU3eeuut1NbWrjeT9Y0plUqpqqrq3HZd/4axacrJp6GhoXPsV77ylYwdOzZJMmTIkJx88sl5//vfnxtuuCEzZszIhAkTtuwBbYPKyWiHHXbIaaedlpNPPjnPPPNMTj/99PzsZz+zhrpBOfm87aabbsrZZ5/d+bU11PXeLZ8kOeSQQzZ6TDnrR4ktw8knn5yTTz55jcfOOeectLW1JUna2to6f3jbkF69eq017p2Pber+KC+fdb3nb39zfPrpp9O7d+81rvM/8cQTO/fx0Y9+ND//+c+75Vi2RV2Zz3777dd5pmLYsGF5+eWX09DQYP1shq5eP0899VT+8R//Meeff37nb1mtn67x1+/76tWrO394WF8m6xvzzs8eWTNdo5x8kuTFF1/M2Wefnebm5hx77LFJko9//OOdmXz84x/PJZdcsqUOY5tWTkYDBgxI//79U1VVlQEDBmTnnXfO0qVLraFuUO4aev311/Pb3/42H/rQhzqft4a63rvls6ljylk/LifuIgcffHDuu+++JMm8efPW+duHjR3Xq1ev9OjRI7///e9TKpXywAMPZNiwYd029+3BhvIZMmRIFixYkPb29rS0tGTJkiUZPHhwkuShhx7KiBEjOrctlUr59Kc/nZdeeilJ8vDDD+d973vfFjqSbVO5+Vx33XWdZw0XL16cPffcM42NjdZPFys3n6effjpf/epXc/XVV+eII45IYv10pYMPPjjz5s1LkjzxxBOd37OSZNCgQXn22Wfz2muvpaOjI48++miGDh263jEHHnhg5s+fn+TPGVszm6+cfJYtW5ZTTz0148ePz0knndS5/WmnnZaFCxcmsWa6UjkZ/eAHP8jll1+eJHn55Zc7rwqyhrpeOfkkySOPPJIPf/jDa+zLGup675bPpo4pZ/1UlUqlUrmT5y/efPPNTJgwIUuXLk2PHj1y9dVXp2/fvrn99tvTr1+/fPSjH+3c9qijjspPf/rT1NfXr3fcE088kW984xtZtWpVDjvssIwbN24rHl3xbUw+c+bMyfe///2USqWceeaZGTlyZJLk4osv7rz88W0PPPBArrnmmuywww4ZNGhQLrzwwvTo0WNrHV7hlZvPn/70p4wfPz5vvPFGampqMmXKlAwaNMj66WLl5jNmzJg89dRT2WuvvZL8+TewN9xwg/XTRd6+y+NvfvOblEqlfOMb38h///d/54033shnP/vZzjt3lkqlnHjiifn85z+/zjGDBg3K7373u0yePDkrV67MwIEDM23atM6rHChPOflMmzYtP/3pT9f4DNktt9ySJUuW5JJLLkmPHj2y22675ZJLLlnjkjzKU05GHR0d+frXv54//OEPqaqqynnnnZeDDz7YGuoG5eSTJN/+9rdTW1ubU045pXNfixYtsoa62Ibyedvo0aNz0UUXrXF34q74N0iJBQAAoDBcTgwAAEBhKLEAAAAUhhILAABAYSixAAAAFIYSCwAAQGEosQAAABSGEgsAAEBhKLEAAAAUxv8FsHeGXl4BfMcAAAAASUVORK5CYII=\n", 150 | "text/plain": [ 151 | "
" 152 | ] 153 | }, 154 | "metadata": {}, 155 | "output_type": "display_data" 156 | }, 157 | { 158 | "name": "stdout", 159 | "output_type": "stream", 160 | "text": [ 161 | "=====Strategy Returns=====\n", 162 | "Mean return = 0.14 %\n", 163 | "Standard deviaton = 1.36 %\n", 164 | "==========================\n", 165 | "Worst return = -14.41 %\n", 166 | "Best return = 11.08 %\n", 167 | "=========================\n", 168 | "Lower quantile = -0.38 %\n", 169 | "Median return = 0.26 %\n", 170 | "Upper quantile = 0.74 %\n" 171 | ] 172 | } 173 | ], 174 | "source": [ 175 | "returns = pairs['Returns'].dropna()\n", 176 | "cumulret = pairs['CumulativeReturn'].dropna()\n", 177 | "\n", 178 | "fig, ax = plt.subplots(figsize=(16,6))\n", 179 | "\n", 180 | "hist1, bins1 = np.histogram(ReturnBoth.dropna(), bins=50)\n", 181 | "width = 0.7 * (bins1[1] - bins1[0])\n", 182 | "center = (bins1[:-1] + bins1[1:]) / 2\n", 183 | "\n", 184 | "ax.bar(center, hist1, align='center', width=width, label='50/50 Returns')\n", 185 | "\n", 186 | "hist2, bins2 = np.histogram(returns, bins=50)\n", 187 | "ax.bar(center, hist2, align='center', width=width, label='Pairs Trading')\n", 188 | "\n", 189 | "plt.legend()\n", 190 | "plt.show()\n", 191 | "\n", 192 | "print('=====Strategy Returns=====')\n", 193 | "print('Mean return =',round((returns.mean())*100,2),\"%\")\n", 194 | "print('Standard deviaton =',round((returns.std())*100,2),\"%\")\n", 195 | "print(\"==========================\")\n", 196 | "print('Worst return =',round((min(returns))*100,2),\"%\")\n", 197 | "print('Best return =',round((max(returns))*100,2),\"%\")\n", 198 | "print(\"=========================\")\n", 199 | "print('Lower quantile =',round((returns.quantile(q=0.25))*100,2),\"%\")\n", 200 | "print('Median return =',round((returns.quantile(q=0.5))*100,2),\"%\")\n", 201 | "print('Upper quantile =',round((returns.quantile(q=0.75))*100,2),\"%\")" 202 | ] 203 | }, 204 | { 205 | "cell_type": "code", 206 | "execution_count": 5, 207 | "metadata": {}, 208 | "outputs": [], 209 | "source": [ 210 | "# Some stats, this could be improved by trying to estimate a yearly sharpe, among many others\n", 211 | "executionrate = len(returns)/len(ReturnBoth)\n", 212 | "\n", 213 | "maxdd = round(max(np.maximum.accumulate(cumulret)-cumulret)*100,2)\n", 214 | "\n", 215 | "mask = returns<0\n", 216 | "diffs = np.diff(mask.astype(int))\n", 217 | "start_mask = np.append(True,diffs==1) \n", 218 | "mask1 = mask & ~(start_mask & np.append(diffs==-1,True))\n", 219 | "id = (start_mask & mask1).cumsum()\n", 220 | "out = np.bincount(id[mask1]-1,returns[mask1])\n", 221 | "badd = round(max(-out)*100,2)\n", 222 | "\n", 223 | "spositive = returns[returns > 0]\n", 224 | "snegative = -returns[returns < 0]\n", 225 | "winrate = round((len(spositive)/(len(spositive)+len(snegative)))*100,2)\n", 226 | "\n", 227 | "beta = round(returns.corr(ReturnBoth),2)\n", 228 | "\n", 229 | "sharpe = round((float(cumulret[-1:]))/cumulret.std(),2)\n", 230 | "\n", 231 | "tret = round((float(cumulret[-1:]))*100,2)" 232 | ] 233 | }, 234 | { 235 | "cell_type": "code", 236 | "execution_count": 6, 237 | "metadata": {}, 238 | "outputs": [ 239 | { 240 | "data": { 241 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAFyCAYAAAAjwF1qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd2BV9f3/8efdKzc77B2GbAERFyoOUNFqna2rjrpa/KpV62q1tv3V2mFt7bDWDSpqUeusVUFxsLfsPcLMTu4e5/fHTW5ySQIJ5AYCr8c/veeczznncz8gzTvvz+f9MRmGYSAiIiIiIiLSDpgPdQdEREREREREmktBrIiIiIiIiLQbCmJFRERERESk3VAQKyIiIiIiIu2GglgRERERERFpNxTEioiIiIiISLthPdQdOBB79lSlHOfkuCkr8x+i3hzZNLbpoXFND41remhc00djmx4a1/TQuKaHxjV9NLbp0VbjWlDgbfLaEZGJtVoth7oLRyyNbXpoXNND45oeGtf00dimh8Y1PTSu6aFxTR+NbXocDuN6RASxIiIiIiIicnRQECsiIiIiIiLthoJYERERERERaTcUxIqIiIiIiMgB+WzBNn47ZQGRaLzN3qkgVkRERERERA7IK5+sYc22Cv70xuI2e6eCWBEREREREWkxwzCSn1dtKW+z9yqIFRERERERkRbbUx44JO9VENtKFi6cz/nnn82kSTczadLN3HrrDWzevOmgnrlkyWJuvPEarr32Cr7++stG21x66QWEQqHk8ebNm5g06eZ99vORRx5ocP6RRx5g4cL5KecqKysYM2ZM8ju98cZrAHz11Ux++MNrueWW63n33beT7cvLy/nNbx6lsrKCiRPPbPZ9IiIiIiLS/qwrqkg5rp+ZTSdrm7zlKDFq1HE8+uhjAMydO5u//e1Jfve7Jw/4edOmvc6NN96C0+lk6tRXOPnksa3V1WZZvXoV559/PrfeemfyXDQa5amnnuBf/3oZl8vFbbfdyMknjyUvL59Zs77ihBNOZvXqVZx11gTuuuunzbpPRERERETan+3FfgDsVjPhaJxINI7dZkn7e4/IIPaN6euYt2p3qz5z9DEduPyMvs1uX1VVSadOnQGYNOlm7r33QXr27MU77/ybkpIS8vML2LZtKz/+8R3EYjGuv/5Knn12Mna7PfmMM888mxde+BdZWVlcccVVLe7zvHmzeeaZf+BwOMjMzOKBBx5OuT5t2hu8//475OXlU1ZW1uD+1atXsnz5ciZNupns7BzuvPNeysvL6Nq1O5mZmQAMGzacJUsWc8YZZzF37mzuued+3n7736xZs6rZ94mIiIiISPtT5Q8DUJDtoqjYR1hBbPuzYMF8Jk26mUgkwvr1a/eZhT377AnccMPV3HrrJObMmcXIkcelBLChUJCvv/4Sq9WCYcCIEaPYsGEdffo0DKR/8pNJmEym5H0OhxPDMPjd737D3//+LAUFHXjjjdd46aXnOOmkUwCorq7mzTen8vLLUzGbzdx449UNntuzZy/GjBlFv35D+d//PuLJJ3/HZZddSUZGRrKN2+3B56smGo0SCoXweDLo2bMXAwYMZPToMfu9T0RERERE2p/SyiBfLt0BQF6WMxHERmLgsqX93UdkEHv5GX1blDVtLfWnE2/ZsolbbrmBd975MKVN7TRxt9vDsceOZO7cWXz44btcd91NKe1ee20K2dnZPPjgIzz66M+4++7bsVisPPHEUw3e+8QTf8XhcACJNbG///1vKC8vx+32UFDQAYBjjx3BP//592QQu3nzJnr37pMMnAcOHNzI9xlNt24FlJb6OfXUcTz77NN4PB78fl+yjd/vIyMjg8WLFzJ8+LHJ+xwOJ8B+7xMRERERkfbnmXeXJz9nehIxRVvtFavCTmmSk5OX/Gy3OygpKQZgzZpVyfMXXPBd3nvvP5SVldG3b7+U+yORCFZr4rcYN910G0uXLqZnz17Nfn92djZ+v4/i4sR7Fy9eSPfuPZLXu3TpyqZNGwiFgsRiMdasWd3gGb/97a/5+OOPAZg/fy4DBgykV6/ebNu2lcrKCiKRCIsXL2LIkGF8882XnHTS2OR9n38+vVn3iYiIiIhI+1NaVVdc1lEzhfjJfy+lwhdO+7uPyEzsoVI7ndhiseD3+7j99rtwOJxcdtkVPPHE43To0JH8/IJk+8GDh1BUtJXvfveyBs/63veu5je/eZQf//gm4vEYv/jFb3j99VdYt25tg4C3MSaTiZ/+9CEeeuhezGYTXm8mDz74CzZsWAdATk4OP/zhrdx66w1kZ+fgcrkaPOPWWyfxhz/8P156aTIul4v77vs5VquVSZPu4ic/uZ14PM7Eid+hoKAD27ZtTQbJt946icce+yVvv/3mfu8TEREREZH2JRKNU1wRTB7brYnc6K5SP9O+WM8N5w1M6/tNRlvVQW5Fe/ZUpRwXFHgbnGsP4vE4t912I0888RQez+E5tba9ju3hTuOaHhrX9NC4po/GNj00rumhcU0PjWv6aGzTo6DAy+T3l/PGjHXJc985uRfvfr0JgOMHduDWC4e0ynuaounEh8j27UXccMPVnHPOxMM2gBUREREREdlbIBRNfv7+Wf2S04kB4m2QItV04kOkS5euvPjiq4e6GyIiIiIiIi1SW8gJoHenTNZuK08eG20QxSoTKyIiIiIiIs1WvwqxgcG8VbuTx/E2WK2qIFZERERERESarbgikPxcUR1m4om92vT9CmJFRERERESk2ZasS2zj2aNjBkP65OJ125LX2qJssNbEioiIiIiISLPE4gYllSEGdM/mvqtGAmA2mZLX22I6sYLYVrJw4XwefvgBevXqjclkIhQKMX78OVx66fcabV9SUswLLzzLPffc3+x3lJWV8fOf3wfAunVr6N69Bw6Hk3POOY/zz7+oRf195JEHuPDCSwiHw+zatZMLL7y4RfeLiIiIiMjRJxROVCZ22usqEpvqze9VENvOjBp1HI8++hgA4XCYK6+8hAkTJuL1NtzjKC8vv0UBLEBOTg5//eszAEyadDP33vsgPXv2Oqg+n3DCSQd1v4iIiIiIHD1C4RgAjnpBbP1MrKYTHyDP16/hWD+vVZ8ZKhyN7+TvN7u93+/HbDZjsVhYtGgBL7zwLwCCwSA/+9mj2Gw2HnnkQZ555kWuueZyunfvic1m45JLLuevf30Sq9WK1+vlkUd+jdvt2e/7LrnkfHr27EXPnr254IILeeqpPxGPG1RXV3HnnfcwdOhwpk17g/fff4e8vHzKysoA+PDD99i8eRMXXXQJv/jFQ3To0JGiom0MGjSYe+55gNLSUu66604ikQjdu/dk4cJ5vP76Owc2iCIiIiIi0q6FIokg1m5tKohVJrZdWbBgPpMm3YzZbMZqtXLXXffidrvZuHEDDz/8K/LzC3j55eeZMeNTxo8/N3lfIBDguutupH//Y/jb3/7MaaeN4/vfv4avvppJZWVVs4LY3bt38fzzU8jKyuazz/7HpEl3UVjYl//97798+OF79O5dyJtvTuXll6diNpu58carGzxj69Yt/OlPf8XhcHL55RdSUlLMW2+9xtixp3PxxZcxb95s5s2b3apjJiIiIiIi7UdtJtZuq5tDXC+GVSb2QPlO/n6Lsqatpf504voKCgp48snf43K52bNnN0OHDm/QpkePXgBcc831vPzy89xxx20UFHRg0KAhzXp3VlY2WVnZAOTnd+DFF5/F4XDg9/vxeDxs3ryJ3r37YLcnNiYeOHBwg2d07dotGTDn5eUTDodZv349p58+HoBhw0Y0qy8iIiIiInJkSmZibYcuE6stdtrA44//mgcffISHHvoF+fkFjbYx1fzBf/LJR5x33vk89dQ/6d27D++++1az3mE21/1R/vnPv+fGG2/hZz97lMLCvhiGQZcuXdm0aQOhUJBYLMaaNaub7EN9/fv359tvlwGwfPmyZvVFRERERESOTMlMrLXxTGxcmdgjw4QJ53Hzzdfh9XrJycmjuHhPk22POWYwv/71L3C73VitVn7604da/L7x48/l/vvvJjc3l4KCDlRUlJOTk8MPf3grt956A9nZObhcrmY966abbuLOO+9m+vRPyM8vwGrVXxkRERERkaNVbSbWUT8Ta66LYgOhaNr7YDLaIt/byvbsqUo5LijwNjgnrWPFioWYTA4GDhzMvHlzmDz5Bf7yl6cPdbfaPf2dTQ+Na3poXNNHY5seGtf00Limh8Y1fTS2ras6EGHuyl10LPDyx1cWcNXZ/TlzVDcAdpb6efCZRO0cu9XM0/ecftDvKyhouMNLLaXVZJ+6devGvffeh8ViIR6Pc+ed9xzqLomIiIiIyEGIxw1MpsRywl2lfib/bzXXjB9Ax1x3o+13lfp54JnUAq9ZHnvyc71ELOFoPC19rk9BrOxTYWEh//znC4e6GyIiIiIi0kp+8revyfE6eOS60Uz9bC0rNpXx0n9X8dMrRzZoaxgGv3ppfoPz2RmO5Of6tXUGdM9OT6frURArIiIiIiJyFKn0han0hYG6ALQ6EGm07d/f/hZ/I+tcs711mdj6hZ0KcppXe+dgqDqxiIiIiIjIUcrpSBRoCoZjfDR7M8s2lKRcX7Cm8aK09TOx9bfYibdBeWJlYkVERERERI4SsXjdmtWfPzuHomIfABW+MG9+vh6AZ386DrPZREV1qMnnWC31t9ipC2JjbRDEKhMrIiIiIiJylCivCic/1wawAJF6BZle/XQNACWVqUFsjtdBY+pvsROLpb+wk4JYERERERGRo8TyTaX7bTN9YRHQcGrwuWN6NNq+/prYtsjEajqxiIiIiIjIUWLr7upmty0qTrQdO6wzF59WyNZdje+7W39N7KK1xQfXwWZQECsiIiIiInKUKKkINqudYRi89N/VAJRVhcjy2DF38gIw8cSeKW3r7xMLEAxHcdrTF2oqiBURERERETlKVPnDWMym/U77DUfq1rbeOHEgAF63nff+eCF79qRmZOsXdoL0VyjWmlgREREREZGjRCAcw+Wwcst3Bqecn3TxUH5324kAZLhsBMOJvWFHDSggK6Pxgk61zHsFsemmIFZEREREROQoEQhFcTksjBnUkV/ecHzyvNViJj/LRec8NyYTBCMxAFyO/U/eNe8VVaa7tpOCWBERERERkaNAPG7gD0aTgWm3DhnJa7XrWt0OK/5glF++OA8Ap93S8vcYiSg2Eo2xo8S3n9YtpyBWRERERETkKHD7n2cSisSw7F2JCXDWBLbrt1cSixsEQolMbIbTtt/nWi1mjjumQ/LYqEnFPvnmUh761xyK9jS/InJzKIgVERERERE5wsXrBaYbd9QVZvrF9aO55LQ+FHbJbPS+cSO77vfZJpOJH100pO5dNdOJV24uA2DbntbNxqo6sYiIiIiIyBFuT3mg0fM9Onrp0dHb6LW7rzgWr9ve4nftXZ04Fo830fLAKBMrIiIiIiJyhPrVS/O54bfTWbGptFntf/zduoxqVkbLA1hI7DFb39ptFQf0nKYoiBURERERETmCRKIxZn27kxt+O52NOyoBmLlkR/J6jrfpLXPyspzJzy77gU3cje8VxH6xeHuDNmu2llNeHTqg56d1OnFJSQkXX3wxzz//PFarlfvvvx+TyUS/fv145JFHMJvNvPHGG0ydOhWr1cptt93GuHHj0tklERERERGRI9Zrn67lk/lbG5z3BSPJzzZr07nMTrnu5GeXo+WViWH/W+zsKvPz21cWAvD8/We0+Plpy8RGIhEefvhhnM5EJP/YY49x55138uqrr2IYBp999hl79uxh8uTJTJ06leeee44nnniCcDicri6JiIiIiIgc0RoLYAGKK4LJz8cP7Njk/c562VdnCzOx+TVZXMMwiMaaXge7eWdVk9eaI21B7OOPP873vvc9OnRIlFpevnw5xx+f2Ez31FNP5ZtvvmHp0qWMGDECu92O1+ulR48erFq1Kl1dEhEREREROapleexceEqvfba56JTeHD+wA+ZGtuLZl8G9c5Ofl60vabJdaeWBTSOulZbpxG+99Ra5ubmMHTuWZ555BkhE4yZTYhA8Hg9VVVVUV1fj9dZVwvJ4PFRX738PoZwcN1Zramq7oKDxilpy8DS26aFxTQ+Na3poXNNHY5seGtf00Limh8Y1fY6msV26bg8P/eOb/bZzOa106pi1zzY3fnfYPq83Na4uV6IQVE6Oh+pwaiZ2V2WIIYX5ADhddXvPHsifUVqC2GnTpmEymZg1axYrV67kvvvuo7S0rhqWz+cjMzOTjIwMfD5fyvn6QW1Tysr8KccFBV727Dm4lLQ0TmObHhrX9NC4pofGNX00tumhcU0PjWt6aFzT52gb20UrdzWrndVsPqhx2de4BmvW3ZaU+gj4U7OtD/z96+T614rKuqnNTT1rX8FtWqYTv/LKK0yZMoXJkyczcOBAHn/8cU499VTmzJkDwMyZMznuuOMYNmwYCxYsIBQKUVVVxfr16+nfv386uiQiIiIiInLEiu1jDWp91517TNr6kJx8bBhYLU2Hmmu3lSc/fzKv8TW8+9JmW+zcd999PPXUU1xxxRVEIhEmTJhAQUEB11xzDVdeeSU/+MEPuOuuu3A4mi73LCIiIiIiIg1FGgliTzu2S8rxwJ459OmSmb5O1ESxBmDso0Lxik1lyc+vfba2xa9J6xY7AJMnT05+njJlSoPrl19+OZdffnm6uyEiIiIiInLEikQTQWyHbBe7ywMADbKh/brtey3swarLxLLP6sQHK+1BrIiIiIiIiKRXuCaInXTJUOJxA6c9UQi3tDLIorXFwL73h20Nprowllgjm8U+/Z9vufS0woN+T5tNJxYREREREZH0qM3E2qxmenT00iHHTYccN7dfUldp2GJum/DPoPFM7NyVu/np07MO+vkKYkVERERERNq5aG0Qu4+CSsa+Fqq2hto1sYbRaCa2KfEW9ktBrIiIiIiISDtXPxPblHSuUwUIhWMABEJRZiwsavZ9z7y7vEV9UxArIiIiIiLSztVWJ24siK1dqRqNpTcT+9WyHQC8+ula1hVVNPu+uSt3s3R9SbPbq7CTiIiIiIhIO7VtdzVfLN5O0Z5qoPEg1mo1E4nGicbTm4mttaPEh8thJRCKNvse0/6bJCmIFRERERERaYeisTgPPz83eWw2mRot3mSvCWLjLVinenD9Mhg7rCMzFjV/SrHHZWt2W00nFhERERERaYeCNWtQa7mdjeco77hsOIVdMxk/ukdbdAto+frblgSxysSKiIiIiIi0Q7XFnGrlZzkbbde3axYPXXNcW3QpqSXViQEymgjAG6NMrIiIiIiISDsUjqRmYjftrDpEPWmoNhM7qFdOg2vjR3dvcE6ZWBERERERkSPYU9OWUloVOtTdaFJtJvam8wcRisSIxQ2cditZHjtmswlfIML81XsI1QTi1n3sb7s3BbEiIiIiIiLtzKK1xQ3OTTyx5yHoSeNiNdv52KwWsjIcDa7feP4gbphocOPjM1r8bAWxIiIiIiIi7djI/gWYzabDKoit3c7HYml68xyTqSUb69RRECsiIiIiItKO7Cr1pxx3yHZx+Rl9D1FvGlebibXuI4gFuHp8f3K9jRekaoqCWBERERERkXbkgWdmpxybDsNyvbGawk7m/WRbzxjZrcXPPgy/roiIiIiIiDRm74rEAOef2KvtO7Ifa7ZVAAc+ZXhfFMSKiIiIiIi0E98s39ngnMtxdE2wVRArIiIiIiLSTrR+XrP9ObpCdhERERERkUMoGosTjsRwO20HdH/N9qt874y+xAwjWUDpaKIgVkREREREpI08/Nxcdpb6ee6+cQe0XjQaTRRMystyMWpAQWt3r13QdGIREREREZE2srNme5xQIwWamiNSU/XXZj16Q7mj95uLiIiIiIgcIv5g9IDuW1dT9VdBrIiIiIiIiLSZQOjAgtjF64oBCIUPLJN7JNCaWBERERERkTawYlNp8rO/hUHs8k2lrN1anjyunVZ8NFIQKyIiIiIikmallUH+MHVx8nh7sY/CrlmYm1nc6Y/17gU4pkd2q/avPdF0YhERERERkTTbuKMq5fil/65m8serm3VvY0WgvG57q/SrPVIQKyIiIiIikmbl1aEG575YvL1Z9wb3mnr80DWjWqVPre2aCQPa5D0KYkVEREREpH2Lx3CsnYPZV7bX+Tgmf8Wh6VM9hmGwdH0Jgy07edz9IY+5PmKgZVez7w9H69a/njCoI4Vds9LRzQMTi2AK+gDabN9arYkVEREREZHDkqW0CPvmJQSGnAk2B4SD2Io3Eek8AEwmnN9Ox7l8BpaqYswhH4FB4/CdeDkQByODrA/+iH3LMuI2J2VX/pZ4Rm5a+2sKVGKp2E20U9+671C8Be/bv+WHARt93HVB9q8tH/OA/9xmPXfLrsRU5FOGdeYH56RmO627N2JYrFh3b8SxcRGx7E5Ec7sSOuYUiIZrGrX+1GNTsJqMr17BsWYWWKyUXfYoZleH5t1sGGR+/FciHXoTGHl+i9+tIFZERERERA4bltIi3Avew7A5cS2fDkDGN1MJ9RhG3JuHa/kMAgNPJdR3DN4vXky517ViBq4VM5LHtaGbORLEVrSK0ICT0tZv54ov8M54DoDy7z5EpEsi2Mz89Bms4Wr6WGBFtAPPhUbT0VzF3c4v+X8ZnxD/KgZmCzFvHtEOfYg7M2DjUuLuLOg/GoB1RYls8qj+BVjMdZNpTYFKct58pNH+xOb8G3Ogilh2J8qu+DU0UUDKFPLhWvQRgaFnYXiaWSwqEiL/uR/VHUfDuOe9Q9Vpt+zzNtvWbzHsLhyrv8Gxfh6O9fMUxIqIiIiISPtkKdmGffMSMma93uBa3OnFsWVp8ti1ciaulTMBCHcdRNVZN+Nc9RXWHWswxSLYi1Ym24Z6DMOxZSmmWOSg+2jyV+CZ9zaub6fjG3MpcXcmkY59AQP33LeS7dxzplF96rXYdq3HWrIFgA/Cx/B0aAxgYk28AHPQ4FbPQjKW/LfJ95Xl/BL7hgXEQwPIMfnpZA+SMeM5rLs3Yive0qB9sO/xRAt64Z7/LqZICFMsgrVkK55Zr+MfdQGGwwOREJaqYjCbsW9egnvu25jDATwL3sWw2Ci77FFied1SH2wYdUGwr5Lsdx5LXvIdd2EiIN2wAOuJ1U1+F+uONWS/+zsA4nZ34n+d3n0Nd9PPOqC7REREREREWsIwsG1dhm3nOszBakyBKkJ9jyfcczieee/gWvgBJgwAIgW9CA46nWhuV6JdBmArWkX2O78BoOLcO7Du3oi1ZCvBweMI9zoWAP9x30m+yuSvIL9yIyWuLlj3bEoEwLVTa1sqFsHsr4B4jNypP8MUTRRo8sz5d4OmgYGn4lo5E/v2VeROfTDxtTGxrMcEnl7eKdnu2L75fLEOol2O50cDfWR+8jQA0ZyuRAp64VrzNQA5bzwMwP8BZADvvdFkN4P9TqDqrFvAbElmN11LPibjq1dwL/oQ664NRAt64l7ycZPPMMUi5E59kMozbyZ0zCmYK4txL3wP56qvUn4JYANCPYdTOWES2BwYdjcZ37yGZ/0cwEYvcymnWTdgN8XI+Hwz5upS7EWrkvebw36ARNb5ACiIFRERERGR9DEMiIZxrvwC75dTUi45182pa2Z1UHXKlUTzehDN65ZYA1sj0mUAFefcTjSvB/HsjoT77Ls6r+HOgp5jCWwv57XPvuJewLFhPqEBJ2HbtiJxv6l5NW4zvn4N17JP99uuYsIkwn2PJ5bThYxvpib63bGQyrNuZfZSH7Ap2TbTk5jo7IuYCPU/ibLMDsTdWcQzC3j5v6sYGdnBONuGJt/lG3Mp5qoSHBvm4TvxCoIDxzb6fYIDTyXjq1cAsG9fhX37qpTrgUGnExg+gVhOF8z+cvJevCPxnb95jYyvX8UcbDyzGuw7hqrxP0pmZ4MDTsYz+w08q2cCZ3CtYyGjrdsSjZcnsuLRrI6Eex2LpbKYUO+ReGa/ecDZcQWxIiIiIiJyUCxlOzDMFhzr52GpLiGW2QFL2XZcKz5v0DZYE+jZNy7CcGZgikWIefPxjf4u8eyOjb/AZCJcOLrF/dqyq4qZZVmc4uzBiUUryX/2NgBimR2oPPsWXN9Ox7k6kfUM9xhG1anXEM/sgNlfgSkSAEwNAtjiG/+BYbFiigQx7K5EkG42g8UGQGDEeZgDVTiXz6B67DXEszviD61JecbpI7rw9bIdVPoT2eHaQlBxw+Dzxdv5nLG8EDqOv12QQcxbQNF7rzAv2p2J/3dbynOqT7+uybWuAIbdRclVvyf73ccTU4hJTK+uOusWTPEY8XprYOOeHMou/QXZb/0Kc6BuT9uq068nOPC0RAY6EiLfEaXKnJPyXsOdSbjXsTg2LKDQXEKmKUjEMHO3fyK/+OFJxJ0ZiV8s1ONe9CHWsiJsm5cS6Tmsye/QGAWxIiIiIiJywCylReS8+QimZkzXrTzrFkIDTgbAf/zF6e4aZpMJMPHn4Mkcn+tPBnKWyt3kTPtVSlv7lqXkTbmXinP/j4yvXk22BTAsNmJZHag682YMpydxrl6meG++k67Ad9IVyWN/MLHP61mjuoEJenXKJNNjp9KXOmblVbV7yZogI4fgoJN58aNVzKw8i24FGUzc+0X7CGBrxbM7UnrtE6nrWqFm4naqaMc+lNz4dxxrZ2P2VxDqN4ZYdudEe7sL7C4o8MKeqgb3BgeehmPDAi7L2UJu0E+F4SSc24NYbtdG++U74VKyPvoz7qX/o0JBrIiIiIjIfsSiiR/ozZYDf0YkhG3XeiJdBzYrmDgixaJ4P3k6JYAN9RqBYbUT6TqQSKe+GDYn1rIiIh0LMVyZbdq9Zz9ITGX14aD8ogewb1qMtayIuDsbS8WuZBa2/KIHksWKsj76S/L+WEYusZwuVEz8CVgOPHQKhBJB7EVj++B2Jp7jddvYVRpIabenvO44biTCzJlLtgNQ6QtxUJr5d9SwuwgOHtfix4d7DCXmzuY4/0oc5gjzot148Jqmp32H+4wimtUR+5alZHz+ItWnXNnsrYAUxIqIiIjIkS8cxDvjOSLdBmH2leFe9CHEolSc/xMMuxtLVTHRgl7YN3haEe0AACAASURBVCzAtmM11adfT9yT0/A5hgEYZP/7l9h2J9Ysll/0QCKQ3Vs0DPE42J3p/W6HkGvJx9iKNxMYeCrVZ/ywyXbhrGbuH9rKsjx2dpUmiggFnLnEh52dcr361GshFsFwZVJy1e/Je+Xe5LXKM24iNHBsq/TDH4piApyOul+aZLrtbNlVTSgcw2FPnK+ol5k1DJj2xfrkscdla5W+pI3ZQuiYsbgXvgfATlsHejn2HW76x1yK95O/41zxOf4R5xLPamI6+V4UxIqIiIhIu2bdvZGYJ6fJPS6tO9aQ89avgdRCQgDZ7/2h0Xtsr/+cygk/JpaRizlYTbRjIa7FH+H55nWiHfskA1hIrAdtLIjNmfoQ1opd7Ln1+YPK4jVLPI5j7Www1WxHs3Y2kS7HJPZFPZhsc1MiITK+eiW55rX+1NnDSXWgrnDQJ/O3cv5JvVKuG3YX4AIS025LfvAkpkAVhjuz8V9i1L/XMPAFo2Q0I7j0B6M4Hdaa6c0JXnfivqpAGIc90YdQJJa8XukL88Gszcnjnp0ObDuathQcWBfEbjEVcMJ+2of6jSGWVYBhsTU7gAUFsSIiIiLSjllKtpLz5iOEuwyg4rsPpVxzrvicWEYe2e/9Pnku3G0Qka6DCHcbRNa7v8McCTb6XFPIR9b7f4RoBBMGkQ51gatt5zoAQn2Ow7FhPqaQL9GX4i2JbUSiIUzRCNaKXQDkvPkIlWfeDFYbRCPECnq2+jg41s4i89N/ppxzrfqS4LblVJ11c+OVeKPhRHBtMifXS5orduOZ9zbVY6/G7CsnllmAKRLCsW4OpniU4MDTsG1fReZ//5qsLBvz5GAc4H6f6VZcUTc9tznBZjwjFzJym/XsD2dvZtoXG3jo2lEUdqkrWjR7+U76dssiPysRmC7bUMK2PQ2r/LodNYWgQonAtawqxAsfrmrQrta1EwY0q1+HUiy7Extt3egd2cYmU0Gz7ol26NPi9yiIFREREZF2yVxdSu7UROBq376azA/+lMiIxqNYqksbVJUtvfK3xHK6JI9Lbvpncp2gZc9m4p4cTOEA8awCXIs+ImPW68TcWZj9lckANubOwuKvIG53ERhyBo4N87FUFeNYMwvv9Gcb3TLEWrKV3Dd+njyuOvVagkPPatF3NfnKyfrgCQxnBhXn3oEpHCDrwz9h2F2YfWVYy3Yk+ufJIdK5H9aSbZh9ZTjXfIN1z8bEd6wqIebJIdqpL3GnF9fy6ZiiYYL9T8JWtJJQ3+NxrvoKc8iXXCsaze2KtbQo2Q/n8s+xliXWaIYKRxPuNphI5/4t+i5tJRqLE47E60608rLlaV8k/k6s2VKeDGI/nb+VVz9dC8Dz958BwNszG98qp3Zqce162dc+XdNou2R7e/sI3aZlnUf1lg2UZabvFxvtYyRERERERGpYyndAPE72279Jnou5s3FsWoRj06IG7aM5XSj/7kMYrr1+qK43tbM2O2q4E4WHAiMnEhxwMoYnG5O/koyvXiHSZQChfidgK1pJpFM/zDUZWNfyGbiWzwDAP3Iikc7HYFhtGDYnht2JbetyrKVFWCp2Yt+2gowvJxP3FhDuNbxZ39e+aRHe6c9jDlQAUPDMTcTc2Vj85SntQoWjqTzn9rqvF/Lh/exf2Lcsg3gUk2FgrdiVzBDXcq75BgD3ko8bvNtaWoRhtRPsfxLmkA/H+nkYZiuBoWfiO+WqZvW/rcTjBmZz3Z9p0V7Zz0j9gLYVZWXUFSOqDWDrc9gan87tqlkvunFHJW99sZ6dZYFG2wEM7Lnvqc2Hk0prJoti3eiYxmJnCmJFRERE5LBn274KW9EqAsPGk/vKfcnzcYeH8gvvJ1bQE3NVMbbtq8n4eirmQAWxzA6UXvHrAy6sVLvG1nBnUjW+bn/OcJ9ExdWY00Oo9yiIRYh26EWk+xAiXY5p8Jz62V9b0Sqy3n2czI+fIlQ4GvIKYES9rWaiYTK+mYq5qpjq06/HumsDWR/9GQMTMW9+3RYx/nIinfoSy8jDUrmHwPAJiefV77/DQ+V5d0IsiikSwrC7yPjiJVwrZhAYehaRzgOIOz04V84k7s4Cix3rzjUEB51OuNtg8l7+CaZ4lPKLf0a0oBcApkAlhiMjsS/qYaTSF+bOp74CoGu+h6JiHz+6JLFti9dto8ofIRyN7esRLRIMR5Ofn31/JUvXl3DrhUMatDMMg9Vbyxuch7og9vXp6/b5rjGDOvKDcw7/qcRtSUGsiIiIiBxe4nHsW5cRd3iIdizEUrY9mXX1zH0r2SxwzNhEddma/Trj3nxCA/IJ9T0eS8XuxP6W6Qy2zBYqz7ujRbdEuh5DYPg5uBd9kJyym7VxJRUX3Q9mC86VM+umQU9/DseWpQBUnncH4V4jsG1dRjwjj7gzI7FdTXOyXRYrRk1hqepx11M97vrUPnVvGHwBlF75GIYrs6b4UUJbb5HTXGu3VSQ/FxUnMuR/n5YYu54dvXy7sZRItPUysT9/dm7K8dyVu7n+vIZB8o4Sf/Lzjy5KHecsz