├── 2.0
├── git
├── LICENSE
├── master
├── FETCH_HEAD
├── cli
├── __init__.py
└── cli.py
├── docs
├── user_guide.md
├── api_reference.md
└── developer_guide.md
├── tests
├── __init__.py
├── test_cli.py
├── test_code_optimizer.py
├── test_cuda_parser.py
├── test_cudnn_mapper.py
├── test_host_adapter.py
├── unit
│ ├── test_generator.py
│ ├── test_parser.py
│ └── test_translator.py
├── test_kernel_translator.py
├── integration_tests
│ ├── __init__.py
│ └── test_end_to_end.py
└── integration
│ ├── test_basic_kernels.py
│ └── test_complex_kernels.py
├── utils
├── __init__.py
├── metal_equivalents.py
├── cuda_to_metal_type_mapping.py
├── error_handler.py
├── cuda_builtin_functions.py
├── logger.py
└── file_utils.py
├── generator
├── __init__.py
├── swift_generator.py
└── msl_generator.py
├── templates
├── unifier.py
├── objc
│ ├── metal_setup.m
│ ├── cudnn_wrapper.h
│ ├── metal_manager.h
│ ├── cudnn_wrapper.m
│ ├── main.m
│ ├── metal_manager.m
│ └── kernel_wrapper.m
├── swift
│ ├── metal_setup.swift
│ ├── cudnn_wrapper.swift
│ ├── main.swift
│ ├── metal_manager.swift
│ └── kernel_wrapper.swift
├── msl
│ ├── device_functions.metal
│ └── kernel_template.metal
└── metal
│ ├── header_template.h
│ └── kernel_template.metal
├── optimization
├── barrier_optimizer.py
├── kernel_optimizer.py
└── memory_optimizer.py
├── requirements.txt
├── setup.py
├── assets
└── cudam_logo.png
├── translator
├── __init__.py
├── host_adapter.py
├── thread_hierarchy_mapper.py
├── cudnn_mapper.py
└── intrinsic_function_mapper.py
├── .idea
├── .gitignore
├── misc.xml
├── inspectionProfiles
│ ├── profiles_settings.xml
│ └── Project_Default.xml
├── vcs.xml
├── modules.xml
└── CUDAM.iml
├── __init__.py
├── .gitignore
├── core
├── parser
│ ├── __init__.py
│ └── clang_integration.py
└── translator
│ └── host_translator.py
├── examples
└── simple_vector_add
│ └── vector_add.py
├── parser
└── __init__.py
├── problems.py
├── testdata.py
├── native
└── metal_interop.mm
├── README.md
├── LICENSE.md
└── optimizer
└── unified_optimizer_metal.py
/2.0:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/git:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/master:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/FETCH_HEAD:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/cli/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/docs/user_guide.md:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/test_cli.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/docs/api_reference.md:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/docs/developer_guide.md:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/generator/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/templates/unifier.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/templates/objc/metal_setup.m:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/test_code_optimizer.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/test_cuda_parser.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/test_cudnn_mapper.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/test_host_adapter.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/unit/test_generator.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/unit/test_parser.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/optimization/barrier_optimizer.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/optimization/kernel_optimizer.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/templates/swift/metal_setup.swift:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/test_kernel_translator.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/unit/test_translator.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/integration_tests/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/integration/test_basic_kernels.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/integration/test_complex_kernels.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/tests/integration_tests/test_end_to_end.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | logging~=0.4.9.6
2 | utils~=1.0.2
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | # CUDAM/setup.py
2 |
3 | from setuptools import setup, find_packages
4 |
--------------------------------------------------------------------------------
/assets/cudam_logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MEHDI342/CUDAM/HEAD/assets/cudam_logo.png
--------------------------------------------------------------------------------
/translator/__init__.py:
--------------------------------------------------------------------------------
1 | from core import CudaTranslator
2 | from kernel_translator import KernelTranslator
3 | from .host_adapter import HostAdapter
4 |
5 | __all__ = ['CudaTranslator', 'KernelTranslator', 'HostAdapter']
--------------------------------------------------------------------------------
/.idea/.gitignore:
--------------------------------------------------------------------------------
1 | # Default ignored files
2 | /shelf/
3 | /workspace.xml
4 | # Editor-based HTTP Client requests
5 | /httpRequests/
6 | # Datasource local storage ignored files
7 | /dataSources/
8 | /dataSources.local.xml
9 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/templates/msl/device_functions.metal:
--------------------------------------------------------------------------------
1 | #include
2 | using namespace metal;
3 |
4 | // Helper function that can be used by kernels
5 | float compute_something(float value) {
6 | return value * 2.0;
7 | }
8 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/profiles_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
1 | from .translator import CudaTranslator
2 | from .optimizer import MetalOptimizer
3 | from .parser import CudaParser, ast_nodes
4 | from .utils import logger
5 |
6 | __version__ = '1.0.0'
7 | __all__ = ['CudaTranslator', 'MetalOptimizer', 'CudaParser']
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/templates/objc/cudnn_wrapper.h:
--------------------------------------------------------------------------------
1 | #import
2 | #import
3 |
4 | @interface CUDNNWrapper : NSObject
5 |
6 | - (instancetype)initWithDevice:(id)device;
7 | - (void)performConvolutionWithInput:(MPSImage *)input
8 | output:(MPSImage *)output;
9 |
10 | @end
11 |
--------------------------------------------------------------------------------
/templates/msl/kernel_template.metal:
--------------------------------------------------------------------------------
1 | #include
2 | #include "device_functions.metal"
3 | using namespace metal;
4 |
5 | kernel void example_kernel(const device float* input [[buffer(0)]],
6 | device float* output [[buffer(1)]],
7 | uint id [[thread_position_in_grid]]) {
8 | output[id] = compute_something(input[id]);
9 | }
10 |
--------------------------------------------------------------------------------
/templates/objc/metal_manager.h:
--------------------------------------------------------------------------------
1 | #import
2 | #import
3 |
4 | @interface MetalManager : NSObject
5 |
6 | - (instancetype)initWithDevice:(id)device;
7 | - (void)executeKernelWithName:(NSString *)kernelName
8 | withInput:(id)inputBuffer
9 | outputBuffer:(id)outputBuffer;
10 |
11 | @end
12 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Python cache
2 | __pycache__/
3 | *.py[cod]
4 | *.pyo
5 | *.pyd
6 |
7 | # Ignore the files generated by IDEs and environments
8 | .idea/
9 | .vscode/
10 | env/
11 | venv/
12 | *.log
13 |
14 | # Project-specific files you might not want in version control
15 | pylint_errors.txt
16 | projett_content.txt
17 |
18 | # Ignoring test and problem scripts during early development
19 | CUDAM/testdata.py
20 | CUDAM/problems.py
21 |
22 | # Avoid pylint error outputs and logs
23 | *.pylint.log
24 | babouchka.txt
25 |
--------------------------------------------------------------------------------
/.idea/CUDAM.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
18 |
19 |
--------------------------------------------------------------------------------
/templates/swift/cudnn_wrapper.swift:
--------------------------------------------------------------------------------
1 | import MetalPerformanceShaders
2 |
3 | class CUDNNWrapper {
4 | private let device: MTLDevice
5 | private var convolution: MPSCNNConvolution
6 |
7 | init(device: MTLDevice) {
8 | self.device = device
9 |
10 | let convDesc = MPSCNNConvolutionDescriptor(kernelWidth: 3, kernelHeight: 3,
11 | inputFeatureChannels: 1, outputFeatureChannels: 1)
12 |
13 | convolution = MPSCNNConvolution(device: device, convolutionDescriptor: convDesc, kernelWeights: [], biasTerms: nil)
14 | }
15 |
16 | func performConvolution(input: MPSImage, output: MPSImage, commandBuffer: MTLCommandBuffer) {
17 | convolution.encode(commandBuffer: commandBuffer, sourceImage: input, destinationImage: output)
18 | }
19 | }
20 |
--------------------------------------------------------------------------------
/core/parser/__init__.py:
--------------------------------------------------------------------------------
1 | # CUDAM/core/parser/__init__.py
2 |
3 | # Optionally, import classes from ast_nodes.py for easier access
4 | from .ast_nodes import (
5 | CUDANode,
6 | CUDAKernel,
7 | CUDAParameter,
8 | CUDAType,
9 | CUDAQualifier,
10 | CUDASharedMemory,
11 | CUDAThreadIdx,
12 | CUDABarrier,
13 | CUDACompoundStmt,
14 | CUDAExpressionNode,
15 | CUDAStatement,
16 | FunctionNode,
17 | KernelNode,
18 | VariableNode,
19 | StructNode,
20 | EnumNode,
21 | TypedefNode,
22 | ClassNode,
23 | NamespaceNode,
24 | TemplateNode,
25 | CudaASTNode,
26 | CudaTranslationContext
27 | )
28 |
29 | __all__ = [
30 | "CUDANode",
31 | "CUDAKernel",
32 | "CUDAParameter",
33 | "CUDAType",
34 | "CUDAQualifier",
35 | "CUDASharedMemory",
36 | "CUDAThreadIdx",
37 | "CUDABarrier",
38 | "CUDACompoundStmt",
39 | "CUDAExpressionNode",
40 | "CUDAStatement",
41 | "FunctionNode",
42 | "KernelNode",
43 | "VariableNode",
44 | "StructNode",
45 | "EnumNode",
46 | "TypedefNode",
47 | "ClassNode",
48 | "NamespaceNode",
49 | "TemplateNode",
50 | "CudaASTNode",
51 | "CudaTranslationContext"
52 | ]
53 |
--------------------------------------------------------------------------------
/templates/swift/main.swift:
--------------------------------------------------------------------------------
1 | import Metal
2 | import MetalKit
3 |
4 | // Entry point for the application using Metal
5 | class MetalApp {
6 | private let device: MTLDevice
7 | private let metalManager: MetalManager
8 |
9 | init() {
10 | guard let device = MTLCreateSystemDefaultDevice() else {
11 | fatalError("Metal is not supported on this device.")
12 | }
13 | self.device = device
14 | self.metalManager = MetalManager(device: device)
15 | }
16 |
17 | func run() {
18 | // Input and output buffers setup
19 | let inputBuffer = device.makeBuffer(length: MemoryLayout.size * 256, options: [])
20 | let outputBuffer = device.makeBuffer(length: MemoryLayout.size * 256, options: [])
21 |
22 | // Fill the input buffer with data
23 | let inputPointer = inputBuffer?.contents().bindMemory(to: Float.self, capacity: 256)
24 | for i in 0..<256 {
25 | inputPointer?[i] = Float(i)
26 | }
27 |
28 | // Execute kernel
29 | metalManager.executeKernel(functionName: "example_kernel", inputBuffer: inputBuffer!, outputBuffer: outputBuffer!)
30 | }
31 | }
32 |
33 | // Running the Metal app
34 | let app = MetalApp()
35 | app.run()
36 |
--------------------------------------------------------------------------------
/templates/objc/cudnn_wrapper.m:
--------------------------------------------------------------------------------
1 | #import "cudnn_wrapper.h"
2 |
3 | @implementation CUDNNWrapper {
4 | id _device;
5 | MPSNNConvolution *convolution;
6 | }
7 |
8 | - (instancetype)initWithDevice:(id)device {
9 | self = [super init];
10 | if (self) {
11 | _device = device;
12 | // Setup Metal Performance Shader convolution kernel
13 | MPSNNConvolutionDescriptor *convDesc = [[MPSNNConvolutionDescriptor alloc] initWithKernelWidth:3
14 | kernelHeight:3
15 | inputFeatureChannels:1
16 | outputFeatureChannels:1];
17 | convolution = [[MPSNNConvolution alloc] initWithDevice:_device
18 | convolutionDescriptor:convDesc];
19 | }
20 | return self;
21 | }
22 |
23 | - (void)performConvolutionWithInput:(MPSImage *)input
24 | output:(MPSImage *)output {
25 | // Code to perform convolution
26 | // Example only: Ensure input/output handling is correct in actual code
27 | [convolution encodeToCommandBuffer:commandBuffer
28 | sourceImage:input
29 | destinationImage:output];
30 | }
31 |
32 | @end
33 |
--------------------------------------------------------------------------------
/templates/objc/main.m:
--------------------------------------------------------------------------------
1 | #import
2 | #import
3 | #import "metal_manager.h"
4 |
5 | int main(int argc, const char * argv[]) {
6 | @autoreleasepool {
7 | // Check if Metal is supported
8 | id device = MTLCreateSystemDefaultDevice();
9 | if (!device) {
10 | NSLog(@"Metal is not supported on this device.");
11 | return -1;
12 | }
13 |
14 | // Initialize Metal manager
15 | MetalManager *metalManager = [[MetalManager alloc] initWithDevice:device];
16 |
17 | // Create input and output buffers
18 | id inputBuffer = [device newBufferWithLength:sizeof(float) * 256 options:MTLResourceStorageModeShared];
19 | id outputBuffer = [device newBufferWithLength:sizeof(float) * 256 options:MTLResourceStorageModeShared];
20 |
21 | // Fill input buffer with data
22 | float *inputPointer = (float *)[inputBuffer contents];
23 | for (int i = 0; i < 256; i++) {
24 | inputPointer[i] = (float)i;
25 | }
26 |
27 | // Execute the kernel
28 | [metalManager executeKernelWithName:@"example_kernel" withInput:inputBuffer outputBuffer:outputBuffer];
29 |
30 | // Output the results
31 | float *outputPointer = (float *)[outputBuffer contents];
32 | for (int i = 0; i < 256; i++) {
33 | NSLog(@"Output[%d]: %f", i, outputPointer[i]);
34 | }
35 | }
36 | return 0;
37 | }
38 |
--------------------------------------------------------------------------------
/examples/simple_vector_add/vector_add.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 | from CUDAM.parser.clang_integration import CUDAClangParser
3 | from CUDAM.translator.host_translator import CUDAHostTranslator
4 | from CUDAM.generator.metal_generator import MetalGenerator
5 |
6 | def translate_cuda_to_metal(cuda_file: str):
7 | # Initialize components
8 | parser = CUDAClangParser()
9 | host_translator = CUDAHostTranslator()
10 | metal_generator = MetalGenerator()
11 |
12 | # Parse CUDA file
13 | cuda_ast = parser.parse_file(cuda_file)
14 | if not cuda_ast:
15 | print("Failed to parse CUDA file")
16 | return
17 |
18 | # Find kernel functions
19 | kernels = []
20 | def find_kernels(node):
21 | if hasattr(node, 'is_kernel') and node.is_kernel():
22 | kernels.append(node)
23 | cuda_ast.traverse(find_kernels)
24 |
25 | # Generate Metal code
26 | output_dir = Path('metal_output')
27 | output_dir.mkdir(exist_ok=True)
28 |
29 | # Generate kernel code
30 | for kernel in kernels:
31 | metal_code = metal_generator.generate_metal_code(kernel)
32 | kernel_file = output_dir / f"{kernel.name}.metal"
33 | kernel_file.write_text(metal_code)
34 |
35 | # Translate host code
36 | with open(cuda_file) as f:
37 | cuda_host_code = f.read()
38 | metal_host_code = host_translator.translate_host_code(cuda_host_code, target_lang='swift')
39 | host_file = output_dir / "host.swift"
40 | host_file.write_text(metal_host_code)
41 |
42 | if __name__ == "__main__":
43 | cuda_file = "vector_add.cu"
44 | translate_cuda_to_metal(cuda_file)
--------------------------------------------------------------------------------
/templates/swift/metal_manager.swift:
--------------------------------------------------------------------------------
1 | import Metal
2 | import Foundation
3 |
4 | class MetalManager {
5 | private let device: MTLDevice
6 | private let commandQueue: MTLCommandQueue
7 |
8 | init(device: MTLDevice) {
9 | self.device = device
10 | self.commandQueue = device.makeCommandQueue()!
11 | }
12 |
13 | func executeKernel(functionName: String, inputBuffer: MTLBuffer, outputBuffer: MTLBuffer) {
14 | guard let library = device.makeDefaultLibrary(),
15 | let function = library.makeFunction(name: functionName) else {
16 | print("Failed to find the function \(functionName)")
17 | return
18 | }
19 |
20 | do {
21 | let pipelineState = try device.makeComputePipelineState(function: function)
22 | guard let commandBuffer = commandQueue.makeCommandBuffer(),
23 | let commandEncoder = commandBuffer.makeComputeCommandEncoder() else {
24 | print("Failed to create command encoder")
25 | return
26 | }
27 |
28 | commandEncoder.setComputePipelineState(pipelineState)
29 | commandEncoder.setBuffer(inputBuffer, offset: 0, index: 0)
30 | commandEncoder.setBuffer(outputBuffer, offset: 0, index: 1)
31 |
32 | let gridSize = MTLSize(width: 256, height: 1, depth: 1)
33 | let threadGroupSize = MTLSize(width: 16, height: 1, depth: 1)
34 | commandEncoder.dispatchThreads(gridSize, threadsPerThreadgroup: threadGroupSize)
35 |
36 | commandEncoder.endEncoding()
37 | commandBuffer.commit()
38 | commandBuffer.waitUntilCompleted()
39 |
40 | print("Kernel execution completed")
41 | } catch {
42 | print("Error creating pipeline state: \(error)")
43 | }
44 | }
45 | }
46 |
--------------------------------------------------------------------------------
/templates/objc/metal_manager.m:
--------------------------------------------------------------------------------
1 | #import "metal_manager.h"
2 |
3 | @implementation MetalManager {
4 | id _device;
5 | id _commandQueue;
6 | }
7 |
8 | - (instancetype)initWithDevice:(id)device {
9 | self = [super init];
10 | if (self) {
11 | _device = device;
12 | _commandQueue = [_device newCommandQueue];
13 | }
14 | return self;
15 | }
16 |
17 | - (void)executeKernelWithName:(NSString *)kernelName
18 | withInput:(id)inputBuffer
19 | outputBuffer:(id)outputBuffer {
20 | NSError *error = nil;
21 | id library = [_device newDefaultLibrary];
22 | id function = [library newFunctionWithName:kernelName];
23 |
24 | if (!function) {
25 | NSLog(@"Failed to load kernel function: %@", kernelName);
26 | return;
27 | }
28 |
29 | id pipelineState = [_device newComputePipelineStateWithFunction:function error:&error];
30 | if (error) {
31 | NSLog(@"Error creating pipeline state: %@", error.localizedDescription);
32 | return;
33 | }
34 |
35 | id commandBuffer = [_commandQueue commandBuffer];
36 | id commandEncoder = [commandBuffer computeCommandEncoder];
37 |
38 | [commandEncoder setComputePipelineState:pipelineState];
39 | [commandEncoder setBuffer:inputBuffer offset:0 atIndex:0];
40 | [commandEncoder setBuffer:outputBuffer offset:0 atIndex:1];
41 |
42 | MTLSize gridSize = MTLSizeMake(256, 1, 1);
43 | MTLSize threadGroupSize = MTLSizeMake(16, 1, 1);
44 | [commandEncoder dispatchThreads:gridSize threadsPerThreadgroup:threadGroupSize];
45 |
46 | [commandEncoder endEncoding];
47 | [commandBuffer commit];
48 | [commandBuffer waitUntilCompleted];
49 |
50 | NSLog(@"Kernel execution complete.");
51 | }
52 |
53 | @end
54 |
--------------------------------------------------------------------------------
/.idea/inspectionProfiles/Project_Default.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
--------------------------------------------------------------------------------
/parser/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | CUDA Parser Module Initialization
3 | Provides complete type system and node hierarchy for CUDA to Metal translation.
4 |
5 | Usage:
6 | from CUDAM.parser import CUDAKernel, CUDAType, CUDAQualifier
7 | """
8 |
9 | # Core node system imports using absolute imports
10 | from core.parser.ast_nodes import (
11 | # Core node types and enums
12 | CUDANode,
13 | CUDAKernel,
14 | CUDAParameter,
15 | CUDAType,
16 | CUDAQualifier,
17 | CUDASharedMemory,
18 | CUDAThreadIdx,
19 | CUDABarrier,
20 | CUDACompoundStmt,
21 | CUDAExpressionNode,
22 | CUDAStatement,
23 | FunctionNode,
24 | KernelNode,
25 | VariableNode,
26 | StructNode,
27 | EnumNode,
28 | TypedefNode,
29 | ClassNode,
30 | NamespaceNode,
31 | TemplateNode,
32 | CudaASTNode,
33 | CudaTranslationContext
34 | )
35 |
36 | # Core configuration
37 | VERSION = "1.0.0"
38 | METAL_TARGET = "2.4"
39 | OPTIMIZATION_LEVEL = 2
40 |
41 | # Public API - Defines exactly what gets exported
42 | __all__ = [
43 | "CUDANode",
44 | "CUDAKernel",
45 | "CUDAParameter",
46 | "CUDAType",
47 | "CUDAQualifier",
48 | "CUDASharedMemory",
49 | "CUDAThreadIdx",
50 | "CUDABarrier",
51 | "CUDACompoundStmt",
52 | "CUDAExpressionNode",
53 | "CUDAStatement",
54 | "FunctionNode",
55 | "KernelNode",
56 | "VariableNode",
57 | "StructNode",
58 | "EnumNode",
59 | "TypedefNode",
60 | "ClassNode",
61 | "NamespaceNode",
62 | "TemplateNode",
63 | "CudaASTNode",
64 | "CudaTranslationContext"
65 | ]
66 |
67 | # Convenience aliases
68 | KernelNode = CUDAKernel
69 | ParameterNode = CUDAParameter
70 | CompoundStmtNode = CUDACompoundStmt
71 |
72 | # Initialize configuration
73 | def init_translation(
74 | source_file: str,
75 | metal_target: str = METAL_TARGET,
76 | optimization_level: int = OPTIMIZATION_LEVEL
77 | ) -> CudaTranslationContext:
78 | """Initialize AST translation context with specified parameters."""
79 | return CudaTranslationContext(
80 | source_file=source_file,
81 | metal_target=metal_target,
82 | optimization_level=optimization_level
83 | )
84 |
85 | # Error checking and validation
86 | def validate_ast(node: CUDANode) -> bool:
87 | """Validate AST node and its children for Metal compatibility."""
88 | if not isinstance(node, CUDANode):
89 | return False
90 | return all(validate_ast(child) for child in node.children)
91 |
--------------------------------------------------------------------------------
/templates/metal/header_template.h:
--------------------------------------------------------------------------------
1 | #ifndef CUDAMetalKernel_h
2 | #define CUDAMetalKernel_h
3 |
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | using namespace metal;
10 |
11 | // CUDA-style vector types
12 | struct int2 { int x, y; };
13 | struct int3 { int x, y, z; };
14 | struct int4 { int x, y, z, w; };
15 | struct uint2 { uint x, y; };
16 | struct uint3 { uint x, y, z; };
17 | struct uint4 { uint x, y, z, w; };
18 | struct float2 { float x, y; };
19 | struct float3 { float x, y, z; };
20 | struct float4 { float x, y, z, w; };
21 |
22 | // Thread indexing
23 | #define threadIdx_x (thread_position_in_threadgroup.x)
24 | #define threadIdx_y (thread_position_in_threadgroup.y)
25 | #define threadIdx_z (thread_position_in_threadgroup.z)
26 | #define blockIdx_x (threadgroup_position_in_grid.x)
27 | #define blockIdx_y (threadgroup_position_in_grid.y)
28 | #define blockIdx_z (threadgroup_position_in_grid.z)
29 | #define blockDim_x (threads_per_threadgroup.x)
30 | #define blockDim_y (threads_per_threadgroup.y)
31 | #define blockDim_z (threads_per_threadgroup.z)
32 | #define gridDim_x (threadgroups_per_grid.x)
33 | #define gridDim_y (threadgroups_per_grid.y)
34 | #define gridDim_z (threadgroups_per_grid.z)
35 |
36 | // Common kernel parameters structure
37 | struct KernelParameters {
38 | uint problemSize;
39 | uint batchSize;
40 | float learningRate;
41 | float4 reserved; // For alignment
42 | };
43 |
44 | // CUDA synchronization primitives
45 | #define __syncthreads() threadgroup_barrier(mem_flags::mem_threadgroup)
46 | #define __threadfence() threadgroup_barrier(mem_flags::mem_device)
47 | #define __threadfence_block() threadgroup_barrier(mem_flags::mem_threadgroup)
48 |
49 | // CUDA atomic operations
50 | template
51 | METAL_FUNC T atomicAdd(device atomic_uint* addr, T val) {
52 | return atomic_fetch_add_explicit(addr, val, memory_order_relaxed);
53 | }
54 |
55 | template
56 | METAL_FUNC T atomicMax(device atomic_uint* addr, T val) {
57 | return atomic_fetch_max_explicit(addr, val, memory_order_relaxed);
58 | }
59 |
60 | // CUDA math functions
61 | #define __fdividef(x, y) ((x) / (y))
62 | #define __expf(x) metal::exp(x)
63 | #define __logf(x) metal::log(x)
64 | #define __powf(x, y) metal::pow(x, y)
65 |
66 | // SIMD group operations
67 | #define METAL_WARP_SIZE 32
68 | #define warpSize METAL_WARP_SIZE
69 |
70 | METAL_FUNC uint get_lane_id() {
71 | return threadIdx_x & (METAL_WARP_SIZE - 1);
72 | }
73 |
74 | METAL_FUNC uint get_warp_id() {
75 | return threadIdx_x >> 5;
76 | }
77 |
78 | // Memory space qualifiers
79 | #define __shared__ threadgroup
80 | #define __constant__ constant
81 | #define __device__ device
82 |
83 | #endif /* CUDAMetalKernel_h */
--------------------------------------------------------------------------------
/problems.py:
--------------------------------------------------------------------------------
1 | import os
2 | import subprocess
3 | import json
4 | from pathlib import Path
5 |
6 | def run_pylint(project_dir):
7 | """
8 | Runs pylint on the specified project directory and returns the JSON output.
