├── README.md
└── editorial-data
├── editorial-stats.png
├── plot-publication-stats.ipynb
└── publication-stats.xlsx
/README.md:
--------------------------------------------------------------------------------
1 | # ML Papers Checklist
2 |
3 | At npj Computational Materials we are striving to set the highest standards for all research published in the journal. To help with this goal we have a checklist of factors that can help you to review the paper. We understand that there are certain cases where some checklist items may be impossible or inappropriate, but where reviewers request a checklist item and authors do not comply or provide what we consider a reasonable excuse, this may be taken into account in the final editorial decision.
4 |
5 | We believe that the points regarding dataset and model descriptions should be fulfilled by all papers using ML. The points relating to reproducibility are strong suggestions meaning that we believe that they should be followed, unless there are valid reasons for not doing so (e.g. sensitive data). Much of this checklist has been adapted from
6 |
7 | * [Best practices in machine learning for chemistry](https://static-content.springer.com/esm/art%3A10.1038%2Fs41557-021-00716-z/MediaObjects/41557_2021_716_MOESM1_ESM.pdf)
8 | * [The JARVIS-Leaderboard reproducibility guide](https://pages.nist.gov/jarvis_leaderboard/guide/guide_short/)
9 | * [The machine learning reproducibility checklist](https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf)
10 | * [The REFORMS checklist](https://reforms.cs.princeton.edu/appendices.pdf)
11 |
12 | ## Dataset descriptions
13 | ### Required:
14 | * Source(s) of data, separately for the training and evaluation datasets (if applicable), along with the time when the dataset(s) are collected
15 | * Number of samples in the dataset
16 | * The details of train / validation / test splits
17 | * An explanation of any data that were excluded, and all pre-processing steps
18 | * An evaluation of the amount of removed source data is reported
19 | * Instances of combining data from multiple sources clearly identified, and potential issues mitigated
20 | * Methods for representing data as features or descriptors clearly articulated, ideally with software implementations
21 | ## Model descriptions
22 | ### Required:
23 | * Detailed descriptions of all models trained, including:
24 | * All features used in the model (including any feature selection)
25 | * Types of models implemented (e.g., Random Forests, Neural Networks)
26 | * Loss function used
27 | * Justification for the choice of model types implemented
28 | * For the model(s) reported in the paper, specify details about the hyperparameter tuning:
29 | * Method to select the best hyper-parameter configuration
30 | * Specification of all hyper-parameters used to generate results reported in the paper
31 | * Justification that any model comparisons are against appropriate baselines.
32 | * Discussion of any possible paths for data leakage and possible impact on assessment (e.g., hyperparameter optimization using whole database before train/test split).
33 | ## Reproducibility and Usability
34 | ### Strongly suggest:
35 | * Open dataset used for training and evaluating the model along with link or DOI to uniquely identify the dataset (such as FigShare, Zenodo etc.)
36 | * Open code used to train and evaluate the model and produce the results reported in the paper along with link or DOI/hash-id to uniquely identify the version of the code used
37 | * Where relevant benchmarks and benchmarking frameworks are available, a report of the performance of the model on the benchmark data (such as JARVIS-Leaderboard, MatBench, OpenCatalyst).
38 | * Description of the computing infrastructure used
39 | * Hardware infrastructure: CPU, GPU, RAM, disk space etc.
40 | * Operating system
41 | * Software environment: Programming language and version, documentation of all packages used along with versions and dependencies (e.g., through a requirements.txt/environment.yaml/nix/docker file)
42 | * An estimate of the time taken to generate the results
43 | * Saved experimental data traces for automated experiments, e.g. sequence of data files and model states with the absolute or relative timestamps
44 | * Artifacts (e.g. predicted properties, generated structures etc) produced by the model and used as results in the manuscript made available
45 | * Any provided data should be in a recognised and usable format
46 | * Discussion of model domain of applicability, if practical
47 |
48 | ### Nice to have:
49 | * A cloud-based implementation of the code (e.g. JARVIS-Leaderboard, Colab, Huggingface, Garden, etc)
50 | * As much uncertainty quantification of the model as practical
51 |
52 |
--------------------------------------------------------------------------------
/editorial-data/editorial-stats.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ML-Materials-Standards/ml-materials-checklist/b0d52be53e9f9319478262952768444d28b1bb07/editorial-data/editorial-stats.png
--------------------------------------------------------------------------------
/editorial-data/plot-publication-stats.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 7,
6 | "id": "49df915a-f7f1-45be-912b-9780d84fee49",
7 | "metadata": {
8 | "tags": []
9 | },
10 | "outputs": [],
11 | "source": [
12 | "import matplotlib.pyplot as plt\n",
13 | "import pandas as pd\n",
14 | "import numpy as np\n",
15 | "\n",
16 | "#plt.style.use('mdi-style')\n",
17 | "cols = plt.rcParams['axes.prop_cycle'].by_key()['color']"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 2,
23 | "id": "648676e1-a4b6-4933-b0ff-4dcea8fc0ad5",
24 | "metadata": {
25 | "tags": []
26 | },
27 | "outputs": [],
28 | "source": [
29 | "data = pd.read_excel('publication-stats.xlsx')"
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "id": "14af74b0-3f42-450c-b788-df1d58020763",
35 | "metadata": {},
36 | "source": [
37 | "# Data generation\n",
38 | "\n",
39 | "These data were generated from Web of Science with the following search terms:\n",
40 | "\n",
41 | "- ML + Mat Sci: `Machine Learning Materials Science`\n",
42 | "- Mat Sci: `Materials Science`\n",
43 | "- ML: `Machine Learning`"
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": 3,
49 | "id": "dcc7a9dd-d8ef-48f2-bd09-e2a476ee4fcd",
50 | "metadata": {
51 | "tags": []
52 | },
53 | "outputs": [
54 | {
55 | "data": {
56 | "text/html": [
57 | "
\n",
58 | "\n",
71 | "
\n",
72 | " \n",
73 | " \n",
74 | " \n",
75 | " Year \n",
76 | " ML + Mat Sci \n",
77 | " Mat Sci \n",
78 | " ML \n",
79 | " \n",
80 | " \n",
81 | " \n",
82 | " \n",
83 | " 0 \n",
84 | " 2023 \n",
85 | " 4827 \n",
86 | " 262655 \n",
87 | " 83264 \n",
88 | " \n",
89 | " \n",
90 | " 1 \n",
91 | " 2022 \n",
92 | " 4268 \n",
93 | " 268723 \n",
94 | " 83295 \n",
95 | " \n",
96 | " \n",
97 | " 2 \n",
98 | " 2021 \n",
99 | " 3038 \n",
100 | " 251571 \n",
101 | " 70014 \n",
102 | " \n",
103 | " \n",
104 | " 3 \n",
105 | " 2020 \n",
106 | " 1992 \n",
107 | " 235922 \n",
108 | " 53087 \n",
109 | " \n",
110 | " \n",
111 | " 4 \n",
112 | " 2019 \n",
113 | " 1252 \n",
114 | " 222686 \n",
115 | " 44830 \n",
116 | " \n",
117 | " \n",
118 | "
\n",
119 | "
"
120 | ],
121 | "text/plain": [
122 | " Year ML + Mat Sci Mat Sci ML\n",
123 | "0 2023 4827 262655 83264\n",
124 | "1 2022 4268 268723 83295\n",
125 | "2 2021 3038 251571 70014\n",
126 | "3 2020 1992 235922 53087\n",
127 | "4 2019 1252 222686 44830"
128 | ]
129 | },
130 | "execution_count": 3,
131 | "metadata": {},
132 | "output_type": "execute_result"
133 | }
134 | ],
135 | "source": [
136 | "data.head()"
137 | ]
138 | },
139 | {
140 | "cell_type": "code",
141 | "execution_count": 4,
142 | "id": "8f209592-82f5-4d9f-9a47-cf776aae387c",
143 | "metadata": {
144 | "tags": []
145 | },
146 | "outputs": [],
147 | "source": [
148 | "years = data.Year.values\n",
149 | "ml_mat_sci = data['ML + Mat Sci'].values\n",
150 | "mat_sci = data['Mat Sci'].values\n",
151 | "ml = data['ML'].values"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": 5,
157 | "id": "b7b35f57-e231-4546-ba84-ccf67716ae63",
158 | "metadata": {
159 | "tags": []
160 | },
161 | "outputs": [],
162 | "source": [
163 | "ml_percent_mat_sci = ml / mat_sci\n",
164 | "norm_by_mat_sci = ml_mat_sci / mat_sci * 100\n",
165 | "norm_by_ml = ml_mat_sci / ml * 100"
166 | ]
167 | },
168 | {
169 | "cell_type": "code",
170 | "execution_count": 8,
171 | "id": "a5aa7e0d-9cb9-49f8-963f-bd611777ad93",
172 | "metadata": {
173 | "tags": []
174 | },
175 | "outputs": [
176 | {
177 | "data": {
178 | "image/png": "iVBORw0KGgoAAAANSUhEUgAABGwAAAMSCAYAAAA/f1JjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3iUVdrH8e+QhIQAKRBC6L0KhBKkSiKolAWkW0JRkaYI2HdRX9BddVFxkVWXXhNAwACCVIFQJJTQQujSWxJaOiFt3j/GTBgzlJCEScLvc125JOcp534GeZ6Ze865j8FoNBoREREREREREZF8o4itAxAREREREREREUtK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DNK2IiIiIiIiIiI5DP2tg6goDMajRiNRluHISJ5xGAwYDAYbB2G5JDu1SKS2/R8EBGRvKaEzUNIT08nJiaGmzdvcvv2bVuHIyJ5zNHREXd3d1xdXSlSRAMTCwrdq0Ukr+n5ICIieclg1FeO2WI0Grly5QoxMTG2DkVEHjE3Nze8vLz0jWoBoHu1iDxKej6IiEheKHQjbG7evMncuXPZunUrkZGRODo6Uq5cOZ588klGjx6d4/PHxcWZPwB4enri4uKCnZ1djs8rIvlTWloasbGxREVFER0dTfHixXFxcbF1WHIfuleLSF7T80FERPJaoRphc/ToUUaOHElMTAzVq1enRo0aJCQkcObMGaKioti1a1eO+7h48SJxcXGUKlWKsmXL5kLUIlIQREZGcuPGDVxcXKhQoYKtw5H70L1aRB4VPR9ERCSvFJoRNjdv3uStt97i9u3bTJw4EV9fX4vt4eHhudJPYmIiACVLlsyV84lIwVCyZElu3LhBQkKCrUORB6B7tYg8Kno+iIhIXik01dGmTp1KdHQ0o0ePzpKsAWjQoEGO+zAajaSlpQGmInMi8vjI+Deflpam1YbyOd2rReRR0vNBRETySqFI2CQlJbFmzRqKFStGt27d8qyfOx/CKion8ni589+83pDnb7pXi8ijpOeDiIjklUIxJero0aMkJCTQuHFjnJyc+P3339m1axfJyclUrlyZZ599ljJlytg6TBERERERERGRB1IoEjanT58GwN3dnXfffZctW7ZYbP/hhx/45JNP6NSp0wOd7/XXXyc2NjZL+6JFi3IerIiIiIiIiIjIfRSKhE1cXBwAW7duxc7Ojg8//JBnnnmGpKQkFi9ezPz58xk/fjzVqlWjTp06eRqL0Wg0F7ssCJydnTVlQERERERERCSfKRQJm/T0dMBU7O2NN96gb9++5m2jR4/mypUr/Pbbb8yfP59//etf9z3fjBkz7tnPvSQmJlKiRIkHjNz24uPjKV68uK3DEBEREREREZE7FIqiw87OzuY/d+/ePcv2jELE+/bte2QxPW5CQ0Pp378/rVq14vnnn2fJkiV33XfOnDm0aNGCP/744xFGWLhNnToVHx8fVq5caetQRCQf8vHxydZPXhbwz07M+SGOgm7lypX4+PgwdepUW4ciIiIi2VQoRth4eXkB4OTkhLu7e5bt5cuXB+DGjRuPNK6+6/tjXyz/vcSpt1JZ8lxArp3v0qVLjBo1CgcHB9q0acPRo0eZMGECLi4udOzY0WLfyMhIZs6cSb9+/ahZs2auxfAoDR06lH379vHLL7+Y/98SEcnPunbtmqXtwIEDXLx4kdq1a1O7dm2LbW5ubtk6v4+PD+XKlXvsk8bjx49n1apVTJkyBR8fH1uHIyIiIgVc/ssmPIS6desCcPv2bZKTkylatKjF9piYGMByJM6jYF/MHodiDo+0T1sICAggOTmZqVOn0rBhQ2JiYujbty8zZ87MkrCZNGkSzs7ODBs2zEbRFk4vvPACHTt2xMPDw9ahiDx2jEYjwcHBBAYGEhUVhaenJ/7+/vj5+eWbGmHjx4+32nbx4kV8fX11Ty7Enn76aRo2bJjtJJyIiIjYXqFI2Hh5eVG7dm1OnDjBvn37aNmypcX2jKlQeV1w+HF1/PhxqlSpQsOGDQFwdXXF19eXFStWkJKSgoODKWkVGhrKhg0bGD9+fIGq81MQuLm56c24iA3cvHmTXr16ERwcbNE+c+ZM/Pz8CAoKsjryU+RRKVGihJ65IiIiBVShSNgADBw4kI8//phJkybx/fffm0caHD9+nMDAQAB69+5tyxALrbi4OFxcXCzaXFxcSE9PJz4+Hnd3d1JTU/nqq6/w9vbmb3/720P3ded0pPDwcAICAjh16hQuLi506tSJN954AwcHBy5evMiPP/7Inj17SExMpEGDBrz33nvUqlUrS+y//vor27dv5+zZs1y/fh1nZ2fq16+Pv7+/RfLv8uXLFjWS/lovKTQ09L7xX7lyhTlz5rBnzx4iIyNxdHTEw8MDb29v/P39qVq1qsX+ERERzJ8/n5CQEPP+FSpU4KmnnuLll182vwmfOnUq06dPZ9y4cQ9U8yHjWpo2bcq3337LlClT2Lx5Mzdv3qR8+fL07NmTl156iSJFLMtcHT9+nLVr17Jnzx4iIiJISEjA09OTVq1aMXjwYMqUKZMr/QAkJSWxcOFCNmzYwIULFwCoUaMGffr0sTq9I2NKRlBQEHPmzGHt2rVcvnyZ1q1bM3HiRAC2b9/OggULOHPmDNHR0bi6ulKhQgVatGjB0KFD7/u6idzJaDSakzXF7O0Z2OAJmnmVZW9EJPPCDxMcHEyvXr3YtGlTvhlp86Cio6OZO3cuwcHBREZG4uTkxBNPPJHlvrhy5Uo+/fRTwHR/u3MaUNOmTZk2bRqQ/XvHw7hzOlJaWhozZszg+PHjODo64uvry5gxYyhRogQ3btzgf//7H9u3bycmJoaaNWsyatSoLFOYbt++zZo1a9i6dSunTp3i2rVrODg4UKtWLfr06ZNlBOmdxw8fPtxi24NMob158yYBAQFs3bqViIgIihQpQunSpWnQoAH9+vWjQYMGFvtHR0cTGBjI1q1buXTpEnZ2dnh5edG6dWv8/f3N74My/o6GDBnywCOp7ryfzpo1i9WrV3P16lXKlClD586defXVV3F0dLQ45sKFC6xevZqdO3dy+fJlYmJiKFWqFD4+PgwePJgqVarkSj8AqampLF++nF9//ZXTp0+TmppKlSpV6Nq1K/369cPe3vLtbbdu3bhy5Qp79uzhp59+YsWKFZw/f54qVaqwYMECAA4ePMi8efM4fvw4169fx8XFhbJly9K8eXMGDx78yEdpi4iIQCFK2HTq1ImdO3eyatUq+vbtS6NGjbh9+zZhYWEkJyfTs2dPnnnmGVuHWSh5eXlx/Phx0tLSsLOzA+DcuXM4Ojqav1letGgR586dY968ebnywWXhwoUsXryYZs2a0bp1a/bv38/8+fO5ceMGgwcP5rXXXsPNzQ0fHx/OnDnD3r17GT58OIsXL6Z06dLm8xw6dIhvvvmG8uXLm0cJRUZGsnPnTnbu3MnHH3/M888/D5im1HXt2pWQkBCuX79O+/bts/UGLiIigv79+xMTE0PlypVp06YN6enpXLlyheXLl9OoUSOLhM3+/ft55513iIuLo3z58jz11FPcvn2bs2fPMm3aNHx9fXM8aiwlJYURI0Zw8eJFfHx8SE1NZffu3fznP//h5MmTWaZRzJkzh02bNlGrVi0aN24MwIkTJ1i6dCnBwcHMnz/f6gev7PZz48YN3nzzTU6ePEnp0qVp2rQpRqORsLAwxo8fz5EjR/jggw+y9JOens67777L/v37adq0KbVq1cLV1RWAxYsX89VXX2FnZ4e3tzdNmzYlOjra/HoqYfMYMRohKSnHpwnessWcrAkZ4I93WU8AhgAjmjSm1fxAgoOD2bJ+PX7t2uW4P5yc4BEkfqKiohgyZAiXLl3Cy8sLX19foqOj2b17NyEhIbz99tv4+/sDUKlSJbp27cqqVasoVqwYHTp0MJ/nzvvZw947HkZwcDBLliyhYcOGtGrVivDwcJYvX8758+f56quvePXVV0lPT6dx48ZcuXKF8PBwRo0axbx58yxqq125coV//etflClThipVqlC/fn2uX79OWFgY+/fv5+zZsxYJkK5du5rrArVq1criWXO/Z0VCQgKvvPIKly5domzZsrRo0QI7OzsiIiJYv349FSpUsEjYnDlzhpEjRxIZGUnp0qVp1aoVYHr2zp8/H29vb/z8/HL0OhqNRj744AN2797Nk08+Se3atdmzZw8zZswgLCyM//73v+ZnPsDy5cuZN28eNWrUoH79+jg4OHDmzBlWr17Nli1bmDFjRpYvTR6mn6SkJMaMGUNoaCiurq40aNCAokWLcvjwYb799ltCQ0P55ptvrH4R8MUXX7By5UqaNm1K1apVSU1NBWDr1q289957GI1GnnjiCRo1akR8fDznz59n7ty59O7dWwkbERGxiUKTsAEYN24c3t7eBAUFsXfvXgwGA3Xr1qVXr15Wv5GX3NGmTRtCQkKYMWMG/v7+hIaGsm3bNnx9fQG4du0a06dPp1evXrk2LW3FihXMnj2b+vXrm/vw9/dn9erVHDlyhB49evDmm29iMBgwGo2MGzeO1atXs3TpUos32FWqVGH27Nnm6VwZjh07xogRI/j222959tlncXZ2xs3NjfHjxzN06FCuX7/OmDFjslV0eMWKFcTExNCvX78syYaIiAjzG0cw1V364IMPiIuLY/To0fj7+1u8+QwLC8uVDzeHDh2iVq1aLFu2zDyl6uLFiwwZMoRVq1bh5+dn8aa/d+/evPfeexYfRNLT05k5cyZTp07lxx9/ZNy4cTnu59NPP+XkyZO89NJLvPXWW+a6VNevX+ftt99m8eLFtG3bltatW1v0ExkZSdGiRfn555/x9PS02JaRLLzz/xswfVjYu3fvw7x8UlAlJcFnWf8/za7A1WsBGNjgCXOyJoN3WU8GNKjPtANhBHzwPn5dOuW4P/7vUyhWLOfnuY8vv/ySS5cu0alTJ8aNG2ee1nrgwAFGjhzJ5MmT8fHxoU6dOjRu3JjGjRuzatUq8z3Smoe9dzyMxYsX8+2339K2bVvAlAx57bXX2LdvH0OHDqVRo0aMGzfOPArjf//7HzNnzmT+/Pnm0UJgmmr6ww8/8OSTT1p80XDp0iVGjBjBzJkz6datm/k5MH78eHNdoEGDBmWr6PDGjRu5dOkS7dq1y5JsuHnzJtevXzf/npqaynvvvUdkZCQvvfSSueh/hlOnTlkdlZJdERERGI1GfvrpJypWrGiOZfjw4ezevZuffvqJl19+2by/n58fvXr1okKFChbn+eWXX/jss8+YOHEiU6ZMyXE/3333HaGhoTz77LN89NFH5pGmCQkJjB07lq1btxIUFESfPn2y9LV582YCAwOpUaOGRXtAQADp6elMmDDBIukIcPjwYXPiX0RE5FErFMt6ZzAYDPTs2ZP58+ezfft2tm3bxqxZs5SsyWM9e/akZs2aTJ8+HT8/P9577z2cnZ158803AZg8eTIODg6MGDHCfExaWhrJyckP3edLL71k8aHbw8ODjh07YjQaSU5OZvjw4eY32AaDgQEDBgBk+WBeoUKFLMkaMBWy7tu3LwkJCQ801elB3Lx5E4Ann3wyyzYvLy/zG1UwfVN58+ZNWrduzYABA7J8U9ioUSNKlSqVK3GNHj3aov5NxYoVGTx4MGD64HMnHx8fiw9cAEWKFGHIkCF4enqydevWHPdz/Phxfv/9d+rXr8/bb79tUUS8dOnSjB07FoClS5da7efNN9/MkqwB0+tfsmRJi/9vwPT/h1ZzkYcRlZgIQDOvsla3N/tzBcOM/QqCixcvsm3bNpydnXn//fctEgGNGzemd+/epKWlsWTJkmydNyf3juzq2LGjOVkDULx4cXr27AmYkrrvv/++xZSZAQMGYDAYzPXuMri5udGiRYsso0IrVKjAa6+9Rnp6eq7FnfF8aN68eZb7vbu7u8XIn82bN3Pu3DmqV6/OmDFjLP6OwDR19M7nSU68/vrrFudyd3dn9OjRQNbnQ8OGDbMka8A0fdjb25u9e/cSHx+fo35u3LjBsmXLKFu2LOPGjbOozVO8eHE++eQTHBwc+Pnnn632M2jQoCzJGsh8/Vu0aJFl2xNPPEHx4sWtnk9ERCSvFaoRNmIbjo6OzJo1ixUrVnD69Gk8PDx4/vnn8fLy4sCBA6xZs4aPPvoIFxcXoqOj+fLLL9myZQupqak0aNCAsWPHZllS9n7+WlgaML9RbNasWZb56xnbrl27luW4tLQ09uzZw8GDB7l27RopKSkAnD9/3uK/OZWxmtmPP/6InZ0dTz755F2/Bd29ezcAvXr1ypW+78bV1dXqa9mpUyf+/e9/c/DgQdLT0y0+QERHR5trOsTFxZGeng6YvvWNiYkhJiYmy7eR2eln586dgOnbWmtD2uvWrYuzszOHDx/Oss1gMNDuLlNP6tWrx4EDB/jss8/w9/e3+qZdJDs8/5wisTcikiFWtu+NiLDYryA4cOAAAK1atbI6qqBLly4EBgayf//+bJ/7Ye4dD+Nez4f69etnqblWokQJXFxcrD4fwPSahIaGcvXqVZKTkzEajeZ9M+pr5VS9evUAmD9/PqVKlaJt27Z3TRJkPB969OhhMVUoLzz33HNZ2lq3bo2LiwsXL17k2rVrFqsTJiYmsnXrVk6cOEFsbKx55Oi1a9cwGo1cvHjR/Cx8mH727t1LamoqrVu3xsnJKcsxHh4eVKpUiT/++IOkpKQs+9zt+VC3bl3OnDnDJ598wuuvv069evWsPn9EREQeNSVsJFc4Ozvz0ksvWbSlpaXx1VdfUb9+fXMdmE8//ZTQ0FDGjBlD6dKl+eGHHxgzZgxBQUFW33zdjbXpQBnzy62NrsjYlpGMyRAZGcnbb7/NiRMn7tpXYi59O96tWzd27drFhg0bePvtt3F0dKR+/fq0atWK7t27W7zpjYyMBMi1b0nvxuvPEQB/VaJECUqWLElcXByxsbHmkTFr167liy++uOdrkpiYmOVDV3b6uXLlCmBKbP3444937ef27dtZ2kqVKmUxIudOH374Ie+99x6//PILv/zyi7k2ztNPP02HDh3y/IOP5CNOTqbpRTnk79uemZ07My/8MCOaNLaYFnUwMor54UcA6P/V15BbNWzyWEYi4m7TPTPar169mq3zPuy942FYewYU+