├── LICENSE
├── MLT_PwA.gif
├── README.md
├── ai-and-cognitive-science
├── DL needs a prefrontal cortex.pdf
├── README.md
└── images
│ ├── PFC.png
│ └── dl_needs_a_pfc_title.png
├── convolutional-neural-networks
├── Estimating-Example-Difficulty-using-VOG.pdf
├── README.md
├── Selective-Kernel-Networks.pdf
├── Squeeze-and-Excitation_Networks.pdf
└── images
│ ├── sknets.png
│ ├── squeeze-and-excitation-networks.png
│ └── vog.png
├── miscellaneous
├── Dataset-Augmentation-in-Feature-Space.pdf
├── README.md
└── images
│ └── Dataset-Augmentation-in-Feature-Space.png
├── object-detection
├── README.md
├── RetinaNet.pdf
├── YOLOv1.pdf
├── images
│ ├── RetinaNet-architecture.png
│ ├── YOLOv1.png
│ └── m2det-architecture.png
└── m2det.pdf
└── unsupervised-and-semi-supervised-learning
├── Convolutional-clustering-for-unsupervised-learning.pdf
├── README.md
└── images
└── convolutional-k-means-clustering.png
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2020 Machine Learning Tokyo
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/MLT_PwA.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/MLT_PwA.gif
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Papers with Annotations (PwA)
2 |
3 |
4 |
5 |
6 |
7 | (created by Alisher Abdulkhaev. [Twitter](https://twitter.com/alisher_ai) | [LinkedIn](https://www.linkedin.com/in/alisher-abdulkhaev/) | [GitHub](https://github.com/alisher0717) | alisher@mltokyo.ai)
8 |
9 | This project compiles multiple (AI-related) papers with illustrations, annotations, and brief explanations for technical keywords, terms and previous studies which makes them easier to read and to get the main idea intuitively.
10 |
11 | - [object detection PwA](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/tree/master/object-detection)
12 | - [ai and cognitive science related PwA](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/tree/master/ai-and-cognitive-science)
13 | - [unsupervised and semi/self-supervised learning related PwA](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/unsupervised-and-semi-supervised-learning)
14 | - [convolutional neural networks related PwA](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/README.md)
15 | - [miscellaneous PwA](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/miscellaneous/README.md)
16 |
17 | Please feel free to open new PR (pull request) if you have such kind of annotated research papers (related to AI, ML, DL, neuroscience, cognitive sciences).
18 |
19 |
20 | Also, please give us a feedback by opening an issue on this repository. We are looking forward for your collaboration!
21 |
22 | ---
23 |
24 |
25 | Annotation tools:
26 |
27 |
28 | ## How are the annotations generated:
29 | 📌 **Software:** Notability App — import pdf to the App, make annotations (handwriten notes, import the figures, stickers, etc) and export the pdf.
30 |
31 | 📌 **Hardware:** iPad (6th generation) with Apple Pencil (1st generation). However, any iPad (which supports Apple pencil) or any Android tablets should be fine.
32 |
33 |
34 |
35 |
36 |
37 | Featured at:
38 |
39 |
40 | 📌 [MLT's Blog](https://machinelearningtokyo.com/2020/06/25/papers-with-annotations/)
41 |
42 | 📌 [David Ha's tweet](https://twitter.com/hardmaru/status/1275690178699542529?s=20)
43 |
44 | 📌 [www.analyticsvidhya.com](https://www.analyticsvidhya.com/blog/2020/07/7-open-source-data-science-projects-add-resume/?unapproved=162210&moderation-hash=6e766ca8354bb4f681ca290eb6a65647#comment-162210)
45 |
46 |
47 |
48 |
49 | Contributors:
50 |
51 |
52 | - Alisher Abdulkhaev
53 | - Jayson Cunanan
54 |
55 |
56 |
57 |
--------------------------------------------------------------------------------
/ai-and-cognitive-science/DL needs a prefrontal cortex.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/ai-and-cognitive-science/DL needs a prefrontal cortex.pdf
--------------------------------------------------------------------------------
/ai-and-cognitive-science/README.md:
--------------------------------------------------------------------------------
1 | # AI and cognitive science related papers with annotations
2 |
3 | ---
4 |
5 |
6 | ## Deep Learning needs a prefrontal cortex: annotation (ICLR Workshop 2020)
7 |
8 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/ai-and-cognitive-science/DL%20needs%20a%20prefrontal%20cortex.pdf)
9 |
10 | 📌 [Original paper](https://baicsworkshop.github.io/pdf/BAICS_10.pdf) | **Authors: Jacob Russin, Randall C. O’Reilly, Yoshua Bengio**
11 |
12 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/ai-and-cognitive-science/DL%20needs%20a%20prefrontal%20cortex.pdf)
13 |
14 | ---
15 |
16 |
--------------------------------------------------------------------------------
/ai-and-cognitive-science/images/PFC.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/ai-and-cognitive-science/images/PFC.png