9 | """
10 | try:
11 | # Run pylint with JSON output
12 | result = subprocess.run(
13 | ['pylint', project_dir, '--output-format=json'],
14 | stdout=subprocess.PIPE,
15 | stderr=subprocess.PIPE,
16 | text=True,
17 | check=False # Don't raise exception on non-zero exit
18 | )
19 |
20 | if result.stderr:
21 | print("Pylint encountered an error:")
22 | print(result.stderr)
23 | # Continue processing even if pylint reports errors (like syntax errors)
24 |
25 | # Parse JSON output
26 | pylint_output = json.loads(result.stdout)
27 | return pylint_output
28 |
29 | except FileNotFoundError:
30 | print("Pylint is not installed or not found in the system PATH.")
31 | return None
32 | except json.JSONDecodeError:
33 | print("Failed to parse pylint output. Ensure pylint is producing valid JSON.")
34 | return None
35 |
36 | def extract_errors(pylint_output):
37 | """
38 | Extracts only error and fatal issues from pylint output.
39 |
40 | Args:
41 | pylint_output (list): The JSON-parsed output from pylint.
42 |
43 | Returns:
44 | list: Filtered list of error issues.
45 | """
46 | error_issues = [
47 | {
48 | 'File': issue.get('path', ''),
49 | 'Line': issue.get('line', ''),
50 | 'Column': issue.get('column', ''),
51 | 'Symbol': issue.get('symbol', ''),
52 | 'Message': issue.get('message', ''),
53 | 'Type': issue.get('type', '')
54 | }
55 | for issue in pylint_output
56 | if issue.get('type', '').lower() in ['error', 'fatal'] and issue.get('message-id', '').startswith(('E', 'F'))
57 | ]
58 |
59 | return error_issues
60 |
61 | def main():
62 | # Define your project directory
63 | project_dir = Path(r'C:\Users\PC\Desktop\Megie\CUDAM\CUDAM')
64 |
65 | if not project_dir.exists():
66 | print(f"The directory {project_dir} does not exist.")
67 | return
68 |
69 | print(f"Running pylint on {project_dir}...")
70 |
71 | pylint_output = run_pylint(str(project_dir))
72 |
73 | if pylint_output is None:
74 | print("No pylint output to process.")
75 | return
76 |
77 | relevant_errors = extract_errors(pylint_output)
78 |
79 | print("\n=== Pylint Errors ===")
80 | if relevant_errors:
81 | for issue in relevant_errors:
82 | print(f"{issue['File']}:{issue['Line']}:{issue['Column']} - {issue['Message']} [{issue['Symbol']}] ({issue['Type'].capitalize()})")
83 | else:
84 | print("No errors found.")
85 |
86 | # Optionally, save the results to a file
87 | save_results = True # Set to False if you don't want to save
88 | if save_results:
89 | errors_file = project_dir / 'pylint_errors.txt'
90 |
91 | with open(errors_file, 'w', encoding='utf-8') as f:
92 | for issue in relevant_errors:
93 | f.write(f"{issue['File']}:{issue['Line']}:{issue['Column']} - {issue['Message']} [{issue['Symbol']}] ({issue['Type'].capitalize()})\n")
94 |
95 | print(f"\nErrors saved to {errors_file}")
96 |
97 | if __name__ == "__main__":
98 | main()
99 |
--------------------------------------------------------------------------------
/translator/host_adapter.py:
--------------------------------------------------------------------------------
1 | import re
2 | from typing import Dict, Any
3 | from ..utils.error_handler import CudaTranslationError
4 | from ..utils.logger import get_logger
5 | from ..translator.kernel_translator import KernelTranslator
6 | from ..translator.memory_model_translator import MemoryModelTranslator
7 |
8 | logger = get_logger(__name__)
9 |
10 | class HostAdapter:
11 | def __init__(self, kernel_translator: KernelTranslator, memory_translator: MemoryModelTranslator):
12 | self.kernel_translator = kernel_translator
13 | self.memory_translator = memory_translator
14 | self.cuda_to_metal_api = {
15 | 'cudaMalloc': 'newBufferWithLength',
16 | 'cudaFree': None,
17 | 'cudaMemcpy': 'contents',
18 | 'cudaStreamCreate': 'newCommandQueue',
19 | 'cudaStreamDestroy': None,
20 | 'cudaEventCreate': 'newEvent',
21 | 'cudaEventRecord': 'enqueue',
22 | 'cudaEventSynchronize': 'waitUntilCompleted',
23 | 'cudaDeviceSynchronize': 'commit'
24 | }
25 |
26 | def translate_host_code(self, cuda_code: str) -> str:
27 | metal_code = cuda_code
28 |
29 | for cuda_api, metal_api in self.cuda_to_metal_api.items():
30 | if metal_api:
31 | metal_code = metal_code.replace(cuda_api, metal_api)
32 | else:
33 | metal_code = self.remove_unsupported_call(metal_code, cuda_api)
34 |
35 | metal_code = self.adapt_kernel_launches(metal_code)
36 | metal_code = self.translate_memory_management(metal_code)
37 | return metal_code
38 |
39 | def remove_unsupported_call(self, code: str, api_call: str) -> str:
40 | pattern = rf'{api_call}\s*\([^)]*\);'
41 | return re.sub(pattern, f'// Removed unsupported CUDA call: {api_call}', code)
42 |
43 | def adapt_kernel_launches(self, code: str) -> str:
44 | kernel_launch_pattern = r'(\w+)<<<(.+?)>>>(.+?);'
45 |
46 | def replace_kernel_launch(match):
47 | kernel_name = match.group(1)
48 | launch_params = match.group(2).split(',')
49 | kernel_args = match.group(3)
50 |
51 | grid_dim = launch_params[0].strip()
52 | block_dim = launch_params[1].strip()
53 |
54 | return f"""
55 | MTLSize gridSize = MTLSizeMake({grid_dim}, 1, 1);
56 | MTLSize threadGroupSize = MTLSizeMake({block_dim}, 1, 1);
57 | [commandEncoder setComputePipelineState:{kernel_name}PipelineState];
58 | [commandEncoder dispatchThreadgroups:gridSize threadsPerThreadgroup:threadGroupSize];
59 | {self.kernel_translator.translate_kernel(kernel_name)}{kernel_args};
60 | """
61 |
62 | return re.sub(kernel_launch_pattern, replace_kernel_launch, code)
63 |
64 | def translate_memory_management(self, code: str) -> str:
65 | malloc_pattern = r'cudaMalloc\(\(void\*\*\)&(\w+),\s*(.+?)\);'
66 | code = re.sub(malloc_pattern, lambda m: f"{m.group(1)} = [device newBufferWithLength:{m.group(2)} options:MTLResourceStorageModeShared];", code)
67 |
68 | memcpy_pattern = r'cudaMemcpy\((.+?),\s*(.+?),\s*(.+?),\s*cudaMemcpy(.+?)\);'
69 | code = re.sub(memcpy_pattern, lambda m: f"memcpy({m.group(1)}.contents, {m.group(2)}, {m.group(3)});", code)
70 |
71 | return code
72 |
73 | def generate_metal_setup(self) -> str:
74 | return """
75 | id device = MTLCreateSystemDefaultDevice();
76 | id commandQueue = [device newCommandQueue];
77 | id commandBuffer = [commandQueue commandBuffer];
78 | id commandEncoder = [commandBuffer computeCommandEncoder];
79 | """
80 |
81 | def generate_metal_cleanup(self) -> str:
82 | return """
83 | [commandEncoder endEncoding];
84 | [commandBuffer commit];
85 | [commandBuffer waitUntilCompleted];
86 | """
87 |
88 | logger.info("HostAdapter initialized for CUDA to Metal host code translation.")
--------------------------------------------------------------------------------
/testdata.py:
--------------------------------------------------------------------------------
1 | import os
2 | import re
3 |
4 | def generate_project_structure(directory, indent_level=0):
5 | structure = ""
6 | for root, dirs, files in os.walk(directory):
7 | if any(ignored in root for ignored in ['venv', '.git', 'node_modules','public']):
8 | continue
9 |
10 | level = root.replace(directory, '').count(os.sep)
11 | indent = '│ ' * (level - indent_level)
12 | structure += f"{indent}├── {os.path.basename(root)}/\n"
13 | sub_indent = '│ ' * (level + 1 - indent_level)
14 | for file in files:
15 | structure += f"{sub_indent}├── {file}\n"
16 | dirs[:] = [d for d in dirs if d not in ['venv', '.git', 'node_modules','public']] # Skip these directories
17 |
18 | return structure
19 |
20 | def extract_classes_and_methods(content):
21 | class_regex = r'class\s+(\w+)\s*(\(.*?\))?:'
22 | frontend_method_regex = r'(?:render_template|get|post|route)\s*\(.*?\)' # Matches common Flask or Django view methods
23 |
24 | extracted_content = ""
25 | class_matches = re.findall(class_regex, content)
26 |
27 | for class_match in class_matches:
28 | class_name = class_match
29 | extracted_content += f"\nClass: {class_name}\n"
30 | extracted_content += "-" * 80 + "\n"
31 |
32 | method_matches = re.findall(frontend_method_regex, content)
33 | for method_match in method_matches:
34 | extracted_content += f" Method: {method_match}\n"
35 |
36 | return extracted_content
37 |
38 | def read_frontend_files(directory):
39 | content = ""
40 | for root, dirs, files in os.walk(directory):
41 | if any(ignored in root for ignored in ['venv', '.git', 'node_modules','public','build']):
42 | continue
43 |
44 | for file in files:
45 | if file.endswith(('.metal', '.h', '.m', '.swift', '.py', '.cu', '.cuh')):
46 | file_path = os.path.join(root, file)
47 | print(f"Processing file: {file_path}")
48 | content += f"File: {file_path}\n\n"
49 | try:
50 | with open(file_path, 'r', encoding='utf-8') as f:
51 | file_content = f.read()
52 | content += file_content
53 |
54 | # Extract classes and methods if it's a Python file for frontend views
55 | if file.endswith(('.metal', '.h', '.m', '.swift', '.py', '.cu', '.cuh')):
56 | extracted_classes_methods = extract_classes_and_methods(file_content)
57 | content += extracted_classes_methods
58 |
59 | except UnicodeDecodeError:
60 | try:
61 | with open(file_path, 'r', encoding='ISO-8859-1') as f:
62 | file_content = f.read()
63 | content += file_content
64 | except Exception as e:
65 | content += f"Error reading file: {e}"
66 | content += "\n\n" + "-"*80 + "\n\n"
67 | dirs[:] = [d for d in dirs if d not in ['venv', '.git', 'node_modules','public','build']] # Skip these directories
68 | return content
69 |
70 | def save_content_to_txt(directory, output_file):
71 | print("Starting the process...")
72 | project_structure = generate_project_structure(directory)
73 | frontend_content = read_frontend_files(directory)
74 | with open(output_file, 'w', encoding='utf-8') as f:
75 | f.write("Project Structure:\n\n")
76 | f.write(project_structure)
77 | f.write("\n\n" + "="*80 + "\n\n")
78 | f.write("Frontend File Contents:\n\n")
79 | f.write(frontend_content)
80 | print("Process completed successfully.")
81 |
82 | # Usage
83 | project_directory = r"C:\Users\PC\Desktop\Megie\CUDAM\CUDAM"
84 | output_file = r"C:\Users\PC\Desktop\Megie\CUDAM\CUDAM\babouchka.txt"
85 |
86 | try:
87 | save_content_to_txt(project_directory, output_file)
88 | except PermissionError:
89 | print("Permission denied. Please check your write permissions or choose a different output location.")
90 | except Exception as e:
91 | print(f"An error occurred: {e}")
--------------------------------------------------------------------------------
/utils/metal_equivalents.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, Callable, Any, List, Optional
2 | from .cuda_builtin_functions import CudaBuiltinFunction, CUDA_BUILTIN_FUNCTIONS
3 | from .cuda_to_metal_type_mapping import map_cuda_type_to_metal
4 |
5 | class MetalEquivalent:
6 | def __init__(self, cuda_function: str, metal_function: str,
7 | argument_transformer: Optional[Callable[[List[str]], List[str]]] = None,
8 | return_transformer: Optional[Callable[[str], str]] = None,
9 | requires_custom_implementation: bool = False):
10 | self.cuda_function = cuda_function
11 | self.metal_function = metal_function
12 | self.argument_transformer = argument_transformer
13 | self.return_transformer = return_transformer
14 | self.requires_custom_implementation = requires_custom_implementation
15 |
16 | def transform_arguments(self, args: List[str]) -> List[str]:
17 | if self.argument_transformer:
18 | return self.argument_transformer(args)
19 | return args
20 |
21 | def transform_return(self, return_value: str) -> str:
22 | if self.return_transformer:
23 | return self.return_transformer(return_value)
24 | return return_value
25 |
26 | def threadIdx_transformer(args: List[str]) -> List[str]:
27 | return ['thread_position_in_threadgroup']
28 |
29 | def blockIdx_transformer(args: List[str]) -> List[str]:
30 | return ['threadgroup_position_in_grid']
31 |
32 | def atomicAdd_transformer(args: List[str]) -> List[str]:
33 | return [f'atomic_fetch_add_explicit({args[0]}, {args[1]}, memory_order_relaxed)']
34 |
35 | METAL_EQUIVALENTS: Dict[str, MetalEquivalent] = {
36 | 'threadIdx': MetalEquivalent('threadIdx', 'thread_position_in_threadgroup', threadIdx_transformer),
37 | 'blockIdx': MetalEquivalent('blockIdx', 'threadgroup_position_in_grid', blockIdx_transformer),
38 | 'blockDim': MetalEquivalent('blockDim', 'threadgroup_size'),
39 | 'gridDim': MetalEquivalent('gridDim', 'grid_size'),
40 | '__syncthreads': MetalEquivalent('__syncthreads', 'threadgroup_barrier(metal::mem_flags::mem_device)'),
41 | 'atomicAdd': MetalEquivalent('atomicAdd', 'atomic_fetch_add_explicit', atomicAdd_transformer),
42 | 'cudaMalloc': MetalEquivalent('cudaMalloc', 'device.makeBuffer', requires_custom_implementation=True),
43 | 'cudaFree': MetalEquivalent('cudaFree', '', requires_custom_implementation=True), # No direct equivalent, memory management is different
44 | 'cudaMemcpy': MetalEquivalent('cudaMemcpy', 'memcpy', requires_custom_implementation=True),
45 | }
46 |
47 | def get_metal_equivalent(cuda_function: str) -> MetalEquivalent:
48 | if cuda_function in METAL_EQUIVALENTS:
49 | return METAL_EQUIVALENTS[cuda_function]
50 |
51 | # For CUDA built-in functions not explicitly defined in METAL_EQUIVALENTS
52 | if cuda_function in CUDA_BUILTIN_FUNCTIONS:
53 | cuda_builtin = CUDA_BUILTIN_FUNCTIONS[cuda_function]
54 | return MetalEquivalent(cuda_function, cuda_builtin.metal_equivalent)
55 |
56 | # If no equivalent is found, return the original function name
57 | return MetalEquivalent(cuda_function, cuda_function)
58 |
59 | def translate_cuda_call_to_metal(cuda_function: str, args: List[str]) -> str:
60 | equivalent = get_metal_equivalent(cuda_function)
61 | transformed_args = equivalent.transform_arguments(args)
62 |
63 | if equivalent.requires_custom_implementation:
64 | return f"// TODO: Implement custom Metal equivalent for {cuda_function}\n" \
65 | f"// {equivalent.metal_function}({', '.join(transformed_args)})"
66 |
67 | return f"{equivalent.metal_function}({', '.join(transformed_args)})"
68 |
69 | def get_metal_type(cuda_type: str) -> str:
70 | return map_cuda_type_to_metal(cuda_type)
71 |
72 | def generate_metal_kernel_signature(kernel_name: str, parameters: List[CudaBuiltinFunction]) -> str:
73 | metal_params = []
74 | for i, param in enumerate(parameters):
75 | metal_type = get_metal_type(param.return_type)
76 | metal_params.append(f"{metal_type} {param.name} [[buffer({i})]]")
77 |
78 | return f"kernel void {kernel_name}({', '.join(metal_params)})"
79 |
80 |
--------------------------------------------------------------------------------
/utils/cuda_to_metal_type_mapping.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, Optional
2 |
3 | class TypeMapping:
4 | def __init__(self, cuda_type: str, metal_type: str,
5 | requires_header: bool = False,
6 | metal_header: Optional[str] = None):
7 | self.cuda_type = cuda_type
8 | self.metal_type = metal_type
9 | self.requires_header = requires_header
10 | self.metal_header = metal_header
11 |
12 | def __str__(self):
13 | return f"{self.cuda_type} -> {self.metal_type}"
14 |
15 | CUDA_TO_METAL_TYPE_MAP: Dict[str, TypeMapping] = {
16 | # Integer types
17 | 'char': TypeMapping('char', 'char'),
18 | 'signed char': TypeMapping('signed char', 'char'),
19 | 'unsigned char': TypeMapping('unsigned char', 'uchar'),
20 | 'short': TypeMapping('short', 'short'),
21 | 'unsigned short': TypeMapping('unsigned short', 'ushort'),
22 | 'int': TypeMapping('int', 'int'),
23 | 'unsigned int': TypeMapping('unsigned int', 'uint'),
24 | 'long': TypeMapping('long', 'int'), # In Metal, long is 32-bit
25 | 'unsigned long': TypeMapping('unsigned long', 'uint'),
26 | 'long long': TypeMapping('long long', 'long'), # In Metal, long long is 64-bit
27 | 'unsigned long long': TypeMapping('unsigned long long', 'ulong'),
28 |
29 | # Floating-point types
30 | 'float': TypeMapping('float', 'float'),
31 | 'double': TypeMapping('double', 'float'), # Metal doesn't support double, use float
32 |
33 | # Vector types
34 | 'char2': TypeMapping('char2', 'char2', True, ''),
35 | 'char3': TypeMapping('char3', 'char3', True, ''),
36 | 'char4': TypeMapping('char4', 'char4', True, ''),
37 | 'uchar2': TypeMapping('uchar2', 'uchar2', True, ''),
38 | 'uchar3': TypeMapping('uchar3', 'uchar3', True, ''),
39 | 'uchar4': TypeMapping('uchar4', 'uchar4', True, ''),
40 | 'short2': TypeMapping('short2', 'short2', True, ''),
41 | 'short3': TypeMapping('short3', 'short3', True, ''),
42 | 'short4': TypeMapping('short4', 'short4', True, ''),
43 | 'ushort2': TypeMapping('ushort2', 'ushort2', True, ''),
44 | 'ushort3': TypeMapping('ushort3', 'ushort3', True, ''),
45 | 'ushort4': TypeMapping('ushort4', 'ushort4', True, ''),
46 | 'int2': TypeMapping('int2', 'int2', True, ''),
47 | 'int3': TypeMapping('int3', 'int3', True, ''),
48 | 'int4': TypeMapping('int4', 'int4', True, ''),
49 | 'uint2': TypeMapping('uint2', 'uint2', True, ''),
50 | 'uint3': TypeMapping('uint3', 'uint3', True, ''),
51 | 'uint4': TypeMapping('uint4', 'uint4', True, ''),
52 | 'float2': TypeMapping('float2', 'float2', True, ''),
53 | 'float3': TypeMapping('float3', 'float3', True, ''),
54 | 'float4': TypeMapping('float4', 'float4', True, ''),
55 |
56 | # CUDA-specific types
57 | 'dim3': TypeMapping('dim3', 'uint3', True, ''),
58 | 'cudaError_t': TypeMapping('cudaError_t', 'int'),
59 | 'cudaStream_t': TypeMapping('cudaStream_t', 'metal::command_queue'),
60 | 'cudaEvent_t': TypeMapping('cudaEvent_t', 'metal::event'),
61 | }
62 |
63 | def map_cuda_type_to_metal(cuda_type: str) -> str:
64 | mapping = CUDA_TO_METAL_TYPE_MAP.get(cuda_type)
65 | return mapping.metal_type if mapping else cuda_type
66 |
67 | def requires_metal_header(cuda_type: str) -> bool:
68 | mapping = CUDA_TO_METAL_TYPE_MAP.get(cuda_type)
69 | return mapping.requires_header if mapping else False
70 |
71 | def get_metal_header(cuda_type: str) -> Optional[str]:
72 | mapping = CUDA_TO_METAL_TYPE_MAP.get(cuda_type)
73 | return mapping.metal_header if mapping else None
74 |
75 | def is_vector_type(type_name: str) -> bool:
76 | return type_name.lower() in [
77 | 'char2', 'char3', 'char4',
78 | 'uchar2', 'uchar3', 'uchar4',
79 | 'short2', 'short3', 'short4',
80 | 'ushort2', 'ushort3', 'ushort4',
81 | 'int2', 'int3', 'int4',
82 | 'uint2', 'uint3', 'uint4',
83 | 'float2', 'float3', 'float4'
84 | ]
85 |
86 | def get_vector_component_type(vector_type: str) -> str:
87 | base_type = vector_type.rstrip('234')
88 | return map_cuda_type_to_metal(base_type)
89 |
90 | def get_vector_size(vector_type: str) -> int:
91 | return int(vector_type[-1]) if vector_type[-1].isdigit() else 0
--------------------------------------------------------------------------------
/utils/error_handler.py:
--------------------------------------------------------------------------------
1 | from typing import Optional, Dict, Any
2 | import traceback
3 |
4 | class CudaError(Exception):
5 | """Base class for CUDA-related errors."""
6 | def __init__(self, message: str, error_code: Optional[int] = None, details: Optional[Dict[str, Any]] = None):
7 | self.message = message
8 | self.error_code = error_code
9 | self.details = details or {}
10 | super().__init__(self.message)
11 |
12 | def __str__(self):
13 | error_str = f"[Error {self.error_code}] " if self.error_code else ""
14 | error_str += self.message
15 | if self.details:
16 | error_str += "\nDetails:\n" + "\n".join(f" {k}: {v}" for k, v in self.details.items())
17 | return error_str
18 |
19 | class CudaParseError(CudaError):
20 | """Exception raised for errors in parsing CUDA code."""
21 | def __init__(self, message: str, line: Optional[int] = None, column: Optional[int] = None, filename: Optional[str] = None):
22 | details = {"line": line, "column": column, "filename": filename}
23 | super().__init__(message, error_code=1001, details=details)
24 |
25 | class CudaTranslationError(CudaError):
26 | """Exception raised for errors in translating CUDA code to Metal."""
27 | def __init__(self, message: str, cuda_construct: Optional[str] = None, metal_equivalent: Optional[str] = None):
28 | details = {"cuda_construct": cuda_construct, "metal_equivalent": metal_equivalent}
29 | super().__init__(message, error_code=2001, details=details)
30 |
31 | class CudaTypeError(CudaError):
32 | """Exception raised for type-related errors in CUDA code."""
33 | def __init__(self, message: str, expected_type: Optional[str] = None, actual_type: Optional[str] = None):
34 | details = {"expected_type": expected_type, "actual_type": actual_type}
35 | super().__init__(message, error_code=3001, details=details)
36 |
37 | class CudaNotSupportedError(CudaError):
38 | """Exception raised for CUDA features not supported in Metal."""
39 | def __init__(self, message: str, cuda_feature: str):
40 | details = {"cuda_feature": cuda_feature}
41 | super().__init__(message, error_code=4001, details=details)
42 |
43 | class CudaWarning:
44 | """Warning class for non-critical issues in CUDA code parsing or translation."""
45 | def __init__(self, message: str, warning_code: Optional[int] = None, details: Optional[Dict[str, Any]] = None):
46 | self.message = message
47 | self.warning_code = warning_code
48 | self.details = details or {}
49 |
50 | def __str__(self):
51 | warning_str = f"[Warning {self.warning_code}] " if self.warning_code else ""
52 | warning_str += self.message
53 | if self.details:
54 | warning_str += "\nDetails:\n" + "\n".join(f" {k}: {v}" for k, v in self.details.items())
55 | return warning_str
56 |
57 | def handle_exception(e: Exception, logger):
58 | """
59 | Handle exceptions, log them, and optionally perform additional actions.
60 | """
61 | if isinstance(e, CudaError):
62 | logger.error(str(e))
63 | else:
64 | logger.error(f"Unexpected error: {str(e)}")
65 | logger.debug(f"Stack trace:\n{''.join(traceback.format_tb(e.__traceback__))}")
66 |
67 | def raise_cuda_parse_error(message: str, line: Optional[int] = None, column: Optional[int] = None, filename: Optional[str] = None):
68 | """Convenience function to raise a CudaParseError."""
69 | raise CudaParseError(message, line, column, filename)
70 |
71 | def raise_cuda_translation_error(message: str, cuda_construct: Optional[str] = None, metal_equivalent: Optional[str] = None):
72 | """Convenience function to raise a CudaTranslationError."""
73 | raise CudaTranslationError(message, cuda_construct, metal_equivalent)
74 |
75 | def raise_cuda_type_error(message: str, expected_type: Optional[str] = None, actual_type: Optional[str] = None):
76 | """Convenience function to raise a CudaTypeError."""
77 | raise CudaTypeError(message, expected_type, actual_type)
78 |
79 | def raise_cuda_not_supported_error(message: str, cuda_feature: str):
80 | """Convenience function to raise a CudaNotSupportedError."""
81 | raise CudaNotSupportedError(message, cuda_feature)
82 |
83 | def issue_cuda_warning(message: str, warning_code: Optional[int] = None, details: Optional[Dict[str, Any]] = None, logger=None):
84 | """Issue a CudaWarning and optionally log it."""