/63k/nLHWNxO1MLQh3uavuazh4riBURERFppxxrZmGKhggOOv1Qd6X1hIPkvPHzBlNeU5r0GEblmTcnp/42YLERy+2apg4ePN9xF2IKB3Csn4c5WIV9x2qy3vsD8YxcbFuWJdvVBrAA4Z7DwWQi0mNYm/WzJdViDzWjZk/VxnQryGjVIHbD9kpKKhsWBFtfVJFyHI8bKb9j6JDjSrnuce4/FGtOMarDTe13TmfcrSBWREREpL2IhLD4Sok7M/F+9gy16z9DfUZjOD2Htm8HyFxdirlyD861szFFwzhXfdmgTTSrI9HO/YgU9MIcqMJ/3IXp37ImnexOqk+/jurTfkCBLYDx1I+xb1sOQNzuJlQ4msCQM7Hu2UQ0txvRjoXp2SbnCFDpD+MLRNhV5m+yzbH98vnv3C2EWymIfWzKgkbP/2Hq4pTjbzeWkOOtm8rudadmXu1NrJUF+OOPT06ZstyutEHWuB3/1y8iIiJyCMSimCJBDGdG277XMMh99T4s1aUNLtm3LiPUb387Mh5+TOEAuVPuTanoa5jMhAacjG/0RZh95ZiioSanu7Z7JhPkdKTy7NuwVO4m3GMYsbxuye1wIt0GHeIOHhpV/jDTvljPJacVNgj89nb3X78mFjc4tm9+8lyGy5ayP2ztfqytlYmNxZvO+tb35JtL+fkPjqvXr9TQq6kg9oGrR5LjdQCOA+7jIbWPrHhrURArIiIi0gIZX03B9e10Sq75I/HM5u2DeNAMA/e8dxoEsIFB43CtmIG5ck/KeVM4QObHf8MU8uE76QqieT0wHO4mH2+uLMYcqMAUCeGZ829iGXlUnXkTWPe/Zu+AxWNkzHg+JYANdx9C5YQfYzgSWeU2G99DLNz3+EPdhcPKix+tYtHaYoLhGNefO5BoPI7H2fi02tqAcnvNOlhI7KcajcUp9UU4rn8+lprMYKQVCzvVslpMRGOpQdupwzszc0liy6NX622bY7OmBq0Oa8P12icM7ki/btmt3s+2VDsaJlUnFhERkfbKFPJhioSIZ+Qe6q4cNFPIh+vb6QDkTb6bqtOvJ3jMWCxVexJFhNLAunsDOW/+AoC4w41/5AWE+p9IPCMXy57NuFbMwL5tOYbdldy2xbZ9Ffaa9ZTZb/+GaF53KidMwlK6DfuWpViqSgh3G0Rg6Nk41s/D+9m/MFH3g7iNdcTyuuM/7jtp+U7EY2R8OQXnujkAVI27kWD/ExNThE2HV9VbaTuhSIxINE55dRiANVvLue+fs6j0hZN7rjZld3nd9jSDe+ficlgpKPCyZ08Vlf7E81orE5vjdVBWFeK2i4bQq5OX37+2iOKKxBrZvEwnV48fkAxi1xdVNvkcu71hJvaG8wa2Sh8PByrsJCIiIu2LYYDJhCkcIO/5SZjiMfbc9kK7X9dn37gw5Thj5mQyvnoFUzRMuNtgggNPJdT/xNZ5mRHHvmkxWR8+mTxV9v3fEvfUZWliuV2I5nXHvm0F9m0rAIi7vMRdWYnPdjexzHxsxVvIffW+lMfbt36LfdMSrOXbwWTCP/wcTGE/9q3LsVQV457/H+LuLIKDTjvor2Ku2E08Iwcw4Vr2KRlfv5q8lvhFwCnt/u+GNN//5m3FYjaxvdjHiP75DOmdB8CvX5pPUbGPbgWJTHxtMAvwzbc7OGnI/n9RdPcVxya3rqllsyR+MdIaa2K/XLqdsqoQeZkORh/TAYALTu7FCx+uAsBuM2O1mBlemMeS9SXJ+9yOhmGXo15mduywzvTvno3VcgT8Eif9s4kVxIqIiEjrcaz5Bs+ct7BU7m5wzbniC4KDx7VJ0Y90MfsS+z1WnH83Jn8FmdOfhZqfi+3blmPftpzIt58R7joI/5iL9/Gk/bynupTsab9MTh82LDaKb/x7ciuZJIuNsst+gXPFF3hnvpy4N1CFOVBFpKAX5Rf/DCw27Bvm417wHpbqEvzHnke49wgyvno1ma0N9R6J7+TvJx9r37QE76f/wDvjOeJ21wFPdzVXFuP99J/Yd6zGsNiIZeQmqw5H87pTccG9KUG5HPm27alm6mdrk8czFhXx3H3jMJlMya1xtu3xNbjv2fdX0rtzJp3zPCxdX0yvzplk7rVetm/XLAb3bjjjw26rWWPcCkFsbbBaUhlKnjtxcKfk+dp32PZa7/rI9al7+Cba1AWs1x9BGdhkDKvqxCIiIpIWNRnTpq451swilplPtHP/pp8RCYHVhqV0O5mfPN1kM+8XL+L94kX8wycQGDaBeGZ+k20PG9Fwcl2oyV+BY0OiKmksqyOxnsMp7nkshstbkzH9EwC2HWuw7VhDuM9IogW9Gj6ztuhJE+Nuri4l+9+PYvGVARDqM4rAsAkNA9haFhvBoWclg9hw5wFUnXlTYnxrpuaGC0cTLhyd8uddddp1ZHzzGnGHB//oi1IeGe41nIoL7yfnjYfJmPUGwZJtMHgUuLuDEW9eZWDDIOeNn2MOJQISUyySsm1OxQX3KIA9Cs1d2XDrpOWbSpPZ2H3ZuruaSl+YJ99cSuc8Nw//IDUwfODqkY3eZzGbsZhNrbpPbPcOdYXd6mdPa6cux2Kp7yrITt1eB2hXe78eCE0nFhERkVZl3bOJrP88jjnkwz/yfOzr52GpKiGWmY9/5PnE8nvg/PYzXCu+AEhMlR1wEqFjxqY8x7H6azI//SeG1Y4pmvjhrfqUKwkVHo9jzSycKz4nMGw80YKe5Lz1awDcSz7GveRj/CMmEi3oRajwuMNyKql98xIy33+CaIfeGDYn1uJNmEN+Qr1HEqvZP7N2n9Jw7xEU//BpnN9+hnXPZpzr55L54ZNUfOenxDy5YHdiKdmKpXwn7gXvYS3bTun3HyOeWYB1z6bE+PvKsW9ejDlQBUCo53AqJ/6k2ZnryjN+iLV4C75Trmr6nnrn45n5VJ5ze5PPi+b3JNRrBPZNi/HMfwfmv0NtmaVwl2OwVJcS7DcG/wmXgWFg27Ea6461YLURGHIW9o0LkwFsYPAZRPO6Ec3vSTSvO9idTb5XjlyhSIz3v9nc4PyLH63ioWuOSzlntZiJ1gSCWR47Fb4wlb4wFb7EvzM7SvzsLK3bVueYHtn7LCRkt5kJhusKO+0o8bGz1M+IfgdWPGxon9Sg++rx/ZnyvzWEI4k+N7eC8ZGobs9eFXYSERGR1hKLJgNYAPfC95OXrOU7E1Nk92LfthzbthWYQ34Cg8eBYWDf+i2Zn/4TIBnAxjw5BIaOB7OZwMiJBEZOTD6j+Ia/Yd+6LJmtdS/6AICq035AcMiZ6fmuLWHEca6cidlfibliF66a/UptuzcAEMvIpXr0RQSGjW80SDQcbgKjLkgcfPYvnKu+JPfV+4nmdcc35tJkpraWbcdaQt48vP/7O9byncnzoV7HEsvpin/EuS2aeh0aeCqh/TdrPpOJyol3YQr6sO1YTdb2pbA4UdTKvj0xddKz4D3ChaOx7tqA94sXk7dmfFVvzeup1xIcelZr9kzaqWp/pNHzpZUhJn+8Onk8qFcOV53dn4f+lSj8ddMFg/jD1MVU+iP1AiSSAe2QPrlcf+6+p+NmeRyUVyf+C4nF48ln/+WOsWS4Gq983JihffJYtqGEc0/okXJ+7LAuLF1fkpzOvHcmtim/uvF4bI1UKT4SpDPRrCBWRETkKONa8jHmkI9g3+OJdizEtexTggNOxla0Khmc1KqYMIlIj6HYNy3GO/1ZMr56BeeyTzGHfJiD1cl2/pETIRohcOy5YG78BzLD5SXU/ySKewzFUrYDUyRE1vt/TKyVPQRBrGPVV1hLtxHz5uOZ9x/MgYoGbcKdB1B9+nXEMgtatN2M/9hzMYUDODbMx1qyNRnARjr0JpbZAee6OWR++jR8Wjf9Otx1EFVn33rYTbE1nB7CvUfC8aex56RrE1WFv/0MU00wkfPGw03e6x96NsEh+64qK0ePQDja5DV/KHGtsEsm93xvBAC3fGcwGW4bWRmJqfTVgQhV/rpiT0++uSRx3h+p2Ve1aTleBztL/USi8ZQMrj8YaXYQG43FWbYhUazJute/czarmTsvG548vvT0vix/cR5Ayh62e+ta0Mb7TbeBNtgmVkGsiIjIUcMwsG9cSMas1wHwj7mEWHbnROBZjylYjeFM/cEq1P9EonndcX37Gc7l05MBDEDJD55s0fY5htNLtLMXgHDPYTg2LcZSso1YXrcD/GIt5579bzwL3t1nm/IL7yfSbdABPT+W143Kc/8PU7CKjC9fwbF2Fv7jL0luWRPpNihRaKmqGKjZYqYVqgCnnclM9anXUn3y93Et+xTr7o04184m3H0IkS7H4B91AaawH0vZDsz+8kTwqy1zpEagJlA9tm8+eVlOLjylN//358SMhzVbE0XT7ry8LhAcMygxbb+yJuP6+aIienXyNnjuqAH7nxJsr8l2RmNxwpG6acW+YBTDMJq1p+mKTXX7NDfxu7qknp28dMn3sL3Yh8VyZK99bYrWxIqIiMjBMQwyP3gCx+aazMUpVzW5r+neAWytWF43qk/7AcFjTiH7nd9iioaoGnfjQe3/Gu49EsemxbgXvk/VWTdjKdlG3JuP4XAf8DP3x7pjbTKAjWZ1JJbXDcPmxH/cdzAFq7GU7SBcOBrD3rAQS0sZTi9VZ99K1bgbUjK5wcHjEpWaAeKxw3JN8D5ZbMlfflSN/1HKJcPhIdqp76HolRzmaoPYwq6ZTDyxFwAnDO7I7OV1xZ48zoZZUY+rLmTZtLOqwfWBPff/b5DZnAipfvynmUy6eGjyvC8Q4Z6/f0NZVYgxgzpy0/mDkm33VlZVN2G/qTb11U4ptjSj7RGpPU4njsVi/OxnP2Pjxo1YLBYee+wxDMPg/vvvx2Qy0a9fPx555BHMZjNvvPEGU6dOxWq1cttttzFu3Lh0dUtEROSo5Fr6STKAPdisX7RjIcU3/bP5VWr3IZbdCQDnmm+Iu7NwL/6IcOcBVFz80EE9t0nRcDIT7Rv1HfwnXNqwSad+rf/efU1Fbm8BrMgBqp0yXH/P1B+ePygZxHqcjf97YjGbGVaYx9J6+67W57Dv/7+h+oWW1m4rT34uqwolg9M5K3Zx0Sm96Zjb+C/RXvpv3brd5lQWDtVkfC37S9seYYw2mE+ctiB2xowZAEydOpU5c+Ykg9g777yTMWPG8PDDD/PZZ59x7LHHMnnyZKZNm0YoFOLKK6/k5JNPxm5v/roTERERaZx153ps21fimfUmcZeX8gt+Sqyg58E/2GwGDv4Hs0infgT7nYBz7Wzciz8CwL5jNdnTfkX5xQ+1aCqqfcN8HOvng80MY6/HvnER0YJexLM6AGDbshR70UpsO9YQze7cYFsZEUmvQDARxLrqBbH1g8EbJjZdnGl7ceresflZToorggA4bPv/d6J+FvXjuVuTn3eVBVLa1Qba9W3cUckfpy5OOdec6cfl1Ylp0D06HnnrXvelrjZxO6xOfNZZZ3H66acDsH37dvLz8/n88885/vjEZtmnnnoqX3/9NWazmREjRmC327Hb7fTo0YNVq1YxbNiwdHVNRETkqGDbsozs936fPK46+crWCWBbk9lC1fgfYdu5Lrk+FMC2cy2O1V9jDlbjWP01lefcTrxmWxsgkQWORev2cA1Ukvnfv2IyEtP3svcUYdu9EYCqcTdgWO0pe9hWXHDvQWeRRaRlagPG/KzUqfr/76YxrN1Wsc/tbob0yePzRUUAnDi4I9edO5Bb/vA5AHbr/jOxtetqG/SpXpEnoNG9ZH/10vyU46fvbt5MlovG9uY/X27kxCGdmtX+iNMepxMDWK1W7rvvPj755BP+8pe/MGPGjORvLTweD1VVVVRXV+P11i3Q9ng8VFdXN/VIAHJy3Fj3+staUNBwkbe0Do1temhc00Pjmh4a1/Q5oLEt2wXhIHTcKyCNhGHqY7B+MXiywFev2u6ZV5N50tmH79TVS++CtQvgxAth+iuw4H9kfvav5OW8dTNh5NlQ0A2iYZjxGsz+AH7yL1i3EN55KtGw2wDYtjoZwAJ4Zzxf9x6zFb5zG3mFvdvqmx1R9G9Behwt4zqrZtrw0AEdyHDXzbosKPAy7Jh9B3p3fH9kMoi988pRuJ02HrxuNN9uKKFPz9wmM6O1Y1vRRBC7YM2elGO3x7HfP4+uXZpXQfzGi4Zx/XeGNmv9bHuzrzGy2xMhps1mSdvf7bT/CvLxxx/nnnvu4fLLLycUqkvj+3w+MjMzycjIwOfzpZyvH9Q2pqws9TcmBQVe9uxpuMhbDp7GNj00rumhcU0PjWv6tHhsDYOMLyfjWvYpAKVXPU7uK/cBiQJF5mB1cu9XfBXEvPn4TriUUP+TEudK/I099fDg7g7Du4MfGHMluWsWpmRmmf0ezH6PUK8R2LctT+5LG/r3X3BsWpRstueC+ynYNg/frp0EBp2OKRYh48vJ2DcvJTDkTHynXlPTUH+nW0r/FqTHkTyui9cW85dpS7ntoiEs21CS3B4n4AsR8B34rsbVlQF8VUH6dvLSt5OX4uLGE2D7G1ub1dwg81pc4tvnPfd+f8QR++fVXPsb13DNVkrRSOygxmpfAXDagth33nmHXbt2ccstt+ByuTCZTAwZMoQ5c+YwZswYZs6cyQknnMCwYcN48sknCYVChMNh1q9fT//+/dPVLRERkfYlGsZaWoRj/XzcC99LuVQbwAJYK3YRzelMuMdQzNVlRDv0wnfS9w7fzOu+mMz4TrgU17LPiGV3xLnqq+Sl+gHr3scl1/4p8X1HnY2/5gcnA6g8765E9ta2730kRaR1/WXaUgD+8c63yXNnHXfgW2ndfcWxBMPRZq1H3VuO15GyLhYgN9PZcDpxrOF04voG9sxp8buPNrV1nQ7gj6nZ0hbEjh8/ngceeICrrrqKaDTKgw8+SGFhIT//+c954okn6NOnDxMmTMBisXDNNddw5ZVXYhgGd911Fw6H/k9GRESOXuaK3VjKd2Lf+i3uJf9NuRbqPYpoXnc8899JOV98w98wXEfOlMRQ/5MSGeRoOBnExjI7EBx4KqHC44jldIFICNuu9cRd3sRxUwG7yaQAVqSNhertxVrfhacc+FT+wb0PfDuvB64eyZwVu5j2xQYAOue5yfLYG1kT23i/pfmMeqWd0iVtQazb7ebPf/5zg/NTpkxpcO7yyy/n8ssvT1dXRERE2gVToArXt5/hnv8fTPGGP0j5R16A78TLALBvWoiteAsAFefddUQFsCmsdvzDJ2DbvZGq068nltu17prNQaTboEPXNxFp0vQF2xqcO++Eno3uA9sW8rNcnDy0czKIffCaUTz/wcoG7Ror7FTr1gsHp61/R5T077CT/jWxIiIiAsTjuBe8S7jHUKIdCxPn1i3Gs3QWvpOvBLMZ7/RnqZ0eGxxwMpHO/Qn3HE7G5y8Q6TqQwIjzko+rPu16rLvXExx8xhFfZdd3ylWHugsi0gJxw6DKH2lw/pLT+hyC3tTJ8tg5ZWhnBvfOxeO0NTp1eO8gNlrTZmDPHI4f2LFBe2nIbkvMisnOSN+WqUf2/+uJiIgcJpzLp+OZ+xbOlTMpvfaJxMkpj+IGDGcGnrlvAWCYrZRe9TjxzLqtJirPv7vB86KdCol2KmyLrouINNuuUj8PPDM7eTysMI8rz+qHL3hga1lbk8lkStmLtryqrmLxtecM4OX/rm4Q2BbtSRTLK8h2tk0njwCXnNYHwzAYP7p72t6hIFZERCTNTMEqMr5+DQBzdQmer1/DsWFB8nptAAsk9kPNbHqvRBGR5li+qZTnP1jJpacXcuLgttuntH4ACzDh+B50yHG32ftbojZgPe+EnnTITuxdu7tmL9taG7Yntirr16152+oIdM7zcPslw9L6DnNany4iInKUc6z6kvznfowplphaZzIM3Is/wlK5G4BIhz5ECnol24d7DT8U3RSRI8yHszZTVhXiX++tSO6vmm7ri+r2ps5w2Xjo2lGHdTXf2y4czImDOzLxxJ5YavZy/WLx9pQ2tdOis70qDnc4USZWREQkTczVpXinPwtAsPB4AsPHYw5UYVhtONfMwnnKBZQ7uwDgXPE54a4DwaTfL4vIwVu5uSz5+eWPV3P6iK77aH3wXp++lk/nJ4o5ZXrsPHn7KWl9X2vo0dHLTRckijUV1GRi91YdTASxGYeoIJU0TkGsiIhIKzGFA7jnvo1zzSwCg08j7snFZBj4h43HN/bqlLaRHsNwFnihZj/T4KDTD0GPReRItPf2Np3z0judNxiO8vHcrcnjn1ze/maU5GbWrXldV1RB365ZxA0jOb3Y7VTYdDjRn4aIiMhBci79BNeKz7GW1P0Q55n/LtHcbgAEhk84VF0TkaNQeXUIgBMGd2T28l1kZ6R3KmxxRTDlOMPVvrOWH83ezO2XDOODWZtZur4E4JBtDSSN05wlERGRg+BYOwfvl5NTuw2LRAAAIABJREFUAtha1tJtRHO7qVCTiLSKxeuKmbty137brduWWJtqMZuwmE2EozG+XLKd+5+e1SBL2xp2lvhTjtv7+tFVW8oBeHvmhuQ5p8NyqLojjdhnJjYSifD+++8zffp0Nm3ahNlspmfPnpxxxhlMnDgRm02/kRARkaNUJASGgb1mX9dw14FEOvcjcOx5GFYbGTMn41g/j8Dw8Ye4oyJypPjLv5cC0CXfQ5d8D/c/PYt+3bK56YJByTaGYfDcBysBmLtyN7G4wfqiStYXVQLw2JQFdMxxc0yPbMaN7NbgHcUVAZatL+H0EV2bvSXO39/5Nvn5jkuHYT7EW+kcrEAoCsDwwjyWrC/hjJFd2/13OtI0GcR+/vnn/OMf/2DUqFF897vfpUuXLlitVoqKipg9ezaTJ0/mRz/6EWeeeWZb9ldEROSwkDv1oWSF4Wh2Jyq+81Mw1/2mvnrcDVSPu+FQdU9EjjAfz92S/Pzwc3N58JpRFFcEKa7YmRLEBsN1mdZ7vzeC30xZkPKcLbuq2bKrmsXrirFZLWR6bAzsmYvNmpig+diUhZRVhcjLcjGsMG+//aoN+ABuumAQw/vmH/B3PNSGFeaxdH0JOV4H0VicJTVTia84o98h7pnsrckgdtOmTUyZMqVBtrVv376cdtpphMNhpkyZkvYOioiIHFZiEUzRSDKABQj8f/buPDyq6nzg+PfOnkwm+0IghLCHfZUdFDdwF7cqVdqitirWtS5Vq79W22rda7Uudau2Kioi7lZAFhEQZA0E2RJIIGRPZjL7zP39MclNhklIIBuB9/M8fZ6555577pnbOMw755z3DDszLIAVQoi29t6SXWHHm3aVhh37A0F2F1aFrU/tlxHXZHs+f5DXPg+N2A7tncgdPxsJQIU9tJ62usbbon7trt1H1WoxMH5QWouuOV799tJhXP+3b4mJMvL59/laeV2AL44fTQaxv/zlL494oclkYu5c+YVZCCHESSQYJOGd+8ICWAB39rRO6pAQ4mRVVF6/DtXp9vH1D/tZ9F2eVjY2OzWs/vXnD8bu8vHu4p0RbW3dW05haQ1/fWt9xLnm5OaH1o9ed/5gdLquPeVWrwsFq/uLHYysHVE+d0KvzuySaEKLsxMvXbqUxx9/HK/Xy3XXXceVV17Znv0SQgghjiu66hJ0LjuGqlBSlUB0PHpnJc7R54PJ0szVQgjRtvKL7NrrpRsK2bAzfGTWUBtQPnbDRIJBlbTEaHz+YKNBLMDGnSU4G0wNbskS0NJKF5+vDo1YDugZf7Rv4bj29bpQsr5JQ7t1ck9EY5oMYsvLy0lMTNSO//vf/7Jw4UIAzj//fAlihRBCnDR09jKS3rpTO7ZPm4N72Jmd2CMhxMkkqKoRZQ2nDSuKwv5iR9h5fW0QmxIfpZUZDTpeu/d05j66JKK9D5ftCTs2G0NLJIrKndz38mqmjejOL8/JBkLJo/YXO/i/13/Q6keZT6ydOz21a4uT4+RHyuNRk39tf/rTnxgwYABz587FYrHQo0cPHnnkEQwGA926yS8SQgghTh768kLtddASgzdrZCf2RghxMsnJK+fJdzcCocRDg7MSI0ZTC0ocEdfp9a1bx1kXNj/46loAlm86wPJNB7jyjP6YDDr+/dWOVrXfVZiMku/geNTkX/czzzzD6NGjufXWW3nvvfe4//77Oeuss5gyZQr/+te/OrKPQgghRMfxebB99TzGA6EvaDp7KfGfPgGAp+8plF/9BEFb182+KYToWt7++iftdbTZoI2wNlRYUgPA5af11aYBR7VwX9O0hKhGywPBIBBKGNXQu4t3alOIT0QJXXyP25PFEX+imTBhAi+99BLR0dHcdNNNeDweTj/9dEwmU0f1TwghhOhQ5l1rsOxaQ/xHf0Zx2Yn98jkA/HFpVJ91A6o5upN7KIQ4Wbi9fg41SODUv2d8WPKkOTMGAmhTiWOtJupmHlst4TuMNCYzLYaHrxuvHb/0u9OItYa+5weDkVOY6zScygwwOCuh2Xt1FXf+rH6mjcUko7DHqyaD2G+++YZLLrmEK6+8km7duvH888+zf/9+brjhBtavP/rMZUIIIURXoK8u0V4nvzYPY/FeACov/yPom/9SKIQQbeVQuUt7HWXWM3V4OqVV9WX9D9tCJ85q0rLqZqTGNNlu3SjtjRcNxaDX8fB143n42nEYDTouO7UvAMHwAVj+fP14rj1vUERbZ47J4HdXjjq6N3YcS0+q/6Hyjitk6cjxqsk1sY8//jjvvvsuDoeDW2+9lQULFvCrX/2KSy+9lJdeeokxY8Z0ZD+FEEIIjWXrEvwpvfCn9W3ztk37t4YdBy0xVJ13u4zACiE6nMPl017//dap6HU6fL5QdBllNmA8bL1mUpyFm2YN5WCZk4wUa5Pt/mnuePYXO0hLDH2u9Uiur1u7ywxBVWXfofoMyOlJVjy+QERbfbrHHv0bO44pisK9Px+N1WKgR0rTPwSIztVkEGuz2ViwYAEul4vk5Pq1P7Gxsdx1110d0jkhhBCiIcXrQuesxLbsDQBK5v27ze+hc1YRjLJRPeNmglGxqKYogjGJzV8ohBBtrC6IvebsAdoepoHa+cJ6nUJig/WbY7NTSU8KBaM9jzAKC6FgN6mJrLt105U//z6f4kpX2LnY6PAlhVefPYDxg9Na+na6jBNtu6ATUZNB7Msvv8ynn35KdHQ0Tz31VEf2SQghhGhU3KK/YTy0u13aVtwOYr9+Ab29FH9CD3w9IqfNCSFERwmqKtVOLwAxDYJHsyE0+mqLNmJokIF4+sjubXr/wwPYunvWmTkuk9NHZ7TpPYVoqSaD2MTERObMmdORfRFCCCGO6PAAVlddEsoUrERm6zxaltyV2lRif5J8MRNCtF5VjReP109qQvhyhAq7h1c+yUGnUwgE4e6rRqIc9jl25z++o6qmNoiNqg8ez53Yi0qHhwsmZwHQt3ssew5Uk5XeNtN60xMjpyFPG5EOgNGgJ9pswOnxc9GU3m1yPyGOxYm1K7EQQogTluJxRpQlvXUnNWMvxjn+kla3r7OXAlB95g14e41odXtCCHH7cysBeO3e07WyfYfsPPneRuzO+vWu1U4fcdb60VafP6gFsBDaWqdOTJSRX184RDv+3ZWjCKoqUea2+VqfmRY5FblhEP7wdeNxe/2YJXOv6ESt2wVZCCGE6CB1QaZ7wCTc/Sdq5dZ1CyPTaB6B4rJj2fINtv+9iGlPfbZ9fdUhALw9h6Jamk6IIoQQR2vB8vpZJM+8vyksgAVwe/xhx+9881PYcffkphPLmU36NgtgIZTYqFc3W1hZRoMERwk2s7b2VojO0qK/eIfDgd1uR1Xr94vq3r1t590LIYQQR6K3lwGhqb6KN3yPQmPRTnzdB4LPAwYjKE3/Rmtb+irmvT8CYCjei7fPGPRl+zHnb8Ifn44afWJl2hRCdL5PV+VzwaQs/vjGOiod3ojzh2f93ZZXob0+c0wGRkPHjnr+4Rdj2bGvksff2QDA0N6S3E4cX5oNYl988UVefvll4uPrs3QpisLixYvbtWNCCCFEQzp7aP/WoC2ZQHw3rOsXaefiP/oz9lN/iXXVu7hGnoNz3KzGGwn4MRZsI2BLRtUbMFQeJO6TJzDt2xxqW7IQCyHakMWkx+0NoFMU3vgilwOlNY3Wc7pDI7EbdpYQazXh8dcHtSnxUR3S14Z0isKgXgn1x7rW5x0Qoi01G8R+8MEHfPPNNyQmyj/sQgghOofidWFb8TYAAVsy/pQsSm56E33FARLf+T2Atu2O9YePQkGs1w1GU9iorGXbt+h8bpyDT8U1/GxsS1/TAlgA5+jzO+5NCSFOeFaLEbc3QFBV+T7nUJP13vwyl99fPYbnPtwS2UaUpLAR4nDN/leRnp5OXFxcR/RFCCFEF2fcvxXjgZ9wZ0/BWLwXX2oWwbhj20Mw+oeFGPfnUHXxvRhrswZDaCQWAEUhkJCOqtOjBMOn4qU8X59dv/LCu0FnQNXpiVn1LgCuETMJ2pKouvBuTPkbidr4Fe6Bk/H1HIIQomsJBINU1/hIaLBn6vGirNrdfCXgUIUL52HrYusodN4o6NM3TyYQVJuvKEQHazaIzcrKYvbs2YwfPx6TqT5r2s0339yuHRNCCNEJ/F5MeRuJ++of+Lr1o/Li+0LlqgqKgr6sACXgxZ/aJ+wyY/5mrGs+wFiSB9QmWwL8cWlUXPUXrKs/wNNnDP70AS3uinXtAgCif/wsrDzYcM2qoqPysocw5W3EnT0V8571xKx8O6x+/KK/hR17ewwiaEuqvV7BmzUKb9aoFvdLCHF8+eS7PBZ9l8eEIWn8+oLj54eoCrun0fKJQ9IaHZX1HrYu9pqzB1Bu9zB6YEq79K8l4mKOvx8GhIAWBLFpaWmkpR3br+hCCCG6DtOe9cR98ax2bCzahWX7cjhoI/mzl6icdR8J7/8fAPbpc3EPOhUUBUPxXuI/fUK7LhgVS8Aaj7F0H4aqQ8Ss/A9RW5dg2b6csl8+CwbT4bcO3a9gG4qnBm/fU1A89evGrGs+0F5Xn/HriKRN/pQs/ClZALiGnUHAGo+pcBtRW5c0eh9Z9yrEiWXRd3kArM45dNwEsfuLHTz02loApgxLZ+WWg9q5y07rpwWxU4alU+3ysXlXKXsPVoe1YY0yMn207FktRGOaDWJlxFUIIU5QAT+mghyC0XEoHmdYAFunbp2pAloAC2Bb+hqBmEQs25Zj2R36ouaYdCXuQdNQLaGtGKwr3iZ689daMKnz1BCz4j84pv8q4j66mkriP34UgJKb3sCUvzmijmvo6Xiypxz5Pen0ePuNw9tvHL7u2cR+/UJEFU+fsUduQwjRZQQb7JyhbyT5kNPtw2jQtUt232DtNNvGkh7l7C3XXp85NiMsiDUZdVx3/iCCQZgyPJ2HXv8BgDe/3BHWRryMggrRpCaD2FmzZvHRRx+RnZ2NotT/x6mqKoqisH379g7poBBCiHagqiS883sMVZFT2hxTrsbbcwjxCx5G53E22UT8J0+EHbuGnRk2yurrkQ2bvw6rE7VtKb6MwQTiUvGn9tbKoxuMtpp3rMJUkBN2nT+hO44pV7fsvdXy9J8AtUGsPykTxeuk6tzbCCRnHlU7Qojj17rcYu11elL4Xqr+QJCbn1lBZmoM/zd3HAAujx9fIEhsdOMzQlpKVVVu/fsKeiRbuXHWMOKs4e013DIn2hL+ddtk0DNpaLp2fPg04olDujGqfzL9MyQnjRBNaTKI/eijjwDIzc3tsM4IIYRof5Yt32Bb/u9Gz9WMuQDXiLMBKJv7PNFrF2C1WXEX5hOMjsM1ciYxS1/DvG8zQaOFoDUB5+jzCcYmR0wT9vYZS9nPH8e27A3c2VOIXrcIQ+VBYr9+HgDn8LMxHtiBoWwfSu1oiqo3Erv4Za0N98DJ1Ey4nGB0HOiOfiTFMelKLNuWUXHZg6A3HHH/WCFE1/Pa5/WDKgdKw390c3tDweG+Ygffby3ix50lBAIqG3eV8vB14+mRbD3m+3p8AWrcfn4qqOL251by5+vHk55U357bW5+kyWoxcvYpPfn6h/0AGA3hn0PnTsri9U+3acfxNhNjs1OPuW9CnAyaDGKffPJJrr/+emJjG9/0vbKykldeeYW77rqr3TonhBCibSkeZ1gAG4yyYT9tLr5u/TBUFuHr1r++sk6Pc8LlWFNs2EvsWnH1+XegrzxEIDYlFBgeQTA+jaqL7gm9jo4LS7IUfdgorWPC5QTi0oj76h+h44k/wzX6vGN+rwCuUefiGnVuq9oQQhy/TAY9Xl8QCE0trnR4iI8xs3zTARavL9DqvdIgSATYub+yVUFsXYBcp7Ck5rAgNnQ+1mrCYtJzweQstuwp44LJWRFtzTqtX1gQO2tqn4g6QohwTX77OOecc5g3bx6pqamMHTuWbt26YTAYKCwsZPXq1RQXF3Pfffd1ZF+FEEK0knXlfwDw9B6D/cxfo5qitHO+6BZOXVN0BBLSm693GH9aXzx9xmLesy7iXCA6Dnf2VFRrPFXGO1F1enwZx0eCFiHE8at3eixb9pQxJCuBnLwKvt1QSKzVxNtf/3TE68rtLdv6pjH+QJDqGm9EWUN1QeyDvxiLoihYLUb+fP2ERttruGwPwKCXGSNCNKfJIHbw4MG89dZbrF69miVLlvDtt9+iKAqZmZn87Gc/Y+LEiR3ZTyGEEK2lqpjzNxOwJlA98+Zjmp7bqtuboqg+5xZMeRuxbPkG+9k3ohrM9f2o/SLn7TWiQ/slhOg6PL4AZmPoM2PPgWq27CkD4PTRGeTkVWiZiptTXt349jcA324s5McdJcy7ZJh2rzp5RdX86Y3IH+I8h61rdbpD04mjzM3mUBVCHINm/8uaMGECEyY0/suREEKIrsNYsA2dqwp3/4kdHsA25M0aiTdrZKfdXwjRNW34qYTnFmzhmhkDmT6qB/9bt187ZzYd3WdaXZBZR1VVDpY56Z5s5d+1WYK/XLOPi6b0Dqt3eAA7bUQ6yzcd1KY016lyeDAb9RLECtFOZL6CEEJ0EYrbTuwnTxCz7E30JfnN1tc5yrFs/hqCoRGC6A2fAeAaMaNd+ymEEO3huQVbAHjrq1CQWZcR+NwJvSJGTJty+xWhmR5ef/jI6Vdr9/PAv9bw3ZaDJMdZAPh45V4KS2si2mioX494IHIktqrGG5Gx+Eieu20qYwemcP81Y1p8jRAnM/l5SAghugDDoT3EL/wLij+0DsuSu4Ly2Y8StCVHVg74Me9cTdSmrzCW5mPan4M/pRem/Vvx9hiEP02ShgghurbSSpeW7feU7FT0+si9WgEmDknj+5z6rcSG9UlCpyjamtVDFU5+/9Jq7fznq/MprapfL/vH19fy8l3TAfAclswJIDUhlFegYRAbDKpUO73069HyLXKsFiM3zRrW4vpCnOyOKoh1OBwcPHiQ/v37N19ZCCFEm4lZ9gaK34s3fSBqlA3znnUkvP8QzjEX4U/sjj+1N6o5lBkz7rOnMO3fql1rztuAOW8Dqk5PzfjLOucNCCFEG9qWX6G97tXNRmmlK6KOXqfg8wcjyhNjzew9UE210xsWwAIcLAvfpscfUPnP1z+x+McCDsu/RI8UqzYC3DCIrXZ6UVWOaiRWCHF0mg1i33//fdavX8/dd9/NxRdfjNVq5aKLLuKGG27oiP4JIcRJz1C8F2NJHr6ULKpm/R7F48JYkIPOZSdm5dsA+OPT8af1wbRvCzpXddj1qsFMIDaF6hnzCCT26Iy3IIQQrRIMqsREGXG4fAC88UUuANefPxiAxNopwA0FgirnTcxi3Y6SsPKBmfF8t6WI2/6+skX3XvxjaKue2u2sAfj5WQPo2yMWkzG0Ms/bIIj97PvQco+te8tb1L4Q4ug1G8S+8847vPjii3z66aecccYZ3H///VxxxRUSxAohxFHQl+Sjczvw9QxtG2PcvxXr6g/wZg5HtcSg+Nx4ew7Fn5IFutCXIvPONUT/sABDxUEgtOcpig7VYqX86scxFuZi2fEd5rwNGCoPYqg8GHZPb8+hOCZdSSAxQ2tTCCG6oqJypxbANtSneywAugbDpGOzU1mXWwyApUHCpyum9wNg7fbiZu/32A0Tyd1Xweuf5zZ6/owxGQCUV4emHnsaJHZavukAELmXrBCi7bRoOnFqairLli1jzpw5GAwGPJ6m05ILIYSIlDj/DwB4M4agrzyI3hH6hd5YvEerY13zAQA14y9FVXTErH4/rA1P31O012pULN5+4/D2Gweqir7iAKregBoVS9SPn+IaMRM1ytbeb0sIIdrdV2v38d6SXRHlGSkxpCVGR5T3TI1hWO9EYqKMYWtlZ47PBEKjug3NPXcQ0RYD/6hNHDVjXE9S4qPIL7I32p/YaKP2ui4rct1IbGGJQ5vCXBc0CyHaXrNBbL9+/fjNb35DQUEBEydO5LbbbmPYMFl4LoQQLaWrqV+7ZSrIASAQk4RnwCQI+jEe2HFYMPth2PX26dfi6z6w6W1xFCVsmrBzwuVt2HshhOhcjQWwALYGwWRDOgWmjugOQIU9cuDFaNARqB0lHd43iSnD0wH47aXDWLK+gIunhpLfWcyNf+Y2TMBkMoQHsX94da12rm+P2KbflBCiVZoNYv/yl7+wYcMG+vfvj8lk4sILL+TUU0/tiL4JIUSXZ965mtivXwDAOfIcfOn9UbwuvH3GopqiwisH/Jj3rMe4fwuWHd/hT8mi6rw7ZERVCHFS8vmDEVvXHH6+obo1s4fK65M8JdjMzJkxUJt2DBAfY6aoPJTAaezAVK18VP8URvVP0Y6tlsaD5IZtGWpHenPyKli7/VBYvfQka5N9F0K0TrNBrNPp5KeffmLt2rWotSvat23bxs0339zunRNCiK5MX1agBbAA7kHTjpxYSW/A0388nv7jcUy/lohUmEIIcZIIqir/WLCFLXvKtLLLT+vLp9/n4fKEAttLTw3fLqwuiHUfFvieNir8c3fMwBQ++z6f7Mx4Jg/r1mQfMtNiOPuUntpWPgDjBqVi0NfnGFAafE6/+HGO9tpi0hMT1XgQLIRovWaD2FtvvRWbzUb//v3D/kMVQoiTWjCIKX8j3owhKAEvqsWG8cAOVL2R6B8/xbxnnVbVPWAS9ulzwXAU2y3I560Q4iSxaVcpeUV2LprSWyv761vr2X2gPtP6xCHdOGdCL04ZlMrd//wegIGZCWHtWC2hr7V63ZE/Py+c3JusbrEM75t4xO+2ep2OK8/oz6j+ySTYzBSVuxjQs2V7v/7ynOwW1RNCHJtmg9jS0lJef/31juiLEEIcv7xuojd/TTDKhil/M8aDO9C5HdppX7d+GIsi123549Kwn/lrUCQ7sBBCHM4fCPLsB5sByOpmY0S/ZLbsKQsLYKF+/WtyXBT/unt6o21de/5g3lu8k8tO7XvEexoNOsYMTDlinYbqguXUhMgkUo05Y3QG4waltbh9IcTRazaIHTRoELm5uWRnyy9KQoiTj+HADmK/fgF9g+RMjWkYwPpS+1A9Yx5BW5IEr0II0QiPL0BJhYsHX6tPhPTsB5t5+a7TeHr+Jq1s3qyhLN90kPMnZWlluiZGWrslRnPr5SParc8t5XBHbgUkhGhbzQaxO3fuZNasWSQlJWE2m1FVFUVRWLx4cUf0TwghOo2xMJf4hX8JK/P0Hh2a6hvw4zzlYvxpfTEU7cT6w8cYivfiGjId18gZqBZJxiSEEE158r2N7Cqoiij/37r69acj+yUzZmAqYxokX+oKJg6RUVgh2luzQewf//hHkpKSOqIvQgjR+VQVxetE56rGuupdABwTLsdYkocvvT+u4TMi1qv6u/Wn6oLfdUZvhRCiS2oYwCbHWSitcgOwZXcokVO/HnHMu2Rop/TtWE0ckkbv9FiG903u7K4IccJrNoi95557+OKLLzqiL0II0b5UtdmESdbV84n+8bOwMtfo83FJoiUhhGgXf7txEnMfXQJAYWkNAGkJUeh1XWs5xplje9I7XfaGFaIjNBvEZmdns3DhQoYPH47FYtHKu3fv3q4dE0KItmQs3E7s58+CouAeNA3n2ItQzbVJOgI+kt64NSxRU52a8ZdJpmAhhGhjGSkxFJQ4uP6CwUBou5wPl+3B7gytJ93ZyFRjIYSo02wQu2nTJjZt2hRWJmtihRBdTfS6j9F5Q5vbR2/8AkPpPqouvIuoHz8jZvX7YXXt0+bgHno6qEAXGwkQQojj3X++/omCEgdWi4GJQ0L7tJ43MYsv1+yjxu0H4ILJWZ3Yw6Pz20uGsTa3mF5pkgtBiI7SbBC7ZMmSjuiHEEK0C0PxXkx71mEq2IY/oQcVV/yR2C+fw5y/iZQXfhlW15sxGMekqwik9AoVyACsEEK0qUffXs9PtaOsHl8g7FzD/V3HDeo6yZxGDUhh1ICWb9kjhGi9ZoPY3//+942W//Wvf23zzgghREvpKw5g2b4cVadH53XhGjIdDhSji+lFMDaUVMNQvJeE9x/SrvH0GQ0GE44pV2POr59h4hx9PjUTr+jw9yCEECc6jy8Q2gv2/c2MHpCiBbAASXFRYXWrnfVb0xgN+g7roxCi62k2iB03bpz22u/3s3jxYvr06dNswz6fj/vuu4/CwkK8Xi833ngj/fr1495770VRFPr3789DDz2ETqdj/vz5vPvuuxgMBm688UamT298E2shhMDvJXrjl0Sv+xglUP+FJ2rLNwDEx6YQjIrFeGg3qsGknXdnT8F5yiwAgvFp2KdegyV3Bd5ew3GOvqBj34MQQpwk7n3pe6ocXgB2FYavc/3Z6f06o0tCiBNAs0HsrFmzwo4vu+wyrrrqqmYbXrRoEfHx8Tz++ONUVFQwa9YssrOzue222xg/fjwPPvggixcvZuTIkbz11lt8+OGHeDweZs+ezeTJkzGZTM3eQwhxctGXFRD/0SPoPKG1rd7M4bj7jcNQug+9owyz2YR++/foq0sAUPxefKm9qTrvTtTo8IyR7uFn4R5+Voe/ByGEOFkcKK3RAtiGLp/el9NHZWA2hY+2DuqVwPb8Cu79+eiO6qIQootqNog93O7duykuLm623syZM5kxY4Z2rNfrycnJ0UZ2p02bxnfffYdOp2PUqFGYTCZMJhOZmZnk5uYyfPjwo+2aEOIEoHhdxCx9FcXvw37WDaim0HQzfUk+ifP/oNWrPutGPAMmAuCpLUtJiqbqhxX4kzIwFu3CmzEE1Rrf0W9BCCFOel5fgAf+tabRc+Oy0yICWIBrzxtEQYmDAT3lc1sIcWQt2mJHqd1eQlVVEhMTueOOO5pt2Gq1AuBwOLjlllu47bbbeOyxx7S2rFYrdrsdh8OBzWYLu87hiNzmoqGEhGgMh62VSEmRjHDtRZ5t+5Dn2oTlX8GutQCYdy8DVw2YzLBsfn2da/9KbM/sRi+PG39a6EU/mabWluTvtf3Is20f8lzbR0uK+qVqAAAgAElEQVSfa35RdaPltmgT2f0aT4KUkmJjYN+TM0GS/L22H3m27aOzn2uzQWxubm5EmdcbOTWkMQcPHmTevHnMnj2bCy64gMcff1w7V1NTQ2xsLDExMdTU1ISVNwxqG1NR4Qw7TkmxUVJib1GfxNGRZ9s+5Lk2IeAjefn79UmBl/w37HTQEkPZL54BgwkaeX7yXNuHPNf2I8+2fZzIz1VVVVweP9EWIwtX7EFRFC6a0juiXo3bx/wluzglO5WhfZJa3L7DFco1YLUYtIGHOkfzXAsOhNa/jhuUyrkTehFUVbK6hZZ1nKj/3xyrE/nvtbPJs20fHfVcjxQoN7sB4s9+9rOw42AwyKWXXtrsTUtLS5k7dy533XUXl112GQCDBw9mzZrQ1JLly5czduxYhg8fzvr16/F4PNjtdnbv3s2AAQOabV8IcQLweTDv+I6U5+eQ+ObtxH/4MIrfi2vwaXiyRmnVVL0R5+gLKL/myVAAK4QQJ6mFK/Zy8zMryNlbzqLv8vh45V6qayIHF7bsLmPF5oM8NX8T/kCwRW3nF9m55dkV3PLsCq59bCm7GmQS/j6niDc+zUFV1Ra1Vbd9Ts/UGDLTbFoAK4QQbaHJkdg5c+awdm1oSl92dv20PYPBwOmnn95swy+++CLV1dW88MILvPDCCwDcf//9PPLIIzz11FP06dOHGTNmoNfrueaaa5g9ezaqqnL77bdjNptb+76EEMcbNYh552oCMUmgM2DetYboTV9qp/WOMvSOMgB86QPwZE9BcVWjmmNAUUL/E0KIk9wnq/IAePK9jVrZoQonsdbwH/je+von7fW+Qw76dG8+iPw+pyjs+C9vr+e526ZitRh55ZNtAAzsEUe/jLhm2/J4Q0GsyShb5Qgh2p6iNvOT2iOPPMIDDzzQUf1pkcOHr2WqQPuRZ9s+Tqbnqq88iGn3Osy71mIszY84r+r0uIadic4dWgvvHjgFX8YgUJqdKBLhZHquHUmea/uRZ9s+TtTnqqoq1z62tNFz//erU8hMC029Kyp3ct/Lq7VzUWYD98wepZ1vzMGyGu5/pfFETPdfM4Y/v7VeO37+9mlEmY+8Iu3TVXksWL6HX56TzbQR3Y9Y92R3ov69Hg/k2baPLjGd+IEHHuCTTz7h6aefxuVysXDhwjbtnBCiefrKIgwleY2fKy/EuuJt8LdsrXpHMueuIPE/9xCz+v1GA9iyXzxD+ZynqZnyc+xn/gb7mb/B13PIMQWwQghxojvStOCVmw9S4w6tZ61b11rH5fHzf6//cMS29xyoT8RkNuox6OtnvzQMYAHmPb2cvQcbT9wEofW4C5bv0doSQoi21mxipyeeeIKioiJycnK47rrr+PDDD8nNzeXee+/tiP4JcdKL2vAFMaveAcA15HQcU68OndAbwOch8Z3fA6EpuFHbvsWX1gfn+MvarT+KsxoMRm3rm6YYSvKIXfxKqG/JmVSfcxtBWxKGol0kLHgYX/oAgjGJ7dZPIYQ40bhqp+jWmTo8nRWbDwLwzfoCvllfwMxxmaQkNP757PMHMBoaDyp9DQLkX56TzfjBacx9dEmTfXnx4608dsOkiPL1O0p4/qMt2nGUWYJYIUTbazaIXblyJR999BGzZs3CZrPx+uuvc+GFF0oQK0R7CfhBpwNFR/QPC7GuXaCdispZQlTOEnzd+mGf9ouwfVPjvvoHAKb9W3EPOg1DaT7GQ7twjjyX+I8fw9N7ZKuDW2PBNuI/fhSAqvPuwLxzNTWTriR42F6sitdF3MJQPfv0ubgHn6ad86f3p2Tev1vVDyGEOBlV2kO7Yg/OSuB3V4aS3yXYzCz6Lk+r8+XafUwe2q3R6/OLHNp61o+W76FXNxujB4S2tPlpXyUQykp8SnZqxLWJsWauOjub5z/YBID7sIB678Fq3l+6KywYBhjYM+Fo36YQQjSr2Tl7Ol2oSl2ada/Xq5UJIdqIGsRYuB3FZSflxbnEfvF3THkbsa5dQNBio2bsxVReVP/DkbFoV1gA686eii+1j3ac9NYdxH3xLNE/fkbya/MwlO3Dum5Rq7sZs+It7XXcZ09h+WkVCe/dj66mEkvOUm1KsylvIzqvE+eIGWEBrBBCiGP34bLQFN1teRVa2Yh+yRH1vtsaStB0z+xR/OEXY5k2Ih2APbXb3nh9AT5Zlcc/FoRGTIOqyupthwB4YM5YdLrQd75HrhuvtTm4VyIzJvTSju1OH053/bTlFz7aQu6+SnYX1k8zvvuqUZhNMhIrhGh7zY7Ezpw5k9tuu42qqireeOMNFi1axHnnndcRfRPi5KCqxCz/N1Fb66dtmff+SDAq9Gt59Tm/xdc9lCHcMWU2xoM7Me7bgs7nxjXoVBzT59Zn7vV5SHn5+qbvFfCB3thslxR3DYZDuzEW78E1ZDqq0YJ13UIM5YURdXUuO0lv3AKA7dvXKbv6CaI2f42qKLiHNp/JXAghRMsMzIxny54yhjXY9/VIa04z02xEmQ3oFIXlmw5SUuUGwOsPHy39dkP9Z3tcTH2W4+7J1rByRVF44Y5p3PTUcgD+t65A26O2rNoT1ub0UT0Y0DN8lo4QQrSVZoPYX//616xYsYLu3btz8OBBfvvb3zJ9+vSO6JsQJwXzT6vCAtg6UduWErAmhI2wukbMxDViZijILN+PL31g+NYzRjPu7KlYclcQiI7DPWgaOmcVpoJt6O2lJL15B2W/fAZ09V96DEW7MR7IxTXqXK2t5Fdv1M43nM4M4Mqeiid7CvryQjwDJpHw3gPo7aX19dd8gKEkj0BiTwLx6a1+PkIIIUI++HY3AGOzU7QyS4ORzh4pVgpLagC4YFKWlkHYFh368bIu8ZPXVz8V2On288P2Yu24qaC4LlmUxVT/1XFdbjGbd5cyb9awsLo3XzJMm6YshBDt4YhB7J49e7BarUydOpWpU6cCUFZWxoMPPsif/vSnDumgECc60/6tANSMvRjruvDs3/YzrgeDKeIa1WLVRmcPZ582B+fImQSSetbfY/cPxH35HDpXFSn//BW+9P5UXvR7dDUVJHz4R60fnj5j8GUMCWsvEJOE4nWi87qoPP93+HoNB8DXYxAAlRfeg3X1+wSSMrDkrsSyM7Stg7dneDtCCCGO3YOv1m9/03BzxIZBpdsTCk57pdmYNa3+B9C6YNbp9gNQbq8fNS0qd5IYawbgj3PHacvH6jxzyxQ+XrGXS06tb++aGQN566sdFJaGAubt+fXTmy+cnCUBrBCi3TUZxD733HO89tprADz//PNMmjSJV199leeff55Ro0Z1WAeFONEZSvejGsw4x12Mc/wl4Peit5cRiEkEo/noGzSawwJYAG/fU3AOP5vozV+HqhzcScJ792OoOKjVMRXkYCrIQa0dpXUOP5uaukzIRxCMT8M+82YA/ClZRK9dgLf3aJyjzj36vgshhIjwz4VbKagdYQWwO+u3VLPUZv/NSImhoCS033ZplSvs+rp1qVv2lAHhQecj/17HyNp1tUmxloh7x0abuGbGwLCyLbvLwo6X1k5Hvnx6X84Z3wshhGhvTQaxCxcu5KuvvqK4uJi///3vvPbaaxw6dIhnn31WG5UVQrSezl5KIDa5fm9Ug4lAQttPw62ZejVKMEDU1sWh2zQIYEtueA1DaT5RG7/AsmstnqxR1Ez5+VHfw5s1Em/WyDbrsxBCCPghtzjs2O6sT6ikUxSev30aBr3Cb55YBsCFk3uH1dfVjq6qKhworeGj2j1c62zcFVoSYmlhEqbk+PBgt26P2WBQbay6EEK0uSaDWKvVSmpqKqmpqWzevJmLL76Yl156Cb1esswJ0WqqimnXWqI3fYXO68SX0DFTbx2Tr8I1/CwC8ekYC7cT//GjOEfMAL0Bf1pf7GfPwzXsLPypvcPX2gohhOgUBcWOiLJTBoVvgVM3XbhO3x5xEdekJURxqMLFk+9tbPJedVmJm3PJtD58s64gonzswMiteYQQoj00GcQ23EYnISFB9oUVohV01SUABGNTQA3CtlXavq4A7v4TOqYjBhOBhO4A+DIGU3r9S6jGBr+oKwr+7gObuFgIIURH298giL3hoiGMGZiCvomtDn92ej+W/lhIz1RrxLlTBqXx6ao8KmrXww7JSiCnwVY9aYnRLe5Tw3W4DR1NG0II0RpNBrENF/ZbLJFrJIQQLaSqJL11JwCV5/+O2MWvgKtKO+3JGok3q3PWmaumqE65rxBCiKNz0ZTejBuUdsQ6M8ZlMmNcZqPnEm3hORbmnjeYT1bladvrzJnRuh8wJw/t1qrrhRDiaDQZxO7cuZMzzjgDgEOHDmmvVVVFURQWL17cMT0UoqtRg+DzErPqXaJyluDtOVQ7Ff/pE9pr19DTcUz7hUzbFUII0SiXx8+qnCIA0pNaN8o5aWg3PqkdiX3ipkkk2MxMGtJNC2KjzEe3XOy0kd1Zt6NE23rntNE9WtU/IYQ4Gk0GsV999VVH9kOILktXXUrUpi8xFW6n+szfYPv2dQwleSjB0FYHdVvoqHojSsBHICYJ/a8exhGM6cxuCyGEOI4Fgyrznl6uHfdMbd2/GSajnifnTQ4r65cRR+90G6CQmWo7qvbmzMxmzsxs5j4a2ue8T3psq/onhBBHo8kgtkcP+UVNiCPRVx4k4d0HUAL1WSIT33sgop592hzcg6aF9nsNBkBRSEmKgxJ7R3ZXCCFEF7KrsCrsuLHtb9rCH35xSquuH5udSrXDE7G/rBBCtKcmg1ghRIhp748YC7fj7TMWX/oA9FVFBGLTSHjvwbAAtiFv5jCCpmgcp85BtTT4dVsn2b2FEEI0b13ttjp6ncLVZw/AZDw+//246eKhzVcSQog2JkGsEEeiBon98h8oQT+WHatQvE5tmnAd+9Rr8PYZQzAqFn1lEcGYBFRzZGZIIYQQoiUCwSArthzEbNLz3K1TMegbz0YshBAnK/lUFCcVxVOD+adVoR3fm2As3E7sJ0+geJwoXjdK0A+Azm2PCGDL5jyFe/hZBGMSQW8gkJQhAawQQohW+c//duLxBjAZdBLACiFEI2QkVpw81CDJ/7oRAIerGteImfXn/F6saz8iesNnWpFv+zJUQ2hLAk/fU1AVHcainbiGnYXi94SmDNuSO/QtCCGE6FxBVeVPr/9AUYWTZ2+ZirkdpvnWZQy2OxtfsiKEECc7CWLFScO66j3tdczK/+LuNwHruo+J2tr4dlEx370DgGowUTP2IgLJje+9J4QQ4uRRXOFiX7EDgBufXMaNFw/llOzUNmm7rMrNa59v147jrKY2aVcIIU40MkdFnBT0JflEb/wirCz2f/9sMoB1TLpSey0BrBBCiDr5ReGZ5f+5cCvFla42afvFj7eyPb9CO77n56PbpF0hhDjRyEisOClYdnwHQNW5t+PtNZyE+Q9hKgz92u1P6AE6PYH4NKpnzAMUUBQC8ekYi37CNfKcTuy5EEKI44nDFTnFt6DYQWp8VKvbLq12a6/Pn5RFt8ToVrcphBAnIglixQlDcTswlOTh6xmZ7l/vKAPA160v6PRUXPoH4j5/GsXjxH7WDQQSukdc4+09Cm/vUe3ebyGEEMe3QDDItxsOMKp/Mm6vP+L8guV7GD0ghara/VKjLQZUVcVoaNl62f/9sJ93Fu8MK8tIkSSBQgjRFAlixYlBDRK36G8YS/KonHUfvu7ZYacVb2iql2qq/aXcaKbqons7updCCCG6oMXrCnh3yS427iwhKz0WgDuvHMmS9QVs2FnKgdIannx3Azl5oanA8TEmFEXhr7+e0KL9XQ8PYIHjdl9YIYQ4HsiaWHFCMBTnYSzJA8C0d0PEecVVjWowgd7YwT0TQgjR1W2rXaeak1fBZ9/nA2CLMjL7zAFanboAFqDS4aXC7qGwtCasHYfLx/dbi5j76BLWbDsEgNcXvnVbHTXY9FZwQghxspMgVnRdapDYL5/DsuUbrN/P14otOUsxHNqtHetqKjGUF+JvZMqwEEII0RyfPxhRZjbpSYqzcOaYjCave/jNddidXiAUrN7y7Ape+XQbAC8tymF/sYMPvq3/9+ra8wZx5Rn9SY2Pon/P+DZ+F0IIceKQ6cSiyzIc2ot59w+Yd/8AgC8lC/fQM7AtfZX4D/+Ee9Cp+NP6oHicKMEAnn7jOrnHQgghuqKaRpI5WUyhr1DeRgLchnYXVjOyfzKfr86POPfQa2u11zddPJSxtVv1nH1Kz9Z0VwghTngSxIouy7zz+7Bjb+Zw3INPJRCbQtwnjxO17VvY9q123t+tf8d2UAghRJd2sKyGZ9/fTHGliyizgZQ4i7ZHrKV2zeoV0/tiNur58acS/IEgs6b14ZTsVP723w3kH7KzaXcpa7cfIqgeeXrwmIEp7f5+hBDiRCFBrOhaAn4UnwdDeQHRm7/Win3d+uMaOSP0OmMwrhEzid7wWdilqtHcoV0VQgjRtW3Pr9D2gO2eFM39c8by+ufb2VVYhckYWpEVbTFy1Zn9uerM8B9Kr54xgD//ez3LNh4IKx/WJ4mzxmbw1PxNWtk9s0ehKEo7vxshhDhxSBArugSdo5yYb1/HnL8p4lzJTW+AEr68u2b8pSg+F1FblwDg7j8Bf2LT65aEEEIIgLXbD6FTFAwGHcUVrojzvzp3UIvaSW9kj9c4q4nbrxgBwMzxmXy5Zh8AA2T9qxBCHBUJYsXxz+ch6c3bGj1lnzYnIoAFQG/AceovcUz7Bciv20IIIZpRWuXi2fc3R2QUrpOaEHVU7ZlNkVvkdE+u3/u1W4MgV0ZhhRDi6EgQK45vAT+2xa+EF9mS0dtLAfD0n3Dk6+WLgRBCiBZ46r1NFJU7Gz33q3OymTSs21G1p9fpOGtsT5LiLLxbuw+sucHer4m20BIXg17+nRJCiKMlQaw4rkVt/ALL7vrsjdrUYVWFYAD08icshBCiddxef5MBLMDUEce2RVvdOtklPxZQXOGiR0r9SOzg3onMmtqbcYPSjqltIYQ4mUkEII5fqkrM6ve1w9LrX6qfOqwoEsAKIYRoFY83gNGoI7/I3mSdmeMzW32fh68dz9rthxg/uD5g1SkKF0zu3eq2hRDiZCRRgDhuGQu3a689WaNQTUe3HkkIIYRoSkmli/97/QfGDkxhxeaDAPzs9H6cdUpPXB4/v31mBQA9U2NafS+jQcfkYemtbkcIIUSIBLHiuKWvOgSAY8LluEae08m9EUIIcSJZu/0QLo9fC2AB+naPQ6coWC1G7rt6DOt2FDNepvsKIcRxR4JYcXzwedA7yggk1K870tVUAuBP7SNTh4UQQrSp0ip3RFmf7rHa634ZcfTLiOvILgkhhGghiQxEp9JVl2Jb9jqmfVsAKJvzFEFbcuhcbRAbtMr+eUIIIdrW7sKqsOPbLh+BTieZgoUQoiuQIFZ0KlPeBi2ABdBXHgplHUZB56wAJIgVQgjRtnYfqKKgpAZbtBG70wdA73RbJ/dKCCFES0kQKzqPqmLO2wCAO3sKltyV2L59HX11McGoOAIxCagGE6op+sjtCCGEELVq3D5SmqmTs6ccgNNHZ/Dxyr2kJkRhiza1f+eEEEK0CQliRaeJ2vQVpv1bAfBmDMWSuxJ9dTGqTo/OVYWqQDA6PrSdjhBCiC5r78Fqyqs9jBlYH16qqspT8zfRI9nKlWf0b/U9VFXlt8+swOnxA/DPO07FbNJH1PN4AyxcuReAU0d256Ipss2NEEJ0NRLEio4RDBC/4BG8mcPx9D2FoDWOqC3/Q9XpqTr/TnwZQ6hGxZ+YQcz372HavxW9swpfeuu/2AghhOg85dVuHn5zHQDP3z6NKHPoq8f7S3eTs7ecnL3ljB6QwoCerVs6UlhaowWwABt2leB0+3G4fOwvdjD33EFEmQ18uHy3Vic+xtyqewohhOgcEsSKDqGvLsZ4aDfGQ7ux/vAR7n7j0Tmr8Cdn4us5FADPwMkAqLr6X86DMpVYCCG6tCff26i9/nx1PpdM64OiKGzeU6aVP/qfH7nt8hEM75t0zPfJL7KHHb+8aFvY8Yi+yUwZno4/oALw6wsHH/O9hBBCdC5dZ3dAnBx09rKwY/PeH1H8XlSjJbKy3qi9VE1R7d01IYQQ7WTV1oMcLHNqx599n8+qrUUAOJzesLp7DoRnCz5aen1o6cmEwY3v66oosOdANT/tD2W+H9gzoVX3E0II0XlkJFZ0CEN5AQDu/hMx716LEghlg/TWjsI2pJrqA1tfxpCO6aAQQog2tauwin99uj2i/NXPtvPqZ6Hy3uk29h4MjaDWZQkGqK7xsmbbIZLjLeQX2bloSm+UI+RH+HRVHguW7wFgeN8kql0+tu0tD6vzwbe7qaoJBc5RZj0JNplKLIQQXZUEsaJDWFd/gKo3UjP5KvRVReicVTimXoO3z5iIup5eI7HkriRoisLdb3wn9FYIIURrbcurDyJt0UYuPbUvb3yRG1YnwWahxu2nuMKF3RUKYlVV5Z3FO1mz7ZBWb/KwdFLiw2fmqKqK1x/E6fZrASyAxWQIC3iH9klk655yLYAFcHkCbfMmhRBCdAoJYkW7i/3saRS/F19yL4LWeCoveQAUPegan83u7XsKlRfchT85E0yNTDcWQghxXPvXp9u0acMA118wmEG9EiKC2NSEKG64aAg3PbWMg2U1ON0+bn5mRUR7yzcd4IJJWZiMevYdsrN80wGW/FjY6L37ZcTh9AfJ2VPGzZcMY0jvRG58cllYnUum9WmDdymEEKKzSBAr2o6qEvXjp8Ssfh/XoGkYygtxDTuLur1gfT1rpwY3WPPaKEXBlzmsffsqhBCiXXi8gbAA9oE5Y+nTPRaAK6b3Y/7SXdq5qcPTMeh1xFnNFJbUNBrAQmgt7Wff5/PavafzjwVbKK1yN1ovNSGKmCgjF07tw/CsBGKiQv/evPS706iq8ZAcF4XD5cNqka8/QgjRlcmnuGgTxv1biV/0N+04avvyUPmh+q0MXENO7/B+CSGE6DhBVeWO51dqx3ddNUoLYAFmjs9k5vhMvL4ADpePxNjQbJsEm5my6sYD04bmPrqk0XKrxcCdV44kwRZqT1EULYAFMBp0JMeFpiM3LBdCCNE1SXZi0SYaBrAArmFnaq996QMou+YpgnGpHd0tIYQQHWj9jhJtvenfbpzIoF6NZwA2GfVaAAsw75LWzb6xmAxkdYslzmpqVTtCCCG6BhmJFa2mq6kIOy658XXQ6akZcyF6ZyX+5F6hvQ2EEEJ0KUFVxecLYjbpm68MLFwRSrB0w0VDtJHPlmgs+DQZdXh9wRZd7/VLoiYhhDiZSBArjonidaGaorDkLMX27esAqCiUzntTq6Na4/Fb4zuri0IIIVrp6fmbyNlbTq80G3NmDqR3emyj9apqvOh1irYn7OGZhI/FzHGZLPouL6I8KdbC3HOzGZSVyN8/2MzGXaWYjS0LsoUQQpwYJIgVR82ydQkxy97E028cll1rtHI1KqYTeyWEEKKtrN9Rwvqfismp3Ws1/5Cdh99cB8DvrhzJ4KxErW6108vtz60Mu76pYPdIzpvYi8++zwfgzLEZnD8pi7NO6cnGnaXavrIQmqZct4XOiH5JbNxVymWn9T3q+wkhhOi6JIgVR8VQkodt2RsAYQEsgHPMRZ3QIyGEEG3t+Y+2NHnuiXc3cstlw8lMjeH7nCI+XLYn7PzFU3of0z0vnNxbC2JnnzkAAINex+Rh6fyQW8zm3WWMH5wWtgfsqSN7MHFIN0wyEiuEECcVCWLFUYle+1HYsT+hBxVX/RldTSXBmMQmrhJCdHWqqoYFD+LEpapq2PHtV4xg1dYi1mw7pJX9/YPNpCZEUVzhirh+1ICUY7qvQd/039f0UT3w+gJcODkr4pwEsEIIcfJp1+zEmzZt4pprrgEgPz+fq666itmzZ/PQQw8RDIaSNcyfP59LLrmEK664gqVLl7Znd0RrBQOY9m3Gn5hBxWUP4ZhwOZWXPgCKTgJYIU5g367fz7WPLeWn/ZWd3RXRhoKqyoafSvAH6pMnOVw+rn2s/t/ie38+mmF9kvjNhUN4+a7TuOuqUdq5xgJYgIwU6zH150g/kozol8zds0eTnnRsbQshhDixtNtI7CuvvMKiRYuIigold/jrX//Kbbfdxvjx43nwwQdZvHgxI0eO5K233uLDDz/E4/Ewe/ZsJk+ejMkkKfKPRzp7GUowgD+lF/60vvjTZA2SECeyutHXNz/bBsCKzQcY0FOStZ0ovl67n/lLd3HGmAxmTe3Dzc8sj6jT8P9vg17X5JY5dRTlyMGoEEII0RbabSQ2MzOT5557TjvOyclh3LhxAEybNo1Vq1axefNmRo0ahclkwmazkZmZSW5ubnt1SRwj44FczLkr0VeFppIFYmW/VyFOdG9/vYN5Ty/HHwjiqd3mxGSQaZsnkvlLdwGweH1BowHsDRcNafS6X8wcGHZ86al9OG1kdwCsFmOr+vTzswYwb1br9owVQghx4mu3kdgZM2ZQUFCgHTdcT2W1WrHb7TgcDmw2m1bHarXicDiabTshIRrDYV+mUlJsTdQWRy0YhNw1sO4ryBpC/JL/hp22ZvbGKs+71eRvtn3Ic20bS34sBOCrdQW4PH4AFL1Onm876Ixn+ru/RwatAN2TrRworeH8yb05b1q/RutcdlY2F58+AK8vQHRt0LplVynfbjzANecOatX7uXLmoGO+9nDyt9o+5Lm2D3mu7Ueebfvo7OfaYYmddLr6Qd+amhpiY2OJiYmhpqYmrLxhUNuUigpn2HFKio2SEnvbdfYkpNRUoqhBgjGJ2L78B5bda0Mn9myKqFuaOBBVnneryN9s+5Dn2no+f4B1O0q04w9rR+sAduSXy/NtYx39N+vy+Jn3dOMBbGp8FHdfNYofcos5dWT3FvWrxu4GoFucmedvn4bFpD8u/kbks6B9yHNtH/Jc24882/bRUc/1SIFyhwWxgwcPZs2aNYwfP57lyysAnUQAACAASURBVJczYcIEhg8fzjPPPIPH48Hr9bJ7924GDBjQUV0Stawr/0P0pq/CylSDCcXvBcCf1BN9xQGUYADnqPNQTa3fxF4IcXz6z/92snzTgUbPeX2BDu6NaGurthaFHd93zRisFgMp8aHPdYNexxljMo6p7SizbHgghBCiY3TYvzj33HMPf/jDH3jqqafo06cPM2bMQK/Xc8011zB79mxUVeX222/HbDZ3VJfaX8BH7Bd/x509FW+/cZ3dm0YZC3MjAlgA1+DT8PUcRlysmYqEARhK8glaYgjGHtvWCUKIrmHHETIQuzwSxHZFxZUuEmLMGA06tudXaOU3XTyUfj3iOrFnQgghxLFp1yA2IyOD+fPnA9C7d2/efvvtiDpXXHEFV1xxRXt2o9OY9m/FnL8Jc/4mSvr9u7O70yjrd6H1rvap1xCMScBQXoiqM+AafV6oQooNSuz4U49t83ohRNfh9QU4VB5arnHVmf0ZPziNu/+5Cm9tYieXxy/7xXYx63KLeWHhVqYMT+fssT358afQVPEn500mwXYC/WgshBDipCJzf9qBeecaLDlL8Byno691FLcdY0kegeh43MPPAsDbZ2wn90oI0Vle/mSb9nrikG7ERBmZOS6TRd/lARAIqvj8QUxGyVLcVbywcCsAKzcfJC0hNGV4eN8kCWCFEEJ0aRLEtoPYr58HwFS4vZN7Uk9xVmHat5mgNRFfzyHg85D86jwA3MPO6OTeCSE60w+5xZiNOm2UDiDKHApUL5zSmzGD01m0fBfrd5Tg8vibDGLziqopq3IzZqBsw9VWisqdrM4pIis9lhF9k45qFHxXYVXY8YfL9gAwc1xmm/ZRCCGE6GgSxLYxfdn+iLKg2QpqEJQjbMsb8IO+bf/vsH7/Pqa966k+5xYS/3uvVu7tno3pQP1+vN6MxvcCFEKc+Hz+IP+sHa0DiIsx8bsrR6GvzSivUxRGZ6eyeG0eAE6Pn7iYyFG8z77P04IkgMdvnERSnKVd+36iC6oq9728OqL80d9MIBBUOVjmZPSApvMU/OWt9Y2WW8wyki6EEKJrO0JUJY5F4rv3hx0HLTHoPDUYC7ZhytsUClYPY9nyDSkvzm00AG6N6B8/wVBxICyABcICWAB/Wp82va8QouvYXxy+N/eIvsn0SLZG1KvLPOvyBAiqqrZ3LEB5tTssgAV47L8/trpvlQ4PTnfkZ2ZXVVbl5u5/ruKH3OIW1d9VUNVo+ebdZdz/yhr+sWBLk5mkGz63O68cGXaubm9XIYQQoquSILYNKW5HRJmnb2hdbOz/XiLusydJfvl6kl+6TgtYFa8L2/JQ0ifb0te0IFfx1GDZuhjFVU306g8w7Vp7VH0xHNihvfal9cU58hzcAydH1Cv59StHHiEWQpxwKuwefv34Uv7vtbXs2FcRdi6oqo1eUxf41Lh9fLoqj3lPL2fF5gNs3FlKaZU7on5plTss0D1aufkV3PGP77j5mcb3NO2K7vrnKkqr3GEj30eybGMhALbo8KDzv9/s1F6/8UX4j5J1VmwOBbczx2UyJCuRf955KgB6nUJSrKyHFUII0bXJdOI2pHOUa6/9iRn/3959BkZRrQ0c/2/LbpJNL4QklFBCL6EX6RZAUfB6EfWqiApiRazX8oLKteO1YEEFQa5XQL2gqNgA6UWa9F4iECC9Z+u8HzaZZLMbCCQhG/L8vrgzc2Z25myc4ZlzznPQ5ZzF1qAZ/ruXoy10vVHXOB3gdBCw5XtyB99N5CcT1H0MZw4T8MdiCrqPJPLTiQAErZyrbk9rPNM1R6vdiv+uZdhiWmKPaeH1XPyKg9js4ZOwJnRR1+cOvtd1roXZOE1m0MkbeSHqm8Wrj2B3KCSfzSO5XEvsdX2aet2nJPBJyy5i8eqjAHz2oyuAahRtBmD0oBYM7dmYhcsP8dOmZOYvO8hdw9tc1DnuPpbh9rlZw+A6PQ9p+ZcFKen5NIwIZN/xDH7/I5kb+zdzG++6+1gG63efAeD1iX3IyrXw19k8NVFTeYdPZvOveVt4/s5uBAf4sa14fHOz2GAAjAYds58eXBOXJoQQQlxydfdfBD5Ia3VNTZHf9XoKuo8ExYnhpPe35I6whmjzPedjDNzyHX4ndnvdJ2jZJ+Rc8wCB6xcSsOMXrPFtyR7xJIHrvkRbmEvulROg+B9B2gLXsR1BkeVO0tXq6gwMu6hrFELUfSdS8z3WzXpq0DmTBkWFujLbzvt5v8e2ki7JZn/XS7GYiAAAVu9I4YYrEggPNpFXaCPAqEerrVxioiJr6Zy00+dvp0mDIKbc1b1S+/qi1/67zW35v78eIC7KzC9/uHrlhAUZGdwlHpvdwfHTecz8tvQ5YDToaBAeQIPwAI/j6nUaHE4n/yoe//rS3M1u2xt66RouhBBC1HXSj7QqFNfciYaT+/A7soXQRS8D4AyOdCVp0vvhNIeXFtcbybviVgD8dy7DcPoQAI5g90yehjOH3ZYLOl6NovfDeGQz5tXz8N+9AnC1/Pol7yDgz58xHViHPu24uo+2wNXy6wwIrc4rFkLUcU5F4WhKjsf682W9LQliz8Vc3O21T/sYdd3/zdrEoRPZPPzOat5ftPOc+yefyWXNjhTA1eW5rONncs/7/b7q7a/+VD/HFAeiu49lqgEsuAJ+gBXbTvHyf7aQV2gD4OXxvdyOddfw1m7LdofCva//ri7ryr0kMOjlMS+EEOLyIy2xF8m0ewVBv39G9tCHCPnpPbdttujSREmO8DhyhtyLad8a7NHNKOw0FF3WGfx3LSP4t48AKGp9BTidBG5erO7n9A8i68bncZoCUUxBFHQfSdjC/8N/13K1jC7rDMaDpZkrwxb+H+m3vYHib8Zwci+KVo9iMtdUFQgh6qDJ760BoF3TMHYfc3Vxfbxc4h9vQgL93JbDg42M6teMWT+UTiUWWZyNWK/T4qfXYrU7KbDYefk/rlbCbQfTGPfqcsaPaEuvdjFux9t2MJX3vnEFud+uOUpwue+rS+wOJ9sOppHUMpI9xzLYcTgdgK6tonhgVAfGvbrcYx+rzYHF6uCvs6XBeucWkWrQW+KKDg3p3S4Gm93JZz/uZfP+VLftDqf7mGajBLFCCCEuQxLEVpaiELBlCU5jAEXtBhP0+2cABG5a5FHUER5XuqDRYGndD0vrfuoqW0wL/Hctc1u2xbfD2qQD+rS/cAaGYW3aWe0aDKCYzORcdR9h/5sGQNZ1jxP6/ZuYDqxz++7Qb1/FktgLbVEeBZ2uUbsPCyEEQE6Bq4VvaM8mPDYmqdL7aTQabrsqkS9+PQCAxeqgb3FANfvHvVhtDuKjSl+aPT+2Ox8s2klKeoHHsT5esscjiC0JYAHSc4pIz/FMFlVXrNh2ki9/O0hSy0i3pEzjyo0Pbh4XzOGTrlbxlPQCJr610m17dJhn67dGo0Gv06DXaYmPNnsEsSUiQ0z07xTrdTokIYQQoq6TILYStPlZRMx5WF22xbYq3VbgOa4V7bnn4Cs7L6sjOBpbTEvQaLDHtMQe07LC/ewNE0m9fw44naDTU9huMP67XW/002+fTsiP76BPTyZg6w8AWFr2rszlCSEuU0VWO1abU23VXLszRd3WLiG8ot0qlNQysjSItbnGrGq1Gu65rq1H2bjIQAZ3iVfLlxVdia7J4B7k1RU5BVa+LM4evO1gGoEm12N2zOAWamKqiSPbk5NvpX1COO8v3sXJs3l4ywndsXnEOb+rfUKEmmSrvA7NIypM0iWEEELUdRLEVoL/th/clkO/eUn9rC03rU72sIc5HyUwlNQHPge71ZUd+Dxj0dxotKBzta7m9x6NxlqAtWlnnMFRZN3wJMG/fKgmhrJHNq78cYUQl50XPvuDM5mFfPzEQPQ6LZuL5ydtERdyUccLCzISHOhHTr6VZrHnP0arxqHotBocToVG0WY1AVR2vtWtXNlpfUb2S1ADM5vN6VZOUZTzjt2tbY/NWOu2nF9kx+in4+oepffj7q1L8yB8+NQQXv1sI2t3nVbX9WgTzdXdG6uZhSti9i99hJv8dOi0GvKL54ftkhhVpesQQgghfJkEsZWgmIJc/9Xq0TjtaG3eu7mljX0XJfACEinpqzbmSzEGkHv1/aXL/sFkX/sopr2rsCT2diWXEkLUW2cyCwFYtOoINw1szt7iaV4eHd3poo6n0Wh468G+rN91mg7naSUEiI8y8/ETA7E7FAx6rToW1GJz4FQUtBoNR07lMO1zV0bdFvEhDOvZRA1ikxKjePyWJN77ZgcHT2RTZHX47DQ72XkW9iVneYxJBVfX63MZO7w1G/eexe5wBe2DkuLOG8ACmPxK6+Kdh68g+Wwe//p8C9f0aES7phfe0i6EEELUFTJgsiKKAjYLOOzoz7r+QZV580sUJfZB0WjIvuZBtWhe75tJvX/uhQWwNUXvR1GHK1GMMq2CEPWVU1E4kVraS2TpxmTufm0F1uKWzaoEglqNhr4dGhIcULmXcBqNRs2Qe0XHhur6e15bQWpWITO/K533tFuraAx6LS/d05PHx3RmRN+mmP0NNAhzJTfKKdeC60s++nY3M79z9YIJDvRj+gN9K72vTqvlo8cGqMuVHccaFGBgSNd4JlzfDoNeR/PYEGY/PZibB1c8LEUIIYS4HPjmK20f4L/tR8zrF7itc4Q1JPfK8eT1GeMKWH92rbdHJ1xYl2AhhKgCu8PJvuRM2jUN99q99tc//mLB8kO1cGbnNm54G3UKHYCnPlrvtt3fz5VPIC4ykLgy85uWJEfKLbTR4BKc58UoO21RTr6VsCAjHz8xkBVbT9Km6fnn5dZqNQzqEseOQ2lEBFcuiC1JtiWEEELUNxLEeqMoHgFsUcvervGooLa45ncbif/OX11BrBBCXAI2u5N/L9zOvmRXUrlAk553Hu6Htnh+0KMpOecMYN99pF+F2y6FR27qyDtf7/C6rVvraK/rjQZXcGu1nbtbbm0pstqx2p0e6/U6LVd1b1Tp4/zjqkS4KtHnx/0KIYQQtU2CWC8Mp/arnwtb98PWuAOWJp7zKBb0vJGCnjdeylMTQtRjDqeT52dt5GzxWFdwJQ7681AaSYlRKIrCS3M3e+z3j6sT+c8vB3j6ti6Y/Q0e2y+lTi0iCQsykplrcVv/f2O7VdjN2U8NYj0DRV+w9UDpNDfdW0czdljrizqOBK9CCCFE5UgQ64Uu8xQAOYPvxdKmdlsthBACXMmBVmw76RbAlnjvfzuJCDbRKNrsse2u4a3p1zGWwV3iL8VpVsotQ1ryweJdbuv89BVPTWY0uHrBWO2+2RKblecaq/vAqA50bSVZgYUQQoiaJomdvNDmZwDgDI6s5TMRQgiXf3/1JwtXuHcTLtvil55TxPZDaR77tU84fxbhS61b62hen9ib+0e2V9eVzKfqTUlLrMVHuhOv25XiNufu178fBkCvk5ZUIYQQ4lKQllgvtPmusWZOX8g2LIQQwIG/stTPI/slMKxnYzQaDXOW7nMr16d9DA0jAvhj31k6Nnd13fVFkSH+RIb4M2NSP1Kzis6ZkdcXuhNbbQ5e++9W+nWM5fOfXUNOGkWb2XkkXS3TIv7i5t8VQgghxIWRINYLfWYKikaLw+x7LRhCiPqn0GIHoF1COI/d7D4+f8ak/qz88yRb96cSFxXI2GFtALi2d9NLfZoXJcBkoEnMucfplkzRU5vdidftOs3RlFyOppTmTJj62R/q51H9Egg01e54YyGEEKK+kCC2PMWJPu04jvA40FduHkQhhKhJJeNgvbWqBpj0DOvZhGE9m1zq07pkSrrpfrXicK1c56T31px3jtpQH23xFkIIIS5HMia2HI2lAI3diiPY+1QPQghRHRRFIS27kEKLHavNgc3LFC3gaoV9YY6rxa9FXP3srqrTlj6qCopsl/z7zxfAAgQYpRVWCCGEuFSkJbYcTVE+AE5jQC2fiRDicrZhzxk+WbJHXTb7G3jkpo7kFFhJahlFdr6Vd7/ewdGUHLVMjzb18+XapU6YlJVnYfKMtcRHmTmRmue2rXlcMLcMSWT7oTS+X3eM269O5PCpHDo2l+EnQgghxKUiQWw5WosriFVMnlNVCCHExdpxOI2vfj9Mw/AAAkx6Vv2Z4rY9r9DGv+ZtAaB9QjidWkS6BbAmPx0mv/p5y9brSlti7U6lxr+vJFlW+QAW4Klbu6DXaWkWG8yN/ZsBMKhLjZ+SEEIIIcqon/8iOoeQH/4NgCNIptcRQlReSno+Br2WyBB/FEWh0GInoEyin6UbkjmZms/J1Hy3/cYMbsFPm5LVuUYBdh3NYNfRDHV5UJc4br+6Vc1fhI/SaUtbYp1OhZT0fELNRvyNNfMIaxEXwo7D6W7