3Mq2d2mkjo7OxMTE2PRFh8fz/vvv8+ePXvu2lduPR+efPJJXn75ZRYuXMhHH32EnZ0ddevWpUWLFnTv3t3iWfCong8uLi53TRp5eXkRGxvL1atXzc+uPXv2MHbsWPNoFWsSEhJy1M/ly5cBWLZsGcuWLbtn/LGxsVneV9ztWfTmm29y6tQptm3bxrZt23BxccHb2xtfX186d+6cK1PMREREHoYSNpJnfv75Z/744w/mzJmDwWDg3LlzbNu2jaFDh/Liiy8CpmHPw4cPZ+3atfTo0eOBz32vb76yU9T4X//6FydOnKB9+/YMHDiQqlWr4uzsTJEiRQgKCuKLL77AaDQ+8Pnuxc7Oji+//JJBgwaxZcsWQkNDCQ8PZ//+/cydO5fJkyfj7e2dK33lhStXrpjrO7z77ru0bduWMmXKmN8Qv/baa4SFheX49cr41r1x48bZ/kByt2QNQK1atVi8eDEhISH8/vvv7N27lw0bNrBhwwYaNWrE1KlTs0wtkELKYMiVWjB+HTvi5+dHcHAwreYHMqBBfZp5ebE3IoL54Ue4lZqKn58fvs8990iKBT8KD1M0/lHdOx4kxuyMmpg8eTJ79uyhadOmDBs2jBo1alCyZEns7OzYuXMnI0eOzLWYAd555x169erFli1b2L17NwcPHuTw4cPMmzePzz//PEttlfwkMTGRv//978TGxjJkyBCee+45ypUrh6OjIwaDgY8++oh169bl+PXKOL527dr3HZlr7Xlwt8SLl5cX8+bNM9fg27dvnzl5M2/ePGbNmmUxpVdERORRUcJG8kR0dDRTpkzh+eefN9cMOXv2LIBFDZGMVS9Onz79yGO8desWu3btonTp0nz55ZdZRlhcunQpT/qtW7cudevWZdiwYcTHxzNt2jQWLFjAxIkTmTdvHgBly5bl7NmzXLx40aJ2QW6L+HPKxl/Fx8cTFxeHo6MjJUuWBOD3338nJSWFAQMGZBlNBfd+vbLTT8a3435+fvTv3z9b13M/jo6OFgWOT506xccff0xYWBjLly+nb9++udqfFG4Gg4GgoCDz0t7TDoQBYebtfn5+BAUFFaglvTNGS2SMdPurjBEO2Sl6npN7hy0FBwdjZ2fHt99+a1ErBUy1fvJC1apVqVq1KoMGDeL27dssXryY7777jn//+9/mhE3ZsmXzNIYMsbGxJCQkWB39kjHKJ+P/g/379xMTE0OHDh2sLh1+r7/j7PST8Xxo3Lix1ZUCc8Le3p6WLVuap9RduXKFzz77jD179jB37lxzTR0REZFHSRN0JU98//33GAwGc+HhOyXdsZzurVu3gOx965lb4uPjSU9Pp3Tp0lmSNampqWzevNnqcRmjMNLS0nIcQ4kSJRg5ciQGg4FTp06Z2zMKEwcFBeW4j3uJiYkx10O40/r16wFTceOM1yY2NhawPt1g3759FquY5KSfjDfLd3v9c1ONGjXMSZo7X3+RB+Xu7s6mTZvYvHkzgwcPplu3bgwePJjNmzezadMm3N3dbR1itmQsuR0SEkJcXFyW7WvWrAGgSZMmFu329vZ3vSfm5N5hS7GxsRQvXjxLsgbgt99+s3pMbj4fHB0dGTBgAB4eHty8eZMbN24Amc+HFStWmEck5pUNGzZkadu5cycxMTFUqFDBnODL+H/F2t/xhQsXOHbsWK704+Pjg52dHdu3b7dYWTEvlCtXjkGDBgF6PoiIiO0oYZOHUm+lknIrJd/9pN7K2zc5hw8fZsWKFYwYMcJiCHFGkdc7h0VnvPmvXr16nsZkjbu7OyVKlODUqVPmQptgeqM9efLkuxYbzvim79y5c9nq79dff+WPP/7I0r5jxw6MRqP5W1MwFZN0c3Njx44dLFiwIMsw8kOHDpnfvOfUpEmTiI6ONv9+6dIlZsyYAWAx4qRy5cqA6e8sI9EGEBUVxZdffplr/TRo0IAWLVpw8OBBJkyYYHVVkRMnTrBjx44Hu0BMScJFixZl+QCanp5OSEgIgMXrL5IdBoMBPz8/ZsyYwS+//MKMGTPw8/MrUCNrMlSsWJG2bduSkJDAN998Y/GhOCwsjKVLl2JnZ5dlNFqZMmW4fv261SRPTu8dtlK5cmViY2PNieUMgYGBd109MCOxkN3nQ3BwMIcOHcrSfvToUW7cuIGzs7N5FOLTTz9N5cqVOXXqFJMnT86SuDh16lSujb6ZPn26eVQVmEbPfvfdd4D158PmzZstatjExcXxz3/+877JlQftx9PTk+7du3P58mXGjh1rNdl34cIFNm7cmJ3LJDAw0GrR6d9//x3Q80FERGxHU6Ly0JLnAmwdwiNnNBqZMGECderUybLCUcWKFenQoQMbN25k0KBBuLu7ExISQvny5enYseMjj9Xe3p6BAwfy448/MmzYMHx8fHBxceHw4cNcv36dvn37Wl26tl27dqxatYqPPvqIli1bmr99/eSTT+7Z36ZNmxg3bhwVK1akZs2aODo6cvnyZcLDwylSpAhvvPGGeV9XV1f+/e9/8+677/Ltt9/y008/Ub9+fZKSkjh79iwXLlwgMDAwx0t7N2zYkJSUFHr27ImPjw+pqans2bOHpKQkOnfuTPv27c37+vr6Ur16dY4cOUKPHj3w9vYmOTmZ0NBQateuTaNGjQgLC8txPwD//Oc/eeutt1iyZAlr166ldu3alClThvj4eE6ePElkZCQvvfQSrVu3fqDrTElJ4ZtvvmHSpEnUq1ePcuXKkZKSwpEjR4iMjKR8+fLmZX9FHndjx45lyJAh/Prrr+zbt4+GDRsSHR3N3r17SUtLY8yYMdSpU8fimHbt2vHTTz/Rv39/GjVqRNGiRalSpQoDBw7M0b3Dll599VU++eQTxo4dy5IlS/D09OTkyZOcPXuWl19+mQULFmQ5pl27dsyYMYPvvvuOXbt2mb+0eOutt+5ZA2Xv3r0sXLgQT09P6tSpQ/Hixbl69SoHDhwgPT2doUOHmkfv2Nvb89VXX/Hmm28SEBDA2rVradiwIWBa1fDUqVN88803OS5K7OXlRa1atejXrx/NmzfH3t6e0NBQ4uLi8PHxMdeiA9NU5xYtWrBr1y569epFs2bNzNfl5uaGr68vW7ZsyXE/YKqDdPnyZTZt2kRISAi1a9fGy8uLW7ducebMGS5cuICvr2+2av5Mnz6d7777jlq1alG5cmWMRiMnTpzg/PnzuLq6MmDAgId4BUVERHJOCRvJVStWrODo0aPMnDnT6jSnTz75hOLFixMcHMypU6do3rw577//vs1WYHjttdfw9PRk4cKFHDx4EEdHRxo3bszEiRPvOoS7ffv2vPPOOyxfvpxt27aRnJwM3D9h4+/vj6enJwcPHmT//v0kJSXh4eHBs88+S//+/S1q+4Bp6PeCBQuYN28eISEhBAcH4+zsTPny5Rk+fHiurBDi4ODAf//7X3744QeCg4OJjo42Jy/+WmvCwcGBGTNm8OOPP7Jjxw62b99OmTJleOGFFxgyZAijRo3KlX7AtNrTrFmzWLZsGevXr+f48eOEhYVRqlQpKlSowIsvvmh1Gdi7KVasGB9++CG7d+/m5MmTnDx5EgcHB7y8vOjRowf9+vXLldVpRAoDT09P5s6dy5w5cwgODmbz5s04OTnRvHlz+vfvb3XZ7IwCvFu2bGH9+vWkpaXRtGlTBg4cmKN7hy117tyZkiVLMnPmTE6cOMEff/xBvXr1+PDDDzEajVYTNvXq1eOf//wnAQEB7Ny507ya3eDBg++ZsOnatSt2dnbs27ePw4cPEx8fT+nSpWndujUvvfSSeRpUhpo1a7Jw4ULmz5/Pli1b2LFjh/meNmjQIHN9uJwwGAxMmDCB6dOns27dOvNKTX379uW1117D3t7yLeTEiROZNWsWv/32Gzt27MDd3Z3nnnuOESNGMGnSpFzrx8nJicmTJ7NmzRp+/fVXTpw4weHDh3F3d6dcuXJ06dIlW88HgPfff5+QkBCOHj1qHr1ZtmxZ/P39zc9ukYLAaDQSHBxMYGAgUVFReHp64u/vX2BHfYoIGIy5ucRBIZeens7x48cBqFOnjtWEhNFozLVlPh8FZ2dn3cAfQ5cvX6Z79+40bdqUadOmFfh+HoUH+fcv+YP+rkRyxsfHh3LlyrFy5cpC0U9e0z1H8oObN2+ai+D/VUYR/IJWV01ENMIm1xkMBqsrHYiIiIiIiOQ2o9FoTtYUs7dnYIMnaOZVlr0RkcwLP0xwcDC9evVi06ZN+qJWpIBRwkZERERERKSACg4ONidrQgb4413WNI1vCDCiSWNazQ8kODiYLVu24OfnZ9NYRSR7lLAREREREREpoAIDAwEY2OAJc7Img3dZTwY0qM+0A2EETJ6MX6uW4OhkizAfSF6Vl1AZCCmolLAReQyVL1/+rsvSFsR+REQk9zyq+7aeDyK5IyoqCoBmXtaXoG/m5QWEEXUoDP75KVSvAXXrQb36kM/q2iQmJppXYM1N8fHxKlshBZISNiIiIiIiIgWUp4MDAHsjIhliZfveiAjTfs7OkJYGJ0+YflauAC8vU+Kmbn2oWBFUNFskX1HCRkREREREpKAxGmHbVvydHJgJzAs/zIgmjS2mRR2MjGJ++BEA+jdtkvUcERGmn82boESJzJE3NWtB0aKP6EKsi1zwBsWdHB76+ISkFMq+/GMuRiTy6ClhIyIiIiIiUpCkpcEvy2H3LvwqVcKvciWCz1+g1fxABjSoTzMvL/ZGRDA//Ai3UlPx8/PDd/pMuHAejh6BY0fh6lXLc8bHQ+ge04+9PdSoCfXqmZI4rm6P/BKLOzlQ3Mm2SSMRW1PCRkREREREpKC4dQsWBMAfJwEwGAwEvfoKvTZsJHjHDqYdCAPCzLv7+fkRFBSEwd4eqlU3/XTpakrYHDsCR4/CubOQnp7ZR2oqHD9m+mEZlK9gSt7Uq2/6swr4ijwSStiIiIiIiIgUBDduwNzZEBWZ2VapMu4DX2HTuE/ZsmULAQEBREVF4enpSf/+/fH19bW+QlKZMlDGF57yhcREU3Lm2FE4cRySkiz3vXzJ9LPxN3Bxhbp1TcmbGjXB4eGnLYnIvSlhIyIiIiIikt+dOwfz50BCQmZbI2/o0w8cHDBgGk3j5+eX/XM7O0OTpqaftDQ4ewaOHDGNwLlxw3Lf2BjYvcv04+BgqndTr75p6lTJkjm4QBH5KyVsRERERERE8rOwA7BksWmqUoanO8Azz+b+yk52dqaRMzVqQtduEBX159SpI3D+vKnYcYaUFFP7UVNhYypWMiVv6tU3rUClqVMiOaKEjYiIiIiISH5kNJpWcNqwLrPNzg569oZmPnnfv8EAZcuafnyfNhUmvnPqVHKy5f4XL5h+NqwDNzfTcuH16kH1GqZCxiKSLfpXk8uMRiOJiYm2DuOBOTs7W5/TKiIiIiIitpOaCkE/w/69mW3FikH/gaYEiC2UKGFKFDXzMcV3+pSpaPGxIxAdbblvdDTs3GH6KVoUatcxTZuqU9d0nr8wGo1s2bLF/PubP/zGoGca4Neokj6vyGNLCZtclpiYSAkrN6D8Kj4+nuLFi+f4PKGhoUyaNIlTp06ZC5z17dvX6r5z5szhf//7H4GBgdSsWTPHfefEypUr+fTTTxkyZAjDhg2zaSwiInnFxyd738KWK1eOlStX5lE0D8bHxydbcUydOpXp06cD0LJlS77//vu77tuvXz9Onz4NwLhx4+jWrZt52/jx41m1alWWdhGRRyohAQLnwZkzmW2lPWDQq6ZiwfmBvb0pCVO7DnR/HiIiMqdHXbxguW9yMoQfMv0YDFC5yp9LhtcHT09uRkfTq1cvgoODzYfM3XiYuRsP49eoEkEf9cC9pNOjvT6RfEAJG8mxS5cuMWrUKBwcHGjTpg1Hjx5lwoQJuLi40LFjR4t9IyMjmTlzJv369bN5skZE5HHRtWvXLG0HDhzg4sWL1K5dm9q1a1tsc3Nzy9b5s5tcyWt79uzh+vXrlC5dOsu2Y8eOmZM1IiL50rWrMGc2XL+W2VatGvgPhFz4ojVPGAxQrpzpp30HiIszTZs6esS0/HhKSua+RqNpGfFzZ2HtGozu7vQKWEDwoXCK2dszsMETNPMqy96ISOaFHyY47AK9Pl/Opi9f0EgbeewoYZOHIhe8QXGn/LfMXUJSCmVf/jHXzhcQEEBycjJTp06lYcOGxMTE0LdvX2bOnJklYTNp0iScnZ01mkVECrTsTH/ND1NPx48fb7Xt4sWL+Pr6Fqp7cp06dTh+/Djr1q3j5ZdfzrJ99erVANStW5djx4496vBERO7tzGmYPw9u3fGMadIMevUuWDVgSpaE5k+aflJS4NQfpuTNsaMQG2uxa/CBg+ZkTcgAf7zLegIwBBjRpDGt5gcSHHaBLYcu4Neosg0uRsR2CtC/+oKnuJMDxZ2K2jqMPHf8+HGqVKlCw4YNAXB1dcXX15cVK1aQkpKCg4MpaRUaGsqGDRsYP358gZo2JiLyV9mZ/ppbU0/lwbRt25bLly+zdu3aLAmbtLQ01q9fT5UqVahfv74SNiKSv+zbC0FLTctqZ3iuI/i1L9irLTk4mGrX1K1nGl1z+dKfU6eOwuVLBB42rTA1sMET5mRNBu+yngxoUJ9pB8II2HRECRt57ChhIzkWFxeHi4uLRZuLiwvp6enEx8fj7u5OamoqX331Fd7e3vztb3976L6GDh3Kvn37+OWXXwgPDycgIIBTp07h4uJCp06deOONN3BwcODixYv8+OOP7Nmzh8TERBo0aMB7771HrVq1cnq55qH/QUFBzJo1i9WrV3P16lXKlClD586defXVV3F0dLQ45sKFC6xevZqdO3dy+fJlYmJiKFWqFD4+PgwePJgqVarkSj8AqampLF++nF9//ZXTp0+TmppKlSpV6Nq1K/369cP+L9/OdOvWjStXrrBnzx5++uknVqxYwfnz56lSpQoLFiwA4ODBg8ybN4/jx49z/fp1XFxcKFu2LM2bN2fw4ME4Ozvn+HUVkfwjOjqauXPnEhwcTGRkJE5OTjzxxBP4+/vTsmVL834ZdcAArly5YlErp2nTpkybNg0wJfbXrl3Lnj17iIiIICEhAU9PT1q1asXgwYMpk4v1GBwcHOjQoQPLly/n7NmzVK1a1bxtz549XLt2jT59+hAVFZVrfVqTUVNn3LhxVKtWjSlTphAeHo7RaOSJJ55gxIgR5i86MhiNRtatW8eWLVs4fvw4UVFRFClShKpVq9KtWzd69+5Nkb8s3/sw/WQ4c+YMc+fOZc+ePdy4cYOSJUvSrFkzXn/9dWrUsCxoemfNt06dOjFlyhT27t3LzZs3+frrr/Hz8yMxMZGffvqJ9evXc/nyZdLT0ylVqhR169alR48etGrVKndfZJHCwmiE39bDpo2Zbfb20KcfeDe2WVh5wmCAChVNP888BzHRRG0PAaCZV1mrhzTz8gLCiIopOAu7iOSWIvffReTevLy8uHTpEml3fBtw7tw5HB0dcXd3B2DRokWcO3eODz74IFemBixcuJBPPvmEEiVK0Lp1a1JSUpg/fz7/+te/OH/+PK+88gonTpzAx8eHSpUqsXfvXoYPH87169dz3DeY3lR/8MEHzJs3j+rVq9OmTRtiYmKYMWMGb7/9tsVrAbB8+XJmzJjBrVu3qF+/Pu3ataN48eKsXr2agQMHcvLkyVzpJykpiZEjR/Lvf/+b8+fP06BBA5588kmuXbvGt99+ywcffEB6errVvr744gsmTZqEu7s77dq1o0KFCgBs3bqVIUOGsHXrVjw8PHj66aepU6cOsbGxzJ07l+i/rggg8ph5ZuL3dPx+usXPMxPvXvA2v4uKimLQoEHMnz+flJQUfH19qVOnDrt372bkyJEEBgaa961UqZK5Pk6xYsXo2rWr+ad169bm/ebMmWNOADdu3Jg2bdpgNBpZunQpAwYM4OrVq7l6DZ06dQJg7dq1Fu1r1qyx2P4ohIWFMWTIEKKiomjdujVVqlRh9+7dDB06lJ07d1rsm5yczMcff8zu3bspXbo0Tz31FA0aNOD06dNMmDCBzz77LFf6AQgODsbf359Vq1bh6upKu3btKF++PL/99huDBg1i3759Vvs5d+4cAwcO5MiRIzRr1owWLVpgb29PWloab7zxBj/88ANXr16lWbNmtG3bltKlS/P777+zbt06q+cTeeylpMCiBZbJmuLF4fVhhS9ZY42rG5516gCwNyLS6i57IyIA8HTVF4Ty+NEIG8mxNm3aEBISwowZM/D39yc0NJRt27bh6+sLwLVr15g+fTq9evWizp835JxasWIFs2fPpn79+uY+/P39Wb16NUeOHKFHjx68+eabGAwGjEYj48aNY/Xq1SxdujRXajVERERgNBr56aefqFixIgA3b95k+PDh7N69m59++sliKL6fnx+9evUyJ0Ey/PLLL3z22WdMnDiRKVOm5Lif7777jtDQUJ599lk++ugj85SNhIQExo4dy9atWwkKCqJPnz5Z+tq8eTOBgYFZvlUNCAggPT2dCRMm0KFDB4tthw8fxtXVNTsvnYjNGY1GEpJT7r/jPSTcTjb/2c7REXsro90yxN9Oxmif83pmxYs6PJJaOF9++SWXLl2iU6dOjBs3zjyt9cCBA4wcOZLJkyfj4+NDnTp1aNy4MY0bN2bVqlW4ublZrZUD0Lt3b9577z2LIsDp6enMnDmTqVOn8uOPPzJu3Lhcu4ZmzZpRtmxZ1qxZw/DhwwFTQjs4OJhGjRqZ76ePwrJly3jttdcYMWKE+e9v6dKl/Pvf/2b8+PEsX74cJyfTyid2dnZ88803tG3b1mI05M2bNxk9ejSrVq2ie/fuNG3aNEf9XL58mU8++QR7e3v+85//0KJFC/N5duzYwTvvvMMnn3zC8uXLzX//GdavX0+/fv149913sbOzM7eHhoYSHh5O/fr1mT59usUI0Pj4eC5c+MuKMSIC8fEwfy6cP5fZ5ulpWgmqVNai6YWVv78/M2fOZF74YUY0aWwxLepgZBTzw01Tpvq3r2+rEEVsRgkbybGePXuyfPlypk+fbl5StWTJkrz55psATJ48GQcHB0aMGGE+Ji0tjbS0NIoWfbgaPy+99JI5WQPg4eFBx44dWbBgAcnJyQwfPtz8htVgMDBgwABWr17N3r17H/Yys3j99dct3vS7u7szevRoRo0axeLFiy0SKXcbjt69e3dWrFjB3r17iY+Pt1oT40H7uXHjBsuWLaNs2bKMGzfO/MYcoHjx4nzyySd069aNn3/+2WrCZtCgQVmSNWD6oABYvKHP8MQTT1i9LpH8LCE5hRfn/5Sjc6Tevv3A+w5a+PM9EzoPatGAFyjhmLd10S5evMi2bdtwdnbm/ffft/iw3rhxY3r37k1gYCBLlizh448/fuDzWltWvEiRIgwZMoRly5axdevWXIk/g8FgoGPHjsybN4+wsDAaNWpEcHAwCQkJdO7cOVf7up9y5coxdOhQi2Rbnz59WLVqFeHh4WzatIkuXboAYG9vj5+fX5ZzuLu78+abb/Lmm2+yZcsWqwmb7PSzcOFCbt26xfvvv5/l3t66dWv69OnDokWL2L59O08//XSWWEaNGmWRrIHMZ4W3t3eW6bolSpSgXr1693upRB4vkZEwdzbcvJHZVrMWvNwfihWzXVw24Ofnh5+fH8HBwbSaH8iABvVp5uXF3ogI5ocf4VZqKn6NKuHbsJKtQxV55JSwkRxzdHRk1qxZrFixgtOnT+Ph4cHzzz+Pl5cXBw4cYM2aNXz00Ue4uLgQHR3Nl19+yZYtW0hNTaVBgwaMHTs2y5Ky93NnDYUMGaNXmjVrlqVOS8a2a9euZTnuYT333HNZ2lq3bo2LiwsXL17k2rVreHh4mLclJiaydetWTpw4QWxsLKmpqeaYjEYjFy9epG7dug/dz969e0lNTaV169YWyZoMHh4eVKpUiT/++IOkpKQs+7Rr187qddatW5czZ87wySef8Prrr1OvXr0sNRREpHA4cOAAAK1atbI6eq5Lly4EBgayf//+bJ87OjqarVu3curUKeLi4szTM1NTU4mJiSEmJiZXR+x16dKFefPmsWbNGho1asSaNWuwt7fn2WefzbU+HkT79u2zPJMAOnbsSHh4OPv37zcnUjIcP36cnTt3EhERQVJSkmlUWEICAOfPn89xPxlTpNq3b2/1XI0bN2bRokUcPnw4S8LmySeftPqMqV27NkWKFGHlypVUr16dp59+OtvLw4s8Nv44CYHzISkps635k/B8T/hLMvRxYDAYCAoKolevXgQHBzPtQBgQZt7u16gSQR/1sPmKiyK2oISN5ApnZ2deeukli7a0tDS++uor6tevz/PPPw/Ap59+SmhoKGPGjKF06dL88MMPjBkzhqCgIKtvAO/GWoHKjMK3np6ed92WkpKzaRAZXFxc7rrqi5eXF7GxsVy9etWcsNmzZw9jx441fwNpTcab8Yft5/Lly4BpWPyyZcvuGX9sbGyW19vLy8vqvm+++SanTp1i27ZtbNu2DRcXF7y9vfH19aVz585WCx+LSMGUkdQuX7681e0Z7dmtObN27Vq++OKLey6FnpiYmKsJm5o1a1KrVi02bNjAa6+9xs6dO2nduvUjTyKUK1funu13fpGQkpLC+PHj71nv5W6vYXb6yXhe3G+0kbUaZXd7VlSpUoVRo0bx/fff8/nnn/Pll19So0YNmjdvTrdu3XKl6L9IobB7F6xYBhk1BQ0G6NQFnmpXsFeCyiF3d3c2bdrE2rVrzcnlQR2e4JVnG+DbsJKSNfLYUsJG8szPP//MH3/8wZw5czAYDJw7d45t27YxdOhQXnzxRcB0cx4+fDhr166lR48eD3zue43wyG839MTERP7+978TGxvLkCFDeO655yhXrhyOjo4YDAY++ugj1q1bh9FozFE/GcfXrl37viOWrE1Fu1vixcvLi3nz5plrE+3bt8+cvJk3bx6zZs3St6hSoBQv6sCiAS/k6BwJCQl4jRwCQJqV6VF3ts19qXeuLOtdvGjO6+Dk1MPcX69cuWJeSerdd9+lbdu2lClTxpw0fu211wgLC8vxPdCaTp068d///pd//vOfpKWlZRnJkt8EBgaybt06atasyahRo6hbty4uLi7Y29tz7tw5evfunSuvU8Y5MgpG302DBg2ytN1rKnP//v155plnCA4OZteuXRw4cIAFCxawcOFC3nnnnSxf7Ig8VtLTYd0a2Lols83BAV54CZ7I+m/tcWQwGCxGfP/w5jMUd8rbqcAi+Z0SNpInoqOjmTJlCs8//7y51szZs2cBLGrPZLwZPH369COPMSdiY2NJSEiw+iEsMtJU4T5jFND+/fuJiYmhQ4cOVgseX7p0KVf6yRhZ1LhxYz744INsXtG92dvb07JlS/NUtCtXrvDZZ5+xZ88e5s6dy+jRo3O1P5G8ZDAYclwLxpCaOVrvt3dH3nPfEo5FKZ7HtWdyS8aowCtXrljdnjEyIzvLcP/++++kpKQwYMAAqx/Y73UPzKlOnTrx/fffs2PHDooXL37XqZ956W6vZcSfq57cOXV28+bNAHz++edZaord73XKTj+enp5cvHiRMWPG5HrC3cvLixdffJEXX3yR1NRU1q9fz6effsrkyZP529/+houLS672J1IgJCfD4kVwODyzrWRJGPgKVFRdFhG5OxWikDzx/fffYzAYzIWH75R0x3zdW7duAfceMZNfbdiwIUvbzp07iYmJoUKFCuY3x3FxcYD1qVoXLlzg2LFjudKPj48PdnZ2bN++3VwfJ6+UK1eOQYMGAXDq1Kk87UtEHp3GjRsDEBISYr533SljWewmTZpYtGcs62xNbGwsYP0euG/fPq5fv56TkO+pbNmytG3bFldXV7p06WKTKZybN2+2+tqsX78eyHzNIfN5UbZs2Sz7W3sWPGw/GYWGg4OD73nOnLK3t6dLly488cQTpKSk3LX+jkihFhsL06ZYJmu8ysEbbylZIyL3VfA+JRcgCUkpJCQl58Of3KnjcjeHDx9mxYoVjBgxwuKbu4xvC++c/pPx5r969ep5GlNemD59uvnbZjCNKvruu+8A6Nu3r7m9cuXKgOnN9J01bOLi4vjnP/953+TKg/bj6elJ9+7duXz5MmPHjrX6IejChQts3LgxO5dJYGCg1WLNv//+O2D9g4VIYefs7Ex8fPwD/WTU0CoIKlasSNu2bUlISOCbb76xuD+FhYWxdOlS7OzsLO49YBpxc/36datJnox74Jo1a8xJeoCoqCi+/PLLPLqSTP/5z3/YuHEjH374YZ73Zc3ly5fNKyhmCAoKIiwsjNKlS9OhQwdze8ZrtXTpUov9f/vtN1avXp1r/fTv3x9HR0cmTZrEpk2bspwrOTmZ3377zTyS80GEhoaya9cuczHpDJcuXeLMmTMYDAY9L+Txc+Uy/PhfuHQxs61OXRg+AjSdXEQegKZE5aGyL/9o6xAeOaPRyIQJE6hTpw69evWy2FaxYkU6dOjAxo0bGTRoEO7u7oSEhFC+fHk6duxoo4gfjpeXF7Vq1aJfv340b94ce3t7QkNDiYuLw8fHx1yjB0xTwFq0aMGuXbvo1asXzZo1A2Dv3r24ubnh6+vLli1bctwPmOpDXL58mU2bNhESEkLt2rXx8vLi1q1bnDlzhgsXLuDr62vxxv1+pk+fznfffUetWrWoXLkyRqOREydOcP78eVxdXRkwYMBDvIIiBZvBYMiVujT50dixYxkyZAi//vor+/bto2HDhkRHR7N3717S0tIYM2YMderUsTimXbt2/PTTT/Tv359GjRpRtGhRqlSpwsCBA/H19aV69eocOXKEHj164O3tTXJyMqGhodSuXZtGjRoRFhZ2l2hsZ8aMGfz8889Wt3l4ePDNN9880Hl69uzJnDlz2LRpE7Vq1eLChQscOXIEe3t7xo0bZ1EAfuDAgYSEhPD999+zceNGKleubN5/wIABzJ8/P1f6qVSpEp9//jkff/wxH3zwAZUqVaJq1aoUK1aMq1evcuzYMW7dukVgYOADJ1lOnDjBt99+i7u7O/Xq1cPV1ZWbN2+yb98+kpOTeeGFF7I1lU6kwDt2FBYGmqZDZWjVBv7W9bFcCUpEHo4SNpKrVqxYwdGjR5k5c6bVaU6ffPIJxYsXJzg4mFOnTtG8eXPef//9ArfSkMFgYMKECUyfPp1169aZV2rq27cvr732WpalVSdOnMisWbP47bff2LFjB+7u7jz33HOMGDGCSZMm5Vo/Tk5OTJ48mTVr1vDrr79y4sQJDh8+jLu7O+XKlaNLly5Wlwm/l/fff5+QkBCOHj3Kjh07ANOoGn9/f/z9/a1OcxCRgsvT05O5c+cyZ84cgoOD2bx5M05OTjRv3pz+/fuba1ndaeTIkRiNRrZs2cL69etJS0ujadOmDBw4EAcHB2bMmMGPP/7Ijh072L59O2XKlOGFF15gyJAhjBo1ygZXeX+XLl26a92Yu63IZE2jRo3o1q0bU6ZMYfv27RiNRp588kmGDRuGt7e3xb5NmzY1v1bHjx/n/Pnz1KhRg6+++oq6deveM2GTnX4A/Pz8WLRoEYGBgezatYvdu3djb2+Ph4cHTz31FO3bt8/W6NennnqKmJgYQkNDOXHiBDExMbi7u9O4cWP69OmTZXlwkUJtx++w6hfIKBJuMEDX7tC6jW3jEpECx2DMi2UZCqn09HSOHz8OQJ06dawmJIxG4z2XLc1vnJ2d892qSvmdj48P5cqVY+XKlYWiH3kwD/LvX/IH/V1JfjB16lSmT5/OuHHj6NatW4HvR+5O9xwxS0+HVSsh5PfMtqJF4SV/qFvPdnEVIAkJCZQoUQKA+KDROVolKiEpmRK9TGUE4uPjC+3IWCncNMImlxXmYfIiIiIiImLF7SRYuACO37GYhKsrDHoVypW3XVwiUqApYSMiIiIiIvKwoqNh3my4ciWzrUIFGPgqaCl7EckBJWxEREREREQexqWLMHc23LlKXv0n4IWXTNOhRERyQAkbkWwKDQ0tVP2IiEjuGzZsGMOGDSs0/YiIFYfD4aeFkJKS2dbOFzp2BtUyEpFcoISNiIiIiIjIgzIaYdtWWLs6cyWoIkXg+Z7wZAvbxiYihYoSNiIiIiIiIg8iLQ1+WQ67d2W2OTmB/wCoWctmYYlI4aSETTbcufy1VkMXebzc+W/+znuB5D+6V4vIo6Tnw2Pk1i1YEAB/nMxsc3eHQa9B2bK2i0tECi0lbLLBYDBgZ2dHWloat2/fxtnZ2dYhicgjcvv2bQDs7Oz0hjyf071aRB4lPR8eEzdumIoLR0VmtlWqDANfgRIlbBaWiBRuSthkk7OzM3FxccTFxelDgMhjJO7P1R+KFy9u40jkQeheLSKPip4PhYvRaCQ4OJjAwECioqLw9PTEv0MH/P44jiExMXPHRt7Qpx84ONguWBEp9JSwySYXFxfi4uK4ceMG9vb2uLi4YGdnZ+uwRCSPpKWlERsby40bNwAoWbKkjSOSB6F7tYjkNT0fCp+bN2/Sq1cvgoODLdpnzpyJX+VKBPXqgbuTEzzdAZ55VitBiUieU8Imm0qWLImrqysxMTFERUURFRVl65BE5BFxc3PTG/ICQvdqEXmU9Hwo+IxGozlZU8zenoENnqCZV1n2RkQyL/wwwecv0GvZCjb9/DOGZj62DlceU0lJSezcuZOtW7dy4MABIiIiKFKkCJUqVaJ9+/b4+/tnGVk8depUpk+fftdzDho0iLfeesvqtgMHDjBr1izCw8NJSUmhWrVq9OvXj65du971fJGRkUyZMoWQkBBiY2Px8vKiY8eOvPLKKzg6Ot71uubMmcP69euJiIjAxcWFVq1aMWLECDw9Pe/a18qVK1myZAlnzpzBwcGBBg0aMHjwYLy9ve96TEFjMKoiY7alp6cTExPDzZs3zfOWRaTwcnR0xN3dHVdXV4ro27QCQ/dqEclrej4UHps3b6Z9+/YUs7cnZIA/3mUzPyQejIyi1fxAbqWmsnnzZvz8/GwXaCGXkJBAiT9rAsUHjaa4U9GHP1dSMiV6fWc6V3x8oZi2uHz5cv71r38BUK1aNWrUqEFCQgJhYWEkJCRQtWpVpk2bRqlSpczHZCRsvL29qVSpUpZztm3blmeeeSZL+8aNGxk7dizp6ek0adIENzc39uzZQ1xcHP3792fMmDFZjrlw4QKvvvoq0dHR1KhRg+rVq3PkyBEuXbqEt7c3//vf/yha1PLv9Pbt2wwfPpxDhw7h4eFBkyZNuHz5MocPH8bd3Z3Zs2dTsWLFLH1NnDiRhQsX4ujoSMuWLUlOTmb37t0ATJgwodD8O9UIm4dQpEgR3N3dcXd3x2g0ahUSkULMYDCoiGQBpXu1iOQlPR8Kl8DAQAAGNnjCIlkD4F3WkwEN6jPtQBgBAQGF5oOgFDz29vb07NmTl19+mWrVqpnbr127xujRozl+/DgTJ07k888/z3Jsjx496Nat2wP1ExMTw2effUZaWhpfffUV7du3B+D69eu8/vrrBAQE0LZtW3x8LEebjR8/nujoaF588UXee+89AFJTU/nHP/7B5s2bmT17NsOGDbM4ZubMmRw6dIhGjRrx/fffm0cIBQQEMGnSJD777DOmTZtmccyuXbtYuHAhrq6uzJ49m8qVKwMQFhbGsGHD+PTTT2nWrFmhGPmohE0O6WEtIpL/6V4tIiL3kjF1tpmX9eW5m3l5AWGaYis21bVrV6vTkTw8PPjwww957