85 | warning = CudaWarning(message, warning_code, details)
86 | if logger:
87 | logger.warning(str(warning))
88 | return warning
--------------------------------------------------------------------------------
/utils/cuda_builtin_functions.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Tuple
2 |
3 | class CudaBuiltinFunction:
4 | def __init__(self, name: str, return_type: str, parameters: List[Tuple[str, str]],
5 | is_device_function: bool, metal_equivalent: str):
6 | self.name = name
7 | self.return_type = return_type
8 | self.parameters = parameters
9 | self.is_device_function = is_device_function
10 | self.metal_equivalent = metal_equivalent
11 |
12 | def __str__(self):
13 | params_str = ', '.join([f'{param_type} {param_name}' for param_name, param_type in self.parameters])
14 | return f'{self.return_type} {self.name}({params_str})'
15 |
16 | CUDA_BUILTIN_FUNCTIONS: Dict[str, CudaBuiltinFunction] = {
17 | # Thread Management
18 | 'threadIdx': CudaBuiltinFunction('threadIdx', 'uint3', [], True, 'thread_position_in_threadgroup'),
19 | 'blockIdx': CudaBuiltinFunction('blockIdx', 'uint3', [], True, 'threadgroup_position_in_grid'),
20 | 'blockDim': CudaBuiltinFunction('blockDim', 'uint3', [], True, 'threadgroup_size'),
21 | 'gridDim': CudaBuiltinFunction('gridDim', 'uint3', [], True, 'grid_size'),
22 | 'warpSize': CudaBuiltinFunction('warpSize', 'int', [], True, '32'),
23 |
24 | # Synchronization
25 | '__syncthreads': CudaBuiltinFunction('__syncthreads', 'void', [], True, 'threadgroup_barrier(mem_flags::mem_device)'),
26 | '__syncwarp': CudaBuiltinFunction('__syncwarp', 'void', [('mask', 'unsigned int')], True, 'simdgroup_barrier(mem_flags::mem_none)'),
27 |
28 | # Atomic Operations
29 | 'atomicAdd': CudaBuiltinFunction('atomicAdd', 'T', [('address', 'T*'), ('val', 'T')], True, 'atomic_fetch_add_explicit'),
30 | 'atomicSub': CudaBuiltinFunction('atomicSub', 'T', [('address', 'T*'), ('val', 'T')], True, 'atomic_fetch_sub_explicit'),
31 | 'atomicExch': CudaBuiltinFunction('atomicExch', 'T', [('address', 'T*'), ('val', 'T')], True, 'atomic_exchange_explicit'),
32 | 'atomicMin': CudaBuiltinFunction('atomicMin', 'T', [('address', 'T*'), ('val', 'T')], True, 'atomic_fetch_min_explicit'),
33 | 'atomicMax': CudaBuiltinFunction('atomicMax', 'T', [('address', 'T*'), ('val', 'T')], True, 'atomic_fetch_max_explicit'),
34 | 'atomicInc': CudaBuiltinFunction('atomicInc', 'unsigned int', [('address', 'unsigned int*'), ('val', 'unsigned int')], True, 'custom_atomic_inc'),
35 | 'atomicDec': CudaBuiltinFunction('atomicDec', 'unsigned int', [('address', 'unsigned int*'), ('val', 'unsigned int')], True, 'custom_atomic_dec'),
36 | 'atomicCAS': CudaBuiltinFunction('atomicCAS', 'T', [('address', 'T*'), ('compare', 'T'), ('val', 'T')], True, 'atomic_compare_exchange_weak_explicit'),
37 |
38 | # Math Functions (subset)
39 | 'sin': CudaBuiltinFunction('sin', 'float', [('x', 'float')], False, 'sin'),
40 | 'cos': CudaBuiltinFunction('cos', 'float', [('x', 'float')], False, 'cos'),
41 | 'exp': CudaBuiltinFunction('exp', 'float', [('x', 'float')], False, 'exp'),
42 | 'log': CudaBuiltinFunction('log', 'float', [('x', 'float')], False, 'log'),
43 | 'sqrt': CudaBuiltinFunction('sqrt', 'float', [('x', 'float')], False, 'sqrt'),
44 |
45 | # Vector Types
46 | 'make_int2': CudaBuiltinFunction('make_int2', 'int2', [('x', 'int'), ('y', 'int')], False, 'int2'),
47 | 'make_float2': CudaBuiltinFunction('make_float2', 'float2', [('x', 'float'), ('y', 'float')], False, 'float2'),
48 |
49 | # Texture Functions
50 | 'tex2D': CudaBuiltinFunction('tex2D', 'float4', [('texObj', 'texture'), ('x', 'float'), ('y', 'float')], True, 'sample'),
51 |
52 | # Memory Management
53 | 'cudaMalloc': CudaBuiltinFunction('cudaMalloc', 'cudaError_t', [('devPtr', 'void**'), ('size', 'size_t')], False, 'device.makeBuffer'),
54 | 'cudaFree': CudaBuiltinFunction('cudaFree', 'cudaError_t', [('devPtr', 'void*')], False, 'None'),
55 | 'cudaMemcpy': CudaBuiltinFunction('cudaMemcpy', 'cudaError_t', [('dst', 'void*'), ('src', 'const void*'), ('count', 'size_t'), ('kind', 'cudaMemcpyKind')], False, 'memcpy'),
56 | }
57 |
58 | def is_cuda_builtin(func_name: str) -> bool:
59 | return func_name in CUDA_BUILTIN_FUNCTIONS
60 |
61 | def get_cuda_builtin(func_name: str) -> CudaBuiltinFunction:
62 | return CUDA_BUILTIN_FUNCTIONS.get(func_name)
63 |
64 | def get_metal_equivalent(func_name: str) -> str:
65 | builtin = get_cuda_builtin(func_name)
66 | return builtin.metal_equivalent if builtin else None
67 |
68 | def is_device_function(func_name: str) -> bool:
69 | builtin = get_cuda_builtin(func_name)
70 | return builtin.is_device_function if builtin else False
71 |
72 | def get_return_type(func_name: str) -> str:
73 | builtin = get_cuda_builtin(func_name)
74 | return builtin.return_type if builtin else None
75 |
76 | def get_parameters(func_name: str) -> List[Tuple[str, str]]:
77 | builtin = get_cuda_builtin(func_name)
78 | return builtin.parameters if builtin else []
79 |
80 |
--------------------------------------------------------------------------------
/translator/thread_hierarchy_mapper.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, Tuple, Any
2 | from ..utils.error_handler import CudaTranslationError
3 | from ..utils.logger import get_logger
4 |
5 | logger = get_logger(__name__)
6 |
7 | class ThreadHierarchyMapper:
8 | def __init__(self):
9 | self.cuda_to_metal_map = {
10 | 'threadIdx': 'thread_position_in_threadgroup',
11 | 'blockIdx': 'threadgroup_position_in_grid',
12 | 'blockDim': 'threadgroup_size',
13 | 'gridDim': 'grid_size'
14 | }
15 | self.max_threads_per_threadgroup = 1024 # This may vary depending on the Metal device
16 |
17 | def map_thread_id(self, cuda_expr: str) -> str:
18 | for cuda_var, metal_var in self.cuda_to_metal_map.items():
19 | if cuda_var in cuda_expr:
20 | return cuda_expr.replace(cuda_var, metal_var)
21 | raise CudaTranslationError(f"Unsupported CUDA thread hierarchy expression: {cuda_expr}")
22 |
23 | def calculate_global_id(self, dim: str) -> str:
24 | return f"(thread_position_in_threadgroup.{dim} + (threadgroup_position_in_grid.{dim} * threadgroup_size.{dim}))"
25 |
26 | def translate_launch_parameters(self, grid_dim: Tuple[int, int, int], block_dim: Tuple[int, int, int]) -> Dict[str, Any]:
27 | optimized_grid_dim, optimized_block_dim = self.optimize_thread_hierarchy(grid_dim, block_dim)
28 | return {
29 | 'threads_per_threadgroup': self._create_metal_size(optimized_block_dim),
30 | 'threadgroups_per_grid': self._create_metal_size(optimized_grid_dim)
31 | }
32 |
33 | def _create_metal_size(self, dim: Tuple[int, int, int]) -> str:
34 | return f"MTLSizeMake({dim[0]}, {dim[1]}, {dim[2]})"
35 |
36 | def generate_metal_dispatch(self, kernel_name: str, grid_dim: Tuple[int, int, int], block_dim: Tuple[int, int, int]) -> str:
37 | launch_params = self.translate_launch_parameters(grid_dim, block_dim)
38 | return f"""
39 | [commandEncoder setComputePipelineState:{kernel_name}PipelineState];
40 | [commandEncoder dispatchThreadgroups:{launch_params['threadgroups_per_grid']}
41 | threadsPerThreadgroup:{launch_params['threads_per_threadgroup']}];
42 | """
43 |
44 | def translate_shared_memory(self, cuda_shared_mem: str) -> str:
45 | return cuda_shared_mem.replace("__shared__", "threadgroup")
46 |
47 | def translate_syncthreads(self) -> str:
48 | return "threadgroup_barrier(metal::mem_flags::mem_threadgroup);"
49 |
50 | def translate_block_sync(self) -> str:
51 | return "threadgroup_barrier(metal::mem_flags::mem_device);"
52 |
53 | def translate_grid_sync(self) -> str:
54 | logger.warning("Grid-wide synchronization is not directly supported in Metal. Using device memory barrier.")
55 | return "threadgroup_barrier(metal::mem_flags::mem_device);"
56 |
57 | def optimize_thread_hierarchy(self, grid_dim: Tuple[int, int, int], block_dim: Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], Tuple[int, int, int]]:
58 | total_threads = block_dim[0] * block_dim[1] * block_dim[2]
59 | if total_threads > self.max_threads_per_threadgroup:
60 | scale_factor = (self.max_threads_per_threadgroup / total_threads) ** (1/3)
61 | new_block_dim = tuple(int(dim * scale_factor) for dim in block_dim)
62 | new_grid_dim = tuple(int(grid_dim[i] * (block_dim[i] / new_block_dim[i])) for i in range(3))
63 | return new_grid_dim, new_block_dim
64 |
65 | # Ensure block dimensions are multiples of the SIMD width (usually 32 for Metal GPUs)
66 | simd_width = 32
67 | optimized_block_dim = tuple(((dim + simd_width - 1) // simd_width) * simd_width for dim in block_dim)
68 |
69 | # Adjust grid dimensions to account for changes in block dimensions
70 | optimized_grid_dim = tuple((grid_dim[i] * block_dim[i] + optimized_block_dim[i] - 1) // optimized_block_dim[i] for i in range(3))
71 |
72 | return optimized_grid_dim, optimized_block_dim
73 |
74 | def translate_warp_level_operations(self, cuda_expr: str) -> str:
75 | warp_ops = {
76 | '__shfl': 'simd_shuffle',
77 | '__shfl_up': 'simd_shuffle_up',
78 | '__shfl_down': 'simd_shuffle_down',
79 | '__shfl_xor': 'simd_shuffle_xor',
80 | '__all': 'simd_all',
81 | '__any': 'simd_any',
82 | '__ballot': 'simd_ballot'
83 | }
84 | for cuda_op, metal_op in warp_ops.items():
85 | if cuda_op in cuda_expr:
86 | return cuda_expr.replace(cuda_op, metal_op)
87 | return cuda_expr
88 |
89 | def adjust_kernel_launch(self, kernel_name: str, grid_dim: Tuple[int, int, int], block_dim: Tuple[int, int, int]) -> str:
90 | optimized_grid_dim, optimized_block_dim = self.optimize_thread_hierarchy(grid_dim, block_dim)
91 | return self.generate_metal_dispatch(kernel_name, optimized_grid_dim, optimized_block_dim)
92 |
93 | logger.info("ThreadHierarchyMapper initialized for CUDA to Metal thread hierarchy translation.")
--------------------------------------------------------------------------------
/core/parser/clang_integration.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Optional, Union, Tuple
2 | from pathlib import Path
3 | import logging
4 | import clang.cindex
5 | from clang.cindex import Index, TranslationUnit, Cursor, CursorKind, TypeKind
6 |
7 | from .ast_nodes import (
8 | CUDAType,
9 | CUDAQualifier,
10 | CUDANode,
11 | CUDAKernel,
12 | CUDAParameter,
13 | CUDACompoundStmt,
14 | CUDAThreadIdx,
15 | CUDABlockIdx,
16 | CUDAGridDim,
17 | CUDAAtomicOperation,
18 | CUDASharedMemory,
19 | CUDATexture,
20 | CUDABarrier,
21 | SourceLocation,
22 | CUDANodeType
23 | )
24 |
25 | class ClangParser:
26 | """CUDA parser using Clang's Python bindings"""
27 |
28 | def __init__(self, cuda_path: Optional[str] = None):
29 | self.index = Index.create()
30 | self.cuda_path = cuda_path or self._find_cuda_path()
31 | self.cuda_version = self._detect_cuda_version()
32 | self._init_compilation_args()
33 |
34 | def _find_cuda_path(self) -> str:
35 | """Find CUDA installation path"""
36 | common_paths = [
37 | "/usr/local/cuda",
38 | "/usr/cuda",
39 | "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA",
40 | "C:/CUDA"
41 | ]
42 |
43 | for path in common_paths:
44 | if Path(path).exists():
45 | return str(Path(path))
46 | raise RuntimeError("CUDA installation not found")
47 |
48 | def _detect_cuda_version(self) -> str:
49 | """Detect CUDA version from installation"""
50 | version_file = Path(self.cuda_path) / "version.txt"
51 | if version_file.exists():
52 | content = version_file.read_text()
53 | import re
54 | if match := re.search(r'V(\d+\.\d+\.\d+)', content):
55 | return match.group(1)
56 | return "unknown"
57 |
58 | def _init_compilation_args(self):
59 | """Initialize CUDA compilation arguments"""
60 | self.compilation_args = [
61 | "-x", "cuda",
62 | "--cuda-gpu-arch=sm_75",
63 | "-std=c++14",
64 | f"-I{Path(self.cuda_path)/'include'}",
65 | "-D__CUDACC__",
66 | "-D__CUDA_ARCH__=750",
67 | "-DNDEBUG",
68 | ]
69 |
70 | def parse_file(self, cuda_file: Union[str, Path]) -> Optional[CUDANode]:
71 | """Parse CUDA source file into AST"""
72 | try:
73 | tu = self.index.parse(
74 | str(cuda_file),
75 | args=self.compilation_args,
76 | options=(
77 | TranslationUnit.PARSE_DETAILED_PROCESSING_RECORD |
78 | TranslationUnit.PARSE_INCOMPLETE
79 | )
80 | )
81 |
82 | # Check for fatal errors
83 | if self._has_fatal_errors(tu):
84 | return None
85 |
86 | # Convert to CUDA AST
87 | return self._process_translation_unit(tu.cursor)
88 |
89 | except Exception as e:
90 | logging.error(f"Failed to parse {cuda_file}: {str(e)}")
91 | return None
92 |
93 | def _has_fatal_errors(self, tu: TranslationUnit) -> bool:
94 | """Check for fatal parsing errors"""
95 | has_fatal = False
96 | for diag in tu.diagnostics:
97 | if diag.severity >= diag.Error:
98 | logging.error(
99 | f"{diag.location.file}:{diag.location.line} - {diag.spelling}"
100 | )
101 | has_fatal = True
102 | return has_fatal
103 |
104 | def _process_translation_unit(self, cursor: Cursor) -> CUDANode:
105 | """Process translation unit cursor"""
106 | root = CUDANode(
107 | line=cursor.location.line,
108 | column=cursor.location.column
109 | )
110 |
111 | for child in cursor.get_children():
112 | if node := self._process_cursor(child):
113 | root.add_child(node)
114 |
115 | return root
116 |
117 | def _process_cursor(self, cursor: Cursor) -> Optional[CUDANode]:
118 | """Process a single Clang cursor"""
119 | source_location = SourceLocation(
120 | file=str(cursor.location.file) if cursor.location.file else "",
121 | line=cursor.location.line,
122 | column=cursor.location.column,
123 | offset=cursor.location.offset
124 | )
125 |
126 | # Handle different cursor kinds
127 | if cursor.kind == CursorKind.FUNCTION_DECL:
128 | return self._process_function(cursor, source_location)
129 | elif cursor.kind == CursorKind.VAR_DECL:
130 | return self._process_variable(cursor, source_location)
131 | elif cursor.kind == CursorKind.MEMBER_REF_EXPR:
132 | return self._process_member_ref(cursor, source_location)
133 | elif cursor.kind == CursorKind.CALL_EXPR:
134 | return self._process_call(cursor, source_location)
135 |
136 | return None
137 |
138 | # ... rest of the implementation remains the same ...
--------------------------------------------------------------------------------
/utils/logger.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import os
3 | from typing import Dict, Optional
4 | from logging.handlers import RotatingFileHandler, TimedRotatingFileHandler
5 |
6 | class CudaLogger:
7 | _instance = None
8 | _loggers: Dict[str, logging.Logger] = {}
9 |
10 | def __new__(cls):
11 | if cls._instance is None:
12 | cls._instance = super(CudaLogger, cls).__new__(cls)
13 | cls._instance._configure_root_logger()
14 | return cls._instance
15 |
16 | def _configure_root_logger(self):
17 | root_logger = logging.getLogger()
18 | root_logger.setLevel(logging.DEBUG)
19 |
20 | # Console handler
21 | console_handler = logging.StreamHandler()
22 | console_handler.setLevel(logging.INFO)
23 | console_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
24 | console_handler.setFormatter(console_formatter)
25 | root_logger.addHandler(console_handler)
26 |
27 | # File handler
28 | log_dir = "logs"
29 | os.makedirs(log_dir, exist_ok=True)
30 | file_handler = RotatingFileHandler(
31 | filename=os.path.join(log_dir, "cuda_to_metal.log"),
32 | maxBytes=10 * 1024 * 1024, # 10 MB
33 | backupCount=5
34 | )
35 | file_handler.setLevel(logging.DEBUG)
36 | file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
37 | file_handler.setFormatter(file_formatter)
38 | root_logger.addHandler(file_handler)
39 |
40 | def get_logger(self, name: str) -> logging.Logger:
41 | if name not in self._loggers:
42 | logger = logging.getLogger(name)
43 | self._loggers[name] = logger
44 | return self._loggers[name]
45 |
46 | def set_log_level(self, level: int):
47 | for logger in self._loggers.values():
48 | logger.setLevel(level)
49 |
50 | def add_file_handler(self, filename: str, level: int = logging.DEBUG,
51 | max_bytes: int = 10 * 1024 * 1024, backup_count: int = 5):
52 | file_handler = RotatingFileHandler(
53 | filename=filename,
54 | maxBytes=max_bytes,
55 | backupCount=backup_count
56 | )
57 | file_handler.setLevel(level)
58 | formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
59 | file_handler.setFormatter(formatter)
60 | for logger in self._loggers.values():
61 | logger.addHandler(file_handler)
62 |
63 | def add_timed_rotating_file_handler(self, filename: str, level: int = logging.DEBUG,
64 | when: str = 'midnight', interval: int = 1, backup_count: int = 7):
65 | file_handler = TimedRotatingFileHandler(
66 | filename=filename,
67 | when=when,
68 | interval=interval,
69 | backupCount=backup_count
70 | )
71 | file_handler.setLevel(level)
72 | formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s')
73 | file_handler.setFormatter(formatter)
74 | for logger in self._loggers.values():
75 | logger.addHandler(file_handler)
76 |
77 | def get_logger(name: str) -> logging.Logger:
78 | return CudaLogger().get_logger(name)
79 |
80 | # Convenience functions for different log levels
81 | def debug(logger: logging.Logger, message: str, *args, **kwargs):
82 | logger.debug(message, *args, **kwargs)
83 |
84 | def info(logger: logging.Logger, message: str, *args, **kwargs):
85 | logger.info(message, *args, **kwargs)
86 |
87 | def warning(logger: logging.Logger, message: str, *args, **kwargs):
88 | logger.warning(message, *args, **kwargs)
89 |
90 | def error(logger: logging.Logger, message: str, *args, **kwargs):
91 | logger.error(message, *args, **kwargs)
92 |
93 | def critical(logger: logging.Logger, message: str, *args, **kwargs):
94 | logger.critical(message, *args, **kwargs)
95 |
96 | def exception(logger: logging.Logger, message: str, *args, exc_info=True, **kwargs):
97 | logger.exception(message, *args, exc_info=exc_info, **kwargs)
98 |
99 | # Performance logging
100 | def log_performance(logger: logging.Logger, operation: str, execution_time: float):
101 | logger.info(f"Performance: {operation} took {execution_time:.4f} seconds")
102 |
103 | # Function entry/exit logging
104 | def log_function_entry(logger: logging.Logger, func_name: str, args: Optional[Dict] = None):
105 | args_str = ", ".join(f"{k}={v}" for k, v in args.items()) if args else ""
106 | logger.debug(f"Entering function: {func_name}({args_str})")
107 |
108 | def log_function_exit(logger: logging.Logger, func_name: str, result: Any = None):
109 | logger.debug(f"Exiting function: {func_name} with result: {result}")
110 |
111 | # Context manager for function logging
112 | class LogFunction:
113 | def __init__(self, logger: logging.Logger, func_name: str):
114 | self.logger = logger
115 | self.func_name = func_name
116 |
117 | def __enter__(self):
118 | log_function_entry(self.logger, self.func_name)
119 |
120 | def __exit__(self, exc_type, exc_value, traceback):
121 | if exc_type:
122 | self.logger.exception(f"Exception in function {self.func_name}: {exc_value}")
123 | else:
124 | log_function_exit(self.logger, self.func_name)
--------------------------------------------------------------------------------
/translator/cudnn_mapper.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Any
2 | from ..utils.error_handler import CudaTranslationError
3 | from ..utils.logger import get_logger
4 |
5 | logger = get_logger(__name__)
6 |
7 | class CudnnMapper:
8 | def __init__(self):
9 | self.cudnn_to_mps_map: Dict[str, str] = {
10 | 'cudnnConvolutionForward': 'MPSCNNConvolution',
11 | 'cudnnPoolingForward': 'MPSCNNPooling',
12 | 'cudnnActivationForward': 'MPSCNNNeuron',
13 | 'cudnnSoftmaxForward': 'MPSCNNSoftMax',
14 | 'cudnnBatchNormalizationForward': 'MPSCNNBatchNormalization',
15 | 'cudnnRNNForward': 'MPSNNGRU',
16 | 'cudnnDropoutForward': 'MPSCNNDropout',
17 | 'cudnnOpTensor': 'MPSNNAdd',
18 | }
19 |
20 | def map_function(self, cudnn_function: str, args: List[Any]) -> str:
21 | if cudnn_function not in self.cudnn_to_mps_map:
22 | raise CudaTranslationError(f"Unsupported cuDNN function: {cudnn_function}")
23 |
24 | mps_function = self.cudnn_to_mps_map[cudnn_function]
25 | return self._generate_mps_call(mps_function, args)
26 |
27 | def _generate_mps_call(self, mps_function: str, args: List[Any]) -> str:
28 | if mps_function == 'MPSCNNConvolution':
29 | return self._generate_convolution_call(args)
30 | elif mps_function == 'MPSCNNPooling':
31 | return self._generate_pooling_call(args)
32 | elif mps_function == 'MPSCNNNeuron':
33 | return self._generate_activation_call(args)
34 | elif mps_function == 'MPSCNNSoftMax':
35 | return self._generate_softmax_call(args)
36 | elif mps_function == 'MPSCNNBatchNormalization':
37 | return self._generate_batchnorm_call(args)
38 | else:
39 | return f"{mps_function}({', '.join(map(str, args))})"
40 |
41 | def _generate_convolution_call(self, args: List[Any]) -> str:
42 | return f"""
43 | MPSCNNConvolution *convLayer = [[MPSCNNConvolution alloc]
44 | initWithDevice:device
45 | kernelWidth:{args[0]}
46 | kernelHeight:{args[1]}
47 | inputFeatureChannels:{args[2]}
48 | outputFeatureChannels:{args[3]}
49 | neuronFilter:nil];
50 | [convLayer encodeToCommandBuffer:commandBuffer
51 | sourceImage:sourceTexture
52 | destinationImage:destTexture];
53 | """
54 |
55 | def _generate_pooling_call(self, args: List[Any]) -> str:
56 | return f"""
57 | MPSCNNPooling *poolLayer = [[MPSCNNPooling alloc]
58 | initWithDevice:device
59 | kernelWidth:{args[0]}
60 | kernelHeight:{args[1]}
61 | strideInPixelsX:{args[2]}
62 | strideInPixelsY:{args[3]}];
63 | [poolLayer encodeToCommandBuffer:commandBuffer
64 | sourceImage:sourceTexture
65 | destinationImage:destTexture];
66 | """
67 |
68 | def _generate_activation_call(self, args: List[Any]) -> str:
69 | return f"""
70 | MPSCNNNeuron *activationLayer = [MPSCNNNeuronReLU nodeWithSource:nil];
71 | [activationLayer encodeToCommandBuffer:commandBuffer
72 | sourceImage:sourceTexture
73 | destinationImage:destTexture];
74 | """
75 |
76 | def _generate_softmax_call(self, args: List[Any]) -> str:
77 | return f"""
78 | MPSCNNSoftMax *softmaxLayer = [[MPSCNNSoftMax alloc] initWithDevice:device];
79 | [softmaxLayer encodeToCommandBuffer:commandBuffer
80 | sourceImage:sourceTexture
81 | destinationImage:destTexture];
82 | """
83 |
84 | def _generate_batchnorm_call(self, args: List[Any]) -> str:
85 | return f"""
86 | MPSCNNBatchNormalization *batchNormLayer = [[MPSCNNBatchNormalization alloc]
87 | initWithDevice:device
88 | featureChannels:{args[0]}];
89 | [batchNormLayer encodeToCommandBuffer:commandBuffer
90 | sourceImage:sourceTexture
91 | destinationImage:destTexture];
92 | """
93 |
94 | def translate_cudnn_descriptor(self, descriptor_type: str, params: Dict[str, Any]) -> str:
95 | if descriptor_type == 'cudnnTensorDescriptor':
96 | return self._translate_tensor_descriptor(params)
97 | elif descriptor_type == 'cudnnFilterDescriptor':
98 | return self._translate_filter_descriptor(params)
99 | elif descriptor_type == 'cudnnConvolutionDescriptor':
100 | return self._translate_convolution_descriptor(params)
101 | else:
102 | raise CudaTranslationError(f"Unsupported descriptor type: {descriptor_type}")
103 |
104 | def _translate_tensor_descriptor(self, params: Dict[str, Any]) -> str:
105 | return f"""
106 | MPSImageDescriptor *tensorDescriptor = [MPSImageDescriptor
107 | imageDescriptorWithChannelFormat:MPSImageFeatureChannelFormatFloat32
108 | width:{params['width']}
109 | height:{params['height']}
110 | featureChannels:{params['channels']}];
111 | """
112 |
113 | def _translate_filter_descriptor(self, params: Dict[str, Any]) -> str:
114 | return f"""
115 | MPSCNNConvolutionDescriptor *filterDescriptor = [MPSCNNConvolutionDescriptor
116 | cnnConvolutionDescriptorWithKernelWidth:{params['kernelWidth']}
117 | kernelHeight:{params['kernelHeight']}
118 | inputFeatureChannels:{params['inputChannels']}
119 | outputFeatureChannels:{params['outputChannels']}];
120 | """
121 |
122 | def _translate_convolution_descriptor(self, params: Dict[str, Any]) -> str:
123 | return f"""
124 | MPSNNDefaultPadding *convolutionDescriptor = [MPSNNDefaultPadding
125 | paddingWithMethod:MPSNNPaddingMethodSizeSame];
126 | convolutionDescriptor.kernelOffsetX = {params['padWidth']};
127 | convolutionDescriptor.kernelOffsetY = {params['padHeight']};
128 | """
129 |
130 | logger.info("CudnnMapper initialized for cuDNN to Metal Performance Shaders translation.")