r2jUN48pujdwCaiGEEELUDgliy9AU5KAtzAbA0vqKWj4bIYQvS88u4qW5fzBmSEv2JWeqLauv3tebGd/s4ERqPg3C/PnbgOZ0ax1NfvFYTq1Gg1NxtSZe27sJV/dozJXdG/HvBdvZfSzT43seurEDnVvW75dqujKB49nMQl79YisJDYO5d0Rbnv14A/eP6kDXVlHV9n0lU/qUNe7atj47XZEQQghR30gQW4bGVgSAtVF7FD//Wj4bIYQv+2lTMjkFNj4uM64V4OmP1qufz2QW8sHiXeqyn0HLR48NJCffil6nJcDkugVrNRoeG5MEwLhXl6vl/29sN5rGBNfkZdQJ+jItsa9+sRWAoyk5LNtyAgWY/eMeurYagMXqYPqC7QzoHEvfDg0v+vv2HMtwW24YEUCIWbLVCyGEEL5CgtgytIW5ADhCY2r5TIQQvig1q5DIEBO5BTaOnMo5Z9n4qEBOlOs6nFAckAYHVhwQPXJTR1ZsO8ltVyUSFSov0wB0FSR22rz/LACFFgc/bUzGZNRx6GQ2h05m06d9DBrNhSeEKrTYOZWWT4BRz7/u7UlqVhEt4utnVmghhBDCV0kQW0bwrx8C4Aiuvm5pQojLw3vf7GDbwTS3da0bh9K4QRB92sdwMjWfvcczWbPT1a14eK8mrN2Z4tZF+IEbO5z3ezq1iKRTi/rdfbg8Dd6D0ewy44gXrjjkti0jx0JEiMnrfnaHkx/WH8dic3Bj/2Zu41wf+Pcq9XOI2UiIWboQCyGEEL5Ggthi2rwMdDnFb/XbD6nlsxFC+JIjp3I8AliAoT0b07G5K+Bs3CCILq2i1CA2IsTEI3/vxLyf9zO0Z2NMfnrM/jKX6MW4iAZVMnKLKgxif9t8gm/XHAXgp43JjB3Wmv6dYrE7vM/VK4QQQgjfIkEsgMNOxNxJro/B0aCXsU9CCBeb3cm0zzd7rL9zaCs1gC1hNOiYeld3UtILaBkfCsBdw9tckvO8nF1MQqWMHAsAu49mEBZkJDYyUN2WfCbXreycpfvo1bYBpzMKqnaiQgghhLgkJIgFDCdKE7NorPKPGCHqq0Mns3lrwXb+NqA5Q7rGA64ETiWev7MbCQ3PnWipcYMgGjcIqtHzrG8qO7a1f6eGdGgWyfuLdrLqz1MkxAYzfcF2AJ64JYk2TcIA2LDnjMe+WXkW3l+0U10ePahFNZy5EEIIIWqCBLGAtiBb/VyQdG0tnokQoiadzSwgPNjkda7PU2n5vDxvCwBf/HqA79YepaDIjsPpmg6nUbT5vAGsqDmBJj35RXaP9WZ/A4qioNdpGT2oJbkFrnGye49numWKfuPLbbwyvhcNwgPUdX3bx7B212kAMnMtWKwOAB4Y1Z6uraJr8nKEEEIIUQUSxFI6tU7OVROxJPau5bMRQtSETXvP8NG3uwHPFlWLzcFzn250K59bYFM/hwUZmXpX90tzosKrkpcJ4Oq2jQY16HxvUn91m8noOcdriX9+vIFZTw3C5KcjMsTE3de1pcjqYMuBVF777za1XLNYyUYshBBC+DLP5oh6SJeXDoDTHFbLZyKEqKwPF+9i3KvL+XXzX+cspygKW/anqgEswEtzN6MorqDI7nAy6b016raEhsEY9O63xufu6HZR07WI6vOPqxPVz1a7gwGdYgGwlUvGpD3P71RocVBkdRAe7Er61Ke955RqIeeYAkkIIYQQtU9aYgFdlmt8lD00tpbPRAhREYfTyZe/HURRoG3TcP7Y58om/uVvB/nyt4OM7JfA4tVHGdkvgRF9mqpB57yf9/P79lMARIf6czarEICtB9Jo1TiUnzclqy16YUFGHvl7R4ID/EhJz0ej0ZCSnn9RiYVE9erTviHpORYWrTqCoqC+aLDbPTMKv3R3D56ftcnrcUqSOpXM1RtZbi7ekf0S0GrlhYUQQgjhyySIBTR2VxZLxeh/npJCXHpZeRZenPMH1/VpyuAu8er6QoudT5bsYfuhNPwMWl6/r4/6D3NfoSgKdofi0bJ5IXYdScccYGDD7jMs33oSgBXbTnqUW7z6qPrfQyez0Wu1jOjbVA1gAe6+rg3HT+fy398OuiXxAZhwfTt6tm2gLjeMcGWzjSkzhlLUrvYJ4SxadYSmMUEYisc1l+1mXCIuysx7k/qxZX8qc5buc9v248bjAIQVz/8aHVZ63//kyYHotNJBSQghhPB19T6INe1Zif7sERSNBrT1vjqEj0lJz+fZT1xjNf/zywGOnc7l2l5NaBAewAP/XqWWs9qcbNhzhqu7N6qtU/Vgszv5/Kd9auKcO4e2YkDnuErva7E5OJqSw78X/llhuSlju/Pht7vILbBRaClN+rPrSAYA2w+55nZNahnJQ3/rCEDTmGA27TvLoROlCd16tImmRxtJ5OPrEhoG89StSUSG+LP3eCaAW6KmsgJNBvp3imXB8oMUWhzq+pK/jWt6NAZc42vfmNiHAJNeAlghhBCijqjXUZsuM4WgFbMAcPr5g4x5qxYWmwOtRlOl1jcBNruDN+dvd1u3ZkcKa3ak8Nwd3TzKz192kPnLDl5QsFhTcvKtbuNMAeb+tJ/dxzJRnAoTR7ZXu2xm5VnQajQEmPScTM0nO9/C21/tqPDYz9/ZjX3JmcSEB9AkJohXJ/RWv7NBdBDvzt/K+t3uU6jc2L+Z+tmg1/LMP7pSUGRnwfKDxIQHMLhrvIx5rSNaNXblLujdvgHZ+RZ6tmlwzvLP/KMra3amYLE61Fb5Vo1CCTCVPv4iQkw1d8JCCCGEqHb1Oogt6UYMYI9pWYtncnmZOH0lkSEmrureiEFJcV6nMxHnt3l/Kpm5rr/R8de35ePvSucznvb5ZgD8jXpeuKs7T5aZSmTuT/trPYgtm2xJo4HiHEpsLh7HejItn8Wrj7DtYFqljudv1PH4mCQ1o7C3qW6CA/0wB/jRJTGKTXvP0ijazKn0fEYPakFclNmjfIBJz13D21zopQkfodNqubZ30/OWi4syc/PglixZd0xdF+Rj3e6FEEIIcWHqdxBrLVI/53cfVYtncnnIzLXwyRJXBti07CK+/O0gu49mMOnvnWr5zHyfxebAanNgNOjYciCVyBATZzNdCYgmj+5E+2YR5Obb+HLZQbf9XrirO5Gh/rz/aH+WrD3GT5uSATjwVxaJjUKr/TwVReFISg4JMcFek984nE7Scyz8sN417vBf9/akYUQgp9Ly3aawmTLbe9Idbzq3iOThmzpWunzXVtF8MDlSegIIN+FlknMFBRhq8UyEEEIIUVX1O4i15AOQ1/cW7DHNa/ls6raCIjsz/reDoym5but3HE5n3KvL3dbNemqQdN0s40xGAf/8eIPH+r4dXFN/lHR1vKp7I/p2aMiDb7vGwj5/Zzc1s6q/Uc/owS1wKgq//PEXh09m10gQ+9RH60nLdr38ub5vU1bvSOGWIS3p1to1nnTW93vZsMfVlbdBeICaHCk2MpDZTw9m24FU3vufe0KlRtFmcvKtZOdbAVeL6uv39Wbmd7vZdjCNLolRF3yeEsCK8prHlc79ml9oO0dJIYQQQvi6+hnEKk60+VnoM1wZTp3GwGo9/I7D6azZmcI917bBz6BT16/68xSb9p7hlisTiYus3u+sTXaHkzfnb+PY6dIAtnlsMIdP5Xgt//3643RoFk7TGM8uofXR9+uPeV2/dqcrIVJUmSlAAkx6Zj89uMJj9e8Uyy9//MXpjILqPEXA1QpbEsACfLf2GAAfLN7FzMcHsHL7KTWABfjnbV08jtEuIdxt+albk9QxjuXdfW0bCorsHlOgCHExymaZNpa5LwshhBCi7ql3Qaxx/1rMK+eitZX+Y1wxVm4KDZvdgUajOecYz0Mns3n7K1c21TZNwhjYOZadR9JpFhuiTvWwblcKfx/YogpX4TsO/JXFq19sdVv33B3daBYbzE8bk1m44pDHPotWHWHRqiPnDMbqk+QzeQDcP7I9dqeTT5fsxamUThtyIWOKI4JdrbYlY2nLUhTlolrAv11zlG/XHFWXjQYdFpvDrcyEN1e6LfdoE+11uh8/g46Zjw9kwpu/A9AstuIXGQEmAwEm6fYpqt/fB10e918hhBCivqp3Qaz/zt/cA1itDltM4jn3URQFq93J4++vJcRsZNo9PSss+/K8LernQyeyCfI38MHiXW5lrDan+jk1q5CfNibTIDyAQUlxda4bZNlkKSVKApOhPRsTHx3IO1/tIC4yEL1ey5EKWmfrs7xCG5EhJrVLblLLKD7/aR+n0gu47/p2F3QsP4Pr72fX0QzGvbqc+KhAptzVnf/+dpANu8+oY2jPZ+HyQ+r42vLGDmtNQmwwR0/loNVq+LDc3/ekv3ekY/PICo9t0Gt56e4e5BfZMeilRUxcOu9N6ofdoWD2l5cjQgghRF1W74JYR0gDDGcOq8tFbQegBJy7W+uOw+m887Vryo/8IrvXMoqiMPenfW7r9hzLYP3u0x5ll289wc2DW6DXaXmqTFbZ6FB/Ores+B//vmj30Qy35Vfv6+223D4hgk+eHASA06nw5vxt7EvOcuvaV19Mmb2Jv87mMXpQC7YeTOW+69thczjJzLW4/aPaaNBx74gLpi03ZwAAHepJREFUC15LlG9pPZGaz72v/64u/7H/LMN6NvHY70xmAWcyCunYPIL8IpvXANbkp+NvA5rTs61rSpPo4mD4rz5N+H7dcfyNel66uwfhweefrsRbtmAhalqgtOwLIYQQl4V6F8Rqi1zjNi2NO4LeQF7fW8+7T0kAW8KpKGjLBAvbD6Xx7tee81qWJKopT1Hgu7VHGdWvmdv6/KLaSTaSlu3KghsZUrmxh3aHk6UbjlNoLe1S2jjazD0j2qqBjTdarYYnb+3CozPWuHWXvdxtP5jGu9+U/n2UdLH+ZMke9v+VBUBkNc5T2bNtAzbuOeN121crDjMoKQ6TX+n/+qv+PKV2db/tqkS++PWAx343DWzO8F6ewS/Ajf2bc1W3RgSaDF4zFgshhBBCCFGd6lUQG7D5O/ySXZlRc66dDNrzd91NSc/3WFdosatv9DNyirwGsOfz/brjXNGhodu68uMMq1OR1c7BE9l0aBbhse21L7aRnlPE9Af6ElY8DYVTUagoHFm0+ghLN5S21DWPDebZO7pV+ly8jam8nNgdTr5cdpAVW0+es1xJAAvw5K1J1fb9vduVBrG92jZwS7YEkJ1npcjPQajZ9VtvKNNboGwA+/RtXWgZH0LymTwaNTh3y2lQgMy7KYQQQgghLo36E8QqCoEbvwYgt98/zhnAOhWFU2n5xEUG8uwnGz22L159lNuuco2j9ZYFdkDnWDJzLew4nK6ua9UolDFDWvLCnD/UdU/PdE2rktQykm0H07BYay6we2vBnxw6mc2TtyTRuokrG2z5FuTH3l/LrKcGsWzLCf7720E6t4hk6oQ+6vYV206SV2hzC2AB/nl71ws6F6NBR04FrdR1WV6hjYffWV3h9hbxIdx6ZUvMJgNPFncjj48K5IYrEtxaRquqQ7MI7ruhHe0Swgk0GejTIYawIBP//fUAe49nqtP59GzbgB6to9mXnOX1OC3jQ9BoNDSJCaq2cxNCCCGEEKKq6k0Qq7G4gk1L0ySKOl59zrLPf7qRlPSKpyhZtuWEGsTOX+aZfffa3k34ZdNf6vIz/+hKi/gQlAq60HYuDmJT0guwO5wXlI32fLLzLDw6Y626vP1QGvuSM4HSKVLKWr0jRU3WtP1QGvN+3EOnhHC2HkhlcZkMtSW0Go1b1+rKMPnpsFgdarbcZVtO8MWvB/jwsQFep76o7jo5n0Mnsvn5j2TuubYtRj8dGTlF7D2eSZsmYRWO97TZHUybu7nCY3702AC36ZaWTL+B02ey0VWiN8CF0mg09GjTQF1un+BqfS+yuo/n3rjnjNpim9AwiAdv7MiStUf5ffsp/v3QFTKXrxBCCCGE8En1JojVFrham5wBoect6y2AvWNoK9onhPPkh64WtMxcC2FBRk6kuqZHee6Obui0GgJNeiJD/BnZL4FCq50RfRPUcaIajYapd3Xnr7N5zPphr3rsxtGulq41O1NYszOFl+7pWS3zyP6+/SSf/7Tfbd0vf/zlUe7JW5LIzLPwyZI96tjIEt+sOMQ3KzyPndgolMFd4tyCpcryN+pRcHWfNvnp1S6sE6ev5P1H++NvLP2z3LI/lfcX7eSxMZ1p1zS8giNWr5f/48ow3SUxlSB/A28t/FPd9sr4XjTwkpRq3s8HOJvlGls8MCmOzi0izpmhF6iRAPZc7rmurdeeBQCP/L0TwQF+3DG0NXcMbX1Jz0sIIYQQQogLUW+CWL+/XGNhnYHnDmI/+naXx7oBnWMZ2DnObd1j76/lym7x6nL5+S4DTAbuvratx7EaNwgiLMhITHgAep2Gp2/rgtHPvfVx9Z+nGDOk5bkv6DwURfEIYMtrHhvM5Js742/UU1AuqVRYkBGnU/FITmU06Hj2jq7ERgZecAtsCVPx9aZmFeFwOt22rdx+iqE9G6vL7y9y/W7T52/n4ycG1niL7PxlB9XPnyzZ47G9pCvutHt60jAigD3HMlmzM0Vt0Zz5+ECfnSapYUQgb97fh7e/2kHzuGBWbj8FuKblCZIpR4QQQgghRB1x2QSxadmFPD9rEzcPbuERcGoKczCv+S8ATlPFCWpsdgeb9p71WJ/UMkr9nBgfwoET2QD8tvkEwAWPGQwK8OPl8b3c1r0+sbfaypueU+RtN8A1Tc2J1DziogLdWvIURWHR6iOEB5sY2DmODbvdk/k884+uvPyfLQSa9Oo0QQ0jAtVWzwCTgXcevoJH3l0DQJsmYfgZdPy+zT050XuT+lU5kNx5xDVWeMrsTR7byl57ocW9++sbX25j5BUJvDF/O8/e0ZX4KDNWm6PakgqdySzw2lINcO+Itm5B7bTPN1PkZQyzrwawJcKDTbx4dw8AuiZGodFoCPTXS9dhIYQQQghRZ1w2QezanaexWB18/tN+jyBWm5epfrbFe7aOlsjMtaifgwIM5Ba4WifLdu196KaOPPS2e/KeVo3O30X5fCJD/HlgVHveX7SLDC9BrMXq4PUvt3I0JVddd2P/ZlzXpylZeRZ2H83g+3XHATAZdHzyfWnA9c7DVxAU4Mdr9/UmMsTE6h2ulsOrujdy+46gAD9G9UtgX3IW44a3ochqx2DQ0adtA2b8byehZr9qaQkd3CWeH9Yfd1t308DmfP37YfIKbfy44TinMwq4smu8W5mDJ7J5Y/52AP71+RZ1fclY2hOpebw5fzsvjOtBSGDlA9vUrELmLN3H3uOlfyfP3tHV7Tt6t4vh8MlslhdnHPYWwD52c+dKf6cvaO8lU7UQQgghhBC+7rIIYud8v5tvyyQdKkkYVEKX7WqVzO95E47wOI/9cwqsfLX8EGt3lU41EhLopwaxwWUCopKpdWpC11bRNIwI4Gxmodv66Qu2s/tohkf5/606QlLLSJ6f5d6i+XGZFsOyXXCjisfm9u8US/9OsV7PYUTfBEb0dX0OMBl4+OYkUlNzeeP+PhUmprpQPds28AhiG4S5xpmWTTZU0TmWt+rPU2TlWdSsyY++t4bZTw+u1L5Op8JTxZmCS7z7SD/M/gZmPz2YQyey1YRIt16VyPBeTXh65nrsDldd3HZVIkO6xnv8zQkhhBBCCCFqhk8EsU6nk6lTp7J//378/PyYNm0aTZo0qfT+36xwzxBckjCohPHYNgCsTTp67JuWVcimfWfdAliA5nEh9GzbgDMZhR5dRF+Z0AuU0vGRFzs21Ju4yEBS0gsY9+pywoKMvDK+l9cAtkT5ALYsP4O2WseQVleQFhvhmbQqONDz5UBu8XjcLolRxEUGqlmTy/vyt4Me6wqKbARU4oXD9kNpbstDezbGXGZ8aIv4EPWzVqMhPNjE+BHtWLMzhQnXt1O7Y0sAK4QQQgghxKXhE0Hsb7/9htVqZcGCBWzfvp1XX32VDz/88KKPV1BkdwtidVmnUbQ67JGN3crl5FvV+TrL+vug5lzZtVGF4xtLWg37dohh7c7TtGkadtHnWl6/TrFs3p8KuLo33zd9pbrtym7xDOgUS1yUme/WHmXxavcpb7q1ilL3BXj5Xvdxt75Cq9UQHGAgp6A0mZS37r8l41PjIgMZ1b8ZQ7rGM+m9NZX6joxcy3mD2IycImb8z5U4Kj7KzJO3JrkFsBXp1jqabq2jK3UeQgghhBBCiOrlE0Hsli1b6NevHwCdO3dm1y7PDMFlde3aXv3sdCpk5LrGkA4afjva2P4UWuzcf/+9bNzoClC1ea6WTOenHenatRsffzwHgM/mfsayT193O7YGDX9+ZWLI+q2AHwcPHmDMmBu9nsfrb7zDlWN70CQmiGuuGUhaWppHmdGjb+Gpp54FYMqUZ/n++289yjRu3IRFi34AYO+2VSz79HGPMnqdlpduX0FclJmsrExeeHgEadmubscGnZZgs5E/gVG3PsQRW0sigo08NPF29u3b63GsQYOu5M033wbgvffeZs6cTz3KBAQEsHq1q5V38+ZNTJgwzmsdzJ49j06dkgDo2bMzdrvdo8z48ROZMOEBACZNeoDVq1eSnlOkdk8ONRt5cl8S//fyh0z7fDN/7V7GgfXzWVa8/5q5OqYVJ2+a/eXP5Fu1LP19K0tmPUlmbun4YbO/H06nk+ZX3ENufmeIguuuu5qUFFcW3rxCG3aHk1CzkcZt+xPW7iZXna+ex+YTG/nhA/eXFg0bxvL9978AsGzZLzz55GSvdfDNN0to2jSBvLw8Bgzw/uLgiSf+yZgxtwEwduxt7N69A6fTvXt2v34DePvt9wGYOfN9Pv7Y80WOXq9n40bXuOA//9zGuHG3e/2+mTNn061bj+Lj9qCgwHPaqLFj7+GhhyYB8Pjjk1ix4jePMq1bt+GLL74qvs6FvPzyi16/b9my1YSGhnHq1ElGjLjGa5lp015j2LBrARg16lqSk497lLnuuht44YV/AfDaa/9i4cIvPcpERkby88+/A7By5QomT35I3abVatR6nT//f7RsmYjVaqV37y5ez2nSpMe5/faxAIwfP5YtWzzn+u3ZszcffPAJALNmfcwHH7zr9VhbtrjuW3v27Ob222/2WmbGjJn07u3qrz9oUF9ycrI9ytx22x1MnvwkAM888wQ//7zUo0zz5i1YuHAxAEuWLGbq1Oe8ft/SpcuJjo7m7NmzDBvmvYv91KnTGDFiJACjR4/k8GHPua9HjryB5593/S5vvfU6X3zxuUeZ4OAQVqxwzUm9fv1aHnxwgtfvmzdvAW3btgPc7+Vl3X//w9x99/jiz6X38rLK3svnzZvD22+/6fVY69dvxc/v3Pfyt956jwEDBgFU27186dIfeO65p7x+35IlPxMbG0dWVibdu3fwuBcAPPPM//G3v40G4Lbb/u6z9/LyOnToxJw5XwAwf/4XvPHGK16/b+XKDZjNZo4dO8rf/jbCa5nXX3+LIUNc87qXvZeXNWrUTTz33FQApk2byqJFXwPu94KavJfv3PmnR5nL+V6u1Wp48cVXa/xeXpbcy6vvXn7NNcN4+eU3gPpzLy97L4Cau5cPGdLPa5nL9V5eUq81fS/3dn8p4RNBbF5eHmZzadZgnU6H3W5Hr/d+elptaddNu6N0ipbwUH+ygEIHmEwGtA4rWArB6QCdAa1Wg9FoICrKlU3Yz8/9+H56HQH+rnJRUUH4+fmRnh7o9n1lRUaY6dbBNW5Tr9d5LRcYaFS/LyDAz2sZg0GnlomJ9p7pONRsJDIyiKioIPR6O1qthrAgExabg0B/AyVH7dkxlhevH0pwoB8jRszw+n3+/qV1YDYbvZbR6bRqmbCwiusgLCxQLafTaXE6PcuZzSa1jMlkcDuWyU+Pn0GH0aindQXzqjqV0t+8V6d4zGYzHZro+WmulqAAPwotdkICjeh0GoqKMxpnFtqJjDRjMJT+LiVjWxUFTmcUUtJ+3rtDQ1af1Xl8b9nfJSQkoMI6iIgwExUVhL+/psIyQUGldWAs7oJcvqzJVPZ3MVXr7+KtnNlc+rfp72/wWsbPT6+WCQ72r/j/hcggwsKCsFjMFZYJCfFXj1X2dykrIMBPLRMY6P1vU68v/V1CQz1/l5Ll8HBXHVit1kr+Lt7roOzvEhTk/XcB1DLh4RX/LqGhAWo5vd7771L2nuHv7/2eUfnfxfW36XQWVFgmONjf7Z54vuur+HfRnvN3KVHyu4Dn/wMlyv4u5e8ZJcrey8/3u5zvXu7+u1TPvTwkpOLfpeSeode77kneylXmd/Gle3kJo1Ff6d/FbDaTm3uue0bABd0zyv8uJZ9r8l5+vnuG3Msv/l5eQu7l1Xcv9/evzO9y+d3Ly5avqXt51X6XunkvL4mXavpeXhGNUl3ZeqrglVdeoVOnTgwfPhyA/v37s2rVqgrLp6aWZujNzrPw6Iy1dGsVRXy0mcWrj3KF/iiTAtZhVEq7q9ojGnFy5AtsOXCWvh0acjazkMMns5n1Q+kbkU+eHOg2bU1tOZtViL+fTp3u5qEbO5CUGHWevWpGVFSQW31Xl/um/47V5qRfx4bcNbyNuv746VyOpuTw+c+lc9y+MK4HjaIrnhqprIycIh7/YB0A7RPCCTUbGTOkBUdO5fDWQs835n3bx3D3dRVnrK4pNVWv9Z3Ua82Qeq05Urc1Q+q1Zki91gyp15ojdVszLlW9lgS23vhES2yXLl1YsWIFw4cPZ/v27SQmJlZ63xCzkf+8MJT83CK+WXkYgObadLcAFkBjszDzu93sPJLOkVM5rNzu3pT9twHNfCKABYguziL8wKgOrN5xis4tvbdQ1mXO4gZ0o8G9BbRJTBBNYoIotNgptDoY1S/hgpImhQeb1M+7ShJiaaBBmL/X8ncMbXVhJy6EEEIIIYSoVT4RxF511VWsXbuWMWPGoCgKL7/88gXtH2I2Yi20cnX3Rvzyx1/MtXYlQlvAIMMRtYzTZObwCdeYhfIB7PV9mzK8V+WzIV8qXVtF0bVV7bTA1rSS8Qne5lsFGFaNv8eaHSl0bO6aE7VP+xjWFWeiHj2oBQa9ZzdiIYQQQgghhO/yiSBWq9Xy4ovekwxciPBgE3cNa8385Qf5pKgHhYqBIUEpGC05OP38KbB4Dm4GuK5PU5ki5RLr3DKSrQdSMfpdmiByx+F0AO4c2ope7RqQGB+Kn0ECWCGEEEIIIeoa3+g/W436dYrl/UcHkIuJDy29ORHQFIAlh70HqVd3b1Stc6mKynlgVHseuakjN/ZvVu3Hfub2rgzt0ZhAk55R/RLcthn0OtonREgAK4QQQgghRB3lEy2xNWHqXd2Z+tkf/DO5A0MM/iy1uY99nPn4QLLzLUSUGUMpLh2NRkOnFjUz1rdFXAgt4kIYPbgFAIvKzacrhBBCCCGEqLsu2yZIs78BgEIMfG9rg6PMpY4d1hqDXktkiL90I64H/nG1K1HYA6M61PKZCCGEEEIIIarqsm2JDTUbva4fmBRH/06xl/hsRG0a3CWewV3ia/s0hBBCCCGEENXgsm2J1Wo1TH+gr8f60+n5tXA2QgghhBBCCCGqw2UbxAKEBbm3xjaKNnNj/+a1dDZCCCGEEEIIIarqsg5iAXq3i1E/vzCuBy3iQ2rxbIQQQgghhBBCVMVlH8TeObTV+QsJIYQQQgghhKgTLtvETiX8DDpeHNcDPz+ZF1QIIYQQQggh6rrLPogFiI821/YpCCGEEEIIIYSoBpd9d2IhhBBCCCGEEJcPCWKFEEIIIYQQQtQZEsQKIYQQQgghhKgzJIgVQgghhBBCCFFnaBRFUWr7JIQQQgghhBBCiMqQllghhBBCCCGEEHWGBLFCCCGEEEIIIeoMCWKFEEIIIYQQQtQZEsQKIYQQQgghhKgzJIgVQgghhBBCCFFnSBArhBBCCCGEEKLO0Nf2CVTEZrPxzDPPcPLkSaxWKxMnTqRFixY8/fTTaDQaWrZsyZQpU9BqtSxcuJD58+ej1+uZOHEigwYNoqioiCeeeIL09HQCAwN57bXXCA8Pr+3L8glVrdvc3FyeeOIJ8vLysNlsPP300yQlJdX2ZdW6qtZricOHDzN69GjWrVuH0WisxSvyDVWtV4fDwSuvvMKuXbuwWq089NBDbvVdX1XHfeDRRx+lsLAQg8HAG2+8QVRUVG1flk+4kLoFyMjIYMyYMSxZsgSj0SjPrwpUtV7l2eVdVeu1hDy7PFW1buX55V113Avk+eXpQup1zpw5/PDDDwAMGDCABx988NI/uxQf9fXXXyvTpk1TFEVRMjIylAEDBigTJkxQNmzYoCiKojz//PPKL7/8opw9e1a57rrrFIvFouTk5KifZ8+erbz77ruKoijK999/r7z00ku1di2+pqp1+8477yifffaZoiiKcvjwYWXkyJG1dSk+par1qiiKkpubq9x7771Kr169lKKiolq7Fl9S1Xr95ptvlClTpiiKoiinT59W/3bru6rW65w5c5TXXntNURRFWbBggfLKK6/U2rX4msrWraIoyqpVq5QbbrhBSUpKUv+fl+eXd1WtV3l2eVfVelUUeXZVpKp1K88v76par/L88q6y9ZqcnKyMGjVKsdvtisPhUG6++WZl7969l/zZ5bPdiYcOHcojjzyiLut0Onbv3k2PHj0A6N+/P+vWrWPHjh0kJSXh5+dHUFAQjRs3Zt++fWzZsoV+/fqpZdevX18r1+GLqlq3Y8eOZcyYMQA4HA5541qsqvWqKArPP/88kydPxt/fv7Yuw+dUtV7XrFlDTEwM48eP57nnnmPw4MG1dSk+par1mpiYSH5+PgB5eXno9T7bseeSq2zdAmi1Wj777DNCQ0PV8vL88q6q9SrPLu+qWq/y7KpYVetWnl/eVbVe5fnlXWXrNSYmhk8//RSdTodWq8Vut2M0Gi/5s8tng9jAwEDMZjN5eXk8/PDDTJo0CUVR0Gg06vbc3Fzy8vIICgpy2y8vL89tfUlZ4VLVug0ODsZkMpGamsoTTzzB5MmTa+tSfEpV63XGjBkMGDCA1q1b19Yl+KSq1mtmZibHjx9n5syZ3Hvvvfzzn/+srUvxKVWt17CwMNauXcvw4cOZNWsWN910U21dis+pbN0C9O3bl7CwMLf95fnlXVXrVZ5d3lW1XuXZVbGq1q08v7yrar3K88u7ytarwWAgPDwcRVF47bXXaNu2LQkJCZf82eWzQSxASkoKd9xxBzfccAMjRoxQ+7YD5OfnExwcjNlsVt+mlKwPCgpyW19SVpSqSt0C7N+/n7Fjx/Loo4+qb2hE1er1u+++45tvvuH2228nNTWVcePG1cYl+KSq1GtoaCgDBw5Eo9HQo0cPjh07VgtX4JuqUq8zZszgnnvu4ccff2TWrFk89NBDtXEJPqsydVsReX5VrCr1CvLsqkhV6lWeXedWlbqV51fFqlKv8vyqWGXr1WKx8Pjjj5Ofn8+UKVOAS//s8tkgNi0tjXHjxvHEE0+ob0jatm3Lxo0bAVi1ahXdunWjY8eObNmyBYvFQm5uLocPHyYxMZEuXbqwcuVKtWzXrl1r7Vp8TVXr9tChQzzyyCNMnz6dAQMG1Oal+JSq1uuvv/7KvHnzmDdvHlFRUcyePbs2L8dnVLVeu3btqt4L9u3bR8OGDWvtWnxJVes1ODhYfakVERHhFujWd5Wt24rI88u7qtarPLu8q2q9yrOrYlWtW3l+eVfVepXnl3eVrVdFUbj//vtp1aoVL774IjqdDrj0zy6NoihKjX7DRZo2bRpLly6lWbNm6rpnn32WadOmYbPZaNasGdOmTUOn07Fw4UIWLFiAoihMmDCBa665hsLCQp566ilSU1MxGAxMnz5dMo8Vq2rdTpw4kf379xMXFwe43rx8+OGHtXU5PqOq9VrW4MGDWbp0qYzZour1arVamTJlCocPH0ZRFKZOnUq7du1q8Yp8Q1Xr9cyZMzz33HMUFBRgt9t5+OGH6du3by1eke+4kLotUfb/eXl+eVfVepVnl3dVrdey5Nnlrqp1K88v76par/L88q6y9bp8+XImT55M586d1XKTJ0+mdevWl/TZ5bNBrBBCCCGEEEIIUZ7PdicWQgghhBBCCCHKkyBWCCGEEEIIIUSdIUGsEEIIIYQQQog6Q4JYIYQQQgghhBB1hgSxQgghhBBCCCHqDH1tn4AQQghRH73wwgts3boVm81GcnIyzZs3B+Do0aP8+uuvNGjQoJbPUAghhPBNMsWOEEIIUYtOnDjBHXfcwfLly2v7VIQQQog6QVpihRBCCB8yePBgPv/8czZt2sTvv/9OVlYWZ8+eZcyYMZw8eZINGzYQGhrKp59+itFoZPHixcydOxen00m7du2YMmUKRqOxti9DCCGEqDEyJlYIIYTwUTt37uSDDz5g1qxZvPLKK/Tv358lS5YAsHr1ag4ePMjChQuZP38+3377LREREcyaNauWz1oIIYSoWdISK4QQQvioLl26YDabMZvNAPTu3RuAuLg4cnJy2LhxI8ePH2f06NEA2Gw22rZtW2vnK4QQQlwKEsQKIYQQPspgMLgt6/Xuj22Hw8GwYcN47rnnAMjPz8fhcFyy8xNCCCFqg3QnFkIIIeqonj178uuvv5Keno6iKEydOpW5c+fW9mkJIYQQNUpaYoUQQog6qnXr1jz44IPceeedOJ1O2rRpw/jx42v7tIQQQogaJVPsCCGEEEIIIYSoM6Q7sRBCCCGEEEKIOkOCWCGEEEIIIYQQdYYEsUIIIYQQQggh6gwJYoUQQgghhBBC1BkSxAohhBBCCCGEqDMkiBVCCCGEEEIIUWdIECuEEEIIIYQQos6QIFYIIYQQQgghRJ3x/xSDuDw6YYX0AAAAAElFTkSuQmCC\n", 242 | "text/plain": [ 243 | "
" 244 | ] 245 | }, 246 | "metadata": {}, 247 | "output_type": "display_data" 248 | }, 249 | { 250 | "name": "stdout", 251 | "output_type": "stream", 252 | "text": [ 253 | "Cumulative Return = 335.16 %\n", 254 | "=========================\n", 255 | "Execution Rate = 45.45 %\n", 256 | "Win Rate = 68.28 %\n", 257 | "=========================\n", 258 | "Maximum Loss = 22.5 %\n", 259 | "Maximum Consecutive Loss = 15.49 %\n", 260 | "=========================\n", 261 | "Beta = 0.63\n", 262 | "Sharpe = 3.76\n" 263 | ] 264 | } 265 | ], 266 | "source": [ 267 | "plt.figure(figsize=(16,6))\n", 268 | "plt.plot(BuyHoldBoth*100, label='Buy & Hold 50/50')\n", 269 | "plt.plot(cumulret*100, label='Pairs Trading', color='coral')\n", 270 | "plt.xlabel('Time')\n", 271 | "plt.ylabel('Returns (in %)')\n", 272 | "plt.margins(x=0.005,y=0.02)\n", 273 | "plt.axhline(y=0, xmin=0, xmax=1, linestyle='--', color='k')\n", 274 | "plt.legend()\n", 275 | "plt.show()\n", 276 | "\n", 277 | "print(\"Cumulative Return = \",tret,\"%\")\n", 278 | "print(\"=========================\")\n", 279 | "print(\"Execution Rate = \",round(executionrate*100,2),\"%\")\n", 280 | "print(\"Win Rate = \",winrate,\"%\")\n", 281 | "print(\"=========================\")\n", 282 | "print(\"Maximum Loss = \",maxdd,\"%\")\n", 283 | "print(\"Maximum Consecutive Loss = \",badd,\"%\")\n", 284 | "print(\"=========================\")\n", 285 | "print(\"Beta = \",beta)\n", 286 | "print(\"Sharpe = \",sharpe)\n", 287 | "# Return (\"alpha\") decay is pretty noticeable from 2011 onwards, most likely due to overfitting, they're not reinvested" 288 | ] 289 | }, 290 | { 291 | "cell_type": "code", 292 | "execution_count": 7, 293 | "metadata": {}, 294 | "outputs": [ 295 | { 296 | "data": { 297 