├── LICENSE ├── README.md ├── basic_data_loading.ipynb ├── data ├── annotations_classify_task.pkl ├── annotations_contains_task.pkl ├── image_info.pkl ├── imagenet_label_map.npy ├── imagenet_label_to_wnid.npy ├── model_predictions.pkl └── superclasses.npy └── pipeline.jpg /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 Madry Lab 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Fine-grained annotations for the ImageNet validation set 2 | This is the data collected for our paper "From ImageNet to Image Classification: Contextualizing Progress on Benchmarks" ([preprint](https://arxiv.org/abs/2005.11295), [blog](https://gradientscience.org/benchmarks)). 3 | 4 | ![](pipeline.jpg) 5 | 6 | ## Parsing the annotations 7 | Our annotations are available as `pandas` dataframes in `data/annotations_{contains,classify}_task.pkl`. These dataframes included both the raw data collected (after quality control), as well as the aggregate quantities we computed for our analysis. The rest of the files in `data` contain auxiliary information. 8 | 9 | The easiest way to navigate these files is by running the jupyter notebook (`basic_data_loading.ipynb`) which loads all files, providing an explanation for each field. 10 | 11 | ## Citation 12 | 13 | ``` 14 | @inproceedings{tsipras2020imagenet, 15 | title={From ImageNet to Image Classification: Contextualizing Progress on Benchmarks}, 16 | author={Dimitris Tsipras and Shibani Santurkar and Logan Engstrom and Andrew Ilyas and Aleksander Madry}, 17 | booktitle={ArXiv preprint arXiv:2005.11295}, 18 | year={2020} 19 | } 20 | ``` 21 | 22 | -------------------------------------------------------------------------------- /basic_data_loading.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Load and visualize data" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import pandas as pd\n", 17 | "import numpy as np\n", 18 | "from PIL import Image\n", 19 | "import matplotlib.pyplot as plt\n", 20 | "\n", 21 | "%matplotlib inline" 22 | ] 23 | }, 24 | { 25 | "cell_type": "markdown", 26 | "metadata": {}, 27 | "source": [ 28 | "#### ImageNet label map" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 2, 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "label_map = np.load('./data/imagenet_label_map.npy', allow_pickle=True).item()\n", 38 | "label_to_wnid = np.load('./data/imagenet_label_to_wnid.npy', allow_pickle=True).item()" 39 | ] 40 | }, 41 | { 42 | "cell_type": "markdown", 43 | "metadata": {}, 44 | "source": [ 45 | "### ImageNet superclasses" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": 3, 51 | "metadata": {}, 52 | "outputs": [ 53 | { 54 | "name": "stdout", 55 | "output_type": "stream", 56 | "text": [ 57 | "Dogs, #ImageNet classes: 130, Sample classes: [151, 152, 153, 154, 155]\n", 58 | "Other mammals, #ImageNet classes: 88, Sample classes: [286, 287, 288, 289, 290]\n", 59 | "Birds, #ImageNet classes: 59, Sample classes: [128, 129, 130, 131, 132]\n", 60 | "Reptiles, fish, amphibians, #ImageNet classes: 60, Sample classes: [33, 34, 35, 36, 37]\n", 61 | "inverterbrates, #ImageNet classes: 61, Sample classes: [300, 301, 302, 303, 304]\n", 62 | "Food, plants, fungi, #ImageNet classes: 63, Sample classes: [992, 993, 994, 995, 996]\n", 63 | "Devices, #ImageNet classes: 172, Sample classes: [513, 517, 527, 530, 531]\n", 64 | "Structures, furnishing, #ImageNet classes: 90, Sample classes: [516, 648, 520, 526, 532]\n", 65 | "Clothes, covering, #ImageNet classes: 92, Sample classes: [643, 515, 518, 775, 903]\n", 66 | "Implements, containers, misc. objects, #ImageNet classes: 117, Sample classes: [512, 644, 521, 523, 909]\n", 67 | "vehicles, #ImageNet classes: 68, Sample classes: [779, 780, 654, 913, 914]\n" 68 | ] 69 | } 70 | ], 71 | "source": [ 72 | "superclasses = np.load('./data/superclasses.npy', allow_pickle=True).item()\n", 73 | "\n", 74 | "for k, v in superclasses.items():\n", 75 | " print(f\"{k}, #ImageNet classes: {len(v)}, Sample classes: {v[:5]}\")" 76 | ] 77 | }, 78 | { 79 | "cell_type": "markdown", 80 | "metadata": {}, 81 | "source": [ 82 | "## Model predictions\n", 83 | "\n", 84 | "The dataframe contains the following information:\n", 85 | "\n", 86 | "____________________________________________________________________________________________________\n", 87 | "\n", 88 | "`image_number`: number of image as per an unshuffled loader\n", 89 | "\n", 90 | "`imagenet_label`: ImageNet label\n", 91 | "\n", 92 | "____________________________________________________________________________________________________\n", 93 | "\n", 94 | "`pred_{MODEL_NAME}`: Top-5 predictions of model\n", 95 | "\n", 96 | "`top1_{MODEL_NAME}`: True if label == Top-1 model prediction\n", 97 | "\n", 98 | "`top5_{MODEL_NAME}`: True if label is in Top-5 model predictions" 99 | ] 100 | }, 101 | { 102 | "cell_type": "code", 103 | "execution_count": 4, 104 | "metadata": {}, 105 | "outputs": [], 106 | "source": [ 107 | "model_preds = pd.read_pickle(\"./data/model_predictions.pkl\")" 108 | ] 109 | }, 110 | { 111 | "cell_type": "code", 112 | "execution_count": 5, 113 | "metadata": {}, 114 | "outputs": [ 115 | { 116 | "data": { 117 | "text/html": [ 118 | "
\n", 119 | "\n", 132 | "\n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | "
img_numberimagenet_labelpred_googlenetpred_alexnetpred_resnet50pred_resnet101pred_inception_v3pred_vgg16pred_wide_resnet50_2pred_densenet161...top5_googlenettop5_alexnettop5_resnet50top5_resnet101top5_inception_v3top5_vgg16top5_wide_resnet50_2top5_densenet161top5_mobilenet_v2top5_tf_efficientnet_b7
000[48, 39, 0, 391, 394][395, 0, 48, 390, 394][394, 0, 395, 391, 389][394, 0, 149, 395, 391][0, 394, 48, 36, 391][395, 394, 391, 48, 39][394, 391, 0, 389, 390][394, 0, 391, 48, 389]...TrueTrueTrueTrueTrueFalseTrueTrueTrueTrue
110[0, 391, 122, 766, 389][764, 763, 413, 758, 391][0, 389, 391, 395, 758][0, 389, 391, 758, 394][391, 0, 758, 389, 764][0, 391, 758, 389, 395][0, 758, 391, 389, 395][0, 391, 389, 758, 395]...TrueFalseTrueTrueTrueTrueTrueTrueTrueTrue
220[0, 391, 346, 693, 223][929, 472, 444, 870, 655][0, 391, 693, 389, 390][0, 693, 758, 391, 472][837, 703, 419, 836, 785][0, 758, 391, 223, 237][0, 693, 391, 472, 389][0, 391, 395, 693, 472]...TrueFalseTrueTrueFalseTrueTrueTrueTrueTrue
330[0, 391, 389, 394, 395][0, 389, 395, 36, 955][0, 389, 391, 395, 394][0, 389, 391, 758, 997][0, 391, 122, 955, 933][0, 389, 30, 758, 390][0, 389, 395, 955, 36][0, 389, 391, 394, 397]...TrueTrueTrueTrueTrueTrueTrueTrueTrueTrue
440[0, 391, 1, 389, 556][0, 389, 114, 390, 939][0, 389, 391, 758, 955][0, 955, 389, 382, 1][0, 389, 37, 265, 5][0, 389, 758, 391, 390][0, 389, 758, 391, 395][0, 389, 904, 955, 391]...TrueTrueTrueTrueTrueTrueTrueTrueTrueTrue
..................................................................
4999549995999[896, 799, 435, 876, 706][799, 905, 876, 435, 831][896, 905, 904, 435, 799][896, 876, 435, 804, 861][876, 435, 579, 532, 526][799, 896, 435, 876, 904][999, 700, 904, 896, 861][896, 700, 435, 876, 904]...FalseFalseFalseFalseFalseFalseTrueFalseFalseTrue
4999649996999[999, 700, 868, 861, 435][725, 504, 876, 666, 896][999, 700, 876, 435, 868][700, 999, 599, 876, 934][700, 999, 896, 435, 731][999, 700, 861, 896, 868][999, 876, 896, 435, 804][999, 700, 868, 876, 965]...TrueFalseTrueTrueTrueTrueTrueTrueTrueTrue
4999749997999[762, 532, 495, 896, 857][470, 857, 532, 854, 406][854, 406, 851, 492, 762][521, 505, 968, 899, 859][857, 854, 406, 498, 762][406, 745, 762, 470, 896][495, 532, 725, 505, 968][406, 982, 607, 470, 846]...FalseFalseFalseFalseFalseFalseFalseFalseFalseTrue
4999849998999[333, 937, 700, 330, 999][333, 937, 356, 359, 334][333, 700, 937, 338, 356][333, 700, 999, 937, 794][333, 937, 700, 338, 999][333, 937, 987, 338, 357][333, 937, 961, 700, 338][333, 700, 999, 728, 937]...TrueFalseFalseTrueTrueFalseFalseTrueFalseFalse
4999949999999[999, 700, 772, 728, 845][474, 850, 911, 658, 700][999, 700, 543, 605, 772][700, 999, 605, 728, 455][605, 700, 999, 761, 633][714, 543, 999, 605, 805][999, 700, 419, 605, 574][999, 700, 728, 543, 723]...TrueFalseTrueTrueTrueTrueTrueTrueTrueTrue
\n", 426 | "

50000 rows × 32 columns

\n", 427 | "
" 428 | ], 429 | "text/plain": [ 430 | " img_number imagenet_label pred_googlenet \\\n", 431 | "0 0 0 [48, 39, 0, 391, 394] \n", 432 | "1 1 0 [0, 391, 122, 766, 389] \n", 433 | "2 2 0 [0, 391, 346, 693, 223] \n", 434 | "3 3 0 [0, 391, 389, 394, 395] \n", 435 | "4 4 0 [0, 391, 1, 389, 556] \n", 436 | "... ... ... ... \n", 437 | "49995 49995 999 [896, 799, 435, 876, 706] \n", 438 | "49996 49996 999 [999, 700, 868, 861, 435] \n", 439 | "49997 49997 999 [762, 532, 495, 896, 857] \n", 440 | "49998 49998 999 [333, 937, 700, 330, 999] \n", 441 | "49999 49999 999 [999, 700, 772, 728, 845] \n", 442 | "\n", 443 | " pred_alexnet pred_resnet50 \\\n", 444 | "0 [395, 0, 48, 390, 394] [394, 0, 395, 391, 389] \n", 445 | "1 [764, 763, 413, 758, 391] [0, 389, 391, 395, 758] \n", 446 | "2 [929, 472, 444, 870, 655] [0, 391, 693, 389, 390] \n", 447 | "3 [0, 389, 395, 36, 955] [0, 389, 391, 395, 394] \n", 448 | "4 [0, 389, 114, 390, 939] [0, 389, 391, 758, 955] \n", 449 | "... ... ... \n", 450 | "49995 [799, 905, 876, 435, 831] [896, 905, 904, 435, 799] \n", 451 | "49996 [725, 504, 876, 666, 896] [999, 700, 876, 435, 868] \n", 452 | "49997 [470, 857, 532, 854, 406] [854, 406, 851, 492, 762] \n", 453 | "49998 [333, 937, 356, 359, 334] [333, 700, 937, 338, 356] \n", 454 | "49999 [474, 850, 911, 658, 700] [999, 700, 543, 605, 772] \n", 455 | "\n", 456 | " pred_resnet101 pred_inception_v3 \\\n", 457 | "0 [394, 0, 149, 395, 391] [0, 394, 48, 36, 391] \n", 458 | "1 [0, 389, 391, 758, 394] [391, 0, 758, 389, 764] \n", 459 | "2 [0, 693, 758, 391, 472] [837, 703, 419, 836, 785] \n", 460 | "3 [0, 389, 391, 758, 997] [0, 391, 122, 955, 933] \n", 461 | "4 [0, 955, 389, 382, 1] [0, 389, 37, 265, 5] \n", 462 | "... ... ... \n", 463 | "49995 [896, 876, 435, 804, 861] [876, 435, 579, 532, 526] \n", 464 | "49996 [700, 999, 599, 876, 934] [700, 999, 896, 435, 731] \n", 465 | "49997 [521, 505, 968, 899, 859] [857, 854, 406, 498, 762] \n", 466 | "49998 [333, 700, 999, 937, 794] [333, 937, 700, 338, 999] \n", 467 | "49999 [700, 999, 605, 728, 455] [605, 700, 999, 761, 633] \n", 468 | "\n", 469 | " pred_vgg16 pred_wide_resnet50_2 \\\n", 470 | "0 [395, 394, 391, 48, 39] [394, 391, 0, 389, 390] \n", 471 | "1 [0, 391, 758, 389, 395] [0, 758, 391, 389, 395] \n", 472 | "2 [0, 758, 391, 223, 237] [0, 693, 391, 472, 389] \n", 473 | "3 [0, 389, 30, 758, 390] [0, 389, 395, 955, 36] \n", 474 | "4 [0, 389, 758, 391, 390] [0, 389, 758, 391, 395] \n", 475 | "... ... ... \n", 476 | "49995 [799, 896, 435, 876, 904] [999, 700, 904, 896, 861] \n", 477 | "49996 [999, 700, 861, 896, 868] [999, 876, 896, 435, 804] \n", 478 | "49997 [406, 745, 762, 470, 896] [495, 532, 725, 505, 968] \n", 479 | "49998 [333, 937, 987, 338, 357] [333, 937, 961, 700, 338] \n", 480 | "49999 [714, 543, 999, 605, 805] [999, 700, 419, 605, 574] \n", 481 | "\n", 482 | " pred_densenet161 ... top5_googlenet top5_alexnet \\\n", 483 | "0 [394, 0, 391, 48, 389] ... True True \n", 484 | "1 [0, 391, 389, 758, 395] ... True False \n", 485 | "2 [0, 391, 395, 693, 472] ... True False \n", 486 | "3 [0, 389, 391, 394, 397] ... True True \n", 487 | "4 [0, 389, 904, 955, 391] ... True True \n", 488 | "... ... ... ... ... \n", 489 | "49995 [896, 700, 435, 876, 904] ... False False \n", 490 | "49996 [999, 700, 868, 876, 965] ... True False \n", 491 | "49997 [406, 982, 607, 470, 846] ... False False \n", 492 | "49998 [333, 700, 999, 728, 937] ... True False \n", 493 | "49999 [999, 700, 728, 543, 723] ... True False \n", 494 | "\n", 495 | " top5_resnet50 top5_resnet101 top5_inception_v3 top5_vgg16 \\\n", 496 | "0 True True True False \n", 497 | "1 True True True True \n", 498 | "2 True True False True \n", 499 | "3 True True True True \n", 500 | "4 True True True True \n", 501 | "... ... ... ... ... \n", 502 | "49995 False False False False \n", 503 | "49996 True True True True \n", 504 | "49997 False False False False \n", 505 | "49998 False True True False \n", 506 | "49999 True True True True \n", 507 | "\n", 508 | " top5_wide_resnet50_2 top5_densenet161 top5_mobilenet_v2 \\\n", 509 | "0 True True True \n", 510 | "1 True True True \n", 511 | "2 True True True \n", 512 | "3 True True True \n", 513 | "4 True True True \n", 514 | "... ... ... ... \n", 515 | "49995 True False False \n", 516 | "49996 True True True \n", 517 | "49997 False False False \n", 518 | "49998 False True False \n", 519 | "49999 True True True \n", 520 | "\n", 521 | " top5_tf_efficientnet_b7 \n", 522 | "0 True \n", 523 | "1 True \n", 524 | "2 True \n", 525 | "3 True \n", 526 | "4 True \n", 527 | "... ... \n", 528 | "49995 True \n", 529 | "49996 True \n", 530 | "49997 True \n", 531 | "49998 False \n", 532 | "49999 True \n", 533 | "\n", 534 | "[50000 rows x 32 columns]" 535 | ] 536 | }, 537 | "execution_count": 5, 538 | "metadata": {}, 539 | "output_type": "execute_result" 540 | } 541 | ], 542 | "source": [ 543 | "model_preds" 544 | ] 545 | }, 546 | { 547 | "cell_type": "markdown", 548 | "metadata": {}, 549 | "source": [ 550 | "## CONTAINS task with multiple labels/image\n", 551 | "\n", 552 | "The dataframe contains the following information:\n", 553 | "\n", 554 | "____________________________________________________________________________________________________\n", 555 | "\n", 556 | "`image`: image filename \n", 557 | "\n", 558 | "`image_number`: number of image as per an unshuffled loader (same as above)\n", 559 | "\n", 560 | "`imagenet_label`: ImageNet label\n", 561 | "\n", 562 | "____________________________________________________________________________________________________\n", 563 | "\n", 564 | "`query`: set of candidate labels queried in \"contains\" experiment\n", 565 | "\n", 566 | "`num_queries`: size of `query` set\n", 567 | "\n", 568 | "____________________________________________________________________________________________________\n", 569 | "\n", 570 | "`selected`: number of annotators that selected each query label\n", 571 | "\n", 572 | "`total`: number of annotators that saw each query label (some HITs were discarded as part of quality control)\n", 573 | "\n", 574 | "`sel_dict`: dictionary mapping query label to tuple with number of workers that selected the image-query pair, and the number of workers that it was presented to " 575 | ] 576 | }, 577 | { 578 | "cell_type": "code", 579 | "execution_count": 6, 580 | "metadata": {}, 581 | "outputs": [], 582 | "source": [ 583 | "info_contains = pd.read_pickle(\"./data/annotations_contains_task.pkl\")" 584 | ] 585 | }, 586 | { 587 | "cell_type": "code", 588 | "execution_count": 7, 589 | "metadata": {}, 590 | "outputs": [ 591 | { 592 | "data": { 593 | "text/html": [ 594 | "
\n", 595 | "\n", 608 | "\n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | "
Unnamed: 0queryselectedtotalimage_numberimagenet_labelnum_queriessel_dict
image
ILSVRC2012_val_00047683.JPEG90113[392, 310, 322, 712, 321, 325, 946, 309, 326, ...[0, 0, 4, 0, 4, 7, 1, 0, 6, 1, 4, 0][9, 9, 9, 7, 5, 8, 9, 9, 7, 9, 9, 9]1629632512{392: (0, 9), 310: (0, 9), 322: (4, 9), 712: (...