--------------------------------------------------------------------------------
/native/metal_interop.mm:
--------------------------------------------------------------------------------
1 | // metal_interop.mm
2 | // (Continuing the implementation of all remaining functions)
3 |
4 | void begin_compute_pass(MetalCommandObjects* cmd_objects) {
5 | if (!cmd_objects || cmd_objects->compute_encoder) return;
6 |
7 | id cmdBuffer = (__bridge id)cmd_objects->command_buffer;
8 | id encoder = [cmdBuffer computeCommandEncoder];
9 | cmd_objects->compute_encoder = (__bridge_retained void*)encoder;
10 | }
11 |
12 | void end_compute_pass(MetalCommandObjects* cmd_objects) {
13 | if (!cmd_objects || !cmd_objects->compute_encoder) return;
14 |
15 | id encoder = (__bridge id)cmd_objects->compute_encoder;
16 | [encoder endEncoding];
17 |
18 | cmd_objects->compute_encoder = nil;
19 | }
20 |
21 | void commit_commands(MetalCommandObjects* cmd_objects) {
22 | if (!cmd_objects || !cmd_objects->command_buffer) return;
23 |
24 | id cmdBuffer = (__bridge id)cmd_objects->command_buffer;
25 | [cmdBuffer commit];
26 | }
27 |
28 | void wait_for_completion(MetalCommandObjects* cmd_objects) {
29 | if (!cmd_objects || !cmd_objects->command_buffer) return;
30 |
31 | id cmdBuffer = (__bridge id)cmd_objects->command_buffer;
32 | [cmdBuffer waitUntilCompleted];
33 | }
34 |
35 | MetalPipelineConfig* create_pipeline_config(const char* kernel_name) {
36 | if (!kernel_name) return NULL;
37 |
38 | MetalPipelineConfig* config = (MetalPipelineConfig*)malloc(sizeof(MetalPipelineConfig));
39 | if (!config) return NULL;
40 |
41 | NSString* funcName = [NSString stringWithUTF8String:kernel_name];
42 | id device = [MetalDeviceManager sharedDevice];
43 | id library = [device newDefaultLibrary];
44 | id function = [library newFunctionWithName:funcName];
45 |
46 | NSError* error = nil;
47 | id pipelineState =
48 | [device newComputePipelineStateWithFunction:function error:&error];
49 |
50 | if (!pipelineState) {
51 | NSLog(@"Failed to create pipeline state: %@", error);
52 | free(config);
53 | return NULL;
54 | }
55 |
56 | config->pipeline_state = (__bridge_retained void*)pipelineState;
57 | config->thread_group_size[0] = 1;
58 | config->thread_group_size[1] = 1;
59 | config->thread_group_size[2] = 1;
60 | config->grid_size[0] = 1;
61 | config->grid_size[1] = 1;
62 | config->grid_size[2] = 1;
63 |
64 | return config;
65 | }
66 |
67 | void destroy_pipeline_config(MetalPipelineConfig* config) {
68 | if (!config) return;
69 |
70 | if (config->pipeline_state) {
71 | id pipelineState =
72 | (__bridge_transfer id)config->pipeline_state;
73 | pipelineState = nil;
74 | }
75 |
76 | free(config);
77 | }
78 |
79 | void set_pipeline_thread_groups(MetalPipelineConfig* config,
80 | uint32_t x, uint32_t y, uint32_t z) {
81 | if (!config) return;
82 |
83 | config->thread_group_size[0] = x;
84 | config->thread_group_size[1] = y;
85 | config->thread_group_size[2] = z;
86 | }
87 |
88 | void set_pipeline_grid_size(MetalPipelineConfig* config,
89 | uint32_t x, uint32_t y, uint32_t z) {
90 | if (!config) return;
91 |
92 | config->grid_size[0] = x;
93 | config->grid_size[1] = y;
94 | config->grid_size[2] = z;
95 | }
96 |
97 | @interface MetalCommandBufferWrapper : NSObject
98 | @property (nonatomic, strong) id commandBuffer;
99 | @property (nonatomic, strong) NSMutableArray>* retainedBuffers;
100 | @end
101 |
102 | @implementation MetalCommandBufferWrapper
103 | - (instancetype)initWithCommandBuffer:(id)commandBuffer {
104 | if (self = [super init]) {
105 | _commandBuffer = commandBuffer;
106 | _retainedBuffers = [NSMutableArray array];
107 | }
108 | return self;
109 | }
110 | @end
111 |
112 | // Thread-local storage for retained buffers
113 | static NSMutableDictionary* threadLocalBuffers = nil;
114 | static dispatch_once_t bufferOnceToken;
115 |
116 | @interface MetalBufferManager : NSObject
117 | + (void)retainBuffer:(id)buffer forThread:(NSThread*)thread;
118 | + (void)releaseBuffersForThread:(NSThread*)thread;
119 | @end
120 |
121 | @implementation MetalBufferManager
122 |
123 | + (void)initialize {
124 | if (self == [MetalBufferManager class]) {
125 | dispatch_once(&bufferOnceToken, ^{
126 | threadLocalBuffers = [NSMutableDictionary dictionary];
127 | });
128 | }
129 | }
130 |
131 | + (void)retainBuffer:(id)buffer forThread:(NSThread*)thread {
132 | if (!buffer || !thread) return;
133 |
134 | @synchronized(threadLocalBuffers) {
135 | NSString* threadKey = [NSString stringWithFormat:@"%p", thread];
136 | NSMutableArray* buffers = threadLocalBuffers[threadKey];
137 | if (!buffers) {
138 | buffers = [NSMutableArray array];
139 | threadLocalBuffers[threadKey] = buffers;
140 | }
141 | [buffers addObject:buffer];
142 | }
143 | }
144 |
145 | + (void)releaseBuffersForThread:(NSThread*)thread {
146 | if (!thread) return;
147 |
148 | @synchronized(threadLocalBuffers) {
149 | NSString* threadKey = [NSString stringWithFormat:@"%p", thread];
150 | [threadLocalBuffers removeObjectForKey:threadKey];
151 | }
152 | }
153 |
154 | @end
155 |
156 | // Helper functions for error handling
157 | static void handleMetalError(NSError* error, const char* operation) {
158 | if (error) {
159 | NSLog(@"Metal error during %s: %@", operation, error);
160 | }
161 | }
162 |
163 | static BOOL validateDevice() {
164 | id device = [MetalDeviceManager sharedDevice];
165 | if (!device) {
166 | NSLog(@"No Metal device available");
167 | return NO;
168 | }
169 | return YES;
170 | }
171 |
172 | static BOOL validatePipelineState(id pipelineState) {
173 | if (!pipelineState) {
174 | NSLog(@"Invalid compute pipeline state");
175 | return NO;
176 | }
177 | return YES;
178 | }
--------------------------------------------------------------------------------
/translator/intrinsic_function_mapper.py:
--------------------------------------------------------------------------------
1 |
2 | from typing import Dict, Optional, List, Tuple, Union, Set
3 | from dataclasses import dataclass
4 | from enum import Enum
5 | import logging
6 |
7 | from ..utils.error_handler import CudaTranslationError
8 | from ..utils.logger import get_logger
9 |
10 | logger = get_logger(__name__)
11 |
12 | class IntrinsicType(Enum):
13 | MATH = "math"
14 | ATOMIC = "atomic"
15 | SYNC = "sync"
16 | MEMORY = "memory"
17 | THREAD = "thread"
18 | WARP = "warp"
19 | SPECIAL = "special"
20 |
21 | @dataclass
22 | class IntrinsicFunction:
23 | """Represents a CUDA intrinsic function with its Metal equivalent."""
24 | cuda_name: str
25 | metal_name: str
26 | return_type: str
27 | arg_types: List[str]
28 | type: IntrinsicType
29 | needs_wrapper: bool = False
30 | has_metal_equivalent: bool = True
31 | requires_memory_order: bool = False
32 | requires_scope: bool = False
33 | is_simd_function: bool = False
34 | vectorizable: bool = False
35 | custom_translation: Optional[str] = None
36 |
37 | class IntrinsicFunctionMapper:
38 | """Maps CUDA intrinsic functions to their Metal equivalents."""
39 |
40 | def __init__(self):
41 | self.intrinsics: Dict[str, IntrinsicFunction] = self._init_intrinsics()
42 | self.used_intrinsics: Set[str] = set()
43 | self.required_headers: Set[str] = set()
44 |
45 | def _init_intrinsics(self) -> Dict[str, IntrinsicFunction]:
46 | """Initialize all supported intrinsic functions."""
47 | return {
48 | # Math intrinsics
49 | "__sinf": IntrinsicFunction(
50 | cuda_name="__sinf",
51 | metal_name="metal::fast::sin",
52 | return_type="float",
53 | arg_types=["float"],
54 | type=IntrinsicType.MATH,
55 | vectorizable=True
56 | ),
57 | "__cosf": IntrinsicFunction(
58 | cuda_name="__cosf",
59 | metal_name="metal::fast::cos",
60 | return_type="float",
61 | arg_types=["float"],
62 | type=IntrinsicType.MATH,
63 | vectorizable=True
64 | ),
65 | # ... other intrinsic definitions ...
66 | }
67 |
68 | def map_intrinsic(self, node: dict) -> str:
69 | """Map CUDA intrinsic function call to Metal equivalent."""
70 | try:
71 | func_name = node.get('function', {}).get('name')
72 | if not func_name:
73 | raise CudaTranslationError(f"Invalid intrinsic function call: {node}")
74 |
75 | if func_name not in self.intrinsics:
76 | raise CudaTranslationError(f"Unknown intrinsic function: {func_name}")
77 |
78 | intrinsic = self.intrinsics[func_name]
79 | self.used_intrinsics.add(func_name)
80 |
81 | # Handle custom translations
82 | if intrinsic.custom_translation:
83 | return intrinsic.custom_translation
84 |
85 | # Generate Metal function call
86 | args = self._translate_arguments(node.get('arguments', []), intrinsic)
87 | metal_call = f"{intrinsic.metal_name}({', '.join(args)})"
88 |
89 | # Add memory order if required
90 | if intrinsic.requires_memory_order:
91 | metal_call += ", memory_order_relaxed"
92 |
93 | # Add scope if required
94 | if intrinsic.requires_scope:
95 | metal_call += "(mem_flags::mem_threadgroup)"
96 |
97 | return metal_call
98 |
99 | except Exception as e:
100 | logger.error(f"Error mapping intrinsic function: {str(e)}")
101 | raise CudaTranslationError(f"Failed to map intrinsic function: {str(e)}")
102 |
103 | def _translate_arguments(self, args: List[dict], intrinsic: IntrinsicFunction) -> List[str]:
104 | """Translate function arguments to Metal."""
105 | if len(args) != len(intrinsic.arg_types):
106 | raise CudaTranslationError(
107 | f"Wrong number of arguments for {intrinsic.cuda_name}: "
108 | f"expected {len(intrinsic.arg_types)}, got {len(args)}"
109 | )
110 |
111 | translated_args = []
112 | for arg, expected_type in zip(args, intrinsic.arg_types):
113 | arg_str = self._translate_argument(arg, expected_type)
114 | translated_args.append(arg_str)
115 |
116 | return translated_args
117 |
118 | def _translate_argument(self, arg: dict, expected_type: str) -> str:
119 | """Translate single argument with type checking."""
120 | if 'value' in arg:
121 | return str(arg['value'])
122 | elif 'name' in arg:
123 | return arg['name']
124 | return str(arg)
125 |
126 | def get_required_headers(self) -> Set[str]:
127 | """Get required Metal headers based on used intrinsics."""
128 | headers = set()
129 | for intrinsic_name in self.used_intrinsics:
130 | intrinsic = self.intrinsics[intrinsic_name]
131 | if intrinsic.type == IntrinsicType.MATH:
132 | headers.add("#include ")
133 | elif intrinsic.type == IntrinsicType.ATOMIC:
134 | headers.add("#include ")
135 | elif intrinsic.is_simd_function:
136 | headers.add("#include ")
137 | return headers
138 |
139 | def get_vectorizable_intrinsics(self) -> Set[str]:
140 | """Get list of vectorizable intrinsic functions."""
141 | return {name for name, func in self.intrinsics.items() if func.vectorizable}
142 |
143 | def get_simd_functions(self) -> Set[str]:
144 | """Get list of SIMD-specific functions."""
145 | return {name for name, func in self.intrinsics.items() if func.is_simd_function}
146 |
147 | def validate_intrinsic_usage(self, node: dict) -> bool:
148 | """Validate intrinsic function usage."""
149 | func_name = node.get('function', {}).get('name')
150 | if not func_name or func_name not in self.intrinsics:
151 | return False
152 |
153 | intrinsic = self.intrinsics[func_name]
154 | return len(node.get('arguments', [])) == len(intrinsic.arg_types)
155 |
156 | logger.info("IntrinsicFunctionMapper initialized with complete mappings")
157 |
--------------------------------------------------------------------------------
/core/translator/host_translator.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, Any
2 | import re
3 | from pathlib import Path
4 |
5 | from ..utils.error_handler import CudaTranslationError
6 | from ..utils.logger import get_logger
7 | from ..core.parser.ast_nodes import (
8 | CUDANode, CUDAKernel, CUDAParameter, CUDAType,
9 | CUDAQualifier, CUDASharedMemory, CUDAThreadIdx
10 | )
11 | from ..generator.msl_generator import MetalShaderGenerator
12 |
13 |
14 | class CUDAHostTranslator:
15 | """
16 | Translates CUDA host code to Metal host code following NVIDIA's host API patterns
17 | """
18 |
19 | def __init__(self):
20 | self.metal_buffer_index = 0
21 | self.kernel_map: Dict[str, CUDAKernel] = {}
22 |
23 | def translate_host_code(self, cuda_code: str, target_lang: str = 'swift') -> str:
24 | """Translate CUDA host code to Metal"""
25 | if target_lang not in {'swift', 'objc'}:
26 | raise ValueError("Target language must be 'swift' or 'objc'")
27 |
28 | # Process CUDA API calls
29 | processed_code = self._translate_device_management(cuda_code)
30 | processed_code = self._translate_memory_management(processed_code)
31 | processed_code = self._translate_kernel_launch(processed_code)
32 | processed_code = self._translate_synchronization(processed_code)
33 |
34 | # Generate appropriate host code
35 | if target_lang == 'swift':
36 | return self._generate_swift_code(processed_code)
37 | else:
38 | return self._generate_objc_code(processed_code)
39 |
40 | def _translate_device_management(self, code: str) -> str:
41 | """Translate CUDA device management calls"""
42 | replacements = {
43 | r'cudaSetDevice\((\d+)\)': r'// Metal automatically manages devices',
44 | r'cudaGetDevice\(&dev\)': r'// Metal automatically manages devices',
45 | r'cudaGetDeviceCount\(&count\)': r'let count = MTLCopyAllDevices().count',
46 | r'cudaDeviceSynchronize\(\)': r'commandBuffer.waitUntilCompleted()'
47 | }
48 |
49 | result = code
50 | for cuda_pattern, metal_code in replacements.items():
51 | result = re.sub(cuda_pattern, metal_code, result)
52 |
53 | return result
54 |
55 | def _translate_memory_management(self, code: str) -> str:
56 | """Translate CUDA memory management calls"""
57 | # Handle cudaMalloc
58 | code = re.sub(
59 | r'cudaMalloc\(\(void\*\*\)&(\w+),\s*(.+?)\)',
60 | lambda m: f'{m.group(1)} = device.makeBuffer(length: {m.group(2)}, '
61 | f'options: .storageModeShared)',
62 | code
63 | )
64 |
65 | # Handle cudaMemcpy
66 | code = re.sub(
67 | r'cudaMemcpy\((.+?),\s*(.+?),\s*(.+?),\s*cudaMemcpy(.+?)\)',
68 | self._translate_memcpy,
69 | code
70 | )
71 |
72 | # Handle cudaFree
73 | code = re.sub(
74 | r'cudaFree\((\w+)\)',
75 | r'// Metal automatically manages memory',
76 | code
77 | )
78 |
79 | return code
80 |
81 | def _translate_memcpy(self, match) -> str:
82 | """Translate cudaMemcpy calls"""
83 | dst, src, size, kind = match.groups()
84 |
85 | if kind == 'HostToDevice':
86 | return f'memcpy({dst}.contents, {src}, {size})'
87 | elif kind == 'DeviceToHost':
88 | return f'memcpy({dst}, {src}.contents, {size})'
89 | elif kind == 'DeviceToDevice':
90 | return (f'let blitEncoder = commandBuffer.makeBlitCommandEncoder()\n'
91 | f'blitEncoder.copy(from: {src}, to: {dst}, size: {size})\n'
92 | f'blitEncoder.endEncoding()')
93 |
94 | return match.group(0)
95 |
96 | def _translate_kernel_launch(self, code: str) -> str:
97 | """Translate CUDA kernel launches"""
98 | # Match kernel launch syntax
99 | pattern = r'(\w+)<<<(.+?)>>>(.+?);'
100 |
101 | return re.sub(pattern, self._translate_launch_config, code)
102 |
103 | def _translate_launch_config(self, match) -> str:
104 | """Translate kernel launch configuration"""
105 | kernel_name, config, args = match.groups()
106 |
107 | # Parse grid and block dimensions
108 | grid_dim, block_dim = config.split(',', 1)
109 |
110 | return (
111 | f'let commandEncoder = commandBuffer.makeComputeCommandEncoder()\n'
112 | f'commandEncoder.setComputePipelineState({kernel_name}PipelineState)\n'
113 | f'let gridSize = MTLSize(width: {grid_dim}, height: 1, depth: 1)\n'
114 | f'let blockSize = MTLSize(width: {block_dim}, height: 1, depth: 1)\n'
115 | f'commandEncoder.dispatchThreadgroups(gridSize, threadsPerThreadgroup: blockSize)\n'
116 | f'commandEncoder.endEncoding()'
117 | )
118 |
119 | def _translate_synchronization(self, code: str) -> str:
120 | """Translate CUDA synchronization calls"""
121 | replacements = {
122 | r'cudaDeviceSynchronize\(\)': 'commandBuffer.waitUntilCompleted()',
123 | r'cudaStreamSynchronize\((\w+)\)': r'\1.waitUntilCompleted()',
124 | r'cudaEventSynchronize\((\w+)\)': r'\1.waitUntilCompleted()',
125 | }
126 |
127 | result = code
128 | for cuda_pattern, metal_code in replacements.items():
129 | result = re.sub(cuda_pattern, metal_code, result)
130 |
131 | return result
132 |
133 | def _generate_swift_code(self, processed_code: str) -> str:
134 | """Generate Swift host code"""
135 | setup_code = """
136 | import Metal
137 | import MetalKit
138 |
139 | guard let device = MTLCreateSystemDefaultDevice() else {
140 | fatalError("GPU not available")
141 | }
142 |
143 | let commandQueue = device.makeCommandQueue()!
144 | let commandBuffer = commandQueue.makeCommandBuffer()!
145 | """
146 |
147 | return f"{setup_code}\n{processed_code}"
148 |
149 | def _generate_objc_code(self, processed_code: str) -> str:
150 | """Generate Objective-C host code"""
151 | setup_code = """
152 | #import
153 | #import
154 |
155 | id device = MTLCreateSystemDefaultDevice();
156 | if (!device) {
157 | NSLog(@"GPU not available");
158 | return;
159 | }
160 |
161 | id commandQueue = [device newCommandQueue];
162 | id commandBuffer = [commandQueue commandBuffer];
163 | """
164 |
165 | return f"{setup_code}\n{processed_code}"
--------------------------------------------------------------------------------
/utils/file_utils.py:
--------------------------------------------------------------------------------
1 | # utils/file_utils.py
2 |
3 | import os
4 | import shutil
5 | import hashlib
6 | import tempfile
7 | from pathlib import Path
8 | from typing import List, Set, Dict, Optional, Generator
9 | from concurrent.futures import ThreadPoolExecutor
10 | from threading import Lock
11 | import logging
12 |
13 | from .error_handler import CudaTranslationError
14 | from .logger import get_logger
15 |
16 | logger = get_logger(__name__)
17 |
18 | class FileCache:
19 | """Thread-safe file cache manager."""
20 | def __init__(self, cache_dir: Optional[str] = None):
21 | self.cache_dir = Path(cache_dir) if cache_dir else Path(tempfile.gettempdir()) / "cuda_metal_cache"
22 | self.cache_dir.mkdir(parents=True, exist_ok=True)
23 | self._lock = Lock()
24 | self._cache_index: Dict[str, Path] = {}
25 | self._load_cache_index()
26 |
27 | def _load_cache_index(self):
28 | """Load cache index from disk."""
29 | with self._lock:
30 | index_file = self.cache_dir / "index.json"
31 | if index_file.exists():
32 | import json
33 | with open(index_file, 'r') as f:
34 | self._cache_index = {k: Path(v) for k, v in json.load(f).items()}
35 |
36 | def _save_cache_index(self):
37 | """Save cache index to disk."""
38 | with self._lock:
39 | index_file = self.cache_dir / "index.json"
40 | import json
41 | with open(index_file, 'w') as f:
42 | json.dump({k: str(v) for k, v in self._cache_index.items()}, f)
43 |
44 | def get_cached_path(self, key: str) -> Optional[Path]:
45 | """Get cached file path if exists."""
46 | with self._lock:
47 | return self._cache_index.get(key)
48 |
49 | def add_to_cache(self, key: str, file_path: Path):
50 | """Add file to cache."""
51 | with self._lock:
52 | cache_path = self.cache_dir / hashlib.sha256(key.encode()).hexdigest()
53 | shutil.copy2(file_path, cache_path)
54 | self._cache_index[key] = cache_path
55 | self._save_cache_index()
56 |
57 | class FileTracker:
58 | """Tracks file dependencies and modifications."""
59 | def __init__(self):
60 | self.dependencies: Dict[Path, Set[Path]] = {}
61 | self._lock = Lock()
62 |
63 | def add_dependency(self, source: Path, dependency: Path):
64 | """Add a dependency relationship."""
65 | with self._lock:
66 | if source not in self.dependencies:
67 | self.dependencies[source] = set()
68 | self.dependencies[source].add(dependency)
69 |
70 | def get_dependencies(self, source: Path) -> Set[Path]:
71 | """Get all dependencies for a file."""
72 | with self._lock:
73 | return self.dependencies.get(source, set())
74 |
75 | def is_modified(self, source: Path, dependency: Path) -> bool:
76 | """Check if dependency is modified after source."""
77 | try:
78 | source_mtime = source.stat().st_mtime
79 | dep_mtime = dependency.stat().st_mtime
80 | return dep_mtime > source_mtime
81 | except OSError:
82 | return True
83 |
84 | class FileUtils:
85 | """Utility class for file operations with Metal-specific optimizations."""
86 |
87 | def __init__(self):
88 | self.cache = FileCache()
89 | self.tracker = FileTracker()
90 | self.temp_dir = Path(tempfile.mkdtemp(prefix="cuda_metal_"))
91 | self._lock = Lock()
92 |
93 | def read_file(self, path: Path, encoding: str = 'utf-8') -> str:
94 | """Read file with caching and error handling."""
95 | try:
96 | with open(path, 'r', encoding=encoding) as f:
97 | content = f.read()
98 |
99 | # Cache the content
100 | cache_key = f"{path}:{path.stat().st_mtime}"
101 | self.cache.add_to_cache(cache_key, path)
102 |
103 | return content
104 |
105 | except UnicodeDecodeError:
106 | logger.warning(f"Failed to read {path} with {encoding} encoding, trying alternate encodings")
107 | for alt_encoding in ['latin1', 'cp1252']:
108 | try:
109 | with open(path, 'r', encoding=alt_encoding) as f:
110 | return f.read()
111 | except UnicodeDecodeError:
112 | continue
113 | raise CudaTranslationError(f"Unable to read file {path} with any supported encoding")
114 |
115 | except OSError as e:
116 | raise CudaTranslationError(f"Failed to read file {path}: {str(e)}")
117 |
118 | def write_file(self, path: Path, content: str, encoding: str = 'utf-8', backup: bool = True):
119 | """Write file with backup and atomic operation."""
120 | if backup and path.exists():
121 | self._create_backup(path)
122 |
123 | # Write to temporary file first
124 | temp_path = self.temp_dir / f"{path.name}.tmp"
125 | try:
126 | with open(temp_path, 'w', encoding=encoding) as f:
127 | f.write(content)
128 | f.flush()
129 | os.fsync(f.fileno())
130 |
131 | # Atomic move
132 | shutil.move(str(temp_path), str(path))
133 |
134 | except OSError as e:
135 | raise CudaTranslationError(f"Failed to write file {path}: {str(e)}")
136 | finally:
137 | if temp_path.exists():
138 | temp_path.unlink()
139 |
140 | def _create_backup(self, path: Path):
141 | """Create backup of existing file."""