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA78AAAFyCAYAAAA9CW3ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hc1bXw4d+ZrpFmVEe9WrIl924MxoBpNi30Elro5cZJICEJARIgyYWb5IOQQHJvSAIEQq+hGDAGAwZ3y5Zt2ZZl9d6lURlN//4YaWxZsi3JI40kr/d58sQanbNnSxxJZ5299lqK1+v1IoQQQgghhBBCTGCqYE9ACCGEEEIIIYQYaRL8CiGEEEIIIYSY8CT4FUIIIYQQQggx4UnwK4QQQgghhBBiwpPgVwghhBBCCCHEhCfBrxBCCCGEEEKICU8T7AkMR0NDe7CnICagyEgjLS1dwZ6GmEDkmhKBJNeTOF5yDYlAk2tKBNLh15PFYgr4e8jKrxA9NBp1sKcgJhi5pkQgyfUkjpdcQyLQ5JoSgTQa15MEv0IIIYQQQgghJjwJfoUQQgghhBBCTHgS/AohhBBCCCGEmPAk+BVCCCGECICapk4e/PtG/vNNCR6vN9jTEUIIcRgJfoUQQgghAuDNtUXUNHXxn29K+Ou7u7HZXcGekhBCiENI8CuEEEIIcZz2V7Sy40AjmUlmpqZFkru/gcf+vY36VtuQxrF2OXj67Z0UV1tHaKZCCHHikuBXCCGEEOI4eL1e3lx7AIBrzpzMvVfN5qz5yVQ1dPKbF7awp7R50GOt2VrB9sJGVm0sG6npCiHECUuCXyGEEEKI47CtoIGiaivzsy1kJoWjUau47pwp3HReDt0ON0++nsdnWyvwHmMfsNPl5svt1QDsLm7C7nCPxvSFEMchN3crF154DitX3sHKlXdw1123UFZWelxj5uXt4NZbb+DGG6/m22/XDXjMFVdchN1u939cVlbKypV3HHWeDz/8i36vP/zwL8jN3drnNau1jQsuOMv/Nb3xxqsAfPPN19x2243ceefNvP/+u/7jW1tbeeyxR4d8XjBogvruQgghhBDjgMfjpdvhwuMFrUaFXqsGoL7VxoufFqBWKVx+emafc06bnUhidCjPvLuLV9cUUlHfwQ3nZqPVDLz2sDG/jg6bk1CDhs5uF7uKm1iQEzviX5sQ4vjMn7+ARx99HIDNmzfyl788xe9//9Swx3v77de59dY7MRgMvPbayyxZsjRQUx2UgoJ9nH32cu6992f+11wuF08//SR///uLhISEcPfdt7JkyVKio2PYsOEbFi9eMuTzgkGCXyGEEEKIoyisbOXZ9/NpsvpWWTRqheWLUjl7fjJ/fmsnHTYnNy7PJj7K2O/crORwfvW9BTz9zi6+2VlDTVMnKy+dSXiYnrrmLt5Ye4D0BDPnnZTKZ1srUSkKt14wjT+/vZOtBfUS/AoxBG98cYAt++oDOubCnFiuOjNr0Me3t1uJj08AYOXKO/jpTx8gLS2d9957i6amJmJiLFRWVvD97/8It9vNzTdfyz/+8RI6nc4/xllnncPzz/+d8PBwrr76uiHPecuWjTz77P+i1+sxm8P5xS9+1efzb7/9Bh9++B7R0TG0tLT0O7+gYC/79+9j5co7iIiI5J57fkprawtJSSmYzWYAZs2aTV7eDs4882w2b97Ifffdz7vvvjWk84JBgl8hhBBCiAF4vV5Wb6ngrS+L8Hi9zJwUjVajorTWykcbyvhkUzluj5ezFyRzxtykI44TZTbwi+vm8cLH+9i4p45f/2sry+Ym8dGGMuxON9sLG1mXV01jWzeLpsYyOyuamHADeUVNOF1utBr1KH7VQoih2rZtKytX3oHT6aSoqPCoq77nnLOcW265nrvuWsmmTRuYN29Bn8DXbu/m22/XodGo8Xph7tz5FBcfYNKk/gH4j3+8EkVR/Ofp9Qa8Xi+///1j/PWv/8BiieWNN17lX//6J6eccioAHR0dvPnma7z44muoVCpuvfX6fuOmpaWTnT2VhQtPYvXqj3nqqd9z5ZXXEhYW5j/GaAyls7MDl8uF3W4nNDRsSOcFiwS/QgghhBCH6ep28tyqfeTub8AcquOu70wnJy0SALvDzfvrS1i9uYJZmdFcPYhVIZ1Wze0XTSMlNoy3vizina+LCdGrueX8qRyoauPrPN9e37MXpKAoCguyY/lkczn5JS3MmRyc9EAhxpurzswa0iptoBya9lxeXsqdd97Ce++t6nNM75Z/ozGUOXPmsXnzBlatep+bbrq9z3GvvvpvIiIieOCBh3n00Yf4yU9+gFqt4cknn+73vk8++Qx6vR7w7fn9wx8eo7W1FaMxFIvFlzUyZ85c/va3v/qD37KyUjIyJvkD7qlTpw/w9SxErzcAcNppy/jHP/6P0NBQuro6/cd0dXUSFhbGjh25zJ49Z8jnBYsUvBJCCCGEOERZbTuPvrCF3P0N5KRG8OjNC/2BL4Bep+bKM7J46oen8sMrZqFWDe52SlEUzlucxr1XzWbprAQeuXkRp85K4Kbzcvj5tXO5/cJpZCb6UgPnZ1sA2FYQ2BROIcTIioyM9v9bp9PT1NQIwP79+/yvX3TRpXzwwX9oaWkhK2tyn/OdTicajRaA22+/m507d5CWlj7o94+IiKCrq5PGRt/77tiRS0pKqv/ziYlJlJYWY7d343a72b+/oN8Y//M/v+XLL78AYOvWzWRnTyU9PYPKygqs1jacTic7dmxnxoxZrF+/jlNOWTrk84JFVn6FEEIIIfClOX+VV80rnxXicnu44OQ0LlmaccTgNtSgHdb7zJgUzYxJ0X1ey06N7PNxRqKZSJOeHQcacbk9aNSyXiHEWNWb9qxWq+nq6uQHP7gXvd7AlVdezZNP/o7Y2DhiYiz+46dPn0FVVQWXXnplv7GuueZ6HnvsUb7//dvxeNw88shjvP76yxw4UNgvUB6Ioij87GcP8uCDP0WlUjCZzDzwwCMUF/vasUVGRnLbbXdx1123EBERSUhISL8x7rprJY8//mveffdNQkJC+PnPf4lGo2Hlynv58Y9/gMfj4YILvoPFEktlZYU/uB7KecGieI9Vd38MamhoD/YUxARksZjk2hIBJdeUCCS5nkaWy+3h+VX72JBfS6hBw+0XTWNWZnDTjV9evZ/Pcyv5ydVzmJ4RddzjyTUkAk2uqeHxeDzcffetPPnk04SGBi8FeKw5/HqyWEwBfw95jCiEEEKIE97XedVsyK8lI8HMIzcvCnrgC5L6LMREVF1dxS23XM+KFRdI4BsEkvYshBBCiBOay+1h1cYydBoVP7piFuZQ3bFPGgVTUiIwGbXk7m/g+nOzUamUYE9JCHGcEhOTeOGFV4I9jROWrPwKIYQQ4oS2fnctzVY7p89JGjOBL4BKpTB3sgVrl5PCytZgT0cIIcY9CX6FEEIIccJyezx8tKEUjVphxUmpxzx+tC3wpz43BHkmQggx/knwK4QQQogTktfrZW1uFQ2t3SydlUikSR/sKfWTkxaJUa9h2/4GPOOvRqkQQowpsudXCCGEECec/RWtvP1VEYWVbeg0Ks5bPPZWfQE0ahVzJsewfnctJTVWMhPDgz0lIYQYtyT4FUIIIcQJZX9FK797JRevF+ZkxXDpaZOICe/f63KsmJ9tYf3uWrYVNEjwK8QYk5u7lV/96hekp2egKAp2u51zz13BFVdcM+DxTU2NPP/8P7jvvvsH/R4tLS388pc/B+DAgf2kpKSi1xtYseJ8LrzwkiHN9+GHf8HFF1+Ow+Ggrq6Wiy++bEjnj3cS/AohhBBiXNqYX0teURO3XTgVtWpwO7m6HS7++dEeAH581WxmTIoeySkGxIyMKPQ6NdsK6rnyjEwURao+CzGWzJ+/gEcffRwAh8PBtddezvLlF2Ay9e9TGx0dM6TAFyAyMpJnnnkWgJUr7+CnP32AtLT045rz4sWnHNf545UEv0IIIYQYl9btrGFvWQtnz08mM2lwK6JvfHGAhtZuzl+cNi4CXwCtRs3szGg2762nor6D1Lj+N9RCCAj99lX0RVsCOqY9cyGdS7476OO7urpQqVSo1Wq2b9/G88//HYDu7m4eeuhRtFotDz/8AM8++wI33HAVKSlpaLVaLr/8Kp555ik0Gg0mk4mHH/4tRmPoMd/v8ssvJC0tnbS0DC666GKefvqPeDxeOjraueee+5g5czZvv/0GH374HtHRMbS0tACwatUHlJWVcskll/PIIw8SGxtHVVUl06ZN5777fkFrayuPPvogTqeTlJQ0cnO38Prr7w3vmziGSPArhBBCiHGpud0OwL7ylkEFv7uLm/hyRzXJljAuPjVjpKcXUPOzY9m8t56tBQ0S/AoxxmzbtpWVK+9ApVKh0Wi4996fYjQaKSkp5le/+g0xMRZefPE51q5dw7nnnuc/z2azcdNNtzJlSg5/+cufOP30ZXz3uzfwzTdfY7W2Dyr4ra+v47nn/k14eASff76alSvvJTMzi9WrP2HVqg/IyMjkzTdf48UXX0OlUnHrrdf3G6Oiopw//vEZ9HoDV111MU1Njbz88r9YuvQMLrvsSrZs2ciWLRsD+j0LFgl+hRBCCDHueL1eWtq7AdhX1sIFJ6cf9Xi3x8MrawpRKQq3XTgVrWZ8NbyYOSkKrUbFtoJ6LjttUrCnI8SY1Lnku0NapQ2UQ9OeD2WxWHjqqT8QEmKkoaGemTNn9zsmNTUdgBtuuJkXX3yOH/3obiyWWKZNmzGo9w4PjyA8PAKAmJhYXnjhH+j1erq6uggNDaWsrJSMjEnodL4e5lOnTu83RlJSsj/Qjo6OweFwUFpaynnnXQjArFlzBzWX8WB8/eYXQgghhAA6u104nB4ACqvacLk9Rz3+67waapu7OG12wrhcOTXoNMzIiKKmqYvqxs6Aju31enlz7QEKylsCOq4QJ7rf/e63PPDAwzz44CPExFgGPKZ3D/9nn33M+edfyNNP/42MjEm8//47g3oP1SH1Dv70pz9w66138tBDj5KZmYXX6yUxMYnS0mLs9m7cbjf79xcccQ6HmjQpk927dwGQn79rUHMZD2TlVwghhBDjTktPyjOAw+mhpMbK5OSIAY+12V38Z10xeq163KU7H2pBdizbCxvZVlBPYkzgvo6Gtm4+3lROfauN7NTIgI0rxIlu+fLzueOOmzCZTERGRtPY2HDEY3NypvPb3z6C0WhEo9Hws589OOT3O/fc87j//p8QFRWFxRJLW1srkZGR3HbbXdx11y1EREQSEjK4yvbXX38Tv/nNr/jii8+IibGg0UyMsFHxesdfx/SGhvZgT0FMQBaLSa4tEVByTYlAkuupr51FjTz15k7S402U1rZz6dIMLlrSPyD0er2883UxH20o4+JTM8Z18NvV7eJHf15HWryJh25cMOTzj3QNlde188jzW5iSHM79188PxFTFCUJ+L01cGzZ8Q0REJFOnTmfLlk289NLz/PnP/zei73n49WSxBD5LZ2KE8EIIIYQ4oTRbfSu/i6fHU1rbzr7yVi5acvDzDqebTXvr+CK3irLadsJDdSxflBKk2QaG0aAhOTaM8rp2XG4PGnVgdq/Z7C4A2m3OgIwnhBj/EhKSePzxX6NWq/F4PNxzz33BnlJASPArhBBCiHGnt9JzamwYyZYwDlS14XR5aO2ws3Z7FevyqunsdqEoMHdyDBefmoFBN/5vezISzJTVtlPZ0EF6vDkgY3Y73ABYOx0BGU8IMf6lp2fwt789H+xpBNz4/ysghBBCiHHnm501HKhq5bpzsodVebm30nOkWU9OWgSVDR387pVcSqqteIGwEC0XnJzGGXOSiA43BHj2wZMRb+JLoKSmPWDBr83hW/nt7HYFdEVZCCHGGgl+hRBCCDGqNuyu5blVewEIC9FxxRmZQx6jN+05yqRnWloUa7ZWUlxtZVKimbPmJbMgJ3bctTMajIwEX8BbUmNl2dykgIzZbXf7/91pcxIepg/IuEIIMdZI8CuEEEKIUbOruInnVu3FqNcQolfz8aYy5kyOISspfEjjtLTbCQvRotWomZUVzc3n55BsCfMHhxNVQowRnUZFaU3gigz1pj0DWLsk+BVCTFwT75GoEEIIIcakDpuTv763G5VK4YdXzOK2C6eBF/754R7sTvexB+jh9XppabcTZfIFaSpFYemsxAkf+AKoVSpS401UN3YO6Xt2NL0FrwDau2TfrxBi4gpK8JuXl8cNN9wAQFlZGd/97ne59tprefjhh/F4jt6kXgghhBDj0+7iJuwONxecnMaUlAiyUyM5Z2EKdS02fvuvreSXNA9qHJvdhd3pJso8cfbyDkVGvBmP10t5XWBWf3v3/AJYJfgVQkxgox78/v3vf+ehhx7Cbvft1Xn88ce55557eOWVV/B6vXz++eejPSUhhBBCjIJdxU0AzMmK8b92+emTOG12ItWNnTzx+g7+9GYeNU2dRx2nd79vpOnETM/NSPD1viwJUOrzoWnP7Z3S7kgIMXGNevCbmprK008/7f84Pz+fRYsWAXDaaaexfv360Z6SEEIIIUaYx+tld0kz4WE6UmLD/K9rNWpuOi+Hh29eSHZKBHlFTfzqn5t5dU0hnd0DB2K9bY5O1OA3vSe9u7TGGpDxug9Ne7bJyq8QYuIa9YJXy5cvp7Ky0v+x1+tFURQAQkNDaW8/9lPMyEgjGo16xOYoTlwWiynYUxATjFxTIpDG8/W0v7yF9i4nZy9MJTa2/95ci8XEvOkJbNxdw3Mf5PPZ1go27qnluuU5rDg5HfUh7XdcRb4V5LSk8HH9PRmu6OgwQg0aKho6UOk0bNxdy9wpFhItYcc8d6Dvl9t78N9Oz/i+zsTok+tFBNJIX09Br/asUh38Y9bZ2YnZfOxiFS0tXSM5JXGCslhMNDQErnqmEHJNiUAa79fTum0VAExOMh/168iKN/HozYv4fFslH6wv4f/e3cXarRX8+Oo5/tZFZVVtgO8mZjx/T45HapyJvWUt3PKbz/B4vZwyI95XQOwojnQNWTvt/n/XN3WesN9TMXTj/feSGFsOv55GIhAOerXnadOmsWnTJgC+/vprFixYEOQZCSGEECLQdhY3oVIUpqdHHvNYrUbFipNSefyOk5mdGU1BRSsvfVqA1+tbomxpP9jj90Q1ref7mBBjBKC9a/h7dbvtbox6DSpFOa5xhBBirAt68Pvzn/+cp59+mquvvhqn08ny5cuDPSUhhBBCBFB7l4OSaitZSWaMBu2gzzOH6rjrkhmkxZv4ZlcNq7f4Vo9b2rsBiDiBg98VJ6Xy+7tO5te3LEKlKHTZhx+02hwujAYNJqNWqj0LISa0oKQ9Jycn88YbbwCQkZHBv//972BMQwghhBAjzOnysHZ7FV5gZmb0kM/Xa9X88PJZ/PpfW3jjiwMY9Rqa2+2EhWjRa0/c+h9qlYqYiBAAQvRqurpdxzjjyLrtbqLMegw6NU3W7kBNUQghxpyg7/kVQgghxMRT3djJ13nVrN9dS4fNiVajYt4Uy7DGijTpueeK2fy/17bz/Mf7UBRIHkRxpxOF0aDBZh9e8Ov1erE5XBj0oWjVKiobOnG6PP791UIIMZFI8CuEEEKIgLA73WzdV8/XedUUVvqKUoWFaFmxKJXT5iQSH2Uc9thp8Sbuv24eT7y+g9YOxwnb5mggRr2Wms6j90Y+EofTg9cLIToNRoPvtrC9y0GU2RDIKQohxJggwa8QQgghjktZbTtf76xmY34dNrsLBZieEcVpsxOZOzkGjTowq4hJljB+cf18/vnRXhbmxAZkzIkgRK/G4fTgcnuG/L3udrj8Y5hCfPux27ucEvwKISYkCX6FEEIIMSwdNid/fmsnB3paD0WE6ThrfjpLZyVg6dmPGmiWiBDuv27eiIw9XvUWEbPZXZiMuiGda3O4ATDo1JhCfee2S9ErIcQEJcGvEEIIIYblqx1VHKhqY2paJOcsTGHmpCjUKtkrOtpC9L7CX8MKfnv2Cht0GsxGXxAtFZ+FEBOVBL9CCCGEGDKv18u6nTVoNSq+f+mMIbUwEoFl1Pu+913DKHrV3bPyG6LX+ANn6fUrhJio5PGsEEIIIYZsf0Ur9S02FmRbJPANMv/K7zDaHXX7V37VmHuCX1n5FUJMVBL8CiGEEGLIvs6rAWDprMQgz0T0PnwYzsqvzV/wSoMptKfgVaes/AohJiYJfoUQQggxJF3dLrYV1BMbEUJ2akSwp3PC6135HVbwaz+k4FWIFLwSQkxsEvwKIYQQYkg27anF4fJw6qwEFEUJ9nROeL17foeV9uw4WPAqRK9Go1awyp5fIcQEJcGvEEIIIQZtT2kzb6wtQqNWWDIzIdjTEYDR4KtfenwFr9QoioLJqJOVXyHEhCXBrxBCCCEGZUdhI0+9uRO3x8PdF88g0qQP9pQEYNQPP/jtbXUUovONYTJqpdqzEGLCkuBXCCGEEMfUYXPy1/d2o1LBj66YzdwplmBPSfQI6Vn5tR3Hyq9B59s3bDbqsDvd2HteF0KIiUSCXyGEEEIcU2mtFZfbw7kLU5ieERXs6YhD+Fd+h7HntzdgNvSMERNuAKC+1Rag2QkhxNghwa8QQgghjqmivgOA1FhTkGciDufv8xuAld+E6FAAqhs7AzQ7IYQYOyT4FUIIIcQxVfYEvylxYUGeiTicWqVCr1UPs+CVC61GhUbtuyVMjPEFvzVNEvwKISYeCX6FEEIIcUwV9R3otWosESHBnooYgNGgGWbas5uQnlVfOBj8ysqvEGIikuBXCCGEEEfldHmoaeoi2RKKSvr6jkkhes2w0p5tDpd/vy9ARJgOg05NdVNXIKcnhBBjggS/QgghhDiqmqZO3B4vKbGS8jxWGfUabHY3Xq93SOd1O9z+/b4AiqKQGBNKXXMXLrcn0NMUQoigkuBXCCGEEEfVW+wqWYLfMStEr8Hj9WJ3Dr5Fkcfjxe5w+3v89kqMDsXt8dIgFZ+FEBOMBL9CCCGEOKre4FdWfscuo2Ho7Y56Kz2H6A8LfmXfrxBigpLgVwghhBBH5V/5tUjwO1b19vodyr7fbkdvj191n9cToo2ABL9CiIlHgl8hhBBCHJHX66WivgNLhKHfCqEYO3r/2wyl3ZHN3+N34JXfGil6JYSYYOSvmBBCCCGOqLXDQYfNyeTk8GBPRRxFb9rzYFZ+N++tw2TUodP41kAObXUEEB1uQKdRycqvEGLCkeBXCCGEEEdU2SD7fccD/8rvMfb82p1unn1/DyF6NTefPxWgT6sjAJWiEB9tpKapC4/Hi0ol7a2EEBODBL9CCCGE6MPp8vDk6zsor+/A4/G1zkmJNQV5VuJoBrvnt7KhA4/XS2e3i9VbKgD6tDrqlRgTSnldB43WbmIjQgI/YSGECAIJfoUQQgjRx6qNZRRUtBJt1qPTqgkN0ZKTFhHsaYmjGOye3/Ladv+/91e0+s7V9b8dTIw+WPFZgl8hxEQhwa8QQggh/KoaO/lwfSmRJj2/vvUkKXI1Tgy21VFZnS+NfUpKxMHgV99/5TehJ/itaexkTlZMIKcqhBBBI9WehRBCiFHU2e3k2ffzWbWxDGuXI9jT6cPj9fLCx3txe7xcf+4UCXzHkZBBpj2X17WjUSvcdF4OSs9W3sOrPQPE97Q7qmuRis9CiIlD/qoJIYQQo2jN1ko27qmDPXW8t66YBTmxLJubRFZSOIoS3MJCa3OrKKqysjAnlrmTLUGdixga4yDSnl1uD5UNHSRZwoiPMrIwJ5bNe+sxh+r6HRsbYUAB6pptIzVlIYQYdRL8CiGEEIPUYXPy7Af5pMaaOHtBMhFh+iGd73S5+SK3klCDhouWZPDVjio25texMb+OZEsYy+YlsXhaXFBWXJut3bz1VRGhBg3XnjNl1N9fHJ/BBL8Vde243F7S4nyVu7+3IofF0+IHrOSt1aiJMutl5VcIMaFI8CuEEEIM0vb9DewubmZ3cTOrt5SzeFo8y09KJSkmdFDnb8ivo73LyfmL0zh3YQrnLEhmX3kra7dXsX1/Ay99WsCbaw8QGxGCtcuBXqfhru9MJy1+ZCste71eXvy0ALvDzbXn5xA+wEqgGNt0WhVqlYLtKHt+i6vaAEiL811PIXoNcyYfeT9vbKSRvWUt2B1u9ANUhBZCiPFG9vwKMQhb99XL0++j8Hq97C5uwu5wB3sqQoyo3gJBF56SRnR4CN/squGX/9jEU2/msa+sBa/Xe8RzvV4vn24uR61SOGt+MgCKojA1LZL/umQGf/ivU7hkaQahBg11rTY0ahX1zV38+e2dtLTbR/Tr2ry3np1FTUxNi+TUmQkj+l5iZCiKQohec9SV397gNzVucA9T4qJ8+37rWyX1WQgxMcjKrxDHUNPUyV/f282crBh+eMWsYE9nTDpQ1caTb+Qxb4qFlZfNDPZ0hBgxBRWthBo0XLJ0EpcsnUReYSOfbC5nZ1ETO4uaSIs3cfnpk5iREd3v3LyiJmqaujh5ejyRpv7p0hFher6zJIPvLMnwv/bxpjLeXFvEn97K4//96PQR+Zo6bE5eWbMfnUbF91ZkB33fsRg+4zGC36KqNhQFkgdIcx5Ib4uj+pauAVOjhRBivBkzwe8ll1yCyeR7EpmcnMzjjz8e5BkJ4ZNf0gxASa01yDMZu0qqfd+b3P0NbC9skEI5Ykzyer3sK2shPjp0wODzWJqt3TS2dTN3cgyqngBx7hQLc6dYKKpq45PN5eQWNPDHN/K49uwpnDU/GbfHw84DTXyVV82u4iYAzl2YMuj3XLEolbrmLr7Oq+GJl7dx+wVTUakCG5y+/nkh7V1OrlqWRWykMaBji9EVYtDQ2jRwloDH66W4qo2E6FD02sGlMMdF+YLfuhZZ+RVCTAxjIvi1232/qF966aUgz0SI/vaWtQDQ1uGgtcM+5AI3J4KK+g7/v1/+bD9T0yIHbJ0hRDBt3lvP397PR1Fg5qRols5KZHZWNBr14HYA9aY8T0mJ6Pe5zKRwvn/pTEpqrPzprZ28/Nl+9pQ2U1xjpa3D184oI8HMipNSh7R/V1EUrj83m4bWbjbl1xJu1HLNWZMHff6x5Jc08+3uWtLiTZyzMDlg44rgMOo1OJweXIhYU1MAACAASURBVG5Pv+u6odWGze5idlb/rIQj6X0YUtcs236EEBPDmNjzu2/fPmw2G7fccgs33ngjO3bsCPaUhADA7fGwr7zF/3FZbXsQZzN2VdR3oNOoOH9xGs1WO++tKwn2lMQE4/Z4+DqvmvK64f0Muj0e3vumBLVKIS3OxM6iJv7y7i7u+8u3vPHFAWqaOo85xtGC314ZCWYevGE+8VFGthc24nB6OGteMo/esohffm8BC3Nihzx3jVrF9y+dQUpcGKu3VLA2t3LIYxzO6XKzs6iRf32yD5WicPN5OahVY+KWQBwHo8H30LFzgKJXvX+/UmMH//Clt91Rvaz8CiEmiDGxNGMwGLj11lu58sorKS0t5fbbb+eTTz5Boxl4epGRRjQaqTooAs9i6XtTsK+sGZvdTWxkCPUtNhraHf2OOdG53B6qm7rISDRzyyUz2X6gkTVbKzj/1ElkJh85SDhRyPUSGJ9sKOWFj/cBsGhaPFefM4UpqZGDPv/zLeXUNXexfHEaK6+cQ2mNlc82lbF2WwWfbC7nk83lTE2P4ppzs5mXPXCAeqDaSohezfzpCaiPslpssZj444/PYG9JEzOzYgKWBfGrWxdz35+/5uU1hUzNtDAz68hVeo9m7bYK/vJWnr9A3dVnT2H+jMSAzFEEV3xMGBQ0oNZp+v3uadxcAcDsnNgh/V6yRIbQ0NYtv8vEEcm1IQJppK+nMRH8ZmRkkJaWhqIoZGRkEBERQUNDAwkJA1ecbJGqu2IEWCwmGhr6riqt3+5bYTl7fjKvrClkb3EjDQ1yk3ioyvoOXG4PCVEhWFu7uPbsyTzx2g6eejWXh25cEPD9iePJQNeUGDqPx8uba/ajUSukx5vZvKeWzXtqmZ4eyYWnpJN9jCDY5fbw8id70agVzpmXRENDO6EahUuWpHPBSalsL2xg3c4a9pQ085t/buS+a+b2W921djqorO9gRkYUzc3HXiUGSLeE0t5mI1BXQLzFxN0Xz+APr27n8X9t5uGbFhJlNvg/73R5qKjvoKTGSnldO9Mzolg0Na7fOC9/vBePx8uKk1KZkxXD5ORwuU4nCF3PM5nSyhbCtH0f0Owr8e05N+vVQ/rvHW02sLeshcqqVml3JPqRv3MikA6/nkYiEB4Twe9bb73F/v37eeSRR6irq6OjowOLRQrmiODbU9qCAiyeHs9HG8oo60m59Hi8fL2zmtmZMcMqnDORlNf7vicpPal009OjOHl6HBvy6/git5KzFwy+uE8wNbba6LK7Bt0CRIyerQX11LfaOH1OIjcuz6agvJUP1peSX9pCfmkLU5LDuXBJOtPTowasVPxFbhUNrd2cNS+5T7AIoNWoWDQ1jkVT48gvbeapN/J45p1dPHjjfOIOKf40mJTn0TAlJYKrz8zilTWF/PW93Zw2O5HSGislNe1UNnTg9hxstZRf2twv+K1r6aKuxcbcyTFctSxrtKcvRlh4T02K3n3mvbxeL2V17cRGGQk1aIc0ZlyUr9dvfatNKj4LIca9MbHB54orrqC9vZ3vfve73HvvvTz22GNHTHkWYrTYHW6KqttIjTcRFqIlLd5Es9WOtcvBt7trePGTAp58Ywe2o7SVGEi3wzVueyYO1MO0t9jVoTdFV585mVCDhne+LqbZ2j1q8xuOqsZOnv0gn/v/tpHf/GsrbR0j209VDE5ntxOH043X62XVhjIUBVaclIqiKOSkRfLT787lgRvmMyszmv2VbTz5eh7Pr9rXZwyX28Mra/bz2ueFGHRqLjgl7ajvOT09iuvPnUKHzclTb+7s87NdUO4LfrNTg5/Kf9b8ZE6eHkdxtZUXPt7HlzuqqWrsIDXOxJnzkrj1gqlMTYuk2Wqnsa3v75pdRb7Vv5mZgy96JMYPc6gOgLbOvsFva4eD9i4nmUnhQx4zLrKn4rMUvRJCTABjIsLU6XQ88cQTwZ6GEH0UVLTgcnuZlu5LqewtklNa086nPXunqho6+ceHe/j+ZTP9rU+O5Z8f7SXvQBOP37GY6HDDsU8YI95bV8wXuVU8esuiPqvdvcFvsuVg8GsO1XHlsixe+Hgfr6wpHLO9f61dDv77xa10O9wYdGq6HW4OVLUx/wh7PsXoaO9ycP/fNuD1wuTkCMrrO1g0NbbPSixAVlI491w5m7Ladv7x4R6+2VXDipNSSYwJxeF084fXtlNUZSUh2sh/XTJjUJXaT5+TRHVjF59trWDNtkouOiWdrm4X6/NrCQvRkh5vHqkve9AUReHGFTnERxkxGXVkJJhJsoT2qe7baXOyt6yFwso2YsJD/K/v7Gm3NGuSBL8TUXhv8HvYym9v1tJwgt/YnuB3vD60FUKIQ42JlV8hxpLa5i5e/GQff3l3NwAzM3w3iek97Uk+2lBKdWMnJ02LY2paJNsLG3lvXfGgxq5vtZFb0IDL7eHb3TUjMv+R8NGGUt7/tpQOm9N/EwW+leCK+g5iwg3+KqO9Tp2VwJTkcF/v3/0Nozzjwckvaabb4ea8k1L5QU+AXlQt/ZyDraC8FZvdjcfj9ffGPe+kI6/apsWbuGTpJAA+3VwOwCebyymqsjI/28Ivv7eAJMvg0zUvWZpBqEHD6s3l2OwuPs+txGZ3sXxRClrN2PizqdequWhJBmfMTSIt3tSvrc3knvTswso2/2t2p5uC8laSLKH90r/FxOAPfjv7ZrCU91R6njSslV9pdySEmDjGxl9xIcaAvSXNPP32Th58diNf7qgmPFTH91Zkk5PWs/LbE/z23kyevziNuy+ZQWxECB+uL2PTnrpjvseXuVX0Jg5/u6sGzwBpxGPN59sqefurYnoXtlsPSQtu6/Sl0g20D0ylKNywIge1SuHfn+0fcnr4cHg8Xr7cUTWotjUAe0qaAVg0NY6MRDOKAsVVbcc468iKq618trViwPRwMXgFPftrf3z1HB68YT4//e7cY/bGnTs5hrjIEDbk11JcbWXVhjLMoTpuOX/qkKsth+g1LF+USme3i482lPHZlgpCDRrOnDd++uCmxIah06oorGz1v1ZQ3oLT5ZFV3wmsN+3Z2nmEld9hVOC3SLsjIcQEIsGvOKF5PF62FdTz3y9t5WfPrGN7YSPpCSbuvmQG/3PnyZw+J8l/bKRJT1iIr1DIjIwoUmLDCAvR8oMrZmHQqXlu1V5Kao68amh3ulm3sxqzUcuiqbE0tHZTWNF6xOODze3x8OqaQl7+bD9mo5brz80GoLX9YPA70H7fQyXFhHLe4jRa2u3855uR7/3buxf74ee28MmmcjyeIwehXq+X/NJmTEYtKXFhGHQaki1hlNa243J7hvzeLreHv72/m1fXFJLfE1SL4Skob0WrUTEp0UxmUjhT047d0kilUjh3USout5f/99p2HC4PV56RSYh+eLt7zpqfTKhBw6qNZXTYnJyzIGXYYwWDRq0iMzGcqoZOOrudAOzs3e8rwe+EpVGrCAvR9tvzW17XgTlUN6wVf61GTZTZQJ102hBCTAAS/IoTkt3pZm1uJQ/8fSN/eXc3RVVWFk2L5+fXzuWhGxewMCe2X4seRVFIT/CtPq04KdX/elJMKHddPB2Xy8Mz7+zqszJ6qI35tXR2uzhtThLL5vqC6nU7x2bqs7XLwROv7eCzrRUkRBv5xfXzyekp9NN6yF6yYwW/ABeenEa0Wc+XO6ro6rkJHylrc6tQFDDq1byx9gD/83LuEVP1qhs7ae1wMDUt0r9fOzPRjMPlobKhY8jvvSG/loZWX3GvDzeUDf+LOMF12JxUNXSQmWjul8p7LEtmxGMyaul2uJmUaObkGfHDnkeIXuP/OQ/Rqzl7wfhZ9e01OdmX4lpY2YbX60shN+jUZCUPPfVVjB/hYbo+e347bE6arN2kxg2/UnNcVAitHQ5/b2ghhBivJPgVJ5yC8hZ+/r/reWn1fpqt3Zw2O4H/vv0kfnnrSWSnRg7YKqXXFadn8r0V2f1WomZlxnDFskxa2u08884unK6+Nwher5fPt1WhViksm5vElJQILBEGthbUj0o68FCU1bbzmxe2sK+8lXlTLDx04wLiooz+YkGHBveVgwh+dVo1y+Yl43B6+HZ3LeCrpP302zt5efV+WtoDU125pMZKaW07c7Ji+M1tJ7FoaiwHqtp4+LnNfLa1ol+KeX5pCwDTM6L8r01K9AUFRVVD2/frcnv4cH0pGrXCpEQz+yta/a1xxNAUVrTihWP27h2ITqvm/MVp6DQqrjtnyqCL0B3JmfOSyU6J4PLTMzEOsT3MWHBw328r3+7yPZyZkRE15IcKYnwJD9XRZXf5/w6V96Q8px1HG7fYnn2/UvRKCDHeyV9AcULZvLeOJ17fQWe3iwtOTuMPd5/CTedNJSE6dFDnp8aZOH1O0oAB8opFqZw8Pb6n/UhBn32feUVNVDZ0MG+KhUiTHkVRWDIzAYfTw5fbqwL29R2vDfm1PPbvbTRb7Vy6NIP/unSGP9XToFOj16r7pD3Xt9pQq5Q+1WQHcuqsBDRqhbW5VXi9Xj5YX8r2wkY+z63k/r9t4J2vi497n+wX2yoBWDYvCZNRx10Xz+DuS2ag06p5dU0hf3hlOw2H3LjtKfWlJk9PPxj8Zib5KvkWVQ9t3+/G/DoaWrs5bXaiv3fqqo2y+jscvft9s4fZT/fchSk8fc9SMhKOvypziF7Dz6+bN672+h4qM9GMSlHYsreeFz8twKjXcMUZmcGelhhhh1d8Lq/zPaQ8nuBX2h0JISYKCX7FCePTzeX833/y0ahV3HvVbC4/PZPwQbQ+GSxFUbjpvGwyEsxsyK/lk02+qrMer5d3vipGAb6zJN1//GmzEwkL0fLWl0V8u2vw6c8ej5dX1xTyu5dzsTuHn4K2t7SZ1z4vpLyuHbfHw2ufF/L3D/agUSv84IpZXLQko8/KmaIoRITp+qz8NrbaiDYb+qWIH85s1LEwJ5ba5i6+yK3i083lxIQbuHF5NmEhWj5cX8o3x5EC3mFzsmlvPXGRIUw7JJhdmBPLb247ibmTYyioaOVX/9zMmq0V2J1u9pW3kBBt7LMHLi7KSKhBQ/EQVn7dnoOrvucvTmNKSgRTksPZWdR0XMWzTlQFFa3+FfThUBQFrUYd4FmNTwadhtS4MBrbunG7Pdx58XT/Cp6YuMJDfX/Xevf99q78Hk/as7Q7EkJMFBL8ignP4/UFi69/cYCIMB33XzevT4AUSFqNmh9cPpNIk543vyxiY34tm/fUUdnQwckz4vu0W4kI03PfNXMwGjQ899FeNuTXDjim3eFmZ1EjHTYnLreHZz/I57OtFRRUtLK7pw3MUFk7Hfz1vd2s3lLBI89v4Wf/u4HVW3z7ex+6cQFzsmIGPC/SpMfa5ZuH3eHG2uUkJmJwBVSW9ayevfzZftweL9eePYUz5ibx4A3zMejUvPbFgWGnQK/bWY3L7WHZ3KR+qa7hoTpWXjaT2y+ahlql8MqaQh54diMOp6ffdaBSFCYlhlPfautXLfVI9pa1UN9q45QZ8f5A+oJT0gF4/oN8qfw8CNZOB53dTrq6XZTXtTMpwYxOKwFsIPRWq7/s9ElS6OoEYfa3O/L9DiuraydEr8EScfQMnaORdkdCiIli/JSuFGIYPF4vz76fz+a99STGhHLvlbOJDh/Z/pYRYXruvXI2j7+cyz8/2ktYiBa1SuGSUzP6HZsaZ+In18zhD6/u4B8f7kGtUlg0Na7PMS+v2c83O2tQFIgy6Wmy2kmINlLT1MW2ggbmZ8cedT7WLgdf7aimtMbKFWdkkhAdymufF9LZ7eKMuUk0tHSRX9rC3Mkx3HbhtKNWtO3d92vtdGDrKXxyrJTnXpmJZlJiw6io72BOVgxzJvsC7CizgSuXZfHSpwX8e3UBKy+bedR914fr7Hby8cZyDDo1S2YlDHiMoiicPD2e6elRvPN1MevyqoG++30Pneeu4iZ2FjVxysz4Y+4b7W1xdcqMg+89IyOKmZOi2VHYwKa9dSyeNvzCSxOVx+tlT2kzX2yrIq+oEVVPQTmvF6akDi/lWfR34cnpTE+PYlr60PdQi/EpPOxg8Gt3uKlt6mJKSsSQfq8ezhIRggLUDdDu6EBlG59uKee2C6ehl4dWQogxToJfMaFt2VvP5r31ZCWH86MrZhE6SkVrkmPD+OHlM3ni9TzaOh2cNT+ZmCM8dU+PN/OTq+fwxOvbefb9PagUhQU5voC2vtXG+l21RJv1RJoNFFW1MT09ku9fNpNf/XMzOw404nR50Gr6J3G0dTr4zzclfLOzxt+6Z29ZC8vmJrFxTx0ZCWauP2cKKpVCh81JqEFzzJuj3uC3pcNOR5evcrNlkCu/iqJw6WmT+HB9KdeeM7nP506fk8imPXVsL2zkv1/aRnioDpNRi8mowxTS8/+hWtLjzf52U73eW1dCh83Jlcsyj/nf1xyq46bzcjhzXhKlte3Myuy/EtZbIfe5VXt5/YtCspLCmZwSQVZSOBkJpj4ptU6Xm9z9DUSb9X0q6CqKwnXnTuFX/9jE658fYNak6HFZMGk4Kus7+GZXDSajljmTLSRGG/tcV13dTr7ZVcva3Er/jXR6vAmny+MvNJYzjGJXYmBGg2bAhzxi4jq459dORUMHXnwPWo+HVqMiymygfoB2Rxv21LKtoIEz51kH1ZZMCCGCSYJfMWG53B7eXVeMWqVw2wVTRy3w7ZWdGsnKy2bw7a5aLjpkr+9AJiWaufeqOTzx+g7+9n4+apXC3CkWPlpfisfr5fIzMlk8LZ5uhwudVo1KUZifbeHTzRXklzb3SVN2uT2s2VrJ+9+W0O1wExsRwlkLkjHqNby0uoCPN5WjVincdF6Of6/u4QHlkUT0rCi0ttv9LY+GspI+JytmwJRqlaJw8/k5PPPOLkpr2vtVZu4VFqLlzu9M99/MVzZ0sDa3irjIEM5ZkDLoeaTGmY54M5idFsmtF0xlT2kLhZWt5BU1kdfTH1WjVkiPN3Pm/CQWT4tnZ1ETNrubM+b0T7eOjQjhqnOm8O+P9/HO18X+PskTVbO1m+dX7fVX0QZ4+6tiYiNCmDM5huyUCPKKmti4pxaH04NGrWLJjHjOnJ9MRoIZr9dLaW07dS1dcgMtxHEIPyRDp6y2p9Jz/PD3+/aKiwphT2kLdocbve7gQ8DeLSJtnYGp3C+EECNJgl8xYX27q4b6FhvL5iYFrcjLrMwYZmUOvH/2cFlJ4dx75Wz++EYef31vN9ecNZn1u2tJiDayKMeXCm3QHfyRXZAdy6ebK9i2r545WTF4vV7yipp4/fNC6lpshBo0XH/uFE6fk4ha5VsZTosz8eLqAhbmxB61PdGRRJh62x05/JWTLYNMez6WuEgjv7n1JDxeL13dLtq7HLR3OXv+56C+1cZnWyp48vUdnL0ghUiTni376vB4vVxz1uSAtW9R9VTiXjLTl8bc0m7nQFUbhRWtFFa2UVTdRlFVG3qtmo09Kc8nTYsbcKzLzshizaZy1uZWsWRmQkAqEI9VH20oI7+0heyUCM5ZmILd4WZ7YQO7SppZvaWC1VsqAIgJN7BsbhKnzkrAZNT5z1cUhYwE84T+HgkxGsIP2fPr9vQWuzq+lV/w/Y7eU9pCXUtXn/Hae4Jfa8fg6iQIIUQwSfArJiSH083735ai06iOueo6lkxJieCeK2fxxzfyePmz/QBceEr6gNWUMxLNRJr0bC9spKK+gzfXHmB3STMqReGs+clcfGpGvxXd5NgwHrh+/rDnd2iv38a2boAjpnMPl0pRCAvREhaiJeGwrOSFObH873u7+Wxrhf+1OVkxzD5Cga5AiDTpWZgTy8KeVPTSWiv/83Iuz76/B7fHS0K08YgPErQaNTcsz+YPr27nxU8L+OWNC45ZGXu8Kq62olGr+Mk1c/wPIk6eEY/T5WFfeQv7K1rJTApn1qToCfs9EGIsCDVoUKsUWjscNFvtaDUqEqKP/wGwv+Jzi61P8NvWswWmbZBFAoUQIpgk+BUT0he5VbS02zlvcao/YBsvslMj+eEVs/jTWzuJCTewaOrABa1UisL8KRbWbKvk4ec2AzA9PZJrzprcp6p0IPlXftvtNLba0GlVmI2jl06ekWDmkZsXsqe0BbVawajX9NlrOxrS483cfuF0/vruLrzA4mlxR90rPTUtkpOnx7Ehv46126s4a/747Bl7NA6nm8qGDtITTP1W4LUaFTMnRUulYSFGiaIohIfpaLZ202FzkhoX5s/+OR7+is+H7fv1r/xK8CuEGAck+BUTjs3uYtXGMkL0Gs5fnBbs6QzLtPQo/ufOk9FqVEe9aVk8PZ7PcyuxRIRw9ZlZzMmKOa6KnscS0ZNO19php6Gtm5jwkBF9v4EYDVp/QbBgmZ9t4ZqzJ7N6c0WfKs9HctWZk8k70MQ7XxcxP9sy7h7IHEt5fQduj1dSloUYI8JDdZTU9Oz3DUDKM/Rd+e3ldHnosrsAWfkVQowPEvyKCefTzeV02JxcdtqkUS9yFUiRpmMHSJMSzfzuzpOJMOkDtuf1aHRaNaEGDVWNndjsLn9l5BPROQtSBl1kKzxUx+VnZPLSpwW8/sUB7vzO9BGe3egqqfZVaZ4kwa8QY0J4qB4I3H5f6Gl3pPRtd9TedTDgleBXCDEejPzdshCjyNrl4NMtFZiN2iFV/x3PYiJCRiXw7RURpvdXeg5UsasTwelzEslIMLNpTx35Jc3Bnk5AldT4gt+MRAl+hRgLzKEHi8kFKvjValREmw190p6tEvwKIcYZCX7FhPLR+jLsDjcXnpLepxWDCJzedkcAMYPs8St8e7RvXJ6NosC/VxfgdLmDPaWAKa6xEmrQEBvg4mdCiOHprfisUhSSLaEBGzc2MoS2Dgd2h+/3l7XT6f9ce5cDj2fgNnVCCDFWSPArJowOm5Mvd1QRbTZw+pykYE9nwjp0v2rMEHr8CkiLN3HW/GTqWmx8vLE82NMJiA6bk/oWGxkJ5lHf/y3EWKJursK45T3C3/1vdEVbgjqX8J6HlAkxRnTawD0