bXX2Lx5MykpKTjkoCD28uXLSUhIwNfX15ysAShdujSjRo3i/fffJzAw0CJhEx4ezsGDBylVqhSjRo0yt9vb2/P3v/+dbdu28dNPPzF48GDs7U1piJSUFBYvXgzABx98YDGdq3///vz666/s27ePo0ePUq9ePfO2jATr4MGDzckagEaNGtG7d28WLVrEihUr6N+//0O/BvmFxm6KiIiIiMjjy2jEMy0NgL0RkVZ32RsRAXDPehoitlS7dm0AkpOTiYmJydG5fv/9dwA6dOiQZVvbtm1xdHRk9+7dFlPOM4556qmnskx7Kl26NE2aNCE2NpYDBw6Y2w8ePEh8fDwVK1akbt26WfrK6H/r1q3mtqSkJEJDQ+8an7VjCjIlbERERERE5PGUlASB8/F3NU2dmBd+mIORlqNoDkZGMT/8CECh+MZeCqeLFy8CmFfH/Ks9e/YwceJEvvjiC2bMmMHRo0fveq4TJ04AWE2iODg4UKNGDW7fvs358+cf6Jg72//4448cHXPu3DmSk5Nxd3enbNmsI+KsHVOQaUqUiIiIiIg8fiIjIGAeXLuGX+VK+FWuRPD5C7SaH8iABvVp5uXF3ogI5ocf4VZqKn5+fvj6+to6ainA+vXrd9dtGVODHtaiRYsAaNWqVZYRLgCrV6+2+H3KlCm0b9+e8ePHW0xFio+PJz4+Hrj7iDJPT0+OHDnClStXqFWrFgAR9xmFltF+5coVc1teHFOsWDFKlixJbGwsCQkJBb7YtBI2IiIiIiLyeDmwH4KWQkoKYKp1FvTeu/Ra8jPB27Yx7UAYEGbe3c/Pj6CgINVDk3xp+/btrFixAnt7e0aMGGGxrVKlSowZM4bWrVtTrlw5YmNj2b9/P5MnT2bTpk2kp6fzzTffmPe/deuW+c9OTk5W+ytWrBgAiYmJWY6z9TEZx8XFxZGYmKiEjYiIiIiISIGQmgqrf4WQ3y3b2z+De4dn2DRyFFu2bCEgIICoqCg8PT3p378/vr6+StZIjuV0FI01Z8+e5f/+7/8wGo2MHj3aXMsmQ5cuXSx+L1asGJ06dcLHx4cXXniB4OBgDh06RMOGDXM9Nsk5JWxERERERKTwi4mBhQFw7lxmm1MxeOFFqGtagcaAaTSNlu6WgiAqKoq33nqL2NhY/P39eemllx74WA8PD7p37878+fPZsWOHOWGTMaoFTAV+S5QokeXYjFEud06lyjguKSnJan+P6pi7HVdQqeiwiIiIiIgUbqdPwfffWSZrypWHt0aZkzUiBUlMTAwjR47kypUrdOvWjTFjxmT7HJUqVQLg2rVr5rYSJUqYkzR3W8Y+o71cuXLmNi8vr3xxzK1bt4iLi8PFxaXAT4cCJWxERERERKSwMhphazDMnA5/FlIFoJkPjHgTSpW2WWgiDysxMZFRo0Zx+vRpnn76aT7++OOHmrIXGxsLWI6qgcwlwo8dO5blmNTUVE6dOoWjoyOVK1d+oGPubK9Zs2aOjqlSpQpFixbl5s2bVpM21o4pyJSwERERERGRwufPJbtZsxrS001tdnbQszf07gsODraNT+QhJCcn8+6773L48GFatWrFF198gZ2dXbbPYzQaCQ4OBrIuq92mTRsANm7cmOW4bdu2cfv2bZ588kkcHR2zHLNt2zaSk5Mtjrl+/Tr79+/HxcWFxo0bm9u9vb0pUaIEFy9e5Pjx41n6yui/Xbt25jYnJyd8fHwA+O233x7omIJMCRsRERERESlcIiPgh8lwODyzzc0Nhr8BT7YAFRCWAigtLY2PPvqIPXv20KRJE77++msc7pF4vHnzJosXLyYhIcGiPTExkS+//JLw8HBKly5N+/btLbb36NGD4sWLs2XLFjZt2mRuv3HjBpMnTwbA39/f4pgGDRrg7e3NjRs3+O9//2tuT01N5d///jepqam88MIL2NtnltF1cHAwL3U+YcIEixWqAgICOHnyJE2bNqVePctpixl9z5w5k/Pnz5vbw8LCCAoKomTJkjz//PN3fV0KEoPRaDTaOggREREREZFccfAA/LzEvGQ3ALVqwwsvQSGoaVGYJSQkmOunxAeNprhT0Yc/V1IyJXp9ZzpXfHyhqGeycOFCJk6cCMDTTz9912saM2YMbm5uXL58me7du+Ps7Ez9+vXx8PDg5s2bHDt2jJiYGEqWLMl//vMfi1EvGTZu3Mg//vEPjEYjzZo1w9XVld27dxMXF4e/vz9vv/12lmPOnz/Pq6++SkxMDDVr1qRatWocOXKES5cu0ahRI6ZMmULRopZ/p7dv32bYsGGEh4fj4eFBkyZNuHLlCuHh4bi7uzN79mwqVqyYpa+JEyeycOFCnJycaNGiBSkpKezatQswJX8KS+FwJWxERERERKTgS02FNb/Cjr8u2d0BOjwLRTS5IL9Twubepk6dyvTp0++73y+//EL58uVJSEhg1qxZHDp0iIsXLxIdHU2RIkUoX748rVu35uWXX8bT0/Ou5zlw4ID5+JSUFKpXr06/fv3o2rXrXY+JiIhg6tSp7Nixg9jYWLy8vOjYsSOvvvqqxRSqOyUlJTFnzhzWrl1LZGQkLi4utG7dmuHDh1O2bNm79rVy5UoWL17MmTNncHBwoGHDhgwePBhvb+/7vkYFhRI2IiIiIiJSsMXGwIJ7L9kt+Z8SNiKW7O+/i4iIiIiISD51+hQsDLRcBapceeg/QKtAiUiBpoSNiIiIiIgUPEYjbNsK69ZkrgIFpiW7n++pVaBEpMBTwkZERERERAqWpCRTYeHwQ5ltdnbQ/XlorlWgRKRwUMJGREREREQKjsgICJwPV69mtrm5wcsDoFIlm4UlIpLblLAREREREZGCIewA/LwUkpMz22rWghdf1pLdIlLoKGEjIiIiIiL5W1oarP4Vdmy3bH+6AzyjJbtFpHBSwkZERERERPKv2BhYEAjnzma2OTlBvxehXn2bhSUikteUsBERERERkfzJ6pLd5cB/IJTWkt0iUrgpYSMiIiIiIvmL0Qjbt8LavyzZ3bSZacnuokVtF5uIyCOihI2IiIiIiOQft5NgqZUlu7s9D09qyW4ReXwoYSMiIiIiIvlDVCQEzIerUZltrm7g3x8qVbZZWCIitqCEjYiIiIiI2F7YQfh5iZbsFhH5kxI2IiIiIiJiO2lpsOZX+P2vS3a3h2ee05LdIvLYUsJGRERERERsIzYWFgbA2bOZbVqyW0QEUMJGRERERERs4cwZU7ImLi6zzasc+A8ADw/bxSUikk8oYSMiIiIiIo+O0Qjbt8Ha1ZZLdjdpBj20ZLeISAYlbERERERE5NG4nQQ/L4VDYZltdnbQrTs82VJLdouI3EEJGxERERERyXtWl+x2hZcHQGUt2S0i8ldK2IiIiIiISK4wGo0EBwcTGBhIVFQUnp6e+Pv741e6FAZrS3a/8BKUKGG7gEVE8jElbEREREREJMdu3rxJr169CA4OtmifOXMmfpUrEdSrB+5OTqZGv/bwrJbsFhG5F90hRUREREQkR4xGozlZU8zenmGNvZnW6TmGNfammL09wecv0CtoOUZHRxgwCDp2UrJGROQ+NMJGRERERERyJDg42JysCRngj3dZTwCGACOaNKbV/ECCz19gSxMf/Oo/YdtgRUQKCCVsREREREQkRwIDAwEY2OAJc7Img3dZTwY0qM+0A2EErFyJ3/PP2yLEx4LRaCQxMTHXz+vs7IxBK3iJPHJK2IiIiIiISI5ERZlWfmrmVdbq9mZeXkCYeT/JG4mJiZTIgyLO8fHxFC9ePNfPKyL3pomjIiIiIiLy8JKT8Uy6BcDeiEiru+yNiADA09PT6nYREclKI2xEREREROThnPoDfl6Kv0dpZgLzwg8zoklji2lRByOjmB9+BID+/fvbKNDHT+SCNyju5PDQxyckpVD25R9zMSIRyS4lbEREREREJHtuJ8Ga1bBrJwB+lSvhV7kSwecv0Gp+IAMa1KeZlxd7IyKYH36EW6mp+Pn54evra+PAHx/FnRwo7lTU1mGISA4oYSMiIiIiIg/uxHFY9jNER5ubDHZ2BE38hl7f/0jwli1MOxAGhJm3+/n5ERQUpMK1IiLZoISNiIiIiIjc361bsHoVhO6xbPfygj79cK9QkU29+7JlyxYCAgKIiorC09OT/v374+vrq2SNiEg2KWEjIiIiIiL3dvQILA+C2NjMtiJF4OkO4Pc02Js+VhgMBvz8/PDz87NNnCIihYgSNiIiIiIiYl1CAqz6BQ7st2wvXwH69INy5WwTl4jIY6DQJGyGDh3Kvn377rp98uTJtG7d+hFGJCIiIiJSgIUfghXLID4+s83ODp55Fp7yNf1ZRETyTKFJ2GRo3749zs7OWdo9PT2t7C0iIiIiIhbi402JmvBDlu2VKkOfvuBZ1jZxiYg8ZgpdwmbMmDGUL1/e1mGIiIiIiBQsRiMcPAArV0BiYma7vT081wnatDXVrRERkUei0CVsREREREQkm2JjYPkyU3HhO1WtBr37gEcZ28QlIvIYU8JGRERERORxZTTCvr2waiUk3cpsL1oUOnaGlq00qkZExEYKXcJmxYoVxMTEYDAYqFKlCn5+fnh5edk6LBERERGR/CX6JiwLghPHLdtr1IRefaBUKdvEJSIiQCFM2MycOdPi90mTJvH666/z+uuvP/A5Xn/9dWJjY7O0L168OMfxiYiIiIjYlNEIu3fBml/h9u3MdkdH6NIVmj8JBoPt4hMREaAQJWyaNm1Kjx49aNSoER4eHkRGRrJx40ZmzpzJlClTKF68OC+99JKtwxQRERERsZ0bNyBoKZz6w7K9dh3o2Rvc3GwSloiIZGUwGo1GWweRl3bu3MnIkSMpWbIka9aswcnJydYhiYiIiIg8WunpsDME1q6GlJTMdqdi0LUbNG2mUTWFQEJCAiVKlAAgPmg0xZ2KPvy5kpIp0es707ni4ylevHiuxHjPPgt4/CK5rdCMsLmbli1bUr9+fY4cOUJ4eDg+Pj62DklERERE5NG5dhV+XgJnz1q216sPPXqCi6tNwhIRkXsr9AkbgEqVKnHkyBGuXbtm61BERERERB6N9HT4fRusXwepqZntzs7Q7XnwbqxRNSIi+dhjkbCJi4sDoFixYjaORERERETkEYiMNI2quXDesr1hI+jeA/6cdiIiIvlXoU/Y3Lx5k/379wNQt25dG0cjIiIiIpKH0tJg6xbYuMH05wwlSsDzPaFBQ9vFJiIi2VIoEjYHDx7k5s2bPPXUU9jZ2ZnbL1++zCeffMKtW7do164dZcuWtWGUIiIiIiJ56MplWLoELl+ybG/c1FRYWEVXRUQKlEKRsDl//jyffvoppUuXpm7dupQsWZIrV65w7Ngxbt++TfXq1fn4449tHaaIiIiISO5LTYXgTbB5k6luTQYXF+jRy1RcWERECpxCkbBp0KABffr0ITw8nCNHjhAbG0uxYsWoXbs2HTp0oE+fPlrOW0REREQKn0sXYeliiIiwbPdpDl26gmo4iogUWIUiYVOtWjX+/ve/2zoMEREREZFHIyUFNv4G27ZYjqpxc4OefaB2bZuFJiIiuaNQJGxERERERB4b586ZVoC6GmXZ3qIVdO4MjhpZLiJSGChhIyIiIiKSjxiNRoKDgwkMDCQqKgpPT0/8/f3xa90aw4b1sGM7GI2ZB5QqBb36QI2atgtaRERynRI2IiIiIiL5xM2bN+nVqxfBwcEW7TNnzsSvRnWCuv0N94zajAYDtGoDHTtB0aKPPlgREclTRWwdgIiIiIiImEbWZCRritnbM6yxN9M6Pcewxt4Us7cn+NRpegUtx2g0gocHDB0B3borWSMiUkhphI2IiIiISD4QHBxsTtaEDPDHu6wnAEOAEU0a02p+IMHnL7DFvTR+o94GBwfbBiwiInlKI2xERERERPKBwMBAAAY2eMKcrMngXdaTAQ3qAxBw8g8la0REHgNK2IiIiIiI5ANRUaZVn5p5lbW6vZmXl8V+IiJSuClhIyIiIiKSD3iWLg3A3ohIq9v3RkSY9vP0tLpdREQKFyVsRERERERsLTYG/xLFAJgXfpiDkZajaA5GRjE//AgA/fv3f+ThiYjIo6eiwyIiIiIithQVCbNn4le8OH6VKxF8/gKt5gcyoEF9mnl5sTcigvnhR7iVmoqfnx++vr62jlhERB4BJWxERERERGzl7FmYNxtu3cJgMBDUqwe9NgUTHHaIaQfCgDDzrn5+fgQFBWEwGGwWroiIPDpK2IiIiIiI2MLhcFi0AFJTTb8bDLj36cemb79jy5YtBAQEEBUVhaenJ/3798fX11fJGhGRx4gSNiIiIiIij1rIDli5AoxG0+/29tDvRWjYCAOm0TR+fn62jFBERGxMCRsRERERkUfFaIR1a2HL5sw2p2IwcBBUq267uEREJN9RwkZERERE5FFITYWgpbB/X2abqyu8OhjKetkuLhERyZeUsBERERERyWu3kyBgPvxxMrPNywteeQ1c3WwWloiI5F9K2IiIiIiI5KXYWJg7Cy5fzmyrXgMGDDRNhxIREbFCCRsRERERkbwSFQWzZ0L0zcy2Rt7Q9wVToWEREZG70FNCRERERCQvnDsLc+fArcTMtqfaQacuUKSIraISEZECQgkbEREREZHcdjgcFi0wFRoGMBigS1do+5Rt4xIRkQJDCRsRERERkdy0MwR+WW5awhvAzg76vWiaCiUiIvKAlLAREREREckNRiOsXwfBmzLbnJxgwCBTkWEREZFsUMJGRERERCSn0tLg56Wwf29mm4srvDrYtHy3iIhINilhIyIiIiKSE7eTIDAATp7IbCvrBa++Bq5uNgtLREQKNiVsREREREQeVlwczJkJly9ntlWrbpoGVayY7eISEZECTwkbEREREZGHcTUKZs+Emzcz2xo2MhUYttfbbBERyRk9SUREREREsuvcOZg3GxITM9vaPAVd/gZFitguLhERKTSUsBERERERyY4jh2FhIKSmZrZ16QpPtbNdTCIiUugoYSMiIiIi8qB27YQVy0xLeAPY2UHfF8C7sU3DEhGRwkcJGxERERGR+zEaYcN62Lwxs83RCQYMhBo1bReXiIgUWkrYiIiIiIjcS1oaLPsZ9oZmtrm4mpbt9ipnu7hERKRQU8JGRERERORubt+GwPlw8kRmW9my8MpgcHOzWVgiIlL4KWEjIiIiImJNXBzMnQWXLmW2VasGAwZBMWfbxSUiIo8FJWxERERERP7q6lWYPRNu3shsa9jIVGDYwcF2cYmIyGNDCRsRERERkTudPwdzZ0NiYmZb67bwt65QpIjt4hIRkceKEjYiIiIiIhmOHoGFgZCSktnW5W/Qth0YDLaLS0REHjtK2IiIiIiIAOzeCcuXmZbwBrCzgz79oHET28YlIiKPJSVsREREROTxZjTCb+th08bMNkcnGDAQatS0XVwiIvJYU8JGRERERB5faWmw7GfYG5rZ5uJiWra7XDnbxSUiIo89JWxERERE5PF0+zYsCIATxzPbPD3h1cHg5m67uERERFDCRkREREQeR/HxMGcWXLqY2Va1GgwYBM7OtotLRETkT0rYiIiIiMjj5do1mD0TblzPbGvQEPq9CA4OtotLRETkDkrYiIiIiMjj48J5mDsbEhIy21q1ga7doEgR28UlIiLyF0rYiIiIiMjj4egRWBgIKSmZbZ27wFO+YDDYLi4RERErlLARERERkULFaDQSHBxMYGAgUVFReHp64t+sKX7nz2JOy9jZQZ9+0LiJLUMVERG5KyVsRERERKTQuHnzJr169SI4ONiifebMmfhVrkRQrx64u7pC/4FQs5ZtghQREXkAStiIiIiISKFgNBrNyZpi9vYMbPAEzbzKsjciknnhhwk+f4FeK1ayadt2DBUq2DpcERGRe1LCRkREREQKheDgYHOyJmSAP95lPQEYAoxo0phW8wMJPnOWLSdP4qeEjYiI5HMqhS8iIiIihUJgYCAAAxs8YU7WZPAu68mABvUBCAgIeOSxiYiIZJcSNiIiIiJSKERFRQHQzKus1e3NvLws9hMREcnPlLARERERkYIvPR3P1FQA9kZEWt1lb0QEAJ6enla3i4iI5CdK2IiIiIhIwXY7CRYE4O/mAsC88MMcjLQcRXMwMor54UcA6N+//yMPUUREJLtUdFhERERECq5rV2H+PIiKxK9yJfwqVyL4/AVazQ9kQIP6NPPyYm9EBPPDj3ArNRU/Pz98fX1tHbWIiMh9KWEjIiIiIgXT8WOwaAEkJQFgMBgIev89ei35meCtW5l2IAwIM+/u5+dHUFAQBoPBRgGLiDy8pKQkdu7cydatWzlw4AAREREUKVKESpUq0b59e/z9/XF2drZ67MqVK1myZAlnzpzBwcGBBg0aMHjwYLy9ve/a34EDB5g1axbh4eGkpKRQrVo1+vXrR9euXe96TGRkJFOmTCEkJITY2Fi8vLzo2LEjr7zyCo6Ojne9rjlz5rB+/XoiIiJwcXGhVatWjBgx4p5TWB/mmgoag9FoNNo6CBERyT0+Pj7mP8+aNYtGjRpZ3W/Dhg384x//AKBcuXKsXLnykcSX24YOHcq+ffv45ZdfKF++/EOf5/Lly3Tv3p2mTZsybdq0XIzQktFoZNOmTfz222+Eh4dz48YNAEqVKkXt2rVp27Ytzz77LCVKlMizGEQKPKMRtmyG9etMf87g9zQ82xGjwcCWLVsICAggKioKT09P+vfvj6+vr5I1UqglJCSYnx/xQaMp7lT04c+VlEyJXt+ZzhUfT/HixXMlxnv2WcDjz2vLly/nX//6FwDVqlWjRo0aJCQkEBYWRkJCAlWrVmXatGmUKlXK4riJEyeycOFCHB0dadmyJcnJyezevRuACRMm4Ofnl6WvjRs3MnbsWNLT02nSpAlubm7s2bOHuLg4+vfvz5gxY7Icc+HCBV599VWio6OpUaMG1atX58iRI1y6dAlvb2/+97//UbSo5d/p7du3GT58OIcOHcLDw4MmTZpw+fJlDh8+jLu7O7Nnz6ZixYpZ+nqYayqINMJGRKQQW7NmzV0TNqtXr87VvqZOncr06dMZN24c3bp1y9VzFxZXr17l/fffJzw8HIPBQK1atahXrx52dnZERkayY8cOtmzZwvfff8/MmTOpWrWqrUMWyX9u34aliyH8UGabgwP0fQEamu53BkyjaQrLG3YREQB7e3t69uzJyy+/TLVq1czt165dY/To0Rw/fpyJEyfy+eefm7ft2rWLhQsX4urqyuzZs6lcuTIAYWFhDBs2jE8//ZRmzZpRsmRJ8zExMTF89tlnpKWl8dVXX9G+fXsArl+/zuuvv05AQABt27a1+JIQYPz48URHR/Piiy/y3nvvAZCamso//vEPNm/ezOzZsxk2bJjFMTNnzuTQoUM0atSI77//3jxCKCAggEmTJvHZZ59l+SLtYa6poFLRYRGRQsjOzo6aNWuyYcMGUv9cNeVO0dHRhISEULduXRtEl7s+++wzli5dmu9XfYmPj2fo0KGEh4fTpk0bli1bxoIFC/jqq6/48ssvmTVrFhs3buTdd9/FYDAQHR1t65BF8p8b12HKD5bJGvdSMGKkOVkjIlJYde3alY8++sgiWQPg4eHBhx9+CMDmzZtJSUkxbwsMDARg8ODB5sQGQKNGjejduzdxcXGsWLHC4nzLly8nISEBX19fc7IGoHTp0owaNcrivBnCw8M5ePAgpUqVMu8DpiTT3//+d+zt7fnpp58s3pempKSwePFiAD744AOL6Vz9+/enVq1a7Nu3j6NHj1r09TDXVFApYSMiUkh16tSJ6Ohodu7cmWVbRiKnc+fONogsd3l5eVG1alXs7fP3oNHJkydz4cIFWrVqxbfffmt1eK+zszMvvfQSixYtokKFCjaIUiQfO3ECvp8Mfy7NDUDNWjByFJQrZ7u4RETygdq1awOQnJxMTEwMYKoNExoaCkCHDh2yHJPRtnXrVov233///a7HtG3bFkdHR3bv3s3t27ezHPPUU09lmfZUunRpmjRpQmxsLAcOHDC3Hzx4kPj4eCpWrGj1S0Rr8T3sNRVU+fvdrYiIPLROnTrxww8/sHr1atq2bWuxbc2aNTg7O+Pr68t//vOfLMcajUbWrVvHli1bOH78OFFRURQpUoSqVavSrVs3evfuTZEimTn/bt26ceXKFQA+/fRTPv30U/O2KVOmWAyZDQ8PZ/78+Rw4cICYmBhKlSpFq1atGDJkCF5eXhZx3DnNqlq1asyYMYNDhw4RExNDYGAgderUuWsNm/3797N+/Xr2799PZGQkycnJeHl54efnxyuvvJKtYbLbt29nwYIFnDlzhujoaFxdXalQoQItWrRg6NCh9z0+OjqaVatWYTAYeO+997Czs7vn/h4eHlbbU1NTWb58Ob/++iunT58mNTWVKlWq0LVrV/r165claZXx9xIaGsry5ctZtGgRFy5coESJErRr145Ro0ZZfR2io6OZO3cuwcHBREZG4uTkxBNPPIG/vz8tW7bMsr+Pjw/lypVj2bJlzJkzh1WrVnH16lXKlSvHwIED6d69OwB79uxhxowZHDt2jCJFivDUU0/xzjvv4ObmluNrlULMaIRtW2DtGst6Ne184blOcJ9/TyIij4OLFy8CphEtLi4uAJw7d47k5GTc3d0pW7ZslmMykiR//PGHRfuJEycstt/JwcGBGjVqcOTIEc6fP0+tWrXue0xG+549e/jjjz/M7wsf5Ji/xvew11RQ6d2OiEgh5eXlRZMmTdi6dSuJiYnmYaYXL14kLCyMLl264OTkZPXY5ORkPv74Y1xdXalevTp16tQhJiaGsLAwJkyYwOHDhxk/frx5/w4dOrB7925OnDiBt7c3lSpVMm+7M/mwZMkSvv76awDq169PkyZNOHfuHCtWrGDr1q1MmzYtyzBfgH379vH5559TuXJlWrRowbVr1ywSRtZ89913nDx5kpo1a9K8eXOSk5M5duwYc+fOZdu2bcyZM+euKyncafHixXz11VfY2dnh7e1N06ZNiY6O5uzZs0ybNu2BEjahoaEkJydTr149qlSpct/9rUlKSmLMmDGEhobi6upKgwYNKFq0KIcPH+bbb78lNDSUb775xurr8t1337Fo0SKaNWtGpUqVOHjwIMuWLTNfw51FWKOiohgyZAiXLl3Cy8sLX19foqOj2b17NyEhIbz99tv4+/tbjfEf//gHe/bswcfHh4oVK7Jv3z4+++wzwDR66KOPPqJhw4a0bNmSQ4cOsXr1ai5fvsz06dMtYsjJtUohk5wMPy+BsIOZbQ4O0LsveDe2WVgiIg+jX79+d92WMTXoYS1atAiAVq1amUe4RPw5IvFu08aLFStGyZIliY2NJSEhgeLFixMfH098fPw9j/P09OTIkSNcuXLFnLC5X18Z7Rlf8OXVMdauqSBTwkZEpBDr0qUL+/btY9OmTeYlGNeuXWvedjd2dnZ88803tG3b1mIkw82bNxk9ejSrVq0yr6gEMGbMGKZOncqJEyfo0aOH1aLDhw4d4ptvvsHDw4OJEydSr14987aMVQ8+/fRT5syZk+XYlStX8tZbbzFo0KAHvvYhQ4bg7e1tsdpScnIyX3/9NcuWLSMwMJAhQ4bc9zzz5s3DYDAwe/Zs6tevb243Go3s3bv3gWLJ+AapTp06Dxz/X3333XeEhoby7LPP8tFHH5mvKyEhgbFjx7J161aCgoLo06dPlmNXr17NwoULzUWMo6OjefXVV9m/fz+hoaE0b97cvO+XX37JpUuX6NSpE+PGjcPBwQEwLe05cuRIJk+ejI+PT5ZruXLlCs7Ozixbtgx3d3fAlKgaPnw4P/74IykpKUycONE82is+Pp7XXnuNAwcOsHfvXotRWDm5VilEbtyAgLlwxxt13N2h/yDIwYpwIiKFzfbt21mxYgX29vaMGDHC3H7r1i2Au35BB6YER1xcHImJiRQvXtx8zL2OK1asGACJiYkP3NejOsbaNRVk+mpKRKQQ69ChA0WLFjUnacA0HcrDw8PiQ/pf2dvb4+fnl2Xaibu7O2+++SYAW7ZsyVYsc+bMIS0tjX/84x8WyRqAHj160K5dO8LDwzl27FiWY2vWrMnAgQOz1V+bNm2yLI1dtGhR3n33Xezs7B44/ps3b1KyZEmLZA2AwWDIsjrC3WTMJbc29QdMSaHx48db/Cxfvty8/caNGyxbtoyyZcsybtw4i+sqXrw4n3zyCQ4ODvz8889Wzz9ixAiLFafc3Nzo3bs3YBq9lOHixYts27YNZ2dn3n//fXOyBqBx48b07t2btLQ0lixZYrWfd99915ysAcyJnWvXrtG6dWuLqXklSpSgV69eABaJr5xeqxQSf5w01au5M1lToya8OUrJGhEpsBYvXnzXn4d19uxZ/u///g+j0cjo0aPNtWykcNAIGxGRQqxkyZK0adOGrVu3cu3aNSIjIzl37hwvv/zyfeuoABw/fpydO3cSERFBUlISRqORhIQEAM6fP//AcaSnp7Nnzx6cnJxo1aqV1X0ypm8dPnw4y1zmp556ymLKzIOKiopi69atnDt3jvj4eIx/1r9wcHDgwoULD3SOevXqceDAAT777DP8/f2pUaNGtuO4n507d7J79+4s7T169ABMCY3U1FRat25t9RslDw8PKlWqxB9//EFSUlKWfazVnclYVeHatWvmtoxCgK1atcLV1TXLMV26dCEwMJD9+/dn2WZvb0+zZs2ytFeoUIHjx49bjSGjsPKdMeT0WqWAMxph+zZY86tlvZq2T0GnLqpXIyJyh6ioKN566y1iY2Px9/fnpZdestieMUIlKSnprufIGLGSMU0845iM4/765Ze1Yx6kr0d1zN2OK6iUsBERKeS6dOnC5s2bWb9+PZcvXza33UtKSgrjx49n3bp1d93nzuGp9xMdHW3e39oH97/u+1fWisrdT0BAAN9//73VZc2z48MPP+S9997jl19+4ZdffqF06dI0bdqUp59+mg4dOjxQ4isj+XG3pbp//PFH85/XrVvHRx99ZLE94+9t2bJlLFu27J59xcbGZkliWJvnnfEm5s6lPzMSJ+XvMoIho/3q1atZtpUuXdrqa5HRj7UYMt503RlDTq9VCrDkZFj2Mxy4IyFobw+9+kCTpraLSx47RqMxW8+4B+Xs7PxQXz6IWBMTE8PIkSO5cuUK3bp1Y8yYMVn2yVjMISoqyuo5bt26RVxcHC4uLuapQyVKlKBEiRLEx8cTFRVlNWGTcb5yd6zQ5+XlZV6owpq7HXOv+B7mGGvXVJApYSMiUsi1adOGkiVL8uuvv3Lt2jWqVat212r8GQIDA1m3bh01a9Zk1KhR1K1bFxcXF+zt7Tl37hy9e/c2j1Z5EOnp6YDpzWr79u3vua+1ESyOjo4P3BeY6uVMmjSJEiVK8N5779GsWTNKly5tLsLXqVMni1Ed91KrVi0WL15MSEgIv//+O3v37mXDhg1s2LCBRo0aMXXqVIupQ9ZkDE8+fvx4tq4jQ8ZrXbt27fsOdf7rUppArhXnvdcHjfv18aAfUnJ6rVJA3bxpqlfzZ8IOAFc3GDAQKlS0WVjyeEpMTLT6ITWn4uPjC8UHSLG9xMRERo0axenTp3n66af5+OOPrT5nq1SpQtGiRbl58yZRUVFZvjzJmIZes2ZNi/batWuzb98+jh07RvXq1S22paamcurUKRwdHc2jdTOO2bJli9Wp7XfrK+M5n51jHvaaCiolbERECrmiRYvyzDPPmEcrvPDCC/c9ZvPmzQB8/vnnWRIoly5dynYMbm5uODo6YjAYGDduXJ5/w5gR/xtvvGEutpwhKSmJ69evZ+t8jo6O+Pn54efnB8CpU6f4+OOPCQsLY/ny5fTt2/eex/v4+FC0aFGOHTvG+fPnLd7gPIiMNyONGzfmgw8+yNax2ZGxotedqzHcKWP0S5kyZfIshkd1rZKPnD4FCwLgz+mWAFSrDi/3hzz40CwiUpAlJyfz7rvvcvjwYVq1asUXX3xx19G+Tk5O+Pj4sGPHDn777Tdefvlli+0bN24EoF27dhbtbdq0Yd++fWzcuDHLqOxt27Zx+/ZtnnrqKYsv1Nq0acP06dPZtm0bycnJFl+qXL9+nf379+Pi4kLjxo3N7RmLQ1y8eJHjx49nWdDAWnwPe00FlYoOi4g8Brp06YKrqytubm507tz5vvvHxcUB1qcibdiwweoxGaNM0tLSsmzLqG+SkJBgtVZLbsuI39o0nN9++y1bo4OsqVGjhjlJc+rUqfvu7+bmRteuXTEajXz99ddWX6N78fHxwc7Oju3bt+d4ite9ZLyJCgkJMb+Gd1qzZg1gqjeUVx7VtUo+YDTC79th5nTLZE3rNjB4iJI1ki9ELniD+KDRD/0TueANW1+CFCJpaWl89NFH7NmzhyZNmvD111/fd5Svv78/ADNnzrSoPxgWFkZQUBAlS5bk+eeftzimR48eFC9enC1btrBp0yZz+40bN5g8ebLFeTM0aNAAb29vbty4wX//+19ze2pqKv/+979JTU3lhRdesFjQwsHBwbzU+YQJEyxWqAoICODkyZM0bdo0y2IVD3NNBZVG2IiIPAaaNGli/sbhQVSuXJnz58+zdOlSXnnlFXP7b7/9xurVq60ekzHq4ty5c1a3v/baa+zcuZPPPvuMTz/9NMsKS4mJiWzYsIGOHTvmuC5JxgiWFStWWCxNfvr0aYs3EfeTlJTE8uXL+dvf/kbJkiXN7enp6YSEhAAPXl9n1KhR7N69m5CQEN555x3ef/99Kla0nOqRkpLC0aNHsxzr6elJ9+7dWbZsGWPHjuXDDz+kdOnSFvtcuHCBEydO0KFDhwe+vr+qWLEibdu2Zfv27XzzzTd88skn5tcuLCyMpUuXYmdnd98RRTnxqK5VbCwlBZYHwb7MFcKwt4cevaDZg62+JvIoFHdyoLiTpl9K/rB48WLzKGI3Nzf+/e9/W91vzJgx5pUpW7RowUsvvcTChQt5+eWXadGiBSkpKezatQuAcePGWbzHAVPtvf/7v//jH//4Bx9++CHNmjXD1dWV3bt3ExcXh7+/v9WVMseNG8err77KwoUL2bNnD9WqVePIkSNcunSJRo0a8eqrr2Y5ZvDgwezevZuwsDB69uxJkyZNuHLlCuHh4bi7u/N///d/WY55mGsqqJSwERGRLAYOHEhISAjff/89GzdupHLlyly4cIEjR44wYMAA5s+fn+WYli1b4ujoyIIFCzh16hQeHh4YDAYGDBhA1apVzVNcvv76a4YPH06NGjWoXLky9vb2XLlyhRMnTpCcnEz79u1znLDp1q0bAQEBbNu2jd69e1O/fn1iYmLYt28ffn5+HD58+K7Tfu6UkpLCN998w6RJk6hXrx7lypUjJSWFI0eOEBkZSfny5enZs+cDxVSiRAmmT5/O+++/z++//86OHTuoVasWlSpVokiRIly9epU//viD+Ph4XFxcaNOmjcXx7777LpcvX2bTpk2EhIRQu3ZtvLy8uHXrFmfOnOHChQv4+vrmOIkxduxYhgwZwq+//sq+ffto2LAh0dHR7N27l7S0NMaMGZNlyHJue1TXKjYSHQ0B8+DSxcw2V1fwHwiVKtksLBGR/C42Ntb854zEjTVDhw41J2zA9FytXbs2ixcvZteuXTg4ONCiRQsGDx6Mt7e31XN06NCBadOmMWvWLA4dOkRKSgrVq1enX79+WaabZ6hcuTKBgYFMnTqVHTt2cO7cOby8vHj99dd59dVXrdaec3R0ZMqUKcyZM4e1a9cSHByMi4sL3bp1Y/jw4Xf9YuxhrqkgUsJGRESyaNq0KTNmzODHH3/k+PHjnD9/nho1avDVV19Rt25dqwmbMmXKMHHiRKZPn86BAwfMK2x07tyZqlWrAtCnTx8aNmzIwoUL2bt3L9u3b8fJyYkyZcrQqVMn2rdvnyuFHt3c3Jg3bx7//e9/2bdvH1u3bqV8+fIMHz6cAQMGmJfLvp9ixYrx4Ycfsnv3bk6ePMnJkydxcHDAy8uLHj160K9fP6vLX99NmTJlmD17Nps2bWL9+vWEh4ebRyS5ubnRpEkT2rRpQ6dOnbK8Dk5OTkyePJk1a9bw66+/cuLECQ4fPoy7uzvlypWjS5cuPPfccw8cy914enoyd+5c5syZQ3BwMJs3b8bJyYnmzZvTv3//+67ylRse1bWKDZw5bapXEx+f2Va1mqleTSH5NlREJK8MGzaMYcOGPdSx3bp1o1u3btk6pnHjxuYpUA/Ky8uLcePGZesYJycnhg8fzvDhw7N13MNcU0FjMOZ0Ir+IiIiIyL0YjbAzBFb9An+uGgdAy9bwt66m6VAi+URCQoI5aR4fNDpHU6ISkpIp0es707kewSpRBTl2KPjxi+Q2PR1FREREJO+kpMAvyyF0T2abnR083xOaP2mzsERERPI7JWxEREREJG/ExEDgfLiQuYoHLi7gPwAqV7FdXCIiIgWAEjYiIiIikvvOnoUF8+HOJeKrVIGXB5iSNiIiInJPStiIiIiISO7atRNWroC0tMy2J1tAt+dVr0ZEROQB6YkpIiIiIrkjNdWUqNm9K7PNzg66Pw9P5v0KYyIiIoWJEjYiIiIiknOxsaZ6NefPZbaVLGmqV1Olqs3CEhERKaiK2DoAERF5NFauXImPjw/jx4/P8blCQ0Mf6lwPe9zDmDp1Kj4+PqxcuTLP+xJ57J0/B99/Z5msqVQZRo5SskZEROQhKWEjIiK55lEmSYYOHYqPjw+XL1/O875E5B727IJpUyyLC/s0h6HDwcXVdnGJiIgUcJoSJSIi2dagQQOWLl1KiRIlHslxD+OFF16gY8eOeHh45HlfIo+l1FRYtRJ2hWS2FSkCXbtDy1ZgMNguNhERkUJACRsREck2Jycnqlat+siOexhubm64ubk9kr5EHjtxcaYlu8+ezWwrUcK0ZHe1ajYLS0REpDDRlCgRkQIkISEBg8GAwWAgISEhV8555zSmP/74g7fffpunn36atm3bMnToUA4ePJjlGGu1aLp168b06dMB+PTTT/Hx8TH/hIaG3vU4gLi4OBYtWsTIkSPp2rUrrVq1okOHDrz11lvs3LnTYt/Lly/j4+PDvn37AOjevbtFX9auK8OLL76Ij48PZ+/8kHmH6OhoWrZsyXPPPUdqaqrFtvDwcD788EM6duxIy5Yt6dKlC//85z+JiIi49wssUthcuADfT7ZM1lSoCG+OUrJGREQkF2mEjYiIAHDkyBEmTJhAxYoVadmyJefOnWPfvn288cYbzJ07l5o1a97z+A4dOrB7925OnDiBt7c3lSpVMm+737SkQ4cO8c0331C+fHmqVKlCw4YNiYyMZOfOnezcuZOPP/6Y559/HgBnZ2e6du1KSEgI169fp3379jg7Oz/QNXbq1Invv/+eNWvWMGLEiCzbf/vtN1JTU3n22Wext898RC5ZsoSvv/4agPr169OkSRPOnTvHihUr2Lp1K9OmTaOaPqhKIWM0GgkODiYwMJCoqCg8PT3xb+6D34VzGNLSMnds2gx69AIHB9sFKyIiUggpYSMiIoApKfHee+/x4osvmtsmTpzIwoULmTdvHp999tk9jx8zZgxTp07lxIkT9OjRg27duj1w31WqVGH27Nk0bNjQov3YsWOMGDGCb7/9lmeffRZnZ2fc3NwYP348Q4cO5fr164wZM4by5cs/UD+dOnXihx9+YN26dVYTNmvXrgWgc+fO5raMZJKHhwcTJ06kXr165m3Lly/nX//6F59++ilz5sx54OsVye9u3rxJr169CA4OtmifOXMmfpUrEdSrB+7OzvC3btCqterViIiI5AFNiRIRKUCcnJzYvXs3u3fvxsnJKVfP7e3tbZGsARg8eDAA+/fvz9W+/qpChQpZkjUAdevWpW/fviQkJJinVeWEl5cXTZo04eLFixw6dMhi25UrVzh48CCVKlWiQYMG5vY5c+aQlpbGP/7xD4tkDUCPHj1o164d4eHhHDt2LMfxieQHRqPRnKwpZm/PsMbeTOv0HMMae1PM3p7g8xfotWIlxtdeh9ZtlKwRERHJIxphIyJSgNjZ2dG8efM8OXfLli2ztLm5ueHq6sq1a9fypM87paWlsWfPHg4ePMi1a9dISUkB4Pz58xb/zanOnTuzb98+1q5da5EkWrt2LUajkU6dOpnb0tPT2bNnD05OTrRq1crq+Zo0acLWrVs5fPgwdevWzZUYRWwpODjYnKwJGeCPd1lPAIYAI5o0ptX8QILPnGXLhYv41bj3VEkRERF5eErYiIgIAJ6enlbbnZ2diYmJydO+IyMjefvttzlx4sRd90lMTMyVvjp06MDXX3/Nhg0beOedd7CzswNgzZo1gOV0qOjoaHO/1hJad4qOjs6V+ERsLTAwEICBDZ4wJ2syeJf1ZECD+kw7EEZAQAB+fn42iFBEROTxoISNiEgBkpyczHfffQfA6NGjKVq0aK6du0gR282S/de//sWJEydo3749AwcOpGrVqjg7O1OkSBGCgoL44osvMBqNudKXi4sLbdq0YfPmzezevZtWrVpx4sQJTp8+Tf369alcubJ53/T0dMCUtGrfvv09z1ujRo1ciU/E1qKiogBo5lXW6vZmXl5AmHk/ERERyRtK2IiIFCApKSl88MEHALzxxhu5mrCxlVu3brFr1y5Kly7Nl19+aR7xkuHSpUu53menTp3YvHkza9asoVWrVubRNV26dLHYz83NDUdHRwwGA+PGjcOgWh3yGMgYbbc3IpIhVrbv/XMp+7uNyhMREZHcoaLDIiKSaxz+XNY37c4lf+8jPj6e9PR0SpcunSVZk5qayubNm3OtrwxPPfUUJUqUYMuWLdy6dYv169djZ2fHs88+a7Gfvb09zZo1IyEhgd27d2e7H5GCyL/FkwDMCz/MwUjLUTQHI6OYH34EgP79+z/y2ERERB4nStiIiEiuKVOmDADnzp174GPc3d0pUaIEp06d4sCBA+b2tLQ0Jk+efNdiww/TV4aiRYvSoUMHEhISmDRpEpGRkTz55JOULl06y76vvfYaRYoU4bPPPrO6UlViYiIrVqwgKSkp23GI5DtXLuN3/ix+lStxKzWVVvMDGbZ2HdMOHGTY2nW0mh/IrdRU/Pz88PX1tXW0IiIihZqmRImISK5p2bIljo6OLFiwgFOnTuHh4YHBYGDAgAFUrVrV6jH29vYMHDiQH3/8kWHDhuHj44OLiwuHDx/m+vXr9O3blyVLlmQ5rl27dqxatYqPPvqIli1bUqJECQA++eSTB4q1c+fOrFixgp9//tn8uzWNGzfmgw8+4Ouvv2b48OHUqFGDypUrY29vz5UrVzhx4gTJycm0b98+15daF3mkEhNh/jwMqakE9epBr+W/EHz2HNMOhAFh5t38/PwICgrSFEEREZE8poSNiIjkmjJlyjBx4kSmT5/OgQMHzCssde7c+a4JGzCNYvH09GThwoUcPHgQR0dHGjduzMSJEzl27JjVY9q3b88777zD8uXL2bZtG8nJycCDJ2yaNm1K2bJliYyMxMnJ6Z6r3fTp04eGDRuycOFC9u7dy/bt23FycqJMmTJ06tSJ9u3bmxNGIgVSejr8tBBu3gDAvVgxNq1dy5YrEQQEBBAVFYWnpyf9+/fH19dXyRoREZFHwGDMrWU3REQkzyUkJJgTA/Hx8RQvXtzGEYlIobB+HWzemPl7x07gd++V0UQKK4tnbdBoijs9fIH/hKRkSvQyre74KJ7bBTl2KPjxi+Q21bAREREReZwdDrdM1jzRAHyftl08IiIiAmhKlIhIgeLk5GReNUn1UkQkx6KiYMlPmb+X8YQ+/UBTnkRERGxOCRsRkQLEzs7unrVWREQe2O0kCJgHt2+bfnd0hP4DQclgERGRfKFQTomKjo7m2WefxcfHhx49etg6HBEREZH8xWiEJYvhalRmW98XwNPTdjGJiIiIhUI5wmbSpElER0fbOgwRkVyXkpLCtGnTABg6dCgODg42jkhECqQtwabaNRmebm+qXSMiIiL5RqEbYbN7925WrVqlkTUiUiglJyczcuRIRo4caV7GWkQkW06cgPVrM3+vVRueec528YiIiIhVhSphk5SUxBdffEH16tUZMGCArcMRERERyV9u3IBFC0xTogDcS8GLL0ORQvWWUEREpFAoVFOipk+fzqVLl5g2bRr29oXq0kRERERyJjnZVGT4VqLpdwcHGDAQnJ1tG5eIiIhYVWi+Tjl58iQBAQF069aNJk2a2DocERERkfzDaIRlQXDlcmZbz95QrrztYhIREZF7KhTDUNLT0/nnP/9JyZIlGTVqVI7P9/rrrxMbG5ulffHixTk+t4iIiMgjF7IDDuzL/L11W2jS1HbxiIiIyH0VihE2P/30E0eOHGH06NG4ubnZOhwRERGR/OPMGfh1Zebv1apDl7/ZLh4RERF5IAV+hE1ERAT/+9//aNq0Kd26dcuVc86YMSNXziMiIiJiUzExsGA+pKebfndxhZf8wc7OtnGJiIjIfRX4hM2ECRNISUlh7Nixtg5FRCTPOTo6smrVKvOfRUTuKjUVAudDfLzpdzs78B8AJUvaNi4RERF5IAU+YbNt2zZKlizJF198YdGenJwMwNWrVxk6dCgAX3zxBR4eHo88RhGR3GJvb8/f/qapDCLyAFb9AhfOZ/7evQdUrmyzcERERCR7CnzCBiAuLo59+/ZZ3Xb79m3ztowkjoiIiEihFroHdu3M/L35k/BkC9vFIyIiItlW4BM2oaGhVtsvX75M9+7dqVixIsuXL3+0QYmI5JGUlBQCAwMB8Pf3x8HBwcYRiUi+c+ECrFiW+XvFSqbRNSIiIlKgFPiEjYjI4yQ5OZlXX30VgL59+yphIyKW4uNNdWtSU02/Fy9uqltjr7d8IiIiBU2hWNZbRERE5LGXlgYLAyAm2vR7kSLwcn9wc7NlVCIiIvKQlLARERERKQzWrYHTpzN/79wFqtewXTwiIiKSI4V2fGz58uXvWt9GREREpFA5eAC2bc383bsxtHnKVtGIiIhILtAIGxEREZGCLOIK/Lwk83evctCrDxgMtotJREREckwJGxEREZGC6lYizJ8HKSmm352KQf+BULSobeMSERGRHFPCRkRERKQgSk+HnxbBjeum3w0GePElKF3atnGJiIhIrii0NWxERAojR0dHFi9ebP6ziDzGNv4Gx49l/v7Mc1Cnru3iERERkVylhI2ISAFib29P3759bR2GiNja0SOw6bfM3+s/AX5P2y4eERERyXWaEiUiIiJSkFy9apoKlcHDA/r2gyJ6WyciIlKYaISNiEgBkpqayrJlywDo2bMn9va6jYs8Vm4nQcA803/BVFy4/yBTsWEREREpVPROX0SkALl9+zb9+vUDID4+XgkbkceJ0QhLl0BUZGZb3xegbFnbxSQiIiJ5RmNnRURERAqCrVsg/FDm775PQ4OGtotH5P/Zu+/wKKu0j+PfSe8QShJ6R4FIQHofiqAIFpQiRUFQxAL2tQuu3UVd2yJKEYgIKBZeaVISei8hBER6TUJJCOlt3j+GTDIkgQAzmZTf57q4nDnlee5hd8jknnPuIyIidqWEjYiIiEhJd/AfWLYk93nDRtC7j+PiEREREbtTwkZERESkJIu7AHNDzVuiAPz9YchQFRkWEREp41T8QERERKSkysiAObMhOdn83MUFhj8M3t6OjUtERKSMSk9P5+zZs7i6uhIQEGDVl5SUxOTJk1mzZg1OTk706tWLZ555Bk9P+xT/V8JGREREpCQymeC3hXD6VG7b/Q9A9RqOi0lERKSM+/HHH3nzzTcZOHAgn376qVXfww8/zJYtWzBdXvW6b98+tmzZwoIFCzAYDDaPRWtpRUREREqiTRthx/bc5x06we2tHBePiIhIORAeHg7AfffdZ9W+fPlyNm/ejMFg4P7772fo0KG4urqyefNmfv75Z7vEohU2IiKliJubGzNmzLA8FpEy6uhR+L8/cp/XrQt393NUNCIiIuXGP//8A0Dz5s2t2n/99VcMBgNPPvkkr7zyCgDBwcG89tpr/PbbbwwcONDmsWiFjYhIKeLq6srIkSMZOXIkrq6ujg5HROwh4SL8OBuys83PfX1h6AhwdnZsXCIiIuXAhQsX8PT0pGLFilbtGzZsAGDo0KGWtgcffBCAqKgou8SiFTYiIiIiJUVmJvw4By5dMj93doZhD5uTNiKlhMlkIjmnULYNeXl52aVGhIhIXsnJyXh4eFi1nThxgvPnz1OjRg1q165taffy8qJChQrEx8fbJRYlbERESpHMzEyWLVsGQJ8+fXBx0T/jImXKn4vg2LHc5/3vgTp1HBePyA1ITk7Gx8fH5tdNTEzEWyekiYidVaxYkfPnz3Px4kUqVKgAwPr16wFo3bp1vvGZmZl4eXnZJRZtiRIRKUXS0tLo168f/fr1Iy0tzdHhiIgtbd9mLjSco3UbaNvecfGIiIiUQ7fddhsAc+fOBSA7O5u5c+diMBjo2LGj1djz58+TlJSU7/hvW9FXsyIiIiKOduqk+QjvHDVqwj33gbZ/SCkX8+OTeHvceM21pNQMAod+Y8OIRESu7sEHH2T16tV88MEHrFu3jvPnz7Nnzx58fHzo18/6AIDNmzcD0LBhQ7vEooSNiIiIiCMlJcGcWeb6NQDe3jB8BKiwuJQB3h6ueHvoVEMRKT3uvfdewsPDmT9/PmFhYQC4u7vz4YcfWrZI5fjjjz8wGAx06tTJLrEoYSMiIiLiKFlZMDcUcooVGgzw0DCo6O/QsERERMqzTz/9lIceeoht27bh5+dH586dqXNFTbn09HT8/Px48MEH6dGjh13iUMJGRERExFGWL4VDB3Of39UXGthnWbWIiIgUXZs2bWjTpk2h/W5ubnz88cd2jUFFh0VEREQcYU8ErAnPfd48BDp3dVw8IiIiQvv27enYsSNHjhxxdChaYSMiIiJS7KKj4ef5uc8Dg+CBgSoyLCIi4mCxsbG4urpSr149R4eihI2ISGni5ubGV199ZXksIqVQSoq5yHB6uvm5hwcMfxj0nhYREXG4wMBAzp8/7+gwAG2JEhEpVVxdXXnqqad46qmncNUJMiKlT3Y2zP8Jzp/LbRv8EFSp4riYRERExKJLly6kpKQQGRnp6FCUsBEREREpNqtXwv59uc973gG3NnFcPCIiImLlqaeewsvLi9dff52UlBSHxqItUSIipUhWVhZr164FzNl/Z2dnB0ckIoUxmUyEhYURGhpKbGwsAW5uDHN3wVirFgaDAZo0gR49HR2miIiI5OHi4sJHH33Ev/71L3r06MGoUaNo3bo1VapUuepn7xo1atg+FptfUURE7CY1NZXu3bsDkJiYiLe3t4MjEpGCxMXFMWDAAMLCwqzapwHG2rVYOPpR/AcNASctdhYRESlJ2rdvb3mcnJzMv//972vOMRgMHD9+3Oax6FOCiIiIiA2ZTCZLssbTxYWxLUKYemdvxrYIwdPFhbDjJxiw7C9M7h6ODlVERESuYDKZrvtPdna2XWLRChsRERERGwoLC7MkazaOGEZIYAAAjwHjWragw+xQwjZsIDw8HKPR6NBYRURExNqmTZscHYKFEjYiIiIiNhQaGgrAw8HNLMmaHCGBAYwIbsrUXRHMmTNHCRsREZESpmbNmo4OwUJbokRERERsKDY2FoBWQYEF9rcKCrIaJyIiIlIQJWxEREREbMVkIuDyPvbt0TEFDtkeHQ1AQEBAgf0iIiJScpw/f57du3c7ZKuUEjYiIiIitpCaCj/OYZifDwCzIveyO8Z6Fc3umFhmR0YBMHz48GIPUURERIpm+fLl9OnThxYtWtCvXz8GDRpk1R8fH8+wYcMYNmwYCQkJdolBNWxEREoRV1dXPv74Y8tjESkhos/AnNlw/hzG2rUw1q5F2PETdJgdyojgprQKCmJ7dDSzI6NIyczEaDTSrVs3R0ctIiIiBfjqq6/46KOPMJlMhY6pWLEiHh4eLF++nD///JOHHnrI5nFohY2ISCni5ubGSy+9xEsvvYSbm5ujwxERgB3b4Zuv4Pw5AAwGAwtfeB5jly6kZGYydVcEY5cuZ+quCEuyZuHChRgMBgcHLiIiIlfavn07H330ES4uLkycOJE9e/ZQtWrVAscOGDAAk8nEmjVr7BKLVtiIiIiI3IiMDPi/P2DL5tw2gwG698S/Zy9WPTOB8PBw5syZQ2xsLAEBAQwfPpxu3bopWSMiIlJCTZs2DYCnn36aMWPGXHVshw4dAIiMjLRLLErYiIiUIllZWezYsQOA22+/HWdnZwdHJFJOxV2A0Nlw6lRum6cXDH4IbrkFAANgNBp1dLeIiEgpsnXrVgBGjRp1zbGVKlXCy8uLmJiCDxq4WUrYiIiUIqmpqbRt2xaAxMREvL29HRyRSDm0fx/M/wlSUnLbatSEYSPA399xcYmIiMhNO3/+PD4+PlSqVKlI493c3EhKSrJLLErYiIiIiBRFdjas+AtWr7Rub9cB+vUHF32sEhERKe08PT1JSkoiKyvrmqvZk5KSSEhIoHLlynaJpViLDp8/f54lS5awbNkyLl68WJy3FhEREblxiYkwY5p1ssbVFQYNgfvuV7JGRESkjGjQoAFZWVns27fvmmOXLl1KdnY2zZo1s0ssNk3Y7N69m+eff54pU6bk6/v9999p164djz/+OGPGjKFt27YsWbLElrcXERERsb1jx+DL/8LBf3LbqlaFJ5+Blrc7Li4RERGxud69e2Mymfjyyy+vOu706dO8//77GAwG+vbta5dYbJqw+fXXX1mwYAFOTtaXjY6O5oUXXiA1NRWTyYTJZCIpKYmnn36ao0eP2jIEEREREdswmWD9Opj6P0jIszL4tubw1DMQFOS42ERERMQuRo0aRVBQEIsXL2b8+PHs37/f0peRkcHhw4f59ttvueuuu4iJiaF+/foMHDjQLrHYNGGzebP5WMvevXtbtYeGhpKamkqTJk1Yt24dW7dupX379qSnpzN9+nRbhiAiIiJy89JSYW6o+dju7Gxzm5MT3N0fHhoG7h6OjU9ERETswtvbm5kzZ1KpUiUWLlzIHXfcwblz5wCoX78+3bp149133+X8+fMEBgYybdo0XF1d7RKLTRM2sbGxGAwGatasadW+cuVKDAYDL7/8MnXr1qVatWq88847mEwm1q9fb8sQRERERG5OTDR8/SXsicht8/ODx56Azl3AYHBcbCIiImJ3wcHB/PXXXwwePBg3NzfLTqGcP66urgwaNIglS5bQsGFDu8Vh0wp5cXFx+Pn54ZKn8F5KSgp79+7Fzc2Nbt26WdqbNm2Km5sbJ06csGUIIiJlmqurK2+//bblsYjY2K6dsPBnyMjIbWvQEIYMBR8fx8UlIiIixSogIIDJkyfz/vvvExERQUxMDFlZWQQEBNCiRQs8PT3tHoNNEzbOzs4kJiZate3evZusrCxatWqFm5ubVZ+XlxcpKSm2DEFEpExzc3Nj4sSJjg5DpOzJzIQ/F8Gmjdbt3XtAr97m7VAiIiJS7ri7u9OmTRuH3Numnz5q1apFVlYWu3btsrQtX74cg8GQ7wVmZWVx6dIlu51XLiIiIlIkcXHw7f+skzWenvDIKOh9p5I1IiIi4hA2XWHTpUsXDhw4wOuvv86///1vYmNjCQ0NBaBXr15WY/ft20dWVhbVqlWzZQgiImVadnY2+/btA6BJkyb5TuUTkev0998wby6kJOe2Va8Bw0ZApUqOi0tEREQcLiIigt9//53du3dz/vx5ACpXrkxISAj33HMPISEhdr2/TRM2TzzxBD///DMRERHce++9AJhMJjp16pRvhU1OIeJWrVrZMgQRkTItJSWF4OBgABITE/H29nZwRCKlVHY2rFoBq1aaj+/O0bYd9LsHVCNKRESk3EpISOCFF15g6dKlgDmvkeOff/5h8+bNTJ06lTvvvJNPPvmEihUr2iUOmyZsqlWrxvz583nnnXfYvn07FSpUoGfPnrzxxhtW40wmE/Pnz8dkMtGxY0dbhiAiIiJydUlJ5lU1/xzIbXN1hfsGwO36IklERKQ8S0tLY9CgQezduxeTyUS1atXo0KGDZXfQmTNn2LRpE6dPn2bp0qWcOHGC33//HXd3d5vHYtOEDUCzZs2YN2/eVcdkZ2dbxgQFBdk6BBEREZGCHT8OP86Bi/G5bZWrmLdAaZu2iIhIuTdlyhQiIyNxd3fnvffeY/DgwRgMhnzj5s2bx2uvvcbevXv59ttvGT9+vM1jsWnCZsGCBQAYjUaqVq1a6DhnZ2dq1qxpy1uLiIiIFM5kgo0bYPH/QVZWbnuzYHhwIHjY/2hOERERKfl+//13DAYDkyZNYsiQIYWOGzx4MBkZGbzyyiv8+uuvJT9h89xzz+Hi4mIpiCkiIiLicGlpsPBniNid2+bkBHf2hc5doIBvzURERKR8OnbsGC4uLgwcOPCaYwcOHMibb77J8ePH7RKLTRM2OYV2PD31LZWIiIiUALExEDobYmNz23x94aHhUK+e4+ISERGREsnb25usrKwi1aRxd3fHy8sLZ2dnu8Ri04RNw4YN2blzJ0lJSTq5RERERBwrYhf88jOkp+e21a8PQ4aZkzYiIiKlzL59+9i8eTN79+5l7969xF7+QmLbtm0Fjv/222/57rvvCr3eI488wjPPPFNg365du5g+fTqRkZFkZGRQr149Bg0aRL9+/Qq9XkxMDFOmTGHjxo0kJCQQFBREnz59GDlyZKEJkNTUVGbOnMny5cuJjo7Gz8+PDh06MG7cOAICAgq916JFi1iwYAFHjhzB1dWV4OBgRo8efdNHbTdv3pzw8HCio6OvWXP3zJkzXLx4ke7du9/UPQtj04TNoEGD2LZtGz/++COPPfaYLS8tIiKAq6srL774ouWxiBQgMxMW/wkb11u3d+sOd/QGO30LJiIiYm/ff/894eHh1z0vJCSEWrVq5Wtv0qRJgeNXrlzJa6+9RnZ2Ni1btqRixYps3bqViRMncvDgQZ599tl8c06cOMGoUaOIj4+nQYMGtGzZkqioKL777ju2bNnC//73P9zc3KzmpKWlMW7cOPbs2UOVKlXo1q0bp0+fZtGiRaxbt44ZM2YUWP928uTJzJ07F3d3d9q3b096ejqbN29m8+bNfPTRRxiNxuv+O8rx+OOPEx4ezjvvvMM333xz1bH//ve/MRgMPP744zd8v6uxacJm6NChhIWF8f777+Pq6srw4cNxcbH5QVQiIuWWm5sbn3zyiaPDECm54uPNp0CdyLOX3MMDBg6Gps0cFpaIiIgt3HbbbTRq1IimTZvStGlT7rnnHtLzriQtxH333Uf//v2LdI+LFy/yzjvvkJWVxccff0yPHj0AOH/+PGPGjGHOnDl07tyZ1q1bW82bOHEi8fHxDBkyxPIFY2ZmJq+++iqrV69mxowZjB071mrOtGnT2LNnD82bN+err77Cy8sLgDlz5vD555/zzjvvMHXqVKs5mzdvZu7cuVSoUIEZM2ZQu3ZtACIiIhg7diyTJk2iVatW+N7gatquXbvy7rvvMnHiRAYNGsSECRNo27at5cvSzMxMNm/ezBdffMHWrVt599136dKlyw3d61psmk15/vnn8fb2xs3NjTfffJP//Oc/tGjRgsqVKxe6p8tgMDB58mRbhiEiIiLl0T8HYN5cSErKbatW3Xxkd+XKjotLRETERkaOHGn3e/z2228kJSXRrVs3S7IGoHLlyowfP56XXnqJ0NBQq4RNZGQku3fvplKlSlanJbm4uPDKK6+wdu1a5s2bx+jRoy2LOjIyMpg/fz4AL7/8siVZAzB8+HD+/PNPduzYwb59+6xWAoWGhgIwevRoS7IGzFuZHnjgAX766Sd+//13hg8ffkOvv0OHDpbYN27cyMaNG3FxcaFSpUoAXLhwgczMTMBcv3fKlClMmTIl33UMBgMbNmy4oRhy2DRhM3/+fAwGAyaTCYD4+HjCwsIKHJszTgkbEZGiy87OtlShr127Nk5OTg6OSKQEyM6G1atg5V/m47tztG4D99wH2j4oIiJSZOvXm7cU9+zZM19f586dcXd3Z8uWLaSlpVnq0uTM6dKlS75tT5UrV6Zly5Zs3bqVXbt2WRI9u3fvJjExkZo1a3Lrrbfmu1fPnj35559/WLNmjSVhk5qaaqnXU1B8PXv25KeffmLNmjU3nLA5ceJEvraMjAxiYmLytScnJ5OcnFzgdQw2OIXSpgmbBx980CZBiYhIwVJSUqh3+WSbxMREFXgXSUqC+T/Bgb9z21xc4N77zQkbERERYevWrRw4cIC0tDQCAgLo1KlTofVrDhw4AFBgEsXV1ZUGDRoQFRXF8ePHadSo0TXn5LRv3bqVgwcPWhI2RZkDcPDgQUvbsWPHSE9Px9/fn8DAwCLNuV6ffvrpDc+1NZsmbD7//HNbXk5ERESkcCdOwI+zzXVrclSqbN4CVb26w8ISEREpyKBBgwrty9kaZC+LFy+2ej5lyhR69OjBxIkTrbYiJSYmkpiYCFDoCU0BAQFERUVx5swZS8ImOjr6mnPAfKpSDnvM8fT0xNfXl4SEhBs+vfpq/zsVN1UEFhERkRLLZDIRFhZGaGgosbGxBAQEMGzoUIyeHhj+XARZWbmDmzaDBweBp6fjAhYRESlBatWqxbPPPkvHjh2pVq0aCQkJ7Ny5ky+++IJVq1aRnZ3Nf/7zH8v4lJQUy2MPD48Cr+l5+eds3q1AOfMcPSdn3qVLl0hOTi71q9GVsBEREZESKS4ujgEDBuSrhzdt2jSMtWuxcMB9+Ht4gJMT9L4TunYDbc0WEZESyt6raArSt29fq+eenp7ceeedtG7dmsGDBxMWFsaePXu47bbbij02uTa7JWyWL19OWFgYJ0+eJDU11er/nMnJyezduxeDwZDvKDARERGxnQJXqAwbhtFoLNF150wmkyVZ4+niwsPBzWgVFMj26BhmRe4l7PgJBiz8jVWPjcYwdDjUb+DokEVEREqNKlWqcM899zB79mw2bNhgSdh45lmlmpqaio+PT765Oatc8m6lypmXmppa4P2Ka05h826GyWQiPj6+0OLCOWrUqGGT++Vl84TNqVOneOyxx9izZw+A5SSovFxdXXnqqac4c+YMv//+O7fffrutwxARESn3rrpCxWhk4cKF+Pv7Oya4awgLC7MkazaOGEZIoHmv+mPAuJYt6DA7lLDjJwhv2RqjkjUiIiLXrVatWgCcO3fO0ubj44OPjw+JiYnExsYWmLCJjY0FoFq1apa2oKAg/v77b0tfUefk7bPFnJSUFC5duoSfn99Nb4f666+/mD59Otu3b7faKlYQg8FgOcnVlmyasElOTmbo0KEcOnSIatWqceeddzJv3rx8L87V1ZWHHnqIyZMns3TpUiVsREREbOyaK1TCwhgwYACrVq26/pU2WVmQmQHpGfn/m5EOGRlX/CmgLT0dMjMv/zf/NUIX/grAw8HNLMmaHCGBAYwIbsrUXRHM+fVXjHffbau/NhERkXIjISEBsF5VA9C4cWN27NjB/v37qV+/vlVfZmYmhw4dwt3dndq1a1vNCQ8PZ//+/QXeK6e9YcOGVnPy9hVlTp06dXBzcyMuLs6ycvhac27Eu+++y7fffovJZCrS+KKOu142TdjMnDmTQ4cOcdttt/HLL7/g5eXF//3f/xWYjerduzeTJ09m69attgxBRKRMc3Fx4cknn7Q8FilMkVaohIUR/snHGJs0uZxUySxawiVvoV87ib1kPqGiVVD+IzvN7UFARKHfsImIiEjhcrZMQ/5jtTt16sSOHTtYuXJlvho4a9euJS0tjS5duuDu7m4157vvvmPt2rWkp6fj5uZm6Tt//jw7d+7Ez8+PFi1aWNpDQkLw8fHh5MmT/P3339xyyy1W91q5ciUAXbt2tbR5eHjQunVrNmzYwIoVKxg6dOg151yv1atXM2XKFFxdXXnllVfo0aMH3bt3p3Llyvzxxx/Exsaydu1apk+fjpOTE59++mmhR5PfLCdbXmzx4sUYDAbefvvta+4Xu/XWW3F2dubw4cO2DEFEpExzd3fn66+/5uuvv7b6ISlypdDQUODqK1QA5oSGwoZ1sHUL7NoBeyPhwN9w5DCcPAEx0XDhAly6BKmpxZKsAQi4/Dlie3RMgf3br3Gsp4iISHkXFxfH/PnzSUpKsmpPTk7mgw8+IDIyksqVK9OjRw+r/vvuuw9vb2/Cw8NZtWqVpf3ChQt88cUXAAwbNsxqTnBwMCEhIVy4cIEvv/zS0p6ZmcmHH35IZmYmgwcPtvrC0dXV1XKE9kcffWS10GPOnDn8888/3H777TRp0sTqXjn3njZtmtU2pIiICBYuXIivry/33ntv0f+irjBnzhwMBgMTJkxg7NixlqPLnZ2dqVOnDm3atOH5559n+fLl+Pr68uKLL1olqGzJpl/PHjp0CGdnZ9q0aXPNsc7Ozvj5+VmWYYmIiIjtxJ4+DRRhhco1CugViYsLuLqCqxu4ulz+r+sVf9zAzRVcXM3/vbLvivHDWrVl2sCBzIrcy7iWLaySTrtjYpkdGQXA8OHDbz5+ERGRUmLdunV8//33lucZGRkAjBw50tI2ZswYOnfuTEpKCh9//DFfffUVTZs2pUqVKsTFxbF//34uXryIr68vH330Ub4jsitUqMBbb73Fq6++yr/+9S9atWpFhQoV2LJlC5cuXWLYsGEFHh709ttvM2rUKObOncvWrVupV68eUVFRnDp1iubNmzNq1Kh8c0aPHs2WLVuIiIjg/vvvp2XLlpw5c4bIyEj8/f1566238s1p164dDz30EHPnzmXo0KG0a9eOjIwMNm/ebInD19f3hv5+AXbt2gXkT0pdue2pevXqvPfeewwfPpyvv/6aSZMm3fA9C2PThE16ejoeHh44OzsXaXxKSoq+IRYRuQ4mk8lSGK5KlSol+pQfcZCkJFgTRsAZc8Jme3QMjxUwzLJCpU4d6Nip4GSLJcFSSALG1dWcrHGy6YJdAIy1amM0GgkLC6PD7FBGBDelVVAQ26OjmR0ZRUpmJkajkW7dutn83iIiIiVVXFwckZGR+drztsXFxQHmxMsjjzzCnj17OH78OBERETg5OVG9enX69+/P0KFDC12p2rNnT6ZOncr06dPZs2cPGRkZ1K9fn0GDBtGvX78C59SuXZvQ0FC+/fZbNmzYwLFjxwgKCmLMmDGMGjWqwFUo7u7uTJkyhZkzZ7J06VLCwsLw8/Ojf//+PPHEEwQGFvzF0wsvvEDjxo2ZP38+mzdvxtXVlXbt2jF69GhCQkKu+fd4NXFxcXh6elK1alVLm7Ozc4GlXrp27Yq7uzsrV64s+QmbKlWqcPr0aS5evEiFChWuOvbvv/8mNTXVUmhIRESuLTk52fKDNTEx8aar30sZkpoK69bAurWQlsawJrcybdfua69QeeNNMBodFHThDAYDCxcutBROnrorAoiw9OeccqWkpYiIlCf9+/enf//+RRrr7e3NM888c8P3atGihWULVFEFBQXx9ttvX9ccDw8PnnjiCZ544onrmnc9fxfXw8fHh6wrtoD7+vpy8eJFkpOTrcq/ODk54eLiQvTlL8JszaZfibVt2xaAP/7445pjv/nmGwwGAx07drRlCCIiIuVLejqsCYOPP4SVKyAtDQBj7VoY69UlJTOTDrNDGbt0GVN37Wbs0mV0mB1aKlao+Pv7s2rVKlavXs3o0aPp378/o0ePZvXq1axatarEHkkuIiIipVdQUBCXLl0iNTXV0pZzWtaVhyYdPnyYpKQkux0GYtOrPvzww/z66698+umntGnTpsBKyenp6UyePJlffvkFJycnHn74YVuGICIiUj5kZpoLBa9eaS4InJenJ4auRhY+9yIDhgwp1StUDAYDRqMRYwlcBSQiIiJlT5MmTdi3bx+RkZGWWj1du3Zlx44dfPjhhzRp0oSAgADOnz/Pyy+/jMFgoHnz5naJxaYJmzZt2vDoo48yffp0+vfvj9FotFSk/uCDDzh16hRr167lwoULAEyYMEFbokRERK5HVhbs3GFeTRMfZ93n5gadu0DnruDpiT+watUqwsPDmTNnDrGxsQQEBDB8+HC6detW4pM1IiIiIsWte/fu/PLLLyxbtsySsBk5ciQzZswgMjKStm3bUrlyZc6ePWspRDxu3Di7xGLzdTuTJk3Cx8eHr7/+miVLlgDmb8e++eYbwFww08XFhQkTJvDcc8/Z+vYiIiJlU3Y2REbAir/g7FnrPhcX6NARuhrBx8eqSytURERERIquT58+fPrpp1SsWNHSVqVKFX744QeeeuopTp06RUxMDABeXl68+eabdO/e3S6x2DxhYzAYePnllxk6dCjz589n69atxMTEkJWVRdWqVWnTpg1DhgyhTp06tr61iIhI2WMywf598NcyOHPGus/JCdq0he494RrF/kVERETk2jw9PRk0aFC+9tatW7Nhwwa2b9/O6dOn8fX1pW3btjd1hPi12KcyDlCzZk2ef/55e11eRESk7Dt0EJYthRPHrdsNBmhxO/TqBZUqOyY2ERERkXLG2dnZcthScbBbwkZERGzPxcWFRx55xPJYyqjjx2D5MnPC5krBt8EdvSEgsPjjEhEREZFiY9dP+4mJiezZs4dz584B5n1fwcHBdl0yJCJSlrm7uzNz5kxHhyH2cua0OVGzf1/+vltuNSdqatQs/rhEREREyqHY2FgWL17M7t27rfIaISEh9O3bl4CAALve3y4Jm8jISD755BPCwsLIzs626nNycsJoNPLSSy8RHBxsj9uLiIiULmdjzcWEI3bn76tXH3rfCXXrFntYIiIiIuVRRkYGH3zwATNmzCAzMxPAciKUwWDg559/ZtKkSYwcOZJXX30VNzc3u8Rh84TNvHnzeOWVV8jMzLS8oLyysrJYuXIl4eHhfPjhhwwZMsTWIYiIlFkmk4nk5GTAXJVexzKXcnFxsPIv2LHdXFw4r5q1oHcfaNjIXLNGREREROwuOzubRx99lLCwMEwmEx4eHjRv3pygoCAAoqOjiYiIIDU1le+//54DBw4wZ84cu3wut2nCZufOnbz00ktkZ2dTr149xo0bR6dOnaxe2Pr165k6dSoHDx7k5Zdf5pZbbqFly5a2DENEpMxKTk7G5/KxzYmJiXh7ezs4IrkhCQmwehVs3QxZWdZ9gUHmRE2TpkrUiIiIiBSzWbNmsXr1agwGAxMmTGDcuHGWz985kpKSmDJlCp9//jlr1qzhhx9+YOTIkTaPxaYJm6+++ors7Gw6dOjA7Nmz8fDwsOqvU6cOderU4YEHHmDEiBFs2LCBr776imnTptkyDBERkZIpKQnWhMPG9ZCRYd1XuTL06g3NQ8zHdYuIiIhIsZs3bx4Gg4GXXnqJ8ePHFzjG29ubF154AVdXVz7++GN++uknuyRsbPqJcMuWLRgMBj744IN8yZq83N3def/99y1zREREyrTUVHONmk8+gjVh1smaChVhwAPw3IvQoqWSNSIiIiIOdPDgQZycnBg9evQ1x44ePRpnZ2cOHTpkl1hsusImOTkZX19fGjZseM2xDRs2xM/Pj5SUFFuGICIiUnKkp8OmDRAeBpdrD1n4+ICxB7RrDzqiXURERKREcHNzw93dvUilB7y9vfNtl7Ilm35CrFGjBqdOnSI7Oxuna3xDmJWVRVpaGjVq1LBlCCIiIo6XmQlbt8DqlXDpknWfpyd0NULHTmCnEwVERERE5MbceuutbN26lQsXLlCpUqWrjr1w4QIJCQm0a9fOLrHYdN31XXfdRXp6OkuXLr3m2KVLl5KWlkbfvn1tGYKIiIjjZGXB9m3w6Sfwx2/WyRo3N+jeE156BYzdlawRERERKYEeeeQRsrOz+fzzz6859vPPP8dkMvHII4/YJRabrrAZP348S5Ys4eWXX6ZixYp07NixwHGbNm3iX//6Fw0bNuSZZ56xZQgiIiLFLzsbIvfAiuVw9qx1n4sLtO8A3bqbt0GJiIiISIl1zz33EBkZyf/+9z8uXbrEs88+S506dazGHD9+nM8//5wFCxbw1FNP0b9/f7vEYtOEzeLFixkxYgSfffYZgwcPpk2bNvmO9d6wYQNbtmzBz8+P4cOHs3jx4gKvNXDgQFuGJiJSJjg7O/Pggw9aHkvxMJlMhIWFERoaSmxsLAEBAQwbNgxjt24YDvwNy5fBmdPWk5ycoE1b86qaChUcE7iIiIiIXJecXISvry8///wzP//8M9WrV7fKa5w+bf7c5+fnx44dOwrMXxgMBubPn39Tsdg0YfPcc89hMBgA84fbrVu3snXr1nzjTCYTCQkJTJo0qcDrGAwGJWxERArg4eHBggULHB1GuRIXF8eAAQMICwuzap82bRrGRo1YePed+Oc9GdFggBa3Q69eUKly8QYrIiIiIjdl48aN+dpOnTrFqVOn8rVfvHixwPGAJTdyM2xedNgWQYmIiJQEJpPJkqzxdHHh4eBmtAoKZHt0DLMi9xL2zz8MWJjKqocGm3/+Bd8GvXpDYKCjQxcRERGRG/D88887OgQLmyZsNm/ebMvLiYiIOFRYWJglWbNxxDBCAgMAeAwY17IFHWaHEnb8BOEmMD4zHmrUdGzAIiIiInJTSlLCxqanRImIiH0lJSVhMBgwGAwkJSU5OpyyyWSC2FjYsonQf78DwMPBzSzJmhwhgQGMCG4KwJzzcUrWiIiIiIhN2XSFjSPNmTOH3bt3c/DgQS5cuEB6ejqVK1fm9ttv5+GHH6Zhw4aODlFEREqi7GyIiYYjR+DIYTh6BBITAYg9cQKAVkEFb3FqFRQERBAbG1tc0YqIiIhIOVFmEjYzZswgNTWVhg0bWpIzhw4dYvHixSxfvpxPPvmELl26ODhKERFxuKwsOHUKjh42J2mOHoXUlAKHBnh5AbA9OobHCujfHh1tHhcQUECviIiIiMiNs1vCJueEqDNnzpCcnIzJZCpwnMFgYPLkyTd9v8mTJ9OkSRPc3d2t2hcsWMBHH33Eu+++y59//omLS5nJUYmISFFkZMCJ45eTM0fg2FFz27UEVWPYwIFMi9jDrMi9jGvZwmpb1O6YWGZHRgEwfPhwOwUvIiIiIuWVzbMXhw8f5umnn2bPnj1W7SaTKd8JUjlttkjYtGjRosD2gQMHEhoaysmTJzly5AiNGjW66XuJiEgJlpYKx45dTtAchhMnzKtqrsbJCarXgHr1oO7lP15eGE0mjCtXERYWRofZoYwIbkqroCC2R0czOzKKlMxMjEYj3bp1K57XJiIiIiLlhk0TNhcuXGDQoEFER0dTtWpV2rdvz6JFi/Dw8KBv376cPXuWnTt3kpiYSKVKlejZs6ctb1+onFU1rq6uxXI/EREpRsnJ5pUzR4+YkzSnT5nr0lyNszPUqn05QVMf6tQGd498wwwGAwsXLrQc7T11VwQQYek3Go0sXLgw3xcSIiIiIiI3y6YJm++//57o6GhatmzJ/Pnz8fT0ZNGiRfj5+fHFF18AkJyczGeffcb//vc/PDw8+OCDD2wZQj5//vknx44do3bt2tSqVcuu9xIRkWKQkJCbnDl6GC7XkbkqV1eoU9e8cqZ+fahZy9xWBP7+/qxatYrw8HDmzJlDbGwsAQEBDB8+nG7duilZIyIiIiJ2YdOEzcqVKzEYDLzyyit4enoWOMbLy4vXX3+d9PR0pk+fTseOHenfv7/NYpg1axaHDx8mJSWFI0eOcPjwYapWrcp7772Hs7Ozze4jIuIIzs7O9O3b1/K4tDCZTISFhREaGmpJeAwbNgyj0XjthEfchdwTnI4cgfPnrn1DDw9zciZnBU2NGuZVNTfIYDBgNBoxGo03fA0RERERketh04TNsWPHMBgMtGvXzqo9PT0939inn36a6dOnExoaatOEzaZNm9iyZYvlebVq1Zg0aRJNmjQp8jXGjBlDQkJCvvb58+fbJEYRkRvl4eHBn3/+6egwrktcXJxlS1Fe06ZNs2wp8vf3NzeaTHDu7OUEzeUVNPHx176Jj8/lBE19c5ImMMhcl0ZEREREpJSyacImIyODChUqWJ3E5OnpSVJSUr6xVatWxc/Pj3379tkyBL755hsALl26xMGDB/nuu+94/PHHGTduHKNHj7bpvURE5OpMJpMlWePp4sLDwc1oFRTI9ugYZkXuJSwsjAH97mbVxx9jyKlDk5h47QtXqJCbnKlbH6pWBW1NEhEREZEyxKYJm6CgIGJiYqzaqlatyokTJzh27Bh16tSxtGdkZHDp0iW7HbPt6+tLy5Yt+eKLLxg1ahRTpkyhffv2NGvW7Jpzv//+e7vEJCJS3oSFhVmSNRtHDLMci/0YMK5lCzrMDiVsw0bCv/4KY53ahV+ochVzciYnSVPRXwkaEREREbGLxYsXk5SUxMCBAx0ah03Xi9eoUYO0tDROnz5taQsJCQFg4cKFVmPnz59PdnY2QUFBtgwhHxcXF+644w5MJhNr1661671EROwtKSkJb29vvL29C1y9WNKEhoYC8HBwM0uyJkdIYAAjgpsCMGdvlPXEoCBo3xEeGgavvgEvvgwPDITbW4F/JSVrRERERMRu3nnnHV544QVHh2HbFTbt2rVj48aNbNy4kQceeACABx54gEWLFvHf//6Xs2fP0qxZM6Kiovjxxx8xGAz06dPHliEUqGLFioC5joKISGmXnJzs6BCKLDY2FoBWQYEF9rcKCgIiiM02Qecu5hU0deqCt3fxBSkiIiIicgWTyZSvrWXLlpw/f57jx48XSww2XWHTr18/atSowbp16yxtvXr14t577yUzM5PZs2fzyiuvMGvWLDIyMmjYsCHPPfecLUMo0I4dOwCoWbOm3e8lIiK5AqpWBWB7dEyB/dsvH8kd0K4d3N0fmjZTskZEREREis2IESP43//+x44dO8jKyrrm+IISOfZi0xU2t9xyC5s2bcrX/tVXX9GxY0f++OMPTp8+jZ+fH0ajkbFjx+Ln53fT9921axfJycm0b98epzyngmRmZvLzzz+zePFi3N3dueOOO276XiIiUkQpKQyrUplpwKzIvYxr2cJqW9TumFhmR5q3Qg0fPtxBQYqIiIhIebZ69WrLaaaenp60bt2a+MunlGZlZeHs7Oyw2OxT8fcKBoOBYcOGMWzYMLtc/8SJE0yaNImKFSvSpEkTKlSoQHx8PAcPHuTcuXO4u7szceJEu9fLERGRy2JjYNYPGA0mjLVrEXb8BB1mhzIiuCmtgoLYHh3N7MgoUjIzMRqNdOvWzdERi4iIiEg59Ouvv7J+/XrWr1/Pjh07WLNmjaWvSZMmtGrVio4dO9K+fXuys7OLNbZiSdjY2+23386oUaPYsWMH//zzD/Hx8bi6ulKtWjV69uzJkCFDqFWrlqPDFBEpH6L2wvyfIC0Ng8HAwgH3MWDZX4Tt28/UXRFAhGWo0Whk4cKFGFREWEREREQcoE2bNrRp04Znn32W9PR0tm3bxtixY4mPjycrK4u1a9dayr6YTCYMBgOff/45nTp1omXLlnY7+RqKIWFz8uRJzp07B0CVKlXsUkemRo0aPPXUUza/roiIXIfsbFi9Elb8ZdXs368/q/7zGeFr1zJnzhxiY2MJCAhg+PDhdOvWTckaERERESkR3Nzc6NixI97e3sTHx7Nv3z527NjBpk2b2LRpExs3biQ7O5v//Oc/TJ48GU9PT9q0aUPnzp0ZN26czeOxS8ImOjqar776ij/++CPfyUwVK1bk3nvv5cknn6R69er2uL2ISJnl5ORk2T6Ut2aXw6WlwoL5sDcyt83dHQYNgabNMGBeTWM0Gh0VoYiIiIhIPgcOHKBx48YF9rm5udG+fXvat28PmE+JOnfuHC+99BIbNmxgx44dhIeHs2bNmtKRsAkPD2fcuHFcunSpwOrJcXFx/PDDD/zyyy988803dO/e3dYhiIiUWZ6enpaiaCXGuXMw+wdz3ZoclavAw49AQMHHeYuIiIiIlAQ9evSgatWqtG3blo4dO9KhQ4drngQ1YcIEJkyYQEZGBjt37mTjxo12ic2mCZuDBw/y6KOPkpaWRsWKFRkxYgSdOnWyFPuNjo5mw4YNzJkzhwsXLjBmzBiWLVtGw4YNbRmGiIgUlwN/w9wfITUlt63xLTBkKHh6Oi4uEREREZEiaNKkCX///Td//vknixcvBnJr1cyYMYP27dvTpEmTAue6urrStm1b2rZta5fYbJqw+e9//0taWhpNmjThp59+onLlylb9DRs2pHPnzowZM4bBgwezf/9+/vvf//Lll1/aMgwREbE3kwnWhMOyJebHOYzd4Y4+UJK2a4mIiIiIFOKvv/7i4sWLbN682VKnJjLSvM3/rbfeAsDf35927dqRmJhYrLHZNGGzbt06DAYD//nPf/Ila/KqVKkSn3zyCf369bNUWxYRkWtLSkqibt26ABw9ehRvb+/iDyI9HX5ZABG7c9tcXeHBQdA8pPjjERERERG5CRUqVKB379707t0bgPbt23Pq1Ckef/xx1q9fT1RUFEuWLAHAYDDQokUL2rVrR4cOHejYsWOhNXBulk0TNgkJCXh7exMScu0P7C1atMDb25uEhARbhiAiUublnLznEHEXYPYsOHM6t83fH0Y8AtVUSF5EREREyo4333wTMOc6Nm3axPjx40lKSiI+Pt5qC1WVKlXYuXOnze9v04RNQEDAdf0ikZ2dTUBAgC1DEBERezl0EOaGQlJSbluDhvDQMHDESh8RERERkWLg5+dH79698fT0JCkpib1797Jx40Y2btzIunXr2Ldvn13ua9OETY8ePZg1axbr1q2jc+fOVx27du1aUlJS6NWrly1DEBERWzOZYMN6WPx/kJ2d296pC9zVF5ydHRebiIiIiIiNXeuUKG9vb3r16mXJZ1y8eNEucdg0YfPss8+yePFiXnzxRUJDQ2nQoEGB4w4fPszLL79MYGAgEyZMsGUIIiJiSxkZ8PuvsH1bbpuLC9z/ANzeynFxiYiIiIjYyVtvvUVS3lXl11ChQgW7xGHThM2hQ4d45ZVXmDRpEr179+buu++mU6dOVKtWDYAzZ86wYcMG/u///g8PDw/efvttDh48yMGDB/Ndq3379rYMTURErtfFizBnFpw8kdtWoQIMfxhq1nJcXCIiIiIidnT33XcX2N6qVSvi4+OLLQ6bJmwefPBBDAaD5fmvv/7Kr7/+WuDY9PR0XnjhhQL7DAYDx48ft2VoIiJyPY4ehdBZkPfowrp1YegI8PV1VFQiZV5kZCQjR44EYOzYsTz22GOFjn388cfZsWMHf/zxB9Wr31zRb1te62ZdvHiRX375hY0bN3L06FESEhLw8PCgRo0a3HbbbfTq1Ys2bdo4NEYRESmfvv/++2K9n00TNnDtvV7FdQ0RkbLIycmJ1q1bWx7bxZZN8MfvkJWV29auA/Trb94OJSJ2k3PaBMCSJUuumrApi1avXs3EiRNJSkrCy8uL4OBg/P39SUlJ4ejRo/zyyy/88ssvdOrUif/+97+ODldERMSubPrJ++TJk7a8nIiIXMHT05OtW7fa5+KZmfB/f8DmTbltzs5wz33Qtp197ikiFpmZmSxfvhyAypUrc/z4cSIjIwkODnZwZMVj7dq1vPzyyzg5OTF+/HiGDBmCm5ub1ZijR48yc+ZMIiIiHBRl8TGZTCQnJ9v8ul5eXlYr4kVEpOTSV6UiDqAPYVLiXLoEobPh2NHcNl9fGDYC6tR1VFQi5cqGDRuIj48nJCSEDh06MGXKFP78889ykbBJTk5m0qRJmEwm3n77bfr27VvguLp16zJx4kS7HZ9akiQnJ+Pj42Pz6yYmJuLt7W3z64qIiO0pYSPiAPoQJiXKiRPm4sIJeY4jrFnLXFzYThXvRSS/JUuWAHDXXXdZEjZ//fUXL7zwAi7XsR2xdevWVKtWjYULFzJ9+nQWL17M2bNnqVq1KnfddRejRo3C3d290PlhYWHMnDmTgwcP4ubmRvv27ZkwYQKBgYFW486dO8eff/7J+vXrOXHiBHFxcVSoUIHmzZszcuRImjVrVuSYFy1aRHx8PM2bNy80WZNXkyZNCmyPiIiwrMBJSkqiSpUqdOrUidGjR1O1atUixyMiIlISKGEjIlKKJCcn07RpUwCioqLw8vK6uQvu2A6//mLeDpWjVWu4935wdb25a4tIkd+ziYmJrFmzBldXV+644w5L4iMiIoINGzbQtWvX67qvyWTi5ZdfZsuWLbRt25bGjRuzdetWvv/+eyIiIvjyyy9xdnbON2/BggX8+OOPtGjRgk6dOhEZGcny5cvZv38/P/74Ix4eHpaxYWFhfPnll9SpU4dGjRrh7e3N8ePHWb16NWvXruXzzz8v8qmfGzZsAKBPnz7X9TrzWrx4MZMmTSIrK4uQkBACAwPZv38/P//8M6tXr+bbb7+lbt26N3x9R4r58Um8PW783+Sk1AwCh35jw4hERKQ4KGEj4mD6ECbXw2QycezYMcvjG5aVBYv/hA3rctucnODu/tChI2hrnYhNFPU9u2LFCtLS0ujWrRsVLq9s69u3LxERESxevPi6EzbR0dGYTCbmzZtHzZo1AYiLi+OJJ55gy5YtzJs3j6FDh+abt2DBAr777juaN28OQGpqKk8++SQREREsW7aMe++91zK2RYsWzJs3jwYNGlhdY+PGjTz//PN8+OGH/Prrr0XaqvvPP/8AcMstt1zX68z7et977z0AJk+eTLdu3QDIzs7ms88+Y+7cubz11lvMmjXrhq7vaN4ernh7uF17oIiIlClK2Ig4mD6ESbFLSoK5oXDoYG6btzcMHQ71GxQ+T0TsJud0qLvuusvS1qtXL/7zn/+wdu1aEhMTr3sr7ZgxYyzJGgB/f38mTJjA+PHjmT9/foEJm6FDh1qSNQAeHh4MGzaMiIgIdu7caZWwadiwYYH37dChA7169WLJkiUcOnSo0HF5Xbxo3pJZsWLFfH0JCQl8+umn+dpHjhxpWTHz+++/k5aWRp8+fSzJGjCfpvfMM8+wYsUKoqKi2LVrFy1atLhmPCIiIiWBEjYiIuXJmdMw+weIi8ttq14dhj8C/v6Oi0ukHIuOjmbnzp34+vparaSpWLEinTp1Ijw8nBUrVnDfffdd13V79+6dr61jx474+flx8uRJzp07R5UqVaz6C9rCVKdOHcBcs+ZK6enpbNiwgb179xIfH09GRgYABw+aE8LHjx8vUsLmalJSUvi///u/fO39+vWzJGx27twJWCe8cri5udGrVy/mzp2rhI2IiJQqStiIiJQXEbvg5wVw+RcqAEJawIAHwU2rvEQcZcmSJZhMJnr27JnvGOu77rqL8PBwFi9efF0JGz8/v0KL0AcFBZGQkMDZs2fzJWwCAgLyjc+pu5Oenm7VfvDgQZ5//nlOnz5daBxFPRGxQoUKxMbGEh8fn68vMDCQbdu2WZ4/88wzbNy40WrM2bNnAahWrVqB189pj42NLVI8IiIiJYESNiIiZV12NixfCuFhuW0GA9zZF7p0Vb0aEQfL2Q61fft2Ro8ebdWXs2Jl586dnDlzptCEhK04OTkVaZzJZOKVV17h9OnTPPDAAzzwwAPUqFEDLy8vDAYDX3/9NTNmzChyra1GjRoRGxvL33//bZcVMEWpoyMiIlLSFO2nsoiIlE4pyfDDDOtkjacnjBwNXbspWSPiYPv27ePIkSMAnDhxgt27d1v9iYqKAswJkpxjv4siISGBpKSkAvtiYmIAbuqY66NHj3L06FGaNm3Kq6++SuPGjfH29rYkRk6ePHld1+vYsSMAy5cvv6F4cl7LmTNnCuzPWQVU0AoiERGRkkorbEREShGDwWA5Ivia3xjHxMDsmXD+fG5bYCCMGAmVK9stRhHJda33bM7qmhEjRjBhwoQCr7F9+3bGjh3LkiVLePTRR4t877/++ivfNqpNmzZx8eJFatSokW871PVISEgACk6AJCQksGXLluu6Xv/+/Zk6dSq7d+9m8eLF9O3b97rmt2zZkm3btrFs2TI6d+5s1ZeRkcHKlSsBVL9GRESs1KpVyybXMRgMHD9+3CbXyqtYVtiYTCYiIiJYtGgRixYtIiIi4uaOoxURKae8vLzYu3cve/futdSVKNDeSPjmS+tkTbNgGPeUkjUixehq79msrCzLipI+ffoUeo2WLVsSEBDAkSNH2LdvX5Hv/d1331nVl4mPj+e///0vAAMHDryel5FPrVq1cHJyYuvWrVYfUNPS0vjggw8spz4VlZeXF2+//TYGg4FJkyYxa9Ys0tLS8o2LiYmxrBDK695778Xd3Z3ly5ezbt06S3t2djZff/01sbGxNGnSRAkbERGxYjKZbPbHHuy+wmbFihW88cYbnDp1yqq9evXq/Pvf/y7wBAMREblB2dmwagWsXGHdfkcfMHaHItanEBH727RpE+fPn6d27drceuuthY5zcnLijjvuIDQ0lMWLF9OkSZNrXjsoKIhGjRoxaNAg2rRpg4uLC9u2bePSpUu0bt2aIUOG3FTslSpV4t577+XXX3/loYceok2bNri7u7Nr1y6ysrLo378/ixYtuq5rdu3alY8//piJEyfyxRdf8P333xMcHIy/vz/JycnExMRw8OBBsrOzCQ4Opnbt2lav97XXXmPSpEk899xzhISEEBgYyP79+zl27BiVK1fm3//+9029ZhERKXsWLFjg6BCuyq4JmzVr1jB69GiysrJo1qwZ9erVIzU1lT179nDq1Ckee+wxZs+ebXWEpYiI3KDUVFgwD6L25ra5u8Pgh6BJU8fFJSIFytkOdbXVNTn69OlDaGgoy5YtY8KECbi4XP0jnMFg4KOPPuK7775j2bJllhOhBg4cyKOPPnrN+UXxyiuvUKdOHf744w+2bt2Kj48Pbdu25cknn+SPP/64oWt2796d22+/nV9++YX169dz4MABLl26hIeHB0FBQdxzzz307t2bNm3a5Ntidvfdd1OzZk1mzpxJREQEkZGRVKlShQcffJBHH31U9WtERCSfDh06ODqEqzKY7Lg36d5772Xfvn1MmzaNLl26WNozMzP58MMPmTJlCq1bt+a3336zVwgiJVJSUhI+Pj4AJC6cgLfHjR+pnJSajs8A8xL3xMTEQo9xlbIhOTmZNm3aALB169bcLRbnzsLsHyDvkbVVqpjr1eiXFBGHKfQ9a0etW7emWrVq173CRUqW0vxZoTTHDqU7/tIcO5T++EVs7abWxkdERFy1f+/evfTu3dsqWQPg4uLCv/71L9zd3YmMjLyZEEREyhWTyURUVBRRUVG5e2X/3g9ff2mdrLnlVnjqGSVrRByswPesiIiISBHc1HrYfv368eijj/Lyyy8X+I2Ru7t7oUXnkpKSyMjIwNfX92ZCEBEpN0wmE+Hh4ZbnTz35JI+0CMEYG43VxoDuPaBXb9WrERERERG5SSaTifj4eJKTk686rkaNGja/900lbNq2bcv333/PkiVLePfdd7njjjus+jt27MjSpUv5/PPPeeyxxyzL0A4dOsQbb7yByWSiY8eONxOCiEi5EBcXx4ABAwgLC7O0/TBrFj/MAmPtWiwccB/+fn7w4CC4rbnjAhURERERKQP++usvpk+fzvbt20lJSbnqWHsd631TCZuff/6ZefPm8e677/Loo49y11138e9//5vAwEAAXn/9dTZt2sTkyZP59NNPqVy5MqmpqSQmJmIymahQoQKvvPKKTV6IiEhZZTKZLMkaTxcXHg5uRqugQLZHxzArci9hx08w4I8/WbVuLYZq1R0drog42LZt2xwdgoiISKn27rvv8u233xZ5O7O9tj3f9Hr5wYMHEx4ezn333cfixYsxGo388MMPANStW5elS5dy77334unpydmzZ7l06RJeXl7cc889LF68mAYNGtz0ixARKcvCwsIsyZqNI4Yx5c7ePNYihCl39mbjiGF4urgQdvgw4X8fcHSoIiIiIiKl2urVq5kyZQouLi68+eabrF69GoDKlSuzfv16fv31V55//nkqVqxIpUqVmDlzJps2bbJLLDYpcFCpUiW+/PJLfvzxRypVqsQbb7zBPffcw/79+6lRowZfffUV+/btY+fOnezcuZN9+/bxzTffUKdOHVvcXkSkTAsNDQXg4eBmhARaFxEOCQxgRLD5yO45c+YUe2wiIiIiImXJnDlzMBgMTJgwgbFjx9KoUSMAnJ2dqVOnDm3atOH5559n+fLl+Pr68uKLL+LmduMnml2NTStSdu3alVWrVvHkk0+yZ88e7rrrLj744APS0tJwcnKiatWqVK1aFScVwhQRKbLYy6c/tQoKLLC/VVCQ1TgRKTkMBgN16tShTp06GAyGa08QERERh9q1axcAw4YNs2q/cttT9erVee+99zh37hxff/21XWKxeebE3d2dV199lSVLlnDbbbfx9ddf07NnT9asWWPrW4mIlAsBVasCsD06psD+7dHR5nE6wlukxPHy8uLo0aMcPXq0wBM1RUREpGSJi4vD09OTqpc/g4N5dU1BhYe7du2Ku7s7K1eutEssdlvqcuutt/LHH3/w/vvvc+HCBYYNG8b48eO5cOGCvW4pIlImDWt+GwCzIveyO8Z6Fc3umFhmR0YBMHz48GKPTURERESkLPHx8cHV1dWqzdfXl6SkpHxHezs5OeHi4kL05S9Qbe2mEzaJiYl89tln3HfffXTp0oX77ruPzz77jISEBAAefvhhwsLC6Nu3LwsXLqRr167MmzfvpgMXESkXDv6DMfo0xtq1SMnMpMPsUMYuXcbUXbsZu3QZHWaHkpKZidFopFu3bo6OVkRERESkVAsKCuLSpUukpqZa2urXrw/A1q1brcYePnyYpKQkXFxu6gDuQt1Uwub8+fPcddddfPrpp2zbto0jR46wbds2Pv30U/r27cu5c+cA8zL9b7/9lpkzZ+Lt7c2LL77IwIEDOXz4sE1ehIhImXThAvwYigFYOOA+jPXrkZKZydRdEYxdupypuyIsyZqFCxeqPoZICZSSkkKbNm1o06ZNgUupRUREpGRp0qQJJpOJyMhIS1vXrl0xmUx8+OGHlrqR58+f5+WXX8ZgMNC8eXO7xHJTCZuPPvqII0eO0LhxY6ZPn05YWBjTp0/nlltu4dixY3z88cdW43v16kVYWBhjxoxhy5Yt3HHHHXz22Wc39QJERMqk9HSY/QOkmJdd+vv6smrNGhYvXmwZ8sgjj7B69WpWrVqFv7+/oyIVkavIzs5m27ZtbNu2jezsbEeHIyIiItfQvXt3TCYTy5Yts7SNHDmSChUqEBkZSdu2bWnVqhUtW7Zk8+bNAIwbN84usdxUwmbFihUYDAZ++OEHevfuTcOGDenduzczZ87EZDKxYsWKfHM8PT15++23+fPPP2ncuDGffvrpzYQgIlL2mEzwywKIPpPbNuBBDDVq0rVrV0vT119/jdFo1MoaEREREREb6dOnD59++ilt2rSxtFWpUoUffviB6tWrk5mZSUxMDNnZ2Xh6evL+++/TvXt3u8RyUxut4uPj8fLyombNmlbtNWvWxMvLi/j4+ELnBgcH8+effzJ9+vSbCUFEpOxZGw4Ru3Ofd+4CLVo6Lh4RERERkXLC09OTQYMG5Wtv3bo1GzZsYPv27Zw+fRpfX1/atm2Lr6+v3WK5qYRNtWrVOH78OFu3brXKPm3dupXk5GTq1Klz1flOTk6MGTPmZkIQESlbDhyApUtynzdoCHf2dVw8IiIiIiICmI/3btu2bbHd76YSNg888ACffvopjzzyCMOHD6d27docO3aM0NBQDAYDDzzwgK3iFBEp+86fh59CzVuiAPz94aFh4Ozs2LhERERERMqJzz77DC8vL8aOHVuk8dOmTSMhIYHnnnvO5rHcVMJm/PjxREVFsXTpUv73v/8BYLr8i8Ydd9zB+PHjbz5CEZHyID0d5vwAOafIuLrCiEfA29uxcYmIiIiIlCOTJ08mICCgyAmb7777jlOnTpW8hI2Liwvff/8969evZ82aNcTFxeHv70+XLl3o3LmzrWIUESnbTCb4eT5ER+e2PTAQqlUvcHiVKlWKKTARsQW9Z0VERORG3FTCJkenTp3o1KmTLS4lIlL+rAmDPRG5z7t0hZAWBQ719vbm7NmzxRKWiNw8vWdFRETKtvj4eNzd3e1y7Zs61ltERG7S33/DsqW5zxs2gj53OS4eEREREREpkkWLFpGYmEiNGjXscn2brLAREZEbcO4c/PRjniLDlWDIUBUZFhEREREpJt9//z3Tpk2zajt//jwdOnQodI7JZCIhIYFLly5hMBjo2bOnXWJTwkZExBHS0sxFhlOvr8hwSkoKd91lXoGzZMkSPD097R2piNwEvWdFRERKtoSEBE6cOGHVlpWVla+tMJ07d7ZLwWFQwkZEpPjlFBmOiclte3AQVKt2zalZWVmEh4cDcOnSJbKzs20SkpeXFwaDwSbXEpFc2dnZlvesrd6vIiIiYjt9+vShZs2agHnlzAsvvICfnx8TJ04sdI6TkxO+vr7ccsst1K1b126xKWEjIlLcwlZD5J7c512N0DykSFOTk5MtjwMDA20WUmJiIt46QlxEREREyplmzZrRrFkzy/MXXngBDw8PBg0a5MCozJSwEREpTvv3wV/Lcp83agx97nRcPCIiIiIiYnHy5ElHh2ChhI2ISHE5dxbmzc0tMlzpcpFhpxs7sO/w9McIqOh1w+EkpWYQOPSbG54vIlKSmUwmq1WJtqItpCIiUlyUsBERKQ5pqTB7FqSmmp+7uZmLDHvdeMLF28MVbw83GwUoIlK2JCcn4+PjY/PragupiEj5YDKZWLJkCb/99hsRERGcO3cOgCpVqhASEsL9999Pnz597JrEV8JGRMTesrNhwXyIvaLIcNC1iwyLiIiIiEjxOnv2LI8//jjbtm0DzMmbHCdPnuTUqVMsXryYNm3aMGXKFAICAuwShxI2IiL2FrYa9kbmPu/WHW5r7rh4RKRYed3ESjqxjZgfn8Tbw/WG52sLqYhI+ZGens7QoUPZv38/JpOJFi1a0LVrV6pdPtH1zJkzrF27lp07d7J161aGDx/On3/+iavrjf+cKYwSNiIi9rR/H6xYnvu88S3Qu88NXy7vMvyb+eVDRIqHt7c3SUlJjg6j3NMWUhERKapZs2axb98+fH19+eKLL7jjjjvyjXn55ZdZuXIlTz/9NPv27WP27Nk8+uijNo/lxipdiojItZ09