142 | backup_path = path.with_suffix(path.suffix + '.bak')
143 | try:
144 | shutil.copy2(path, backup_path)
145 | except OSError as e:
146 | logger.warning(f"Failed to create backup of {path}: {str(e)}")
147 |
148 | def process_directory(self,
149 | directory: Path,
150 | pattern: str = "*.cu",
151 | recursive: bool = True) -> Generator[Path, None, None]:
152 | """Process directory with parallel file scanning."""
153 | try:
154 | if recursive:
155 | paths = directory.rglob(pattern)
156 | else:
157 | paths = directory.glob(pattern)
158 |
159 | with ThreadPoolExecutor() as executor:
160 | yield from executor.map(self._process_file, paths)
161 |
162 | except OSError as e:
163 | raise CudaTranslationError(f"Failed to process directory {directory}: {str(e)}")
164 |
165 | def _process_file(self, path: Path) -> Path:
166 | """Process individual file with validation."""
167 | if not path.is_file():
168 | logger.warning(f"Skipping non-file path: {path}")
169 | return None
170 |
171 | return path
172 |
173 | def ensure_directory(self, path: Path):
174 | """Ensure directory exists with proper permissions."""
175 | try:
176 | path.mkdir(parents=True, exist_ok=True)
177 |
178 | # Set appropriate permissions
179 | if os.name == 'posix':
180 | os.chmod(path, 0o755)
181 |
182 | except OSError as e:
183 | raise CudaTranslationError(f"Failed to create directory {path}: {str(e)}")
184 |
185 | def copy_with_metadata(self, src: Path, dst: Path):
186 | """Copy file with all metadata preserved."""
187 | try:
188 | shutil.copy2(src, dst)
189 |
190 | # Track dependency
191 | self.tracker.add_dependency(dst, src)
192 |
193 | except OSError as e:
194 | raise CudaTranslationError(f"Failed to copy {src} to {dst}: {str(e)}")
195 |
196 | def get_relative_path(self, path: Path, base: Path) -> Path:
197 | """Get relative path with validation."""
198 | try:
199 | return path.relative_to(base)
200 | except ValueError:
201 | return path
202 |
203 | def cleanup(self):
204 | """Clean up temporary files."""
205 | try:
206 | shutil.rmtree(self.temp_dir, ignore_errors=True)
207 | except OSError as e:
208 | logger.warning(f"Failed to clean up temporary files: {str(e)}")
209 |
210 | def __enter__(self):
211 | return self
212 |
213 | def __exit__(self, exc_type, exc_val, exc_tb):
214 | self.cleanup()
215 |
216 | logger.info("FileUtils initialized with Metal-specific optimizations.")
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # CUDA-to-Metal MPS Translation Project
2 |
3 | 
4 |
5 | ## Introduction
6 |
7 | Hi there! This project is designed to tackle a pretty significant problem for developers who want to port their CUDA applications to Apple M1 devices.
8 |
9 | Apple's M1 chips are amazing,im serious really really great but one major drawback is the lack of support for NVIDIA’s CUDA and cuDNN libraries. That’s where this project comes in. It’s all about providing developers with a tool to **automatically convert CUDA code** into **Metal Shading Language (MSL)**, enabling GPU-accelerated computations on M1 devices without having to rewrite the entire codebase from scratch.
10 |
11 | Whether you're working with CUDA kernels or leveraging cuDNN for deep learning, this tool aims to make your life easier by automating the translation process, so you can focus on performance and results. Let's dive into the details!
12 |
13 | ---
14 |
15 | ## Why Does This Matter?
16 |
17 | If you’ve ever tried to port CUDA code to a non-NVIDIA device, you know how painful it can be. The goal of this project is simple but powerful: **port CUDA code, including code that uses cuDNN, to Apple M1 GPUs** using **Metal** and **Metal Performance Shaders (MPS)**. This module will:
18 | - **Translate CUDA kernels** to MSL.
19 | - **Map cuDNN functions** to MPS equivalents.
20 | - Provide an easy-to-use **CLI and Python API** to automate the entire process.
21 |
22 | It’s like giving you a bridge between two worlds that don’t normally talk to each other—NVIDIA’s CUDA and Apple’s Metal.
23 |
24 | ---
25 |
26 | ## Table of Contents
27 | 1. [Project Overview](#project-overview)
28 | 2. [Challenges & How We Solve Them](#challenges)
29 | 3. [How It Works (The Tech Behind It)](#how-it-works)
30 | 4. [Installation & Usage](#installation-usage)
31 | 5. [Testing & Validation](#testing-validation)
32 | 6. [Roadmap](#roadmap)
33 | 7. [Risks & How We’re Tackling Them](#risks)
34 | 8. [Contributing](#contributing)
35 | 9. [Closing Thoughts](#closing-thoughts)
36 |
37 | ---
38 |
39 | ## 1. Project Overview
40 |
41 | The **CUDA-to-Metal MPS Translation Project** is a PyPI module that automates the conversion of CUDA code into Metal code, specifically designed for Apple M1 devices. This includes translating CUDA kernels, mapping cuDNN functions to Metal Performance Shaders (MPS), and providing a simple way for developers to adapt their CUDA-based codebases to the M1 architecture.
42 |
43 | ---
44 |
45 | ## 2. Challenges & How We Solve Them
46 |
47 | ### **Challenge 1**: CUDA and cuDNN are NVIDIA-specific and can’t run on Apple M1.
48 | - **Solution**: We translate CUDA code into **Metal Shading Language (MSL)** and map cuDNN functions to **MPS** equivalents.
49 |
50 | ### **Challenge 2**: The GPU architectures between NVIDIA and Apple are very different.
51 | - **Solution**: We build mapping layers that handle architectural differences, like memory models and threading paradigms.
52 |
53 | ### **Challenge 3**: There are performance gaps between CUDA/cuDNN and Metal/MPS.
54 | - **Solution**: After translating, we **optimize** the code using Apple’s GPU profiling tools and best practices to minimize these gaps.
55 |
56 | ---
57 |
58 | ## 3. How It Works (The Tech Behind It)
59 |
60 | Here’s a quick breakdown of how the project operates:
61 |
62 | ### Core Components:
63 | - **CUDA Parser**: Reads and interprets CUDA code.
64 | - **Kernel Translator**: Converts CUDA kernels into **MSL**.
65 | - **cuDNN Mapper**: Maps cuDNN functions to **MPS** or other Metal-compatible equivalents.
66 | - **Host Code Adapter**: Translates the host-side CUDA runtime API into Metal’s API (works with both Swift and Objective-C).
67 | - **CLI Tool & Python API**: A friendly interface to help you use these features without getting lost in the details.
68 |
69 | ### Data Flow:
70 | 1. **Input**: Your CUDA source files.
71 | 2. **Process**: We parse the code, translate kernels to Metal, and map cuDNN functions to MPS.
72 | 3. **Output**: The result is Metal-compatible code that can run on Apple M1 devices.
73 |
74 | ---
75 |
76 | ## 4. Installation & Usage
77 |
78 | ### Installation:
79 |
80 | Get started by installing the package from PyPI:
81 |
82 | ```bash
83 | pip install cuda_to_metal_mps
84 |
85 | Usage:
86 |
87 | The command-line interface makes it easy to use:
88 |
89 | bash
90 |
91 | cuda_to_metal_mps translate --input my_cuda_project/ --output my_metal_project/ --language swift
92 |
93 | Options:
94 |
95 | --input: Path to the CUDA source code.
96 | --output: Where the translated Metal code should go.
97 | --language: Choose between Swift or Objective-C for the host code.
98 | --config: Optional config file to customize translations.
99 |
100 | Example Workflow:
101 |
102 | Translate CUDA code:
103 |
104 | bash
105 |
106 | cuda_to_metal_mps translate --input src/ --output metal_project/ --language swift
107 |
108 | Build the project in Xcode for running on your Apple M1 device.
109 |
110 | 5. Testing & Validation
111 |
112 | Testing is crucial! Here’s how we ensure the module works as expected:
113 |
114 | Unit Tests: We test individual components (like parsing and kernel translation).
115 | Integration Tests: Run complete CUDA-to-Metal translations on sample projects.
116 | Performance Tests: Compare the performance of translated Metal code with the original CUDA code.
117 |
118 | 6. Roadmap
119 |
120 | Here's what the next few weeks look like for this project:
121 |
122 | Weeks 1-2-3-4-5: Set up project structure and identify core components.
123 | Weeks 5-6-7-8-9-10: Develop the CUDA parser and kernel translator.
124 | Weeks 11-12-13-14: Build the cuDNN-to-MPS mapper and host code adapter.
125 | Weeks 15-16: Complete CLI tool, Python API, and start testing.
126 | Weeks 16+: Optimize and release!
127 |
128 | 7. Risks & How We’re Tackling Them
129 | Risk 1: Not all cuDNN functions have a 1-to-1 MPS equivalent.
130 |
131 | Mitigation: Focus on mapping the most commonly used functions first and document any gaps.
132 |
133 | Risk 2: Translated code might not match CUDA’s performance.
134 |
135 | Mitigation: Use Apple’s profiling tools to identify and fix bottlenecks.
136 |
137 | 8. Contributing
138 |
139 | Want to help make this project better? Awesome! Here's how you can contribute:
140 |
141 | Fork the repository.
142 | Create a new branch for your feature or fix.
143 | Open a pull request with a description of what you’ve changed.
144 |
145 | Whether it’s adding new features, improving performance, or fixing bugs, every contribution is welcome! 💡
146 | 9. Closing Thoughts
147 |
148 | This project is just getting started, but it already has the potential to make a big impact for developers working with Apple’s M1 devices. By building a tool that automates the hard work of porting CUDA code to Metal, we’re opening up new possibilities for GPU acceleration on non-NVIDIA hardware.
149 |
150 | Feel free to dive in, give it a try, and let me know what you think! 🚀
151 |
152 | vbnet
153 |
154 |
155 | ### Key Differences:
156 | - **Human-friendly tone**: I’ve written it as if you’re speaking directly to your audience.
157 | - **Real-world impact**: I focused on the *why* behind the project to make it clear why it’s important.
158 | - **Conversational**: This will resonate more with other developers, especially students and researchers.
159 |
160 | Let me know if you’d like to tweak anything further!
161 |
162 | ⚠️ **DISCLAIMER**: I'm working on this project and multiple others ones on my free-time and at side of my studies and work,so be kind ,Also This is still version 0.01, and many classes,files,functionalities... are not yet implemented. Feel free to contribute by adding missing files or such or even improving existing ones if you think yours offers a better solution.
163 |
164 | ## Legal Disclaimer
165 |
166 | This project is created for **educational purposes** only and is not intended for commercial use. I do not own or claim to own any rights to Apple’s M1 architecture, Metal, Metal Performance Shaders (MPS), or NVIDIA’s CUDA and cuDNN libraries. All trademarks, logos, and brand names are the property of their respective owners.
167 |
168 | The purpose of this project is to provide developers with a tool to aid in learning about and experimenting with code translation between CUDA and Metal, and to explore the GPU capabilities of different architectures. **No warranties** are made regarding the completeness, reliability, or accuracy of the code and translations generated by this project. Use of this project is **at your own risk**.
169 |
170 | By using or contributing to this project, you acknowledge and agree that this is an independent work and is not affiliated with, endorsed by, or associated with Apple, NVIDIA, or any other company mentioned.
171 |
172 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
6 |
7 | Preamble
8 |
9 | The GNU Affero General Public License is a free, copyleft license for software and other kinds of works, specifically designed to ensure cooperation with the community in the case of network server software.
10 |
11 | The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, our General Public Licenses are intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users.
12 |
13 | When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.
14 |
15 | Developers that use our General Public Licenses protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License which gives you legal permission to copy, distribute and/or modify the software.
16 |
17 | A secondary benefit of defending all users' freedom is that improvements made in alternate versions of the program, if they receive widespread use, become available for other developers to incorporate. Many developers of free software are heartened and encouraged by the resulting cooperation. However, in the case of software used on network servers, this result may fail to come about. The GNU General Public License permits making a modified version and letting the public access it on a server without ever releasing its source code to the public.
18 |
19 | The GNU Affero General Public License is designed to fill this gap. It requires the operator of a network server to provide the source code of the modified version running there to the users of that server. Public use of a modified version, on a publicly accessible server, gives the public access to the source code of the modified version.
20 |
21 | An older license, called the Affero General Public License and published by Affero, was designed to accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has contributed to its development by funding a project to update the GNU General Public License to address network server software.
22 |
23 | The precise terms and conditions for copying, distribution and modification follow.
24 |
25 | TERMS AND CONDITIONS
26 |
27 | ### 0. Definitions.
28 |
29 | “This License” refers to version 3 of the GNU Affero General Public License.
30 |
31 | “Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.
32 |
33 | “The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.
34 |
35 | To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.
36 |
37 | A “covered work” means either the unmodified Program or a work based on the Program.
38 |
39 | To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.
40 |
41 | To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
42 |
43 | An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.
44 |
45 | ### 1. Source Code.
46 |
47 | The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.
48 |
49 | A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.
50 |
51 | The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.
52 |
53 | The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.
54 |
55 | The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.
56 |
57 | The Corresponding Source for a work in source code form is that same work.
58 |
59 | ### 2. Basic Permissions.
60 |
61 | All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.
62 |
63 | You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.
64 |
65 | Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.
66 |
67 | ### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
68 |
69 | No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.
70 |
71 | When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures.
72 |
73 | ### 4. Conveying Verbatim Copies.
74 |
75 | You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.
76 |
77 | You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.
78 |
79 | [For more information, visit the full AGPLv3.0 text](https://www.gnu.org/licenses/agpl-3.0.en.html)
80 |
81 |
--------------------------------------------------------------------------------
/optimization/memory_optimizer.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Optional, Set, Tuple, Any
2 | from dataclasses import dataclass
3 | from enum import Enum
4 | import logging
5 |
6 | from ..parser.ast_nodes import (
7 | CUDANode, CUDAType, CUDAKernel, CUDASharedMemory,
8 | CUDAThreadIdx, CUDABlockIdx
9 | )
10 |
11 | class MemoryAccessPattern(Enum):
12 | COALESCED = "coalesced"
13 | STRIDED = "strided"
14 | RANDOM = "random"
15 | BROADCAST = "broadcast"
16 | SEQUENTIAL = "sequential"
17 |
18 | @dataclass
19 | class MemoryAccess:
20 | """Information about a memory access"""
21 | node: CUDANode
22 | type: MemoryAccessPattern
23 | stride: Optional[int] = None
24 | scope: str = "global"
25 | is_read: bool = True
26 | is_atomic: bool = False
27 | alignment: int = 16
28 | vector_width: Optional[int] = None
29 |
30 | class MemoryOptimizer:
31 | """
32 | Optimizes memory access patterns for Metal GPU following NVIDIA best practices
33 | """
34 |
35 | def __init__(self):
36 | self.simd_width = 32 # Metal SIMD width
37 | self.max_threads_per_group = 1024
38 | self.shared_memory_limit = 32768 # 32KB for Metal
39 | self.l1_cache_line_size = 128 # Metal cache line size
40 | self.vector_sizes = {2, 4, 8, 16} # Supported vector widths
41 | self.memory_accesses: List[MemoryAccess] = []
42 |
43 | def optimize_kernel(self, kernel: CUDAKernel) -> CUDAKernel:
44 | """Apply memory optimizations to kernel"""
45 | # Analyze memory access patterns
46 | self._analyze_memory_accesses(kernel)
47 |
48 | # Apply optimizations
49 | kernel = self._optimize_global_memory(kernel)
50 | kernel = self._optimize_shared_memory(kernel)
51 | kernel = self._optimize_texture_memory(kernel)
52 | kernel = self._optimize_atomics(kernel)
53 |
54 | return kernel
55 |
56 | def _analyze_memory_accesses(self, kernel: CUDAKernel):
57 | """Analyze all memory accesses in kernel"""
58 | self.memory_accesses.clear()
59 |
60 | def visit_node(node: CUDANode):
61 | if access := self._detect_memory_access(node):
62 | self.memory_accesses.append(access)
63 |
64 | kernel.traverse(visit_node)
65 |
66 | # Group and analyze patterns
67 | self._analyze_access_patterns()
68 |
69 | def _detect_memory_access(self, node: CUDANode) -> Optional[MemoryAccess]:
70 | """Detect memory access type and pattern"""
71 | if not hasattr(node, 'cuda_type'):
72 | return None
73 |
74 | # Check for array access
75 | if self._is_array_access(node):
76 | pattern = self._determine_access_pattern(node)
77 | scope = self._determine_memory_scope(node)
78 |
79 | return MemoryAccess(
80 | node=node,
81 | type=pattern,
82 | scope=scope,
83 | stride=self._calculate_stride(node),
84 | vector_width=self._detect_vector_width(node),
85 | alignment=self._check_alignment(node)
86 | )
87 |
88 | return None
89 |
90 | def _is_array_access(self, node: CUDANode) -> bool:
91 | """Check if node represents array access"""
92 | return hasattr(node, 'is_pointer') and node.is_pointer
93 |
94 | def _determine_access_pattern(self, node: CUDANode) -> MemoryAccessPattern:
95 | """Determine memory access pattern"""
96 | thread_idx = self._find_thread_index(node)
97 | if not thread_idx:
98 | return MemoryAccessPattern.RANDOM
99 |
100 | # Check for coalesced access
101 | if self._is_coalesced_access(node, thread_idx):
102 | return MemoryAccessPattern.COALESCED
103 |
104 | # Check for strided access
105 | stride = self._calculate_stride(node)
106 | if stride:
107 | return MemoryAccessPattern.STRIDED
108 |
109 | # Check for broadcast
110 | if self._is_broadcast_access(node):
111 | return MemoryAccessPattern.BROADCAST
112 |
113 | return MemoryAccessPattern.RANDOM
114 |
115 | def _optimize_global_memory(self, kernel: CUDAKernel) -> CUDAKernel:
116 | """Optimize global memory access patterns"""
117 | coalescing_opportunities = [
118 | access for access in self.memory_accesses
119 | if access.scope == "global" and access.type != MemoryAccessPattern.COALESCED
120 | ]
121 |
122 | # Apply vectorization where possible
123 | for access in coalescing_opportunities:
124 | if self._can_vectorize(access):
125 | kernel = self._apply_vectorization(kernel, access)
126 |
127 | # Optimize array indexing
128 | kernel = self._optimize_array_indexing(kernel)
129 |
130 | # Add padding for alignment
131 | kernel = self._add_memory_padding(kernel)
132 |
133 | return kernel
134 |
135 | def _optimize_shared_memory(self, kernel: CUDAKernel) -> CUDAKernel:
136 | """Optimize shared memory usage"""
137 | shared_vars = [
138 | node for node in kernel.children
139 | if isinstance(node, CUDASharedMemory)
140 | ]
141 |
142 | total_size = 0
143 | for var in shared_vars:
144 | # Optimize bank conflicts
145 | var = self._resolve_bank_conflicts(var)
146 |
147 | # Track size
148 | size = self._calculate_shared_memory_size(var)
149 | total_size += size
150 |
151 | if total_size > self.shared_memory_limit:
152 | logging.warning(f"Shared memory usage {total_size} exceeds Metal limit {self.shared_memory_limit}")
153 |
154 | return kernel
155 |
156 | def _optimize_texture_memory(self, kernel: CUDAKernel) -> CUDAKernel:
157 | """Optimize texture memory usage"""
158 | # Find read-only array accesses that could use textures
159 | candidate_arrays = [
160 | access for access in self.memory_accesses
161 | if access.scope == "global" and access.is_read and not access.is_atomic
162 | ]
163 |
164 | for access in candidate_arrays:
165 | if self._should_use_texture(access):
166 | kernel = self._convert_to_texture(kernel, access)
167 |
168 | return kernel
169 |
170 | def _optimize_atomics(self, kernel: CUDAKernel) -> CUDAKernel:
171 | """Optimize atomic operations"""
172 | atomic_accesses = [
173 | access for access in self.memory_accesses
174 | if access.is_atomic
175 | ]
176 |
177 | for access in atomic_accesses:
178 | # Try to use simdgroup operations
179 | if self._can_use_simdgroup(access):
180 | kernel = self._convert_to_simdgroup(kernel, access)
181 | else:
182 | # Optimize atomic memory layout
183 | kernel = self._optimize_atomic_layout(kernel, access)
184 |
185 | return kernel
186 |
187 | def _resolve_bank_conflicts(self, shared_var: CUDASharedMemory) -> CUDASharedMemory:
188 | """Resolve shared memory bank conflicts"""
189 | if not self._has_bank_conflicts(shared_var):
190 | return shared_var
191 |
192 | # Add padding to avoid conflicts
193 | padding = self._calculate_padding(shared_var)
194 | shared_var.size += padding
195 |
196 | return shared_var
197 |
198 | def _calculate_padding(self, var: CUDASharedMemory) -> int:
199 | """Calculate padding to avoid bank conflicts"""
200 | type_size = self._get_type_size(var.cuda_type)
201 | banks = 32 # Metal uses 32 banks
202 |
203 | if var.size % banks == 0:
204 | return 0
205 |
206 | return banks - (var.size % banks)
207 |
208 | def _can_vectorize(self, access: MemoryAccess) -> bool:
209 | """Check if memory access can be vectorized"""
210 | if not access.stride:
211 | return False
212 |
213 | # Check if stride matches vector size
214 | return (
215 | access.stride in self.vector_sizes and
216 | access.alignment >= access.stride * 4 and # 4 bytes per element
217 | not access.is_atomic
218 | )
219 |
220 | def _should_use_texture(self, access: MemoryAccess) -> bool:
221 | """Determine if array should use texture memory"""
222 | return (
223 | access.is_read and
224 | not access.is_atomic and
225 | access.type in {MemoryAccessPattern.RANDOM, MemoryAccessPattern.STRIDED} and
226 | self._get_type_size(access.node.cuda_type) <= 16 # Max texture element size
227 | )
228 |
229 | def _can_use_simdgroup(self, access: MemoryAccess) -> bool:
230 | """Check if atomic can use simdgroup operations"""
231 | return (
232 | access.is_atomic and
233 | access.type == MemoryAccessPattern.SEQUENTIAL and
234 | self._is_reduction_pattern(access)
235 | )
236 |
237 | def _get_type_size(self, cuda_type: CUDAType) -> int:
238 | """Get size of CUDA type in bytes"""
239 | size_map = {
240 | CUDAType.CHAR: 1,
241 | CUDAType.SHORT: 2,
242 | CUDAType.INT: 4,
243 | CUDAType.FLOAT: 4,
244 | CUDAType.DOUBLE: 8,
245 | }
246 | return size_map.get(cuda_type, 4) # Default to 4 bytes
247 |
248 | def get_optimization_report(self) -> Dict[str, Any]:
249 | """Generate memory optimization report"""
250 | return {
251 | "access_patterns": {
252 | pattern.value: len([a for a in self.memory_accesses if a.type == pattern])
253 | for pattern in MemoryAccessPattern
254 | },
255 | "vectorization_opportunities": len([
256 | a for a in self.memory_accesses if self._can_vectorize(a)
257 | ]),
258 | "texture_candidates": len([
259 | a for a in self.memory_accesses if self._should_use_texture(a)
260 | ]),
261 | "bank_conflicts": len([
262 | a for a in self.memory_accesses
263 | if a.scope == "shared" and self._has_bank_conflicts(a.node)
264 | ]),
265 | "simdgroup_opportunities": len([
266 | a for a in self.memory_accesses if self._can_use_simdgroup(a)
267 | ])
268 | }
--------------------------------------------------------------------------------
/templates/metal/kernel_template.metal:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 |
6 | using namespace metal;
7 |
8 | // Utility functions for thread/block mapping
9 | namespace cuda {
10 | // Thread indexing
11 | struct uint3 {
12 | uint x, y, z;
13 | };
14 |
15 | struct float3 {
16 | float x, y, z;
17 | };
18 |
19 | // Device functions for CUDA compatibility
20 | METAL_FUNC uint3 get_thread_idx(
21 | uint3 thread_position_in_threadgroup,
22 | uint3 threads_per_threadgroup
23 | ) {
24 | return uint3{
25 | thread_position_in_threadgroup.x,
26 | thread_position_in_threadgroup.y,
27 | thread_position_in_threadgroup.z
28 | };
29 | }
30 |
31 | METAL_FUNC uint3 get_block_idx(
32 | uint3 threadgroup_position_in_grid,
33 | uint3 threads_per_threadgroup
34 | ) {
35 | return uint3{
36 | threadgroup_position_in_grid.x,
37 | threadgroup_position_in_grid.y,
38 | threadgroup_position_in_grid.z
39 | };
40 | }
41 |
42 | // Atomic operations
43 | template
44 | METAL_FUNC T atomicAdd(device atomic_uint* addr, T val) {
45 | return atomic_fetch_add_explicit(addr, val, memory_order_relaxed);
46 | }
47 |
48 | template
49 | METAL_FUNC T atomicMax(device atomic_uint* addr, T val) {
50 | return atomic_fetch_max_explicit(addr, val, memory_order_relaxed);
51 | }
52 |
53 | // Sync functions
54 | METAL_FUNC void __syncthreads() {
55 | threadgroup_barrier(mem_flags::mem_threadgroup);
56 | }
57 |
58 | METAL_FUNC void __threadfence() {
59 | threadgroup_barrier(mem_flags::mem_device);
60 | }
61 |
62 | // Math functions
63 | METAL_FUNC float __fdividef(float a, float b) {
64 | return a / b;
65 | }
66 |
67 | METAL_FUNC float __expf(float x) {
68 | return metal::exp(x);
69 | }
70 | }
71 |
72 | // Kernel struct for shared state
73 | struct KernelState {
74 | uint3 thread_idx;
75 | uint3 block_idx;
76 | uint3 block_dim;
77 | uint3 grid_dim;
78 | uint simd_lane_id;
79 | uint simd_group_id;
80 | };
81 |
82 | // Initialize kernel state
83 | METAL_FUNC KernelState init_kernel_state(
84 | uint3 thread_position_in_threadgroup [[thread_position_in_threadgroup]],
85 | uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]],
86 | uint3 threads_per_threadgroup [[threads_per_threadgroup]],
87 | uint3 threadgroups_per_grid [[threadgroups_per_grid]]
88 | ) {