ILSVRC2012_val_00030990.JPEG46639[312, 30, 39, 31, 149, 46, 40, 47, 42, 55, 401][0, 0, 8, 0, 1, 3, 4, 7, 2, 1, 0][7, 9, 8, 8, 8, 7, 8, 8, 4, 9, 8]23824711{312: (0, 7), 30: (0, 9), 39: (8, 8), 31: (0, ...
ILSVRC2012_val_00002431.JPEG67588[870, 444, 670, 826, 778, 685, 63, 880, 597, 4...[1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 7, 1, 0, 0, ...[9, 9, 8, 9, 8, 9, 7, 8, 9, 8, 9, 9, 7, 9, 9, ...3520170417{870: (1, 9), 444: (0, 9), 670: (0, 8), 826: (...
ILSVRC2012_val_00033061.JPEG125421[497, 442, 448, 494, 884, 698, 406, 425, 663, ...[6, 8, 0, 4, 0, 0, 1, 1, 4, 1, 1][6, 8, 9, 9, 8, 7, 8, 9, 6, 8, 9]2213344211{497: (6, 6), 442: (8, 8), 448: (0, 9), 494: (...
ILSVRC2012_val_00002735.JPEG126066[497, 442, 884, 698, 399, 668, 832, 663, 538][6, 3, 4, 4, 0, 6, 6, 5, 8][8, 8, 8, 9, 8, 7, 8, 8, 9]334036689{497: (6, 8), 442: (3, 8), 884: (4, 8), 698: (...
...........................
ILSVRC2012_val_00003714.JPEG143137[214, 177, 170, 231, 236, 264, 224, 205, 240, ...[3, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 1, 1, 1, 0, ...[9, 6, 8, 9, 8, 6, 5, 8, 8, 8, 8, 7, 9, 8, 8, ...1070221419{214: (3, 9), 177: (1, 6), 170: (2, 8), 231: (...
ILSVRC2012_val_00018015.JPEG54180[843, 671, 892, 871, 814, 826, 778, 915, 880, ...[0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, ...[9, 9, 9, 8, 9, 9, 5, 8, 9, 8, 7, 5, 9, 6, 9, ...3356467123{843: (0, 9), 671: (2, 9), 892: (1, 9), 871: (...
ILSVRC2012_val_00029538.JPEG129790[610, 714, 566, 745, 771, 515, 592, 650, 420, ...[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 8, 0, 0][9, 9, 9, 8, 6, 9, 9, 8, 9, 8, 8, 8, 9]2012940213{610: (0, 9), 714: (0, 9), 566: (0, 9), 745: (...
ILSVRC2012_val_00040262.JPEG96869[794, 440, 868, 585, 709, 611, 118, 917, 857, ...[0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 6, 0, 0, ...[9, 9, 8, 7, 8, 9, 8, 9, 9, 7, 8, 8, 8, 8, 8, ...4609392119{794: (0, 9), 440: (0, 9), 868: (0, 8), 585: (...
ILSVRC2012_val_00006124.JPEG20850[758, 726, 589, 618, 606, 666, 910, 828, 813, ...[1, 1, 0, 2, 0, 0, 2, 5, 0, 0, 0, 2, 4, 0, 0, ...[8, 8, 8, 9, 9, 8, 9, 9, 9, 7, 8, 8, 9, 9, 9, ...3645472918{758: (1, 8), 726: (1, 8), 589: (0, 8), 618: (...
\n", 757 | "

10000 rows × 8 columns

\n", 758 | "
" 759 | ], 760 | "text/plain": [ 761 | " Unnamed: 0 \\\n", 762 | "image \n", 763 | "ILSVRC2012_val_00047683.JPEG 90113 \n", 764 | "ILSVRC2012_val_00030990.JPEG 46639 \n", 765 | "ILSVRC2012_val_00002431.JPEG 67588 \n", 766 | "ILSVRC2012_val_00033061.JPEG 125421 \n", 767 | "ILSVRC2012_val_00002735.JPEG 126066 \n", 768 | "... ... \n", 769 | "ILSVRC2012_val_00003714.JPEG 143137 \n", 770 | "ILSVRC2012_val_00018015.JPEG 54180 \n", 771 | "ILSVRC2012_val_00029538.JPEG 129790 \n", 772 | "ILSVRC2012_val_00040262.JPEG 96869 \n", 773 | "ILSVRC2012_val_00006124.JPEG 20850 \n", 774 | "\n", 775 | " query \\\n", 776 | "image \n", 777 | "ILSVRC2012_val_00047683.JPEG [392, 310, 322, 712, 321, 325, 946, 309, 326, ... \n", 778 | "ILSVRC2012_val_00030990.JPEG [312, 30, 39, 31, 149, 46, 40, 47, 42, 55, 401] \n", 779 | "ILSVRC2012_val_00002431.JPEG [870, 444, 670, 826, 778, 685, 63, 880, 597, 4... \n", 780 | "ILSVRC2012_val_00033061.JPEG [497, 442, 448, 494, 884, 698, 406, 425, 663, ... \n", 781 | "ILSVRC2012_val_00002735.JPEG [497, 442, 884, 698, 399, 668, 832, 663, 538] \n", 782 | "... ... \n", 783 | "ILSVRC2012_val_00003714.JPEG [214, 177, 170, 231, 236, 264, 224, 205, 240, ... \n", 784 | "ILSVRC2012_val_00018015.JPEG [843, 671, 892, 871, 814, 826, 778, 915, 880, ... \n", 785 | "ILSVRC2012_val_00029538.JPEG [610, 714, 566, 745, 771, 515, 592, 650, 420, ... \n", 786 | "ILSVRC2012_val_00040262.JPEG [794, 440, 868, 585, 709, 611, 118, 917, 857, ... \n", 787 | "ILSVRC2012_val_00006124.JPEG [758, 726, 589, 618, 606, 666, 910, 828, 813, ... \n", 788 | "\n", 789 | " selected \\\n", 790 | "image \n", 791 | "ILSVRC2012_val_00047683.JPEG [0, 0, 4, 0, 4, 7, 1, 0, 6, 1, 4, 0] \n", 792 | "ILSVRC2012_val_00030990.JPEG [0, 0, 8, 0, 1, 3, 4, 7, 2, 1, 0] \n", 793 | "ILSVRC2012_val_00002431.JPEG [1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 7, 1, 0, 0, ... \n", 794 | "ILSVRC2012_val_00033061.JPEG [6, 8, 0, 4, 0, 0, 1, 1, 4, 1, 1] \n", 795 | "ILSVRC2012_val_00002735.JPEG [6, 3, 4, 4, 0, 6, 6, 5, 8] \n", 796 | "... ... \n", 797 | "ILSVRC2012_val_00003714.JPEG [3, 1, 2, 1, 2, 1, 1, 2, 4, 1, 1, 1, 1, 1, 0, ... \n", 798 | "ILSVRC2012_val_00018015.JPEG [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, ... \n", 799 | "ILSVRC2012_val_00029538.JPEG [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 8, 0, 0] \n", 800 | "ILSVRC2012_val_00040262.JPEG [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 6, 0, 0, ... \n", 801 | "ILSVRC2012_val_00006124.JPEG [1, 1, 0, 2, 0, 0, 2, 5, 0, 0, 0, 2, 4, 0, 0, ... \n", 802 | "\n", 803 | " total \\\n", 804 | "image \n", 805 | "ILSVRC2012_val_00047683.JPEG [9, 9, 9, 7, 5, 8, 9, 9, 7, 9, 9, 9] \n", 806 | "ILSVRC2012_val_00030990.JPEG [7, 9, 8, 8, 8, 7, 8, 8, 4, 9, 8] \n", 807 | "ILSVRC2012_val_00002431.JPEG [9, 9, 8, 9, 8, 9, 7, 8, 9, 8, 9, 9, 7, 9, 9, ... \n", 808 | "ILSVRC2012_val_00033061.JPEG [6, 8, 9, 9, 8, 7, 8, 9, 6, 8, 9] \n", 809 | "ILSVRC2012_val_00002735.JPEG [8, 8, 8, 9, 8, 7, 8, 8, 9] \n", 810 | "... ... \n", 811 | "ILSVRC2012_val_00003714.JPEG [9, 6, 8, 9, 8, 6, 5, 8, 8, 8, 8, 7, 9, 8, 8, ... \n", 812 | "ILSVRC2012_val_00018015.JPEG [9, 9, 9, 8, 9, 9, 5, 8, 9, 8, 7, 5, 9, 6, 9, ... \n", 813 | "ILSVRC2012_val_00029538.JPEG [9, 9, 9, 8, 6, 9, 9, 8, 9, 8, 8, 8, 9] \n", 814 | "ILSVRC2012_val_00040262.JPEG [9, 9, 8, 7, 8, 9, 8, 9, 9, 7, 8, 8, 8, 8, 8, ... \n", 815 | "ILSVRC2012_val_00006124.JPEG [8, 8, 8, 9, 9, 8, 9, 9, 9, 7, 8, 8, 9, 9, 9, ... \n", 816 | "\n", 817 | " image_number imagenet_label num_queries \\\n", 818 | "image \n", 819 | "ILSVRC2012_val_00047683.JPEG 16296 325 12 \n", 820 | "ILSVRC2012_val_00030990.JPEG 2382 47 11 \n", 821 | "ILSVRC2012_val_00002431.JPEG 35201 704 17 \n", 822 | "ILSVRC2012_val_00033061.JPEG 22133 442 11 \n", 823 | "ILSVRC2012_val_00002735.JPEG 33403 668 9 \n", 824 | "... ... ... ... \n", 825 | "ILSVRC2012_val_00003714.JPEG 10702 214 19 \n", 826 | "ILSVRC2012_val_00018015.JPEG 33564 671 23 \n", 827 | "ILSVRC2012_val_00029538.JPEG 20129 402 13 \n", 828 | "ILSVRC2012_val_00040262.JPEG 46093 921 19 \n", 829 | "ILSVRC2012_val_00006124.JPEG 36454 729 18 \n", 830 | "\n", 831 | " sel_dict \n", 832 | "image \n", 833 | "ILSVRC2012_val_00047683.JPEG {392: (0, 9), 310: (0, 9), 322: (4, 9), 712: (... \n", 834 | "ILSVRC2012_val_00030990.JPEG {312: (0, 7), 30: (0, 9), 39: (8, 8), 31: (0, ... \n", 835 | "ILSVRC2012_val_00002431.JPEG {870: (1, 9), 444: (0, 9), 670: (0, 8), 826: (... \n", 836 | "ILSVRC2012_val_00033061.JPEG {497: (6, 6), 442: (8, 8), 448: (0, 9), 494: (... \n", 837 | "ILSVRC2012_val_00002735.JPEG {497: (6, 8), 442: (3, 8), 884: (4, 8), 698: (... \n", 838 | "... ... \n", 839 | "ILSVRC2012_val_00003714.JPEG {214: (3, 9), 177: (1, 6), 170: (2, 8), 231: (... \n", 840 | "ILSVRC2012_val_00018015.JPEG {843: (0, 9), 671: (2, 9), 892: (1, 9), 871: (... \n", 841 | "ILSVRC2012_val_00029538.JPEG {610: (0, 9), 714: (0, 9), 566: (0, 9), 745: (... \n", 842 | "ILSVRC2012_val_00040262.JPEG {794: (0, 9), 440: (0, 9), 868: (0, 8), 585: (... \n", 843 | "ILSVRC2012_val_00006124.JPEG {758: (1, 8), 726: (1, 8), 589: (0, 8), 618: (... \n", 844 | "\n", 845 | "[10000 rows x 8 columns]" 846 | ] 847 | }, 848 | "execution_count": 7, 849 | "metadata": {}, 850 | "output_type": "execute_result" 851 | } 852 | ], 853 | "source": [ 854 | "info_contains" 855 | ] 856 | }, 857 | { 858 | "cell_type": "markdown", 859 | "metadata": {}, 860 | "source": [ 861 | "## Split of 10k images used for CONTAINS task\n", 862 | "\n", 863 | "____________________________________________________________________________________________________\n", 864 | "\n", 865 | "`image`: image filename \n", 866 | "\n", 867 | "`annotation`: Can take one of the following 4 values\n", 868 | "\n", 869 | "(a) `easy`: ImageNet label was the only label selected confidently in the ``valid labels`` expt (no other label has even half ImageNet label sf as per at least 5 workers)\n", 870 | "\n", 871 | "(b) `mis`: ImageNet label was not selected by any annotators\n", 872 | "\n", 873 | "(c) `fu`: Images were part of the follow-up experiment due to multiple confident labels\n", 874 | "\n", 875 | "(a) `amb`: Images omitted from follow-up because number of workers was too low (HITs discarded during controls)" 876 | ] 877 | }, 878 | { 879 | "cell_type": "code", 880 | "execution_count": 8, 881 | "metadata": {}, 882 | "outputs": [], 883 | "source": [ 884 | "info_part = pd.read_pickle(\"./data/image_info.pkl\")" 885 | ] 886 | }, 887 | { 888 | "cell_type": "code", 889 | "execution_count": 9, 890 | "metadata": {}, 891 | "outputs": [ 892 | { 893 | "data": { 894 | "text/html": [ 895 | "
\n", 896 | "\n", 909 | "\n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | "
annotation
image
ILSVRC2012_val_00047683.JPEGfu
ILSVRC2012_val_00030990.JPEGfu
ILSVRC2012_val_00002431.JPEGeasy
ILSVRC2012_val_00033061.JPEGfu
ILSVRC2012_val_00002735.JPEGfu
......