Cz/lLTJcGYY8dMNFhkVERERExL4WLVqEwWDgvffeKzBZk6Nnz5689957mEwmfv/9d7vEot8aRETsITUV5vxgLjYMuUWGPbU1QkRERESkpDp48CCurq7cc8891xx7zz334ObmxsGDB+0SixI2IiK2lp0NC+ZBbGxu28DBEBR005dOzTllCkhNz7zp64mIfaWmpnL33Xdz9913W71/RUREpGRKTU3F09MTF5drV5BxcXHB09PTbj/jVcNGRMTWVq+EqL25z409IPg2m1w6Kysr93G26SojRaQkyMrKYvHixZbHIiIiUrJVqVKF06dPc+rUKWrUqHHVsSdOnODixYvXHHejtMJGRMSW9kXBir9yn99yK9zR23HxiIiIiIhIkbVr1w6TycTEiROtjvO+kslkYtKkSRgMBtq3b2+XWLTCRkTEVmJjYd5Puc8rV4HBKjIsIiIiIraxb98+Nm/ezN69e9m7dy+xl7fgb9u27arzFi1axIIFCzhy5Aiurq4EBwczevRoQkJCCp2za9cupk+fTmRkJBkZGdSrV49BgwbRr1+/QufExMQwZcoUNm7cSEJCAkFBQfTp04eRI0fi7u5e4JzU1FRmzpzJ8uXLiY6Oxs/Pjw4dOjBu3DgCAgJs+poKsmDBAjw8POjfvz8Ajz/+OL/++itLly5l4MCBTJgwgfbt21uO7c7IyGDjxo188cUXbNq0CScnJx577LHrumdRKWEjImILqSmFFBn2dGxcIiIiIlJmfP/994SHh1/XnMmTJzN37lzc3d1p37496enpbN68mc2bN/PRRx9hNBrzzVm5ciWvvfYa2dnZtGzZkooVK7J161YmTpzIwYMHefbZZ/PNOXHiBKNGjSI+Pp4GDRrQsmVLoqKi+O6779iyZQv/+9//cHNzs5qTlpbGuHHj2LNnD1WqVKFbt26cPn2aRYsWsW7dOmbMmEHNmjVt8poK89xzzxEYGGhJ2AQHB/Pmm2/yzjvvsHnzZoYOHYqLiwuVKlUC4MKFC2RmZlpW37z55psEBwcX+X7XQwkbEZGblZ0N838yH+OdY9AQCAx0XEwiIiIiUubcdtttNGrUiKZNm9K0aVPuuece0tPTCx2/efNm5s6dS4UKFZgxYwa1a9cGICIigrFjxzJp0iRatWqFr6+vZc7Fixd55513yMrK4uOPP6ZHjx4AnD9/njFjxjBnzhw6d+5M69atre41ceJE4uPjGTJkCC+++CIAmZmZvPrqq6xevZoZM2YwduxYqznTpk1jz549NG/enK+++govL/OJqnPmzOHzzz/nnXfeYerUqTf9mq7lyq1Pjz/+OPXq1eO9997j4MGDZGRkEBMTYzWmcePGvPbaa/Tq1avI97leWqcvInKzVq2Afftyn/foCc3sk2UXERERkfJr5MiRPPHEE3Tt2pUqVapcc3xoaCgAo0ePtiQ2AJo3b84DDzzApUuX+P33363m/PbbbyQlJdGtWzdLsgagcuXKjB8/3uq6OSIjI9m9ezeVKlWyjAHzKUqvvPIKLi4uzJs3j8zM3FNOMzIymD9/PgAvv/yyJVkDMHz4cBo1asSOHTvYl/dz9g2+phtxxx13EBYWxl9//cXkyZN59dVXefXVV5k8eTJ//fUXq1atsmuyBpSwERG5OVF7YeWK3Oe3NoGedzguHhERERERzLVhcmrb9OzZM19/TtuaNWus2tevX1/onM6dO+Pu7s6WLVtIS0vLN6dLly75tj1VrlyZli1bkpCQwK5duyztu3fvJjExkZo1a3LrrbcWKb4bfU03o0mTJgwePJinnnqKp556isGDB9OkSRObXf9qlLAREblRsTEwb27u8ypVYPAQuxYZ9vb2zn3s4Wq3+4iIbXh7e2MymTCZTFbvXxEREXs7duwY6enp+Pv7E1jAVv2cJMnBgwet2g8cOGDVn5erqysNGjQgLS2N48ePF2lOYfe6kTk3+ppKK9WwERG5EakpMPsHyNkz7O5uLjLsoSLDIiIiIpLfoEGDCu3L2RpkS9HR0QCFnrTk6emJr68vCQkJJCUl4e3tTWJiIomJiVedFxAQQFRUFGfOnKFRo0ZFuldO+5kzZ4oc343MKeg1lWZK2IiIXK/sbPPx3efO5bYNGgIBKjIsIiIiIiVDSkoKAB4eHoWO8fT05NKlSyQnJ+Pt7W2Zc7V5npdPQU1OTi7yvYprTkGvqSjOnj1LrVq1ijS2IAaDwWrFka0oYSMicr1W/gX78xQ/69kLmjYrllunpqbmPk7PxNvD7SqjRcTRUlNTGTFiBACzZ8++6gdMEREp2+yxikZs58qTokoCJWxERK5H5B5YtTL3eZOm0MO+1eHzysrKyn2cXfJ+qIiItaysLH7++WcAZs6c6dhgRESkXMlZoZL3C78r5axYyTmhKWdOzjwfH59rzinKvYprTmHzrsXLyyvfkeMlgRI2IiJFFRMDC+blPq9a1bwVyo5FhkVEREREbkRQUBAAsbGxBfanpKRw6dIl/Pz8LFuHfHx88PHxITExkdjY2AITNjnXq1atmtW9/v7770LvVdicq8V3I3MKek1F4e3tzfPPP1/k8cVFv2WIiBRFSgFFhoc/AtreICIiIiIlUJ06dXBzcyMuLq7ABMf+/fsBaNiwoVV748aNrfrzyszM5NChQ7i7u1O7du0izSnsXjcy50ZfU2mlhI2IyLVkZ8NPP8L5PEWGBz8EhVSnFxERERFxNA8PD1q3bg3AihUr8vWvXGne5t+1a1er9k6dOln157V27VrS0tJo27Yt7u7u+easXbuW9JwvOC87f/48O3fuxM/PjxYtWljaQ0JC8PHx4eTJk/z9999Fiu9GX1NppYSNiMi1/LUcDuT5IdLrDnPtGhERERGREmzYsGEATJs2zeoUo4iICBYuXIivry/33nuv1Zz77rsPb29vwsPDWbVqlaX9woULfPHFF1bXzREcHExISAgXLlzgyy+/tLRnZmby4YcfkpmZyeDBg3Fxya3K4urqajnq/KOPPrI6oWrOnDn8888/3H777TRp0uSmX1NppRo2IiJXE7kHwnJ/UNG0GXTv6bh4RERERKTcWrduHd9//73leUZGBgAjR460tI0ZM4bOnTsD0K5dOx566CHmzp3L0KFDadeuHRkZGWzevBmAt99+G19fX6t7VKhQgbfeeotXX32Vf/3rX7Rq1YoKFSqwZcsWLl26xLBhwyyrXPJ6++23GTVqFHPnzmXr1q3Uq1ePqKgoTp06RfPmzRk1alS+OaNHj2bLli1ERERw//3307JlS86cOUNkZCT+/v689dZb+ebcyGsqrZSwEREpTHT0FUWGA2DgYBUZFhERERGHiIuLIzIyMl973ra4uDirvhdeeIHGjRszf/58Nm/ejKurK+3atWP06NGEhIQUeJ+ePXsydepUpk+fzp49e8jIyKB+/foMGjSIfv36FTindu3ahIaG8u2337JhwwaOHTtGUFAQY8aMYdSoUbi5ueWb4+7uzpQpU5g5cyZLly4lLCwMPz8/+vfvzxNPPEFgYGCB97qR11QaKWEjIlKQlOQrigx7wIiHHV5kOO/xhF7u+idcpKTz8vIiMTHR8lhERORm9O/fn/79+xfLvBYtWli2QBVVUFAQb7/99nXN8fDw4IknnuCJJ564rnk3+ndxpZMnT970NexFn/ZFRK6UnQ1zf4QL583PDQYY8pB5hY2DGQyGAh+LSMlkMBiu61hRERERkRxa1y8icqXly+CfA7nPe/WGW5sUPl5ERERERMTGlLAREclrTwSEr8593iwYjN0dF88V0tLSch9nZDowEhEpirS0NEaOHMnIkSOt3r8iIiIi16KEjYhIjugz1kWGAwJh4KASVWQ4MzM3SZOZZXJgJCJSFJmZmfzwww/88MMPVu9fERERkWspOb+FiIg4UvLlIsOXj0bE43KRYXfHFhkWEREREZHySQkbEZHsbPjpR7hwwfzcYIAhQ6FKVcfGJSIiIiIi5ZYSNiIiy5ZaFxm+ow/ccqvj4hERERERkXJPCRsRKd8idsGasNznwbeVqCLDIiIiIiJSPrk4OgARkeJiMpkICwsjNDSU2NhYAnx8GOZiwFi9OgaDAQID4cFB5i1RIiIiIiIiDqSEjYiUC3FxcQwYMICwsDCr9mmAsXYtFj40BP/hj4C7u0PiExERERERyUtbokSkzDOZTJZkjaeLC2NbhDD1zt6MbRGCp4sLYcdPMGB1OKbKlR0d6jV5eXnlPnZXzl2kpPPy8iI2NpbY2Fir96+IiIjItejTvoiUeWFhYZZkzcYRwwgJDADgMWBcyxZ0mB1K2JYthIeHYzQaHRrrtRjybNcyaOuWSIlnMBioWlUnzomIiMj10wobESnzQkNDAXg4uJklWZMjJDCAEcFNAZgzZ06xxyYiIiIiIlIQJWxEpGxLTSF2XxQArYICCxzSKigIgNjY2GIL60alpaXlPs7IdGAkIlIUaWlpPPXUUzz11FNW718RERGRa9GWKBEpmxITYf1a2LiRgMREALZHx/BYAUO3R0cDEBAQUEBvyZKZmZukycwyOTASESmKzMxMvvnmGwA+/vhj3FXYXERERIpIK2xEpGyJi4M/foOP3oew1ZCWyrBm5i1PsyL3sjvGehXN7phYZkeaV+AMHz68uKMVEREREREpkFbYiEjZEBsLa8Jg5w7IzrbqMjZuhLF5c8IiIugwO5QRwU1pFRTE9uhoZkdGkZKZidFopFu3bo6JXURERERE5ApK2IhI6XbqpHklzd5IMF2xRcjHBzp1wdC+PQsnPG852nvqrgggwjLMaDSycOFCnbokIiIiIiIlRplI2KSmprJp0ybWrFnDrl27iI6OxsnJiVq1atGjRw+GDRuGl5eXo8MUEVsxmeDIYXOi5p8D+fsrVoSuRmjdBlxdAfD38GTVqlWEh4czZ84cYmNjCQgIYPjw4XTr1k3JGhERERERKVHKRMJm6dKlvPvuuwDUq1ePrl27kpSUREREBN9++y3Lli1j6tSpVKpUycGRishNMZlg/z5zoub4sfz9VQPA2B1CWoCzc75ug8GA0WjEaDTaPVQREREREZGbUSYSNi4uLtx///0MHTqUevXqWdrPnTvHhAkT+Pvvv5k8eTLvvfeeA6MUkRuWlQV7IiB8NVw+0clKjZrQvQc0aQpOqqUuIiIiIiKlX5lI2PTr149+/frla69SpQr/+te/ePTRR1m9ejUZGRm4Xt4eISKlQGYm7NgG4eFw4Xz+/voNzCtqGjaCcrKlydPTM/exW5n4J1ykTPP09OTIkSOWxyIiIiJFVeY/7Tdu3BiA9PR0Ll68SJUqVRwckYhcU1oabNkE69ZCQkL+/iZNzYma2nWKPzYHc8qzgsjJqXwkqURKMycnJ+rWrevoMERERKQUKvMJm5MnTwLmbVN+fn4OjkZEriopCTauhw0bICXZus9ggOYh5kRNUDXHxCciIiIiIlJMynzC5qeffgKgQ4cOuLm5OTgaESlQwkXzaprNmyA93brP2RlatTaf+lS5skPCK0nS8/z9pGdk4e3hwGBE5JrS09N5/fXXAXjvvff0WUREbMpkMpGcnPslV1JSUu7j1AyrsV7uriXuVMzSHr+IvZXphM26dev4/fffcXFxYdy4cUWeN2bMGBIK2IYxf/58W4YnIufPw5ow2L7NXFg4Lzc3aNceOncBvwoOCa8kysjI/fCSkZXtwEhEpCgyMjL4z3/+A8DEiROVsBERm0pOTsbHx6fAvsCh31g9T1w4AW+PkvVvUGmPX8TeymzC5ujRo7z11luYTCYmTJhgqWUjIiXAmTPmE58idpuP6s7L0ws6dYIOncDLyzHxiYiIiIiIOFiZTNjExsbyzDPPkJCQwLBhw3jooYeua/73339vp8hEyrljxyBsFezfl7/Pzw+6dIU27cDdvfhjExERESnFek3+CucrPkNlpaWx4oWnHRTR9Snt8YvYQ5lL2Fy8eJGnn36aM2fO0L9/f5599llHhyRSvplM8M8/5kTNkcP5+ytVBqMRWrYClzL3T5KIiIhIsXB2d8flKl96PR3TCDcPc78BU75+wxX/zTaZ6DrxfQBeXLzCclKlpYpMnnoyhvxNGMhfbyanP6cvIy21yPGLlEdl6rej5ORkxo8fz+HDh+nevTtvvPGGClOJOEp2NkTtNSdqTp3K3x9UzXziU/Bt5sLCIiIiImI3Z7Lcccm8voSIb42aAJy4mL++py1kpqXZ5boiZUWZSdikp6fzwgsvsHfvXjp06MD777+Ps34JvKorq7LbipeXlxJl5VlWFuzaCeFhcDY2f3+dOmDsAbfcav01jIiIiIiIiFiUiYRNVlYWr7/+Olu3bqVly5Z88sknuLq6OjqsEu9qVdlvRmJiIt7e3ja/rpQMJpOJsLAwQkNDiY2NJSAggGHDhmHs2BHD9m2wNhzi4/NPbHyLeUVN3XpK1IiIiIjcJJPJxMoDh4o8/o1KR/G84pQlk+W/+T+bpaRnMvD9PwBYsGAB7nm2K+XdUGW6fICE1SYrU85/TFc2WQ1MTk5iWZFfgUj5UyYSNvPnz2f16tUAVKxYkQ8//LDAcc8++ywVK1YsxshEypa4uDgGDBhAWFiYVfu0adMw1qvLwnv74+/hkdthMJi3PHUzwuUltXJzPD09cx+7lYl/wkXKNE9PTyIjIy2PRURsITYxia/WbWLLoSOWtqwCthflbWvpkXhdx2InkU5sxC4AWtWoZpcvZJOSkiyPrxW/SHlUJj7tJyTk7qnMSdwU5PHHH1fCphAxPz6Jt8eNr0pKSs0gcOg3NoxIShqTyWRJ1ni6uPBwcDNaBQWyPTqGWZF7CTtylAELf2PVQ4MxODvD7a2gazeoGuDo0MuUnIJ/5sela6WStmFKeeTk5ESzZs0cHYaIlBEmk4ml+/9h+pYdpGRkWPWV9tOUSnv8IvZQJhI2Y8eOZezYsY4Oo1Tz9nC9roy7lD9hYWGWZM3GEcMICTQnYh4DxrVsQYfZoYQdP0G4XwWMTz4FFf0dG7CUONqGKSIicuOiL13ii7WbiDgd7ehQRKSYlImEjYjYX2hoKAAPBzezJGtyhAQGMCK4KVN3RTDn8FGMStbYTXp6eu7jjCy8Pa4yWEQcLj09nfffNx+L+9prr+Hmpi9HROT6ZJtMLN53gJlbdpCamWlp93F347GuHfn50iXLStOkpCQCAwOB/CvovdxLXo1PLy8vEhMTLc9LW/wi9qaEjZRa2l5RvGKjzd/mtAoKLLC/VVAQEEFsbAEnQ4nNZORZ/pyRle3ASG6OtmFKeZGRkcGkSZMAeOmll0pdwkY/a0Uc6/TFBL5Yu4nI6Bir9vZ1avFkp7ZU8vIqdG5pWEFvMBgKXSVbGuIXsTclbKTU0vaKYhQXR8C5swBsj47hsQKGbL+c0AkIUM0auTZ9CBMpHfSzVsQxsrKz+b+ov5m1dSdpWVmWdj93d8Z2bEPX+nWV9BQpB5SwEZGrO34MZv/AsPr1mLZ5C7Mi9zKuZQurbVG7Y2KZHRkFwPDhwx0VqYhIiZNz3C1Yn4Zys7RCRaTsOhl/kf+u2ci+2LNW7Z3r1eGJjm2oqBPnRMoNJWykTND2CjuJ2AUL5kNmJsbatTDWrkXY8RN0mB3KiOCmtAoKYnt0NLMjo0jJzMRoNNKtWzdHRy0iUmLk3U6UU5fBFhyxQkU/a0XsKys7m98i9xG6fTfpeVbVVPBwZ1yndnSuV8eB0YmIIyhhI2WCtlfYmMkEq1bCiuWWJoOLCwtnzGDAv98lLCyMqbsigAhLv9FoZOHChfrGV0SkjNLPWhH7OR4Xz+drNnDg7Hmr9m4N6vJ4hzZU8NApAyLlkRI2ImItMxN++Rl27cht8/SC4SPwr9+AVd17EB4ezpw5c4iNjSUgIIDhw4fTrVs3JWukTFPxVblZh6c/RkDFwguEXotWqIiUPVnZ2fwSsZcfd0SQmZ17mIC/pydPdW5H+zq1HBidiDiaEjYikisxEebMgmNHc9sqV4GRo6BKVcBczd9oNGI0Gh0SooijqPiq3CytUBGRvI6cj+PzNRs4dP6CVXuPRvV5rF1rfD3cHRTZ9bHlFxq2rPUlUhYoYSMiZrEx8MMMuJDnQ0P9+jDsYbjKkZFSvDzyLIn2cHV2YCQiUhR6z4rIlTKysliwO5L5uyKtVtVU9vLi6c7taFO7pgOju372+kJDRJSwERGAg/9A6GxITc1ta90G7r0fXPTPREni7Oyc57GTAyMp31R8VYpK71kRyevQuQt8tmYDRy/EWbX3btyQR9u1wsddq/BEJJd+ExMp7zZvgj9+g5xveAwGuPMu6NLN/FhE8tHWFhERuR5OLi78FLGX36MOkG0yWdqr+njzTOf23F6zugOjs52By4fj4nnjv2KmXkjl13t/smFEIqWbEjYi5VV2Niz+E9avzW1zdYXBD0GzYMfFJVeVnp6e+zgjC28dGiFSouk9KyIV6tYjZORj/Lr3b6v2u25tzKi2LfFyKztfALh4uuDqeeMrUDM9M2wYjUjpp4SNSHmUlgo/zYX9+3Lb/Pzg4ZFQo3Ttmy5vMjJyP8hkZGVfZaSIlAR6z4qUX+kmAz8m1aDTq29jcMrdEhno4834rh0IqV7NgdGJSGmghI1IeRMfD7NmwJkzuW3Vq8PDo6BCBYeFJSIiIlJW7Evz4r/xNTiZ6YEhT/mqfk1v4ZE2LfF0vfFVKCJSfihhI1KenDgBs2fCpUu5bU2bwaAh4F46jo4UERERKalSsw3MuRTI74lVMJFbCzApNoaPHxpIm3p1HBidiJQ2StiIlBeRe2D+T5BneT5dusKdfcFJJ5eIiIiI3IzINC/+G1eTM1m5X4IZMHHor2X8/dvPNJ0wzoHRiUhppISNSFlnMkH4ali2NLfNyQnuux/atHNcXCIiIiJlQGq2gR8Sgvi/pMpWq2pquqTyuNdRWs3/0YHRiUhppoSNSFmWmQm/LYTt23LbPDxh2HBo2MhxcYmIiIiUARFp3vw3riYxWbknPTlh4n6fcwz1iyEzLc2B0YlIaaeEjUhZlZQEobPgyJHctkqV4ZFREBDguLhERERESrnkbCdmJASxJKmyVXttl1Qm+J/kFrcUADIdEZyIlBlK2IiURWfPwg/T4fz53La69WD4w+Dt7bi45KZ5eHjkPnZ1dmAkIlIUes+KlD07Un34Mr4GZ69YVfOgz1ke8ovF1WByYHQiUpYoYSNS1hw6CKGzISUlt61lKxjwALjoLV/aOTs753msYtEiJZ3esyIln8lkIjk52fI8KSkp93Fq7mENSdlOzE2tzV8p1qtq6rqk8Kz/SRq6pdo/WBEpV/Tbm0gZ4rJrJyz+P8jOzm3scyd06w4GQ+ETRURERMqp5ORkfHx8CuwLHPqN1fM+X32Hy+VDoJwxMcg3lkG+Z7WqRkTsQgkbkTLAAHxo7Ib7//2R2+jiAoOGwG3NHRaX2F5GnmPZMzKzHBiJiBSF3rMiZVMD1xQm+J+kvqtW1YiI/ShhI1LaZcEvA+7j/sZ5Tn3y9YURI6FWLYeFJfaRnp6e+zgz+yojRaQk0HtWpHTpNfkrnN3drdqy0tJY8cLTALiQzQi/aB7wOYuLFi+LiJ0pYSNSmqWBxz4X62RNUDV4ZCRU9HdYWCIiIiKlkbO7Oy5XJGzy+qTqIZr4avuTiBQPJWxESqtLwF5wTs8tYpnZsBEuw0eAu0fh80RERETkhtR2TQPcrjlORMQWdFyBSGl0DtgN5K6057Ot20gbNETJGhERERERkTJACRuR0sQEnACigOycJhNPLF3O8ytXg5Pe0iIiIiIiImWBtkSJlBbZwEEgOk+bM6Q1zOTbD3c7KCgRERGR0isrO5vpm7fnPk9Lyz+mgDYRkeKghI1IaZAB7APi87R5AM0gy1mF70RERESuV3J6Oh+tWsvmQ0csbTmnQYmIlARK2IiUdClA5OX/5vADmmKueZfqiKDEUdzznFzh7urswEhEpCj0nhUpmaIvXeKd5as5HnfR0aGIiBRKCRuRkiwec72azDxtVYFbUAWqcsrFJfefbRdn/Z9ApKTTe1ak5NkXE8u7f4VxMdW81cnZzY23fl/M+K4d8HB1JSkpicDAQABifnwSbw9Xy1wvd9cCrykiYg9K2IiUVDHAAcyFhnPUAWoDBodEJCIiIlKqrT54mP+u2UhmdralbVCL2xjRugVOhvwfsLw9XPH20DHeIuIYStiIlDQm4Cjm06ByGDCvqglwREBSkmRkZOQ+zsxyYCQiUhR6z4qUDNkmE6HbdzNv1x5Lm4uTE890bk/Pxg0cGJmISOGUsBEpSbKAv4FzedpcgWaY69ZIuZeenp77ODP7KiNFcplMJpKTk21+XS8vLwwFfCMtufSeFXG81MxMPgtfz/ojxy1tfu7uvHZHN4KDAh0YmYjI1SlhI1JSpGGuV3MpT5sXEIz5RCgRkRuUnJyMj4+Pza+bmJiIt7e3za8rImIrF5KT+ffyMP45d97SVqtiBd7u3Z0gP18HRpbLlkn1pKQkm1xHREoGJWxEipnJZCI8PNzy/KmvV/BIp2CM1MKQnueban+gCXqXioiIiNyAQ+cu8O+/VnMuKTcZ0rJGNV7p2RVvt5JTl8ZeSXURKf30q6BIMYqLi2PAgAGEhYVZ2n5YuZcfVu7FWLsWCwfch7+HB1QHGqDiwiJic1eeeHK9klIzCBz6jQ0jEhGxvY1Hj/OfsHWk5akd1a/pLTzWvjXOTjqxTURKByVsRIqJyWSyJGs8XVx4OLgZrYIC2R4dw6zIvYQdP8GAhb+x6o3BGGoqUyMi9qETT0SkLDOZTPwSsZcftu60HLTpZDDweIc29Gt6i0NjK4qBy4fj4nnjv6KlXkjl13t/smFEIuJIStiIFJOwsDBLsmbjiGGEBJqPfHoMGNeyBR1mhxJ2/AThF05grFnbscGKiIiIlDIZWVl8vW4zK/45ZGnzcnXlXz270qpmdQdGVnQuni64et74KshMz4xrDxKRUkPrAUXsKSsLTp2E9esInTQJgIeDm1mSNTlCAgMYEdwUgDmrooo9TBEREZHS7GJqKm8uWWGVrAn09eE/99xZapI1IiJX0gobEVtKT4eTJ+DIETh21Pzn8pGusadOAtCqkOMjWwUFARHEXrT90btSdri7u+c+dnV2YCQiUhR6z4rY34m4i0xavoroS4mWtqaBAbzeqxsVPHXUpoiUXkrYiNyMpCRzUuboETh61LyaJju7wKEBXl4AbI+O4bEC+rdHR5vHVfCyT6xSJri45P6z7eKsRZIiJZ3esyL2tfPkaT5ctYak9NytQD0a1eeZzu1xdVaSVERKNyVsRIrKZIL4uNzVM0ePQGzstec5OUGNmgwbMoRpEXuYFbmXcS1bWG2L2h0Ty+xI81ao4T2a2ukFiIiIiJQdi6P+ZsrGrWSbTJa2R9q05MHmzTAYdICDiJR+StiIFCY7G2KizStnclbQJFy89jw3N6hTF+rWg7p1oWYtcHPDaDJhXP4XYWFhdJgdyojgprQKCmJ7dDSzI6NIyczE2LwW3W6rZd/XJaVaZmZm7uOsgldziUjJofesiO1lZWfz/aZtLIr629Lm7uLMC90607GeDm4QkbJDCRuRy9ydnWlTLQjX9Wvh1Ck4fgxSU6890cfncnLmcoImqBoUsATXYDCwcOFCy9HeU3dFABGWfmPzWix8/T59IyRXlZaWlvs4I8uBkYhIUeg9K2JbSenpfLxqLdtPnra0VfLy5K3e3WlYpbIDIxMRsT0lbKT8ygQuAgngEefCxefG4+7iAqtXXX1elSq5CZo6daFyZShiksXf359Vq1axdOlS+vbtC8AjPZsx8o5gut1WS8kaERERkULEJibxydpNHI/PXfHcsEol3rijO1W8VQNQRMoeJWykVDKZTISHh1ueP/X1Ch7pFYyx+VWSHmmYEzSXkzQk5XY544SzSwHFIJ2coFp188qZnASNr+9NxW4wGOjatavl+ddP9cLbw+2mrikiIiJSlvk3bMxry1dzKS3d0taxbm2eN3bCw0W/0ohI2aR/3aTUiYuLs2wryvHDyr38sHKvZVuRv48HJJObnLmIOWFzDUnp6Xg0vgXn+g2gXj2oVRvyHMkqIiIiIsWrRvuO3PbwaKtkzaCQYIa3boGTVieLSBmmhI2UKiaTyZKs8XRx4eHgZrQKCmR7dAyzIvcSFnGCAa/+xqqHBmPIKsIPcFfAD9K8Muny7lx2xsQSn5CAt7e33V+LiIiIiBQu2wQ/JVenxegnLG0uTk6M79KBHo3qOzAyEZHioYSNlCphYWGWZM3GEcMsR2M/Boxr2YIOs0MJO3yC8MMnMNYp4JQAD8APqHD5jydggMzUbLaeiS621yEiIiIihUvNNvBpXC02pFawtPm6u/HGHd1pFhTgwMhERIpPAUU7REqu0NBQAB4ObmZJ1uQICQxgRHBTAObsjTI3egPVgSZAO6AtcCtQDfACtIpWREREpEQ5n+XCK+fqWyVrLp0+yXu9lawRkfJFCRspHUwmOHKY2O3bAGgVFFjgsFZBQQDEOidDR6AV0BCoCqgUjZQBbm65BardCiqULSIlit6zItfnYLoHz8c25GBG7qlPsZERbPjw3wT6aMu6iJQv2hIlJVt2NuyLgvAwOHGcgOxsALZHx/BYAcO3R5u3NQVU9dL/u6VMcnV1zX3s4uzASESkKPSeFSm6DSl+TI6rRZopN7l5p0cs47/8FNPlz4AiIuWJfqWVkikzE3bugLXhcPaspXlYs6ZMi9jDrMi9jGvZwmpb1O6YWGZHmrdCDe/RtNhDFhER+zCZTCQnJ9v8ul5eXhh0woyIw5lM8EtiFWYmVLO0OWFibIXTGF2ieUbJGhEpp5SwkZIlNRW2bIb1ayEhIV+3sXt3jIeOELZlCx1mhzIiuCmtgoLYHh3N7MgoUjIzMTavRbfbajkgeBH7y8zMzH2cpQ+wUj4kJyfj4+Nj8+smJiba/VRAvWdFri7DZOCr+BqsTPa3tHkbsnil0nFaeiSSlOrA4EREHEwJGykZLl2CDetg00Zz0iYvgwGaBUNXI4ZatVj44CDL0d5Td0UAEZahxua1WPj6ffrGVMqstLS03McZWQ6MRESKQu9ZkcJdzHLmvQt1iErPTZwGOafxduVj1HJNu8pMEZHyQQkbcaxz58zbnnZsN2+DysvZGVq1hi5doUpVS7O/vz+rVq1i6dKl9O3bF4BHejZj5B3BdLutlpI1IiJlWMyPT+Lt4XrtgYVISs0gcOg3NoxIRG7E8Qx3Jp2vS0xWbmHuZm5JvFbpGBWcldwUEQElbMRRTp00FxKO3GPeuJyXuwe07wCdOoOvb4HTDQYDXbt2tTz/+qleeHu4FThWRETKDm8PV/17L1LKbU/14aMLtUk25Rbi7uV1gacqnsbVYLrKTBGR8kUJGyk+JhMc/MecqDl0MH+/ry906gLt2oGHZ7GHJ+WDipeKiIg4zv8lVmLqxepkY/6ZacDEI37RPOBzDv0YFRGxpoSN2F9WFuzdY07UnD6dv79qVejSDVreDi76v6TYV2kuXioiIlISXfllSFJSUu7j1AwAskww42IQyzOrW77gcDdk84L/CTp65j9oQkRElLARe8rIgO3bzDVqLlzI31+zFhi7Q5Om4ORU/PGJiIiIyE272pchV9aM6vPVd7i4u1PZKYO3Kh+lgZuOgRIRKYwSNmJ7KSmwZRNsWA+Jifn7G98C3YxQrz5a+yqOpOKlIiIixa+RazJvVD5GZefMaw8WESnHlLARm6nh68NzbVrj9eXnkJ5u3enkBM1DoGs3qFbdIfGJXKk0Fi91c8uN181FK9NESjq9Z6W86TX5K5zd3a3astLSWPHC0wB0cL/Iv6rE4uGk4sIiIteihI3cvGRwO+rM4Scex83Z2TpZ4+oKrduYj+b2r+S4GEXKCFfX3BVBri7OVxkpIiWB3rNS3ji7u+NyRcImr+crncDDqXR9WSIi4ihK2MiNuwicBM6DK86Q93Oopxd06Gj+Y4cCryIiIiJS+jhpN7yISJEpYSPXxwRcAE4ABRT0P34xgcCBA3Hv1AXc9O2JiK1lZWXleZztwEhEpCj0npWyLttkYuepM44OQ6TcePzxx9mxY0eh/V988QUdO3bM175o0SIWLFjAkSNHcHV1JTg4mNGjRxMSElLotXbt2sX06dOJjIwkIyODevXqMWjQIPr161fonJiYGKZMmcLGjRtJSEggKCiIPn36MHLkSNwLWX2XmprKzJkzWb58OdHR0fj5+dGhQwfGjRtHQEDAVf42yj4lbKRosoGzmBM1yQV0e2bzyPwl/LRvP/GfTMZdyRoRu0hNzT1NIzUjCz8HxiIi16b3rJRVF1NTWXHgEEv3/8OJs+ccHY5IudOjRw+8vLzytReU4Jg8eTJz587F3d2d9u3bk56ezubNm9m8eTMfffQRRqMx35yVK1fy2muvkZ2dTcuWLalYsSJbt25l4sSJHDx4kGeffTbfnBMnTjBq1Cji4+Np0KABLVu2JCoqiu+++44tW7bwv//9z6q2G0BaWhrjxo1jz549VKlShW7dunH69GkWLVrEunXrmDFjBjVr1rzhv6fSTgkbubos4AxwCkgroN8PqAUpXpnMeTuqWEMTERERkeJjMpnYH3uWxfsOsO7IMTIKWDWWlZb/A2NBbSJyc5599lmqV7/2YS6bN29m7ty5VKhQgRkzZlC7dm0AIiIiGDt2LJMmTaJVq1b4+vpa5ly8eJF33nmHrKwsPv74Y3r06AHA+fPnGTNmDHPmzKFz5860bt3a6l4TJ04kPj6eIUOG8OKLLwKQmZnJq6++yurVq5kxYwZjx461mjNt2jT27NlD8+bN+eqrryxJqDlz5vD555/zzjvvMHXq1Bv/iyrllLApp0wmE+Hh4ZbnT329gkd6BWNsXguDwQDpwOnLfwo6cbEyUAssXxWmFjBGREREREq9lIwMwg4eYfG+Axy5EJevP29dmpzToESkZAgNDQVg9OjRlmQNQPPmzXnggQf46aef+P333xk+fLil77fffiMpKYlu3bpZkjUAlStXZvz48bz00kuEhoZaJWwiIyPZvXs3lSpVYvz48ZZ2FxcXXnnlFdauXcu8efMYPXo0Li7mNERGRgbz588H4OWXX7ZaMTR8+HD+/PNPduzYwb59+2jSpImN/2ZKB50vWQ7FxcXRo0cP7r77bkvbDyv30uPVefR4eR5xEamwBTiOdbLGAAQCrYFmoHXdIiIiImXX0Qtx/G/9Zh7+8Re+Xr85X7KmoqcHg1sE8/UD9zgoQhG5mtTUVLZt2wZAz5498/XntK1Zs8aqff369YXO6dy5M+7u7mzZsoW0PKvncuZ06dIl37anypUr07JlSxISEti1a5elfffu3SQmJlKzZk1uvfXWIsdXnmiFTTljMpkYMGAAYWFheLq48HBwM1oFBbI9OoZZkXsJ23uCAd/8xqqHBptX2oD59KdqQA2g8FMaRURERKSUy8jKYv2R4yzed4ComNgCx9xWLZC+TRrTvk4tXJ2dMZlMJCYmWvqTkpIIDAwEIObHJ/H2yD3e3svdNd/1ROT6/f7771y8eBGDwUCdOnUwGo0EBQVZjTl27Bjp6en4+/tb3pN55SRJDh48aNV+4MABq/68XF1dadCgAVFRURw/fpxGjRpdc05O+9atWzl48KBlZU5R5hQUX3mihE05ExYWZknWbBwxjJBAc1Gqx4BxLVvQYXYoYcdPEH