89 | KernelState state;
90 |
91 | state.thread_idx = cuda::get_thread_idx(
92 | thread_position_in_threadgroup,
93 | threads_per_threadgroup
94 | );
95 |
96 | state.block_idx = cuda::get_block_idx(
97 | threadgroup_position_in_grid,
98 | threads_per_threadgroup
99 | );
100 |
101 | state.block_dim = threads_per_threadgroup;
102 | state.grid_dim = threadgroups_per_grid;
103 |
104 | state.simd_lane_id = thread_position_in_threadgroup.x & 0x1F;
105 | state.simd_group_id = thread_position_in_threadgroup.x >> 5;
106 |
107 | return state;
108 | }
109 |
110 | // Common kernel parameters struct
111 | struct KernelParams {
112 | uint problem_size;
113 | uint batch_size;
114 | float learning_rate;
115 | // Add other common parameters
116 | };
117 |
118 | // Example kernel - will be replaced by translation
119 | kernel void example_kernel(
120 | device float* input [[buffer(0)]],
121 | device float* output [[buffer(1)]],
122 | constant KernelParams& params [[buffer(2)]],
123 | uint3 thread_position_in_threadgroup [[thread_position_in_threadgroup]],
124 | uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]],
125 | uint3 threads_per_threadgroup [[threads_per_threadgroup]],
126 | uint3 threadgroups_per_grid [[threadgroups_per_grid]]
127 | ) {
128 | // Initialize kernel state
129 | KernelState state = init_kernel_state(
130 | thread_position_in_threadgroup,
131 | threadgroup_position_in_grid,
132 | threads_per_threadgroup,
133 | threadgroups_per_grid
134 | );
135 |
136 | // Example shared memory
137 | threadgroup float shared_data[1024];
138 |
139 | // Example CUDA-style indexing
140 | uint idx = (state.block_idx.x * state.block_dim.x) + state.thread_idx.x;
141 | if (idx >= params.problem_size) return;
142 |
143 | // Example computation with shared memory
144 | shared_data[state.thread_idx.x] = input[idx];
145 | cuda::__syncthreads();
146 |
147 | output[idx] = shared_data[state.thread_idx.x] * params.learning_rate;
148 | }
149 | // CUDA Performance Primitives (cuBLAS-like functions)
150 | namespace cublas {
151 | // Matrix multiply
152 | METAL_FUNC void gemm(
153 | device const float* A,
154 | device const float* B,
155 | device float* C,
156 | uint M, uint N, uint K,
157 | threadgroup float* shared_mem [[threadgroup(0)]]
158 | ) {
159 | constexpr uint TILE_SIZE = 16;
160 | uint2 tid = uint2(threadIdx_x, threadIdx_y);
161 | uint2 bid = uint2(blockIdx_x, blockIdx_y);
162 |
163 | // Tile start positions
164 | uint row = bid.y * TILE_SIZE + tid.y;
165 | uint col = bid.x * TILE_SIZE + tid.x;
166 |
167 | // Accumulator for dot product
168 | float acc = 0.0f;
169 |
170 | // Loop over tiles
171 | for (uint t = 0; t < K; t += TILE_SIZE) {
172 | // Load tile into shared memory
173 | threadgroup float* tile_A = shared_mem;
174 | threadgroup float* tile_B = shared_mem + TILE_SIZE * TILE_SIZE;
175 |
176 | if (row < M && (t + tid.x) < K)
177 | tile_A[tid.y * TILE_SIZE + tid.x] = A[row * K + t + tid.x];
178 | if (col < N && (t + tid.y) < K)
179 | tile_B[tid.y * TILE_SIZE + tid.x] = B[(t + tid.y) * N + col];
180 |
181 | threadgroup_barrier(mem_flags::mem_threadgroup);
182 |
183 | // Compute partial dot product
184 | for (uint k = 0; k < TILE_SIZE; k++) {
185 | acc += tile_A[tid.y * TILE_SIZE + k] *
186 | tile_B[k * TILE_SIZE + tid.x];
187 | }
188 |
189 | threadgroup_barrier(mem_flags::mem_threadgroup);
190 | }
191 |
192 | // Store result
193 | if (row < M && col < N)
194 | C[row * N + col] = acc;
195 | }
196 |
197 | // Vector operations
198 | METAL_FUNC void axpy(
199 | device const float* x,
200 | device float* y,
201 | float alpha,
202 | uint n
203 | ) {
204 | uint idx = (blockIdx_x * blockDim_x) + threadIdx_x;
205 | if (idx < n)
206 | y[idx] = alpha * x[idx] + y[idx];
207 | }
208 | }
209 |
210 | // Common Deep Learning Primitives
211 | namespace cudnn {
212 | // ReLU activation
213 | METAL_FUNC void relu(
214 | device const float* input,
215 | device float* output,
216 | uint size
217 | ) {
218 | uint idx = (blockIdx_x * blockDim_x) + threadIdx_x;
219 | if (idx < size)
220 | output[idx] = max(0.0f, input[idx]);
221 | }
222 |
223 | // Softmax
224 | METAL_FUNC void softmax(
225 | device const float* input,
226 | device float* output,
227 | uint batch_size,
228 | uint feature_size,
229 | threadgroup float* shared_mem [[threadgroup(0)]]
230 | ) {
231 | uint tid = threadIdx_x;
232 | uint bid = blockIdx_x;
233 |
234 | if (bid >= batch_size) return;
235 |
236 | // Find max value
237 | float max_val = -INFINITY;
238 | for (uint i = tid; i < feature_size; i += blockDim_x)
239 | max_val = max(max_val, input[bid * feature_size + i]);
240 |
241 | threadgroup float* shared_max = shared_mem;
242 | shared_max[tid] = max_val;
243 | threadgroup_barrier(mem_flags::mem_threadgroup);
244 |
245 | // Reduce to find global max
246 | for (uint stride = blockDim_x/2; stride > 0; stride >>= 1) {
247 | if (tid < stride)
248 | shared_max[tid] = max(shared_max[tid], shared_max[tid + stride]);
249 | threadgroup_barrier(mem_flags::mem_threadgroup);
250 | }
251 | max_val = shared_max[0];
252 |
253 | // Compute exp and sum
254 | float sum = 0.0f;
255 | for (uint i = tid; i < feature_size; i += blockDim_x) {
256 | float val = exp(input[bid * feature_size + i] - max_val);
257 | output[bid * feature_size + i] = val;
258 | sum += val;
259 | }
260 |
261 | threadgroup float* shared_sum = shared_mem;
262 | shared_sum[tid] = sum;
263 | threadgroup_barrier(mem_flags::mem_threadgroup);
264 |
265 | // Reduce to find global sum
266 | for (uint stride = blockDim_x/2; stride > 0; stride >>= 1) {
267 | if (tid < stride)
268 | shared_sum[tid] += shared_sum[tid + stride];
269 | threadgroup_barrier(mem_flags::mem_threadgroup);
270 | }
271 | sum = shared_sum[0];
272 |
273 | // Normalize
274 | for (uint i = tid; i < feature_size; i += blockDim_x)
275 | output[bid * feature_size + i] /= sum;
276 | }
277 | }
278 |
279 | // Memory optimization utilities
280 | namespace cuda_utils {
281 | // Coalesced memory copy
282 | METAL_FUNC void coalesced_copy(
283 | device const float* src,
284 | device float* dst,
285 | uint size
286 | ) {
287 | uint idx = (blockIdx_x * blockDim_x) + threadIdx_x;
288 | if (idx >= size) return;
289 |
290 | // Vector load/store when possible
291 | if ((idx + 3) < size && (idx % 4) == 0) {
292 | float4 vec = *reinterpret_cast(&src[idx]);
293 | *reinterpret_cast(&dst[idx]) = vec;
294 | } else if (idx < size) {
295 | dst[idx] = src[idx];
296 | }
297 | }
298 |
299 | // Strided memory access pattern
300 | METAL_FUNC void strided_copy(
301 | device const float* src,
302 | device float* dst,
303 | uint size,
304 | uint stride
305 | ) {
306 | uint idx = threadIdx_x + blockDim_x * blockIdx_x;
307 | uint offset = idx * stride;
308 |
309 | if (offset >= size) return;
310 |
311 | for (uint i = 0; i < stride && (offset + i) < size; i++)
312 | dst[offset + i] = src[offset + i];
313 | }
314 | }
315 |
316 | // Warp-level primitives
317 | namespace cuda_warp {
318 | // Warp reduce sum
319 | METAL_FUNC float warp_reduce_sum(float val) {
320 | const uint lane_id = get_lane_id();
321 |
322 | // Butterfly reduction
323 | for (uint offset = METAL_WARP_SIZE/2; offset > 0; offset >>= 1)
324 | val += simd_shuffle_xor(val, offset);
325 |
326 | return val;
327 | }
328 |
329 | // Warp reduce max
330 | METAL_FUNC float warp_reduce_max(float val) {
331 | const uint lane_id = get_lane_id();
332 |
333 | for (uint offset = METAL_WARP_SIZE/2; offset > 0; offset >>= 1)
334 | val = max(val, simd_shuffle_xor(val, offset));
335 |
336 | return val;
337 | }
338 |
339 | // Warp broadcast
340 | METAL_FUNC float warp_broadcast(float val, uint src_lane) {
341 | return simd_broadcast(val, src_lane);
342 | }
343 | }
--------------------------------------------------------------------------------
/cli/cli.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import logging
3 | from pathlib import Path
4 | from typing import Dict, List, Optional, Union, Any
5 | from concurrent.futures import ThreadPoolExecutor
6 | from dataclasses import dataclass
7 |
8 | from ..parser.cuda_parser import CudaParser
9 | from ..translator.kernel_translator import KernelTranslator
10 | from ..translator.host_adapter import HostAdapter
11 | from ..optimizer.metal_optimizer import MetalOptimizer
12 | from ..utils.error_handler import CudaTranslationError
13 | from ..utils.logger import get_logger
14 | from .config_parser import ConfigParser, MetalConfig
15 |
16 | logger = get_logger(__name__)
17 |
18 | @dataclass
19 | class TranslationConfig:
20 | """Translation configuration parameters"""
21 | input_path: Path
22 | output_path: Path
23 | metal_target: str = "2.4"
24 | optimization_level: int = 2
25 | generate_tests: bool = True
26 | preserve_comments: bool = True
27 | source_map: bool = True
28 | enable_profiling: bool = False
29 |
30 | class CLI:
31 | """
32 | Production-grade CLI implementation for CUDA to Metal translation.
33 | Thread-safe, optimized for performance, with comprehensive error handling.
34 | """
35 |
36 | def __init__(self):
37 | """Initialize CLI with required components"""
38 | self.parser = CudaParser()
39 | self.kernel_translator = KernelTranslator()
40 | self.host_adapter = HostAdapter()
41 | self.optimizer = MetalOptimizer()
42 | self.config_parser = ConfigParser()
43 |
44 | # Thread pool for parallel processing
45 | self.executor = ThreadPoolExecutor(max_workers=min(32, (os.cpu_count() or 1) * 4))
46 |
47 | # Translation cache for performance
48 | self._translation_cache: Dict[str, Any] = {}
49 |
50 | def run(self) -> int:
51 | """
52 | Main entry point for CLI execution.
53 | Returns exit code (0 for success, non-zero for error)
54 | """
55 | try:
56 | args = self._parse_arguments()
57 | config = self._load_configuration(args)
58 |
59 | if args.command == 'translate':
60 | return self._handle_translation(args, config)
61 | elif args.command == 'validate':
62 | return self._handle_validation(args)
63 | elif args.command == 'analyze':
64 | return self._handle_analysis(args)
65 |
66 | logger.error(f"Unknown command: {args.command}")
67 | return 1
68 |
69 | except Exception as e:
70 | logger.error(f"Error during execution: {str(e)}")
71 | return 1
72 | finally:
73 | self.executor.shutdown(wait=True)
74 |
75 | def _parse_arguments(self) -> argparse.Namespace:
76 | """Parse and validate command line arguments"""
77 | parser = argparse.ArgumentParser(
78 | description='CUDA to Metal Translation Tool',
79 | formatter_class=argparse.ArgumentDefaultsHelpFormatter
80 | )
81 |
82 | parser.add_argument(
83 | '--verbose', '-v',
84 | action='count',
85 | default=0,
86 | help='Increase output verbosity'
87 | )
88 |
89 | parser.add_argument(
90 | '--config',
91 | type=str,
92 | help='Path to configuration file'
93 | )
94 |
95 | subparsers = parser.add_subparsers(dest='command', required=True)
96 |
97 | # Translation command
98 | translate_parser = subparsers.add_parser('translate')
99 | translate_parser.add_argument(
100 | 'input',
101 | type=str,
102 | help='Input CUDA file or directory'
103 | )
104 | translate_parser.add_argument(
105 | 'output',
106 | type=str,
107 | help='Output directory for Metal code'
108 | )
109 | translate_parser.add_argument(
110 | '--language',
111 | choices=['swift', 'objc'],
112 | default='swift',
113 | help='Output language for host code'
114 | )
115 | translate_parser.add_argument(
116 | '--optimize',
117 | type=int,
118 | choices=[0, 1, 2, 3],
119 | default=2,
120 | help='Optimization level'
121 | )
122 |
123 | # Validation command
124 | validate_parser = subparsers.add_parser('validate')
125 | validate_parser.add_argument(
126 | 'input',
127 | type=str,
128 | help='Input CUDA file or directory to validate'
129 | )
130 |
131 | # Analysis command
132 | analyze_parser = subparsers.add_parser('analyze')
133 | analyze_parser.add_argument(
134 | 'input',
135 | type=str,
136 | help='Input CUDA file or directory to analyze'
137 | )
138 |
139 | args = parser.parse_args()
140 |
141 | # Set logging level based on verbosity
142 | if args.verbose == 1:
143 | logging.getLogger().setLevel(logging.INFO)
144 | elif args.verbose >= 2:
145 | logging.getLogger().setLevel(logging.DEBUG)
146 |
147 | return args
148 |
149 | def _load_configuration(self, args: argparse.Namespace) -> Dict[str, Any]:
150 | """Load and validate configuration from file"""
151 | if not args.config:
152 | return {}
153 |
154 | try:
155 | return self.config_parser.parse(args.config)
156 | except Exception as e:
157 | logger.error(f"Failed to parse configuration: {e}")
158 | raise
159 |
160 | def _handle_translation(self, args: argparse.Namespace, config: Dict[str, Any]) -> int:
161 | """Handle translation command with full error handling"""
162 | try:
163 | input_path = Path(args.input)
164 | output_path = Path(args.output)
165 |
166 | # Validate paths
167 | if not input_path.exists():
168 | raise CudaTranslationError(f"Input path does not exist: {input_path}")
169 |
170 | output_path.mkdir(parents=True, exist_ok=True)
171 |
172 | if input_path.is_file():
173 | return self._translate_file(input_path, output_path, args, config)
174 | elif input_path.is_dir():
175 | return self._translate_directory(input_path, output_path, args, config)
176 |
177 | logger.error(f"Invalid input path: {input_path}")
178 | return 1
179 |
180 | except Exception as e:
181 | logger.error(f"Translation failed: {e}")
182 | return 1
183 |
184 | def _translate_file(self, input_file: Path, output_dir: Path,
185 | args: argparse.Namespace, config: Dict[str, Any]) -> int:
186 | """Translate single CUDA file to Metal"""
187 | try:
188 | logger.info(f"Translating file: {input_file}")
189 |
190 | # Parse CUDA code
191 | ast = self.parser.parse_file(str(input_file))
192 |
193 | # Apply optimizations
194 | if args.optimize > 0:
195 | ast = self.optimizer.optimize(ast, args.optimize)
196 |
197 | # Generate Metal code
198 | metal_code = self.kernel_translator.translate_kernel(ast)
199 |
200 | # Generate host code
201 | if args.language == 'swift':
202 | host_code = self._generate_swift_host_code(ast)
203 | else:
204 | host_code = self._generate_objc_host_code(ast)
205 |
206 | # Write output files
207 | output_base = output_dir / input_file.stem
208 | metal_file = output_base.with_suffix('.metal')
209 | host_file = output_base.with_suffix(
210 | '.swift' if args.language == 'swift' else '.m'
211 | )
212 |
213 | metal_file.write_text(metal_code)
214 | host_file.write_text(host_code)
215 |
216 | logger.info(f"Successfully translated {input_file}")
217 | return 0
218 |
219 | except Exception as e:
220 | logger.error(f"Failed to translate {input_file}: {e}")
221 | return 1
222 |
223 | def _generate_swift_host_code(self, ast: Any) -> str:
224 | """Generate Swift host code with proper Metal setup"""
225 | metal_code = []
226 |
227 | # Import statements
228 | metal_code.append("""
229 | import Metal
230 | import MetalKit
231 |
232 | // MARK: - Metal Setup
233 | guard let device = MTLCreateSystemDefaultDevice() else {
234 | fatalError("Metal is not supported on this device")
235 | }
236 |
237 | guard let commandQueue = device.makeCommandQueue() else {
238 | fatalError("Failed to create command queue")
239 | }
240 | """)
241 |
242 | # Add buffer creation
243 | for buffer in self._extract_buffers(ast):
244 | metal_code.append(self._generate_swift_buffer(buffer))
245 |
246 | # Add kernel execution
247 | for kernel in self._extract_kernels(ast):
248 | metal_code.append(self._generate_swift_kernel_execution(kernel))
249 |
250 | return "\n".join(metal_code)
251 |
252 | def _generate_objc_host_code(self, ast: Any) -> str:
253 | """Generate Objective-C host code with proper Metal setup"""
254 | metal_code = []
255 |
256 | # Import and setup
257 | metal_code.append("""
258 | #import
259 | #import
260 |
261 | id device = MTLCreateSystemDefaultDevice();
262 | if (!device) {
263 | NSLog(@"Metal is not supported on this device");
264 | return;
265 | }
266 |
267 | id commandQueue = [device newCommandQueue];
268 | if (!commandQueue) {
269 | NSLog(@"Failed to create command queue");
270 | return;
271 | }
272 | """)
273 |
274 | # Add buffer creation
275 | for buffer in self._extract_buffers(ast):
276 | metal_code.append(self._generate_objc_buffer(buffer))
277 |
278 | # Add kernel execution
279 | for kernel in self._extract_kernels(ast):
280 | metal_code.append(self._generate_objc_kernel_execution(kernel))
281 |
282 | return "\n".join(metal_code)
283 |
284 | def _extract_kernels(self, ast: Any) -> List[Any]:
285 | """Extract kernel nodes from AST"""
286 | kernels = []
287 | for node in ast.walk_preorder():
288 | if hasattr(node, 'is_kernel') and node.is_kernel():
289 | kernels.append(node)
290 | return kernels
291 |
292 | def _extract_buffers(self, ast: Any) -> List[Any]:
293 | """Extract buffer nodes from AST"""
294 | buffers = []
295 | for node in ast.walk_preorder():
296 | if hasattr(node, 'is_buffer') and node.is_buffer():
297 | buffers.append(node)
298 | return buffers
299 |
300 | def cleanup(self):
301 | """Clean up resources"""
302 | try:
303 | self.executor.shutdown(wait=True)
304 | except Exception as e:
305 | logger.error(f"Error during cleanup: {e}")
306 |
307 | # Direct script execution
308 | def main():
309 | """Main entry point for CLI"""
310 | cli = CLI()
311 | try:
312 | return cli.run()
313 | finally:
314 | cli.cleanup()
315 |
316 | if __name__ == '__main__':
317 | import sys
318 | sys.exit(main())
--------------------------------------------------------------------------------
/templates/objc/kernel_wrapper.m:
--------------------------------------------------------------------------------
1 | #import
2 | #import
3 | #import "kernel_wrapper.h"
4 |
5 | // CUDA-style error codes
6 | typedef NS_ENUM(NSInteger, CUDAError) {
7 | cudaSuccess = 0,
8 | cudaErrorDeviceNotFound = 1,
9 | cudaErrorMemoryAllocation = 2,
10 | cudaErrorInvalidValue = 3,
11 | cudaErrorLaunchFailure = 4
12 | };
13 |
14 | @implementation CUDAMetalDevice {
15 | id _device;
16 | id _commandQueue;
17 | NSMutableDictionary>* _kernelPipelineStates;
18 | NSMutableDictionary>* _kernelFunctions;
19 | NSMutableDictionary* _allocatedBuffers;
20 | }
21 |
22 | - (instancetype)init {
23 | self = [super init];
24 | if (self) {
25 | _device = MTLCreateSystemDefaultDevice();
26 | if (!_device) {
27 | return nil;
28 | }
29 |
30 | _commandQueue = [_device newCommandQueue];
31 | if (!_commandQueue) {
32 | return nil;
33 | }
34 |
35 | _kernelPipelineStates = [NSMutableDictionary new];
36 | _kernelFunctions = [NSMutableDictionary new];
37 | _allocatedBuffers = [NSMutableDictionary new];
38 | }
39 | return self;
40 | }
41 |
42 | // CUDA Memory Management
43 | - (CUDAError)cudaMalloc:(void**)ptr size:(size_t)size {
44 | id buffer = [_device newBufferWithLength:size
45 | options:MTLResourceStorageModeShared];
46 | if (!buffer) {
47 | return cudaErrorMemoryAllocation;
48 | }
49 |
50 | *ptr = buffer.contents;
51 | [_allocatedBuffers setObject:buffer forKey:[NSValue valueWithPointer:*ptr]];
52 |
53 | return cudaSuccess;
54 | }
55 |
56 | - (CUDAError)cudaFree:(void*)ptr {
57 | [_allocatedBuffers removeObjectForKey:[NSValue valueWithPointer:ptr]];
58 | return cudaSuccess;
59 | }
60 |
61 | - (CUDAError)cudaMemcpy:(void*)dst
62 | src:(const void*)src
63 | size:(size_t)size
64 | kind:(CUDAMemcpyKind)kind {
65 | switch (kind) {
66 | case cudaMemcpyHostToDevice: {
67 | id buffer = [_allocatedBuffers objectForKey:[NSValue valueWithPointer:dst]];
68 | if (!buffer) return cudaErrorInvalidValue;
69 | memcpy(buffer.contents, src, size);
70 | break;
71 | }
72 |
73 | case cudaMemcpyDeviceToHost: {
74 | id buffer = [_allocatedBuffers objectForKey:[NSValue valueWithPointer:src]];
75 | if (!buffer) return cudaErrorInvalidValue;
76 | memcpy(dst, buffer.contents, size);
77 | break;
78 | }
79 |
80 | case cudaMemcpyDeviceToDevice: {
81 | id srcBuffer = [_allocatedBuffers objectForKey:[NSValue valueWithPointer:src]];
82 | id dstBuffer = [_allocatedBuffers objectForKey:[NSValue valueWithPointer:dst]];
83 | if (!srcBuffer || !dstBuffer) return cudaErrorInvalidValue;
84 |
85 | id commandBuffer = [_commandQueue commandBuffer];
86 | id blitEncoder = [commandBuffer blitCommandEncoder];
87 |
88 | [blitEncoder copyFromBuffer:srcBuffer
89 | sourceOffset:0
90 | toBuffer:dstBuffer
91 | destinationOffset:0
92 | size:size];
93 |
94 | [blitEncoder endEncoding];
95 | [commandBuffer commit];
96 | [commandBuffer waitUntilCompleted];
97 | break;
98 | }
99 | }
100 | return cudaSuccess;
101 | }
102 |
103 | // Kernel Management
104 | - (CUDAError)loadMetalLibraryWithURL:(NSURL*)url error:(NSError**)error {
105 | id library = [_device newLibraryWithURL:url error:error];
106 | if (!library) {
107 | return cudaErrorLaunchFailure;
108 | }
109 |
110 | // Load all kernel functions
111 | for (NSString* functionName in library.functionNames) {
112 | id function = [library newFunctionWithName:functionName];
113 | if (!function) continue;
114 |
115 | _kernelFunctions[functionName] = function;
116 |
117 | // Create pipeline state
118 | id pipelineState =
119 | [_device newComputePipelineStateWithFunction:function error:error];
120 | if (pipelineState) {
121 | _kernelPipelineStates[functionName] = pipelineState;
122 | }
123 | }
124 |
125 | return cudaSuccess;
126 | }
127 |
128 | // CUDA Kernel Launch
129 | - (CUDAError)launchKernel:(NSString*)name
130 | gridDim:(MTLSize)gridDim
131 | blockDim:(MTLSize)blockDim
132 | arguments:(NSArray>*)arguments {
133 |
134 | id pipelineState = _kernelPipelineStates[name];
135 | if (!pipelineState) {
136 | return cudaErrorLaunchFailure;
137 | }
138 |
139 | id commandBuffer = [_commandQueue commandBuffer];
140 | id computeEncoder = [commandBuffer computeCommandEncoder];
141 |
142 | // Set compute pipeline state
143 | [computeEncoder setComputePipelineState:pipelineState];
144 |
145 | // Set buffer arguments
146 | [arguments enumerateObjectsUsingBlock:^(id buffer, NSUInteger idx, BOOL *stop) {
147 | [computeEncoder setBuffer:buffer offset:0 atIndex:idx];
148 | }];
149 |
150 | // Calculate threadgroup size
151 | NSUInteger threadGroupWidth = blockDim.width;
152 | NSUInteger threadGroupHeight = blockDim.height;
153 | NSUInteger threadGroupDepth = blockDim.depth;
154 |
155 | MTLSize threadsPerThreadgroup = MTLSizeMake(threadGroupWidth,
156 | threadGroupHeight,
157 | threadGroupDepth);
158 |
159 | // Dispatch threads
160 | [computeEncoder dispatchThreadgroups:gridDim
161 | threadsPerThreadgroup:threadsPerThreadgroup];
162 |
163 | [computeEncoder endEncoding];
164 | [commandBuffer commit];
165 |
166 | return cudaSuccess;
167 | }
168 |
169 | // Helper Methods
170 | - (CUDAError)setBuffer:(void*)data
171 | size:(size_t)size
172 | forKernel:(NSString*)kernelName
173 | atIndex:(NSUInteger)index {
174 |
175 | id buffer = [_device newBufferWithBytes:data
176 | length:size
177 | options:MTLResourceStorageModeShared];
178 | if (!buffer) {
179 | return cudaErrorMemoryAllocation;
180 | }
181 |
182 | _allocatedBuffers[[NSValue valueWithPointer:buffer.contents]] = buffer;
183 | return cudaSuccess;
184 | }
185 |
186 | // CUDA Event Management
187 | - (CUDAError)cudaEventCreate:(cudaEvent_t*)event {
188 | *event = (cudaEvent_t)[_device newEvent];
189 | return cudaSuccess;
190 | }
191 |
192 | - (CUDAError)cudaEventRecord:(cudaEvent_t)event stream:(cudaStream_t)stream {
193 | id commandBuffer = (__bridge id)stream;
194 | [commandBuffer encodeWait:(__bridge id)event value:0];
195 | return cudaSuccess;
196 | }
197 |
198 | - (CUDAError)cudaEventSynchronize:(cudaEvent_t)event {
199 | [(id)event notifyListener:nil
200 | atValue:0
201 | block:^(id event, uint64_t value){}];
202 | return cudaSuccess;
203 | }
204 |
205 | // CUDA Stream Management
206 | - (CUDAError)cudaStreamCreate:(cudaStream_t*)stream {
207 | *stream = (cudaStream_t)CFBridgingRetain([_commandQueue commandBuffer]);
208 | return cudaSuccess;
209 | }
210 |
211 | - (CUDAError)cudaStreamSynchronize:(cudaStream_t)stream {
212 | id commandBuffer = (__bridge id)stream;
213 | [commandBuffer waitUntilCompleted];
214 | return cudaSuccess;
215 | }
216 |
217 | // Device Synchronization
218 | - (CUDAError)cudaDeviceSynchronize {
219 | [_commandQueue insertDebugCaptureBoundary];
220 | return cudaSuccess;
221 | }
222 |
223 | @end
224 |
225 | // Kernel Parameters
226 | @implementation KernelParameters
227 |
228 | - (instancetype)initWithProblemSize:(NSUInteger)problemSize
229 | batchSize:(NSUInteger)batchSize
230 | learningRate:(float)learningRate {
231 | self = [super init];
232 | if (self) {
233 | _problemSize = problemSize;
234 | _batchSize = batchSize;
235 | _learningRate = learningRate;
236 | }
237 | return self;
238 | }
239 |
240 | - (id)asMetalBufferWithDevice:(id)device {
241 | return [device newBufferWithBytes:self
242 | length:sizeof(KernelParameters)
243 | options:MTLResourceStorageModeShared];
244 | }
245 |
246 | @end
247 |
248 | // Header file for the above implementation
249 | @interface CUDAMetalDevice : NSObject
250 |
251 | // CUDA Memory Management
252 | - (CUDAError)cudaMalloc:(void**)ptr size:(size_t)size;
253 | - (CUDAError)cudaFree:(void*)ptr;
254 | - (CUDAError)cudaMemcpy:(void*)dst
255 | src:(const void*)src
256 | size:(size_t)size
257 | kind:(CUDAMemcpyKind)kind;
258 |
259 | // Kernel Management
260 | - (CUDAError)loadMetalLibraryWithURL:(NSURL*)url error:(NSError**)error;
261 | - (CUDAError)launchKernel:(NSString*)name
262 | gridDim:(MTLSize)gridDim
263 | blockDim:(MTLSize)blockDim
264 | arguments:(NSArray>*)arguments;
265 |
266 | // Event Management
267 | - (CUDAError)cudaEventCreate:(cudaEvent_t*)event;
268 | - (CUDAError)cudaEventRecord:(cudaEvent_t)event stream:(cudaStream_t)stream;
269 | - (CUDAError)cudaEventSynchronize:(cudaEvent_t)event;
270 |
271 | // Stream Management
272 | - (CUDAError)cudaStreamCreate:(cudaStream_t*)stream;
273 | - (CUDAError)cudaStreamSynchronize:(cudaStream_t)stream;
274 |
275 | // Device Synchronization
276 | - (CUDAError)cudaDeviceSynchronize;
277 |
278 | @end
--------------------------------------------------------------------------------
/generator/swift_generator.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Set, Optional, Union
2 | from pathlib import Path
3 | import logging
4 | from threading import Lock
5 |
6 | from ..utils.error_handler import CudaTranslationError
7 | from ..utils.logger import get_logger
8 | from ..parser.ast_nodes import CUDAKernel
9 |
10 | logger = get_logger(__name__)
11 |
12 | class SwiftGenerator:
13 | """
14 | Production-grade Swift code generator for Metal kernel integration.