ILSVRC2012_val_00003714.JPEGfu
ILSVRC2012_val_00018015.JPEGfu
ILSVRC2012_val_00029538.JPEGeasy
ILSVRC2012_val_00040262.JPEGeasy
ILSVRC2012_val_00006124.JPEGfu
\n", 967 | "

10000 rows × 1 columns

\n", 968 | "
" 969 | ], 970 | "text/plain": [ 971 | " annotation\n", 972 | "image \n", 973 | "ILSVRC2012_val_00047683.JPEG fu\n", 974 | "ILSVRC2012_val_00030990.JPEG fu\n", 975 | "ILSVRC2012_val_00002431.JPEG easy\n", 976 | "ILSVRC2012_val_00033061.JPEG fu\n", 977 | "ILSVRC2012_val_00002735.JPEG fu\n", 978 | "... ...\n", 979 | "ILSVRC2012_val_00003714.JPEG fu\n", 980 | "ILSVRC2012_val_00018015.JPEG fu\n", 981 | "ILSVRC2012_val_00029538.JPEG easy\n", 982 | "ILSVRC2012_val_00040262.JPEG easy\n", 983 | "ILSVRC2012_val_00006124.JPEG fu\n", 984 | "\n", 985 | "[10000 rows x 1 columns]" 986 | ] 987 | }, 988 | "execution_count": 9, 989 | "metadata": {}, 990 | "output_type": "execute_result" 991 | } 992 | ], 993 | "source": [ 994 | "info_part" 995 | ] 996 | }, 997 | { 998 | "cell_type": "markdown", 999 | "metadata": {}, 1000 | "source": [ 1001 | "## Image Classification (CLASSIFY task)\n", 1002 | "\n", 1003 | "The dataframe contains the following information:\n", 1004 | "\n", 1005 | "____________________________________________________________________________________________________\n", 1006 | "\n", 1007 | "`image`: image filename \n", 1008 | "\n", 1009 | "`image_number`: number of image as per an unshuffled loader (same as above)\n", 1010 | "\n", 1011 | "`imagenet_label`: ImageNet label\n", 1012 | "\n", 1013 | "____________________________________________________________________________________________________\n", 1014 | "\n", 1015 | "`main`: class for main object in the image, 1 per annotator\n", 1016 | "\n", 1017 | "`main_top`: ``main label`` (most frequent entry of ``main``)\n", 1018 | "\n", 1019 | "`main_counter`: counter with distribution over label of main object (based on ``main``)\n", 1020 | "\n", 1021 | "____________________________________________________________________________________________________\n", 1022 | "\n", 1023 | "`selected`: set of labels (corresponding to distinct objects) selected by each annotator\n", 1024 | "\n", 1025 | "`num_objects`: number of objects in image (argmax over length of `selected`)\n", 1026 | "\n", 1027 | "`object_counter`: distribution over number of objects in image (distribution over length of `selected`)\n", 1028 | "\n", 1029 | "`objects`: list of labels for each of the objects in image (total=`num_objects`) obtained by applying max-k cut on `selected`\n", 1030 | "\n", 1031 | "`main_object`: object containing `main_top`\n", 1032 | "\n", 1033 | "`main_object_counter`: how likely each object is to be `main`\n", 1034 | "\n", 1035 | "`imagenet_object`: object corresponding to ImageNet label" 1036 | ] 1037 | }, 1038 | { 1039 | "cell_type": "code", 1040 | "execution_count": 10, 1041 | "metadata": {}, 1042 | "outputs": [], 1043 | "source": [ 1044 | "info_classify = pd.read_pickle(\"./data/annotations_classify_task.pkl\")" 1045 | ] 1046 | }, 1047 | { 1048 | "cell_type": "code", 1049 | "execution_count": 11, 1050 | "metadata": {}, 1051 | "outputs": [ 1052 | { 1053 | "data": { 1054 | "text/html": [ 1055 | "
\n", 1056 | "\n", 1069 | "\n", 1070 | " \n", 1071 | " \n", 1072 | " \n", 1073 | " \n", 1074 | " \n", 1075 | " \n", 1076 | " \n", 1077 | " \n", 1078 | " \n", 1079 | " \n", 1080 | " \n", 1081 | " \n", 1082 | " \n", 1083 | " \n", 1084 | " \n", 1085 | " \n", 1086 | " \n", 1087 | " \n", 1088 | " \n", 1089 | " \n", 1090 | " \n", 1091 | " \n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | " \n", 1100 | " \n", 1101 | " \n", 1102 | " \n", 1103 | " \n", 1104 | " \n", 1105 | " \n", 1106 | " \n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | " \n", 1175 | " \n", 1176 | " \n", 1177 | " \n", 1178 | " \n", 1179 | " \n", 1180 | " \n", 1181 | " \n", 1182 | " \n", 1183 | " \n", 1184 | " \n", 1185 | " \n", 1186 | " \n", 1187 | " \n", 1188 | " \n", 1189 | " \n", 1190 | " \n", 1191 | " \n", 1192 | " \n", 1193 | " \n", 1194 | " \n", 1195 | " \n", 1196 | " \n", 1197 | " \n", 1198 | " \n", 1199 | " \n", 1200 | " \n", 1201 | " \n", 1202 | " \n", 1203 | " \n", 1204 | " \n", 1205 | " \n", 1206 | " \n", 1207 | " \n", 1208 | " \n", 1209 | " \n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | " \n", 1270 | " \n", 1271 | " \n", 1272 | " \n", 1273 | " \n", 1274 | " \n", 1275 | " \n", 1276 | " \n", 1277 | " \n", 1278 | " \n", 1279 | " \n", 1280 | " \n", 1281 | " \n", 1282 | "
mainselectednum_workersimage_numberimagenet_labelmain_countermain_topnum_objectsobject_counterobjectsmain_objectmain_object_counterimagenet_object
image
ILSVRC2012_val_00047683.JPEG[325, 322, 322, 325, 322, 322, 325, 324, 322][[326, 322, 325], [322], [322], [325], [322], ...916296325{325: 3, 322: 5, 324: 1}3221{3: 1, 1: 8}[{326: (0.09090909090909091, 0.111111111111111...0[9]0.0
ILSVRC2012_val_00030990.JPEG[40, 47, 39, 47, 47, 40, 47, 40, 47][[40], [47], [39], [47], [47], [40], [47], [40...9238247{40: 3, 47: 5, 39: 1}471{1: 7, 2: 2}[{40: (0.36363636363636365, 0.4444444444444444...0[9]0.0
ILSVRC2012_val_00033061.JPEG[497, 663, 497, 442, 497, 497, 497, 497, 497][[497, 442], [497, 442, 663], [497, 442], [442...922133442{497: 7, 663: 1, 442: 1}4972{2: 3, 3: 3, 1: 3}[{442: (1.0, 0.7777777777777778)}, {497: (0.72...1[1, 8]0.0
ILSVRC2012_val_00002735.JPEG[497, 832, 663, 668, 832, 668, 538, 668, 668][[538, 497], [832, 538, 668, 663, 884, 497], [...933403668{497: 1, 832: 2, 663: 1, 668: 4, 538: 1}6682{2: 3, 6: 1, 4: 3, 1: 2}[{884: (0.15384615384615385, 0.222222222222222...1[2, 7]1.0
ILSVRC2012_val_00019033.JPEG[69, 69, 69, 69, 116, 116, 69, 116, 126][[69], [69], [69], [69], [116], [69, 126, 116]...95818116{69: 5, 116: 3, 126: 1}691{1: 7, 3: 2}[{69: (0.46153846153846156, 0.6666666666666666...0[9]0.0
..........................................
ILSVRC2012_val_00025813.JPEG[947, 947, 947, 947, 947, 947, 947, 947, 947][[997, 947], [997, 947], [947], [947], [997, 9...947377947{947: 9}9471{2: 4, 1: 5}[{997: (0.3076923076923077, 0.4444444444444444...0[9]0.0
ILSVRC2012_val_00040269.JPEG[382, 381, 381, 382, 382, 382, 382, 382, 382][[382], [381], [381], [382], [382], [382], [38...919041380{382: 7, 381: 2}3821{1: 8, 2: 1}[{382: (0.7, 0.7777777777777778), 381: (0.3, 0...0[9]NaN
ILSVRC2012_val_00003714.JPEG[214, 256, 240, 214, 256, 214, 205, 214, 214][[214, 240, 256, 236], [256], [240], [214, 256...910702214{214: 5, 256: 2, 240: 1, 205: 1}2141{4: 1, 1: 7, 2: 1}[{214: (0.38461538461538464, 0.555555555555555...0[9]0.0
ILSVRC2012_val_00018015.JPEG[671, 671, 671, 671, 671, 671, 671, 671, 671][[535, 671], [671], [671], [671], [671], [671]...933564671{671: 9}6711{2: 1, 1: 8}[{535: (0.1, 0.1111111111111111), 671: (0.9, 1...0[9]0.0
ILSVRC2012_val_00006124.JPEG[729, 729, 729, 729, 729, 729, 729, 729, 729][[828, 729, 567], [828, 729], [828, 729], [828...936454729{729: 9}7292{3: 2, 2: 6, 1: 1}[{828: (1.0, 0.8888888888888888)}, {729: (0.81...1[0, 9]1.0
\n", 1283 | "

6761 rows × 13 columns

\n", 1284 | "
" 1285 | ], 1286 | "text/plain": [ 1287 | " main \\\n", 1288 | "image \n", 1289 | "ILSVRC2012_val_00047683.JPEG [325, 322, 322, 325, 322, 322, 325, 324, 322] \n", 1290 | "ILSVRC2012_val_00030990.JPEG [40, 47, 39, 47, 47, 40, 47, 40, 47] \n", 1291 | "ILSVRC2012_val_00033061.JPEG [497, 663, 497, 442, 497, 497, 497, 497, 497] \n", 1292 | "ILSVRC2012_val_00002735.JPEG [497, 832, 663, 668, 832, 668, 538, 668, 668] \n", 1293 | "ILSVRC2012_val_00019033.JPEG [69, 69, 69, 69, 116, 116, 69, 116, 126] \n", 1294 | "... ... \n", 1295 | "ILSVRC2012_val_00025813.JPEG [947, 947, 947, 947, 947, 947, 947, 947, 947] \n", 1296 | "ILSVRC2012_val_00040269.JPEG [382, 381, 381, 382, 382, 382, 382, 382, 382] \n", 1297 | "ILSVRC2012_val_00003714.JPEG [214, 256, 240, 214, 256, 214, 205, 214, 214] \n", 1298 | "ILSVRC2012_val_00018015.JPEG [671, 671, 671, 671, 671, 671, 671, 671, 671] \n", 1299 | "ILSVRC2012_val_00006124.JPEG [729, 729, 729, 729, 729, 729, 729, 729, 729] \n", 1300 | "\n", 1301 | " selected \\\n", 1302 | "image \n", 1303 | "ILSVRC2012_val_00047683.JPEG [[326, 322, 325], [322], [322], [325], [322], ... \n", 1304 | "ILSVRC2012_val_00030990.JPEG [[40], [47], [39], [47], [47], [40], [47], [40... \n", 1305 | "ILSVRC2012_val_00033061.JPEG [[497, 442], [497, 442, 663], [497, 442], [442... \n", 1306 | "ILSVRC2012_val_00002735.JPEG [[538, 497], [832, 538, 668, 663, 884, 497], [... \n", 1307 | "ILSVRC2012_val_00019033.JPEG [[69], [69], [69], [69], [116], [69, 126, 116]... \n", 1308 | "... ... \n", 1309 | "ILSVRC2012_val_00025813.JPEG [[997, 947], [997, 947], [947], [947], [997, 9... \n", 1310 | "ILSVRC2012_val_00040269.JPEG [[382], [381], [381], [382], [382], [382], [38... \n", 1311 | "ILSVRC2012_val_00003714.JPEG [[214, 240, 256, 236], [256], [240], [214, 256... \n", 1312 | "ILSVRC2012_val_00018015.JPEG [[535, 671], [671], [671], [671], [671], [671]... \n", 1313 | "ILSVRC2012_val_00006124.JPEG [[828, 729, 567], [828, 729], [828, 729], [828... \n", 1314 | "\n", 1315 | " num_workers image_number imagenet_label \\\n", 1316 | "image \n", 1317 | "ILSVRC2012_val_00047683.JPEG 9 16296 325 \n", 1318 | "ILSVRC2012_val_00030990.JPEG 9 2382 47 \n", 1319 | "ILSVRC2012_val_00033061.JPEG 9 22133 442 \n", 1320 | "ILSVRC2012_val_00002735.JPEG 9 33403 668 \n", 1321 | "ILSVRC2012_val_00019033.JPEG 9 5818 116 \n", 1322 | "... ... ... ... \n", 1323 | "ILSVRC2012_val_00025813.JPEG 9 47377 947 \n", 1324 | "ILSVRC2012_val_00040269.JPEG 9 19041 380 \n", 1325 | "ILSVRC2012_val_00003714.JPEG 9 10702 214 \n", 1326 | "ILSVRC2012_val_00018015.JPEG 9 33564 671 \n", 1327 | "ILSVRC2012_val_00006124.JPEG 9 36454 729 \n", 1328 | "\n", 1329 | " main_counter \\\n", 1330 | "image \n", 1331 | "ILSVRC2012_val_00047683.JPEG {325: 3, 322: 5, 324: 1} \n", 1332 | "ILSVRC2012_val_00030990.JPEG {40: 3, 47: 5, 39: 1} \n", 1333 | "ILSVRC2012_val_00033061.JPEG {497: 7, 663: 1, 442: 1} \n", 1334 | "ILSVRC2012_val_00002735.JPEG {497: 1, 832: 2, 663: 1, 668: 4, 538: 1} \n", 1335 | "ILSVRC2012_val_00019033.JPEG {69: 5, 116: 3, 126: 1} \n", 1336 | "... ... \n", 1337 | "ILSVRC2012_val_00025813.JPEG {947: 9} \n", 1338 | "ILSVRC2012_val_00040269.JPEG {382: 7, 381: 2} \n", 1339 | "ILSVRC2012_val_00003714.JPEG {214: 5, 256: 2, 240: 1, 205: 1} \n", 1340 | "ILSVRC2012_val_00018015.JPEG {671: 9} \n", 1341 | "ILSVRC2012_val_00006124.JPEG {729: 9} \n", 1342 | "\n", 1343 | " main_top num_objects object_counter \\\n", 1344 | "image \n", 1345 | "ILSVRC2012_val_00047683.JPEG 322 1 {3: 1, 1: 8} \n", 1346 | "ILSVRC2012_val_00030990.JPEG 47 1 {1: 7, 2: 2} \n", 1347 | "ILSVRC2012_val_00033061.JPEG 497 2 {2: 3, 3: 3, 1: 3} \n", 1348 | "ILSVRC2012_val_00002735.JPEG 668 2 {2: 3, 6: 1, 4: 3, 1: 2} \n", 1349 | "ILSVRC2012_val_00019033.JPEG 69 1 {1: 7, 3: 2} \n", 1350 | "... ... ... ... \n", 1351 | "ILSVRC2012_val_00025813.JPEG 947 1 {2: 4, 1: 5} \n", 1352 | "ILSVRC2012_val_00040269.JPEG 382 1 {1: 8, 2: 1} \n", 1353 | "ILSVRC2012_val_00003714.JPEG 214 1 {4: 1, 1: 7, 2: 1} \n", 1354 | "ILSVRC2012_val_00018015.JPEG 671 1 {2: 1, 1: 8} \n", 1355 | "ILSVRC2012_val_00006124.JPEG 729 2 {3: 2, 2: 6, 1: 1} \n", 1356 | "\n", 1357 | " objects \\\n", 1358 | "image \n", 1359 | "ILSVRC2012_val_00047683.JPEG [{326: (0.09090909090909091, 0.111111111111111... \n", 1360 | "ILSVRC2012_val_00030990.JPEG [{40: (0.36363636363636365, 0.4444444444444444... \n", 1361 | "ILSVRC2012_val_00033061.JPEG [{442: (1.0, 0.7777777777777778)}, {497: (0.72... \n", 1362 | "ILSVRC2012_val_00002735.JPEG [{884: (0.15384615384615385, 0.222222222222222... \n", 1363 | "ILSVRC2012_val_00019033.JPEG [{69: (0.46153846153846156, 0.6666666666666666... \n", 1364 | "... ... \n", 1365 | "ILSVRC2012_val_00025813.JPEG [{997: (0.3076923076923077, 0.4444444444444444... \n", 1366 | "ILSVRC2012_val_00040269.JPEG [{382: (0.7, 0.7777777777777778), 381: (0.3, 0... \n", 1367 | "ILSVRC2012_val_00003714.JPEG [{214: (0.38461538461538464, 0.555555555555555... \n", 1368 | "ILSVRC2012_val_00018015.JPEG [{535: (0.1, 0.1111111111111111), 671: (0.9, 1... \n", 1369 | "ILSVRC2012_val_00006124.JPEG [{828: (1.0, 0.8888888888888888)}, {729: (0.81... \n", 1370 | "\n", 1371 | " main_object main_object_counter imagenet_object \n", 1372 | "image \n", 1373 | "ILSVRC2012_val_00047683.JPEG 0 [9] 0.0 \n", 1374 | "ILSVRC2012_val_00030990.JPEG 0 [9] 0.0 \n", 1375 | "ILSVRC2012_val_00033061.JPEG 1 [1, 8] 0.0 \n", 1376 | "ILSVRC2012_val_00002735.JPEG 1 [2, 7] 1.0 \n", 1377 | "ILSVRC2012_val_00019033.JPEG 0 [9] 0.0 \n", 1378 | "... ... ... ... \n", 1379 | "ILSVRC2012_val_00025813.JPEG 0 [9] 0.0 \n", 1380 | "ILSVRC2012_val_00040269.JPEG 0 [9] NaN \n", 1381 | "ILSVRC2012_val_00003714.JPEG 0 [9] 0.0 \n", 1382 | "ILSVRC2012_val_00018015.JPEG 0 [9] 0.0 \n", 1383 | "ILSVRC2012_val_00006124.JPEG 1 [0, 9] 1.0 \n", 1384 | "\n", 1385 | "[6761 rows x 13 columns]" 1386 | ] 1387 | }, 1388 | "execution_count": 11, 1389 | "metadata": {}, 1390 | "output_type": "execute_result" 1391 | } 1392 | ], 1393 | "source": [ 1394 | "info_classify" 1395 | ] 1396 | }, 1397 | { 1398 | "cell_type": "markdown", 1399 | "metadata": {}, 1400 | "source": [ 1401 | "### Visualize fine-grained image annotations" 1402 | ] 1403 | }, 1404 | { 1405 | "cell_type": "code", 1406 | "execution_count": 12, 1407 | "metadata": {}, 1408 | "outputs": [ 1409 | { 1410 | "data": { 1411 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJ8AAADnCAYAAAAAaoRMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy82ZNkyXXm93P3u8SNPSIzIvelsrau\ntfdGA2gABECCIEXjGGehUTOSTPM4D3rQf0A96lUPkkzSyEwy2ZikGZokcsgxEiT2pdFLdaOrq7r2\nzKrcMyNjX+7qrod7I6saBNFYZIYHtVtnV2Ysd/Pj3znnO99xYYzh0/Hp+E0M+Zu+gE/H/3/Hp8b3\n6fiNjU+N79PxGxufGt+n4zc2PjW+T8dvbFif8P7PTYU/nikbQHzstenvRgBakyQJSiqQgunHhJAf\n+z6AThIMBikVBoEAhBCYZz7zs6/MYIwmiWOkUkgps3OIn/qK4OkrhiSOQQiM1ggh0+tUCmVZp9/F\nGMIwQCqVnkdrLNueXt3TSxCC05tDPHPW7PqFPv1OojU6jhFSYSmVfheN1uk1aW1QlsKyLeI4RkmF\nFCJ9nsZgtEEbg5ACNNnnZXoeY9L7NxAnMcYYLMtKr0NrpEzv0xiT3qtS2fdAa53+/QlMyPTZnD6j\nn/PRn/niJ5zgZ0/xx76jMeYZoxMCnSSnN6a1IdFgtAFhUEISRT7Kkji5IgiBEBKtNWBIohgpFUJJ\nkkRjMNmDeHrDp79n5xPPXJPWOp1mrYl0jG3bqMyIs/8wxpweZ2qGQhjQJrUd0teNTP8VBozRxEmE\n1gmO5eD7AQhBzsthhDh9uk/tLjvuM+sFTHashPF4hJQWlmWl9ydASgthEkajIVobXM/Dtm0kgvFk\nRD6fTw+WGbgQoKfHN2ASTRzHGJOQc12CKAJjsG0LP4hwczmkzK4JmIzHOI6DlS2yZ2ADgUDr9HgA\nUkqEEKf/Tufip8c/YIg/88VPQr6Pjb9vqKlxaWPQWhOFMRpQUhKFIQjQJkLHCZbjEccxoRHkcnnA\nECcGISTGaLSOmYxH2I6L7ViQcHrzhgghBMqy08ci5On9PMWVFDWSKEIAynYQQjIeT4iTmLznIS0b\nbQRy+vB+CgHNFMWMQaYXjzx9SSCkxaDbo1qp4ORyhFFIq9WiUCziuLmnxiw+/qyEya7TJIxHQ8aj\nMfX6DJbjgDEM+j0sy8LOufS7PSylKJYrCCmJ4wR0jNGQmOnFZItQZ39qA0YThyFKSfwgZDIJ8DwP\nx3URwGTUJ441hWIejGY8GpMkMbbjkGTXKEjnMfAD4jgCwPM8LMsiSRLG4zG5XO4UKX/d8Qsb389y\np+nvAt+fpDfohyjLJhGa0TC9OddzybkuUaSZjEOKlTKxsBEChBEIY4ijkMGwj5crgOUSGIEwmmFv\nQLFcRmuBTkLCOAQhsGwHjEjdDWSTnppPEmuUZZFogRAK5RaRJqY/6BNFEV6hgOfl0UIiAGkMZuoq\nT73kU9cpRWaAkKGBodPpUK7PMhiMUFIRhRGj4YhiuYSUFgiZIplJXaTBYKKQ46MWtm2T84pIyyY2\nBjR4hTytwyP6wz7zc4vky5XMWFPEabU6lMsVkgyZYYqoArQmCkPiOMKWktHYx8252I6boZkgTmKk\nlFhKMBmN0MbgOA7BICDRmmDso5RiPBoS+D7lchnHcfH9CUnmsrvdLkIIHMc5ddWnYVXmSVJvkr72\nC7jiXw75nhqeJkk0iRFEYYTRhuFozDgIUZYkl8sRJBHFfInRaMDRUZvEGAqFInlhgdan8Y2JYrrt\nNtVaHaRFpAVx5BP5ARhBbAQYiVEuaUwpiBKTGQ4p6k5dJxAlBteSGA3CpIZjEAipsC1DEERMRm3y\nhQK265AgkcJw6m/NUzQlc82a9FgIgVAKpSQRgkKlDiZJwwTL5+iohevmKNVqCCPRwiC0Zjzo0Tpq\nM7e4gO3mkFIQGYMwAh1M2NvbZdifsLC0iFsqoUnfA4PUCXGUoBH4foClJMKy0psNE6I4BK0xWhMI\njVcogZQYxKkB+0FIrBOKjkO/16dQKmLZFuPxmGKpxP7eIWBwHYc4jkiSDpOJT6VSQQhBp9NJ40UB\nlmUxmUzQWuO6bhrmCPH3kHBqkD9v/MIx36mV6wRtDBPfJ4x0BhQCy3YJ/An7O7sYrVlcO4N0cggB\no36XUb9DEIbYbh4pUrdcKOTxxyHNhTkSmbpEIQRJOGY0HOLm89huHoUmEgJtLETma4wRp2iHMKfu\nMwwmOI6DlA4CjTBpkDPudwCNV6khjWHQPcGxJIXKTOa+nsYxT49L6qLN9G1BEo3ptNrMLCyClkjL\nnD4pQ0K/02EyHNJcWgBj2Hu8jTGSuZVFbMfNENtg4oj9vV1G3QHFYgk3n6c+30AgQQhklqAEoz5x\noimWUjT0J0ParROM1jSas1hSMhiPKZfLKMdFyBR9ZIbecRTS73TSBMVoajMzSMeGRLP1YJMw1vh+\nhJKCmZkyc81ZtE4YDocUi0UmE592u0M+nyOKY6qVCmEYniYwtm1TKpU+FhM+XbunxvfLx3w/bZjG\nGBJjSAypW9OGMIrAtpiEQ6IgxAhJGPrsPNlm6cwGCMFkHCBRxLEkSUJqMzV63SGj/hBp2/jbT8DY\nKNtCCM1k4pPEEUIaajNNdOyTL9cwqpi6sCyIMsgU2TSZ2xQgJP7Ex8nZWTKSRuSWV8BEIXGSxoyF\n6gyTXpvW4T6VmQZCOMBTtzZNZJIkXYFKZrAobUbjEVWdIBEkhswtGxItKJaqKKXYur/JaDBicWWZ\naqOOEIpEg44CTg522Hr0mIWVFRZXVhj5E6pzDYyRaAzSCLTUGKPpdPrMLjSJRepqLWWRz+UwWrP1\ncAvLcVhaXQbLThFaG4whDSUwtE/aHB+dUKtVmamXOTo8pNsd0u8NcBybtY0N8nkX17Ux2uBPJkyG\nI0rlIkIIWq0TcjkXz/PQwyGj4YDReIzWmoWFRTzPS+89YwieRbxPQr9fKubTJr2xOEpQlsNwMMLN\nFwijBIGh1epSqtawcnkm/Q73b33A8sZZ3FKeYQtmFmbw/RGt48dorak2VvAqNYyQaG0giWgd7uPm\nSgT+GMexGI6GgODw4UMK5SqJ0cRhjEDgFIpYtoPrOiipsrgjoXdyyMySB0iEFgip8Xv7KDePYwrp\nohICtzSDmQzZ3X5MqTaDVywjtUQKeYqEJnPDOjMyQ5qZB+MxuXwZtCFJU1j63RPahwckYYIfaErF\nMoNBn+LsDApDv33EnY/uMVefIV+ssLi8wOFui/m1ZRKjsnRHkKR8BzrwiZIIpMJoTRhM8EcBvh9T\nLHmsnF3HdXOMRz7D/jHlahkrl0tTL6MxaLxyhWj3iF6nQ+v4KF1IwmZ9Y41Wq4WXt+n3higlkRiO\nDvdYWFggjiKePDkgSTS5nEsu5zEZDem0O9hOjnp9Bj+LD+M4PjU+27YzSueTxy/0KWMStIE4SUhi\nTRREKNdDOg793gBhSXqtFoV8nlK1hjEGt1DieGeLn/zw+5Rma0QTqJsm7d0jSrUZqtUEz/MItEJo\nhZEJBzvbDFpHrD53BQz0h33QAtd1yRcaIB1sW+F4GokkiWOOtp8gwoR8dSblvxD4oxOCCKTjIJEQ\nh4x7LYqVWfIViVcqImSaaQq3SG3eYdA+pnN4xOzyCrbt8RQzM+5RZAgnJV6xxHgywfHKGGGwjCQx\nEdEoZOfRAZX6DJdfvgpKcbj1mB9/91sIocHYvPTKq9z64B1WVtfZeXzE3MocWiiEJktOUldvEBwf\ntqg1myRGInTCaDCmUq1Tmqmn6E8azxbLFvm8S7fTR/dGFMsFXMfm3kd38Uc+SRBSnKsznvgYLM5e\nXqdz3GYynKBjjeMqck6Og90D4iilp6IwIQohX3BZWlpke3uH4/1DhJKcO38e18ux+WiL7e1dHMeh\nUikjpczoNf0x9/trGh8p5aHB933CKMZz8wjLot/pYCybxbU1/vV//9/yx//Jf4YRNiJXYn7jMo6b\n594Hb2Pl8kSxT7FQJJaGUJQQMSANsYlJ/DFbd28ThTmku8Xs/BILy8sYlUOnEQxxHDEcD9DGppAv\nIwXMl2sobcBy0tiMhP5RSKE8g5IWw+GQymyDylwTnSTEfsLxwSFKWSjbQSkLN5/DLdcpVGa4/c73\nqdSazK+ewfbygJVxfQIpBUYb3GKB451dyvVGlhjERFHA3bsfMrPQ4NzlqyTSRugYIxOUzlOdLWJs\nQRgHaA337u7w0ivXkE6exAgUUy5UoAWE4YTheMyM66U8qlCUZxoYRMbtSdTU5QuDsG2qzTrjbp9b\n79/CDybkc0U2zq2zuXmf23cf8tyFC6ysLaE8l4VSnv3jQ/LlfBoSBAGTcMTZC+dxbIu7d25jWRYG\nix//+F3m5po0mzMEUczm5hNc16VcKZ9SMY5jM5lMyOVyxHFqwNPs9x9yvZ9ofFN3myQanaQHSpII\nf9Tn4KhFrlBCWJKDwwNuffgBdz58n/OXn0cEYxIrR3l+jeXJiA/efJPYHHLppc+w2FxEShstbCTg\nD4+58/5NMAVefONl7EIZSyq0zPi/wYgoTkAI7FwRozKaAokyDgkGE4MiRYzJcJ+8q6B8hkK9mPJ+\nElAa2xF45RpGJyRJSDgZEwcxrptDKovG8gat/RPU3h7SVnhekUK5im0pYm2QysXOFYh8HyE1Jo7Y\nO9jl8Z0nxDHMra6SKBuTBNz44fcRJs/Ln3+Z7Ud30dow6o9oNFYo1srIYonYKBDmmfjaII1hb3OL\nxspSmmpnMVwiTUZ8g5rGvhkrpBPDyfERR3vHrK4usLuzw3Frj81HjzBIFharnD2/jrElxgh0FJLP\nORij0EDrpE25VGXzwWP2949YWJylddzipC14+ZXrDPtD7t97RKlUZuPcWer1KmAYjcaARRiGOI4D\nkLlgmbIAv27Ml8QJQRCik4BBv4+SCcfHLeq1WdqdEZWFJlu3Nrn6/Au88+7bXLj+KkkwwJI5wmjE\nwV6Hq69+ntDvc+PN77C7t8X5C9eZBD4HT7Y43Dng/JXreAt5EgOjo2MMISYM0JGhvriIna9kq14Q\nZ7GnMGm8JTKOLs4I3urcZSwrJWWFESQipWWEUCmbYsBgI5SNU8ylC4o0C51dOktzcY3JsEe5VCIM\nY8LAp3Wwj+uVaMwvgZBYjo0/HHDv1i3G3ZiXfusVHt29j+d5hJMh73z3hxSLM2AFCGnj5Aqc7B9w\n8GQfzyviVfMk+inZrbMsXqB5dOcD2p0hKxcupEneaTYPMgEjdAp5QqBFRDwJ2HywRalYYe3MIjfe\n+5B+Z0i9PsPrn7/M1oN7tPtd+sMB+WoFZQw7j3fodofEJBAlJFHE4voyc2GDbqdDp9OmVCry3KXn\nKBbzkMScWV1iNJ4w22gghWEw6JEkCUHgZ5UVyOc9PM97pmz6D49fCPnCMEQAQRAwHgeUSwIpFQeH\nu0RRwPjRkFK5wNXrL7F+7hLC8nBkgW5nn0e3t5htLPFn/+5/4F/+q/+Sl6XDvVs3+c43/m8sWeTa\nC6+wuP4c9eYMh3t7HB8cUZ9t4HhlbGUhbBeMJjEyRTujs1gsiy8MCNTp5AhjMLkqPhbKaFLthEBo\niTqtVmiSaXVACKRJfzAGYSRG2ORKM4RGYGwH2y4wV6qBgAQJJiGX93jru9+mWlvmM197BWNsiGOI\nfd75zntcev4a1YUmSgiMkJSqJW6++w4vvvIapUYT5XjpBZxm7gKkRumYrYfbnL9yCWNg++FDGvMN\nvEoZEMQmwEQGkXOxkoi9R7sc7u9x9uwGu4ctHt1/zJlzGzQ/O0sY+CjPxpYW7eMu7aMThsMRO5v7\ndLpDlAron3To9wbkbAcpBPfu3WNr6yEvvfwy15+/itYxnXaXWzfv4OUsbMchSkIO9g4Zj8a4jnta\n8ZuZqVEo5DK0E78ez6e1NkkSM5kETCYThqMRiYZyvU6/O6Ay22DY73Pw+D2c0gLd/pjW0RHjYEAY\nhsxWV2g0l9Am4X/+7/5rLl66xld+9w+pzNb58K0f0TncpT+OufS5z0LoMLO8guOlMRBGYyUByvYw\nCBJtMuJUkEy5PkRGc6Qx4bRKIWSWKhiDEgYpJNKAEgKlACGIE52WlbIfJQVKZaS0yR5algQIkdZ+\nhQApNCQT3vzm32AJmzd+73eRygJhuPfe++xsHvHyZ1+iPDeD1uq0QrK39ZAnDx7y2d/5HUIDRqvT\nBQDTslzC7XfeplIus3LuPEiJjgKO9/YoVGsUigWC4YA4DFC2zeO793iweR83V0ThcfnaFdbPLyNs\nC6KYu7fvky8X2X70kFKhgEJg5xya8/PkS0V+8Hd/y3OXLnN03KZRKxHpiMePtpBIvvSVL1KpljEG\ndra3kUKhRMKde/eozSwShmOq1Rq+P2FhYYFKpYRSKZb9NNcn/gEr/GSeTwiSJMHLF8FxOd7dZ2dr\nC4HAcl2MEVQby0hlkW+cZ+FMxO23v81RpwNVuH3zfRY3lviX/+q/YNhp0e/1qS+vcfkzX+GD7/wN\nyhqx/dEmTl5RWZjBRB6gkEozGg7J1/MIo1PDM2SKDplyWqf1TfO0xmvAaJEVLKbiAZ1yZ6SGpdKg\nCZFMs9kUQXUESmV5rgQpU4M2mUtGp+UypSQnxy3OX7yIwUqpl/YJ92895Lf/4KsUalVCnX5fKYkw\nmoXFJq29HVwlUQj8GBJtQMjsHCnxnHfzLJ5ZZxKOGfd6hGGEbdloY9jfPaR12GYy9KmVLUbjhFJh\nnueuXqVasyk3G0ghMWiEZajVKty6dZ8o9nnp1RfSsl0aKmMbQ75YJOc5bGws0Wsf881vfY+vfuXL\nuJZFqVxMQ5koQlmKnOuy/WSXVqvH+tnztFuaIAg4f/4cjmOf2syzwgNjzK+TcAhinSYbcRwgbQvX\ny2MMHB8fsXNwwEx9lsWVFZB5YiUYhyEWNq4jWViYw3EqrG6s0mudoMWY9tEJjnebfiek3RYsbSwS\nxSNml5a58+6PKdWbrF56Aa1lyh/pBKltNKnc6SlSZAvk2avNlBnGmFOjEk/NC0kWbE/dHJrEmJS2\nyXDVaIElUwI9BpSA4ckeXm0G20ozuEc3P+SF518jCnsIHdBvt7j51odcvHyBUjmfVigy9FTZhDjF\nEv5kgkl8hOWQaJGWBY1OM2kRs333PoVaBWHZONLCqdsEgY80gt5gQvfkBCUiLKvPzvaY6y9cobG6\njO3aKFIpmp8kKGnYun2HwSjkldeu8sHNj9h6csDiMpSKHlLYJEIwO1vn4YMHeI7HR7fus7Kywt27\nD/ns6y+li1cbfD9gNJxw+8O7NJoNjlp9vve9t/ntr36JmZkqliUJwxDLsrGspySzMSnx/PM4v58b\nFRrAJCYrlkPs+ziuTalWoVypsrF+hjgKuffhHfZ3HhD3TxgeHhIngmuvf44f/+CHVOfKKLtCfeUc\nZ198hXqzyeHhPk8ebnHp+TPMnTnP+ec/T/vgiLmFBjlH8t63/4rBwUMm/TYmCID4adkrQ4mpciQN\n1J8xvp8SPaQflAjUqfuOtCZJDLFOGHS2SQizGnGaQU4LJpbS+MMO/jhESRuMQAcjdjd3OfvCZYwS\nDFr7vPm3b/P5r34+oxfSGqeUBkdmD9hAolOlzY9/cINhqwNJiDSZ45cQRzHFconG0jJZERVpO0gl\n2X+yxdHjTT56/wO6Jz0OdzqcuXAGlcvRbXU5enzM9uYee48POHzyhO//9Xexcw7XXr2GMQIv53Lx\n4hk8J8fmg210EiEwlIsF7ty9j5Sa1TOL5ByP5y4+x+LiEsYYWq0Tbt+6gzGGV159kYO9J7z66lWu\nXr5AqeRi2YogCEmSVP83rfNODe+TYr6fj3wiEzUajeW4+EGIP/Yp1+qEYYSQNnPzSyAsOu1jPrr5\nE5x8nnq9hvYlc/Nn6B09oVSrY6si4WBAr99F6RLnLi6wv7eN122zcfUyF154g5O9TY72t3nupVdo\nbT1g3OtSn58HywKdkAjJaDzAy1cyDZ08NahTTinjHpIM6bRJ0UtnNqmz/wkB/qjLN/7Pf8fKxlWa\n6wsoJSmVytTqFex8AVfE9P0RzZUFbEsQas3+1kPWL55HCIHturz5rTf5yu//Hq6XI0lS6VdiMpmY\nmLr/lDjO5T2q1TqtwxMebb3LxpVLVOdXwKSGWVteJolCIn+ANpKjnWMgYbY5j+aQP/yTP8LOufzV\n//G/ky/lmVlaAimQJkHqmKPtI/xxyGtfeIVcqUw0GfKDb/8lS+uXMZaFZcHq6hLtww6WSPjBD99i\ncXmZK9ev8o2//jtKpQqrq00G/S53bj0kNjGXr1wkjjWPH+/gWnnax22W19eQyko1h677FMkyl6t1\n6pLz+fyv7naN0Wg0SklGwwGDUZ84CDnYGyGExmiDncvj5IvkShXm185ytL/Nu9//PrWZWRqLa8yt\nrbJ95wbrl17DLheJRh3mFi8xd36d3F4ezytwvH9ArBVh2CVfb3D7B3/Lxoufozy7wPf+/K8o1/Nc\n+ewXiLSDtBTGSESiSTISzCABg84YiKksyogkVZdMRStZqWwqEnXzdX7vT/5TgklAaabCZDBk0h3z\neP8+od8nDEbU52ZoH7cJ4yE5x2F/c5ev/OFvo/0We1vblOslao0ixghyrpOhc3p+IdLlYQyYJKbf\nnSDsHldeeJlCs4Zyitk1i7SmC3RbR/z1n/051bl5vv6Pfg/hemA0hVodaVkYCZ/96leozjYBk9bX\nRxP2H+9QbdRYXzuLwkqJeeXQOY5Yu2hjdFr0dws5aLX4t//XX/JbX/wC3U6LVquDZTu89Mrz7O7u\n0+8OmZmtk/M8HNch50ku1S7yUezz6NEWuZxLFMV4Oe8U5Z4lleM4/nte6GcN9ad/+qf/4JuJNn+a\nxGlKlmhDGEYkWjMejNA6oncyplyvY+Vs2kfHWLkCJ60DnrvyAtuPtun3Wwy6LUqlGba3HlK0LU5O\n+lx85cUUsfwYt9agXJ2jNFMj53kMj4c83nzM0aMHDE+OOPvy6wRjw403v0fFU7h5D6FAKAeEPNXl\nTVeXNKCVAZMwGfZwHDeVRpEZ5GkFNTVS5RXxSmWQNm6+TGW2Qq3m0Nrb5+XPfQYnXyBOBPl8kYe3\nP2J5eZEffeffc/vdbV589TqH+202LqyhpORk/4DGQhMjUnLViDRZ0QgSk1Aq5PnuN36IPxjRXF3E\ncouAxIhU4SyEoFAqcf6586ysr+IWy2nMKiRCWpluQlAolBFKIonZe7zL8d4xKxfWKFQrWMJCS5ne\nr0rRRSuX5twsRsCodcKNt97j7MYZLl87z9Fhi/v3P8J1Xfb3D5iba3D12iW8Qp4g8KnVqji2jRGC\nmzdvUixXuH79Gl7OPVWgm6lknzQUCoIA13VPNX5CiP/qV0C+1O36QUgUawqFMuUZm3JpzGA4oN97\nxM6TB8SJxs3nOen2KBXLjMM+5dlZzlw7x713b/Lo/gN6vQPe/uGb/NZv/2G6yiV0jg9Ymp0BDf1W\nm+5xm1ylzNf/+D8mSkJufPPPmS05jCrzvPDldcLuEdsPbmOR4BTLLF58Lb0Fk/FlGejpcEQ06GPl\nCiSkfk8BWqTCUUkqCpWZDj3OjNcSBiM0B48ecebsBna5SDlXpTgrkGGPhzcF88tN3n5T8sf/+R+S\n+AMas7MEowBjJ/iDNsJoLEsTa0Vi0r4KBEhpU5stcunyPGvnLmCESJUnIpM/iYyWkAa3WsM1gkTo\nlKU8lRum6X4iDEQTHt59QG22wdL1i6BUGoacUoeZ0doW5XyO8WRE1B9w4613WN04y8aZZWzHot0+\noncyptcZ8M/++I+o12sAOLZK1cuTAGkgSEKiIGR5eZXJeEyhVExFFUnyMWrl/7Pars7KJI7rkss7\nDPsd4jBhNPEp1qpYO5J+r4Nl5ZhMEqRlc3RwwtH2JkvLa9x+6wbnLr9IsV6n1z7kb//s/+G73/4L\nLuxdZGF9md7YRzy8y6Azojw7y9KFMxilUAI8Cqydf4kbP/oBZ6+/jiq4zDefJ4777D+4z96jJ/S6\nfc6+8AY4RWwjEMT4owGdvSeU6rOp6iTLOqfK4md7KkymmkNkcYnQDI72qc82aK6vY4QEabCV5u4H\nb/LSKy+xee8O/+RP/hGzzTLHOwNqtSLlWon3f/wm7777IS98/nMoCZExT3WCJuUJlXLRxqa2NE9k\nQCdZP0pKJJ7yk1P9oDTqKcdIRohLTTAYs/1gi+UzSxRqMyiR8Z1GoxGZTjdNZnqdFhvrK2xvbnO8\n+5j1CxfJOQ7+2OetH7zD7dt3+cIXvkDecxmPx8zU6yAMURRTq9XIex5xFPLmm+9y/uIlhJIEYUBR\nlIjjVMkyRThIS2tTtfNU8fwrGR/Zly3HJgFiI/G8PCUhOTk+JFcsY7swHo8BQ8FzCEc9SmWPmbkm\ndskjSiCKEwq1eb7w9S+x9/Ae45HhYOuIINQ4eBQ9zc792ww7h0xGAbajUqlPd8igl3Cwt8mF5ssI\nx8Kymqxcq1FbWWPzw1u8+63/wJXXXiVQNt3DFvWZJWbOnEH48cd5GLKuL5GKNFPnm2r0pBAYqRE6\n4mRnh42rz5GYlENMEDg6YDQIyTmpXm9uZTlFSgTj8RChJFeuP8+k7zPotSnONFM0k4J4yvcJgUYh\nbIdp95o5jU+foY5SihFLpTTXVI4siNFhzN6THaQRXLx2ERwHNVXbGEMwGvAX/+YvqC/PsL6+QK0+\nw61bd1hYXuDBzQ/50te/yo0371Au2hzqCCUVBa/IufMblCtlnmw+YnFxASnVaWMRpI1GtlIsrSzR\n7/fTxAJzSq08i3K+758qnD+pz+Pnu13SLDEYj/H9gDgcM2iH+EHI4c4BxVKd3qDN/OIynfYRW3c/\nQuQsFlfOID0LGQfcf3ifnJfHRBqSMZP+EK9UoNqssXzlNQwSS8DsehuvWD1t8xNoeodDzlx5kV7n\nhK3bH3L++osYWcQYSa68wOXXZ3ly5wZ3bvwERzkUylX0okQnMcpSz0iiTIp8Oov6pqrl7JnJLFFp\n7+8zt3GGQqFKkgBoSHxO9vYolWd5cOcRL7/xWYyUCAPjsU8QaSwDdiHP3OI8779zh89+uY7lKuIE\nnKziYgxYwiKJQyyhCYxKVVgV8C8AACAASURBVM3CPONSyWI8UgmWjglGQ8a9Hn4YUyyXWVhs4hYK\nIC0s0lhRSjJ9YoXf/aPf58mjQ453W/wv/+O/oVJf4H/71/8rtjLsn5xQKs7QnLvAyUkvVS83KrQ7\nHVrtExQQhCE5N3dKlQgJjuvy0iuvkC/kCYKAMIyyxCLtUJwi3bPx3zTb/TWML+3xxBi0SRiPJ0RB\nQBTFLK2fwQhJb9BhPJogLRc379HpDnDWJQePD4kTH69YZWlljWASQnSC7ZUpOj5CWQyPtqk01hFS\nYJk0RpEyR5KkgkrjRRgFzdVzCCQPP/qIufXzuMUyKZkS4fsBTjxgYfUizY3LtPYP8NGUazXsbFKF\nyJBlGleRZaRm+romSSJG3RGN9RUiI0nQ6LDPn/1P/w1rq+dBC65cf5FCKZ/1HRvCRGO7dnaMtOJz\n4cpZbDeVYUU6U9MY0iYooSnnPIRMELH62JOGaTxg0Dpm0B1i0ChtKFeqNEoFpGWfftyIBC3TsuG0\n2UkJQaVR5nLZ4Zt/dZ83vvhFjEl458dHNBuz/O7Xvs7h/pA7H+2DiSiVHPrdkIO9Fq3jIceHe3z/\nezdYXVmg2WgwM1OkMTeb6vSEQieaUqnEwcEBYE6VK9OsdkoqG2M+lnD8SsY3nbAURqFSAY2hfdJl\nb2ePMEqJyMEwJpoEnBz3WFhc4uS4T6NRRpbWKVbnSWvxRwwDl+baArYjyJmY9skhcdDBLtSxHQsp\nQBuZIgUCHadsncZmZu0C1tEm9976AdX5Clsf3cF1Z2ksN6hcuE6xkmfYOWRudQ1/NECHEQiBMuKU\n6H12rtNnkhLURmpOHj6ksthAa0WSCQ4SkWfjwos8vHmPxTOLbFxex5IZwY1Bx6kaRGuBZQn29+7S\n6/ssLP9TjDQkWQOSpWSGuBBFCcTZeY1J47wpGZgNZSuK1TLCpIGBglRdncWn2miSWGPZae04jmOG\nnQGV2QrBYMjf/eW3uP7CJXrDDo8fPuHatdf40tfeoNysMvIf8OVL16nPzzIZDPnuN8e88bXP0e/6\nuFIQ+1EqFhlOaJ8MeP+db5EkIY35BmsbaywsLma0lch0nmn5TQDD4ZB8Pp+GJM823P9KxidSjm88\n9hmNxoRxxMSPSBJDY2EJx3FxPTjcPcFxBReeu0IUDynUFgh1iJoMoD6LJQV+r0M4HDGzvIbrpNWC\nupfn8NFd1i6/TGjSngUjfCI/xM4VUEKnzeNZQ0y1scbFV0v4J0dYeMzWYs5cf5Uw8Rl32/j9Prba\nR3p5LKVSlyRSE1PpDSEAqbJKiUjrvsLvMeq2Wbl4Dq01WinQBseyeO23vkStWqBerjI46eIuNFGZ\nbP7kuEulmgep0UYxM7PCeHKQukxhYQtDlBhiTLawwKtV6A99RN7NZEcp6ompAZ4KG6Yu2WBllZKY\npyWpOAyIg5BRz8ckEwqe4sN3fsTdD/eozBR49533ODw8YGl1gd//Z1/D8hyiwYTZWoHqfAMhJMNu\nnyiMsDT4owG1xSbHwz71WpmlpQZhGDE7XwINvW6P7ScnPN48oNU6ZmnlCZVqkcZsg2p19lTF7DjO\nJxrdL2R8xqQtkUanjda5XA5he9TmChihiOOE2fk1ukcDjJ7glcvYscPW1mNWz27Q651wvP8OC2eW\n6fd7TEYGZ+celrEoNucoVmtUGw0+eu/7NBfWsSIfK1fBcQtpfSJLDqbltCjxsSxDfxRx6TNfJIl7\n9A53yBd87MRG5W36nT71vEd7f4fFch1Bum2GJJ25KQJJsn5d4PDxIyZhktaRpYUlDLEQCKHxR0MK\nXp6FlUUOj4+ozs2lNIbWCKFxPQ8hUgS6ePkyaxvnU2WwMae8XGLSBZAAMZLDky5zXplphfmUd8yS\nB4lACYOtposlJavzpJ4nQiILebTQFHOK7/3Nm7z33h3iWNFsNmnf36VYdnELeY72u/zom9+mOT9P\ntVrBK5QJRwMmvQHvv/MWk9GIzkmLSqWK1gbPdch7LsbodHsQKUiSgNsf/Zh//E//BbblcOuDm6yu\nr+P7IQ/uP6ZWGxLHIXPzDbROskqH4mko8SsYn5AKy1KEQYJlOxgh8Vw7owfSzww6Q7QYUptZx8op\nHHue189dQinJglnlw7ffoXXwhFp9nnJZMH9+A2HIem0NWgv2735AtbTIoDNh7myTyKRwZaQgiTWO\nAFv77N69Rb/VZ+XaS7i1CoIlklGbR++9yepzr9Pa3MQuz6JsSaVRTzNbQdrRJclEpwZt0skNeoeo\nQoE4hCuvv44xzin5LDKVcOugw/zaOQr1CsPNx8Q6RgjFZDBi4o8JQ58EsJAo2yFvuyRkOzmQkd9a\nECYJRghct4BS9jMUjGQqFlMqNUMp0m45JVPRA6RGaZPSQ1oZEm1QKGwXVldWkdLjjS++hu1a3Hjn\nFqVikQ8++Al/8I//I3SScLR/Qr874uRkwvs33qdamePme7fQcsTO9gFXrr2E1oZa1UZJQb83IAgi\nZmcaaQfcoebdtz5ibr5OMJoQhhGua/Hii5eRlqJ12GJ//5hBf0itXqVSKWNlMeqvWF6bugQwJiGX\nz4NlMez3GQ0DRkGAkBqvUEdIi2KtgXALGCDREj+BMy98hie33+Fo9xEzzTPoOGTUa9PttNCBJlec\n4bWv/xM6hx3cYoVYG2JSVQm2zeRkn5yn+PDd9yg15rn6xgsEwsk4ZYUoNHju8/+c8eCAXKmOUi79\nw2OEzFHIpk5nWaE2AeF4hFdOVdGTcZ/2vdssX7yCkA5KykzybLC0QAlBMOxRqJwlNBZWLkcwnqCK\nRcaDMcPhmDDQqeRLqlNOcfrsUkPSxCKtchgNruugbZWKVnkmIRKghEQbjQZinbpeK5N1iSwOTWva\nBgWIOODm+/cRxvC1302FDT5w/dVr3Lxxk/OXzmPnczhCUS6XidLMh6vPn8V2LLxiysU9f+06kyCi\nUi0xP1eERPP+e3dYXl7EdiRK2enGQnGMNmkPTK/rg4kZDfsMR0NyeY+l5WVqtSpBENDt9vE8j3w+\n7SL8pY1PCgtLOURMmExGTCYB+aJHPAmxFPRPjvHyOXK5GpNJjCzkMbFgNGijRYyySvjjIY7r8nDr\nEZ32gChOcFzoH41YfW4N4VXQIqG2VGbQ2icJBhingo77xJHm8Z2b+P1lKrUZFjfOYKSdloxMquGz\njCDWMZ3dPjOrF5AioXf4GCvdsgChU4MyJqR3vEu1Pk+iY6LuMfubm8zM1JCOixIZ7zdFdaUxhISR\nAWWnCVe5ROe4Ra5YoD8Y8dJnXkYnUda/m6lhprlDVkmJNCRZMmEw6CROETiTiGW6GzAprzfNxrVJ\n2wCSxKAE2NZUpKBRJiEch7z/7j1W1xqsrjSQKtPRJQntVoujgyO++vtfwpYSxzylcywlSDwXoaFS\n9Oj2e+Ry4BU8KtV8ui8LMY1GjfmFMkrZTBPqqXo8Xl+ksbCAZSniOOb+3XusrK1RKBSAdIFN67tx\nHJ+KTH8p4ztNwYzAcVx0Iuh2eiRxQrtzjIkNkaxRnc+ze2+TJAzoHh3TOthjOOgiLY/m0hJS5rj2\n2d9h7+EW2jKUF9fx6jNor8y412Xr5gdcvLRBcaaB32nh6x75osPO7Y/QFKmUHezaKuOxj1XwTisS\nWYJP/6jF4rkVlOORaEFlTtPZ/AgjNJEyCKPp7W6SCIFwPVQ85t0332P14jmUyjYuEtMMOLUeW2pu\nvf1jpEp5RS0F5WqFH/zNN5hfWWHYm1CrVXmy/YjEbGQdduY0C8Rk6muTbseRkEq2LFvh+xO00MgM\nxZ7drkjCdH8OphyzlVUwNKkMbHf7kHu3dnnx1YvMzpRQWT+HyXYluPX+LV7//Ct4di6dYAFRJnRQ\nxqSEtzC0jo/wQ0OpVMJ17bThxxg6Jz2ac/U0PHgm9gaIwoiTdptao0EUxRy3WiwsLjEapjsvTGmX\nn7WDwS9lfCkSTFepIoh9pKUYDY/xxxGzS2ewCkX2dx8xaLXZf7hJea7B3NoG56r1tLNJKPz+kIJn\n09s7wO/3Odx5xNzKOQLh4pbnOPfyq4TdXfLxhEgLPBvu/+RD3FyOlc8+j398DJMhsbKpYBBakFgx\nIjGMOl3cvIVwXMa9NrlyjVxhlnyljNIxkbQIBm2km6O2sIiOR+zevsnVN15LmXzLBWmdCg+ESCc+\nQbC0ssZ4GKJk2i0W5/L0BiPGvTZRHOK6NvEkJEhiFDIVJeunRiOExGiNk6Xcxgj2Hj9B2hZza093\nyzoF3GnCmyXBT/c3TAWwYWJ4/633CWLN5778IoWcQomsWqINidE8uvuIZqNBszmLRKJIMEIhp4Yt\nIAoi9nYPKBYLVG1J3nOwbQetNb1uHzAZiqXc65RQ7vX6jEYjpHLpdAYE/hipJIVigUTHhGGIUooo\nik63fvt54+dWf/UUXYRE2TZ5r4BOJgQTQb3ZYNhrsf/wIV6uil2W1GYahOMAcIiMxPLKKNcjNobI\nCEbjIfXldfxRQH/URSdp15hBUl5Yp38y4eDxPe7efI+lc2dY2lgjbJ9QW1mhWK0wPuxjIp9RZ5fN\nN9/kwfs3ONraQgqDP+oSDrsgNFoY/CRPGI6J+110mFBurqDDCXu336Zxbh1lCQbHLRwvz9T5pcvM\nZBMvGA6GOPkCiU43I7Jsl6//we9xuHeAlC4q5/CTG+8zHExSt2tSbsdkZDbG4FhgCdLMVYAWCq2n\nUvNUYCEyyX6a6aYSK5EFgkoKpDToTOR68folXvvcS3g5K0OkLAQR0D7p8HjzCdeev4yFwBIfn2I5\nRSUlKJYLLK8sUKmUT408iiI6nU4mLpg+k/S90XDE7s4utm3TnGvQbM7gTyZEYUQQhMRxQhiGaK2f\n7jn4c7R8n2h809O7rgMmZjxqo1AgFCaBWqXO7MICtfklqnNN/HCCW6kxmAw42ttnb/MBvV6Ho93H\nJCSUq2X6h3uMTjp0nzwi6O4y6R1z9OQxu5v3eXD7HTYfPKI2v4BRirvv30bHPg9u/IQ7795g+/FD\njvb3SKRk5doVCk6elfPncApFxidHOJbCyjrRLGnRerSFiWOKjVlG3R1u/O1fU11cJ/YTntx6RGW2\nhhEqq49O1Sdk5E7Id//6O3gFNzUGBZZUlBtz+EHIeNJG5XJcvH6NyWCU0jhZKUUKkRqVMCg1damp\nUV995WU6R8doYqRMY7DUwJ7SQFMOElKDtBCpG0dgex6JpYiFICErgQL9wZhvfOOHvPC5V5COlS2j\nlMCeqh6BrNgvqdcqjEYThsNBtvfeiFbrmGazkW3UmV51Vg6nUi1z/fpVivk8tm3TbrcpFArks79d\nN3e6XcbU1T7bz/Gzxs/PdrUmMTGBnxD4IZoccRQyM9tA2DLdQyQ0oAMS3+fo5JD6uku5XEPaHrZt\nGPTbxFHIzbd/yOC4RaVaJIpdcrU8j+/dJvRtkkmC7fSYjBNWrr6IH9uIXofKwhJWpcqZ5bPoJKb1\n8C6VWgGrVOb45ofU1s+jSlWScRchbbzGPFEYYOc8Rt1D2m1DZW7C7q0P6PdCnnvpDQ43H2KwWTqz\nTK5YQUmDyMSlGI3SIJRAoLj2ylWcXNoKaJvUSISQXLzyHP/+3/45cRSxfm6D8bCPLRbSzjeRWkwq\nWk0FrrFOs1djDMGwT7vVRgmd7oBgpg5/akiZ7MA8NZZYT+mYp02iWghCk6qY4yjmh9+7wQuvvESp\nViOaoqoBG3O605YhRU+JRAiNbSl6vQHdbhdl5Xj85COazc8zHI4y9BKn+CQy+RdKYBKN1gnziwuc\ntFr4kwlePo8gRc+psPTXqnAopUjiBB0HKfpJaA1b5KwZpFH0DtskBmqLRRoLy+jdFtVGkyAKONi5\nT3v/mGK5TK3ZoNqcZ1TroqSgefYCTx7eZjJMWN6YZevmXfKlea584SqjYUyh2USabO9jDMoYsCTN\n85fpHO1hWieMRwMWyiVAE4wn1BZWMEnMuN9iuN3nyd1HnLt0lid377F8/jKr1+cRMSR+SG2+hhaG\nfusAaTTVWtoIY3tlkDLbOlby8N4tzly5Tl5qkNYpEWwSjVdpMO51mF1Y4PZb7xCFIbaTS2MwAYlJ\n4+XEQJgyHCDBLZbZOLeOyhQjU7Hvs5Mln3HbVoagEoMjs70EgTjrWY50wve+8X2WV1dYOrOQtQ2I\n08mdNtQLyJAybT0VSSqND0KfYilPoVDk7R/5vPnmj5iEmt/+8lfI6kJPwcjAZDThYH+fM2fXMTrG\n6ARlWch0F6XTstqvvTmkMeBYDrEIiZOEcDLGdWapzMwQRxG51SLj0YjQ71GsVvjoJzeZvDtmFBjm\nVta49Oo6EwODvW38QZtO+4jIHxAO21BeZvVShVs/fotLL71GsVgnVmWKdReTpLGGREIypHO4TXX1\nAkLY1OdXOXzwhLMvv4pAEesAlEJaNkkYc/f9HzFuTwiThIP9Q1ZWlxAyRGtDe3ebQqmC9Aq4QlAs\nlhA6xB902d3cZHF1g1yxiOMVEFLSnF/CH3aRM1U0aWwlhGAwjDiztsaTh0+4/GKN+eVleu0e9TkH\nadIdrrQBbUT2Y9AiU6xYNsV6HeIYMVXeZHxLyg2SCR4MtiUygyNDsennstqz1uxt7ZAreKxeWgM5\nle5n2sX/l7T3epI0vc78fu/7ufzSV5rytqu7q91MT2MMZuABgg4QuVzuim6DXCkUuuGFQrqQ2Qgp\nQopQhELmD1CEVjfL2JViQ+IugaUBCNAAA2Bsz0x7V91VXT6z0tvPvrp4v8zuIYmBOJsXM9VVWZlV\n9Z3vvOc853mek7yuVrtoTYkKIz766D1qh21cN0uzeYpjpxFC8oUvfoV//n/+K77+i1/QnS9/w2tF\nCCxbu8o+fbzDaNijUK7guGnS6TSGYeB53tQ2Y/L41CBzFEUEcUwQKnx/jJNxsGxJrz0inS8iDIvA\nGyOikOFwyNzaJpVCjqA35GB3l069xdHREcLzyRQXWbu0gW1YdMMhuzefcu7yJTL5LO3TFtWZEiA0\nU0NqrW4U+EhhMe51YDyk/vSAhfNbqFQBopju3gHZmQLHO094dPMu2UyFi5/bZH6pAjLNoFOnffgY\nvzdgMIyZW1/RllOGgZBgSIdceY5CpYIKfYaDEabtIqXi2muvcfx0G7W6rulChr6w7WaP2ZUqjjXP\n4zt32dza4uGD+8zNVdECIu2QqmGXONHSksyuBflChlGnTbasZ6xxwtmTxEhpaCqFMQG8dfaaAEuh\nImngFMe7u7zz41t8/qufRRpGYlqkM1yUlAAGGl4RSAylD3VL5Hn5tQ3iMCYKfV2nCcgXU2yeWWdj\nfRUh9CE9aYwm2ozt+/dY39xkOBjT7LSYS7nMzMxM40UpRRAEHyOU/jS45WcEX4iUJqlUilHzlOry\nKq1Gi6fbj7CkyWg8pt3qEUQBbjekUMwzOH5K7dCmMlMkChSlcpkzl69yun+XQc1DmjM0WvuEw5AX\nvv7Lujsdtknni5iGhUrqIKFMBCFRGONHkE3nCb0AM51FZrOI2GPUbnCy84TTI5PT2ikvff5zSMMi\nWypw9Ogh5UoFN1fAWj1L5/CQxY0zxLHEFHryYQC2JZN6S4JtkLW0K5Qgxi1V8B5v40c6C1taHMt4\nDNliHtuC6lyV4aDHpcuXdQ1MkiHRx6WQgiBMQFolUTImmy9y+OQxF8rVhNwAttSCdeJYd79CEcaK\nWIKhIJITC2DJKA5p7h/xnT95i3/0298kO5OZOitM5p4SCJhg5slEBN1QvXj1AoqYvad7VKt5JvRu\nISTntzaon9RJpbQ0UjIpZAWn9Sbbj3dQQpDJFbh0+QqlUmkKx0w63UkgTiCXn/b4GcEnQUYEQYhS\nBsd7uwSRQRQKmu0OKytZZOxz9uwqkbBANXm6fYRtx/QjwdrFswgrQzAeUdm8zPD0TQZ7DwlTeTZe\nfpUYiYoCak9PqKxrzp5QEYKY0aCF3+uSL83S8QMir8/xk0NKa7Mc3fmAxuEuRGO8YURl9RxXP/86\nAkW+VMQf+7iFGexcEaUint7Z5vxrLyMMRx9BckLYnHSjujGIIm1SKQBlGCgpEKYkDD0s6RLFEPkB\nwjaIkUQKytUK2/fvkstliYWVBB8JeUFnIXjWbRoKQm+EbVtJR6tBX1OIZBVDAslEajotCQSIWCvc\n4ijg8Z17PLl/wK//k2+SLaT1aA6mGRZ00py4psoJiJ2c8VJoW+FGo8lg6KP9b0zanQ5Hx7vYJmxu\nbhDHMd3+ANs2MQzJ7t4Oq8trnNk8SyaTxbQtJoZAH6tZpZxOOD51tysB03SQRkxlYZHa3i7ZjIMS\nLo6bYTDsEsYxT49qDJtDLEsRhh7nP3ONk/2bWMM8smDTbp+SK5U4PrzD4sYbnH3xKrEydacpTMY9\nj7QpaJw8wFIGoR+D8khlszT2H/N0+4D713/AcFwgvXtEqZCicbTP8c4BV77085x98Rxeb8x42Kd1\nHGJZkM3kUabg4PYDNq5dQUqHGG2VIZPMQjKRMKQgjGOCYILRKd31AuPBmPbJMXOra8RKMuz5WLah\nZZnCQDgOS6sbhApElJQqsZ5ISFMSTh2JkmUtCIqVKp16jdbJCaXZOaQhnk00lEJEE5xPEwik0EKk\ncDzie3/2l7SaPr/+m79EKmsjpETEiQ8NyUxKMYVIJsCyRl0muK3+z6OHj3nx6hVAMhqPMKTNyvIF\nHj64ztHxHradxvcDbLvE/v4xoQ+2YxAEPvWGttpNu+40+ABGoxGO4+B5HplM5tMHHwLiSC9VadYb\nCDvF8f4uqWyO/sCn3e1zctKkUs0jYoEfBBwcP8G9nyGKYgb3HuDzAM8b02g8ptscc+3LBUx8RuMW\npukSjLu0m9u