├── _config.yml
└── readme.md
/_config.yml:
--------------------------------------------------------------------------------
1 | theme: jekyll-theme-modernist
2 |
--------------------------------------------------------------------------------
/readme.md:
--------------------------------------------------------------------------------
1 | # Welcome to Oracle Database's GHW: AI/ML Week Challenges!
2 |
3 | Hello hackers! This week, we're going to learn how to leverage several of Oracle's database technologies through a series of fun and interactive challenges!
4 |
5 | ## Getting Help
6 |
7 | * If you have any questions about Oracle or their Global Hack Week challenges, head to the [MLH Discord](https://discord.mlh.io/) and find the #ask-oracle channel!
8 | * Each coding challenge is accompanied by a LiveLab tutorial that will walk you through each challenge step by step
9 | * If you need additional resources, you can find them at the bottom of this page!
10 |
11 |
12 | # Registration Challenges
13 |
14 | ## Registration Challenge 1
15 | ### Sign up and download 23ai VirtualBox
16 |
17 | Head over to the [VirtualBox signup page](https://mlh.link/ghwaiml824-oracle-virtualbox) to get set up with a new account.
18 |
19 |
20 | ## Registration Challenge 2
21 | ### Create an account and Sign in for LiveLabs
22 |
23 | Create a [LiveLabs account](https://mlh.link/ghwaiml824-oracle-livelabs) so you can leverage Oracle's LiveLab tutorials
24 |
25 |
26 | # Coding Challenges
27 |
28 | ## Coding Challenge 1
29 | ### Build a RAG application in 7 easy steps with LangChain and Oracle AI Vector Search
30 | #### Objectives:
31 | * Learn how to use the popular open source Python LangChain framework to search your PDF documents with natural language.
32 | * The application will load a chosen PDF document, chop it up into chunks, vectorize and index those chunks.
33 | * Build a simple ChatBot interface to allow natural language questions to be asked about data in your PDF documents.
34 | * This RAG [retrieval augmented generation] architecture is powered by Oracle AI Vector Search, a feature of Oracle Database 23ai.
35 |
36 | #### Documentation:
37 | * [Follow this step by step LiveLab to complete this challenge](https://mlh.link/ghwaiml824-oracle-rag)
38 |
39 | ## Coding Challenge 2
40 | ### An introduction to Oracle AI Vector Search using SQL
41 | #### Objectives:
42 | * Learn the fundamentals of vector search and how it can be applied to similarity search, RAG [retrieval augmented generation] and finding outliers.
43 | * Learn how to create, query and modify vectors using SQL.
44 | * See how vector search uses a ‘closest match given the available data’ approach.
45 | * See how that you can combine vector search with relational queries for advanced attribute filtering.
46 |
47 | #### Documentation:
48 | * [Follow this step by step LiveLab to complete this challenge](https://mlh.link/ghwaiml824-oracle-SQL)
49 |
50 | ## Coding Challenge 3
51 | ### Get started with Oracle Machine Learning Fundamentals on Oracle Autonomous Database
52 | #### Objectives:
53 | * Get a quick tour of Oracle Machine Learning technologies on Autonomous Database.
54 | * Use OML Notebooks to create and evaluate models and score data using SQL, Python and R.
55 | * Use OML Services REST API to deploy models and score data. Use AutoML UI for a no-code machine learning experience.
56 |
57 | #### Documentation:
58 | * [Follow this step by step LiveLab to complete this challenge](https://mlh.link/ghwaiml824-oracle-OML)
59 |
60 | ## Coding Challenge 4
61 | ### Introduction to Oracle Machine Learning for Python on Autonomous Database
62 | #### Objectives:
63 | * In this hands-on lab, experience Oracle Machine Learning for Python on Oracle Autonomous Database.
64 | * OML4Py supports scalable in-database data exploration and preparation using native Python syntax, invocation of in-database algorithms for model building and scoring, and embedded execution of user-defined Python functions from Python or REST APIs.
65 | * OML4Py also includes the AutoML interface for automated algorithms and feature selection, and hyperparameter tuning. Join us for this tour of OML4Py.
66 |
67 | #### Documentation:
68 | * [Follow this step by step LiveLab to complete this challenge](https://mlh.link/ghwaiml824-oracle-OML-python)
69 |
70 | ## Coding Challenge 5
71 | ### MySQL : Machine Learning for Beginners using HeatWave AutoML
72 | #### Objectives:
73 | * Discover how HeatWave’s built-in capabilities enable the development of machine learning models directly within the MySQL database.
74 | * HeatWave ML simplifies machine learning for both novice users and experienced practitioners.
75 | * By providing the data, HeatWave ML analyzes its characteristics and creates an optimized machine learning model for generating predictions and explanations.
76 | * In this challenge, participants will create and use a predictive machine learning model.
77 | * The process includes preparing data, training a model using the ML_TRAIN routine, and generating predictions and explanations with the ML_PREDICT_ and ML_EXPLAIN_ routines.