IPrzo1aFFrrxeaLc5BzxPCCHGCtnzKyaMdTurcbo8nL0gGa1GnuuMlAjTocGvrPQN1aVLJ7Fhdy1f5VVz0ZL0cR8wlvamPMt+XzHReTzgcYHmYPaLurkKfdEW9Ac2o2mu9L+urdlPxxm30D3t9GDMtGfPL6TGBibluVfcYe2Oevf8xoQbaGzrpq3D7l91FkKIsUiCXzEmlNW289rnhWQkmrlqWdaQz/d4vKzNrUKnUXHqrGNX3xXDd+jKr0XSnocsRK9hanoUW/fVU99iIy7q+PtvHi+ny0NtcxfJltAhB+PFst9XnAC0Vfswf/I0irMbR8oM3FFJ6Eq3o2muAsCr1mLPmIc9cxGesEjMnzyNae0/Uexd2OaeN+rznZRoPmqrvOGKPWzlt3efb7IljMa2bml3JIQY8yT4FUHlcnv44NtSVm0sw+3xUlRt5eIlGf3265bUWDlQ1XbEIla7iptobOtm6ayEcV3heTzoDX6Neg1G+V4Py9TUCLbuq2dveUvQg9+WdjtPv72T0tp2ZmdGc/252UQPIZ29t9KzrPyKicqw5yvCvnoBAHd4LPrS7VC6vU/A68iYi1d3MBOm9dIHCX//94StfxXF0UnXosthFLM8Ik16fn/3KQEfNy7K9zX2VnzuXflNjg1jx4FGKXolxGhw2tHWFeFMnhbsmYxLEvyKoCmttfLcR3upbOgkyqwn2RLGzqIm9pQ1M3eyxX+c3eHmmXd20dJuZ9ak6AGDhbXbfU/fz5yXPGrzP1FFmHwpbVLsavhy0iIB2FfWwhlB3J9eWmvl6bd9P1sx4QbyiprY989NXHbaJM6al4xKpeDxeimqaqO+xUZLu/2w/3Vj7XISbdZLqqOYeDweQje+gXH7Kjz6UKzn/RBn0lTUrbWoW2twJub0CXgP5Y5KovWyh4j4z+8I3fo+KnsXHUuvB2V8b8nx9XY/2OvX2uXb45sSG+b7WIJfIUZc2PpXCdn9Bc3X/g53pGQ7DpUEv2LUOV0ePlhfwqoN5Xi8Xk6fk8hVy7KoauhkZ1ETeQea+gS/H20so6XdDkBFfUe/4Le+1cauoiYyk8ykxQd2f5PoL9psQAHix0C67ngVH2UkPFTHvvJWvF5fddSvdlSTmRTuv4kcSQ2tNj74tpT1u2vxer1ctSyL5YtS+HZXLa9/UcirawrZmF/LoqlxfLWjmtrmrn5j6LQqIk0GkixhstVATDyObsxr/g99SS6uiATaLvgxnog4ANwR8bgj4o85hMdsofWyhwh///eE7FqDYu+i/azbQTV+OxEc3u7I2unAoFP7ix/Kyq8QI8zjRn/AV1BPZbNK8DsMEvyKUVVS41vtrWrsJNps4Kbzc5ieHgX49iiFhWjZWdSI1+tFURQaW218sqkcleJbgaps6GBBTt89TF/mVuFFVn1HS0SYnh9eMYukmMC1zzjRKIpCTlokm/bUUdPURXVjJy9+WsCUlAjuv27eiL1vs7WbD9eXsm5nDW6Pl6SYUK4+M4sZk6IBOHVWArMyo3n180I27amjpKYdtUrhlBnxTEmJINKkJ9KkJ8qkJ0SvGffFuoQYiKq9ifCP/oimqRxH8jSsy3+A1zC833ee0AhaL32A8A+fwLB/PYqzG+u5/9WnaNZ4ExcZQn5pC3aHG2uXA3Oozp/5IcGvECNLW7UXVXe77wOXPbiTGack+BWjprqxk8de2obb42XZ3CSuOCOTEP3BS1ClUpg5KZoN+bWU13WQFm/i9bUHcLk9XLkskzfXFlHZ0NlnTIfTzbqd1ZiMWhZkB7awhziy2VkxwZ7CuJeTGsGmPXXklzbzxTZfldjCylbfzaQxsDfGbR12PtpQxpc7qnG5PcRFhnDxqRksmhqHStU3gDWH6rjzO9M5dVYC1Q2dLJwa26fImRATmaauGPOqP6LuasM2fRkdS28A9fHdKnkNYbR+5+eEf/wU+pJcwj98HO9wrAAAIABJREFUEuv5PzpiyvRYFxtpJL+0hbqWLto7nVgSQzD3Br8dcjMuxEjqXfUFUFzysGk4JPgVo2bTnjrcHi83rsg+4j7H2Vm+4DevqJGCila2FTSQlRTOikWprNpQRmVDR5/jN++tp7PbxQUnp0l7IzGu9O77fW9dCTa7C5NRS3uXk7zCRpbOTgzIe9idbt7/toTPt1bicHmICTfwnSUZnDwjDrXq6D8v09Oj/FkZQoxV+n3r0JXl0X72XccdpGpqi4h47zHwuOg49Tpss84NXJEqnYG2C36MefVffQHw+7+n7cKf4DWM/DaHQOttd1RcbcXj9WIO1aFRqwg1aGTlV4iR5HGjL97q/1Bxys/bcEi0IEZNbmEDGrWKxdPijnjMjIwo1CqFNVsree3zQsLDdNxx0TQURSElNoyGFht2h9t//Be5lSgKQS0aJMRwxEaEEGnSY7O70GvVfP/SmQBsL2wMyPj1LV089tI2Pt5YTmiIlhuXZ/PYHYs5dVbCMQNfIcYLY+6HGA5sRlu977jGUbo7Ma/+C7hdWFf8ENvs5YGvzqzRYV3xA7qzl6CtKyLi3cdQ7P330491ve2OCivbADAbfVX/w8P0UvBKiBGkrdqHqrsdT89DM0XSnodF7oDGALfHQ7O1e8DPeb1eNuyu5asdVWzZV09+aTOltVbqW210djvx9BTLGevqWrqoauhkenokBt2Rn84bDdr/z957x8dRXvv/75md7bvq1Wpusix3W64Y90IxndDLl5BAEkICISG5NyT3klySm3tJuPxuOmlcWkhCsAFTjI1tcLclN7nJVi+WrF62l5nfHyOtLKs3Sxbzfr30UtlnZo92dp59znPO+RzSk8NxuP2YjRJP3TmHmAh1lzk51oYCVNSqqc+F55sprmphzuSYfrVm0dAYDQiCwNRUNfp7zcIUpqREkBRj5URRPR5fYFDnPppfy49ezqas2sHKOeP4z0cXs3JuEpJOm/I1xg5iSx1SQyUAxsKcgZ9IUbBv/yO6llpc82/GNzFriCzsAlFHy5pHcE9fhVRfjuXg28P3XMNEW7uj/IpGgFDKc7jVgNMTwB+QR8w2DY2xjLHgIACe9CWAlvY8ULS051HAjsMVvPlJPv/20HxS4zuqFZ8rb+IPm091e6wALJ2ZyMMbMofZysFx+GwNAPOmxPYyEpbPHkdlvYuv3Tyjg/JtcuvP5TUOJo4LY/thtU5SE7rSuFK5fkka4VYD1y1KA2DulBg27y3hRGF9J2G3viDLCpt2F7J5bwl6SeRLGzJZOlNTgtQYmxjKTrT/XHQYlj8woFZC5uNbMRbl4EvKxLXglqE0sWsEEcey+9GXn8Kcuw3PtBUEo7vuYT8aaWt3VNOobtrbLe3OL6i9f6PCtA1pDY0hQZHRV57FeGYPprN7kc1h+FNnQe5W0JzfAaE5v6OA8honsqJwNL+2k/PbFuVcNTeJxGgLLk8ApyeAy+PH6QlQVNXM7txKrlucSmL06FXfPXy2BkGA2em9CyUtnp7A4umd20gkx7Y6v9UOWlw+Dp6uJj7KQub4yCG3V0PjcpAUY+XO1ZNDv8+bEsvmvSUcOVfTb+dXVhT+95/HOV5QR0y4icdvm9lpPtHQGEvoy08C4I+fhP5CAdKFIgIJk/p1Dqm6EOvevyKb7bSs+ypcrpIAnR7nsvsJ3/wLbJ++QtOt3x/6NOthoq3dUW2T6vy2Ob1hFyk+a87v4Dh4+gJvf1bI9x/IGnIBRI0rA11jFca8PZjy9qBrUcuhgrYoHFffh2JQ7y8t7XlgaM7vYFAUdHVl6Bx1+NLmDPiDq61G5nRxAzctndDhsao6tR7oqpkJTBoX3unY7DPV/GbTCbZml/PgNRkDev7hptHhpaCimampEYOaxJNirAiokd/dxysJBGVWz01CvEIWDBoavZEWbyfSbuRofi0ni+qZNj6yz+2EiitbOF5QR3pyON/8wiysJv0wW6uhMYIoMoaykwStkbiybiT8gxcxFmb3y/kVvC7CtvwGZJnmtV9Ftl7ejVRf2my84+diLD6C8ew+vBlXXdbnHwzxkeaQ82sP1fxq7Y6GirzSRqob3BRXtjBrUvRIm6NxmRA8Doz5BzHl7UZflQ+ArDfhmboMT8ZS/ElTQRCRqovU8Zrg1YDQnN/+EvSjrziNsfgohqIj6Bx1ADRt+Ba+8XMHdMpml/rmLTjfhNcfxKjXhR6rqled38QoS5fHzp0SQ3SYib25ldy2fCI28+hb8LYJ+MztQ8pzTxgNOmIjzZRVO6ht8mDQiyyd2TlCrKFxpSIIAtcsTOXNT87xi78dJSMlgvvWTQml/PdEXlkDoGaJaI6vxlhHqi1F9LTgmXo1vpQZKJIRQ2E2ziV3dr8R7feic9YjOhoQnQ2Yzu5D11yNM+tG/KkzL+8/0Ipj2f0Yyk5g3ftXfBPmXjHtj+Ki1HZH0B7xbdvc1kSvBo/Lq+o+NLR0rQejMYYIBjCUHseUtwdD0REEOYCCgC9lBp6Mq/FOzAJ9x3aDSmufcK3md2Bozm8fENzNGEqOYSw6gr7sBKJfnYxkoyW0a2s6s3vgzm/rB0UgqJBf3sT0Ce3tRarqnYRZ9Fi6WczqRJG185P52/Z8Pj1awYYl4wdkw3ByolDdIJjbh5Tn3kiOtXH4bA1OT4Dls8d1+7poaFyprF+QQkZKBBt3FXK8oI7/eCWbe9aks2LOuB6jwHmlqvhMRqpWBqAx9tGXqSnPvuQZIBnwpc3CWHAI0+lPQZYRnQ2Ijnp0TtXRFZ0NiF0oK/sSM3AtvO1ymx9CDovFNe8GrIc2Yjm0CefSe0bMlv4QH9HupIcEr2xar9+hwt3q/NY3a6/lmERRkGqK1Drec/sRPS0ABKKSVId3yhJkW/etBhVJdYa1tOeBoTm/3SA6GzDm7cVYdBipKh8BVVU5EB6PZ/wKfBPm4U9IB1FH5JvPqLs1Hke/e/YpikKT04cggKLAqZL6kPPrD8jUNnmYnNQ53flils0ax6bdRWw/XME1C1NHnaJrcVULETYDMeGD39FOjrWGxLNWz9PaG2mMTdIS7Dx5x2yOnqvlT++f4pUteZwqaeCha6diMXWetmVZ4Vx5U6h9kobGWKdN7MqXMh0A78QsjAWHsO/4c6exstGCbI0kEDeRoC0K2Rqpftmi1ONFXadjLieueRsw5e3GfPxjPJnLCUaN/s+2uNZsNJ0oYDGqc1K4VZ17tLTnwdMe+dWcm7GGVJWPffsfkRrOAyCb7bhmX4M3YymBmLQ+lVAqei3yOxhGhfMryzLPPvsseXl5GAwGnnvuOdLS0i6/IX4vhpJjmPJ2Yyg5hqAoKIJAIDEd7/i5+CbMJRiRCIKAzx9EREASBDxTr8a2902M+QfwzFjTr6f0+IL4AzIZKRHkVzRxujWNCKC60Y2iQEI3Kc9tWEwSS2cksP1wBfnlTUxNGz2Rnyanj4YWL3MmDz7qC+2iV5OTwzUxH40xz5z0GH708EJ+9+5Jss9UU1zZzFdvnsHEcWEdxpVVO3B7A2RlDK60QENjNGMoPoI5dxuCx4FUW0ogOhXFom4OeyctxNGiZhnJbQ6uLZKgNapTyuCoQzLguPp+wj/4H2yfvULTzf8y6sWv4iPVzewwqyGUkdJWduX0DK5Vm8ZFkV8t7XnMYT7xCVLDebwTs/BkLseXMhN0/XPH2iK/mtrzwBAUZeQbxX788cds376dn/3sZxw9epTf//73/Pa3v+12fGpqR8fYH5ARRYFvPP4EX/rSowA89tgjHDiwr9OxWVnzeemllwF49dWXefHFnwNqkbng96jhV+DoD7+Ebt5aTiiR3PXQAx2ey+ML4PPLLNjwTe64+XrWZtp44LpFVHuCyNaIDs9355338L3vPQPAv//7M2ze/E6Hx4NBGa8YwdPP/Ynqehe7dn7M+cOvIQoCXn+QFpcPq0mP2Sjx3ntbGDcuicbGBtasWdbhPB5fEIfbxyOPfZcfPPUVAO677w7OnDnd6TVYtWotP//5iwD88pcv8vLLf+w0xmKxsGuX2k8sO/sgX/nKw53GAPz5z68ye7aa7r1o0RwCgY4fej5/kOip1/DkN77JLcsm8uSTX2fXrk87nWfmzNm8/PLrALz55us8//x/dvl8W7bu5s2dZcwcp/DU1+/tcsx///cLrFmzHoAbblhPZeX5TmNuvfUL/OAHzwLw3HPPsnHjW4iigCy33w6JiePYvPljAD755GO++92nuny+f/7zPcaPn4DD4WDFisVdjnn66X/l7rvvA+Chh+4jN/dYpzHLlq3gxRd/DcDvf/9rXnqp8z0gSRIHDhwF4NixIzz88AOdxqjH/5n58xe2nnchLlfndL+HHvoy3/jGkwB85ztPsmPHtk5jpk7N5PXX/9H6f/6dn/70x10+3yef7CIiIpLz5yu48cZruhzz3HP/xXXXbQDg1ls3UFpa0mnMDTfczI9+9BMA/uu/fsLf//7XTmNiYmLYsmUnAJ9+uoOnnvpGl8/35ptvk54+BZ/Px5Il87oc8+ST3+GBBx4C4NFHHyInJ7vTmEWLlvCb3/wBgD/96SV+85v/7fJcOTlqJOrUqZM88MBdAJ3eU7/61e9ZsmQpAKtWLaW5uanTee6770Geeuq7AHz/+0+zZcuHKIqCyxtoXRAJTJo0mW0ffYgoCLz33ia+96//gtPjx2Y2YDK0R7E+/HA7cXFxVFdXc911q7u0+9lnn+PGG9X2LnfeeQsFBfmdxlxzzXX89KfPA/DCC//N66+/0mlMWFg4O3bsAWDfvj08/vhXuny+V1/9G9OmqdG6rKwZXY557LFvDnguv5R9+w5jMBg4d+4sd9/ddXrrCy/8khUrVrX+ryupra3tNKa3uRzUz6aNG98H4MMP3+cHP/hel8/X01zexve//2/cfvudQPtcfun76XLO5QCPPvo1vvKVrwMMei7/9NP92Gw2iouLuP32G7scE5rLgwFuXrWA821zuSCAIKAYrNxy1/2d5vJLuVLmcsHVhBDwoZjDUFod9qGey2Nj7fzud38a9Fy+bv11fPXnn5Kz8d8Q/eqmvSwr1Ld4MEg67r3rjjE1l1/KQOfyS5k0aTJ///smAN57bxPPPvsDAOqbPciKgk4UibQbR/VcHhtr77Qub0ObyzvP5Wdz9oIcRLZFhza5+j2XHzrA1+69CSQDsqVjduionsvpfV0eG2vniSe+HZrLu1orDpZREfnNyclh2TL1TTNnzhxOnDjR43hR7Lgj2uT0IQBnK5qIiLSgl3SYTPpO4wCMRj2xsWrE0G43hcYofh9BRcCj6PEi8UTLtbwwbzWRleqL7vEFcXsDBGW1ebtOFJF0Ih8dLGVrtkBQbwJnIyJyhxQqq9UYej6LxdDJpqCs/p4YayM1IYzPdkJQVpD0YpsfjiSJiKJAdLSN2Fg7khTodB69pKY6e/xy6PkMBqnL18Bsbn8NbDZjl2N0OjE0JjLS2uWYtsfaxul0IrJ8yf/X+k/MzognNtbew3WRurwul5KSFMmPvpJCYWFht2PCwy2hc+n1ui7HWSyGLq/LxWP1el1oTHi4pdvna7suZrPQ7Ri73RQ6l9HY9XUxmS6+Ll2/BgO9Ll2Ns9na35tmc9fXxWBovy5hYeZuny8mxk5kpB2v19bDdTH367pYrV2/NyWp/bpERHR/XaKi1NfA5/P18bp0/RpcfF16em+2jYmK6nhdLv45IqL9vdl2X1/KxXOG2dz23hSwWwwYDRLNDi8X6l387t1TPHn3XMLCzASC6rxkNHR8XWNi1PemLLu6tTsszNyHOaMv10Xs13W59LW5mIuvS3/n8kuJjbVjMBioq+v+ful4Xbp+b/Y2l8Olc0b390tPc3kb3V2Xi8dfzrlcfY6+XJe+zeWxsXZsNhstLd3MGYpCeFMpsTn/gPwjiM4GNTpiCQtFSQS6n8sv5oqZyy12aKlH8DoRDEYQhFE7lycmhPPUvfN4ereN6ipVbyCkSSCMzbn8YgY+l3eku+vStsUlywqiKGhzOWNkLtfrQA6CTkK8qESx33N5lK3VcVY6jR11czmDW5cPB6Mi8vvMM8+wfv16VqxYAcDKlSvZtm0bktS1b15T09Lh95y8al77+CxNTh8JURYeuCaDzH6k/tY2ufneb/dhMUncszad2iYPm3YVkRxrJTrMxPHCOhQFDJLI/KlxLJuVyJSUCAJBhYOnL/DKljyWS4U8qd+JM+tGXIvv6PNzt7UqumdNOmkJdn72+mFWzU3igWsy+NP7p9iTW8VPHlnUaw/fJoeXb/1qD1lTYvn6bUOnWvne3mL25lbyzIPz+6QkfTS/lk2fFfLEHbOJtBv55T+Pc+RcLb/4+tJRX4sYG2vv9N7S6DuCx4FitI76dL3LyXC8p5ocXv64+RQnixuIizDznXvm8OOXszHqRZ5/bOmQPpfG6GIsz1Giox79+bzQl9RQEXpMESW86YtwLH/wilFDHiiWA29hzX4X17wNOJd0HXUcDMP5HgoEZR59fifTxkfynbsHJgCqoTq8X/7vHaHff/XkslEt7jmW56WhRldXRtSbz+CetgLHqi/1+3hZUUBRNxui//g1ZFsUDXf/ZBgsHTkufT+1OcRDyaiI/NpsNpxOZ+h3WZa7dXy7Iisjjsy0KDZ+Vsj2w+U8/9cjLJ4ez4bFaYyLsfbaJ/NcWRMKcONV47lqRiKKotDY4mXn0fOU1zgZn2Bn2exxLMqM7yA2o5cEls5MRC+J/PkdH1/VS+jPHoBFX+izA9AmDBFmNTBxXBg2s57svGruWZtOVb0LnSgQG9H7h32Y1YBRr+NCg7tPz9tX9uRWUt3gZlt2Gbcsm9jr+I8PllJa7WDX8fPctHQCJRdaCLcaRr3jqzE4dHVlRP7th7iybsC16Asjbc6YJtxm5Ft3zWHjZ4W8v6+E//i/bBxuPzMnam2/NK4QFAVd0wXV0a1UnV1dc037w5IRX8oM/OMy1K+4iSANvEf8lYRr3o2Y8vZiPvoRnqnLCUYmjrRJfUbXGqkJBOQRtuTKxuPrmKZa3+zt5PwGgvKoEzfV6B2pthSAQHRqv489VVzPHzafYtK4cB6/bSaK3ojg1wTRBsKocH7nzZvHjh07uP766zl69ChTpkzp9zksJon71k/hqpkJvLIlj/0nL7D/5AUSoixkZcSSlRFLWry9S0f4bLmaspOeotbrCoLAfeunkJ4cQVKstVdhpYWZ8VTWpXMoO5llLcW88/ZOpi+ax+TknlWaob3NUbjVgKQTWTwtnm055eQW1lFV5yImwtynCU4QBOIizVQ3uFEUpVeHvy/UN3uobnWmt2aXs35BSo+7j81OH3ll6mu570QVK+ckUd/s1Rq0fw4wFhxCUGQsOZvxTlpIMKb/E7tG3xEFgdtXTMIgiWzcpTa7z0iN6OUoDY2RR/C5Cd/4E/Sti0AA2WjFO35uyNkNxKT1WwBmzKA34rj6XsI//F9su16l6canr5hsGkEQkHQi/uCIJxRe0bQpPbdR3+Lt0Ou9ss7Jv/3pIA9em8GyWeMut3mjj2AAQ/ERfKmzRr24XZvz2581kqwovL+3mE27ilCAw2drOFVcz1LJgODTBNEGwqj4dFm3bh179uzh7rvvRlEUfvrTnw74XBMSw/jhg/PJzqvm0JlqcgvreH9fCe/vKyE6zMi8KXFkZcQyOSk8lE9+rrwJo15Hanz75KITRZbM6Hsk5aal4znTsggKi7GVHOY/8xX+5/GrQ/3vuqPZ1R75BVg6M5FtOeVsOVCK0xMgPbnvC9q4SDNl1Q6anT7CbYOfAE6XqCIW8ZFmLjS42ZZTzk1LJ3Q7/vC5GjU9XC9yocHNziNq2tr4BE2VeaxjKDmOgoCgyNh3/oXG238IgrYrPdzcuHQCRr2Oz45XMlvbZNK4AjCd3IG+thRfUibeSQvwj8tQW/to80UI34QsfKkzMZTmYijMxjdpwUib1Gf0khDSINAYGK5WtWyzUcLtDXRSfM4rayQoK3x29Pzn3vkVfG7CPvolhrITuKcuw7HmkZE2qUekujIAAtHJfRrvcPt56b2TnCisJyrMyA1XjeeVj/L456eFXGU0IAaah9PcMUuPzq/f72fz5s1s376d4uJiRFEkLS2N1atXs2HDBvT6oalBEEWRH/+4a+XBgZ1PYGFmPAsz4/H6g5worCfnbDXH8mvZml3G1uwy5k+N47FbZuBw+zlf6yQzLRKdOPAPX0EQyFyzBqXkbdbZK3i9bi5l1Y5Qz97uaHJ0dH7TEuykxNk4W64qB/bW5uhi4lpbD1xocA+J83um1fn94vWZ/PKfx9l6qIx181MwG7t+2+TkqWlrd61O59UteXxwQBULS9Oc3zGN4G5Gqi7CPy4D2RKGKf8gppM78czoWpFSY2hZvzCV9Qu1SLvGFUAwgPnYFhTJSPO130Qx9axl8blFEHAsu5/Iv34f2+7Xqb8CIlptSDpRc34HSVubo6RYK/nlTTQ0d0xtrahRywQLzjdT3+whKsx02W0cDQjORsI3/wJ9bQmKIGA6uxfXgluQw0Zvyz+ptpSgPUbVR+mFgvNN/HbTCeqbvcycGM0jN07DZtZzqriB7DPVOJIFIgJeLQV+AHT7au3cuZP777+fc+fOceutt/L888/zi1/8gttvv528vDzuvvtuPvnkk8tp64Aw6nVkZcTy6I3T+f++uYwn75hNcqyN7DPVVNY5yW91MqekDEHKoMGEL3UW0b5aksVGKmocvR7S7PKhEwWsF9USL53ZXuOTEN135zc+Uh1bPQR1v4qicKa0AatJYnJyOOsXpuL0BHjulWw27y2mtrHjczjcfk4XNzAh0c7y2YmEWfT4/OoH4PiEsK6eQmOMYCjNRUDBlzYL59X3IxvMWPf9HcHZONKmaWhojCKM5/ajczbgnrZCc3x7IRiRiHvOdegc9Vhy3h1pc/qMpBPxazW/g8LtDQKQFKPeI5dGfi9eWx4+W8PnEV1DJZH//DH62hLc01bSsurLCHIQy+H3R9q0bhFcTYjuZgLRKT2OUxSFbdll/Oy1wzS0eLl1+USeuGNWSHT21mUTEAWB800BBDnIY89vZ/Pe4svwH4wduo38FhcX89prr3WK7k6ePJkVK1bg8/l47bXXht3AoUTSicyaFI3XH+S3m06w40hFaLckvQ/1uX3BO2k+xqIcrpJKKK/N7HV8s9PXoUk8wOJp8fxjRz5BWQk1ku8Lca3CWNWNnfsA9peaRjd1zV6ypsQiCgLr5idTWeskO6+atz8r5O3PCpmcHM7iafEsmBrH0fxaZEUhKyMOnSiycFo827LLCbMaiLB9PoRKPq8YStQ+l7602cjWCJyL78D+2SvY9rxBy/rHRtg6DQ2NUYGiYDn6IYog4p597Uhbc0XgnH8zxrN7sRz5EO/UZQQjRr+onV4n4gsER9qMUYfLE8Dh8YfWaT3RFvkd1+b8Xhr5rXViM+txuv3k5NWwdn7PztRYQ6o6R/jmFxC9TpwLb8M1/2ZQZILZ72A6/Rmu+Tch23rOuhwJQmJXPdT7BmWZP7x3ioOnq7Fb9HzlpulMG9/xf0mMtrJsdiKOPBEk0BOg9IKmtt0fuo38PvTQQz2mNRsMBh5++OFhMWq4mZseQ7jVwJ7cKk4V1SMKAhPHDU100jd+DoqoY6lU0mvkV1EUmlqd34sJsxqYNyUWvSSSFGvr5ujOtKU9D0Xk90ypGrWb2toyymSQePSm6bz4jat56LqpZKZFUlDexGsfn+WpX+3hHzsKAMjKUNNNrmqtl56Q0LXImMYYQZYxlOYStEYSjFJrWDzTV+OPm4jp3H70pcd7PYXgdSI2XRhuSzU0NEaKgA/z8S1IdWV4Jy9EDosZaYuuDPRGHEvvRZADWHe9BiPfmbJXJEkkoAledeK1rXn88I8HaGjpXZ23TfAq3GrAZtZ3OKbZ6aPF5Sc9OZxJyeGcLWsMdQ35PGAozCFi088QfG5aVn0J14JbVEE4UYcr60YEOYD5yAcjbWaX9MX5PVlUz8HT1UwaF8azX1zYyfFt4961U0gfHweAUQjg9mkbTv2hz0nibWrMa9eu5c033xxOm4YdSSeyfPY43N4ApdUO0hJsmAxDo/2lGK34kqczUVdPoK5S7cnVDR5fEH9AJrwLUawvXj+VH39pYZ9667YRYTeil8QhaXfUJnZ1ab9ki0nP8tnjePqeufz860u5a/VkkmNtONx+Jo0LC6Vej08I49GbpnHn6smDtkVj9CJVFyJ6nfjSZrcrkooiLSu/iCKI2D99BQLdfzAb8g8S9fp3iXrjXzUHWENjjKGrK8P62atEv/wEtt1voOj0uObdMNJmXVH4Ji3AlzwNY+lxDEWHR9qcXpF0An6t5rcT58qa8Adk9p+s6nVsm/NrMUpE2Y3Ut3hQWteSbUGVpFgr86fEogBHPiepz6YT2wn76H9BEGi+/lt4pq3o8LgnYylBWzTmkzsQXE0jZGX3tItdde/8nq9VMzevXZTaY4tQvSRitqnrbYsod2qPpdEz3Tq/9fX1HX5/44032LRpEx988AF//vOfh92w4WbFnHGhtXp/FJX7Qpsy43ylmNqm7mXI29ochVk6O78mgxRyJPuKKAjERbS3OxooiqJwpqSBcKuBxB5qjiPtRq5ZmMq/f3EB//XVJTx55+wOjy+elkBitFbXNSYJBtCXnwrVovnSZnV8ODYN9+xr0DVXY8l+p9PhgquJsI9+SfiWXyF4HOpu7fGtg7NJ0RZcGhojjeBzYzq1k4h/PEvUm89gyd0KooRr3g3U3/1TrQ1afxEEHMseQBF12Ha/3uNm4mhAL4lan99LcHn81DWra8HduZW9rs/a0p7NRomoMBM+vxxyiMtrVbGrpBgb81oz7XLyqofL9NGBomDZ/xb2T19GMdlovOX7+MbP7jxOJ+GatwEh6Mdy9KPLb2cvSLWlKJIRObx7Qa6qevX69knstlXeC82CAAAgAElEQVQEz66X8Xi1yG9/6Dbc+eMf/5gpU6bw8MMPYzKZSEpK4rnnnkOSJBISRn/dSW9EhZmYMzmGI+dqh6zetw3vhHlYd/yFq/TFlFY7uq3xaEtV6a0dUn+IizRTUevE4fZj78Kp7gvVDW6anD4WZsb1OWU5tg91LBpXMIqCrukC+tJcDGW5GMpPIwTUVCzZHIY/eXqnQ5wLbsWYfxDLkQ/wpi8hGJ0MioLx3D5su15D9DjwJ06hZeUXCX/3v9VanYW3oRj7t+mjqyvHvvPPiI56Gu7+ab+P19DQGCSKgnShENPpnRjPHUD0e1AEAW/abDzTVqqZIZ/Xvr1DQDAqCffsa7Ac+QBLzmZci24baZO6Ra8TCcoKsqIgaiVPAJRVt5fAVda5KK5qYUJi96V2Fzu/bdG/+mYvVpM+pPScFGMlJtzM+AQ7p0sacbj9/coUvGIIBrDv/AumM7sIhsXReOPTyBHx3Q73ZC7Hkv0u5txtuOZdj2IaBd1GZBnr/r8j1ZfjS8rssa1bVZ0LQYC4PgS/FEld49v1CrVa5LdfdPtp9OKLL7J//36eeOIJVq9ezTPPPMP+/fvx+/38y7/8y+W0cdi4a006SbE2Zk8e2vojxWynIWoSU+vPcez8eZjS9S5PW+S3q7TngdLmhFY3uAfs/BZVqn3DJo4b2k0BjSsLwedGX35K7TVZlouuuT21KhCRiC91Jv6UmfiSpnbdhsNgwrH8QcI/+B/sn75M8/rHsH36fxiLj6BIBhxX34971loQRNwz12Lb/w9Mpz/FPee6ng3zedA1XVCd8QsFmI9/jCCru56Gohy8U5cN4augoaHRHYLHgSlvL6bTn4ZS+oK2aJxzr8czdRmyXes9PVS45t+M8ew+LEfexzN1KXJ49w7ASNImIhoMyoiSboStGR2Utjq/i6fHs//kBXbnVvbJ+bWYJKLC1M/WhhYPKXE2Kmod6EQh1Alk/tQ4iqtaOHKuZuz1/PV5CN/ySwylufjjJtC04dsoll70eSQD7rnXY9vzBuZjH+NadPvlsbUbBK8L+9bfYiw5RiAiAcfKh3ocX1nvIjbcjF7qvSr1YufX7dQiv/2hx63YxYsXs3jxYt577z0ee+wx7rrrLtauXXu5bBt24iLM3LZ84rCc2zdpAdSfI6L8CNBFegbDE/mNv0j0alLSwJzXwjbnt4fJWWMMoshI1cVqZLc0F6kqH6E1lVg2WPBOnI8vdSa+lJl9FqzxTZiLd+J8jIXZRL32NELQjy8pk5ZVD3dYvHmmr8Ka/Q7m41txz1oPAT+65mp0jVUhR1fX2Prd1bGFUtAaiSvrRuyfvYLp3AHN+dXQGEbExguhOcJQdgIh6EcRdXgnLcA9baWaBSJqPSeHGsVgxnnV3YRt/S223W/QvOFbI21Sl7Q5v/6Agl4L9gPtkd9rF6ZyuriBg6cucPfq9G4dHJfnorRnu9rDt77Zi6IoVNQ4iY+yhF7nrIxY3tpZQE7e2HJ+BVeT2sO3phhv2mya138dDH3rZ+yevgrL4ffU9cSc60YsG0zXWEXYB/+D1FCJL3Umzesf67G/r9Pjp8Xl73Fj5GIUSd0YsUkyHl8QRVE0gdk+0u3UtG3bNn7zm99gMBj49re/za9//Wtef/11vvrVr/LII4+QlZV1Oe284pCmL0I++AYTm093O6Z5WNKe1Zv8QsPA2x0VVTYjCgKp8X1Xmta4MhGdDehLT6iL2bITiB71Q1pBIBA/EV/KTHypMwnETwRxYLv4jmX3oy8/iSDLtCx/EM+M1Z3SfhSTDU/G1ZhPbif6L98I2dFhjCAg26LxpcwgGB5PMCKeYHg8/nFTUQxmTGd2oS87geBuQTGPglQnDY0xgq6xEvOxLRhKT6Brbq8vDESOw5O5HE/G1b1HZDQGjTd9Mb6TOzAWH8FQfBTf+DkjbVInpFaHThO9aqfsggNJJ5IUa2XJ9AQ+OljKsfxa5k+N63K82xtAJwoYJLE97bnFS32zF48vGOr/CxAfaSE51sap4nrc3gBm45W/46BrrCL8vefRNdfgzlyhRkv7s/7QG3HNvhbb/n+o6c/zbxo2W7s1oewEYVt+jeh14pp9Lc6r7ur1f6iqU9ftfar3pT3ya5VkZEXBF5Ax6rVsi77Q7V3y/PPP8+abb+JwOHjiiSd4++23+eIXv8jtt9/O73//e8357Q1rJEXSOCYFzlPTUo9o7yxX3uwanppfgPOtogj9JRCUKalykBxrxaDdRGMHRUZwOxCdDegc9ejPn8FQdiKUqghqBNWduVxNZU6ZjmIams0P2Ral1uLq9D0ukF1zrsNQlAM6Pb6YtJBzGwxPUH8OiwVd9zVN3smL0VcXYSw4pDrYGhoag0NRMJ3aiW336wgBX3sGSMoMfKkzkcO6F27RGAYEAcfyB4n82w+w7XqN+uRpIA3d+mEo0OvUyJMmeqUSlGUqap0kxVrRiSJXzVSd3z25ld06v65WJ1YQBGLC1Wjn4bM1If2YpNiO0cP5GbFs2u3gWH4ti6df2Zo8UlUB4e+/gOhpwbngFlwLbm3vJNEPPDPXYjnyAeZjH+Gatb7PUeNBoyiYj2/FuucNEESaVz+CN7Nv2WiVbc5vD0KzHWi99y2Seq95fEHN+e0j3Tq/drudt99+G7fbTUxMe4pjWFgYTz/99GUx7kqnOGIak+rOEzi6E8OyzgIVTY6hr/mNCTcRE24it7Aer7/9Ruir+ERFjZNAUGbCEPU91hhmFAXB60B0NiE6GxCdjeicDYiuxtDvorMB0dUUqosNHarThxaxvpSZBKOSBvQh0xf6UvsnR8RT/8VfDvg5vJMXYtv7V4z5B/rv/Ab9iO4WFL2xx7QkDY3PC4K7BfuOP2MsykE2WmlZ/WW8kxYMOANEY2gIRifjnrUOy7EtWI58oPY5HUW0peMGtMgvoEbzAkGZlDh1Mzk51kZavJ3cwnqanL4u139ubwBLawQ3JsLMmnnJfHK4nJc/PAOoSs8XkzU1jk27i8jOq7minV9D8RHCtvwagn5aVn4Rz/RVAz6XYjDjnrUe66GNmE9uxz33+iG09CKCAfTnzyDVlwMgVRdjOrsX2RxO03XfJJCY3udTVdWrzm9iXyO/rVorFlFd23l8gSH1J8Yy3Tq/L730Eps3b8ZisfDCCy9cTpvGDE2pC2iu3UVi7rtUJkxCmjyrgwPa7PKhEwWspu7TVASPg7CPf4PobISgHyEYQAgGQA4gBP0gB/G0pYUAgiCwaFo87+8r4Vh+LQsz4ymvdvCTV3O4c/VkVs1N6tHmNrGrvtYcaAwTioLgc7U6r40dnFndpU5t0N/9aUQdsiWCQOx4ZGsksjUC2RKBP248/nFTR13UYDDI9mj8ienoK86ga6hEEURETzOiuwXR3YLgUb+LnhYEd9vPDgR3M6JfbUMhGyzU/7//QTFo6uUan1/0ZSewb3sJnatRrdFf86gmXjWKcC28DdPZ/Vhy3sOTsXRUReC1tOeOtIldpca1O6xLZybwxrZz7D9ZxTULO7f+cnkDhFvbRSTvXZeO0aDjg/0lACRfEvlNirGSGG3hRGEdXl8Qo2HoNqhkRcHlCQy7krTp5A5sn74MOj3N1z+Jb/zcQZ/TPWs95qMfYjnyIe6Za4duvRPwYSjNxViUg6HoCKK3Y6alP3Y8zdc90e85s835Tehji9C2tGeL2Br51dod9Zluva6oqCgefPDBy2nLmCMuOYH/3LOKH5s/JmzLL/nephtwWWOJsBuJtJuorHMRZjX0WKBuOrMLQ9kJZL1J3eURJWSDCXR6FJ2EVF+BoeRoh2MWZarO78HT1SzMjOed3UV4/UE27y1m2azE0M5sV2hiV5eB1rZBqjN7kSPb6ui2RW6FHvo5KoKIbAknEJ2iOrTWCNW5tUQQbHNyrZEoJmuPsvpjDc/kRdgrzxH1xvd6HauIOmRzGHJYHAGzDdHZgNRQia6+gkDC5MtgrYbGKCPox7r/LSxHP0QRdTiW3Il7zvWagNUoQzGYcSy9m7Btv1fFr65/YqRNCqHXIr8daBO7SrnI+V00LZ6/bc9nT24l6xekdFgDBoIyPr+M2djuwAqCwBdWTiLSbqSkqoXYyM6bs1kZsWzeW0JuYV236dQDYfOeYjbvK+bfHlpAcuww6MAoCpaDG7Fmb0I22Wna8BSBhElDc2qTFfesdVhz3sN0aieeWesHfC7B68JQchRjYQ6GkmOh9VnQGol7yhJ846aqWTGihC85c0COdmWdE7NRIszSt42GNufXJKoCaR6t3VGfufIr40cx6SkRzFu3gh0FBtZXvcuPrJ/wI+Vmiit9FFSoTub4hJ6FeUxndqOIOuof+EWXIj4Rbz+HVHUO5GAoHS05zkZSjJXjBXWcLWsk56zaoqahxcvhszUszOy+RUJRZTMGvUhizNjrlSpVnsNQfhLvxPlqz9mRQFGwb/0dpnP7un5YEJDN4QQix7VGaSM7OrdW1blVTHZtQdoF3oylGMpPgyIjm2wo5jBkkw3ZHIZitiGbwpDN6t8VvalDmrfp5A7sO/+CrqFSc341Pnfo6iuwb/0t+tpSAhEJtKz7GoG4CSNtlkY3eKdchf/kDoxFOehLjuNPmzXSJgEXpT0HlBG2ZHTQ7vy2r9/sFgOzJ8dw+GwNpRccpF20DvT41OhdV8JVa7K6X7dkTYlj894SsvOqh8z59fqDbM0uIxBU+Ozoee5dN2VIzhtCDmLb+TLm058SDIuj6cbvEIwY2rRt9+xr1BKBw++radQ96IZciuBqxliUg7Ewp1W0U702gfB4fJPm4504X50jBxFg2HX8PJOTwomLNFPd4CY13t5nxeY2tWeToNrl1iK/fUZzfocRURBYOScJ5nwB536IzXmXFxIP0HDT07R4FBodvlBf3q7Q1ZYi1ZXhnZDVrXpt0BaNXjmL6GxAtrfXZi+cFs/Gzwr59cZcAO5Zm86b286x9VBZt86vxxfgfK2T9KRwdGPMsZLO5xHx3vMIAR/Wg2/jj0nFm7EUb/oSZGvEZbPDdPpTTOf2EYhOxTthbnsqcptzaw7TauoGgWK0DjgKEoxU20RIDefxDqVRGhqjGUVRUw73vIEQ8OGetgLH1fd33btbY/QgCLQsf5DIv/8Q265XaUj+ab8W9sOF1Cp4paU9q5RdaCEm3ITlkvK2pTMSOHy2hj0nKjs4v66Levz2h9R4G7ERJo4V1OEPBNEPQY/lA6cu4Gxtu7T/1AXuWDW5T/1n+4TfS9iWX2EsOYY/djxNN3wbxTKw9pw9oZjDcM9Yg+Xoh5hO7+pVD0RsrsVYlI2hIAd95VkE1E0cf0ya6vBOyBoyfZSSqhb+8sEZ4iLNPH7bTIKyQmJfxa5oj/wahaGL/OYW1lFQ0cTNV08Y022T+nR3ORwOWlpaUJT2nbxx48ZOP7HLgWvRbeiaqjDlHyR8518Q1zxKuK3nxYXpzG4APFOXdjtGblWRFh31HZzfRZlxbPyskBaXn/EJdtZmJXO6uIGj+bUUVDR12QO4pKoFRWHMiV1J1UWEv/8CyEGci76AdKEAQ+lx9Hv+inXvm/hTZuCZshTCVwyrHbqGSmy7XkM2Wmja8C2thm6UEWh1fnUN50fYEg2Ny4TfS9jW32IsOoxstNK89itqj3qNK4JgTCruGWux5G7FfPQj3Fk3jrRJIedIS3uGJqePZpefuemd11szJ0Vjt+jZf/ICd66aHIqYuy/q8dsfBEEgKyOOjw6UcqKonrnpg6sDVxSFbdlliILA/KmxHDxd3WN7pn7Z6mom/P0X0FcX4kudRdM1jw+rGrN7znWYc7dhObwZT+Zy0F302ioKuobzajpzYTb6mmL1zwgEEtPxTpyPd2LWsNTVnyiqA6C6wc1fPlDFzPra5ggAfavzi/qecfsGF/lVFIVXt+RR2+ThqpmJIXXxsUivd9fvfvc7XnrpJSIi2qNjgiDwySefDKthYw5BpGXNo+ha6jDl7SEYkYBr/s3dj5eDmM7uQzZa8aV138svaFMdKF1LHYHE9r/HRVqYkBhGUWUzN7Xu4Kybn8zR/Fq2Zpd16fwWVbYAY0vsSvC5Cd/8cwS/h5Z1X8Obvlj9u7sFY/4BTHl7MJTmYijNhU9fxj4xC0/GUvxJ04Y2rTgYwL71twgBH82aeMyoRDHbkU12zfkdyygyYks9si1KKxuQZcI+/g3G4iOqqNXar6ivi8YVhWvRbZjyD2DNfgfvlCUdNsFHgva0Z835vVDffd9WSSeyaFo827LLyS2oY+4U1bkKRX4H0K83KyOWjw6UkpNXM2jn92xZI+U1ThZmxnHDVeM5eLqa3T20Z+qRYABdSw2ywYrocxK2+QWkpgt4pi6jZeUXOzqjw4BsjcAzbQXm3G0Yz+7DO/VqpOoijIXZGApzkBorAVUHxJc6U3V4x89FGeaswFPFDQBE2o0hsdn+OL9tac8GhibyW1DRTG2TKv5ZdsHx+XZ+33rrLbZt20ZUlPahOGgkA03XP0nkWz/CeuCfBMPjQ87YpRhKTyC6m1SFuh4mhjYnSnTUdXrswWsyyK9oYvYkdczUtEiSY61kn6mhfpWHqLCOO21jUezKUJiD6G7BmXVjh9daMdvxzFyLZ+ZadI2VGPP2Ys3fjylvj7o5YY3Em74YT8ZSgjGd1Rj7i/XgP9HXFOOZugzf5IWDPp/G8BCIHIe+6iwEfAMSrDCe2490oQDn0nuHrW2URj9o3dXXV5zGUH4KfcVpRK+TQHQKjqvvw588bUCnFbxOFINlSK+x4HEg1ZYi1ZYg1ZXhS56ON6P7rJ/BYt37V4zFR/AlT6fphm8P+wJUY3hQjFYcS+4ibPsfsO35K83XfmNE7WlzfrW0Z6hpdAN0KVAFsHRGItuyy9mdWxlyft3egUV+QQ1cRNqNHD1XSyAo9yhu2hvbstXWPWuykkmOtTEh0U5uYR0NLV4i7b2URPg8SA0VSHXl6MtOYCg9juhzdxjinH8TroW3X7bPSdfcDWp5x76/Yz34T3SOekBNHVaju/PxjZ992Voden1BzpU3khpv47blk3jxH8cABpT2rFdaI7+DrPndd7Iq9HNZdQtZGaNHRX6o6fXuSkxMJDx86PPwP68olnCaNjxFxNv/gf2TPxC0RxNI6NwHzJjXmvLcy+Ln4sjvpaQl2DvUkqjR3xT+8uEZth+u4AsrOyrqFZ1vxmbWEx1+mZqBXwZM5/YD4Jm6vNsxwYhEXItux7rh/9FwPAdT3l6MBQewHP0Qy9EPCUSn4MlYqu6qWyP7bYO+/BTmwx8QDIvDsez+Af8vGsNPMHIchso8dE0XCEan9OtY87GPsO1+AwDP9NUEIxN7OUJjOBCba1RHt/wU+opT6FxNoceCtmh8cRPQl50k4p2f4Z2YheOqe5DDe4lmKAq62lKMhYcwFmQjNZxXo6WrvzywdLhgAEPZCaTqQtXhrSlBd8kGpjH/EL60Oapi+xBjyt2G5dgWApFJNF/7uOb4XuF4py7Ff2oHxoJD6MtO4E+ZMWK2aGnP7VQ3qA5fdxG01HgbybE2jhfU0ezyEWYxhJzfgUR+RUEgKyOWbdnlnClpYMbEgWWY5Vc0cfhsDWkJdia3ZglePTORosoW9p6oZMOS8epAvxepoQIq6rCWFKCrr0Cqr0DXUtvhfEF7DJ4J8xACPgSvC8+Uq/BmLhuQbQNFtkfjyVyB+eR2ZKNFXdNNnI8vZcaI6BvklTUSCCpMnxDFrEnRrJwzjlPFDcT3K/Lb5vyq7S4HE/kNBGUOnr6A2Sjh9gYoveAY8LmuBHq9u8aPH8+9997LokWLMBjaIyGPP/74sBo2lglGJ9N8zdcJ3/wC4R+8SMMXnu2wgBK8ToxFhwlEJhKIm9jjuXqK/HbF4unx/GNnAZ8ereDGpeMx6lVRhGanj7pmD7MmRY+ZInfB3awuBOImIkd0r3DdfoBAYFwGjnEZOJbfj6H4KKa8vRhKjmLb+ybWfX/DnzxdnTQnZPWpRkXwOLBv+z0IAs3rvqb1jx3lBKNUh1WqP99351cOYjm0CWv2O6E/6RrOa87vZUJ01KOvOI2+/BSGitMdFl6yORxP+mL8ydPwJU1T51lBQKouwrb7NbXOq/gY7jnX4Mq6qeP9qchIFwoxFmZjLMhG11yt/lmnJxCdgqHiNJFvPoNz6T14pq3sUwRDdDZgOrkD08md6FyNHez0pc4iEJNKICYNqbYEy+HNmE5uH/I6TkPJMWy7XkU222m64anLFunQGEYEEcfyB4n4+7+r4ld3/WTENjTaBK8CQU3tuS3y253zKwgCS2cm8Lft+Rw4dYF181NCac8DifwCzM+IY1t2Odl51QNyfgNBmf/76AwKcM+adHU96PeyNNZNuZTPhNMnCKvzd3Jy21w22RyOL2kagagkglFJ+BMmq5+lo2Bd6Vh2H57M5QRiUkd8w+9UsRp5nj5ezap94JoMgP6tv3V6FAQkudX57WfkNxCUqW/2EBdpIbewDqcnwPoFKRw4dYGy6pZ+netKo9erHx8fT3x8HxwHjX7hT52FY/kD2D/9P8I3/4LG238YWoQY8w8iBP14Mq7udcJQDBZkvQldS32fnlcv6Vg1N4n39haz70QVK+cmAYTqDcZSva8x/yCCInebWt4jOj2+SQvwTVqA4GnBmH9QrQ8uO4Gh7EQoVcaTcRX+5Bld1w8qito6x9mAc9HtQ9a7TmP46JfolaJgKDiE9cBbSI1VBMNicc2+Bvuu15DqK/BNzBpmaz+fCO5m9BVnQmnMbfVaALLRqu7mJ2XiT56mKnh3MYcG4ibQeOsPMOYfwLr3b1gOv4/p9G6ci79AMDweQ8EhjIXZ6JxqTZasN+GZvAjvpAX4UmeB3ogxbze2Xa9j3/kXjIXZtKz6Utc1s4qCvvIsptxtGAuzEeQgssGCa9Z6/Kkz8cekdaot86XOxJS7DfPxrbjnXDdkCzVdbSn2Lb8GUaLp+m8Ni4iLxsgQiB2PZ8YqzCe2Yz62Bfe8DSNiRyjtWav5pbrRjU4UOpWYXczi6Qn8Y0cBe3OrWDc/pV3wqp9qz21MTgrHaNBRcL65/wf7vRz6LIcpDSd5OCXA7ONHkXaeR2yuQUDhKTPgBkpANofhS8okGJWEOXUSjYZoAlFJahvG0YpOTyC+54DScJKTV43dYmBKSgQni+oxSCLpyWpkfUBBJ0EAyYBOHljk9909xWzeW0xmWiRBWd2sWjI9gfO1Tk4U1eP0+LGaRl5Bfjjo9e7SIrzDh2fGGnSNVViObSFsy69p2vAU6CRMebtREPBOuar3kwgCsi26z5FfgFXzkvhgfwlbs8tYPmccoiCMSefXdG6/+jqmLxrUeRSTHc+MNXhmrEFsvIDp7B5MeXsxnVW/gpZwvOlL2uuDWycx45ndGAsO4U+cgmveyKtwavROMKJvzq++7CTW/X9HX12EIoi4p6/GufA2hIAXdr2Grr7icpj7uUDwutCfz0NfcQpD+SmkurLQY7LehDdtNv6kafiTM9Ud/b72XBQEvOmL8U6Yh+XIB1gOb8a+40/t5zZa8Ey9Gu/EBfhSpneqAfdOXYY/eTr2HX/CUJpL5F+/j2PZfXjbNi39Xkxn92LO3RayORCdgnvGGjxTruoxc0QxWvBMW4nl2EcYz+3DO3XwKYKis5Hw919A9HtouuZxrZf1GMS56AsY8w9iPbRJLdMZAQEzvU5Le26jusFNTLgJUezesQm3Gpg5MYpjBXWUVzsGJXgFIIoCMWEm6pt7aNgX8CE1nG9PU279LjbXcBMKmIFG9Us22/EnTSUYlcTWIoV91Xq++uVrsUS2v7fMsXb8NWM7UtgbsqIg9uDAvre3mI2fFSIA6xakUFHrZMaEqEG3pFL0BnRB1fntj9qzoigcOFWFAJwuUTd5E6MtpMbbSIm3caKonrILDqam9b/U70qg27vr1ltvZePGjUydOrXDjoSiKAiCwOnTpy+LgWMd51X3oGuqxlh8BNuuV3HNuR595Tl8ydP6rAgs26ORGioQfO4+pdVG2IwszIxn38kqThXVM2NidEjsakLiKN616yuKgthSi77yLL6kzAHV6XaHHBGPa+FtuBbcilSVjylvD8b8A1iOfYTl2EcEopLxZCwlkDBZTS00mGle+1VNWfYKQbZHoUgGpG6cX6m6COv+f2AoOwGAZ/IiXItuJxiRAICiyCiSAV2D5vwOGL8XfeVZDBWn0JefRqopQmhts6fo9PiSp+FPmoYveRqB2PGDj4pKBlwLbsGTuRzL4c0gy3gnZuFPyuz13LItiqYbvoPp1E6se/5K2Cd/wFuQTTA8DtPpXYg+F4og4pm0EM+stfgTM/qc/ueevR7z8Y+xHP4AdAaQg1AuYWpyQjCAIAdBbv0eDCLIAXVM6LEggYTJeDKXQcBP2PsvoHPU41h8hya6N0ZRTDacS+7EvuPPWPe+Scv6xy67DZJW8wuowlUOt5/xl66pFEW9TxU5dA+vmmKjvLCU44dPYfL6SREbiXJVIVXXgRwM3c9d/qzICMHARecMcJNURo3iRL+vFr0oI8gyBP3ommvQ1Vega64OzaltyCY7hVISeS4rqTMySZ6WqUZyze0BkXI5nxOVpZQ2C0wdmz7RgHhj21ly8mr4jy8t6rI/87t7iti0q4joMCMK8PEhdTN0+oTBb04pOgNi0IdOFPoV+a2ocVLT6GHB1DhWzk1iW3YZV89MRBAEUuPU92xp9efQ+d24cSMAZ86cuWzGfC4RRZrXfY2Ijc9hPrkDfVU+gJry3EfaRK9ER73afLsPrFuQzL6TVXycXcb0CVEUnW8mJtyE3dJ/hdu+IjZdwHTuAN5J89V0xAEgOBux7XlDFfgK+hECfoSgv/VnX/vPrRP7gFKe+2SI2gPOkZiOY9l9GEqOqWnRxUex7ftbaFjzuq8hh41s6wmNfiCIBCLHIdVXgCyHNi10jVVYDryFKf8gAL6UGf9U8d0AACAASURBVDgX30EgbkLPx2v0DUVWheFO7sBQdFhd1KG2nggkpONrjez64ycNSIW7L8i2KBzLH+z/gYKAZ/oqfCkzsG//I8biIwAELeE4Z92CZ/rKAUXgZHsM3smLMJ3bR9jHvw79vV/bk6c/xXRmF7LehL6mGHfmctzzbui3LRpXDp7M5ZhO7sR0bj+eaSsHrGg+UEZt2nNrmYrobm7dKJI7OJM9OphyEEGRodXJFJS2Yzufp+3nYCDAK1YP5jowvETH81zCGmCNDSho/YMV+GjTgP/V6wGMwOHDnR6TTTb8iVMIRiaF6nIDUcnsLnDyp/dPM2tSNPPXzsLfxSZdSqwNgLKaoXWKnB4/ZqPUY+R0tBIIyuzJrcLtDbD3RCVr53fUCnlndxHv7C4iJtzEd++Zi8Gg46V3T5Jf0cSc9MGvDRW9AdHjwGTQ9avm98i5GgDmTokhMy2SzIuuZ2p863Uew3W/3Tq/v/jFL3jkkUcIC+s6DbaxsZE//OEPPP3008Nm3OcGg4nmDU8R8daPkOrKUCQj3onz+3y4bFcXVmJLXZ+d3/EJYUxJDudEYT3HC9RC9y53oQI+RFfzoBw4qfIclqMfYijMQUDBfHgzLeu/jm/87H6dR/C51cboNcUoggA6A4qkR5EM6pfRiiLpVREAnV7t7Za+ZMB29xmdHt/E+fgmzkfwODDmH8SYf4BA7Hi8Uy7D82sMKcHIcehrihFbakAyYjm0EdOpTxEUGX/cRJyL78CfMr3746OS2o+P15Tye0LwtGA6vRvTye1ITRcACEQl40ubjS85E3/ClD4Jy40G5LBYmm7+HobCHFAUfBPmDToq7Vh2H/6EyWq0WNRhD7fR7PKjiBKIOhAlFF3rd1EHOl37Y4qM9dAmjAWHAPAlZeJY8dCoEJ7RGEbaxK/e+hG2z16l4a7/uKziPu1qz6NL8EqqOkf4ll8N6TkVhNb7UKfef6HvIgF0OBUDgtGEzmoCUQJRDI3rcIygo6jayfl6D4qgwycLLJ+XgnjxvS2KHX5WWu//DucUdCg6HQfP1LL7ZDW3rEhnQnIkiqA+HrRHq5HcS+aAFpePv20/hkEvcv/6Kd3Wnya3Or8VNUOnBHy+1sm//ekgKfE27ls7hcnJV9ZnZl5ZY0ihe/vhCtZkJSMIAoqi8M7uIt7dU6w6vvfOJSZczcz89l1z8PlljIbBpTyD2utX8NdjMkj9ivwePleLThSY1YUoWnykBYMkUjaGFZ+7nRGvu+46vv71rxMXF8f8+fNJSEhAkiQqKirYv38/1dXVfP/737+cto5pZFsUzRu+Rfim/1Qdpn4s+ELtjhx1+PvxnOsWpHC2vIlXP84Duqj3DfqJeOe/kGpLqHvgBRRLP+qBFQVD8REshzeHotn+2PH40uZgOfI+YR+8gPOqu3HPvrZvi7FggLAtv1ajF9NW4Fj58KhcxCkmG54Zq/HMWD3SpmgMkLasBNvu1zGUn0II+AhEJOBc9AV8kxb0+r5rE82S6isAra6yE4qCdCEf84ntIXE/RafHk7EU94w1BOInjcp7u08IovoeGSIUcxieWetCv9tj7Xj/f/buPLyt+swb/veco6Nd3uU9juPY4Oz7RjYgYQltWZqEAgW6zFPaztBpXyhMO0spnZb2edq+M0P7vO0zz7QUaIeWAIWmLWuAhOwkZN/jOHG8xPuifTvn/eNI8hLbkmzJls33c129imXp6BciG31137/7l8Deup5bvwb9hYPQ15+Aa+nGcZ9wSmMjWFAB78y1MJ18H6Zj78Az/9Yxe+503fMr9WiTiT3hLo2hQqUWSocPqpAiYXPo7Ux/3XsJL71fg69tmIMFVbEHyzmaevDvzx4AoFXPl6y9fsR/VperCR8dPYU5+jKUFscuiPzh3fNwegK458bKaEAbTGGuGZIo4HKLa8RrG+jSFQcUVcWlKw489duDWDGrAJuur4x9lnCaOHRWq6AW5JhxpcONk5c6MXNqNl79oBZbd1+EPcuIx+9d2O8IUUEQkhJ8AWidUEE/TAYRHQ5/XA/p6PHi0hUHZpVnwzzIQCtRFFBit6Ku2THq86LT1ZD/JZw5cyaef/557N27F++++y7ef/99rRe8rAyf+cxnsGIFK1rJFrSXo/3zTwO6xKarJXrcUcSCKjvyMo1o6/YCGBB+VRXWHc9BvnIOAKBvOBl3C7HgdcD6/rMw1mgtor7y+fDMvw2BYm2/m798HjL++h+w7noBUns9nNd/HpCG+TOrKqzbfwN93VH4ps5j9YJSKhg+oshw8TBClmy4V2nHI0CM7z9Wke4LDr3qT/B7YDi7B6bj23oHQGUWaB8WVa+GarSO8wonJ3/FIk4e/xhyLd8MQ82HMO9/Bb6q5VAGTBRPlchRR5G25x63Hz/9/WHcc2MlZpSP/QCuCDF83re/bO6Y/DzEOuN3oPJCG4pyzWhqdw+6bzQROeHgOOzQq7CTFzuw+/gVTC2wYd3i0mHvq5NEFOWa0djmijngKV7tPdr7z9tXluPI+XbsOdGMj8624ZPXTcXNS8qinQTpSFVVHDrXBotRhy9sqMaPfvcR3j1YjzN1nfjz7kvIzzLh8fsWDDvte9Rr0OkhQIVVL6DRH4rOZRrOoXPaB0ELrhn6Q5myAitqm3rQ2OZCWcEkmAU0QMyfsOXLl2P58hTtm6SrjeCw7Wjl15FY+BVFAesWleIP756HIABT+7zAjSfeg+nkdoQs2ZBcnZDrT8QVfuVLR2F7978gubsQKKqC4/ovXtWKHSyYjq7N30XGX/8dptMfQNfdjO5b/37IyrL5w1dhOrUDAXs5em7+u7hDCNFIBKbMhq9iMQIFFfDMuSnhn8lgtvZ6H2po1qSlqhACXgg+NwSfC1J3szZJtLMRuo5GSF1NWpVXEOGbvgSeWTdq+xH5QRZR0qkmG1zLN8O2/Tfa8KubvjImzxsZeBUIV34vNjlwucWJIzXt4xx+tXO1FfPYfAgQOePXHmf4FQQBq+YUYcv7NSM+4zciErY6HN5h7+cPhPDcG2cgCMDnN1RDimMwZ2m+FfWtLrR1eZCfbY55/1g6HFpAX3xtPm5fOQ07jzXhpfdr8PL2C/jgSBPuWVeFeZW5IzsKKMUuXnGg0+HDdbMLUVWaiamFNhw614ZD59qQn23C4/emNvgCWtszANj0ChRVhT+owCAP/x75cHi/7/zKobczluVrH0bvPdmMwhwz9DGuOdGwB2oSUKzZUCFAdMZ31m9fq+cW40+7LqIwxxxtw5Abz2iTio02dN31T8je8h3o608Of6GAD9bdL8B0/F2oogTn8s3wLPjEkFOOFWsOuu76J9je/b8wnt+P7Je+i+7bvqEdFdSH8eR2WD78I0IZdnR/8tEJs/+PJi5Vb0LPhr8f8eOVDDtUSf5YVH4FrxO2bf8X8pXzEPzu6KCqgVSdHsHsYvgrFsE7c21SJ7AT0eC8M6+H8eT7MJ7dDe+sG7TuqxQb2PbsD2i/E7qcsauQqRSp/CrmsdlT2tLpQZZVn1BoWD6rEC9tr4HNPLqzVbPjrPxu3X0RLV0e3LxkCqYWxlfd0/b9NuNyiys54Tdc+c3J0I6EWjOvGIuvteO1nRex7WA9nn75KDYsK8PmG9JvC1F0aFSVHYIg4MaFJXjmr6dRkG3C4/ctHJPWbTU8ANIafsl4/aFhw29NQzdOXurEtCLbsMF85rQc6GURb+yrw86jTVg9rwg3LCgZti1+ImH4nQwkGYo5I+HKLwCYjTp85/OLoQ+fNSY6O5Dxxs8AVUXPrQ9DycxHoHgGDLUHIfa0Qsm4uk1Cd6UGtnd+CV13M4I5pehZ/2WE7FNjP7lsgOPmv0MopxSW/a8g++V/Rc9NX4m2JMmXjsL6/jNQjFZ0f/KbUMfoP1pEoyKKCGYXaZXfSTzxWXS0IXPrT6DrbEQow45QVgEUgwWq3gzVaEHIlheeKFqsbc2I9/xdIkoOURt+lf3y92Dd8Rw67/5eyp8ysj8wGG579obPHu1ypEv4TWB2SYJ+9vJRZNkMuHddFTocXlSVJPaeJdtmwNc3zUWGZXQT7fWyBJtZjgbLwbR2efDGvjrkZhhw5+ppQ95voL5DrxZdG3svcywdPV4Y9VK/Vm+zUca966uwZn4xfvzCIXxwtAmbrp8+ouqvoqj41V9OYkq+DbcuK4v9gAQcOtsGWSdidnhY7Mo5RTDpdbimLAsZKTw5pS9V1p7Hpgv/vPmCyBzi9eMLhPBffzkFqMDdMT5MKMg246kvLcd7hxqw/XAjXt9bhzf21WF+ZR7WLypF9dTstKzGxyuh8Ot0OtHU1ISqqqpUrYdGSLHmQtd2CVCVhN9kFkQ+vQv6kfH6f0D09MCx+n7tnEsA/tKZMNRqQ1O8M6/vfWAoCPOB12A+uBVQVbjnb4Br2cbEjiIRBLiX3IlgdjEytv0nMl5/Gq7lmxCYMhuZb/wMECV03/b/IBTeh0k0EYSySyC31QHdrQBG/+l4upHaLyNz608guTq1n/vrPsNwS5SGgoWV8MxYA9OpHTAd2wYUbEzp80XDb3jasy9S+XXFN4wnVUR3NxSDOWVHpfW4/dG9lDaTDFUF7NmJV8nmTk/O0Yg5NiMa211D7gE939CNkKLi5qVlMOrjjwKldgsA7bijZOjo8Q1ZgSzJs2Dm1GzsPdmMKx1uFOVaEr7+rmNN2HOiGTUNPUkNvy1dHjS0uTC/Mi/aNSkKAhZX5yftOeIRaXu2SP0/bBrMy+/XoLnDjZuXTMG1ZbG7r3IyjNi4djpuX1mOfSdbsO1gfbStuzjPgqkFNri9ARj0Er5424wJ1Rod8xW/ZcsWHDx4EI8//jjuvPNOWCwW3HHHHfjKV8Zm/wjFR7HlQmi5oB1LNJLBFqoK2/bfQG6phbd6NbxzeieMRs4JlOtPRsOv1NkI29u/hNx6ESFrLhzrv4xASfWI1++vXIquzHxk/PXfYd27Ber+PwJKCD0bvoZgET9soYklus+99TKQnfpWw7EkN5xGxl//HaLfDed198KzYMN4L4mIhuFafjcMFw7AvP9lYPk6AKl7kyrrwgOvwm3Pvj5tz/EM40kV0d2d0pbnprbeCch/2nURQPzDrlIhJ8OAS80OOD0B2AapQl5pdwPQAmYism0GmA061LeOfuKzxxeE2xdERcnQ1fjpJZnYe7IZ5xu6Ew6/Hl8Qr+y4AABo7fYgEFSSNkDr+AWt03Lu9KuPChpT4Q9zLOHKb+TYpYFOXezAOwfrUZRrxqfXVCT0FLJOwqq5RVg5pxA1jT3YdrAeB063oLHPa37VnCLMHuTYpHQV81Xwwgsv4JFHHsGf//xnrFu3Dlu3bsVbb701FmujBIRs2qeFOc89guzfPY6MrT+BdcdzMIXP15Xa6iD4PUM+3nT0bRhP70QgvwKOtZ/rN4QmlF2MkDlL2/erKDAefQvZf/gXyK0X4a1ehc57fjCq4BsRtJeja9N3ESiYDkEJwrn6s/AncN4xUboIRsLv3j9D7Gkd38Ukkb7mQ2Ru/TGEoA89N32FwZdoAlDNGXAt3QjR7wHeeT6lzyUN0fbsDyjDVqVSKhSE4HWmdNhVUzhMVpf1PsdIKr/JEh16Fd73e6auE919qu/Nndp6C3MS60wSBAGl+Va0dLgTOld2MJFhVzm2ofeeVoXP/a1p6E74+q/vu4Rulx8GWYKqAi3hP3MyHL+gzdiJtDyPl8ieX/MwlV+PL4hf//UUREHA//jkzBFXaAVBQGVJJr58+yz829dW4X99ZQW+eJvWIdrQlrzjr8ZCXL0O+fn52L59Ox588EHodDr4fOO7d4Ou5p11PURXF6TuZkg9LdB1XRn0forJhlBGvrZHLyM/uofXsuu/oZgytUE/A9uCBAGB0pkwnt2NrJefhNxSC8VoQ8/NX016OFUsWei6658gOVoRymKrM01M/imzESiYDvnCEeRc/Ad45t4E96LboRoTb9tKFd2V87DsfwWB/Aq4l2+KeX/jsXdg3fE8VNmAng3/DwJTZo/BKokoGbyzb4Tp5HboDr8L3fSVCBampqNKFARIohAdeOXr82a8y+kb9STjEa3J64AANaWV30gVbNP1lfjTrlocrWmP7o8dDzkZkaFXXuh0Iv7nfx/CilmF+NKntE6+Kx1u6HUiskYwlGl6SQbOXu7C+fruUVX7OqPDroZeQ4ndAoNewrn6xMJvW7cHb+y7jGybAWvnFePVnbW40uFGSRL+ToIhBafqOlGQY0beOFb3gd62Z5MUAiDCM8gHEi9sO4f2Hh8+dV15/yNNR8FqkmE1yagIf8jVkIROAEAbkKeqalKuNZyYv4UqKyvx5S9/GfX19VixYgW+8Y1vYM6cOUlbgKqqWLNmDcrLywEA8+fPx6OPPpq0639chLKK4Lj5q9GvBZ8bYk8rpJ4WSH3+X+xuga71IuTmmn6PV0UJ3Ru+BsU6+KdY/tJZMJ7dDbmlFr6p8+C44W+gpurcQEnH4EsTm2xA18Z/gf3KEShvPQfz4ddhPLUD7iV3wjN7HSCN36xB0dUJy54XYTyzS1tq/Ul4Z9845M8+QkFY9v8R5o+2QjFlovtTjyJoLx+7BRPR6IkSHGsfRPYr34d1+3Po2vzkkKcxjJZOJ17V9gwAXU7/iPZtjtZYTHpuatfe/BflmvG3d85GXYtzXMNvbvS4I1+0KnehqQeA9r67uUM7qmgkZ/XOmJqN1/fW4dSlzlGF30jlN3eYqcOSKGJ6cQZOXuyE0xOA1RTfJOyX3q9BMKRg49oKmA3aY650JKfyW9PQDZ8/NO5VX6B34JVJCALQX1X5PXyuDTuPNqGswIpPrSxP+vPnZ5ugkwQ0tI1uD3ggGMJf9lzCX/dewr03V+OGeanNADHfgT311FM4dOgQqqqqoNfrcfvtt2Pt2rVJW0BdXR1mzZqFX/7yl0m7JgGqwYyQfergU5cVBaKrA1J3OBD3tCBYWIVg0TVDXs9fsQjeuqMIlM7U9v1O4ClvRGNCEIG5a9BhnwXT0bdhPvgnWHf+Dqajb8O54m74py8Z25+joB/mw2/AfHArhKAPgbypCBRfC/PRt2A8/u7V1V+/F6aT78N05A1Izg4EMwvQ/anHoGSO7UAPIkqOYNE1wLzrIR95H8YT78I7Z31KnkeWxKsGXgGxjzsKhpTowKxkEl2pD7+N7W5k2wzRynZlgpOeky3SStze48WZOu2M40irsscXgi8QQmHuyIYxVpVmQRIFnLzUOao1tneHK78xqs+VJZk4ebETNQ3dmDfM2bQR5+u7sf9UC6YV2bB8ViFaO7Utf5F9zsGQgt++dRaLrrVjzgjC+7E0aXkGetuejWLvtOcIpyeA37xxGjpJa3dOxc+WThJRmGNBQ5sLiqqO6MOU+lYnfv7KMbR0epBtM2D+NaOfIh5LzPDrdrtx9uxZ7N+/P1qKPnnyJB5++OGkLODEiRNobm7GAw88AKPRiG9/+9uoqEhsMzYlSBSh2PKg2PIQiPMhqsEMxy1/l9JlEU1KOj08Cz8B74w1MB94Dabj25D55s8RKKyEc+W9KWs/jFJV6GsPwrrrBUg9rVBMNjhXfxbe6jVAKADjmV0wnXwP7iV3AJL2Cbn+wkFYP3gekrMDqs4A99yb4V58B1RTfGdBElGaWv8glFP7YNn3EnyVS6Gakn/0j04Sont++7Y9dzuHnvi840gjXnjnHJ56aHnSz0cV3Vr4U0ypCaRubxCdDh9mpUEYioi0Etc29qA2UvEFcLnFGf1gojBnZC27BlnC9JJMnLvcBZc3gJFGlQ5H7xm/w4l8kHA+jvCrqCpe2HYOAHDPuiqIgoC8LCMkUUBTuPJb09CNHUca0dTuGlH4PV7bDp0koDqOicmpFml7NkILvZ4+P2/Pv3kGPS4/Nl8/PaVdCKV2C+pbnWjr9iI/y4TX913CsZp2PHrPfEhxdJe89H4NWjo9uGnxFNy5ehrKSrPR2upI2XqBOMLv17/+ddhsNlRVVY16St+WLVvw7LPP9rvtO9/5Dh566CFs2LABBw4cwGOPPYaXX3552OtkZ5uh002ckdo0cdjtfHNPydX7mrIBZV8F1t4BvPNbyKf2IPvlfwVmrgDWPwDkpKDNp/kS8MavgNpjgCgBK+6AuHYzbEYLoq/0ReuB3a/B3nwUKJ8NvP5fwOl9gKgDVm+EsOIOmM22SXhg08TE31E0WuIN9wJv/hp5h18Fbk/+h9oGvQ6hkAK73Ya+J537QuqQr982hw++QAg+JQWvcUELWRlFhUAKfn7OXNIqgdOnZKXNz2dOjgWiKODMZS34V5Zm4nx9NzpcAUii9l6+amrOiNe7eGYhzl7uQlOXF+VTRvZ35vRqga2qIg+GYYYwLbUaIWw5gkstzpjP8/7By6ht6sGqecW4bsGU6O1FeRY0d3qQl2fFOx81AAAuNPbAmmFKaB96p8OLumYn5lbmobQkdQPU4l+Q9sFAllkLmYIkwm634YNDDfjwdAtmlOfgs5+YFf07T4VrynOw92QznL4QZuZZ8c6BenQ6fIBOB3uMbQ6dPV4cr+1A5ZQs/P29C6O3p/rnKObfeFtbG5555pmkPNnmzZuxefPmfrd5PB5IkvaiX7x4MZqbm2OOw+9M4sQ2ogi73ZbyT5vo42Xw15QNuPGr0M1YB+uuFyCf3AP19H545qyHe/HtUI0j/KWvqhD8bggeJ0SvA8azu2E8vg2CqsI3dR5cK+/Tzst2KICjd03i9DXI2f0nKG//FoLPBTHghb/4WjjXfl47sskFwMWfi3TA31E0Wna7Da0Vq5Gd8xakj7ahq2IlggXTk/ocogC4AyG0tjrg6DNhuKnVMeTrtzs8/KipuQeFmcmt/FpaW2AG0BHQI5SCn58T57WJ/llmOa1+PrOs+ui059uWTcXT9UdxoqYN5nDYM+vEEa+3LE/7OHTf0SasmFM87HXe+6gef9p9Ed/53JJ+Vf0r7W7YzDJ6umK/py/Js+DspU40Xekesn3XFwjh11tPQCeJuH3F1H5rsmcaUd/ixIVLHfjodDMAIKSo2HO4PqHq7/bDWnC+tjQzLf6uZVcIWQBCHjcAMzq7PKi51I7//dJh6GURD95yDTrak3Mm81CywvuwT9a0QVJVLfgCOHuhDZKiDPdQvLGvDoqiYll1fvTf58D/zqUiCMcMvzNmzMDp06dRXT36o2wG8/Of/xxZWVn40pe+hNOnT6O4uHjczoEjIhorwaJr0LXxO9DXfAjrnhdhPvImjKc/gHvR7fDMWQ+oKkSPQ5tU6nVADIfa/v/s1O7jcUDwOSEo/YddBLMK4Vr5WfjL5w25DiXDDn/5fBguHoJisMBxw9/AO2O1tmeZiCYfUYJz7YPI+uNTsO54Dl0bn0jq8CudJPZOew6EYDJI8PpC6Bqm7dkfbpN2D3FO6WikeuBV5Jij4nEY5jWcHJsRHT0+lNgtmDM9B7JORF2zA1lWLYAWJHjMUV8VxRkwyBJOhqveQ3F6Anhp+wV4fEEcONOCmxZr1VhVVdHR443731llaRbqW12obepBVengFdc399Wh0+HDJ1ZMvWoKc2GuGTgH1LU4cL6hR2vND6k4dakzrvAbCIbw6s5avLGvDqIgYH5V7L3HYyHS9iyrkbbnIPafbIbLG8Tm66ejIDv1PVsldu3vsKHNhb5zmtvCe7qHoqoqdh9vgiQKWDazIIUrvFrM8Hvu3DncddddyM3NhcFgiFZlt23blpQFPPTQQ3jsscewfft2SJKEH/7wh0m5LhFR2hME+CuXomPaApiObYP5wGuw7v49LHtehKAO/4lphGKwQDFaoWbaoRht2j+bbAhlFcF77cq4Jks71zyAYMF0eGZeD9Wc/D2ARJReAsXV8FatgPHcHhhPbYd31g1Ju7ZOEhEIhgde+UMwG3SQddKwA6/84cFYqQq/qiCkZH8z0HvMUXFemoXfDAPQACyoyoMkiii1W1DX7ITLE4weVTNSOklE1ZRMHL/QgY6eoUPO63svwRP+Oz1a0x4Nv05PAIGgMuwxR33Nr8zF+4cacPBM66Dht9Phw1/3XUKGRY/bll896LUoR/u72X38CoIhBWvnF2PXsSacimNo14XGHvzqLyfR1O5GXqYRX7htxrhMLR9MZNqzrGoTfLz+ED46q3UiLJ9VOCZryM00wiBLaGh1oa3bE709Vvita3aivtWFRdfYR/VaHImY74qefPJJ5OaOfJR5LJmZmfjP//zPlF2fiCjtSTI882+Ft3o1zB9thdx4BorBAtUUDrNGGxRTb7DVQq5NOzdYHP38A8WWB/fi25PwByGiicK18h7oLx6CZc+L8E1fPPItFwPIknbOr6qq8AVCsJllWEwimjs8Q25ri1R+PSkJv11QjRkpO9qpsc2FDPPowmQqTMm34sDpViy+VpvQX1ZgQ22TA+093qRMo545NQfHL3Tg/3vpCCqLM1Bqt6A03wqLUfv30Onw4Z2D9dEp2GfqOuH1B2HU66Lt2LGGXUWfqzwHZoMOH55uwd03Vl41VfiV7TXwBxTct75i0D28kcnWB05rwXBuRS6utLtx9nLXkEco9a32qiqwbmEpNl5fAaN+/I4qHCgy7dlUdwQb9G6c6JqF+q4QKoozkj44biiiIKA4z4K6ZgcUVUVOhgEdPb6Y4XfX8SYAwHVzxiak9xXzb/Af/uEf8Prrr4/FWoiIPtZUowWu6+4Z72UQ0ceAYsmGe8ldsO5+AZa9L8F5/ReScl2dTguZIUWF1x+CPcsIm1mPumYnvP7QoOEkUvlNTfjthpKRmiPafIEQ2ru9uLYsDYYfDXDL0jIsnVEAe7gFuKyg98ONwlG0PEcsqMrDn3bVYt+JK9h34kr09pwMA0rtVnh8QQSCCu5YNQ2tXR78Zc8lnLrYiQXX2KPV4ngrvzpJxIJr8rDr2BVcaOhBZWlveL/c4sSu41cwJd+KVXMGHxwZ+fMGQwoEAFVTsnC5xYkzIc/LlgAAIABJREFUl7twpq4Li67tP7O6prEbv/7LKTS1u2HPMuILG2ageur4T3ceSLHZ4a1aDsP5/fhbwx64Ax9iu74CwdJ1Y7qOErslOlV8zdxivLarFu19qsADef1B7D3RDJtZHtHE7dGK+TFYdXU1Xn31VVy4cAGNjY3R/xERERHRxOWZexOC2cUwnngfupbapFwzMpDIHwghGFJgkCVkWbUK1VCtz/5Aiiq/AR/EgBeKJTX7fa+0u6ECadMG25dOEqPBFwDKCnqPuykY4TFHfRXkmPH011fjZ9+8AV/61ExsWFaG2RU5UBQVR2vaca6+G4U5ZqycU4h507U9skdq2gEAHeGhSLlxVn4BYEm19gHGh6db+t3+1od1AIBPr6mAOMRUY6tJhs2sVXen5FthNcmYUa6F2dN9Wp8DwRC2vHceTz1/EE3tbqxbWIrvfXFZWgZfAIAownHz36Ljwf8Xr2AxXKoeG/Rn8alTv0DWlu/CeHI7EBj+fO1kKO3T8j+/Kg/ZNgPahmmHf/vDy3B6ArhhQUlKzh+OJWbl98iRIzhy5Ei/25K555eIiIiIxoGkg3PNg8h67Ufh4Vf/Muphd3L4zazTo+1DNMgSMi1aha/L6R80KPqDkT2/oau+NxqpH3aVnvt9B1Nqt0IQAFVNTuUX0AJ2kd0Gi04AZvXe7nD70djmQkGOGZIooqI4A1aTjGMX2qPDrgBtKFe8Iq3PB8604DPrtNbnHpcf+042oyDHjDnTh68gFuaY4XB349rw+bzTirShXccutONMXSeCior/fvtstNr7xdtmRO+b7hRrDt42LsOzrTOxPrsND5U0QF93FLb3LsCy67/hu3YlPLNuQCh3SuyLjUBxeOhVts2AKflW5GUYca6hG8GQclW4dbj9eH1fHawmGbcsLUvJemKJGX7ffffdsVgHEREREY2xQOlMeCuXwnh+P4ynPoB35tpRXU/WRcKvVsU16CVkhfcfdg9Z+U1N23Oqw29jOPwW5ab/SegGWUJRriUaSlPJZtbj2jJ99GtRFDCnIgd7TjRj+5FGHD7fBiD+tmdAC9oLr7Fj57Em1DR0o6o0C+8fbkAwpGL9otKr9gEPVJRrxrn6blSHW9R1kojqsiwcqWnH//zvQ9H7rV9Uio1rp8OgH/08jbFk1OugQIRcvQQ9a++B6GiD8eR2GE/tgOnYOzAdeweBwkp4Zt0AX+UyQKePfdE4lRdmwGSQsHxmAQRBQG6mCWfru9Hh8CF/wOTtv+y5BK8/hHvXDb4/eyzEfNZvf/vbg97OqcxEREREE59r5X0wXDyiDb+qWKwN0xsh3YDKr1EvIcsSaXse/LijVA28Et1dAFJY+W0LH3M0ASq/ALC0Oh8HzrQmrfKbiLnT87DnRDOee+MMAGD5rIKEhzItrs7HzmNNeOn9GvzNJ2fivY8aYDJIuG527KFJ6xdNgVGvw+w+e0w/t6Eah8+1ob3HC4c7gBWzCiZMtXcgo0EL6wuv0fYvK7Y8uJdthHvJndBfPAzTifcg1x1DxpXzUHb+Dt5rV8E7+0aEsotH/dxWk4yf/O1KGGRtDXmZWkW/vdvbL/y2dXvw7kf1yMs04voFJaN+3pGKGX6XLl0a/edgMIht27ahoqIipYsiIiIiorGhWHPgWnIHrHtehGX/y3CueXDE14oMvHJ5tfCrl3srv2O951f0aEN4FHNqBlI1trtgNuiQaUleFS2Vbl81DbevmjYuzz2nIhdFuWZkWQ24Y9U0XDMl8b+TWdOyMW96Lo7UtOOf/nMvQoqKm5dMiauCWJpvxT3rqvrdlmU1jGsIS6abF09BeaEN5YUDpraLEvwVi+CvWASxpxWmE+/DeGoHzEffgunEe