├── README.md
├── deep_rl_bootcamp.png
└── deep_rl_survey.png
/README.md:
--------------------------------------------------------------------------------
1 | # Deep Reinforcement Learning
2 |
3 | ### Introduction to Reinforcement Learning with David Silver, DeepMind
4 | Watch the lectures from DeepMind research lead David Silver's course on reinforcement learning, taught at University College London.
5 |
6 | [[Video lectures]](https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ)
7 |
8 | - Lecture 1: Introduction to Reinforcement Learning
9 | - Lecture 2: Markov Decision Processes
10 | - Lecture 3: Planning by Dynamic Programming
11 | - Lecture 4: Model-Free Prediction
12 | - Lecture 5: Model-Free Control
13 | - Lecture 6: Value Function Approximation
14 | - Lecture 7: Policy Gradient Methods
15 | - Lecture 8: Integrating Learning and Planning
16 | - Lecture 9: Exploration and Exploitation
17 | - Lecture 10: Case Study: RL in Classic Games
18 |
19 | ### Deep Reinforcement Learning: A Brief Survey
20 | Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil Anthony Bharath
21 |
22 | - [[Paper]](https://arxiv.org/abs/1708.05866)
23 | - [IEEE Signal Processing Magazine | November 2017](https://ieeexplore.ieee.org/document/8103164)
24 |
25 | [

](https://arxiv.org/abs/1708.05866)
26 |
27 |
28 | ### Spinning Up in Deep RL
29 | Educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). It includes the following resources:
30 |
31 | * a short [introduction](https://spinningup.openai.com/en/latest/spinningup/rl_intro.html) to RL terminology, kinds of algorithms, and basic theory,
32 | * an [essay](https://spinningup.openai.com/en/latest/spinningup/spinningup.html) about how to grow into an RL research role,
33 | * a [curated list](https://spinningup.openai.com/en/latest/spinningup/keypapers.html) of important papers organized by topic,
34 | * a well-documented [code repo](https://github.com/openai/spinningup) of short, standalone implementations of key algorithms,
35 | * and a few [exercises](https://spinningup.openai.com/en/latest/spinningup/exercises.html) to serve as warm-ups.
36 |
37 | [[Webpage]](https://spinningup.openai.com)
38 |
39 | ### Stanford CS234: Reinforcement Learning
40 |
41 | Lecture Series. Stanford CS234: Reinforcement Learning (Winter 2019) - with Prof. Emma Brunskill
42 |
43 | [[YouTube]](https://www.youtube.com/watch?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u&v=FgzM3zpZ55o)
44 |
45 | ### An Introduction to Deep Reinforcement Learning (2018)
46 | Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, Joelle Pineau
47 |
48 | [[PDF Book manuscript, Nov 2018]](https://arxiv.org/abs/1811.12560)
49 |
50 | ### CS294-112 Deep Reinforcement Learning
51 |
52 | Lecture Series. UC Berkeley. Fall 2018.
53 |
54 | Instructor : Sergey Levine
55 |
56 | [Webpage](http://rail.eecs.berkeley.edu/deeprlcourse/)
57 | [Youtube](https://www.youtube.com/playlist?list=PLkFD6_40KJIxJMR-j5A1mkxK26gh_qg37)
58 |
59 |
60 | ### CS885 Reinforcement Learning
61 | Lecture Series. University of Waterloo. Spring 2018
62 |
63 | Instructor: Pascal Poupart
64 |
65 | [Webpage](https://cs.uwaterloo.ca/~ppoupart/teaching/cs885-spring18/)
66 | [Youtube](https://www.youtube.com/playlist?list=PLdAoL1zKcqTXFJniO3Tqqn6xMBBL07EDc)
67 |
68 | ### Advanced Deep Learning & Reinforcement Learning
69 |
70 | Deepmind 2018.
71 |
72 | [Youtube](https://www.youtube.com/watch?v=iOh7QUZGyiU&list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs)
73 |
74 | ### RLSS 2018
75 | Toronto 2018.
76 |
77 | [Videos](http://videolectures.net/DLRLsummerschool2018_toronto/)
78 |
79 | ### RLSS 2017
80 | Montreal 2017.
81 |
82 | [Videos](http://videolectures.net/deeplearning2017_montreal/)
83 |
84 | ### Deep RL Bootcamp
85 | Berkeley CA. Aug 2017
86 |
87 | [Slides & Videos](https://sites.google.com/view/deep-rl-bootcamp/lectures)
88 |
89 | ### Introduction to Reinforcement Learning
90 | DeepMind, 2015
91 |
92 | Instructor : David Silver
93 |
94 | [Youtube](https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ)
95 |
96 |
97 | ### Deep RL Bootcamp, Berkeley (2017)
98 | By Pieter Abbeel, Chelsea Finn, Peter Chen, Andrej Karpathy et al.
99 |
100 | [[Webpage]](https://sites.google.com/view/deep-rl-bootcamp/lectures)
101 |
102 |
103 |
104 |
105 |
106 | ### Reinforcement Learning Book
107 | Written by [Richard Sutton](http://incompleteideas.net/index.html) and [Andrew Barto](http://www-anw.cs.umass.edu/~barto/).
108 |
109 | [[Webpage]](http://incompleteideas.net/book/the-book-2nd.html) [[PDF]](http://incompleteideas.net/book/RLbook2018.pdf) [[Goodreads]](https://www.goodreads.com/book/show/39813875-reinforcement-learning)
110 |
111 | ### Denny Britz: Reinforcement Learning
112 | Implementation of Reinforcement Learning Algorithms. Python, OpenAI Gym, Tensorflow. Exercises and Solutions to accompany Sutton's Book and David Silver's course. All code is written in Python 3 and uses RL environments from OpenAI Gym. Advanced techniques use Tensorflow for neural network implementations.
113 |
114 | [[GitHub]](https://github.com/dennybritz/reinforcement-learning)
115 |
--------------------------------------------------------------------------------
/deep_rl_bootcamp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/Deep_Reinforcement_Learning/fdf30e54fa9d55598525b8f811e2521b0dc6d771/deep_rl_bootcamp.png
--------------------------------------------------------------------------------
/deep_rl_survey.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/Deep_Reinforcement_Learning/fdf30e54fa9d55598525b8f811e2521b0dc6d771/deep_rl_survey.png
--------------------------------------------------------------------------------