78 | * Finally, participants will assess the model's quality using the ML_SCORE routine and view model explanations to understand the workings of their model.
79 | * All these routines are executed within the HeatWave MySQL Database.
80 |
81 | #### Documentation:
82 | * [Follow this step by step LiveLab to complete this challenge](https://mlh.link/ghwaiml824-oracle-heatwave-automl)
83 | * [Check out this additional documentation on HeatWave](https://mlh.link/ghwaiml824-oracle-heatwave)
84 |
85 | # Resources
86 | ## Hands-On Labs
87 | * [Oracle - Discover. Learn. Build.](https://mlh.link/ghwaiml824-oracle-HOL1)
88 | * [Build an Innovative Q&A Interface Powered by Generative AI with Oracle APEX - Oracle LiveLabs](https://mlh.link/ghwaiml824-oracle-HOL2)
89 | * [Smart Project Management App with AI-Assisted Development in Oracle APEX](https://mlh.link/ghwaiml824-oracle-HOL3)
90 | * [Build AI chatbot with Oracle Database 23ai](https://mlh.link/ghwaiml824-oracle-HOL4)
91 | * [AI Vector Search - Complete RAG Application using PL/SQL in Oracle Database 23ai](https://mlh.link/ghwaiml824-oracle-HOL5)
92 | * [Easy Text Search over Multiple Tables and Views with DBMS_SEARCH in Oracle Database 23ai](https://mlh.link/ghwaiml824-oracle-HOL6)
93 | * [Oracle Database 23ai New Features](https://mlh.link/ghwaiml824-oracle-HOL7)
94 | * [SQL Empowerment in Oracle Database 23ai: Leveraging Domains and New Features](https://mlh.link/ghwaiml824-oracle-HOL8)
95 | * [SQL, JSON, and MongoDB API: Unify worlds with Oracle Database 23ai Free](https://mlh.link/ghwaiml824-oracle-HOL9)
96 | * [Simple Data Drive Applications using JavaScript in Oracle Database 23ai Free](https://mlh.link/ghwaiml824-oracle-HOL10)
97 | * [Machine Learning on ADB - Choose Your Journey](https://mlh.link/ghwaiml824-oracle-HOL11)
98 | * [Exploring JSON Relational Duality Views in Oracle Database 23ai Free with Java](https://mlh.link/ghwaiml824-oracle-HOL12)
99 | * [Autonomous Database 15 Minute Quick Start](https://mlh.link/ghwaiml824-oracle-HOL13)
100 | * [Implement Data Sharing with PL/SQL in Autonomous Database](https://mlh.link/ghwaiml824-oracle-HOL14)
101 | * [Introduction to Oracle Spatial Studio](https://mlh.link/ghwaiml824-oracle-HOL15)
102 | * [Analyze, Query and Visualize Graphs in Oracle Database](https://mlh.link/ghwaiml824-oracle-HOL16)
103 | * [Get Started with Graph Studio on Oracle Autonomous Database](https://mlh.link/ghwaiml824-oracle-HOL17)
104 | * [Load and Analyze Your Data with Autonomous Database](https://mlh.link/ghwaiml824-oracle-HOL18)
105 |
106 | ## Dev Gym
107 | * [Play SQuizL! - A mobile-friendly daily SQL challenge](https://mlh.link/ghwaiml824-oracle-devgym)
108 |
109 | ## Documentation
110 | * [AI Vector Search](https://mlh.link/ghwaiml824-oracle-DOC1)
111 | * [Oracle Machine Learning](https://mlh.link/ghwaiml824-oracle-DOC2)
112 | * [Using APEX Assistant](https://mlh.link/ghwaiml824-oracle-DOC3)
113 | * [AI-powered APEX Assistant](https://mlh.link/ghwaiml824-oracle-DOC4)
114 | * [APEX: AI-learn](https://mlh.link/ghwaiml824-oracle-DOC5)
115 | * [Database](https://mlh.link/ghwaiml824-oracle-DOC6)
116 | * [23ai](https://mlh.link/ghwaiml824-oracle-DOC7)
117 | * [OCI](https://mlh.link/ghwaiml824-oracle-DOC8)
118 | * [ADB](https://mlh.link/ghwaiml824-oracle-DOC9)
119 | * [ORDS](https://mlh.link/ghwaiml824-oracle-DOC10)
120 | * [APEX](https://mlh.link/ghwaiml824-oracle-DOC11)
121 | * [Connect to OCI MySQL Heatwave](https://mlh.link/ghwaiml824-oracle-DOC12)
122 | * [JSON Duality Views](https://mlh.link/ghwaiml824-oracle-DOC13)
123 | * [Oracle Graph](https://mlh.link/ghwaiml824-oracle-DOC14)
124 | * [Oracle Spatial](https://mlh.link/ghwaiml824-oracle-DOC15)
125 |
126 |
127 |
--------------------------------------------------------------------------------