78BMaGtc1JmmqAfraKiIiIlFkxlxJZsv8Af/19kIup+WvOeLm60rNRfe5q0pja/hWt+gwGA97e3gVe19vDFW8PHUYhAjBo0KBC+3K2BhXVtGnTrJ5//vnnjBkzhjFjxljaoqOjgYILEQN4enri6+tLQkICSUlJeHt7k5iYaEnAFjYvICCAqKgozpw5Y0nYXOteOe1nzuSeKncjc8obJWzKmZw9jA8HN7Mka3KEBAYwIrgpU3dFMOdEFMahtc2ra0RERESkzMnKzmb7ydMs3neA7SdOYSpgTIPKlejbpDHdGtTFw1Xf4Ik42u233859991H8+bNqVKlCjExMaxcuZJp06YxZcoUvL29eeihhwBISUkBwMPDo9DreXp6cunSJZKTk/H29rbMudo8T09PAJKTc48Pvta9bDWnvFHCppyJjTUvbW0VlH9JnLk9CIggNiNZyRqREsg1z4dlV2eVIRMp6fSelZIoLjmFvw4cZOn+f4hNTMrX7+bsTNf6dbmrSWMaV62cu01eRG7K9a6iKcgTTzxh9bxOnTo8+uijNG3alKeffpqpU6dy//33XzVJI6WHEjblTM6ysu3RMTxWQP/2nGVpFbwK6BURR8tbxM3NVVlVkZJO71kpSSo1uoX/rt/ClpOnyczOfyR3dT9f7mrSmF6NGuDrocKFIqVJ+/btadq0KVFRUURGRtK6dWvLCpXU1MKP9M1Z5ZJzQlPOnJx5Pj4+15yTd15h97LVnPJGX/WUM8OGDQNgVuRedl9RSG53TCyzI6MAGN6jabHHJiIiIiK2lZTtxNKUqnSd+D4dXn6dDcdPWiVrnAwGOtatzbt39WLKwHu5/7amStaIlFK1atUC4Ny5cwCWIsQ5uyyulJKSwqVLl/Dz87PUofLx8bEkaQqbl9NerVo1S9u17mWrOeWNVtiUM0ajEaPRSFhYGB1mhzIiuCmtgoLYHh3N7MgoUjIzMTavRbfbajk6VBEpQFZWVp7H+b8dFZGSRe9ZcZRD6R4sTqpMeEoFUk3O+Naw7q/k5cmdtzai9y2NqOJdfr+9FilLLl26BOSuXKlTpw5ubm7ExcURGxubr7jv/v37AWjYsKFVe+PGjdmxYwf79++nfv36Vn2ZmZkcOnQId3d3ateubTUnPDzccs0rFXSvxo0bW/UVZU55oxU25YzBYGDhwoUYjUZSMjOZuiuCsUuXM3VXhCVZs/D1+7RXWaSEyrtkNDUj6yojRaQk0HtWilO6ycDK5Iq8ENuACWcbsSy5Eqkm6614zYMCeK1XN2YMGcDQ20OUrBEpI+Li4ti5cyeQexy2h4eH5QjtFStW5JuzcuVKALp27WrV3qlTJ6v+vNauXUtaWhpt27bF3d0935y1a9eSnp5uNef8+fPs3LkTPz8/WrRoYWkPCQnBx8eHkydP8vfffxc5vvJECZtyyN/fn1WrVrF48WJL2yM9m7H6w8Gs+mAw/r4qUCUiIiJSWpzOdGPaxSAeOXMrn8XV4u8M6ySMtyGTw8uXsPr1l3i9e2c61q2Ns1PZ+jXAZDKRlJRksz8iJdHu3bsJCwuzWr0JcPr0aV588UVSUlLo2rUrgYG5B8zklMSYNm0ax48ft7RHRESwcOFCfH19uffee62ud9999+Ht7U14eDirVq2ytF+4cIEvvvjC6ro5goODCQkJ4cKFC3z55ZeW9szMTD788EMyMzMZPHgwLi65m3xcXV0tR51/9NFHVidUzZkzh3/++Yfbb7+dJk2a0fQxMAAAT6BJREFUXN9fVBmiLVHllMFgsMpUfv1UL7w93K4yQ0RERETsxWQyWR1dmzdpkJSaYTXWy92VbAxsTvVjSVIldqb5FnjNW1yT6et9ntudzlJpwVz7BF5CJCcnF1gcVaQsOX78OJMmTaJy5crceuut+Pr6cubMGfbv309aWhr169fnjTfesJrTrl07HnroIebOncvQoUNp164dGRkZbN68GYC3334bX1/rf0MqVKjAW2+9xauvvsq//vUvWrVqRYUKFdiyZQuXLl1i2LBhlpU7eb399tuMGjWKuXPnsnXrVurVq0dUVBSnTp2iefPmjBo1Kt+c0aNHs2XLFiIiIrj//vtp2bIlZ86cITIyEn9/f9566y0b/g2WPkrYiIiIiIg42NUSDoFDv7F6Pn3me4RlBXE+2zXfWHdDNkbPePp6n6eBm3lLXlKqyfYBi0ixCw4O5sEHHyQyMpKoqCgSEhLw9PSkcePG9OzZkwcffLDA47xfeOEFGjduzPz589m8eTOurq60a9eO0aNHExISUuC9evbsydSpU5k+fTp79uwhIyOD+vXrM2jQIPr161fgnNq1axMaGsq3337Lhg0bOHbsGEFBQYwZM4ZRo0ZZnZyYw93dnSlTpjBz5kyWLl1KWFgYfn5+9O/fnyeeeMJqtVB5pISNiIiIiEgpMi8xABd362RNLZdU+npfoIdXHN5O5bvA9cDlw3HxvPFfc1IvpPLrvT/ZMCIR26hXrx6vvPLKDc3t378//fv3v645LVq0sGyBKqqgoCDefvvt65rj4eHBE088wRNPPPH/7d15fJTlvf//12yZSWayQciCQQHZdxQVFZcqdWmLtrWgR/FULdalWq1t7fl+bXv60/Z8q8dT99bWfalHxB5bd6kochBENjGssiVsIWFJgJlkklnu3x9hJgkESEKSe67k/Xw88sg9c88M7wxzz3Xfn/u6r6tNz+sJVLAREREREUkhk//rcVze5lNrx+rq+PCntzW7z02cM9P38w3/XkalhdCcEQ3c6W486Yf3PmqtaHrk2A8SEekCKtiIiIiIiKQQl9eL+5CCTVN5rnouy6ri6xlV5LqiXZhMRES6kgo2IiIG8Xgazxh6XN1rhg+R7kjbrHSGP+Z/RVa6JosQEenutOcgImKQpoO1pXlcNiYRkdbQNiutFTlkmt6jcenSJxGRHkE9bEREREREbLRx914emP2R3TFERCTFqGAjImKQeDzeZFnTtIqkOm2zcjSRWIyZX5Tw2hcrqQ+Hk/fH6uoOe2xL94mISPemgo2IiEFqa2sbl+ujZGYceVBKEbGftlk5kg279/DwJwsorao+bN2hs0GJiEjPpIKNiIiIiEgXicRivLr8S2atWEXcaux11cefYWMqERFJRSrYiIiIiIh0gfW79vDQvE/ZUrWv2f3fHD6Ef50wnienXp68LxQKUVBQAEDFK7fi9zXOOJbh9SAiIt2fCjYiIiIiIp0oEovxyrIv+duXzXvVFGQGuOOcMxnTt7DhDm/LU3X7fR78Pk3jLSLS06hgIyIiIiLSSdZV7uaReQvYUt28V823Rgzl+6eNJ92j3jIiItIyFWxERERERDpYfTTGK8tW8D8lq5v1qinMDHDHuWcxuqjAxnQiImICFWxERERERDrQuspdPPTJArbt29/s/ikjh/H9CePwqVeNiIi0ggo2IiIG8TTZyfe4nDYmEZHW0Dbbs9RFo/x16Qr+vnJNs141RVmZ3HHOmYxSrxoREWmDblOwWbNmDYsWLWLVqlWsWrWKyspKAJYsWWJzMhGRjpOW1jjoZJrHZWMSEWkNbbM9x5qKXTwyr3mvGgdw2ahhXDthPD53t9ntFhGRLtJtWo6nn36aTz75xO4YIiIiItKD1EWjvLx0BX8vWY3V5P6+WZncce5ZjCzMty2biIiYrdsUbEaPHs3gwYMZMWIEI0aM4LLLLqO+vt7uWCIiHSoejzdZto7ySBFJBdpmu7fVOyt55H8Xsv2QXjWXjxrO9Anj1KtGRESOS7dpRa677jq7I4iIdLra2trG5foomRleG9OIyLFom+2ewtEoLy35gjdXrmnWq+aE7CzuPPdMhheoV42IiBy/blOwERERERHpbGt37ebJz5dTvv9A8j6nw8G3Rw3nmlPH4lWvGhER6SBqUUSkzSzLoqampsNfNyMjA4fD0eGvKyIicrxcaWkM/c5UfvPhvGa9aoqzs7jj3LMYXtDHtmwiItI9qWDTghkzZrB///7D7n/ttddsSCOSempqaggEAh3+usFgEL/f3+GvKyIicjxWRwKc8++/w59fkCzWOB0OvjN6BFefMka9akREpFOodRERERERaUE47uCF/YW8FcrD32RYmn452dx57pkMzVevGhER6Twq2LTg6aeftjuCiDEqXrkVv8/T7ueHwhEKrv5jByYSERE5fl/W+Xm06gR2xhoHirbicb49chjfP2MCaW6XjelERKQnUMFGRI6L3+fB70uzO4aIiEiHqI07eX5/Ie+Eeje7/8CObax47ileW1miYo2IiHQJFWxERAzibjJOgtulAZpFUp22WbN8WefnkapiKmKNJyKcWFyevpMf3vdr4tGojelERKSnUcFGRMQgXm9j13yvR1/hIqlO26wZag72qnn3kF41J7nD3Jm7jb7xfcxQsUZERLqY9hxEREREpMf6Iuzn0epiKg/pVTM1cxdXZVbicViEwjYGFBGRHksFGxERg1iW1eKyiKQmbbOpqybu5Nl9hbxf07xXTX93LXfmbmNQmqo0IiJir25TsJk/f36z2Z0ikQgA1113XfK+GTNmMGnSpK6OJiLSYWpqahqX66IE0r1HebSI2E3bbNexLKvZ+x0KhRqXw5Fmj/3KyuHRff3Y1aRXjQuLaZmVTMvchceh4pqIiNiv2xRsqqqqWLly5WH3N72vqqqqKyOJiIiISBepqakhEAi0uK7g6j82u33x40/h9jYWawZ4arkzZxsnq1eNiIikkG5TsJkyZQpTpkyxO4aIiIiIGMKFxZWZlUxVrxoREUlB3aZgIyIiIiICMPm/HsflbX75Wayujg9/elvy9sCDvWoGqleNiIikKBVsRERERKRbcXm9uL1HHi/oykAl1/apxu3owlAiIiJt5LQ7gIiIiIhIV5qWValijYiIpDwVbERERETEeJo2XUREuhtdEiUiYhC3u/Fr2+3S6WGRVKdttvPFLYvPSrfy4sLP7Y4iIiLSoVSwERExiLfJmAxej77CRVKdttnOE4vH+XTzFmZ+UUJZVTXRurrGdU2Wj3afiIhIKtOeg4iIiIgYIxaPM29TKTOXl7Bt3/4WH9N0NihpHcuyqKmp6ZDXCoVCHfI6IiI9nQo2IiIGaTpGg8ZrEEl92mY7TiweZ+6Gzcz8ooQd+w8ctv7Mk4r5wIZc3UVNTQ2BQMDuGCIi0oQKNiIiBml69rOmLkog/cjT1oqI/bTNHr9ILMbHGzbx2hcr2Xkg2GydAzhnYH+mjRvFSbk5/CzYuD4UClFQUABAxSu34vd5kusyvB5ERERSnQo2IiIiIpJyIrEYH361kVkrVlIZbH6JjdPh4LyT+zNt3Gj65WQn7/f7/S2+lt/nwe9L69S83cnU2dNxp7f/MCG8N8wbl7/agYlERHomFWxEREREJGXUR2PM/moDr69Yye5Q8zFVnA4HFwwayNRxozghO8umhN2fO92NJ739vZCi6ZEOTCMi0nOpYCMiIiIitgtHo3ywdj1/+3IVe2tqm61zORxMHnIyU8eOojAr06aEIiIiXUsFGxERERGxTTgS4d01X/E/X66mOhxuts7tdHLR0EF8b8xI8jM1IK6IiPQsKtiIiIiISJerqY/wzpp1vFGymv3humbrPC4nlwwdzBVjR5J3hHFpREREujsVbERERESky7jT0/nbyrW899UGDtTVN1vndbm4ZPgQrhgzgl4ZGTYlFBERSQ0q2IiIGMTlcjUuOx02JhGR1tA22ygYdzF4yncYMPkiXitZ3Wyd1+3im8OH8p3RI8jNSLcpoYiISGpRwUZExCA+n69xOU1f4SKpTtss7I+5+EcojzeDvRly2bhm69I9br41YhjfHjWc7HRfyy8gIiLSQ/XMPQcRERER6VTVMRdvBPvwTqgXYcvVbF2Gx8Plo4Zz2chhZPq8NiUUERFJbSrYiIiIiEiHqYq5+Vswj/dCvamznM3W1YeCbP7nB3z60nPk5+balFBERMQMKtiIiBgkFAo1Locj+H1pNqYRkWPpSdvs7pibvx3owwehXtTTvFCT5YzyDV8F19/+/xENh/Gndd/3QUREpKOoYCMiIiIiAFiWRU1NTfL2oQWnpjK8HhwOB5VRD38L9uGDUC7RQwo12c4o3w3s4hv+vcTrw1wbDnfuHyAiItKNqGAjIiIiIgDU1NQQCARaXFdw9R+b3d742s94N9KXD2sOL9TkOiNckbmLSzL24nNaAIQQERGRtlDBRkRERETa7LbKITi9zWd26uWMMDVzFxf59+J1WDYlExER6R5UsBERERGRw0z+r8dxeZvP4BSrq+PDn94GQBxHsl9NH1c9UwO7mOyvIk2FGhERkQ6hgo2IiIiIHMbl9eL2Hn3K7QJXPdMyK7kgoxqPCjUiIiIdSgUbEREREWmzH2Vv49JeNbgddicRERHpnlSwERExiMvlalx26ihJJNWZss3uCdWwdNsOFq7f0OrnXOCvxu3Q9NwiIiKdRQUbERGD+HyNA3z60vQVLpLqUnWbjcbjrKnYxdKt21mybQele6sa7q+rszmZiIiIJKTOnoOIiIiIdJrdoRBLt+5g6bYdfLG9nJpI5KiPj7VQvGnpPhEREekcKtiIiIiIdEORWIw1FbtYsnU7S7ftoKyq+qiPLwj4GdW/Hx8cvJ2YDUpERETsoYKNiIhBQqFQ43I4gt+n8SNEUllXb7OVwRBLt25n6bbtrNixk9pI9IiP9bicjCos4NTivpza7wSKs7Ooqanhrk5NKCIiIq2lgo2IiIiIoSKxGKt2VrJ02w6Wbt3Olup9R318YWaAU/udwITivowuKsDn8TRbn5GRQTAYTN4OhUIUFBQAUPHKrfh9jY/P8DZ/roiIiHQsFWxEREREDJLeO4/Z6zdRUrmbL3fsJBw9ci+aNJeL0UWNvWj6ZmXicBx5tiqHw4Hf729xnd/nUa8+ERGRLqSCjYiIiEgKq7ccrKrz81kog/Pu/T2Bor48s+SLIz6+KCuTCQcLNKOLCvC6tbsnIiJiIrXgIiIiIh3EsixqamqStw8dwyYUrk/ezvB6jtjbZWfUw5JwJkvDmXxZH6DOcgIQKDr8sV6Xi9F9Cxt60RT3pW92Vgf9NSIiImInFWxEREREOkhNTQ2BQKDFdQNveKrZ7eD/3JG8xKjOcrCyzs/ScCZL6zLZHvUe9d/pmxlgwonFnNrvBEYV5qsXjYiISDek1l1ERETEBuXRNNYEe7MknMnKen+yF01LvI44I937efH5f1C58kt2lW4+4lgzIiIi0j2oYCMiYhCns/GAznmUgUNFxH6T/+txXN7mPWVidXV8+NPbALitcghu75F70vRzhznFG2SC7wAjvSEidXXcN3dOp2YWERGR1KGCjYiIQdLT0xuXvfoKF0llLq/3qAWZQ/kcMcZ6Q5zqO8Cp3gMUuCPN1keO8DxJHYeOYXQ8mo5/JCIiPZP29kVERETawbIs9ofr2LpvH9uq97Oteh+bKira9BonusNM8B3gFO8BRnpr8DisTkorXeFoYxiJiIi0lQo2IiIiIkcRi8fZeSDItup9bK3ez7aDBZrt+/ZxoK6+2WOjdXWtft0/5a9jQECXNoqIiEjLVLARETHIoVMEJ2aYEelOjjU1dlNHmxq7rUL19WyrPthbZl9Dj5lt+/ZTvv8A0Xi8Q/6NpvLdEUDbcHc1dfZ03Ont39UO7w3zxuWvdmAiERExjQo2IiIiklKOdllJwdV/bHa76dTYrRG3IL1Xb/xFfXl33QYqa8LJHjNVtbXtyhvwptEvO5vinCzy0jx8cPD+WAu9bVq6T7ond7obT7qn3c+PpmvUIhGRnk4FGxEREel2wnEHO6Jetka9bDv4sz3qZVvEywX3nwrAC8u+bPXrOR0OCjIDnJCdRXF2FsU5DQWaftnZZPm8yV4+TXsDJWaDEhEREWkPFWxEREQkZR1rauy9MTcb6/wNRZlIY3GmMta+S418bjfFOVkUH+wxU5yTTXF2Fn2zskhzu4777xERERFpLRVsREREJGUda2rsGyuGtWnq7ITavXs4ffhwTuqdmyzKFOdk0Tsj47jGxMnIyCAYDCZvV1ZWMnDgQAA2PXsj+TkZjY/1tv9yGREREen+VLARERERW9XU11NxIERlMEhlMMTWXbs75HU9xDnBXccJ7nqKPXUUu+vIiwcZf+1DxOrCvBkM4vf7O+TfSnA4HM1es9myz6OBwkVERKTVVLARERHpZuyaZelIWYJ19VQGQ1QEg+wKhqg40FCYSRRogscxNTZAtjNKsbuu8cdTRz93mD6uCK5D/rRQuJ5YXfh4/ywRERGRTqeCjYiIQZxOZ+NyJx5ki9k6c5alQ1mWxb5wuKEAc7CXTEUwRGWyKBOiNtJ5s908V7CGIn/qji2jbVZERETaSwUbERGDpKenNy579RUunS9uQXXcTUU0jcqYh211TkZd833Se+dx1zv/ZHeohrpY7Lj/HbfTSX7AT0FmgCyXs9VTY2e5YkDqFmy0zYqIiEh7ac9BRESkGzvWLEsxC3ZFPVTEPOyKpVER9VAZayjOVB4s0kRxNnv+SecXA7B9/4FW5/C6XORnBsgP+MkPBMjP9CeXCzL95KSnJ3ughEIh7j74PE2NLSIiIj2VCjYiIiLd2LFmWfqX8pE4vL7j/nfSPR4KAn76HOwlkx/wJws0BYEAWT5vp46VIyIiItLdqGAjImKQpgPJ1tRFNOOMYFkWB+rq2XngABUHglQcCFJWuavVz4/haNXOQMARJd8doTdhXnvvc2p27+bZxx/lxLw8CjL9+NPSOqwgc+jU2KFQiIKCAgAqXrkVv69xOuxUnxpb26yIiIi0lwo2IiIGsSyrybKNQXqAVJppKRyNUnmwGLPz4E9Fk9+HDurb1lmWoGGmpXxXPfmuCPnug79d9RQcXM5wxoGGWZZ+M/OvAJze74QOnxYbDp8auynTpsbWNisiIiLtpYKNiIhIC7pypqVYPM6eUM0hxZgDVBxomAK7qra23a99LI/0Wc9JfvA5VU0QERERSSUq2IiIiHQyy4L9cRc7Y2nsjKaxtc7F6GuvJz2vDz9+6wN2h2qIHWf3i3SPm4JAgMKsADluV6tnWSr21OFzmtNjRURERKSnUMFGRETkGI410xJAOO5gZyyNimgaFQcLMxUHZ12qiKVRazWfevrEc08AoCIYojVcDgf5mQEKDg7qW5iVSUEgcHA5QJa3cVDfUCjE7Qefp1mWRERERMykgo2IiHSKVBoD5ngda6alH+wcStDT8uVTbZGbnt5QgMlsKMQklgszA/T2Z+ByOo/9IiIiIiLSLahgIyLH1J0OvKXrdOUYMG0VicXYF65jfzjM/nAd+8N17Ess1zXcv6u6utWvVx33tKpBTXfEKHTXk0eYme8uomZXJS89+SdO6pNHfmYAn7tjmuXuNMuSiIiISE+lgo2IHFMqH3h3d4cWyw6dIjgUrk/e7qnFsrhlNS+4HPzdvADTdH3dYbMqtaQ9My25idPHFaHQXU+Bq55Cd/3B5QgFrnoynTEcjoMzLb32CgCnnFDU4TMtdadZlkzXdJvsgZuniIiIHAcVbESkWzO9d9DRimUDrn+q2e1ULpa1ZgwYaBicN2w52R93sS/uZn/cxf6Dv/fF3MnlqqiT8+79PZ5AgKtnvmH7dMn/X+/NDPRDL1cEV2p9hMRmGRkZjcvqzXRMh35nH4+m3/ciIiImUsFGRNqktQfeqUK9gzqPZVlE43EisRiRWJz6WKxh+eB9+/bvTz72WGPA/HTXydS6/eyPu4jQunFaAkWZB3O0/2/wud1k+bxk+3xk+bzJn2yfj7R4rNUzLY3yhvC79dkROV5H+84WERHpaVSwEZE2OdaB99JwJrkONz5HvPHH2fDb47C5G4ThjlUs21Tvw+3wEcFBxEr8OKmncTliOZLrQxGLEVdeg9Pj4Y+fLcFyOInEYg2Fl3icaGL5YDEm2rQwE29YPpq2XFJUGknH7Ty+3gcuh4Osg4WXbJ83udysIONtuD873Uum14v3KGPGND07n6oFSRERERHpvlSwEZEWBevqKd1bxea9VazdtqPVz/uPvScdsaDjwjq8iGNFOe3HPyVWV8cfP1tCwOfD5/Hgc7vxut2ke9z43G58zX57mt32ut04W3EpU0f3DopZDQUslyeN3aEaqqMx6qJRIrEYddGG3iZ1B3ud1EUbih/10Rj1scMfU59Y3+Qx9dFYs6LBsYplP9896KjrWzJgciEAn2ze0q73oDMFHFGynDGyXQ2/s5wHbzujeGN13PD7/6E+eIAln35KYa9cMjypd0mbyKHjTqkXX+tNnT0dd3r7d1XDe8O8cfmrHZhIRESka6lgI9LDxS2L8v0H2Ly3is17qpJFmspgY6GgPYOvtiSGg5DlImS5oEnnjPzRY4HjKxp4Xa4mRZyDBR+PG1e0cZyaYxU8nqjqi8ObTr3loN5yNv7mkNsHf8dwcMnjDePI/OjN99ud/Wg66r3vKk6HA4/LicflalPx5Ge5WyjIcJHljJLtjJLpjB11LJhQuJ7KL78AoDAzgD+t4w+CNdOSdASryTV7do+1ZBp3uhtPevu3rWj6sQcXFxERSWUq2Ij0IDX1kWRBJvFTtreacDTaYf/GCe4wcZeD2riTsOUk2srxSI5X3cGeKvtoXuBoS8Hjo9peuONt66GSSvyOGOnOCGkOC4/DwkPDZWiJn7Rmt+M4YjH+8s4yYpEIv/j5z/D7fHhcroYfp5O0xPLBAozH5SItsex04XE7G343ud/lbPz/DoVCvDqjYflYY8Ccmb4fvze1eh5opiURERERsZMKNiLdkGVZVBwIsmnvwR4zexqKMzsPBI/95Cb8aR4G9Mqlb7qv1YOvPpq/odmBbPTgrD9hy0n4YBGn6c/+uji3/mUeLq+XX/77b4g5HISjUcKRKOFolLpolNpmyxHqDq5PtZPVLoeDNLebNJfz4G9Xw4/b1bh88LbX5cbjduE9WAjxNn2M243H5cTrdhOrq0u+98fyYtGaNhURQuF67pz5VwCmvfhsh08t3ZTGgBERERERaRsVbHoQ06c3Njl/Z2YPW05yBp5M5gn9eGbJF2zbf4DNe6upjbS+K7gDKMrKpH+vXAb0zmVgr1wG9MqlT8CPw+EgFApxx8HHtvXA2+2AgCNOgDi4Dl8fctRTNncOANP+9lqriwaWZTX0qolEqY1GCEcaiztNizz79u9vdcHjCn8lmeke0hwWaY54s9/eg4MmJ38TJ1pfx5Dr/0wsUs/eXbvIysxs5b/Uek0/K8cqlomIiIiISPehgk0PYvr0xibn74jslgW7Yh42R3wHf9LZHPFRHkvj7P8zHoDZ6zcdM0u6x03/3IbCzICDBZqTcnNI95g1BofD4WgYr8btJhvfER/XloLH1dmVbeuhEotQHzwA0OxSoM5iWi8VjQEjIiIiItJ+KtiIpKA6y8GWZGGmsUATslroonIUBZmBhqJMk54z+ZmBVs2o1FR3OfA2reBhOo0BIyIiIiLSfirY9FAdPb1xVzM5/7Gy/7hyELtcWcRpfVElWlfHge1b+d7XJzOkIJ8BvXLp3yuHjA6aOUcH3vY5tFi2a9cuBgwYAMDm526kT3ZG42NTuFgm0lM1vcQ1ha7UFRERg4XDYZ5//nlmz57Nzp07ycrK4swzz+SWW24hPz/f7njSgVSw6aGONb3x7ZWD8Rxl/aHicYvz7rsfgDvfno2zEy4PiYTDyeVj5b+tom35LcvivN8+ADTk7+jxb9qSfXvUh/so8xn3cdUzwBM++FNLQfwAQ6b9J1gWs++5u1MHjjWR6b2DjlYs65OdoWKZSIrLyFBRVUREOk5dXR233HILJSUl5OXlcd5557Fjxw7eeust5s+fz3PPPUdxcbHdMaWDqGAjLdoR9eJ2tW1640BhEQDlbZyJqLXaMj1zecyLO9bG/AWFDc/thPxtyZ6QRpyTDhZm+jcp0ASc8WaPC4XrGwa4kRapd5CIiIiIdBfPPPMMJSUljBkzhscffzx5YuDll1/m4Ycf5t577+Uvf/mLzSmlo6hgI5Ji7szZysjMOH3ddRylo42IiIiIiPQgkUiE1157DYC77767WS/O6dOn884777Bs2TLWrFnD8OHD7YopHUgFG2nRL3uVkt6Gngfh+ijfvu/vAPz973/H5zvyrD3tVVtT0+rpmX/V5vwRLr/37wD84x//6PD8bcl+TsY+/B71+pCW1dbWNi7XRdVDSCTFaZsVEZGOsmLFCoLBIMXFxQwbNuyw9RdeeCHr169n3rx5Kth0EyrY9FDHmt54vC/YtumNqWf3qhIAxhUVdMo4Km2Znnlce/KvXgnA2E7I35bsIkcTjzdeEhfXpXAiKU/brIiIdJSvvvoKoMViTdP7N2zY0GWZpHOpYNNDmTCb0tGYnN/k7CIiIiIi0j7Tpk074rrEpU5Hs3PnToAjzgSVuL+8vLwd6SQVdfxUPiIiIiIiIiLSoRKX2R5p+Ib09HQAampquiyTdC71sOlBTJ/e2OT8JmcXERGzWJbVYTvrTS/pFRGR49OaXjQiTalg04OYPr2xyflNzi4iImapqakhEAjYHUNERDpYogdNOBxucX2iB07T2aPEbLokSkRERERERCTFFRYWAlBZWdni+sT9RUVFXZZJOpd62IiIiIh0U1NnT8ed3v7dvfDeMG9c/moHJhIRkfYaMmQIAGvXrm1xfeL+QYMGdVkm6Vwq2IiIGKTppXVNxz4SkY7TkWPANGXHNutOd+NJb/+/G02PdGAaERE5HmPHjiUQCLBt2zbWrVvH0KFDm62fM2cOAOeee64d8aQTqGAjIiIi0oTGgBERkVTk8XiYNm0azz77LPfffz9PPPFEclybl19+mfXr13PKKacwfPhwm5NKR1HBRkRERERERMQAP/jBD/j888/58ssv+c53vsP48eMpLy9n5cqV5Obm8utf/9ruiNKBVLARETFIYvR/gNq6qGYYE+lkxzsGTKg8yJvTXge0zYqIyPHzer08+eSTPP/887z//vvMnTuXrKwspkyZws0330xBQYHdEaUDqWAjImKQeDzeuGxZNiYR6RmOdwwYl9eVXNY2KyIiHcHn83HzzTdz88032x1FOpmm9RYRERERERERSTHqYSMiIiIdriNnWgqFQh3yOiIiIiImUcFGRKST6cBVeiLNtCQiIiJyfFSwERHpZDpwtY/JxTKTs4uIiIjI8VPBRkREui2Ti2UmZz/U8c60FN4b5o3LX+3ARCIiIiKpTwUbkVbS2W7pCMd74BrcEeStK1/vwERHp8+9dITjnWkpmh7pwDQiIiIiZlDBxjA6eLJPdzrbLfY53gNXX643uez3tf91Wqs7fe5N7uVhcvaerun/W1dssyIiItJ9qGBjmO508CRdy+Rin8nZJXWY3MvD5OwiIiIi0j4q2EiX6i4H3iae7Ta52Gdy9u7ExM+9iIiIiIipVLAxmIkHT93lwFtnu8UusfpYcjlcH8XvS+uyf1ufe5G2s3ObFREREbN1q4JNOBzm+eefZ/bs2ezcuZOsrCzOPPNMbrnlFvLz8+2O1+F08CTtZWKxL8Hk7B3BilnJ5VjcOsojRSQVaJsVERGR9uo2BZu6ujpuueUWSkpKyMvL47zzzmPHjh289dZbzJ8/n+eee47i4mK7Y0oTPf3A204mF/tMzi4iIiIiItJa3aZg88wzz1BSUsKYMWN4/PHHycjIAODll1/m4Ycf5t577+Uvf/mLzSmlKR14i4iIiIiIiLTMaXeAjhCJRHjttdcAuPvuu5PFGoDp06czePBgli1bxpo1a+yKKCIiIiIiIiLSat2iYLNixQqCwSDFxcUMGzbssPUXXnghAPPmzevqaCIiIiIiIiIibdYtLon66quvAFos1jS9f8OGDV2WqTPl5eUBkBFJx+V2tft1HLHG1wrFvRBv/8chFHckX+tYTM5vcnYwO7/J2aHj8sfi/uRr1eIlFG//ZYV679tGn3sOPl/vfVvYsc2C3nvQ574pvfdto/eeg8/vGe+9SCpzWJZl/JQFf/jDH3jllVe4+uqrueuuuw5b/9VXX3H11VczbNgwXn75ZRsSioiIiIiIiIi0Xre4JKq2thYAn8/X4vr09HQAampquiyTiIiIiIiIiEh7dYuCjYiIiIiIiIhId9ItCjaJHjThcLjF9YkeOE1njxIRERERERERSVXdomBTWFgIQGVlZYvrE/cXFRV1WSYRERERERERkfbqFgWbIUOGALB27doW1yfuHzRoUJdlEhERERERERFpr25RsBk7diyBQIBt27axbt26w9bPmTMHgHPPPbero4mIiIiIiIiItFm3KNh4PB6mTZsGwP33358cswbg5ZdfZv369ZxyyikMHz7crogiIiIiIiIiIq3msCzLsjtER6irq+Omm25i5cqV5OXlMX78eMrLy1m5ciW5ubk899xzFBcX2x1TREREREREROSYuk3BBhpmiXr++ed5//33qaioICsri7POOoubb76ZgoICu+OJiIiIiIiIiLRKtyrYiIiIiIiIiIh0B91iDBsRERERERERke5EBZseTJ2rREREOpfaWhEREWkvFWx6MIfDYXeEdjlw4IDdETqcSTv0TbMemtuEv8P0/CZr+v7G43Fj3+9YLGZc9ng8bneEdrEsy9jsCWprU4dJ263pbZXp+U2mtlake1HBpocqLS1l6dKlhMPhw9Yd+uWYal/2DzzwAC+88EJyZ9LEHfqamhp2797Nrl27iEQiR92hT6X3PhaL4XA4iEajyfv2799PJBIBUv/AxPT8Jku894nPs9PpNO79Tnxfulwu47I7nY3N/dG+01Pt+97hcDTLfijLslIq76HU1tpLba09TM9vMrW1It2P2+4A0vXq6up48sknWblyJQ8++CDDhg1rtt7hcLB7924ikQgFBQVH3VnuasFgkPfffx+ApUuXcvPNNzNixAijvtC3bt3Kk08+yezZs+nVqxdjx45l+vTpjBkzhng8ftj7nUp/m8vlYtmyZSxYsIBly5aRk5NDdnY2GRkZ9OnTh0GDBjFkyBDy8/MBWvx77ORyuVi0aBGffvopK1asIDs7m8zMTLKysigqKmLQoEGcfPLJyVnlEjs8qfB/EIvFjNzxSnC5XKxcuZLly5ezefNmiouLmThxIkOHDsXlcmFZVsr+bZFIhLfeeos5c+Zw4MABzjjjDC699FIGDhxod7Rjqq+vZ86cOQwePJh+/frh9XqbbZOJg/DE/0Eqba/BYJDf/va3TJ8+nVGjRrX4mKafmUTxJlX+BrW19lJbax+1tfZRWyvS/ahg0wMtW7aMOXPmMHnyZIYNG0YsFsPlchGPx1m2bBnPPvss8XicUChETk4OY8eOZdKkSYftbNph0aJFAPTt25eFCxdSVlbG1KlTueSSS8jLyyMej+NwOFK2MSotLeX+++9nyZIl5OXlEY1G+fjjj9m4cSOvvPIKXq+XRYsWsWfPHurr6+nVqxfDhg1L7pTZad++fbzxxhs88cQTLa7PzMwkOzub/v37c9FFF3HxxRen1A7k3r17mTVrFk8//XTyPp/Ph9PpJBwOE4/HycnJYejQoUyaNIlzzz2Xvn372pi4OZfLlVxOnOVO5c96U7W1tXzwwQc88MADyTOsAK+//jrXX389U6dOPerfYefByO7du3nhhRd49dVX8Xg8RCIR1qxZw5o1a3jggQfIyMigqqqKLVu2EI1GCQQCDBw4EI/HY0veQy1atIjf/va3DBkyhKKiIoYMGcLgwYMZMGAARUVFOByO5GfrN7/5DaFQiN/+9rf4fD6bk8OCBQuYM2cOI0eOZNSoUc0ONCzLoqKighUrVlBYWEhxcTG9e/dOqe1Bba191NbaR22tfdTWinRPKtj0QLNnzyYQCHD55ZcDjY3TzJkz+cMf/pB8XFZWFmvXrmXx4sUsW7aM2267jREjRtiSOWHu3LlkZWUxffp0vvjiC2bPns0jjzzCjh07+MEPfkDv3r1tzXcsb775JkuWLOFf/uVfuOGGG7AsizfeeIOZM2fyzDPPEAgEeOyxx4CGbqw5OTmcfvrpfP/732fQoEG2Zn/77bf505/+xKBBg7jyyisZMWIEX331FUuWLOHDDz/kwIEDxGIx9u7dy6effsq7777LTTfddMQz413tzTff5Nlnn2XMmDFcc801DBkyhJ07dxIMBtmzZw+bNm1izZo1lJSUsHjxYt5++22uvvpqLrjgAtsPXt98801qamo47bTT6N+/f7MdSmjcqTx0RysWixEKhcjKyuqyrC355z//yUMPPYTb7ebss89m6NChbNy4kU8//ZQHHniAYDDI9ddff8Tn23kw8u677/Lqq68yYcIErrrqKoqKinjhhReYPXs2r7/+OhMmTODee+9l48aNuFwuioqK+NrXvsbVV19NXl6ebbkT3nvvPerr69myZQurV6/mn//8J9nZ2RQXFzNo0CAGDx7M6NGjicVifPbZZ/j9/mafdzt34P/3f/+X3Nxcxo4dCzR8nt1uNzt37uS///u/effdd6murgbA4/Fw6qmn8p3vfIezzz4br9drS+am1NbaR22tfdTW2kdtrUj35LBS6aJd6RJXXXUVbrebRx99lF69egHw6aefcv/997Nv3z5+8IMfcOKJJwKwZcsW5s6dS0lJCX379uWJJ56guLjYtuwXX3wxJ510Eg8//DAZGRm89957vPTSS6xfv54+ffpw/fXXc9lll6XEznpLpkyZQkZGBn/605+S7z3AD3/4Q1atWkVOTg4nnHACgwcPTp6F3bRpE/369ePRRx+19b3/7ne/S11dHc888wyFhYXN1m3evJmf/exnuFwuvvGNb/DRRx+xZs0aRo8ezX/8x38c9ng7XH755bjdbp5++mlyc3MPWx8Khdi1axdr167l448/5qOPPgLgl7/8JZdffnny7LgdvvWtb7Fnzx6ysrLo378/I0aMYPTo0YwYMaLF9zYSieDxeFi0aBG/+MUvuOqqq7j55pttSN7g6quvpqysjMcff5zx48cTjUaTZ2H/+te/4vV6efDBBzn11FMBkj0pNm7cyKOPPsqkSZOYOnWqLdmvuOIKgsEgL730UvLs+65du7jxxhvJyMggGo0SjUaTPSiWLl3Kvn37uOCCC/h//+//2X5mdu7cudxzzz2MHDmSSy+9lLKyMkpKStiyZQvV1dU4nU7y8vIIBAJs2rSJiRMn8qtf/Qqv10t2drZtuaHx+/6BBx4gJycHaDiD/G//9m8sWLCAPn36MHbsWHbv3s2aNWuoq6vD7/fzy1/+ksmTJ9u6zYLaWjuprbWP2lq1te1helsr0pnUw6aHCQaDyS7ZTXdiFi1aRHl5OQ8//DBnn3128v5IJMK5557L008/zQcffMDHH3/Mtddea0d0duzYwd69e7nooovIyMgA4KKLLiI3N5dnn32W5cuX89RTT1FVVcUVV1yRPAOYKtd2V1RUsHPnTr797W8n3/tEtszMTOrr65k6dSr/+q//muw6vGPHDp588kk+/vhj5s6dy/Tp023LvnXrVr71rW8ld1qaDkA5YMAArrjiCp588knOPfdcrrvuOl5++WUeeeQR/vznP/N//+//tbXb6q5duygvL+eSSy5J7kAees283+/H7/fTv39/zj//fKZMmcLvf/97fv/73zNgwADGjBljW/aKigo8Hg/p6eksW7aMZcuWAVBYWMigQYMYNWoUY8aMYfDgweTk5CTf67Vr1xIKhcjMzLQlO0B5eTnr16/nsssuY/z48QC43W7y8/P50Y9+hMfj4amnnuKFF15g8ODBZGVlJcdUWb9+PQsWLOCMM86wJfvOnTvZsmULV1xxRXIH0rIs+vTpQ25uLitXrmTq1KncdNNNZGdnU1tbS1lZGQ888AAfffQRn376Keecc44t2RMmTZrEjTfeyFNPPcXgwYP5yU9+wt69eykrK6O0tJQ1a9awYcMGNmzYgMPhYMmSJdx6660MGDCAwsJCrrrqKk444YQuz930+z5RrAF44403+Pzzz5kwYQJ33HFH8vKhUCjEP/7xDx555BEefPBBTj75ZAYMGNDluRPU1tpHba3a2vZmV1urtlYkFdnfskqXCgQCDBkyhO3bt1NRUQFAdXU127ZtIz8/n7PPPptoNJpsYD0eD/379+emm27C7/ezePHiFme76AqffvopAMOHDwdINjQTJ07kL3/5C3fccQfRaJSnnnqKH//4x8yfPx+wt4tnU2VlZQDJLr+RSASn08mePXvYu3cvvXr14rrrrksOnOnz+Rg4cCA33ngj6enpLF++3Lb3fsuWLUBD4w8QjUaTY18k3t9TTjmF2tpa1q5dC5Ac7+Dtt99m+/bttuROqKioIDMzMznbSWLmikPPxiQ+9z6fj0mTJnHzzTcTi8VYuHChbbOjJD4348eP57nnnuOxxx7j1ltv5ayzzqK+vp758+fz5JNP8uMf/5gf/vCH/OpXv2LmzJmsW7eOpUuXAnD++efbkh1gxYoVAMkD68T7mPh9zTXXcNFFF7Fw4ULeffddoHGbXbduHQDnnntul2ZOWLFiBQ6HIzngYeJzv2fPHmKxGLm5udx4441kZ2djWRbp6ekMGzaMadOm4XA4WLdune0zz7jdbq677jqmTp3Ka6+9xp///Gfy8/M57bTT+O53v8tdd93FPffckxxD4pxzzsGyLBYuXMirr75q2/dn4vs+cSYYGrbjjz/+mOzsbO655x6GDRuWbK/8fj9XXHEFF110EXv27GH9+vW25E5QW2sftbX2UVt7vi3ZQW2t3W2tSGdSD5se6IwzzuDtt9/mpZde4mc/+xk5OTnJGQjC4TA+ny85oGDTs1J+v5+9e/fado3xvHnzKCwsZPDgwc3uT3SfnTZtGieffDIvv/wyy5Yt47777uM73/kOl112GX379rX97F9ubi65ubls2LCBffv2JS83WLx4MStXruSCCy4AGruoJvL26dMHr9dLVVWVbe99YWEhffr0YeXKlWzfvr3ZGffEjtjq1aubPcfr9XLFFVfw/vvvs2TJEvr379+VkZMsy2LkyJEUFxezYMECPv74Y772ta+1+NjE35J4788991wyMjJYvXq1bZ+dYDBIRkYG+fn5pKenM3HiRE4//XSuvPJK9uzZw8aNGykpKeGLL75g/fr1bN68mffffx+/308oFKJ379629JBI2LNnDwB9+vRpdr/T6UweaF977bV89tlnPPfcc4wbN45hw4ZRVVXF6tWryc3Nte3yhG3btuFwOOjXr1+z+0tLSyktLeWCCy4gNze32WCyTqczOUDuli1bbO+inch05513EovFePHFF8nMzORf//VfsSyLQCCA2+2msrKSUaNG8cADD7B69Wq2bt1KeXk5RUVFtuResGABLpeL7du3EwwGCQQCxONxduzYwcSJEykuLiYajSYPbOPxOF6vl8svv5z333+f1atXc9FFF9mSPUFtrT3U1vbvyshJamvV1rZXd2hrRTqTCjY90KRJk5g8eTIzZ86kvLycq6++moKCAt566y3mz5/P5MmTkw1mNBolLS2NDRs2EAwGm53t7GpLlixh/PjxyQYxkTFxrXNaWhpnnnkmgwcP5plnnuH111/nmWeeoaysjJtuuon+/fvbOp3h4MGDGTNmDJ988gn33HMPZ5xxBvv37+d//ud/gIbpdxPXQ0PjjsymTZuor68/rCHrSv369WPixIm89dZb3HfffVxzzTUMHz4cr9dLZmYm8+fP56WXXmLAgAHNpl+sqanB5XIldyTskPj/vuaaa/jNb37D3XffzZVXXskll1zCwIEDk13+m0p87jdt2oTT6WzxOvyu4vP5qKmpIRgMJs8gOZ1OMjIyyMjIoF+/fpxzzjmEQiEqKipYu3Yta9asYcGCBYRCIdu6OCckDpZaGqwx8X8zbNgwrrvuOh599FFefPFF/uM//oMdO3awYcMGTj/99K4PfVAkEiEejyf//xPfNYnZN84888wWn7dt2zacTqftA1BC4846wO233044HObxxx8nJyeHyy67DGiYzai2tjZ5dnXEiBGMGDEieXbcDoleGw8//DB/+tOfGDFiBEVFRezevZtx48YBzWdzSfyNdXV1QGpMD6y2Vm1tW6mtVVvbXmprRbovFWx6oEAgwI9+9CO2b9/OvHnzWLduHaeccgppaWk89NBDVFRUMGnSJPr160daWhpbtmzhueeeo6amxrYzltXV1Xzzm99k3LhxLTb6CfF4nLy8PH7xi19w4YUX8swzz/Dhhx/y4Ycf8vzzzzNy5MguTH246667jurqapYtW5acNrVfv378+7//O7/61a945513uOSSS/B6vckzx7Nnz6ampobzzjvPzuhcffXVlJaWsmzZMjZu3MiwYcPo06cPGzZsoLy8nOrqau6+++5mO5FbtmwhFovZPusGwOTJk/nqq6+YNWsWs2bNYvny5UycOJGxY8dy0kknkZWVhcfjISMjg7S0NHbv3s2rr77KgQMHbO3mPH78eO677z7i8Tjp6ektPsblcpGVlUVWVhYDBw5kypQpPPDAA8yaNcv267r79+9PUVERGzZsSJ7ZbslVV13FP//5T/75z39y6aWXsnfvXvbv33/EM7Rd4dJLL8Xn8yXHUEns9E6cOJF58+Yld+oTO5eJ9WVlZcTj8WRhwW6JXGlpacyYMYNdu3Zx3333UV9fz/e+9z3WrFkDwFlnnQU09qRIfAfZ4Z133mHp0qXMmzePzz//nOXLl7N8+XKgoQ2D5kWZxMHJ1q1bAWz/rge1tXZSW2sftbX2UFsr0n1plqgeLBqN8te//pU333wz2Z0w8XE48cQTyc7OJj09nc2bN7Nr1y6+973vceedd9o2K0RtbS3AERvShKZn9lavXs1LL72U3JG0e9YTaBhcbf78+QSDQfx+P2eeeSa9e/fm+uuvp7KykiuvvJKRI0dSU1NDSUkJr776Kv379+eFF1446g50V9iwYQPPPPMM8+fPb3aNf1paGtdee+1hsyPcdtttrFixgnfffdfWwfia+uyzz5g5cyaLFi1Knr0pLi5m4MCB9O7dm0gkQjAYZMuWLWzatInzzz+f++67z/bpRttqxowZrFixgo8++sjW976+vp7ly5fj8Xg45ZRTjnq5xKpVq7juuusYOnQoxcXFzJkzJyW220MzH2sWk7vuuoulS5fy9ttvp8znvql9+/bxk5/8JNkj4vXXX6eiooJPPvnE7mhHVFpayvz58/n8888ZN24cN9xwQ4uP+/nPf86CBQt4//33U+a9V1trD7W19lJb27XU1qbG516kM6hg00Mlrv0Ph8OsWbOGRYsW8eWXX1JZWUlNTQ21tbUEg0EAhgwZwsSJE7n99tttTt2gPV2tv/jii5SowDfNfmjDtGDBAn73u99RWVmJx+PB5XIRDofp27cvt9xyC5dccoldsQ9TWlpKSUkJO3fuZODAgZx88smHXTf/0Ucf8Ytf/IKLL76Y3/72t/YEbaLp+717926++OILPv30U5YvX86OHTuS/zeJr8Ts7GzOPPNM/s//+T+277y3dUyIrVu3MmPGDAKBAH/72986MVnHSbz/jzzyCC+//DLQcMZw1qxZNidrm88++4zbb7+dCy64gPvvv9/uOIdJ7ADv3r2bX/ziF3z55ZdAw+U7Dz30kO1TYSckZsaxLKvVPX0WLlzIHXfcwdlnn81DDz3UyQlbJ7HthsNh1q5dy2effWZMW9seqdLWNnXoPoNJbW1ZWVmyrR0wYIAxbW1iimXT2tpYLIbT6Wz1PqbaWvukelsr0pF0SVQPk/iiTuwA+3w+xo8fz/jx44lGo5SWlrJjxw7q6uro06cPlmXRr18/8vLymj3fDokd37b8+4mDj1TYgTz0vTv0APz000/n5z//OW+//Tbr168nKyuLE088ka9//eu2dhOGw7P379//qAMbRqNRgsEg559/PlOnTu2ChMfW9P3Oy8tj8uTJTJ48mWg0yvr169mwYQNVVVVkZ2cTCATo168fQ4YMAez93EPbZ19xu91cfPHFnHzyyZ2UqG1a8/4l1l955ZWsWLGCkpKSZtMem2D79u387W9/Iz8/n29/+9t2x2lRYsDGvLw8fv7zn/P8888zZ86c5Pg1qXIOJzEzToJlWcmDqZa2h23btvH666+TnZ2dHJsnFSSy+nw+xo0bx7hx44hGo5SVlbFjxw7C4XDKtbXtkUpt7aESxYHE+5nKbW1CIu9JJ53ESSeddMTHpVpba1mWsW2tZVmHfeccK0sqtbWHjl1zpPyp2NYemvVY770Jba1IR1IPmx6ourqacDhMXl4e4XCYWCyGz+ezrft1WzTNXldXl5yS086xFtqitfmDwSDV1dW2jdjfkpY+N+np6aSlpdkdrc0SZ+8dDkfKTEXbGVKlt0RbzZ07l1deeYU777yTESNG2B2n1Xbt2sWiRYvIzs7mtNNOM6JrfzAYpLy8nBNPPNGINuBIdu/ezaJFi/B4PJx11lnJcW5SSdOeB5IaUrGtbSrRVrX1ZJWdIpEItbW1yYFgEz3lTGiLDs3eWqnS1rY1fyq1tW3JbmJbK3I8VLDpQVauXJk8o7Ru3To8Hg/9+/enX79+DB48mMGDBzNw4EDy8/OBlkeat0trsg8aNChlz062Jv/JJ5982HSMdk+PCu1776EheyrswEBjpiN9Jg79rKfSZ/9Y2VsSjUZxuVwpsQ20J3+qMDk7tC9/qnx3dvf3/tD1qfT3mvy5gdblP/TSl6ZTxNupPe990xmv7FRaWsp7773Hli1biEajnHTSSXzta19rNgB1S21tKhQxW5O9JalSqGlv/lRgcnaRrqKCTQ8xZ84cHn30UXbs2EFhYSEOh4MDBw4ADdNBxuNx/H4/I0aM4KKLLuLiiy8+5oCDXcXk7GB2fpOzA4TD4RbPvKTSwdGRmJwdzM5vcnYwO7/J2cHs/CZnh/blT5VCk+nv/Zo1a7j33nvZsGED0HCpkGVZDBkyhOuvv56vfe1rKXECqiUmZwez85ucXaQrqWDTAxw4cIBrrrmG/fv3c8899zB8+HCKi4uprq6mrKyMzZs389VXX7Fq1SpWr14NNEx/effddzNx4kRlPw4m5zc5O0AoFOIPf/gDQ4YMYeDAgRQXF5OXl3fYmcimO8SJHYN169YRjUYZOXKkLTv0JmfvyPx20Huvz31PzG9ydtPzm5w9kf/222+npKSESy+9lOHDhxOJRPjss89YvHgxubm5PPzww4wYMaLZgMMOh4O9e/dSX19PYWFhl+c2Pbvp+U3OLtLV7O//KZ3us88+o7y8nNtuu42vf/3rQEPDn5OTQ05ODmPHjgUaZ8558803WbRoEb/73e+45557bD34Njk7mJ3f5OwA//u//8ubb76J3+8nIyOD/v37Jy/fGjBgAEVFRfTq1avFgaCffvpp5s6dy6xZs446uLKyd7/8Jmc3Pb/J2U3Pb3J20/ObnB1g0aJFlJSUMGXKFH79618n758yZQovvvgiL7/8Mr/85S/57//+7+Q4WYm/5b333mP27Nncf//9thx8m5zd9PwmZxfpairY9ABffvklTqczeca66bXaTa8nbjqa/8yZM3nwwQd58cUXmTBhgm3Xdpuc3fT8JmcHWLVqFQCDBw9OnolcsmQJHo+HgoICBg4cmBw76KSTTiI/P5/s7Gzq6urYuHEjgUDAth1gk7Obnt/k7KbnNzm76flNzm56fpOzQ8O04pmZmcnZ2err60lLSyM3N5fvf//7bNy4kYULF/KXv/yl2ZT1oVCIhQsXsn79etsOuk3ODmbnNzm7SFdTwaYHyMnJIR6PU11dDdDsILrpdaFNp0298sorWb9+PR988AElJSWMHz++q2MDZmcHs/ObnB1IjrVz5ZVXMmzYMEpLS5OXcW3YsIHFixfzySef4Pf76du3LyeffDJjxowhFAqxdetWzjnnHGXvgflNzm56fpOzm57f5Oym5zc5O8CWLVvo3bs3/fr1A0jOHJnokXvrrbeyefNmXn31Vc477zzGjBkDNEzNvHnzZk477TRlbyeT85ucXaSrqWDTA5x55pk8+eSTPPXUU2RkZHDqqafi9XoPm2rR4XDgdruJRqM4nU769etHOBwmGAwqew/Mb3L2cDiMw+HA4/GQmZlJcXExxcXFTJo0ierqaioqKti6dSsbN25k3bp1bN68mTlz5jB79mwyMjIAOO+885S9h+U3Obvp+U3Obnp+k7Obnt/k7NBQbHK5XITDYXr37t1sncPhIBaLMWzYML7//e9z//3389xzz3HfffcRCAT46quvqKys5IYbblD2djA5v8nZReyggk0PMGTIEKZOncqsWbN48MEHmTZtGpMnT05Ow3yoRE+Kbdu2JZ9vF5OzJ/59U/ObnB0aeghZlsXu3buBxuk3E2PwDB06lPPPP5+qqirKy8spLS1l06ZNvPPOOwC2jsFjcnYwO7/J2cHs/CZnB7Pzm5wdzM5vcnan00lOTg779+9n//79ZGVlNVufOLHzrW99i8WLF/PRRx8xb948vvGNb7Bu3ToAzj777C7PDWZnB7Pzm5xdxA6aJaqHqK+v56mnnmLWrFmEQiGysrI4/fTTOeecczjllFPo06cPdXV1hMNhnE4n8+bN4/7772fw4ME8//zzyt5D85ucPRgMUlZWRkFBAXl5ec1m0DjSbBqlpaXMmDEDn8/H22+/3dWRk0zODmbnNzk7mJ3f5Oxgdn6Ts4PZ+U3ODvDYY4/x+uuv89BDD3HKKaccljlxu6SkhNtuu41evXrxu9/9jscee4zNmzfz/vvvK3s7mZzf5OwiXU09bHqItLQ0rrnmGoqKivj73//OmjVr+PDDD/nwww8BKCoqon///sRiMTZt2sTu3bspKipixowZNic3OzuYnd/k7IFAoNnU0E13BA7dKYjFYrjdbkpLS9m3b5+tXczB7Oxgdn6Ts4PZ+U3ODmbnNzk7mJ3f5OwAt99+OzfccENyDJJDC0yJ26NHj+baa6/lz3/+M//5n//Jxo0bbc9vcnYwO7/J2UW6mgo2PUhOTg7f/e53+e53v8vGjRtZsGABixcvZsWKFZSXl1NeXk5WVhbBYJDJkyczffr0ZjsRdjI5O5id3+Ts0LCTa1lWs4GSm3I4HMnutytWrABg0qRJXZbvaEzODmbnNzk7mJ3f5Oxgdn6Ts4PZ+U3NHo/H8fv9yfHtWuoRlHDllVfy0UcfsXLlSgAuvPDCrorZIpOzg9n5Tc4u0tV0SZQQiUTYtm0bZWVleL1eRo0ahcfjwefz2R3tmEzODmbnNzH7sXYKtmzZwty5c5k2bVrK/R0mZwez85ucHczOb3J2MDu/ydnB7PwmZ4ej51+2bBk33XQTAHPnzsXv93dltGMyOTuYnd/k7CKdSQWbbi4ej1NfX09ZWRnl5eUUFhbSv3//lGzgD2VydjA7v8nZofX5Y7EYDofjiGc07WBydjA7v8nZwez8JmcHs/ObnB3Mzm9ydmh7/sTPwoUL2bhxI9OnT7cpudnZwez8JmcXsYMKNt1YVVUVs2bN4tVXXwUaptGDhtHZhw0bxmmnncbZZ5/N+PHj7YzZIpOzg9n5Tc4OR88/fPjwZP5x48Yd9tx4PJ7cMbCDydnB7PwmZwez85ucHczOb3J2MDu/ydnh+PLbzeTsYHZ+k7OL2EUFm25q+/bt/OEPf2DevHnk5eUxevRovF4vpaWllJaWEg6Hk48tKipiypQpXHLJJfTr18/G1A1Mzg5m5zc5O5id3+TsYHZ+k7OD2flNzg5m5zc5O5id3+TscHz5LcsiHo8nx+NR9p6T3+TsInZSwaabeuKJJ3j++ee57rrruP7667EsK3m9ZzgcZtWqVSxevJh58+axfv16AC644ALuuusuCgoK7IxudHYwO7/J2cHs/CZnB7Pzm5wdzM5vcnYwO7/J2cHs/CZnB7Pzm5wdzM5vcnYRO6lg001973vfIz09nf/6r/8iPz8faOhCCxx2DfSqVat45ZVXmD17NkOHDuXRRx+lV69eXZ45weTsYHZ+k7OD2flNzg5m5zc5O5id3+TsYHZ+k7OD2flNzg5m5zc5O5id3+TsInZKrdHLpEMcOHCAqqoq/H5/8gsRGr4ME1+I8XicWCwGwMiRI7n99tv59re/zbp16/jggw9syQ1mZwez85ucHczOb3J2MDu/ydnB7PwmZwez85ucHczOb3J2MDu/ydnB7PwmZxexmwo23VBdXR0nnngiZWVl7N27F2j4EkxUsaHhC7LpdaCFhYX89Kc/pVevXixYsIDa2touzw1mZwez85ucHczOb3J2MDu/ydnB7PwmZwez85ucHczOb3J2MDu/ydnB7PwmZxexmwo23YxlWeTl5XHWWWexe/dufv3rX7Nt27YWK9iJq+ESX5bRaJQ+ffpQUVFBenq6sveg/CZnNz2/ydlNz29ydtPzm5zd9PwmZzc9v8nZTc9vcnbT85ucXSQVqGDTzSSmeLz44os57bTTWLRoEXfccQdPP/00GzZswLKsZAU78djEl+XatWspLy9n4MCByt7D8puc3fT8Jmc3Pb/J2U3Pb3J20/ObnN30/CZnNz2/ydlNz29ydpFUoEGHu7GysjIefPBBPvvsMwDS09MZNmwYo0aNYsSIEQwbNow+ffpQXl7O5s2befbZZ1m7di3/+Z//yfnnn6/sx8Hk/CZnB7Pzm5wdzM5vcnYwO7/J2cHs/CZnB7Pzm5wdzM5vcnYwO7/J2UXsooJNNxWPx3E6nViWxYIFC3jvvfdYtmwZu3btava4zMxMMjMz2bFjB06nkxtvvJHp06fj8/lsSm52djA7v8nZwez8JmcHs/ObnB3Mzm9ydjA7v8nZwez8JmcHs/ObnB3Mzm9ydhE7qWDTDVmWlexSmFBdXU1paSkbNmxg48aNlJWVsXnzZnbv3s2AAQMYOHAgkyZN4lvf+pZNqRuYnB3Mzm9ydjA7v8nZwez8JmcHs/ObnB3Mzm9ydjA7v8nZwez8JmcHs/ObnF3EbirYdFOrV68mKyuL3r17NxukKxaLUVtbSywWIz09nf3791NXV8cJJ5xgY9rmTM4OZuc3OTuYnd/k7GB2fpOzg9n5Tc4OZuc3OTuYnd/k7GB2fpOzg9n5Tc4uYicVbLqZzZs388QTT7BixQqqq6vp1asXZ599Nt/73vcYMWLEEZ/XUuW7q5mcHczOb3J2MDu/ydnB7PwmZwez85ucHczOb3J2MDu/ydnB7PwmZwez85ucXSQVqGDTjXzxxRf88Y9/ZPny5eTn5xONRtm7dy8A48eP59e//jXFxcXEYjFcLpfNaZszOTuYnd/k7GB2fpOzg9n5Tc4OZuc3OTuYnd/k7GB2fpOzg9n5Tc4OZuc3ObtIyrCk2/i3f/s3a8KECdaDDz5orVmzxorFYlZJSYn1k5/8xJowYYI1Y8YMq6qqyrIsy4rH41Y8Hrcsy7L27dtnLVmyxNq7d6+yt5PJ+U3Obllm5zc5u2WZnd/k7JZldn6Ts1uW2flNzm5ZZuc3ObtlmZ3f5OyWZXZ+k7OLpAoVbLqJUChknXHGGdYPf/jDw9atXbvWuvHGG60JEyZYjz32WPL+WCxmWZZlzZkzx5owYYL15JNPdlnepkzObllm5zc5u2WZnd/k7JZldn6Ts1uW2flNzm5ZZuc3ObtlmZ3f5OyWZXZ+k7Nbltn5Tc4ukkqcdvfwkY6xbNkyYrEY55xzDtAwdV7C0KFDueuuu/D5fLz55pssWbIEIHldaFlZGQATJ07s4tQNTM4OZuc3OTuYnd/k7GB2fpOzg9n5Tc4OZuc3OTuYnd/k7GB2fpOzg9n5Tc4ukkpUsOkmSktLASgoKDhsnWVZDBs2jJ///OdUVVXx4osvEolEcDgchMNhVq9ejcfjYezYsV2cuoHJ2cHs/CZnB7Pzm5wdzM5vcnYwO7/J2cHs/CZnB7Pzm5wdzM5vcnYwO7/J2UVSiQo23URioK68vDygsUKdWI7H43zzm9/k7LPPZuHChcycORNo+DJdt24do0eP7vrQB5mcHczOb3J2MDu/ydnB7PwmZwez85ucHczOb3J2MDu/ydnB7PwmZwez85ucXSSVqGDTTRQWFgLw5ZdfAs2/FAGcTicul4sf/vCHZGVl8cILL1BVVcWuXbsoLy9Pdle0g8nZwez8JmcHs/ObnB3Mzm9ydjA7v8nZwez8JmcHs/ObnB3Mzm9ydjA7v8nZRVKJCjbdxJgxY5gxY0ay26F1hNnaR4wYweWXX051dTUPP/wwixcvBrD1S9Hk7GB2fpOzg9n5Tc4OZuc3OTuYnd/k7GB2fpOzg9n5Tc4OZuc3OTuYnd/k7CKpxGEdaesR41iWRSwWw+12H/VxwWCQG264ga1bt5Kfn08oFOLDDz/sopQtMzk7mJ3f5Oxgdn6Ts4PZ+U3ODmbnNzk7mJ3f5Oxgdn6Ts4PZ+U3ODmbnNzm7SKpQD5tuxOFwHPMLMRqNEggEuPXWW3E4HOzYsYMzzjijixIemcnZwez8JmcHs/ObnB3Mzm9ydjA7v8nZwez8JmcHs/ObnB3Mzm9ydjA7v8nZRVKFCjY9jNvtJhaLcf7553P99deTlZXFhRdeaHesVjE5O5id3+TsYHZ+k7OD2flNzg5m5zc5O5id3+TsYHZ+k7OD2flNzg5m5zc5u0hX0CVRPVh9fT07duzghBNOwOPx2B2nTUzODmbnNzk7mJ3f5Oxgdn6Ts4PZ+U3ODmbnNzk7mJ3f5Oxgdn6Ts4PZ+U3OLtJZVLAREREREREREUkxuiRKRERERERERCTFqGAjIiIiIiIiIpJiVLAREREREREREUkxKtiIiIiIiIiIiKQYFWxERERERERERFKMCjYiIiIiIiIiIilGBRsRERERERERkRSjgo2IiIiIiIiISIpRwUZEREREREREJMWoYCMiIiIiIiIikmJUsBERERERERERSTEq2IiIiIiIiIiIpBgVbEREREREREREUsz/D139ory75AlUAAAAAElFTkSuQmCC",
179 | "text/plain": [
180 | ""
181 | ]
182 | },
183 | "metadata": {},
184 | "output_type": "display_data"
185 | }
186 | ],
187 | "source": [
188 | "offset = 0.20\n",
189 | "width = 0.4 \n",
190 | "fig, ax = plt.subplots(figsize=(8, 6))\n",
191 | "secy = ax.twinx()\n",
192 | "\n",
193 | "bar_a = ax.bar(x = years - offset, height = norm_by_mat_sci, width=width, edgecolor='black', label = '% mat sci papers')\n",
194 | "bar_b = ax.bar(x = years + offset, height = norm_by_ml, width=width, edgecolor='black', label = '% ml papers')\n",
195 | "secy.plot(years, mat_sci, marker='o', markeredgecolor='black', c=cols[2], label = 'Total mat sci papers')\n",
196 | "secy.plot(years, ml, marker='s', markeredgecolor='black', c=cols[3], label = 'Total ML papers')\n",
197 | "ax.vlines(2011, 0, 4.2, color='black', ls='--', lw=1)\n",
198 | "ax.text(2011.1, 4.1, 'Materials Genome \\n Initiative')\n",
199 | "\n",
200 | "ax.vlines(2016, 0, 2.8, color='black', ls='--', lw=1)\n",
201 | "ax.text(2016.1, 2.7, 'Alpha Go')\n",
202 | "ax.set_ylabel('% papers')\n",
203 | "secy.set_ylabel('Total # papers')\n",
204 | "\n",
205 | "ax.set_xticks(range(2006, 2024))\n",
206 | "ax.set_xticklabels(range(2006, 2024), rotation = 75)\n",
207 | "ax.legend(loc=(0.01, 0.9))\n",
208 | "secy.legend(loc=(0.4, 0.9))\n",
209 | "\n",
210 | "plt.savefig('editorial-stats.png')"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": null,
216 | "id": "41f0bed9-5dc8-4f1e-b1a3-c324c38fd293",
217 | "metadata": {},
218 | "outputs": [],
219 | "source": []
220 | }
221 | ],
222 | "metadata": {
223 | "kernelspec": {
224 | "display_name": "Python 3 (ipykernel)",
225 | "language": "python",
226 | "name": "python3"
227 | },
228 | "language_info": {
229 | "codemirror_mode": {
230 | "name": "ipython",
231 | "version": 3
232 | },
233 | "file_extension": ".py",
234 | "mimetype": "text/x-python",
235 | "name": "python",
236 | "nbconvert_exporter": "python",
237 | "pygments_lexer": "ipython3",
238 | "version": "3.9.16"
239 | }
240 | },
241 | "nbformat": 4,
242 | "nbformat_minor": 5
243 | }
244 |
--------------------------------------------------------------------------------
/editorial-data/publication-stats.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ML-Materials-Standards/ml-materials-checklist/b0d52be53e9f9319478262952768444d28b1bb07/editorial-data/publication-stats.xlsx
--------------------------------------------------------------------------------