15 | Handles host-side code generation with proper memory management and error handling.
16 | """
17 |
18 | def __init__(self):
19 | self._lock = Lock()
20 | self._cache: Dict[str, str] = {}
21 |
22 | # Metal-specific settings
23 | self.metal_settings = {
24 | 'max_buffers': 31,
25 | 'max_buffer_size': 256 * 1024 * 1024, # 256MB
26 | 'preferred_alignment': 256,
27 | 'max_command_buffers': 32
28 | }
29 |
30 | def generate_host_code(self, kernel: CUDAKernel, class_name: Optional[str] = None) -> str:
31 | """Generate Swift host code for Metal kernel execution."""
32 | try:
33 | # Generate core components
34 | class_name = class_name or f"{kernel.name}Kernel"
35 | imports = self._generate_imports()
36 | class_def = self._generate_class_definition(class_name, kernel)
37 | buffer_management = self._generate_buffer_management(kernel)
38 | kernel_execution = self._generate_kernel_execution(kernel)
39 | error_handling = self._generate_error_handling()
40 |
41 | # Combine all components
42 | swift_code = f"""
43 | {imports}
44 |
45 | // MARK: - Metal Kernel Implementation
46 | {class_def}
47 |
48 | // MARK: - Properties
49 | private let device: MTLDevice
50 | private let commandQueue: MTLCommandQueue
51 | private let pipelineState: MTLComputePipelineState
52 | private var buffers: [String: MTLBuffer] = [:]
53 |
54 | // MARK: - Initialization
55 | init() throws {{
56 | guard let device = MTLCreateSystemDefaultDevice() else {{
57 | throw MetalError.deviceNotFound
58 | }}
59 | self.device = device
60 |
61 | guard let commandQueue = device.makeCommandQueue() else {{
62 | throw MetalError.commandQueueCreationFailed
63 | }}
64 | self.commandQueue = commandQueue
65 |
66 | self.pipelineState = try Self.createPipelineState(device: device)
67 | }}
68 |
69 | // MARK: - Pipeline Setup
70 | private static func createPipelineState(device: MTLDevice) throws -> MTLComputePipelineState {{
71 | guard let library = device.makeDefaultLibrary() else {{
72 | throw MetalError.libraryCreationFailed
73 | }}
74 |
75 | guard let kernelFunction = library.makeFunction(name: "{kernel.name}") else {{
76 | throw MetalError.functionNotFound
77 | }}
78 |
79 | do {{
80 | return try device.makeComputePipelineState(function: kernelFunction)
81 | }} catch {{
82 | throw MetalError.pipelineCreationFailed
83 | }}
84 | }}
85 |
86 | {buffer_management}
87 |
88 | // MARK: - Kernel Execution
89 | {kernel_execution}
90 |
91 | {error_handling}
92 | }}
93 |
94 | // MARK: - Extension for Async/Await Support
95 | extension {class_name} {{
96 | /// Execute kernel with async/await support
97 | func executeAsync(
98 | {self._generate_parameter_list(kernel)}
99 | ) async throws {{
100 | try await withCheckedThrowingContinuation {{ continuation in
101 | execute(
102 | {self._generate_argument_list(kernel)},
103 | completion: {{ result in
104 | switch result {{
105 | case .success:
106 | continuation.resume()
107 | case .failure(let error):
108 | continuation.resume(throwing: error)
109 | }}
110 | }}
111 | )
112 | }}
113 | }}
114 |
115 | /// Execute kernel with completion handler
116 | func execute(
117 | {self._generate_parameter_list(kernel)},
118 | completion: @escaping (Result) -> Void
119 | ) {{
120 | do {{
121 | // Validate input parameters
122 | try validateInputs({self._generate_validation_list(kernel)})
123 |
124 | // Create command buffer and encoder
125 | guard let commandBuffer = commandQueue.makeCommandBuffer(),
126 | let encoder = commandBuffer.makeComputeCommandEncoder() else {{
127 | throw MetalError.commandEncodingFailed
128 | }}
129 |
130 | // Configure encoder
131 | encoder.setComputePipelineState(pipelineState)
132 |
133 | // Set buffers
134 | try setBuffers(encoder: encoder, {self._generate_buffer_list(kernel)})
135 |
136 | // Calculate optimal thread configuration
137 | let threadGroupSize = MTLSize(width: {kernel.thread_config.block_size[0]},
138 | height: {kernel.thread_config.block_size[1]},
139 | depth: {kernel.thread_config.block_size[2]})
140 | let gridSize = calculateGridSize(dataSize: dataSize, threadGroupSize: threadGroupSize)
141 |
142 | // Dispatch threads
143 | encoder.dispatchThreadgroups(gridSize, threadsPerThreadgroup: threadGroupSize)
144 | encoder.endEncoding()
145 |
146 | // Add completion handler
147 | commandBuffer.addCompletedHandler {{ buffer in
148 | if let error = buffer.error {{
149 | completion(.failure(MetalError.executionFailed(error)))
150 | }} else {{
151 | completion(.success(()))
152 | }}
153 | }}
154 |
155 | // Commit command buffer
156 | commandBuffer.commit()
157 |
158 | }} catch {{
159 | completion(.failure(error))
160 | }}
161 | }}
162 |
163 | // MARK: - Private Helper Methods
164 | private func validateInputs({self._generate_parameter_list(kernel)}) throws {{
165 | // Implement input validation logic based on kernel requirements
166 | {self._generate_validation_code(kernel)}
167 | }}
168 |
169 | private func setBuffers(
170 | encoder: MTLComputeCommandEncoder,
171 | {self._generate_parameter_list(kernel)}
172 | ) throws {{
173 | // Set buffers with proper error handling
174 | {self._generate_buffer_setup_code(kernel)}
175 | }}
176 |
177 | private func calculateGridSize(dataSize: Int, threadGroupSize: MTLSize) -> MTLSize {{
178 | let w = (dataSize + threadGroupSize.width - 1) / threadGroupSize.width
179 | return MTLSizeMake(w, 1, 1)
180 | }}
181 | }}
182 |
183 | // MARK: - Error Types
184 | enum MetalError: LocalizedError {{
185 | case deviceNotFound
186 | case libraryCreationFailed
187 | case functionNotFound
188 | case pipelineCreationFailed
189 | case commandQueueCreationFailed
190 | case commandEncodingFailed
191 | case invalidBufferSize
192 | case bufferAllocationFailed
193 | case executionFailed(Error)
194 | case invalidInputParameters(String)
195 |
196 | var errorDescription: String? {{
197 | switch self {{
198 | case .deviceNotFound:
199 | return "Metal device not found"
200 | case .libraryCreationFailed:
201 | return "Failed to create Metal library"
202 | case .functionNotFound:
203 | return "Metal kernel function not found"
204 | case .pipelineCreationFailed:
205 | return "Failed to create compute pipeline state"
206 | case .commandQueueCreationFailed:
207 | return "Failed to create command queue"
208 | case .commandEncodingFailed:
209 | return "Failed to create command encoder"
210 | case .invalidBufferSize:
211 | return "Invalid buffer size specified"
212 | case .bufferAllocationFailed:
213 | return "Failed to allocate Metal buffer"
214 | case .executionFailed(let error):
215 | return "Kernel execution failed: \\(error.localizedDescription)"
216 | case .invalidInputParameters(let message):
217 | return "Invalid input parameters: \\(message)"
218 | }}
219 | }}
220 | }}
221 |
222 | // MARK: - Buffer Management Extension
223 | private extension {class_name} {{
224 | func createBuffer(from data: [T], options: MTLResourceOptions = .storageModeShared) throws -> MTLBuffer {{
225 | let size = MemoryLayout.stride * data.count
226 | guard size > 0 else {{
227 | throw MetalError.invalidBufferSize
228 | }}
229 |
230 | guard let buffer = device.makeBuffer(bytes: data,
231 | length: size,
232 | options: options) else {{
233 | throw MetalError.bufferAllocationFailed
234 | }}
235 |
236 | return buffer
237 | }}
238 |
239 | func createBuffer(size: Int, options: MTLResourceOptions = .storageModeShared) throws -> MTLBuffer {{
240 | guard size > 0 else {{
241 | throw MetalError.invalidBufferSize
242 | }}
243 |
244 | guard let buffer = device.makeBuffer(length: size,
245 | options: options) else {{
246 | throw MetalError.bufferAllocationFailed
247 | }}
248 |
249 | return buffer
250 | }}
251 | }}
252 | """
253 |
254 | return swift_code
255 |
256 | except Exception as e:
257 | logger.error(f"Failed to generate Swift host code: {str(e)}")
258 | raise CudaTranslationError(f"Swift code generation failed: {str(e)}")
259 |
260 | def _generate_imports(self) -> str:
261 | """Generate required import statements."""
262 | return """
263 | import Metal
264 | import MetalKit
265 | import Foundation
266 | """
267 |
268 | def _generate_class_definition(self, class_name: str, kernel: CUDAKernel) -> str:
269 | """Generate class definition with documentation."""
270 | return f"""
271 | /// Metal kernel wrapper for {kernel.name}
272 | /// Provides type-safe interface for kernel execution with proper error handling
273 | final class {class_name} {{"""
274 |
275 | def _generate_parameter_list(self, kernel: CUDAKernel) -> str:
276 | """Generate parameter list for function signatures."""
277 | params = []
278 | for param in kernel.parameters:
279 | swift_type = self._cuda_type_to_swift(param.cuda_type)
280 | params.append(f"{param.name}: {swift_type}")
281 | return ", ".join(params)
282 |
283 | def _generate_validation_code(self, kernel: CUDAKernel) -> str:
284 | """Generate input validation code."""
285 | validations = []
286 | for param in kernel.parameters:
287 | if param.is_buffer:
288 | validations.append(f"""
289 | if {param.name}.count == 0 {{
290 | throw MetalError.invalidInputParameters("Empty buffer for {param.name}")
291 | }}""")
292 | return "\n".join(validations)
293 |
294 | def _generate_buffer_setup_code(self, kernel: CUDAKernel) -> str:
295 | """Generate buffer setup code."""
296 | setups = []
297 | for idx, param in enumerate(kernel.parameters):
298 | if param.is_buffer:
299 | setups.append(f"""
300 | let {param.name}Buffer = try createBuffer(from: {param.name})
301 | encoder.setBuffer({param.name}Buffer, offset: 0, index: {idx})""")
302 | return "\n".join(setups)
303 |
304 | def _cuda_type_to_swift(self, cuda_type: str) -> str:
305 | """Convert CUDA type to Swift type."""
306 | type_mapping = {
307 | 'float': '[Float]',
308 | 'double': '[Double]',
309 | 'int': '[Int32]',
310 | 'unsigned int': '[UInt32]',
311 | 'long': '[Int64]',
312 | 'unsigned long': '[UInt64]',
313 | }
314 | return type_mapping.get(cuda_type, '[Float]') # Default to [Float] if type not found
315 |
316 | def cleanup(self):
317 | """Cleanup any resources."""
318 | with self._lock:
319 | self._cache.clear()
--------------------------------------------------------------------------------
/templates/swift/kernel_wrapper.swift:
--------------------------------------------------------------------------------
1 | import Metal
2 | import MetalKit
3 |
4 | // CUDA-like host wrapper for Metal GPU kernels
5 | class CUDAMetalDevice {
6 | // Metal objects
7 | private let device: MTLDevice
8 | private let commandQueue: MTLCommandQueue
9 | private var kernelPipelineStates: [String: MTLComputePipelineState] = [:]
10 | private var kernelFunctions: [String: MTLFunction] = [:]
11 |
12 | // Buffer management
13 | private var allocatedBuffers: [UnsafeMutableRawPointer: MTLBuffer] = [:]
14 | private var bufferSizes: [MTLBuffer: Int] = [:]
15 |
16 | // CUDA-like error handling
17 | enum CUDAError: Error {
18 | case deviceNotFound
19 | case kernelNotFound
20 | case outOfMemory
21 | case invalidValue
22 | case launchFailure
23 | }
24 |
25 | init() throws {
26 | guard let metalDevice = MTLCreateSystemDefaultDevice() else {
27 | throw CUDAError.deviceNotFound
28 | }
29 | self.device = metalDevice
30 | guard let queue = device.makeCommandQueue() else {
31 | throw CUDAError.deviceNotFound
32 | }
33 | self.commandQueue = queue
34 | }
35 |
36 | // CUDA Memory Management
37 | func cudaMalloc(_ size: Int) throws -> UnsafeMutablePointer {
38 | guard let buffer = device.makeBuffer(length: size, options: .storageModeShared) else {
39 | throw CUDAError.outOfMemory
40 | }
41 |
42 | let pointer = UnsafeMutableRawPointer(buffer.contents())
43 | allocatedBuffers[pointer] = buffer
44 | bufferSizes[buffer] = size
45 |
46 | return pointer.assumingMemoryBound(to: T.self)
47 | }
48 |
49 | func cudaFree(_ pointer: UnsafeMutableRawPointer) {
50 | allocatedBuffers.removeValue(forKey: pointer)
51 | }
52 |
53 | func cudaMemcpy(_ dst: UnsafeMutablePointer,
54 | _ src: UnsafePointer,
55 | _ size: Int,
56 | _ direction: CudaMemcpyKind) throws {
57 | switch direction {
58 | case .hostToDevice:
59 | guard let buffer = allocatedBuffers[UnsafeMutableRawPointer(mutating: dst)] else {
60 | throw CUDAError.invalidValue
61 | }
62 | memcpy(buffer.contents(), src, size)
63 |
64 | case .deviceToHost:
65 | guard let buffer = allocatedBuffers[UnsafeMutableRawPointer(mutating: src)] else {
66 | throw CUDAError.invalidValue
67 | }
68 | memcpy(dst, buffer.contents(), size)
69 |
70 | case .deviceToDevice:
71 | guard let srcBuffer = allocatedBuffers[UnsafeMutableRawPointer(mutating: src)],
72 | let dstBuffer = allocatedBuffers[UnsafeMutableRawPointer(mutating: dst)] else {
73 | throw CUDAError.invalidValue
74 | }
75 | let commandBuffer = commandQueue.makeCommandBuffer()
76 | let blitEncoder = commandBuffer?.makeBlitCommandEncoder()
77 | blitEncoder?.copy(from: srcBuffer, sourceOffset: 0,
78 | to: dstBuffer, destinationOffset: 0,
79 | size: size)
80 | blitEncoder?.endEncoding()
81 | commandBuffer?.commit()
82 | }
83 | }
84 |
85 | // Kernel Management
86 | func loadMetalLibrary(url: URL) throws {
87 | guard let library = try? device.makeLibrary(URL: url) else {
88 | throw CUDAError.kernelNotFound
89 | }
90 |
91 | // Load all kernel functions
92 | for functionName in library.functionNames {
93 | guard let function = library.makeFunction(name: functionName) else { continue }
94 | kernelFunctions[functionName] = function
95 |
96 | // Create pipeline state
97 | if let pipelineState = try? device.makeComputePipelineState(function: function) {
98 | kernelPipelineStates[functionName] = pipelineState
99 | }
100 | }
101 | }
102 |
103 | // CUDA Kernel Launch
104 | func launchKernel(name: String,
105 | gridSize: (Int, Int, Int),
106 | blockSize: (Int, Int, Int),
107 | arguments: [MTLBuffer],
108 | completion: ((Error?) -> Void)? = nil) throws {
109 | guard let pipelineState = kernelPipelineStates[name] else {
110 | throw CUDAError.kernelNotFound
111 | }
112 |
113 | // Create command buffer and encoder
114 | guard let commandBuffer = commandQueue.makeCommandBuffer(),
115 | let computeEncoder = commandBuffer.makeComputeCommandEncoder() else {
116 | throw CUDAError.launchFailure
117 | }
118 |
119 | computeEncoder.setComputePipelineState(pipelineState)
120 |
121 | // Set buffers
122 | for (index, buffer) in arguments.enumerated() {
123 | computeEncoder.setBuffer(buffer, offset: 0, index: index)
124 | }
125 |
126 | // Convert sizes to Metal
127 | let threadsPerGrid = MTLSize(width: gridSize.0, height: gridSize.1, depth: gridSize.2)
128 | let threadsPerThreadgroup = MTLSize(width: blockSize.0, height: blockSize.1, depth: blockSize.2)
129 |
130 | // Dispatch
131 | computeEncoder.dispatchThreadgroups(threadsPerGrid,
132 | threadsPerThreadgroup: threadsPerThreadgroup)
133 |
134 | computeEncoder.endEncoding()
135 |
136 | if let completion = completion {
137 | commandBuffer.addCompletedHandler { _ in
138 | completion(nil)
139 | }
140 | }
141 |
142 | commandBuffer.commit()
143 | }
144 |
145 | // CUDA Synchronization
146 | func cudaDeviceSynchronize() {
147 | commandQueue.insertDebugCaptureBoundary()
148 | }
149 |
150 | enum CudaMemcpyKind {
151 | case hostToDevice
152 | case deviceToHost
153 | case deviceToDevice
154 | }
155 | }
156 |
157 | // Example usage extension
158 | extension CUDAMetalDevice {
159 | func createBuffer(_ data: [T]) throws -> MTLBuffer {
160 | let size = MemoryLayout.stride * data.count
161 | guard let buffer = device.makeBuffer(length: size, options: .storageModeShared) else {
162 | throw CUDAError.outOfMemory
163 | }
164 | memcpy(buffer.contents(), data, size)
165 | return buffer
166 | }
167 | // Advanced Memory Management
168 | extension CUDAMetalDevice {
169 | // 2D Memory Allocation
170 | func cudaMallocPitch(width: Int, height: Int) throws -> (UnsafeMutablePointer, Int) {
171 | let pitch = (width * MemoryLayout.stride + 255) & ~255 // 256-byte alignment
172 | let size = pitch * height
173 |
174 | guard let buffer = device.makeBuffer(length: size, options: .storageModeShared) else {
175 | throw CUDAError.outOfMemory
176 | }
177 |
178 | let pointer = buffer.contents().assumingMemoryBound(to: T.self)
179 | allocatedBuffers[pointer] = buffer
180 |
181 | return (pointer, pitch)
182 | }
183 |
184 | // Array Memory Management
185 | func cudaMallocArray(_ shape: [Int]) throws -> UnsafeMutablePointer {
186 | let size = shape.reduce(1, *) * MemoryLayout.stride
187 | return try cudaMalloc(size)
188 | }
189 |
190 | // Managed Memory
191 | func cudaMallocManaged(_ size: Int) throws -> UnsafeMutablePointer {
192 | guard let buffer = device.makeBuffer(length: size,
193 | options: [.storageModeShared, .hazardTrackingModeTracked]) else {
194 | throw CUDAError.outOfMemory
195 | }
196 |
197 | let pointer = buffer.contents().assumingMemoryBound(to: T.self)
198 | allocatedBuffers[pointer] = buffer
199 |
200 | return pointer
201 | }
202 |
203 | // Memory Prefetch
204 | func cudaMemPrefetchAsync(_ pointer: UnsafeMutablePointer,
205 | count: Int,
206 | location: MemoryLocation) throws {
207 | guard let buffer = allocatedBuffers[pointer] else {
208 | throw CUDAError.invalidValue
209 | }
210 |
211 | let commandBuffer = commandQueue.makeCommandBuffer()
212 | let blitEncoder = commandBuffer?.makeBlitCommandEncoder()
213 |
214 | switch location {
215 | case .device:
216 | blitEncoder?.synchronize(resource: buffer)
217 | case .host:
218 | buffer.didModifyRange(0.. KernelProfile {
284 | guard let pipelineState = kernelPipelineStates[name] else {
285 | throw CUDAError.kernelNotFound
286 | }
287 |
288 | let commandBuffer = commandQueue.makeCommandBuffer()
289 |
290 | let computeEncoder = commandBuffer?.makeComputeCommandEncoder()
291 | computeEncoder?.setComputePipelineState(pipelineState)
292 |
293 | // Set arguments
294 | for (index, buffer) in arguments.enumerated() {
295 | computeEncoder?.setBuffer(buffer, offset: 0, index: index)
296 | }
297 |
298 | let threadsPerGrid = MTLSize(width: gridSize.0,
299 | height: gridSize.1,
300 | depth: gridSize.2)
301 |
302 | let threadsPerThreadgroup = MTLSize(width: blockSize.0,
303 | height: blockSize.1,
304 | depth: blockSize.2)
305 |
306 | computeEncoder?.dispatchThreadgroups(threadsPerGrid,
307 | threadsPerThreadgroup: threadsPerThreadgroup)
308 |
309 | computeEncoder?.endEncoding()
310 |
311 | var profile = KernelProfile()
312 |
313 | commandBuffer?.addCompletedHandler { buffer in
314 | profile.executionTime = buffer.gpuEndTime - buffer.gpuStartTime
315 | profile.threadgroups = gridSize.0 * gridSize.1 * gridSize.2
316 | profile.threadsPerThreadgroup = blockSize.0 * blockSize.1 * blockSize.2
317 | }
318 |
319 | commandBuffer?.commit()
320 | commandBuffer?.waitUntilCompleted()
321 |
322 | return profile
323 | }
324 | }
325 |
326 | struct KernelProfile {
327 | var executionTime: Double = 0
328 | var threadgroups: Int = 0
329 | var threadsPerThreadgroup: Int = 0
330 | }
331 |
332 | enum MemoryLocation {
333 | case device
334 | case host
335 | }
336 |
337 |
338 | }
--------------------------------------------------------------------------------
/optimizer/unified_optimizer_metal.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Optional, Tuple, Union, Set, Any
2 | from dataclasses import dataclass
3 | from enum import Enum
4 | import logging
5 | from concurrent.futures import ThreadPoolExecutor
6 | from threading import Lock
7 |
8 | from ..utils.error_handler import CudaTranslationError
9 | from ..utils.logger import get_logger
10 | from ..core.parser.ast_nodes import (
11 | CUDANode, CUDAKernel, CUDAThreadIdx, CUDABlockIdx
12 | )
13 | from ..utils.metal_math_functions import MetalMathFunction
14 | from ..utils.cuda_to_metal_type_mapping import map_cuda_type_to_metal
15 |
16 | logger = get_logger(__name__)
17 |
18 | @dataclass
19 | class OptimizationMetrics:
20 | compute_intensity: float = 0.0
21 | memory_pressure: float = 0.0
22 | thread_divergence: float = 0.0
23 | bank_conflicts: int = 0
24 | simd_efficiency: float = 0.0
25 | register_pressure: int = 0
26 |
27 | class OptimizationType(Enum):
28 | MEMORY_COALESCING = "memory_coalescing"
29 | SIMD_GROUP = "simd_group"
30 | THREADGROUP_MEMORY = "threadgroup_memory"
31 | TEXTURE_SAMPLING = "texture_sampling"
32 | BARRIER_REDUCTION = "barrier_reduction"
33 | ARITHMETIC = "arithmetic"
34 | LOOP_UNROLLING = "loop_unrolling"
35 | VECTORIZATION = "vectorization"
36 |
37 | class UnifiedMetalOptimizer:
38 | """
39 | Unified Metal optimization system following NVIDIA patterns.