+j8zL8mJQD3/TuIhF/t6KPeDxNe+6AWwZCKO1dPi3aIjIeYr5a77rqr39ebNm3Cvffem7IFEREREdHY8sy7FcZTH8B4fBs8M9YiZL/6vNR46CSt/bRv5TfTMvTAK1VVU3bOr+gKtz2n4IzfYEhBc4cH04ptgx7fRP2ZjTr84EvLR3UNSRTx95vm4oOjTfjDu+fgDyhYt6g0SSuc2GZX5Parag9GybDDtWIzXEvvgunIG7DueRGGM7vgXr45qWvpW/mNqG91YvfxKyi1W7B85tgfb9RXwrG7pqYGLS0tse9IRERERBODpINz9f0QVBW2Hc9pk5FGIDLwytVn4FWGRQ8BQPcgbc/BkILIM02kPb/NnR4oqoriNJz0PJkJgoA184rx1EMr8N0vLu030ZriJOngmXMTVJ0BxnP7RvyzPpTc8N9J37N+X9l+ASqAjWunDzmVe6zErPxWV1dHP9FSVRU5OTl45JFHUr4wIiIiIho7gbI58FUshuHCARjO7IKvelXC19BFw2944JUsQSeJsFn0g1Z+feGWZ0Brfx5sQuxISd3a+bOKJfn7OJvaIsOuGH7HQ6ZFP2HazdOSbIBv2kIYz+2BrqUWwYLkbWnNsRkgCL3h9+zlLhw+34ZrSjMxN8ZU7rEQM/yePn36qtv8/sEHFhARERHRxOVcdR/0dUdh3f0H+KcthGpIbDhSZM+vM7znNzI1N8uiR3OX56r7R1qeI7z+EKym0YdfweeG3HQWAXt5wn+GeDROoGOOiAbjq1oO47k9MJzbm9Twq5NEZNsMaO/2QFVVvLS9BgCw6YbKtNgiEPO3y2c+85l+XyuKgo0bN6ZsQUREREQ0PhRbHtyLbofo6YZ5/ysJP37gOb9GvVZnybIZ4POHrmptjkx6jkjWvl993TEISgj+8gVJud5AjW2R8Jv+xxwRDcZfNhuKwQzD+X2AqsR+QALyMozocPjw0dlWnK/vxoKqPFSWpGbqeqKGDL8PPvggqqurceTIEVRXV0f/N3fuXEybNj6T4oiIiIgotdwLNiCYWQDTsXcgtV9O6LGRgVe9e361t5pDDb0aWPn1eJMUfi8d1q4/LVXh1w29LCInw5iS6xOlnCTDV7EEkqsTctO5pF46N9MIVQV++/ZZCALw6TXpc1LQkOH3ueeew+nTp3H//ffj9OnT0f8dP34cTz/99FiukYiIiIjGiiTDtfp+CKoC6/bEhl9F2577DLwCtGNlgKuHXg2s/CZl6JWiQH/pCEKWbATzRja1evjLq7jS4UZRrgViGrRxEo2Ur2oZAMBwbm9Sr5ubqQ296nb6cd3sQpTYrUm9/mjEbHv+53/+Z2zduhX/9m//Bo/Hg1dffXUs1kVERERE48Q/dR580xZC33QGhnN74n5cdNqzd0Dbs3X4ym/knNBkhF/dlXMQvU74p84HUhBOW7s9CIYUFOey5ZkmtkDJDCimDBhq9gNKKPYD4hQ57kgnibhzVfpUfYE4wu9PfvITbN++HW+99RaCwSBefvll/OhHPxqLtRERERHROHGu+ixUSYZl1+8h+K8eVjWYyKRmj097I60Ptz1HKr9dAyu/4WnPkXCcjD2/hmjL8/xRX2swTW1uABx2RZOAKMFXuRSixwG5/mTSLjslX6v0rl9citzM9NoaEDP87ty5Ez/+8Y9hMBhgs9nwzDPPYMeOHWOxNiIiIiIaJ0qGHe6Fn4Tk7oL5w/g6/wYeUxSp/GZGw++Aym9QC8mRPcHJCL/62sNQJRn+kpmjvtZgopOeecwRTQLeyuS3Pk8rysC//s1SbLp+etKumSwxw68oaneJjKb2+/3R24iIiIho8nIv/ARCGXaYjr4FqaMh5v1lXf824949v1q47Xb1r/z6wm3PkcrwaNuexe4W6Dob4J8yC5ANo7rWUCKTnotY+aVJIFhUhZA1B4YLB4FQIGnXLbFb03JPfMwUe+utt+Ib3/gGuru78Zvf/Ab3338/PvGJT4zF2oiIiIhoPOn0cK66H4ISgnVH7OFXAyu/Br32dYZFDwFAl6N/5TcQHniVGQ7How2/houHACBlRxwBQFO7CzpJgD0rvdo5iUZEEOGrXAbR74a+7th4ryblYobfhx56CJs2bcItt9yCpqYmfO1rX8NXv/rVsVgbEREREY0z/7QF8E2dB33DKe1M0GH0Db86SYQU7hbUSSJsZhldrsH3/GZaklP51V8M7/edOm9U1xmKqqpobHejIMcc/bMRTXSpmvqcjnTDffPChQuwWCxYvXo1Vq9eDQBob2/Hd77zHXzve98bkwUSERER0fhyrr4f+ssnYNn1AnxT5wP6wauesq43EBr1Ur/vZVoNaOnqPzjLH217juz5HfnEWcHvgdx4GgF7ORRrTtyPe33fJeRlmrCkOj/mfTsdPvj8Ie73pUklaJ+GUEY+DLUfwRHwpWzLQDoY8iOrn/3sZ9i4cSNuvfVW7N69GwDwq1/9CjfddBMaGmLv+SAiIiKiyUHJLIB74W2QXJ2wHHxtyPv1rfwa5P5vM7OsBvj8oX7VXV9k4FUS9vzKdccgKCH4y+Of8uz0BLDlvRps3VUb1/0j+3056ZkmFUGAt2o5hKAfhnD3xGQ1ZOX31VdfxZtvvomWlhY8/fTT+PWvf43m5mb8x3/8R7QKTEREREQfD+6Fn4LxzG6YDr8Bb/UahLKLrrqPTuodcGPQ93+bmdln6FXkXN9I27PFqINOEkYVfkey3/filR4AVx/BNJTosCue8UuTjK9qOSwH/wTD+b3RNujJaMjKr8ViQX5+PmbPno2jR4+isrISr776KoMvERER0ceRbIBz1X3a8KsPnh90+JXcr/Lbv+05MtG5u89xR5G2Z4MswWTQjTz8Kgr0l44iZM5C0D417oddaNTCr9MTiA7fGk5jO8/4pckplFuKYE4J9JeOQvC5x3s5KTNk+O17nFF2dja+9a1vQZKkoe5ORERERJOcf9oi+MvmQH/5OPQXDlz1/b57fq9ue9Yqv519wm8kcOrD4Xek5/zqms9D9Dq0lmch/kFUteHwC/QP5UNpbHdBEICCbFZ+afLxVS2HEApAX/vReC8lZYb87SD0OZfJaOQodyIiIqKPPUGAc/X9UEUJ1p2/AwL9A6Ou38Cr/m3Pkcpvl6O3xThyzq9eFkdV+R1Jy7Oqqqht6g2/sVqfVVVFU5sL+dnmfiGfaLLwVi4HABgn8dTnIff8njt3DuvWrQMANDc3R/9ZVVUIgoBt27aNzQqJiIiIKG2EsorgmX8bzB9thfngVriXb4p+r9/AK/0Qbc+uPm3PkcqvToTZoIM/oCAYUq46LzgW/cXDUCUZ/tKZcT+mvceLHncg+nVXjMpvjzsAlzeIa6ZkJbQ2oolCySpAIH8a5MvHIXgcUE228V5S0g0Zft98882xXAcRERERTRCuxbfDcHYXzIf+Cl/1KoSyCgEM3PM7eNtz3wqrPxCCAC00R4Zgef0hWE3xh1+xpxW6jgb4ps5L6IiWyH7faUUZqG3q6deOPRhOeqaPA1/lcsgttbB+8Dycaz4H1Ti5Xu9Dht+SkpKxXAcRERERTRSyAc6V9yHzzZ/D8sFv0fPJRwFBgCgKEAUBiqrCIPd/m5lhCU977jfwSoFeliAIAkwGrVLs9gVhNclxL8VQm3jLM4Boy/PCa/JQ29QTs/Lb1B4OvzzjlyYx74xVMJ7ZCeO5vdDXn4Rz1X3wVa0A+myJnci4YYGIiIiIEuafvgT+0pkw1B3tNyBHp9PeJA9se9ZJImxmGZ19K7/BEPThCnGk8uvxJrbvV39JO5c0kfN9AW3YlSAA8yrzAPTfizyY6DFHeRx2RZOXarShc/OTcK64G0LAi4y3f4nMP/0vSF1XxntpScHwS0RERESJEwQ4Vz/QO/wqqIXHSOvzwLZnQNv3e1XlV6eFZHMk/CYw9ErweyA3nELAXg7FmhP340KKgovNDpTkWaKTm2NXfrXjX4pyWPmlSU7SwbPwk+i494fwTZ0Hff0JZP/+n2D+8FUgFIj9+DTG8EtEREREIxLKKYFn3i2QHG0wf/RnAL1DrwZOewaATKseXn8IXr8WcAet/CYQfuW6YxCUEPxTE6v6NrS64A8oqCjOgKwTYTXJMcNvY5sLeZnGqyraRJOVkmFHzyceQfctD0MxWmHZ/wqyf//PkBtOjffSRozhl4iIiIhGzL34DoQs2TB/9BeI3S3R8GuQrw6J0YnP4dbnyJ5foDf8JnLWb/SIo2kJtjw39Q670talHzb8urwBdLv8KOJ+X/q4EQT4K5ei874fwT3nJkhdV5D16g9he+f/QPD0xH58mmH4JSIiIqIRU/UmuFbeCyEUgHXn76Jn/Q5WIe2d+OyDqqrwB0LQh++fcNuzokB/6ShC5iwE7eUJrfnq8GuAx9dbke6r0+HD7946CwAo5n5f+phS9Sa41jyArs1PIGAvh/HMLuT87h9gPLkdUJXxXl7cGH6JiIiIaFR8lcvgL66G4eIhLMAlAMNXfrucfgRDClRgxJVfXXMNRK8D/vJ5gJDYW9oLjQ7odSJK7JZ+6+p29h96dehsK779f/Zg78lmlNqtWLeoNKHnIZpsgvkV6Nr0BJyrPgsoIdje+xWy/vgUpPb6EVzMD9HVmfxFDmNcwu/bb7+NRx99NPr14cOHsXnzZtxzzz34+c9/Ph5LIiIiIqKREgQ41zwIVRBxd/ADyAjCOEjlN9MSCb8++AJatShS+U10z2+05TnBI458/hAa2pyYWmiDJGrPnWXrrUj39d6hBviDCj6/oRrf/cIS5GWaEnouoklJlOCZdws67/sRfBWLITedRfaL/wLLni1AYJi986oKqasJpiNvInPrj5H3X19FznOPQHB1jdnShzznN1W+//3vY+fOnZgxY0b0tieeeAI/+9nPMGXKFDz00EM4ceIEZs2aNdZLIyIiIqIRCuWWwjP3JtiPvIlP60/AIK+46j59Q6Y/EALQWyGOnPMbb/jVXzwMVZLhL03sPePFKz1QVaCiOKN3XeHKb+eA8OvyBiDrRKyZV5zQcxB9HCjWHPRs+HvoLx6CdftzMH+0FYbze+FY8zkEps7V7hTwQd9wEvpLR6GvOwappyX6+GDuFPimL4Fqso3Zmsc8/C5cuBDr16/HH/7wBwCA0+mE3+9HWVkZAGDVqlXYs2cPwy8RERHRBONe+mkEj36AzfqjqPV3Auj/pjbL0tteHAiGK7/hac9mo6xdI45zfsWeVug66uGbOg+QDQmtsbbJAaB3vy/Qpx17wFm/Tk8AFuOYv10mmlD85QvQUTITlg//CNPhN5D155/AV74AQigAufEMhPDxSIreBN/0JfCXzYG/bG5Cx5MlS8p+mrds2YJnn322321PPfUUbrvtNuzbty96m9PphNVqjX5tsVhw+fLlYa+dnW2GTscx85R8dvvYffJEHw98TVEy8fVEo5X615ANr2TdgE93/gXTTr0Gw6J/7PfdrGxtj63LF4LFZgQAZGaYYLfbkJWtheGgEsc6L+wAABhmL0/4z9TQoZ3Xu3h2Mew52gCraZ7w0UuK2u96bl8I9iwTf/aGwX83pLEBd3wJWHYT8OdfILItAQXlQNVCoHIhxCnXwiDpMNzHVal+PaUs/G7evBmbN2+OeT+r1QqXyxX92uVyISMjY5hHAJ2d7lGvj2ggu92G1lbHeC+DJhG+piiZ+Hqi0Rqr19DF3Hk41X4AM85/iK6DuxAom9vv+1aTjNZON660aGsJBoLRdellEZ0Ob8x1Zh7fCz2A9rwZUBL8M52u7YDNLEMI9j6vGtDCb2OLI3pbSFHg8gRQmmfhz94Q+HuJriLlArf/I3TNNVBseVAs2b3f6/AM+9CBr6dUBOFxn/ZstVohyzLq6uqgqip27tyJxYsXj/eyiIiIiGgE7rvpGmR8+qtQBQHWHc8D4ZbHiCyrof+e3z7dfBajDLe3//0HEvweyA2nEMibmnDbZLfLj/YeL6YVZUAQhOjtGRY9BGhTqCMi7ddWk5zQcxB97AkigoVV/YNvmhj38AsATz75JL75zW9i06ZNmDlzJubNmzfeSyIiIiKiEZBEEfqSCnhmr4euuxmmw2/0+36WVQ+vP4QetxY09X2ORDIbdDH3/MqXj0NQQglPeQaA2kbtfN+Kov5dhjpJhM2i7zft2RVeh8XEPb9Ek8W4/DQvW7YMy5Yti349f/58vPjii+OxFCIiIiJKAfeyT8N4fh8sB16D75oVUGx5AHqHS7V2eQH0DrwCALNRh8Y2FxRVhdinMttX7xFH8xNe04WmcPgtvnqLXZZVjysdbqiqCkEQ4PRoFWgLK79Ek0ZaVH6JiIiIaHJRDRY4V3wGQtAPy67fR2/PtGrHHbV2avv/9APanlUA3qGOO1IU6C8dQciciWB++bDP/9b+Ojz124MIhpTobbXh8FteNFj4NcAfUODxae3YrnD4tRoZfokmC4ZfIiIiIkoJX/VKBAorYazZD/nycQC9ld+W8ADTgZVfoLfleCBdSw1Ej0Or+grDv409XtuB8/XduNziBAAoqoraxh7kZ5sG3cebbQsfdxRufWbll2jyYfglIiIiotQQRDjXPAgVAqwfPA+Egr3htytc+e275zccfofa92uoPQwA8E+N3fLs8WvXuBDe59vS6YHbF7xqv29E9KzfcPiN7vll5Zdo0mD4JSIiIqKUCdrL4Z19A3SdTTAdeRNZ4bbnyGRlva737WgkaLqGmPisv3gIqiTDP2V2zOf1+rX25YvhVufIsKtpQ4bfyLrC4TfS9syBV0STBsMvEREREaWUa9kmKEYrLB++ijzR3e978VZ+xZ5W6Drq4S+dCciGmM/pDe/drb2inRs63LAroG/lVwvlTi/bnokmG4ZfIiIiIkop1WiFa8XdEII+lBx9pd/3+ld+I3t+r6786i+GW57jPOLIG257bmpzweML4kJjDyRRQFmBddD7R8Jvp6N/5Zdtz0STB8MvEREREaWcd8YaBPIrYDq/D0vMrdHbDf0qv1rQHKzyGz3iaOq8+J4v3PasAqhp7MblFgdK862Q+0yX7itrwMArtj0TTT4Mv0RERESUeoII51pt+NX/0O2BBO0Ior5tz5Yhpj0Lfg/khtMI5JVBseXGfKpAUEFIURE5KXjHkSYEQ+qQw64AwGaWIQpC77RnbxB6WRwyLBPRxMPwS0RERERjIphfAe/M61GsduCT8ikAA486ilR++7c9y5ePQ1CCCbc8lxXYAACHzmqV5qGGXQGAKAjItOrR5dD2/Lo8AbY8E00yDL9ERERENGZcyzfBIxpxn+EwsgU39LrYlV9DdL9v7COOAMATbnkusVtgM8sIKSqAoYddRWRZDehy+qCqKlzewKDnARPRxMXwS0RERERjRjXZ8GHhOpiFAL5gOACdJES/Z4lOe+5T+VUU6C8dRsiciWD+tLiew+vTwrNJr4tWe416CYW55mEfl2XVI6So6Hb54fGFoushosmB4ZeIiIiIxlTTlBU4H8rFDfIF6JvORm+XdRJkndiv8qtruQDR44B/6nxAiO+ta2TYldEgobxQa32eVpQBURCGe1h06FVDmwsAWPklmmQYfomIiIhoTGXajPildxkAwLrjOUAJRb9nNur6TXvWR6Y8x9nyDPQJv3oJlaWZAIDpJZkxHxc57qihVQu/POOXaHJh+CUiIiKiMZVpNeCMko8dqIau/TKMx7dFv2cxyv3O+TVcPAxVkuGfMjvu60cGXhn1Oswqz8Hf3TUHG5aVxXxcllUPAGhodQJg5ZdosmH4JSIiIqIxFQmZr8oroBjMsOx7BYK7G0C48usLQlFViD1t0LVfhr9kBiAb4r5+38qvIAhYdK0dJkPs/bvZ4cpvfaTyy2nPRJMKwy8RERERjalMixYy/bIVrqUbIfrdsO55EQBgNuigqoDXF4L+UnjK87T4jjiK6Bt+ExFpe25si4RfDrwimkwYfomIiIhoTMk6EbcuLcPa+cXwzr4RwdwyGE9/AN2Vc/0mPhsi+32nxr/fF+jf9pyIyMArX0ALz2x7JppcGH6JiIiIaMzdfWMlrl9QAogSHGsfBABYtz8Hi0Gr1nocTsj1pxDMLYNiy03o2l5f77TnRFiMOuik3rfHHHhFNLkw/BIRERHRuAoWXQPvtSsht13CIvcRAICh4QQEJQjftMSqvsDIK7+CIET3IwMMv0STDcMvEREREY0753X3QNGbsOTKu8gQvMhsPAYA8Jcntt8X6N3za0pwzy/Q2/oMAFbu+SWaVBh+iYiIiGjcqeZMuJd+GoaQB5/TH0Re2ykopkwE86clfK2RDrwCeodeAaz8Ek02DL9ERERElBY8c9bDYS3EzfpzMAac8JXPA4TE365G2p4NIwq/+uhj++7/JaKJjz/RRERERJQeRAkX590d/XIkLc8A4PGHoNeJkMTE3+pGzvplyzPR5MPwS0RERERpI1hSjTf816BHlwH/lNkjuobXH4LRMLLwGml7Zssz0eTDj7SIiIiIKG1YjDL+t28FPpyWj6/IhtgPGITXFxzRfl+gt+3ZYmT4JZpsWPklIiIiorRhNuoACHCHz+odCa8/NPLwG572bGXll2jSYeWXiIiIiNKGXidCJwlweYMjeryiqvAFQgmf8RtRmGPGhuVlmDc9b0SPJ6L0xfBLRERERGlDEASYjTLc3sCIHu8bxTFHkefffH3liB5LROmNbc9ERERElFYsRt2IK7+jOeOXiCY3hl8iIiIiSitmow5ubxCqqib82MgZvyNteyaiyYvhl4iIiIjSisUoQ1HVaBU3EZHHmAys/BJRfwy/RERERJRW9LIWXP1BJeHHenys/BLR4Bh+iYiIiCit6HXaW9RAYOSVX+75JaKBGH6JiIiIKK3IkfAbSrzy27vnl+GXiPpj+CUiIiKitBIJv/7ASMJvpPLLtmci6m9cwu/bb7+NRx99NPr1W2+9hfXr1+OBBx7AAw88gP3794/HsoiIiIgoDUQrvyPY88u2ZyIayph/JPb9738fO3fuxIwZM6K3nThxAo899hhuueWWsV4OEREREaUZvU4LroHgSPb8su2ZiAY35pXfhQsX4rvf/W6/206cOIGXX37PAApDAAAShElEQVQZ9913H370ox8hGBzZoeZERERENPFF255HUvn1RY46YtszEfWXst8KW7ZswbPPPtvvtqeeegq33XYb9u3b1+/2lStXYv369SgtLcUTTzyB3//+97j//vuHvHZ2thk6HT/No+Sz223jvQSaZPiaomTi64lGa6K8hrKzTAAAk8WQ+JpFLTgXF2bCnmdJ9tJogInymqKJIdWvp5SF382bN2Pz5s1x3Xfjxo3IyMgAAKxbtw5vvvnmsPfv7HSPen1EA9ntNrS2OsZ7GTSJ8DVFycTXE43WRHoN+b0BAEB7uyvhNXf2eAAAbqcXrWrilWOK30R6TVH6G/h6SkUQHvdpz6qq4vbbb8eVK1cAAHv27MGsWbPGeVVERERENF5Gd9QRB14R0eDGfTOEIAj4/ve/j4cffhhGoxHTp0/H3XffPd7LIiIiIqJxEhl45Q+MbOCVKAjRAE1EFDEu4XfZsmVYtmxZ9OtVq1Zh1apV47EUIiIiIkozulFWfo16CYIgJHtZRDTB8SMxIiIiIkor+kj4DYxs2rPRwJZnIroawy8RERERpZVRHXXkD8KkH/edfUSUhhh+iYiIiCitRPb8BhIMv6qqRtueiYgGYvglIiIiorQSnfYcTGzgVTCkIKSoDL9ENCiGXyIiIiJKK73hN7HKryd6zBHbnonoagy/RERERJRW9CPc89vt9AMArGY56WsioomP4ZeIiIiI0spIK7/1rU4AQKndmvQ1EdHEx/BLRERERGlFjg68SmzPb31LJPxakr4mIpr4GH6JiIiIKK3oJAECRlL5dQEASlj5JaJBMPwSERERUVoRBAGyTkx4z299qxPZNgOsJu75JaKrMfwSERERUdqRdWJClV+nJ4BOh4/7fYloSAy/RERERJR2Eg2/DZFhV/nc70tEg2P4JSIiIqK0o9dJ8Ccw8OpyCyc9E9HwGH6JiIiIKO0kWvmNDLuawvBLRENg+CUiIiKitJN4+HVCEgUU5ppTuCoimsgYfomIiIgo7UTCr6qqMe+rqCoaWl0oyjVDJ/HtLRENjr8diIiIiCjt6HUiVADBUOzw29blgS8QQmk+W56JaGgMv0RERESUdmSdBABxtT5H9vty2BURDYfhl4iIiIjSjqzT3qYG4pj4XB855sjOY46IaGgMv0RERESUdvTh8OuPo/Lb4/IDAHIyjCldExFNbAy/RERERJR2eiu/scOvxxcEAJj0upSuiYgmNoZfIiIiIko7iez59fi01miTQUrpmohoYmP4JSIiIqK0k0jl1+vXKr9GVn6JaBgMv0RERESUdnr3/MYeeOXxhWDQSxBFIdXLIqIJjOGXiIiIiNJOQnt+/UGY9Gx5JqLhMfwSERERUdpJdOCVycCWZyIaHsMvEREREaUdvZzYwCvu9yWiWBh+iYiIiCjtyFJ8e34DQQXBkAIzJz0TUQwMv0RERESUduJte45OembbMxHFwPBLRERERGkn3vDr8Wnh18S2ZyKKgeGXiIiIiNJO71FHscKv1hZtZNszEcXA8EtEREREaUfWxTfwKtL2bGbbMxHFwPBLRERERGlH1sU38Cpa+WXbMxHFwPBLRERERGknEn6D8e75ZdszEcUwph+RORwOPPbYY3A6nQgEAvjWt76FBQsW4PDhw/jBD34ASZKwatUqPPzww2O5LCIiIiJKM3Hv+fVHwi8rv0Q0vDGt/D7zzDNYvnw5fvvb3+KHP/whvve97wEAnnjiCfz0pz/FCy+8gCNHjuDEiRNjuSwiIiIiSjOyHN+e30jll23PRBTLmP6W+PznPw+9Xg8ACIVCMBgMcDqd8Pv9KCsrAwCsWrUKe/bswaxZs8ZyaURERESURmQp3nN+tT2/HHhFRLGk7LfEli1b8Oyzz/a77amnnsLcuXPR2tqKxx57DP/4j/8Ip9MJq9UavY/FYsHly5eHvXZ2thk6Hfd1UPLZ7bbxXgJNMnxNUTLx9USjNZFeQ9HQKwrDrlsVBABAcWHGhPrzTRb8d07JlOrXU8rC7+bNm7F58+arbj9z5gweeeQRPP7441i6dCmcTidcLlf0+y6XCxkZGcNeu7PTnfT1EtntNrS2OsZ7GTSJ8DVFycTXE43WRHsNqaoKAYDL7R923Z3dHgCAx+WbUH++yWCivaYovQ18PaUiCI/pnt/z58/j61//On76059i7dq1AACr1QpZllFXVwdVVbFz504sXrx4LJdFRERERGlGEATIshh74FX4qCNOeyaiWMZ0c8RPf/pT+P1+/OAHPwCgBd9f/OIXePLJJ/HNb34ToVAIq1atwrx588ZyWURERESUhmRJjHnUkdfPgVdEFJ8x/S3xi1/8YtDb58+fjxdffHEsl0JEREREaU4vS/AHQ8Pex+0LwqCXIIrCGK2KiCaqMW17JiIiIiKKl6wTY0979oVg0rPlmYhiY/glIiIiorQUT/j1+IMw8ZgjIooDwy8RERERpSV9POHXF+J+XyKKC8MvEREREaUlWdKmPauqOuj3A0EFwZACMyc9E1EcGH6JiIiIKC3JshZqg6HBw68nMumZbc9EFAeGXyIiIiJKS7KkvVUNDDHx2evTwq+Jbc9EFAeGXyIiIiJKS3pZe6vqH2Lfr8enhWIj256JKA4Mv0RERESUlmRdpPI7ePj1+ln5JaL4MfwSERERUVqSdVpFd6jKrzvS9sw9v0QUB4ZfIiIiIkpL+nDlNzhU5Tfc9mxi2zMRxYHhl4iIiIjSUqTt2T/EwKvItGdWfokoHgy/RERERJSWYu359YTbno3c80tEcWD4JSIiIqK01Fv5HX7as5mVXyKKA8MvEREREaUlfXjg1VB7fiNtzzzqiIjiwfBLRERERGkp1p5fr49HHRFR/Bh+iYiIiCgtxdv2zGnPRBQPhl8iIiIiSkt6DrwioiRi+CUiIiKitBSp/LZ1eREMXR2APf4gDHoJoiiM9dKIaALix2RERERElJYyLHoAwNsHLmPnsUbMKs/BnOm5mFuRi0yrAV5fCCY9W56JKD4Mv0RERESUlsoLM/DYvQvw0dlWHK1pw4EzrThwphUAMLXQhk6nD3mZxnFeJRFNFAy/RERERJS2ZkzNxoyp2bhvfRWudLhxtKYdR2vacfZyF0KKisxwdZiIKBaGXyIiIiJKe4IgoCjXgqJcC25ZWgaPL4izl7tQlGcZ76UR0QTB8EtEREREE47JoMO8yrzxXgYRTSCc9kxERERERESTHsMvERERERERTXoMv0RERERERDTpMfwSERERERHRpCeoqqqO9yKI/v/27jQ0qrMN4/g1iXGUTDVGbVMkFE0LMULRCI2iScRSrEKapm6hNVoE40JcqgbFpYk4WmPrgh8URWtsEUKq4tLiEhl0tDVxQ5BooVZJaBDqSs3EaDI+74eXDI2a13lp5pzk9P/7NjNnee7h4jlzzzlnBgAAAAAiiTO/AAAAAADHo/kFAAAAADgezS8AAAAAwPFofgEAAAAAjkfzCwAAAABwPJpfAAAAAIDjdbF7AMA/1dTUpGXLlqmurk5Pnz7V7Nmz9fbbb2vp0qVyuVx65513VFRUpKio/37Xc//+feXm5urIkSNyu916+PChCgsLVV9fr7i4OHm9XvXu3bvVPhobG1VYWKh79+4pNjZWJSUlio+P19mzZ/XNN9+oe/fuSk9P15w5c+x4C9DOrMhUi4qKCh07dkwbNmwIPVdaWqq7d+9q8eLFltSLyPp/8lRaWqqffvpJkpSZmamCgoI255+/+1/LBINBffHFF5owYYIyMjIsrx//nJ0ZunjxokpKSuRyuZSRkaGCggI73gK0IzvzdOLECa1fv15vvvmmJGnu3Ll67733LH8P0H7szFNeXl5omZs3byonJ+fVn50M0Mnt27fPeL1eY4wx9+/fN5mZmWbmzJmmsrLSGGPMypUrzYkTJ4wxxvj9fpOdnW2GDBliGhsbjTHGrFu3zmzbts0YY8zPP/9sli1b9sI+vv32W7NlyxZjjDE//vijWb16tQkGgyYzM9PU1tYaY4xZtGiRuXDhQmSLhSWsyJQxxqxevdqMGTPGLFiwwBhjzOPHj82iRYvMBx98YL7++uuI1gjrhJun2tpak5OTY5qbm00wGDSTJ082169ff+n887y2lqmpqTG5ublm1KhR5vTp01aUiwiwM0M5OTmh49yUKVNMdXV1xOtFZNmZp40bN5pjx45ZUSYsYmeeWrRsu76+/pXj5bJndHoffvih5s+fH3ocHR2t6urq0DeJGRkZ+uWXXyRJUVFR2r17t+Li4kLL37hxI3Q2JDU1VZcuXXphH5cuXVJ6enpoe+fOndODBw/Uo0cPJSYmhta9fPlyZIqEpazIVMtrxcXFocdPnjzRxx9/rFmzZrV3SbBRuHlKSEjQzp07FR0draioKDU3N8vtdr90/nleW8s0NDTI6/UqLS0t0mUiguzMUHl5uRITExUIBEJXs6BzszNP1dXV2r9/vz799FOtW7dOzc3NkS4XEWZnnlqsWbNGhYWFio2NfeV4aX7R6cXGxsrj8ai+vl7z5s3TggULZIyRy+UKvf7o0SNJ0ogRI9SrV69W6w8cOFA+n0+S5PP51NjY+MI+6uvr9dprr7XaXnx8vBobG/X7778rGAzK7/eroaEhkqXCIlZkSpLGjRsX2qYk9ezZUyNHjoxESbBRuHmKiYlRfHy8jDEqKSlRSkqK+vfv/9L553ltLZOcnKykpCSLKkWk2JmhLl266MqVK8rKylKfPn1euBwRnY+deRoxYoRWrlypvXv3qqGhQWVlZRZVjUixM0+S9OuvvyoQCGj48OFhjZfmF45w+/ZtTZ06VdnZ2crKygrdiylJgUBAPXr0aHPd/Px81dXV6fPPP9ft27eVkJCgmpoa5eXlKS8vTz/88IM8Ho8CgUCr7blcLq1fv17FxcWaN2+e+vfv/0IThM4r0pnCv0u4eXry5IkWL16sQCCgoqIiSXrp/BPOHAVnsTNDgwcPls/nU0pKinbs2GFVyYggu/I0fvx4JSYmyuVy6f3339e1a9esLBsRYuf8dPjwYU2cODHssfKDV+j07t69q+nTp+vLL78MfeuTkpKiqqoqpaWlye/3a9iwYW2uf/HiRWVnZ2vYsGE6fvy4UlNT9dZbb+n7778PLfPo0SOdPn1a7777rvx+v4YOHSpJ8vv92r59u7p3766CggJ98sknkS0WlrAiU/j3CDdPxhjNmTNHaWlpys/PD62fmpr6wvwT7hwFZ7ArQ8YYffbZZ9q2bZt69uyp2NhYPX361PL60b7szNNHH32ksrIyJSQk6Ny5cxo0aJDl9aN92X2Mq6ys1IwZM8Ier8sYY9qhbsA2Xq9XR48e1YABA0LPLV++XF6vV01NTRowYIC8Xq+io6NDr48ePVpHjx6V2+1WTU2NlixZIkl6/fXXtXbtWnk8nlb7ePz4sZYsWaI7d+4oJiZGGzZsUN++fVVeXq69e/eqW7duysrK0pQpU6wpGhFlRaZaVFVVqaysTJs2bQo9d+DAAd28eZNfe3aIcPPk8/m0cOFCDR48OLTcwoULlZyc/NL55+/amqNaLF26VOPGjePXnjspOzN08uRJ7dixQ127dlXfvn3l9XrDuq8OHZedeTp79qw2b96sbt26KSkpSStWrFBMTIxltaP92X2MS09P15kzZ8IeL80vAAAAAMDxuOcXAAAAAOB4NL8AAAAAAMej+QUAAAAAOB7NLwAAAADA8Wh+AQAAAACOx//8AgBgg1WrVuny5ctqampSbW2tkpKSJEm3bt1SRUWF3njjDZtHCACAs/BXRwAA2OiPP/7Q1KlT5fP57B4KAACOxplfAAA6kNGjR+u7777T+fPnderUKT18+FB//vmncnNzVVdXp8rKSsXFxWnnzp1yu906ePCg9uzZo2fPnmnQoEEqKiqS2+22uwwAADoc7vkFAKCDunr1qrZu3apdu3bpq6++UkZGho4cOSJJOnPmjH777TeVl5errKxMhw4dUu/evbVr1y6bRw0AQMfEmV8AADqo1NRUeTweeTweSdLw4cMlSf369dNff/2lqqoq1dTUaNKkSZKkpqYmpaSk2DZeAAA6MppfAAA6qJiYmFaPu3RpfdgOBoMaO3asVqxYIUkKBAIKBoOWjQ8AgM6Ey54BAOik0tLSVFFRoXv37skYo+LiYu3Zs8fuYQEA0CFx5hcAgE4qOTlZBQUFmjZtmp49e6aBAwcqPz/f7mEBANAh8VdHAAAAAADH47JnAAAAAIDj0fwCAAAAAByP5hcAAAAA4Hg0vwAAAAAAx6P5BQAAAAA4Hs0vAAAAAMDxaH4BAAAAAI5H8wsAAAAAcLz/AKHRGGT7LlRGAAAAAElFTkSuQmCC\n", 298 | "text/plain": [ 299 | "
" 300 | ] 301 | }, 302 | "metadata": {}, 303 | "output_type": "display_data" 304 | }, 305 | { 306 | "name": "stdout", 307 | "output_type": "stream", 308 | "text": [ 309 | "Buy & Hold 50/50 YTD Performance (at 1 July 2020) = -4.8 %\n", 310 | "Strategy YTD Performance = -9.7 %\n" 311 | ] 312 | } 313 | ], 314 | "source": [ 315 | "BuyHoldBothYTD = (((PEP['Adj Close'][-252:]/float(PEP['Adj Close'][-252])-1)+(KO['Adj Close'][-252:]/float(KO['Adj Close'][-252])-1))/2).fillna(method='ffill')\n", 316 | "StrategyYTD = returns[-92:].cumsum()\n", 317 | "\n", 318 | "plt.figure(figsize=(16,6))\n", 319 | "plt.plot(BuyHoldBothYTD*100, label='Buy & Hold 50/50')\n", 320 | "plt.plot(StrategyYTD*100, label='Pairs Trading', color='coral')\n", 321 | "plt.xlabel('Time')\n", 322 | "plt.ylabel('Returns (in %)')\n", 323 | "plt.margins(x=0.005,y=0.02)\n", 324 | "plt.axhline(y=0, xmin=0, xmax=1, linestyle='--', color='k')\n", 325 | "plt.legend()\n", 326 | "plt.show()\n", 327 | "\n", 328 | "print('Buy & Hold 50/50 YTD Performance (at 1 July 2020) =',round(float(BuyHoldBothYTD[-1:]*100),1),'%')\n", 329 | "print('Strategy YTD Performance =',round(float(StrategyYTD[-1:]*100),1),'%')" 330 | ] 331 | } 332 | ], 333 | "metadata": { 334 | "kernelspec": { 335 | "display_name": "Python 3", 336 | "language": "python", 337 | "name": "python3" 338 | }, 339 | "language_info": { 340 | "codemirror_mode": { 341 | "name": "ipython", 342 | "version": 3 343 | }, 344 | "file_extension": ".py", 345 | "mimetype": "text/x-python", 346 | "name": "python", 347 | "nbconvert_exporter": "python", 348 | "pygments_lexer": "ipython3", 349 | "version": "3.7.8" 350 | } 351 | }, 352 | "nbformat": 4, 353 | "nbformat_minor": 2 354 | } 355 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | #### The main objective of this repo is idea generation! Some of these 'strategies' might not be appropriate for consumption ~~due to overfitting~~ (it's meant to be educational) 2 | 3 | Dependencies: Numpy; Pandas; Matplotlib and Requests (for fetching Yahoo Finance data) 4 | 5 | #### Difficulty 6 | 7 | Moderate: 8 | 9 | [ML Based Pairs Trading](DecisionTreeRegressors.ipynb) - A simple Machine Learning example, Decision Tree Regressors applied to the previous pair (also requires Scikit-Learn) 10 | 11 | Basic: 12 | 13 | [Long Only Pairs Trading](PairsTrading.ipynb) - A simple pairs trading strategy focused on buying the loser! Signal is given by rolling correlation 14 | 15 | Introductory: 16 | 17 | [Dynamic Asset Allocation & Diversification](AssetAllocation.ipynb) - Exploring geographical diversification and optimizing capital allocation (also requires Scipy) 18 | 19 | Market data last updated at 2 July 2020 20 | 21 | #### License 22 | This code has been released under the [Apache 2.0 License](LICENSE) --------------------------------------------------------------------------------