--------------------------------------------------------------------------------
/ai-and-cognitive-science/images/dl_needs_a_pfc_title.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/ai-and-cognitive-science/images/dl_needs_a_pfc_title.png
--------------------------------------------------------------------------------
/convolutional-neural-networks/Estimating-Example-Difficulty-using-VOG.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/convolutional-neural-networks/Estimating-Example-Difficulty-using-VOG.pdf
--------------------------------------------------------------------------------
/convolutional-neural-networks/README.md:
--------------------------------------------------------------------------------
1 | # Squeeze-and-Excitation Networks (CVPR 2018)
2 |
3 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/Squeeze-and-Excitation_Networks.pdf)
4 |
5 | 📌 [Original paper](https://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf) | **Authors: Jie Hu, Li Shen and
6 | Gang Sun**
7 |
8 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/Squeeze-and-Excitation_Networks.pdf)
9 |
10 | ---
11 |
12 | # Estimating Example Difficulty using Variance of Gradients (ICML, WHI-2020 Workshop)
13 |
14 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/Estimating-Example-Difficulty-using-VOG.pdf)
15 |
16 |
17 |
18 | 📌 [Original paper](https://arxiv.org/pdf/2008.11600.pdf) | **Authors: Chirag Agarwal and
19 | Sara Hooker**
20 |
21 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/Estimating-Example-Difficulty-using-VOG.pdf)
22 |
23 | 📌 **Related papers:** [Continual Deep Learning by Functional Regularisation of Memorable Past](https://arxiv.org/pdf/2004.14070.pdf) | [Nagging Predictors](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3627163)
24 |
25 |
26 | ---
27 |
28 | # Selective Kernel Networks (CVPR 2019)
29 |
30 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/Selective-Kernel-Networks.pdf)
31 |
32 |
33 |
34 | 📌 [Original paper](https://openaccess.thecvf.com/content_CVPR_2019/papers/Li_Selective_Kernel_Networks_CVPR_2019_paper.pdf) | **Authors: Xiang Li, Wenhai Wang, Xiaolin Hu and Jian Yang**
35 |
36 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/convolutional-neural-networks/Selective-Kernel-Networks.pdf)
37 |
38 | 📌 **Implementations:** [Caffe (official)](https://github.com/implus/SKNet) | [PyTorch](https://github.com/pppLang/SKNet)
39 |
40 |
--------------------------------------------------------------------------------
/convolutional-neural-networks/Selective-Kernel-Networks.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/convolutional-neural-networks/Selective-Kernel-Networks.pdf
--------------------------------------------------------------------------------
/convolutional-neural-networks/Squeeze-and-Excitation_Networks.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/convolutional-neural-networks/Squeeze-and-Excitation_Networks.pdf
--------------------------------------------------------------------------------
/convolutional-neural-networks/images/sknets.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/convolutional-neural-networks/images/sknets.png
--------------------------------------------------------------------------------
/convolutional-neural-networks/images/squeeze-and-excitation-networks.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/convolutional-neural-networks/images/squeeze-and-excitation-networks.png
--------------------------------------------------------------------------------
/convolutional-neural-networks/images/vog.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/convolutional-neural-networks/images/vog.png
--------------------------------------------------------------------------------
/miscellaneous/Dataset-Augmentation-in-Feature-Space.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/miscellaneous/Dataset-Augmentation-in-Feature-Space.pdf
--------------------------------------------------------------------------------
/miscellaneous/README.md:
--------------------------------------------------------------------------------
1 | # Miscellaneous topics
2 |
3 | ---
4 |
5 | ## Dataset Augmentation in Feature Space
6 |
7 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/miscellaneous/Dataset-Augmentation-in-Feature-Space.pdf)
8 |
9 |
10 |
11 | 📌 [Original paper](https://openreview.net/pdf?id=HJ9rLLcxg) | **Authors: Terrance DeVries, Graham W. Taylor**
12 |
13 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/miscellaneous/Dataset-Augmentation-in-Feature-Space.pdf)
14 |
15 |
--------------------------------------------------------------------------------
/miscellaneous/images/Dataset-Augmentation-in-Feature-Space.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/miscellaneous/images/Dataset-Augmentation-in-Feature-Space.png
--------------------------------------------------------------------------------
/object-detection/README.md:
--------------------------------------------------------------------------------
1 | ## M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
2 |
3 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/object-detection/m2det.pdf)
4 |
5 |
6 | 📌 [Original paper](https://arxiv.org/pdf/1811.04533.pdf) | **Authors: Qijie Zhao, Tao Sheng,Yongtao Wang, Zhi Tang, Ying Chen, Ling Cai and Haibin Ling**
7 |
8 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/object-detection/m2det.pdf)
9 |
10 | 📌 **Implementations:** [M2DET pytorch](https://github.com/qijiezhao/M2Det)
11 |
12 | ---
13 | ## RetinaNet: Focal Loss for Dense Object Detection (ICCV 2017)
14 |
15 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/object-detection/RetinaNet.pdf)
16 |
17 |
18 |
19 | 📌 [Original paper](http://openaccess.thecvf.com/content_ICCV_2017/papers/Lin_Focal_Loss_for_ICCV_2017_paper.pdf) | **Authors: Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dolla ́r**
20 |
21 | 📌 [Paper with annotation](https://github.com/alisher0717/machine-learning-notes/blob/master/object-detection-papers/RetinaNet.pdf)
22 |
23 | 📌 **Implementations:** [Detectron](https://github.com/facebookresearch/Detectron) | [Keras-retinanet](https://github.com/fizyr/keras-retinanet)
24 |
25 | ---
26 |
27 | ## YOLOv1: You Only Look Once: Unified, Real-Time Object Detection
28 |
29 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/object-detection/YOLOv1.pdf)
30 |
31 |
32 |
33 | 📌 [Original paper](https://arxiv.org/abs/1506.02640) | **Authors: Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi** | [Darknet](http://pjreddie.com/yolo/)
34 |
35 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/object-detection/YOLOv1.pdf)
36 |
--------------------------------------------------------------------------------
/object-detection/RetinaNet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/object-detection/RetinaNet.pdf
--------------------------------------------------------------------------------
/object-detection/YOLOv1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/object-detection/YOLOv1.pdf
--------------------------------------------------------------------------------
/object-detection/images/RetinaNet-architecture.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/object-detection/images/RetinaNet-architecture.png
--------------------------------------------------------------------------------
/object-detection/images/YOLOv1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/object-detection/images/YOLOv1.png
--------------------------------------------------------------------------------
/object-detection/images/m2det-architecture.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/object-detection/images/m2det-architecture.png
--------------------------------------------------------------------------------
/object-detection/m2det.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/object-detection/m2det.pdf
--------------------------------------------------------------------------------
/unsupervised-and-semi-supervised-learning/Convolutional-clustering-for-unsupervised-learning.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/unsupervised-and-semi-supervised-learning/Convolutional-clustering-for-unsupervised-learning.pdf
--------------------------------------------------------------------------------
/unsupervised-and-semi-supervised-learning/README.md:
--------------------------------------------------------------------------------
1 | # Unsupervised, semi-supervised and self-supervised trainings
2 |
3 | ---
4 | ## Convolutional Clustering for Unsupervised Learning @ ICML 2016
5 |
6 | [
](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/unsupervised-and-semi-supervised-learning/Convolutional-clustering-for-unsupervised-learning.pdf)
7 |
8 |
9 |
10 | 📌 [Original paper](https://arxiv.org/abs/1511.06241) | **Authors: Aysegul Dundar, Jonghoon Jin, Eugenio Culurciello**
11 |
12 | 📌 [Paper with annotation](https://github.com/Machine-Learning-Tokyo/papers-with-annotations/blob/master/unsupervised-and-semi-supervised-learning/Convolutional-clustering-for-unsupervised-learning.pdf)
13 |
14 | ---
15 |
16 |
--------------------------------------------------------------------------------
/unsupervised-and-semi-supervised-learning/images/convolutional-k-means-clustering.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Machine-Learning-Tokyo/papers-with-annotations/d0b9f6731edeb922a0303468a9d9d74efcb6e71e/unsupervised-and-semi-supervised-learning/images/convolutional-k-means-clustering.png
--------------------------------------------------------------------------------