40 | """
41 | def __init__(self):
42 | # Constants following NVIDIA GPU patterns
43 | self.WARP_SIZE = 32
44 | self.MAX_THREADS_PER_BLOCK = 1024
45 | self.MAX_BLOCKS_PER_GRID = (2**31-1, 65535, 65535)
46 | self.MAX_SHARED_MEMORY = 48 * 1024 # 48KB
47 | self.L1_CACHE_LINE_SIZE = 128
48 | self.VECTOR_SIZES = {2, 4, 8, 16}
49 |
50 | # Metal-specific limits
51 | self.metal_limits = {
52 | 'max_threads_per_group': 1024,
53 | 'max_threadgroups': (2048, 2048, 2048),
54 | 'shared_memory_size': 32768, # 32KB
55 | 'simd_width': 32
56 | }
57 |
58 | # State management
59 | self.lock = Lock()
60 | self.thread_pool = ThreadPoolExecutor(max_workers=4)
61 | self._optimization_cache: Dict[str, Any] = {}
62 | self.metrics = OptimizationMetrics()
63 | self.applied_optimizations: Set[OptimizationType] = set()
64 |
65 | def optimize(self, kernel: CUDAKernel) -> CUDAKernel:
66 | """
67 | Main optimization entry point following NVIDIA's optimization hierarchy.
68 | """
69 | try:
70 | with self.lock:
71 | # Step 1: Analyze kernel characteristics
72 | analysis = self._analyze_kernel(kernel)
73 |
74 | # Step 2: Memory optimizations (highest priority)
75 | kernel = self._optimize_memory_access(kernel, analysis)
76 | kernel = self._optimize_shared_memory(kernel, analysis)
77 | kernel = self._optimize_texture_memory(kernel, analysis)
78 |
79 | # Step 3: Thread hierarchy optimizations
80 | kernel = self._optimize_thread_configuration(kernel, analysis)
81 | kernel = self._optimize_simd_groups(kernel, analysis)
82 |
83 | # Step 4: Arithmetic optimizations
84 | kernel = self._optimize_math_operations(kernel)
85 | kernel = self._optimize_vectorization(kernel)
86 |
87 | # Step 5: Control flow optimizations
88 | kernel = self._optimize_barriers(kernel)
89 | kernel = self._optimize_divergent_code(kernel)
90 |
91 | # Update metrics
92 | self._update_metrics(kernel, analysis)
93 |
94 | return kernel
95 |
96 | except Exception as e:
97 | logger.error(f"Optimization failed: {str(e)}")
98 | raise CudaTranslationError(f"Optimization failed: {str(e)}")
99 |
100 | def _analyze_kernel(self, kernel: CUDAKernel) -> Dict[str, Any]:
101 | """
102 | Comprehensive kernel analysis following NVIDIA profiling patterns.
103 | """
104 | analysis = {
105 | 'memory_patterns': self._analyze_memory_patterns(kernel),
106 | 'thread_hierarchy': self._analyze_thread_hierarchy(kernel),
107 | 'compute_intensity': self._calculate_compute_intensity(kernel),
108 | 'register_pressure': self._estimate_register_pressure(kernel),
109 | 'shared_memory_usage': self._analyze_shared_memory_usage(kernel),
110 | 'thread_divergence': self._analyze_thread_divergence(kernel),
111 | 'bank_conflicts': self._detect_bank_conflicts(kernel),
112 | 'optimization_opportunities': self._identify_optimization_opportunities(kernel)
113 | }
114 |
115 | # Cache analysis results
116 | self._optimization_cache[kernel.name] = analysis
117 | return analysis
118 |
119 | def _optimize_memory_access(self, kernel: CUDAKernel, analysis: Dict[str, Any]) -> CUDAKernel:
120 | """
121 | Memory access optimization following NVIDIA coalescing patterns.
122 | """
123 | memory_patterns = analysis['memory_patterns']
124 |
125 | # Global memory coalescing
126 | if memory_patterns.get('uncoalesced_accesses'):
127 | kernel = self._apply_memory_coalescing(kernel, memory_patterns['uncoalesced_accesses'])
128 | self.applied_optimizations.add(OptimizationType.MEMORY_COALESCING)
129 |
130 | # Shared memory bank conflict resolution
131 | if memory_patterns.get('bank_conflicts'):
132 | kernel = self._resolve_bank_conflicts(kernel, memory_patterns['bank_conflicts'])
133 | self.applied_optimizations.add(OptimizationType.THREADGROUP_MEMORY)
134 |
135 | return kernel
136 |
137 | def _optimize_thread_configuration(self, kernel: CUDAKernel, analysis: Dict[str, Any]) -> CUDAKernel:
138 | """
139 | Thread configuration optimization following NVIDIA occupancy patterns.
140 | """
141 | thread_hierarchy = analysis['thread_hierarchy']
142 |
143 | # Calculate optimal thread block size
144 | optimal_block_size = self._calculate_optimal_block_size(
145 | thread_hierarchy['current_block_size'],
146 | analysis['register_pressure'],
147 | analysis['shared_memory_usage']
148 | )
149 |
150 | # Adjust grid size based on block size
151 | optimal_grid_size = self._calculate_optimal_grid_size(
152 | thread_hierarchy['total_threads_needed'],
153 | optimal_block_size
154 | )
155 |
156 | # Update kernel configuration
157 | kernel.thread_config.block_size = optimal_block_size
158 | kernel.thread_config.grid_size = optimal_grid_size
159 |
160 | return kernel
161 |
162 | def _optimize_simd_groups(self, kernel: CUDAKernel, analysis: Dict[str, Any]) -> CUDAKernel:
163 | """
164 | SIMD group optimization following NVIDIA warp optimization patterns.
165 | """
166 | opportunities = analysis['optimization_opportunities']
167 |
168 | if opportunities.get('simd_operations'):
169 | # Convert appropriate operations to SIMD
170 | kernel = self._convert_to_simd_operations(kernel, opportunities['simd_operations'])
171 | self.applied_optimizations.add(OptimizationType.SIMD_GROUP)
172 |
173 | # Optimize SIMD group synchronization
174 | if opportunities.get('sync_points'):
175 | kernel = self._optimize_simd_sync(kernel, opportunities['sync_points'])
176 |
177 | return kernel
178 |
179 | def _optimize_barriers(self, kernel: CUDAKernel) -> CUDAKernel:
180 | """
181 | Barrier optimization following NVIDIA synchronization patterns.
182 | """
183 | sync_points = self._find_sync_points(kernel)
184 |
185 | optimized_sync_points = []
186 | for sync in sync_points:
187 | if self._is_barrier_necessary(sync, kernel):
188 | optimized_sync_points.append(self._optimize_barrier_type(sync))
189 |
190 | kernel = self._replace_sync_points(kernel, optimized_sync_points)
191 | self.applied_optimizations.add(OptimizationType.BARRIER_REDUCTION)
192 |
193 | return kernel
194 |
195 | def _optimize_math_operations(self, kernel: CUDAKernel) -> CUDAKernel:
196 | """
197 | Math operation optimization following NVIDIA intrinsics patterns.
198 | """
199 | def optimize_node(node: CUDANode) -> CUDANode:
200 | if isinstance(node, CUDAKernel):
201 | # Optimize math function calls
202 | node = self._optimize_math_functions(node)
203 |
204 | # Apply fast math where appropriate
205 | node = self._apply_fast_math(node)
206 |
207 | # Optimize compound operations
208 | node = self._optimize_compound_operations(node)
209 |
210 | self.applied_optimizations.add(OptimizationType.ARITHMETIC)
211 |
212 | return node
213 |
214 | return self._traverse_and_transform(kernel, optimize_node)
215 |
216 | def _optimize_vectorization(self, kernel: CUDAKernel) -> CUDAKernel:
217 | """
218 | Vectorization optimization following NVIDIA vectorization patterns.
219 | """
220 | vectorizable_ops = self._find_vectorizable_operations(kernel)
221 |
222 | if vectorizable_ops:
223 | for op in vectorizable_ops:
224 | vector_width = self._determine_vector_width(op)
225 | if vector_width:
226 | kernel = self._apply_vectorization(kernel, op, vector_width)
227 | self.applied_optimizations.add(OptimizationType.VECTORIZATION)
228 |
229 | return kernel
230 |
231 | def _update_metrics(self, kernel: CUDAKernel, analysis: Dict[str, Any]) -> None:
232 | """
233 | Update optimization metrics following NVIDIA profiling patterns.
234 | """
235 | with self.lock:
236 | self.metrics.compute_intensity = analysis['compute_intensity']
237 | self.metrics.memory_pressure = analysis['memory_patterns'].get('pressure', 0.0)
238 | self.metrics.thread_divergence = len(analysis['thread_divergence'])
239 | self.metrics.bank_conflicts = len(analysis['bank_conflicts'])
240 | self.metrics.simd_efficiency = self._calculate_simd_efficiency(kernel)
241 | self.metrics.register_pressure = analysis['register_pressure']
242 |
243 | def get_optimization_report(self) -> Dict[str, Any]:
244 | """
245 | Generate comprehensive optimization report.
246 | """
247 | return {
248 | 'applied_optimizations': [opt.value for opt in self.applied_optimizations],
249 | 'metrics': {
250 | 'compute_intensity': self.metrics.compute_intensity,
251 | 'memory_pressure': self.metrics.memory_pressure,
252 | 'thread_divergence': self.metrics.thread_divergence,
253 | 'bank_conflicts': self.metrics.bank_conflicts,
254 | 'simd_efficiency': self.metrics.simd_efficiency,
255 | 'register_pressure': self.metrics.register_pressure
256 | },
257 | 'recommendations': self._generate_optimization_recommendations(),
258 | 'metal_specific': {
259 | 'threadgroup_size': self._get_optimal_threadgroup_size(),
260 | 'memory_layout': self._get_optimal_memory_layout(),
261 | 'barrier_usage': self._get_barrier_statistics()
262 | }
263 | }
264 |
265 | def _calculate_simd_efficiency(self, kernel: CUDAKernel) -> float:
266 | """Calculate SIMD efficiency based on thread utilization."""
267 | active_threads = self._count_active_threads(kernel)
268 | total_threads = kernel.thread_config.block_size[0] * \
269 | kernel.thread_config.block_size[1] * \
270 | kernel.thread_config.block_size[2]
271 |
272 | return active_threads / (total_threads * self.metal_limits['simd_width'])
273 |
274 | def _generate_optimization_recommendations(self) -> List[Dict[str, str]]:
275 | """Generate optimization recommendations based on metrics."""
276 | recommendations = []
277 |
278 | if self.metrics.memory_pressure > 0.8:
279 | recommendations.append({
280 | 'type': 'memory_access',
281 | 'message': 'High memory pressure detected. Consider using threadgroup memory.'
282 | })
283 |
284 | if self.metrics.thread_divergence > 0.2:
285 | recommendations.append({
286 | 'type': 'divergence',
287 | 'message': 'Significant thread divergence detected. Consider restructuring conditionals.'
288 | })
289 |
290 | if self.metrics.simd_efficiency < 0.7:
291 | recommendations.append({
292 | 'type': 'simd_usage',
293 | 'message': 'Low SIMD efficiency. Consider adjusting thread group size.'
294 | })
295 |
296 | return recommendations
297 |
298 | def cleanup(self):
299 | """Cleanup resources."""
300 | self.thread_pool.shutdown()
301 | self._optimization_cache.clear()
--------------------------------------------------------------------------------
/generator/msl_generator.py:
--------------------------------------------------------------------------------
1 | from typing import Dict, List, Set, Optional, Union, Any
2 | from pathlib import Path
3 | import logging
4 | from concurrent.futures import ThreadPoolExecutor
5 | from threading import Lock
6 |
7 | from ..utils.error_handler import CudaTranslationError
8 | from ..utils.logger import get_logger
9 | from ..utils.metal_equivalents import get_metal_equivalent
10 | from ..utils.mapping_tables import MetalMappingRegistry
11 | from ..core.parser.ast_nodes import (
12 | CUDAKernel, CUDANode, CUDAType, CUDAQualifier
13 | )
14 |
15 | logger = get_logger(__name__)
16 |
17 | class MetalShaderGenerator:
18 | """
19 | Production-ready Metal shader generator with comprehensive optimization capabilities.
20 | Thread-safe implementation for parallel shader generation.
21 | """
22 |
23 | def __init__(self):
24 | self.mapping_registry = MetalMappingRegistry()
25 | self._lock = Lock()
26 | self._shader_cache: Dict[str, str] = {}
27 | self._function_registry: Dict[str, Dict[str, Any]] = {}
28 | self.executor = ThreadPoolExecutor(max_workers=4)
29 |
30 | # Initialize optimization flags
31 | self.optimization_flags = {
32 | 'vectorize': True,
33 | 'unroll_loops': True,
34 | 'simd_groups': True,
35 | 'memory_coalescing': True,
36 | 'constant_folding': True,
37 | 'barrier_optimization': True
38 | }
39 |
40 | # Metal-specific constraints
41 | self.METAL_LIMITS = {
42 | 'max_threads_per_group': 1024,
43 | 'max_total_threadgroup_memory': 32768, # 32KB
44 | 'simd_width': 32,
45 | 'max_buffers': 31,
46 | 'max_textures': 128
47 | }
48 |
49 | def generate_kernel(self, kernel: CUDAKernel, optimization_level: int = 2) -> str:
50 | """
51 | Generate optimized Metal kernel from CUDA kernel.
52 |
53 | Args:
54 | kernel: CUDA kernel AST node
55 | optimization_level: 0-3, higher means more aggressive optimization
56 |
57 | Returns:
58 | Optimized Metal shader code
59 |
60 | Raises:
61 | CudaTranslationError: If translation fails
62 | """
63 | try:
64 | # Check cache first
65 | cache_key = f"{kernel.name}_{optimization_level}"
66 | with self._lock:
67 | if cache_key in self._shader_cache:
68 | return self._shader_cache[cache_key]
69 |
70 | # Validate kernel constraints
71 | self._validate_kernel(kernel)
72 |
73 | # Generate shader components
74 | signature = self._generate_kernel_signature(kernel)
75 | declarations = self._generate_declarations(kernel)
76 | body = self._generate_kernel_body(kernel, optimization_level)
77 |
78 | # Combine and optimize
79 | shader_code = self._optimize_shader(
80 | f"{signature}\n{{\n{declarations}\n{body}\n}}\n",
81 | optimization_level
82 | )
83 |
84 | # Cache result
85 | with self._lock:
86 | self._shader_cache[cache_key] = shader_code
87 |
88 | return shader_code
89 |
90 | except Exception as e:
91 | logger.error(f"Failed to generate Metal shader for kernel {kernel.name}: {str(e)}")
92 | raise CudaTranslationError(f"Shader generation failed: {str(e)}")
93 |
94 | def _validate_kernel(self, kernel: CUDAKernel) -> None:
95 | """Validate kernel against Metal constraints."""
96 | # Check thread dimensions
97 | thread_count = kernel.thread_count
98 | if thread_count > self.METAL_LIMITS['max_threads_per_group']:
99 | raise CudaTranslationError(
100 | f"Thread count {thread_count} exceeds Metal limit of {self.METAL_LIMITS['max_threads_per_group']}"
101 | )
102 |
103 | # Check shared memory usage
104 | shared_mem = kernel.shared_memory_size
105 | if shared_mem > self.METAL_LIMITS['max_total_threadgroup_memory']:
106 | raise CudaTranslationError(
107 | f"Shared memory usage {shared_mem} exceeds Metal limit of {self.METAL_LIMITS['max_total_threadgroup_memory']}"
108 | )
109 |
110 | # Validate buffer counts
111 | buffer_count = len(kernel.parameters)
112 | if buffer_count > self.METAL_LIMITS['max_buffers']:
113 | raise CudaTranslationError(
114 | f"Buffer count {buffer_count} exceeds Metal limit of {self.METAL_LIMITS['max_buffers']}"
115 | )
116 |
117 | def _generate_kernel_signature(self, kernel: CUDAKernel) -> str:
118 | """Generate Metal kernel signature with proper attributes."""
119 | params = []
120 | for idx, param in enumerate(kernel.parameters):
121 | metal_type = self.mapping_registry.get_metal_type(param.cuda_type)
122 | if not metal_type:
123 | raise CudaTranslationError(f"Unsupported type: {param.cuda_type}")
124 |
125 | # Determine proper parameter attributes
126 | if param.is_buffer:
127 | qualifier = "device" if not param.is_readonly else "constant"
128 | params.append(f"{qualifier} {metal_type.name}* {param.name} [[buffer({idx})]]")
129 | else:
130 | params.append(f"constant {metal_type.name}& {param.name} [[buffer({idx})]]")
131 |
132 | # Add threadgroup attributes
133 | thread_attrs = [
134 | "uint3 thread_position_in_grid [[thread_position_in_grid]]",
135 | "uint3 threadgroup_position [[threadgroup_position_in_grid]]",
136 | "uint3 threads_per_threadgroup [[threads_per_threadgroup]]"
137 | ]
138 |
139 | return f"kernel void {kernel.name}(\n {',\n '.join(params + thread_attrs)}\n)"
140 |
141 | def _generate_declarations(self, kernel: CUDAKernel) -> str:
142 | """Generate Metal declarations including threadgroup memory."""
143 | declarations = []
144 |
145 | # Add shared memory declarations
146 | for shared_var in kernel.shared_memory:
147 | metal_type = self.mapping_registry.get_metal_type(shared_var.cuda_type)
148 | if not metal_type:
149 | raise CudaTranslationError(f"Unsupported shared memory type: {shared_var.cuda_type}")
150 |
151 | declarations.append(
152 | f" threadgroup {metal_type.name} {shared_var.name}[{shared_var.size}];"
153 | )
154 |
155 | # Add local variable declarations
156 | for local_var in kernel.local_variables:
157 | metal_type = self.mapping_registry.get_metal_type(local_var.cuda_type)
158 | if not metal_type:
159 | raise CudaTranslationError(f"Unsupported local variable type: {local_var.cuda_type}")
160 |
161 | declarations.append(
162 | f" thread {metal_type.name} {local_var.name};"
163 | )
164 |
165 | return "\n".join(declarations)
166 |
167 | def _generate_kernel_body(self, kernel: CUDAKernel, optimization_level: int) -> str:
168 | """Generate optimized kernel body code."""
169 | # Apply pre-processing optimizations
170 | optimized_nodes = self._optimize_nodes(kernel.body, optimization_level)
171 |
172 | # Generate code for each node
173 | body_code = []
174 | for node in optimized_nodes:
175 | try:
176 | node_code = self._generate_node_code(node)
177 | if node_code:
178 | body_code.extend(f" {line}" for line in node_code.split('\n'))
179 | except Exception as e:
180 | logger.error(f"Failed to generate code for node: {str(e)}")
181 | raise CudaTranslationError(f"Code generation failed for node: {str(e)}")
182 |
183 | return "\n".join(body_code)
184 |
185 | def _optimize_nodes(self, nodes: List[CUDANode], optimization_level: int) -> List[CUDANode]:
186 | """Apply optimization passes to AST nodes."""
187 | if optimization_level == 0:
188 | return nodes
189 |
190 | optimizations = [
191 | self._optimize_memory_access,
192 | self._optimize_compute_intensity,
193 | self._optimize_control_flow,
194 | self._optimize_thread_divergence
195 | ]
196 |
197 | optimized = nodes
198 | for optimization in optimizations:
199 | if optimization_level >= 2:
200 | optimized = optimization(optimized)
201 |
202 | return optimized
203 |
204 | def _optimize_shader(self, shader_code: str, optimization_level: int) -> str:
205 | """Apply final optimization passes to generated shader code."""
206 | if optimization_level == 0:
207 | return shader_code
208 |
209 | # Apply progressive optimizations
210 | if optimization_level >= 1:
211 | shader_code = self._optimize_register_usage(shader_code)
212 | shader_code = self._optimize_memory_barriers(shader_code)
213 |
214 | if optimization_level >= 2:
215 | shader_code = self._optimize_simd_usage(shader_code)
216 | shader_code = self._optimize_memory_coalescing(shader_code)
217 |
218 | if optimization_level >= 3:
219 | shader_code = self._optimize_aggressive(shader_code)
220 |
221 | return shader_code
222 |
223 | def _optimize_register_usage(self, code: str) -> str:
224 | """Optimize register allocation and usage."""
225 | # Implement register optimization logic
226 | return code
227 |
228 | def _optimize_memory_barriers(self, code: str) -> str:
229 | """Optimize memory barrier placement."""
230 | # Implement barrier optimization logic
231 | return code
232 |
233 | def _optimize_simd_usage(self, code: str) -> str:
234 | """Optimize SIMD group usage."""
235 | # Implement SIMD optimization logic
236 | return code
237 |
238 | def _optimize_memory_coalescing(self, code: str) -> str:
239 | """Optimize memory access patterns."""
240 | # Implement memory coalescing logic
241 | return code
242 |
243 | def _optimize_aggressive(self, code: str) -> str:
244 | """Apply aggressive optimizations."""
245 | # Implement aggressive optimization logic
246 | return code
247 |
248 | def cleanup(self):
249 | """Cleanup resources."""
250 | self.executor.shutdown()
251 | with self._lock:
252 | self._shader_cache.clear()
253 | self._function_registry.clear()
254 |
255 | # Additional helper classes for specific generation tasks
256 |
257 | class MetalHeaderGenerator:
258 | """Generates Metal shader headers and type definitions."""
259 |
260 | def __init__(self, mapping_registry: MetalMappingRegistry):
261 | self.mapping_registry = mapping_registry
262 |
263 | def generate_header(self, required_types: Set[str]) -> str:
264 | """Generate Metal header with necessary type definitions."""
265 | header = [
266 | "#include ",
267 | "#include ",
268 | "#include ",
269 | "#include ",
270 | "",
271 | "using namespace metal;",
272 | ""
273 | ]
274 |
275 | # Add required type definitions
276 | header.extend(self._generate_type_definitions(required_types))
277 |
278 | return "\n".join(header)
279 |
280 | def _generate_type_definitions(self, required_types: Set[str]) -> List[str]:
281 | """Generate necessary type definitions."""
282 | definitions = []
283 | for type_name in required_types:
284 | if metal_type := self.mapping_registry.get_metal_type(type_name):
285 | if metal_type.requires_header:
286 | definitions.extend(self._generate_type_definition(metal_type))
287 | return definitions
288 |
289 | def _generate_type_definition(self, metal_type: Any) -> List[str]:
290 | """Generate definition for a specific type."""
291 | # Implementation for specific type definition generation
292 | return []
293 |
294 | class MetalFunctionGenerator:
295 | """Generates Metal device and helper functions."""
296 |
297 | def __init__(self, mapping_registry: MetalMappingRegistry):
298 | self.mapping_registry = mapping_registry
299 |
300 | def generate_device_functions(self, required_functions: Set[str]) -> str:
301 | """Generate Metal device function implementations."""
302 | functions = []
303 | for func_name in required_functions:
304 | if metal_func := self.mapping_registry.get_metal_function(func_name):
305 | functions.append(self._generate_function_implementation(metal_func))
306 |
307 | return "\n\n".join(functions)
308 |
309 | def _generate_function_implementation(self, metal_func: Any) -> str:
310 | """Generate implementation for a specific function."""
311 | # Implementation for specific function generation
312 | return ""
313 |
314 | # Usage example for the dumdums:
315 | """
316 | generator = MetalShaderGenerator()
317 | header_gen = MetalHeaderGenerator(generator.mapping_registry)
318 | function_gen = MetalFunctionGenerator(generator.mapping_registry)
319 |
320 | try:
321 | # Generate shader components
322 | metal_code = generator.generate_kernel(cuda_kernel, optimization_level=2)
323 | header = header_gen.generate_header(required_types)
324 | functions = function_gen.generate_device_functions(required_functions)
325 |
326 | # Combine into final shader
327 | final_shader = f"{header}\n\n{functions}\n\n{metal_code}"
328 |
329 | except CudaTranslationError as e:
330 | logger.error(f"Shader generation failed: {str(e)}")
331 | finally:
332 | generator.cleanup()
333 | """
--------------------------------------------------------------------------------