8+Wf7mMKkWs1pRonRJ9wNOT7qkMuWkGKOa6+/QK4I+7duki9s8PV/9h9xvH/Ew5+8\nz8qZFdTQx6kUCYIBzX6NcDdibuMMtpNHVz0JppbIweIY/EADvdFE8iEksVLIWH/+0rWXeXznBnOr\nK/ihoF47oThf0f7KsRYKGZm87mrDJPsozcuPlWYwT4r2iaZYGRaF8iyWk8g6la7lEMmwLVaa7ay0\nrDKOIw539nnv7Vucv7DBL/7KeZRhgpSJaaWOOKkSEq54blT33LVUz/0jCkOC0GdubhYpJa1mi3K5\nzNlzC9y+OeRbf/Qn/OZv/jblco4giKnX61x96RK+7xOFIW7GJZWwlSe44OTobTabzMzM/EyQ+WeQ\nSfURYlo2qYzumWrWAY3mCMfUezaW5gvYboFM2iXl2Dy6vc3auavkSnkUin77hO9/+8/odk28seA7\n/9e/ZOyPiUNBOpNlFMYYkc/axkWi2CImRzqXwUrNkJ+bY6E/5sGNm2xdruCPHnPzR/t02haf/YXP\nUz9p4EgJsyuIXJWFtRKxlCAi6tsPMDIWdjY3Lfonf4gwAimT40e3sURx0o0mE0UldXDJdIYgtjh5\nukd5cYVub8TcZhqhDKJYEurrTpAo0lOmpkPJpCsVQjNT4slZrJ9OulROIJnkPcWzCa8SsZZ6qpBx\nt81bP/yIbC7LN/7B1zFcR3e1z5EVJgXfxPRKwMc+nlz+iZsDRLTbXeq1NqmUg1IwNzeXdKompZlN\nDOeIXN7VK7rikK2tc6TTaeIoot1oYPoe2SSzTcZoURQxGo3085J1Z586+LSaXt95cehxUmuQTc8Q\njjssbFxjAUmv28YPfAadFmHg49gC01R44x6Hj97i7R9ex8quUp1PUaleIjOTBzNDbq6KoSS1vV2O\nnjYoVOewzIhe4xg7lyEaxMT7pzy6f4Pjp7u0mwvMLV7g0iufxx+OCEceMuVg2C7LizOIVCbZpKOI\n2n26p33OvvoZhEzMxpM/fBRNgkBNx2DiY5foGcETdPZaWF8km3YZjvqYFghh6wwT685zUtuYQk8s\nJBJLajxNyeR6y2R3iCH0OjAn9VwA6WZCJuwGBeB73Lp+mx//9S3ObK3w6hdeQZoCJcWUKDYhJRjo\n0dlkL5NQWnWX4N1T4gIkrBsVs7Ozw/nzmzhOAqJbVhIwii98+SX++E9Oef/dd3nh6jWEANdNoVSM\nbTuoOCLtZqbsZe1WGzEYDEilUliWhed5WJb1ifLJn0EmhTCMGPT7GFaK0swM/dEAiU/KNqk3fSpL\ny9rGy3G5/u571E6b3Hj3bY4ObjDs5VnafAPHSVFdX2NxsUy3M8AsLYISKEKypRGfu3iZyBAMa0es\nb61hOw7H9z/g5gcfoWKXN774VRq1Jq4zZvf+NqvnN4mFweLqEkhLT4eFQKiYaNTh6PEdls+fQ9MB\n9IB/UgwJ/uamnIRTN2k7NbbxsYBx03kaJwcoUpQXl4mVbjbiiU5WxaRMgWMKnfWUnudOxOAgsCZT\nB3QDoaLJMaghJYR+PYmge1rnw7duks0V+Y9//zd012xohy0t7dU3kCBpNJJuVv9+cYID6uZDqMl6\nh2cBOBiM+OD6TTY39Yx7AqVIKWk2G7hump2dffr9E85tXWQ4HJIv5LDsHLZjo2JIPefREsfxNPAm\n3a0QgtFo9Om73TjZ3liZXyCMY6Jmk0p2HseMuPPh+xQqKzx91EgulsFrb7yON67z0fW/IJ2+yEsv\nX2Tt7Hk6gz6F+Vn6vR69Zp+S2yd2HOKhj+WktMfyuE/75Ig5x+TG9b/gyYMWy4vzZKsLyFyZjdl5\njNBj2B9TmSsnWJylhd1AFPt43Q6t/V3sXIlMsUKk0MfqBExJpgYT38HJMTRhsjx/QCmlO86Jvdnp\nzRpL6+fJl4qgIIo0IUIIRcqSpEyBLRUGuqYU6pnQG6k72oltmpD6iI6U1kILQoSKGTQ7PLi5jWEI\nXv/yK6TzhWnDoJIuncR14fmlSZO9aShFTMTR0R7lUhnLyQIiGdnFCM2ERCBJp202z65PWuCpzrZc\nruD7HteuvczND99DiJiH9+6zurFB2s0CWsCkj2uNAzcaDQqFApald5n0en263e6U3/epgk/7g/gM\ne23GXsioP2Q4btPtySv7hwAAIABJREFUjRmMhpQNRXF2FmFYWGaK+uFD+rXHnN38OptbG4BPbBgs\nrZ0jRBCMx2DaWOkUndNEULRQRoU9Th7dYP/BO9y7brN66Q2++OXLNGot1i9tEPQ8UlmTw1tNzrxy\nEcuykaZDNJl5qojuySHjdo+7d+7x5V/5Vd19Tn+TRLeRUJuSuj+ZWEzCLXlmclEFMVNNbWyw9fJn\nMSyHSMjEeFwHlyE1e8QUCiu51JPglghM1DQz6cMS/CS7gp4lB4MBtz+4ix8aXHzpArlyLulOk/ot\ngV9EEonTRDbpaiethC4eOT0Z8Rff+WNW1jZZXqmwsDhPOu2iiImikE6nRaPRZHl5ickrPG/ebVmS\n1167zNpylSePHnPjxgMuXLmCkDAcjBiPxwmQLGm32wDYtkUU+dRqpwwGI4rFAqb57yEal1JgWTbC\nsLFSYNgpiqZBBYNC0eVo75jOMEw6OcXe478mNFcpLWSIozEz5Rz95inpQp4IC9Mw8PpDmscHZItV\nAl+BJTm6f5ePfvwOmWKV9ctbnL92ieMnT1i7dJZefUB1ucrRw3vk5+cxnByxBGKhVWHE9E5PsVJp\n4mzAa1/6CkYqOwU+IYEcDF2QI/VxGE8YJOJZ0hOTehyVYIETgiZIM62L+4ToaRlgGRqWMQ1NgVco\nPG9M7eSESrlKynW1hRlArGlRoHAQCBVxWm/y4N4DxmOD81c2Kc5WdIQp/bqTu0JLKBMXromCMglm\nMwlQ3e8YCGHw4kuX2bp4nsFgwNOdAx7cf49I9Ti3eREh4L13f4SQMY3GKdVq9bnxXkysYrrdIdls\nhoWVWd57+10+89o1qpUyUkharRZBGNDv9el2jxmNhhRnCoyGQ3Z395OjVw8ogkBiWRY/7fEzgs/Q\nbNw4whuNAYHn+Ug3R2F+icf3d5hfLmCkDN5/68+5/VGL3/pPfp9ABNT2dqif7LG3s093cIrf9wgi\niZPPkcnmaOzvkcuZ3Prhuzx5fIezL3yOS69e5uTxI0QUEXtj7LSD6AwYDU4YtQesXLisSZmgh+ME\nHD/YJleskM1mOdl+ypnPrOl659m103nqOZwrToIroXp87DG96M9/Tj8ThdZ1pGxIm0kQGGJKJlBK\nYUhJvzdgb7eJUopsXpB1S9gpi2zOptM8pt0RNNs9hoMutfoJv/o7/2Fio2FM33FiEDS1GZOgkt3G\nJhrXs5Su+aKkWwZNaLCEwElZOE6BQiFLKu2SclwEik67z6PtQ5ZXl3n8eJdYBZRLVf3eQgPEuVyW\nOI6wLJNrL7+MEKGW0A4GDAYjHu/sYNoOpVKFtfUtxt6YO7fvU6mUsW2T0cjDslKYpvHvMeFATVtp\nIU0cU6ACoa3vg5B8MY0hAm698xZ5t8y5S/O4xTxOLMhdKRN164yGI0rFWdKbJbzumPrxKXd++GdY\noc9bD24xjOfY2HqBhaUCrZ1dvJGitrPDwrlzNE/qFColerUnGE6O/ukxmdkFhBIMOnWGpwMMxyWW\nAXsP71Bamdf2ZLGGSiQRKopRppXsr3rud3uGfEwvuFA8b/DHpPabPCQKS4CVZDDDkMmkhGljY1kW\nW5cuopRg7I1pt1oEo4h+d8B7b39ArzPgM2+8wstfOM/3//T7bF28jGE60/WtOoslC7QTbFL3QsmE\nhGdckwidiOPnfk6d0aU2TpIhppBcuLChX1sofD/khz+q8Gu/9k1+8qPrPLj/E2YKRWxb4gcj3HQe\nojEbmyuMvT7Z7AyHezusnjmDk7LJ5vLkcjNUqrNUq1VOTk65ffs22WyOdNbltN5mZWkRIflYA/L3\nDz4VE8dCM1qCMWk7q92qai16wxG5comf/OB7XHrpcxwf3OX81hb99j6N+j67jx/ydHubxuEeyi6R\nz9lIFCOvj/T62OkNNl7+dVJxj1ZPsftoH9cOGY09hJHDKmTo1ZoU5ooc7w5Zv7RKo95HWTV6tQG3\nPrzO2bNbLG2tE8Rj+p2QlYvz084RFMofMegPSFfmJgqLZLT0rCCUQkwz22R78uRCq+c1ougyREh9\nsYOYafYUid2aFBq+iVHEwsByU1TdhaQhiFnbWkOZxhTTKxXSXH7hIvHkZ0FM31MmKvM4qQvkBKTm\nGYl0MsGYTC0UYCrJxAQBZUyDbvL7DAYjSuU8xUKen//FL2Ka2uc6DGLCICCKYpqNDn/2p9+nmKvS\n97ap5AV+MMS2bLKZNNXZCoZp8Nbb7zEajNjaOkehWODw6IRCIU8Q+rhuamqV+9OIBZ+4CmE0Gqso\nhuFoBJiYrkMUKzrtEWbG5s71H/Dem++wvLHKw1t3MNI5fA+KlVXK5SU21uexMoLacY/6yTZ7j+/S\nPm0xv3IW3xtzcnRCdqbM2rlFCpU58ukZju/ewykUwUgThh6pdIFhv81o3CE2ZqnMl3FTDvMri2Tz\nLkjF9vXbzK3MUlhYRmIwHvdxUzaNwz0qS6sIw9FdrdLbzJ1cASO5bNPSSjxLeoYUibnPZMGM0JlU\nSkwZYxqQMsBOFGUmAjspHGOl+XsRCRcPrbCLiQmVwBI6YwVK4Y9GGLaDj25iRCKT1AlY1346k+mj\n1JwI0MXfpqBPbhELpiKhiWe15wXYtgEq5v33PwQMXnn1GrGKMI2J5HNyowmiKKTfH+LYJtKQHO/X\nabWO2Di/Rb835MaNDzitd7j60lU2N9eI45jbt+6wvrFBNpthPB7jui6pVIo4jrFt++9Emn+mV4uK\nI0zDJAhDhgO96hyZ4mTnQ2p7R0gR8vDuU0oLV9jcOs/a1jlsW9A4qpOvzhCNutw5/iH1/SFLG1/m\n1S9VaBzepbKwipHKIKOA3kDQGx1z68ZNzG4dd1xn44UrDIdZusMeS2c2KczP4uYyWKZk0O6QLmTp\nt5rYpsbzpWkxHvRIZwrEwRifkEJlDiWsRLsQa8GLfGYUJJMuctINk3DhAFSimyXJZpMonThB24n/\nyiRw4yTwYqF0TYbm1EUCwuTCOkIlQh5NiXfSegwp4wl7OSl1JqEkJjAKCJk0TEngPZevn10tpVVy\nCcKXZEaBZZuMxiH3793mzTff5J/+09/V+T3Skk+NActkTKbr4XTaZTgaIUJBtpjl3Xf3yM3M8OD+\nLjs7h3zjm79EtVpmMBhw985DZucqzMwUabfblEolTNOckgt+2uNnznY11TvCNA280YhBt4dpd/jo\nvXdotYdki5ucf3GdjQubeP0B414Lt1qm9vQuP3mzhooiXLvKZ754nqWNJYQR0msf0O10mUkJdh6e\nkC9blPIO1uoqkVelXRtx/d37BEFAcWaGrZdfIFfIMu50abQ6VJYXGHeapByTW+/f5OrLL2HnC9pT\nT4EIImJD4qSzieFixKB1iopMMpXSs+m7ElP4Yhpkz1/PyWBEPO/nN2EKJ+aHCR9PkdAEE3jlWZOi\nM91EPRYLPX0gweWkTKjxkycL47ladCIoTwKPpMtNwL1nk4vkm6fB+uyCCwGGlKRTJnEUMx5FxFgc\nH52QclP4vkepVEIpvba02+2RzeSJ4pDGaYNqtYzjmKRzDt/77veYqSyysFTipHbEw0fb9Ht9Xn3l\nFYqlLO12e+pSFQSawPupa74wDLUqyfPpDwaMxgG+1+POjY9QaoYzZ15kFHmkMym8QY9Gq8GD2+/j\nOrO4WRsbk4HXJjIdHt59k52HWWw7i5Ny8CJJOAh4/Ze+irRMYhkjY0nz5IC9j+5z9oVLVNbnuXv9\nbT788z+kNJMmds+xvDTLoF7HMU2e7j5m/ewZrFyeKNSsESng8Okhm1e2EEoiiWnW92k+PWXt6hWS\nIdYz8Pb5xiM58piygJ8t15NJgOgttjrLGUmTMGE4a5AXgum76GB41iQIQqYzjSRjohcIJvtBdE0a\nTwNnEnJqkhXF88PAZ/O5Sd2nXbme+dugQMV6Qd97777PxUtb5HNpnjZbHBzWCIIAzw/JpjNksi75\nfJZ+t0+sIiQR3/nOn3F00qbXDVGqQba4TLm0QKft0e2PuPbSFSrVIkGgycSVSgXP08iIEOJvsZr/\nfwefNDSZ0HFi+gPo9445OTllduEKl+cXUET0Ok2QNo1ai6c7x5y7+Aqt2iGtRo1+b8DLn/85ipU8\nAYJ+b8DxwRF7O9ukM2VsYfHgvR9RWVmnOFNEOC5+v4UyBW7Kp9vxWN64Qic9h+EKBt1THt79ENN1\nif2Y1bObVFYWkbHECwY4jkPzcJ9spQyWiZIxhhHR3m9Q3VjDtPSaee2l+HzW0MX4JMBIjLyfp6E/\nbyoZKYUfgQ3TLZCTlxJSQx+R0AE3OTYT1ttzwcr0CNaGvkpnsyn1Kgk7OcEaJyON56YzSfacFgTJ\nhCMUInFgEChiDvaP+d6f/zWnp02++av/gO3tJxQLOVaWF/CjEN/zEIai3eoSxgGhH/Bv/vDb1Fpt\nFhbP8vWv/SIL8wX+6q/e4YUXz1Aul7l54z6fffUqCwtzjMcjet0ujmVPpxqj0Wg6L/5Us12ltDHk\naDjAGzYZDgZkMhVmF2bpdjt4Y4/jw31KpSz97ojqnMWDm29hmDBfucTGVplWbY/Ar1JdXqJz+ARJ\nkS9+7RcQcY8w8Nk9aBCMhjx8esRgNGDUPmZ+8wL3b9ylsjKiUEjjFHNYqRSZQoFc9hgpXJQwOXmy\nTb9ZY/n8WTr1LtlykZPjHltXLyCEjWkqGHvMzc1RnCs+m6dOs8gEVE4wwEkWFOgdax9DXfQX9MQj\nJpbJcRvpYDIESZMip04Ek0ylK87khk5SlEqy6GSUYUxDXDsbyCTABBMMT01/zmlySP4fJa8T+T5x\nFGEaCmna08xeKhexUwYXL51jbr5MNp3C80bcvn0fKSzNbzQER0cnXP/gfUwhWd+8xIsvpInjACKP\n2kmdi5dWCYKQDz64QbFQZDweMBgMaDQamIZBGIRMJKJBEOC6Lp/U0H5itzsejlSr3aDT7mMYNs1O\nHWQON5djNPaxLIPa/hPu3/sQJ18mn11geWML04w42XlEeW4BCTx48AgrkyaOMmy+cJZoNAQV0zzY\n4+xLV3j68CHZ3DyNzjEqdDh79Rz7dw+YOzNPq93FUIJ0uQSEHN17QHamgpt2UKHH3pN9hp0TTEMy\nDgVnL25RWVlFKZMoHFN/fMjKhWUsx0UAoUqcNGNfH6+GNR1joRIWyERKqePkuQxIMnITGFILwVEK\nKZR2JZjMXVGYcmLsKKZNgkq6YPVchtVB9Izkqbl9+sYwnstwz26SZ33pZNlzhIJY8fjuNrWTFnfv\nvscrr7yO46RpNpvUT4+4ceM2v/d7v8Xi0jJSCBzHJIpCet0xT3YecfvWAw6PGrzwwot87o2XyBfT\n+H6USDgFh4eHfO/736NcqbCyvMqZMxsYhsAwTNrtNjMzM5zW6qysrzEcDADI5bR9hmmaf2fX8YnB\n1+t31HAwIo4kQRjSaBxjmDMoyyKTz2BYMe//8LvkM/NUFzcw8nlGwwGFYhHTMPGDIf1Om1bbIxwO\niaVkYeMMZipL7A3oNfaIY4vQC2g2jhGRydlXPgOYDFst3Jk8o84YDEjni3S7DcbNHqX1JT1fjTx9\n7EQgTMnOzTsEfgff91k/v8VwGDLqRlx87aLOTEKb8cRxTL91SqE0QxgqIt8jiiLS6TzSMpHymVuD\nSJqIZ+VX4j4l9exXCokjwUwiV8nJvjX9/ZPsNMldE0zveR7D5Gie9hzJ90whlecu0ST4VBJ8xrN7\nBBXFBIFP7eiUbDZNyrEwLZO/+ssf0Gp3+OVf+gVs12IwGHH3zm12dlsMhyG1owMuXdrgm//Bz+MF\nPqPBiH6/T63eIJ11KWSzxFHMd777l7zxxmtARCbtUqlWOD1tsLGxgZSCbqeDaTv0ul3y+TyO42hi\nxqeBWgzhYJohkYw1AROHWHmMh0OaJ0+oHe/gpOcJhUu718EJRqTzJRCSWEpMO4/rhkjD5aDvsXJu\nndGgS7tdJ1ecwTCyDAZ1FtY3abdrSCOF5Uj8XgfDkCjPp9fqkF/I448aeI0OoQqwpCYpjAdDcsUC\nQTjidKfO4tYWGdfFD3rcffsDqrNFFjfWtGA7AWkVmjrvujkiBZ16jSj0mVveQEhNRI/CEGGYSb2V\nbAea1H4JTqMHJsn8WE7SI9Odvjp6SLYk6dptSlbl2XOihIc3EYM/26PxXMw9d+nU858SHw9WIQW2\nY7G6Nj+Fk+7du0e70yZfKHL77i2e7BzQanosLa1x9YUt8oUs/+pf/t8sLC7w5MkO6XQa2zZxXZfS\nTJFSuUTadXnrrXd49dWXuHbtEiA4Oalz585d3LTDYNCn0+mzsDBHvd7AMEwsy8L3/Y+tx/pb8fVJ\nG4hi1H+PiOn3O0Shh2G6xEKRSll02ruUSuvMzFYZdrt6VahhofwBruOgECgpkVJwtHPMxuUtpHAx\nUzls28Eb9AkCDykUd975AZaZYfX8GVToMez6jIchURTQ7Xu0Dh8jwwArlSWWNoaMaJ00yVXKdE4P\n8QcB2UqBdLGIKQUpO0Uum2IwiEGNsC0D03Z0RRV4BGMfpMIbj8iXqmRmygn9XfvpDfpdbDvFpGNT\nSbabdJjTZcY8Y0RPImIaFLFe9hfFTI1+JofMdFyrJjpbPR2ZAMMyCcIJuCP+ZgQmX3mWLZ/rgFVM\nGOiNAY1Gi+99/y958OgQYaR5+507nD27yUsvbWGZ+ue4ceM2nhfwuTc+y9xchXw+i2XaWJbJbLXK\naDTk5s1b7O7uMT9XRQgLKQWO45DL5Xn48BEIxcbGGiDpdNraNsM0MS1TA/Om+T/8XfH1M2e7cbI+\noN/rE2Ni2ja1o11KxTnGXsjeTpOFlVXmV+YYDPvUj46Ju21MaZFx0xwdHKKCFu2TFNnyIkgT0zTJ\n5YtIWaC+t0u3FZFbW2D/qMa4P6bfbmM5RVaXysxXHczURYJI44yjVoNm/YgzW5v4/T7NowapbIH8\nQpGw2yWVsXAyLmNbrytY2DjLsHtK92SHlJum1+wgpE22Wiab0zrhONHXTpkwsUjglmepZVITTj8Q\nEyFS4pyvQET6uLbQTUiQLIER8bMjWEptAi6FTHz7Jlw/hZl8LBB4Sn38iH4Ox1PTG0BNO2elQKqY\n03qTP//zNzmpNRn0fcZ+i//iP/99bEvwr//1d/j6z71Gq9mlmE9rnK7b43d++9fJ5lKkHIfRyMdN\npwDdsX7wwU2GA4/f+Z1fJ4p0xrcdG8/3AMWlS5dptVrcuXuHYqGkoRUVE8URjvHTs57+vT6h5vM8\nXykkYThm+9EDPC/ESqVo1+vERgYfXXgrP0Dg4aZzdLp9et0eVmqGTvOApcVNhqMhaxfOY+dnGDTq\nNI5brFzeZNzr8ujDD5mZX2b9zCrCsgn9gL2nO7RrHp2Rx+JslvL8HI8e7dGpH5HPVmidHpLOZ5md\nL1GaLdNv93CLM1Rncoz7TfqDMTIUzMxWyFSLKD+k32ly7/odTCvPldcukMoVGIeaBDutzYQi8kaa\nJmWnE9H2xMMqSlyhNI5m6GIQ47naTiY3rBSTxdKTJkUHigSkodcjGHJCCFWYSpMWND1Ko3RRrIgm\nqw4SPDBWTPe0GUBMrIMvhlaryQ/+6l1azREvv3yRcinHm2++w2dfvUq1OkMYKbrdAWc2lwiDkOvv\n3+DopM4v/MJXiEI4ONhnYWGeXC6LlDAaenzrW99lbX2ZF144TyrloldVaD1KrzdAJhIFaUi6nQ5H\nR0eUSgWWllaI9CITXNf9dA1HGEYqUIo4DHj86DaD7gjDjkGkaXc7nNY7xHFEuTBDu91k6MFwMGQ4\n7OBmDE6Pm8wtrSFMA2/Up1SpoFSWlbOrpNMpHt64Trq0Rnl1DiOUIGHUbjPs9znY2SddzDLu9Yhi\nh3RhhvnZeYQVI4jJlYp4oz6tepPLVy/gZNLa9DDw8IZ9br53l0K5SnWuCGFAoVKg2xxgWzZeNCJb\nKoNpEwmtQxYIDBFzcrDL7PwCmI5uLkTCXCFZuIJPHHoYtoNh2sk8+HlJos5SAq2UM9F8vwlILKWY\nrquaCrljHYQTjxWItToOzWhR0+BTE/mJvlmCkIP9E+7ce0LjtMsXPvciKyvz9Hod/t0ff49v/PLX\nKRazvPv2RxwePea1176CkB43bjxkdXWRCxfPYSUTCG0Y1MF2bGIV8+H1O1y4sMn6+iqe52GaZjKt\nUDx5soNpWlSrFQxDt1TN5indbocogvX1NSzLYTQakc/nkVL+/YPP83wVhAG9bouT4xNyGQsvMBiO\nTTAiTCvFk+0nLK2tky3OEARjjHSWYadN0O1w8+YOa+eXaDVapCyLbqNPrlJEipAP3nmPWM5w7uoW\nKaEXy6RzaSLP5+mjbZaWNqksVCkvzNDrDHHTJh99eMJsJUVxdg634JJ2U7qmsARSST287/U53j9i\n7dxyshs4h1QBj27vsbS5ip1x9JhLKXqnTcxsFmSKWElU7NOu1aguLumaNRlD6OCLiL0+t957kx99\n/9/y+Z/7Da698QUsx0E7oTybakzqQiHANhQpc0J5mjCgE/hl0qsoMJKMhtBE0yAKGY88DNdFGJbO\nfnGEUDH+cMzT3SPu398jk3F59dXL5PIOtmFyfHTM2z/5iNc+e43FpSqg2H60n4y9Ir773R/xy9/4\nGsvLcwkrRzdEcawYDMZ89NFdth/t89rrl5mbrZJ2HWKlWTb9/oA4jslk0ti2nWwaGtFqtWm3T9nc\nPEMUGzQbDRw7hZNyyOVyny7z+b6net0O/UGbTmeMkAo/TCFNqR06+x2CIKLX64PhMr+8TKwE3VaT\n2t4O7swiy8vzFEpppOmwf/N9Vl98mTtvv43hzOJmMyxfPkPkj/CGIblSmqNHj2ke7nP28iXsVJqT\no0P2798DM8/q+Yssb86BdJjYzQoBZvJH7Hc6tI/rzJ9d1+Lmfgd/MKLf9plfn0W6LgiJKfXhdrq3\nT4QkOztHHMV0221SKRsrnUl8CCcG3BEIxe0f/hE//sH3Oaw1WFys8LVf/A0uv/JFJqQ+ofQOYiE1\nMdMQmu1sG9rUZ1q6JWPAidpMkqwmTbJe87iBUhH/4l/8Ab/2j/4hyxtrgKDTbHP75gN2Hh9y6coW\nly5vkspYCGlhxBEHTw949+0P+aVvfJVsNpM0P4I4jtjd3ePunQd8/gtvkMtleD4ZxXHIndvb3L//\nmGvXLlKuzGi5rOPgeZoaXzupkc2lKZVKlMtlTNNkMBhQOzlBCEkY+WxubqKUYjz2aDRazMzkSaXS\nOI7z94daUCG2bWCOLVIpSTpXxg8VdsZB1BukbJd6o0F1vsig36ZRO2R5cQnfCgmimLIhsNwUnVqb\nfNEkEDbv/OCHFIqzzC0vkCo4mELQPDrFzhRoHB7z+OZDSrOznDZCDGrUD1vML60RRz6OOSTwI+yU\nLtBV0hBEcczgtE79tMXaxU2kMPCGQ9rHLY4OTrjy2Rex0il0ZaUljzEws7KERAu2OyctVOAR2TaO\n4rmsFzLsdugcdxgOLQIxTyHTw7JWcZyMHn1NBlmx5sTZTirh5umu10evfDCE/glk0vkGk2OYSQes\nDR3ricPoL3/jH/Lk0T5vv/0eXmziDQTXrm7xC7+4Qdp1kELhDT0EI27duM+g1+Wbv/JzpFw9T1VK\nMBqPeOsn7yGl4Ktf+xKuazNBs2Og1+vz9k8+wrEtvvHNr5BK2QhhoBT4fsD+/gFzc3MsLMwTxxFR\nFFGv1/F9H9M0qVSr3L17nwtb5xmPx1iWwdAbIqRBEIQ4zk9Pbp8YfFEMo1GI56P3rPVbhEFA3JZ0\n+z6ptMNMqcrQG1GpzHGy8xE33t5hND5FptYQooPq3uej9+6TzsxQrM5SLhUoVnPsPXhAZiZNOm1R\nOzyl2/eQ7gy+GFOYyzHq7tHtxpx78RxGEBOOfcoLFUbdli7MU2l9wVRM/ckuYRiyen6DoD/GyWXw\newMOD9p85o2XsFKOBn3jCUirYYqUqbNVGEXcfXrI6rk1TDeDxEiOXT1rbR23IIr47Ne+wvHRTd75\n0Qkvv/5lzl25ipoSJRX+2MO0n2kWBFoUrqJnUM2kM41JEGIhEh9nzXUZDgZkc1lu3nzEUa3FTLHK\n0tJF1jfmsC2XKPR0Zql36XZ1zX3z5m0uXjzPl778BqlUSmOTccD+wQn37j7FdW1ef/1aMuTXpuH9\nfp/r799jZ+eQ19+4xtmzqxhSokQivVS6USqVSqRSDo5jATaNRgPb1m7zKobH27soIsZeH4FN4PvY\nZoSZyWIY5nMup3/P4DNMG8tJYfoRI69Ps3GKUoJ2+4SxL3FyZYajIfncDHuPt3HMFJEIOKy1mV1Y\n5OjAIwwk+eoGwshiZ3KknYjdBzVWz6+QLWep7e7TaAyYXVknV0zx5PY9PnjrDpdffZErl5bJZFxG\nrQahPySVSxHEYKYcQhUjYsXeg20yhSKVhRKD/gjDlJj+mOO9Oi+9voXl2qAEcSwxhJoKnY0Jg9nz\neXT7MRk3Q7/Xp5LNa8uyhNvWbXURSjG7OoewHbrdIe2xQa87QBiGNhaSAiJFMBqRcp0pHKOS7DeZ\n38VSZyMj+ZTWaSjiwOf9n3zI4VELx5HMzlX4zX/yq1TnZpCmqTMwMpmuZDUoraDZaPDtb/0Fl65c\n4atfeQVDGPh+wNHREbduPiSdzvKFL75EKmUTJ26i9XqT/f0Dbt/eYfPMOr/1299I9t5pEgIIhsMR\nsVKk3RSlUhFtBqQxSMM06Pf6VKuztJotjo+bbF08y2AY0B+McR2oVGYZ+9GUnfOpgk9nZ4ESJqlM\nnoqZFJHdKu1Wh5EvmZ3N0mg0Kc+tUshnkEYD13YpLlTx/DTLyyUwHbLlIkpBr9Mk3qkhzCz9pke9\n3uczX/4ihRmLe2+/T2X+Kp+5sEKtdsrezg7R2KdYLHLw5JRstUS/HSCEQex7bD86ZKaaI5VPM+gO\niMY+pWqJR7fvsrqxhrTSetuQ1FnMFoCIkKZIlmPo4X+hkKfe6VEwcwx6XZxsDkRMc79Gp9GiUMqT\nymYg9Om2egTqZ0VzAAAgAElEQVTDiKPaiDgMUcJCKMW436Xf65Ep5jGE8bc6X5SmNk0UcVNSgwAM\nyZUXt7j2mlb7m6bewhklTYtUCQVBQavV4snde/QDk48+uM03fvmrnN1cQqLo9ttcf+9d3nv3AZ//\nwud47fUXiIKIRw+e8v67P8EPA9bPXOLs2WWuXr2S0NxJulltZTsejwl8n0KhgFIxw+FIO9TGMe12\nm8FgwNLiIr7vUz+tk8m4uqu3XMajAY1WHzfjIQ0Tx3GxP616LQq1WiCXzzLyfF0wGybFShlpZnGL\nWZrNNtmZCkG/S7N+gsGYWrtPafUM8ajDoGcyu76KJSywbLLpmGp5lQ8++AjXhPMX1qg9/oDt9ojF\n1XWMlEs+UyR7rkBtv8HMSp5UyqRQLTMcdRn1fQbDHsP2kI0L65hOWq9MNUwG1oh+s44pFJmZDNLU\n1zYOAgzHoHF4hJtxyZWLICReFNM86iJNiaEMrJSLlU+jgNPdY0Z9j6UzK2TyOYQKefevv8uNW3fJ\nFbK8++Mf8uE7X+DFz77BJM8tra2AUHjDMXbaBmFMY1Anwwlzmo+zPQwDdyan4xAxlXZO5rdS6U43\njhRPHu3z0c0DXn/jJX7vd3+N7e2H3LzZ4/ikhhQW9VqH3/3d39BZU0pCFTH2PGbKK5TLOV559QWd\nqZVMDLth1BkjpU8mk8EbjygUC1OvlSiKMC2L0NcmkivLy+zv79FstekP+rz04otIoZuP09Mm8/Nz\noAxSjotpfPLmyZ+h4fBVFCtGvkesJF7gE4QRhmlQP2pRXllBIBh5Hv5ohBf2efNPvs3MzALCTHP+\nykXqRycII2Dl/GXMVI7G0wdcf3eb2bkKcewhLMHi+gqFmRk+evMnXHzxRaIIwkjhuA7F8kxiFQGu\nEfH4zmMGA58zL6wz6A3Il6ogBP54hGFIbr99g6XNJebXFjQ3LlY0nh6wcHaVcbNJPp/BSadQCo6O\nGxw9bTAeDDmzOUthaYEoFnjdLo/u73Lu6iWEaaKIaTx9wP/03/5XNNs++WyGRqvF7MIS/+P/9j+T\nzmtHJssyaNea5EsFbDedJDXtIhUnw1qZHMlG4uAhEu6dKRSGEtoIUmjqvaFgPOjTbtbZ3t7j+LhB\nqVQhl8tyenpKtTJHoZhlYaGMEIJcTq8eMxJqzoSYOsEYSd4PRYJfatBQu45q8ZBS4AchbkpLHxXQ\n6/dodzSl7unuAdVKheFwSMq1qZQret3rUYtsNsPi4vzUFNK2bRzHwbKsT9HtSo1dWZaJ58c4qRQi\nDAm8kAhBHHoo08G0Uvp+DWMqlbPIbA4xHPJwp83K2iK5tMX+47uE4wG3bzwhW5knV85i5BbJmJJ0\noYCKx4Shwkk5HB+egoB01sawFLYBQb/LzoNtFlZWSFfK9IZD7amMQMU+3cMDcnMlDEeQLeUZD0bJ\nvNQiv7qEisFOpzFTNuPRiPHA42jnhJmZArKUZ351jhjFyPO4e+sJZy6vIw1DTxu8If/vH/wfDMcx\nr3/2ImcWM9zbPuX6zR3+3b/5Fr/6j/8x2WIRbzAgnXVIZ90p28RKCrww0iM4I+k6JAnZQClsknUH\nkDCnBRYCqWIatSZvv3WDS5e3OH/+Ao5j4bouQeCTz2emNHsdWZKpRWlypgthQKIdUQmNa/LlSU0W\nK8VwOGI4HOtdciY4lq2zph/w5PEO0oBKpczLL88hDYP7d+9w9cWr3Lx5h2argWWmuHzl4oRChWma\nBEFAFEU/VTj+ycdu4Ouda96QKDYI4hg3lWHU65HOZhmNhuC1MN0MSgqau7eIzRROnEVZIb5XZ9SK\nqB/3OT1+yrDjsLS6Sq6YYdAPWJvPgQyJAg9/7CHlDPs7J6ydXcEbD1hYLEEUcvT4Prv3Trn62nnc\ncpqx72PZab0ID8W41UcYkvsfPGR+bYnAC8nNFFAohv0xadtg2Osz6A5pn0a4eb1+YTQck8tkmVvI\n6ZFSP+R4V/uOZHN5bdEbevzRH/zvXP/gNlEYsTSbYbVq8HTHY+T7/Om3v83GmfO8+qU3cFwXO2VB\nHCETV3aF7mYF2vrWSgJlUoqbQmBOir9kkjEFn4Vi48wy6xvLPCOTTljBqeTfzycVkdTpH/fFm1Ai\nRPI1JXS2i2I9g+20+9i2RSaToVRyiFSE73l89P4NLFty7uIFMvkMcQSWofjuX/2YuUqa7e0nuK5L\nRc6SzbqMR6OpOVA6ncZxnE+v4dBL3wzGo4But8Fw0MbzPHyvh53KU5o/T6qYJwyh2zrm/rvvkTv7\nBYKwx7AzwC063Llxk8AbMrdyHlkUzK0uE0c+lpC0W0f4gxEzSwuc7h5jScHGuWXCGKrVPN3jIx7e\nvk95doZXvngVfxzxdPsYw3HJFApI28JAcVprUq91kJHJ3MqS5tVFEb4/4PiwjpvOEfsey+tVomGf\nVLbAk50nFIoOhgHjcZ/QT1E/OMGQgrPn5lGWIAxijh7c4kdv/oCU7aBMRbfZ4DTjIi2brc0NAm/I\nt/7t/8O5CxdYWJnHUIJhp4c5U9AwTIIsW1LocBF6G1OcsFfkBH/hGW9Bj/IEQphJN63NfZR6FkR/\nk+XyNx9/tzFjcvYrbRXXbHWwHYd0Jo3n+diWyf7TfZrNJsPGEUvntkils1iW5HC/hsxK+q0Txl6X\n7ScHzJfXmZudYzgcsbGxhu97uG6KQiGfHOt/t1538vjEmi+IQhVEE++1Id3egNrJEfXjQ07r+3j+\ngLnqAvPrZ+m0fY4PWqyfv0C/1WI4bHF4fEymtMHC2jynxzuowGFhfZGIECOIsGdcbNul0+ty98e3\n2Ty7SbGS4mjvFNMfMb9WYe3MWaQBYRBhWpLRMMDJ57TxkOdzsndC7IeJnUeMk80zHHXpN7ogobq4\nwMrZVTq1PgsreYbdMcN2h16zRiRN1jZWKJXS7Dw8JJ9NEUaC4kqFIBb0To/4X/67/5qn+6eoSBFG\nPlEQcmZ1hsf7p5hmhnTawY8EX/rq1/hP/7PfByEIBiO9pj7ZCmMIsGXCdhEQJIQDSyS7Mj4WHkmG\nY1KPPSMmJJfsE4Ns4hwFeo/K1A5OKL3UJ9JG3UEQYJi2DhIUo7HH0cExpiGYKRd4evsJezu3IBXi\ne2laoctoLkMuV2MuNpnLbRGHipNajdnZWdxUGsOS5LIZvYHesbBtC9u2cV337z9eC6JYBQriUDHw\nPYQw9LZsJRgOehzt7vHWm3+OP/YY9mpU5lYYjB1Ks7N06i3OXH6JM+fWOD46ZPfh46mfSMqGyHAo\nF9IoYXGwcx+JwB9LVjfPsLq6THUmR7aUQSpBs9FFOAanx23yGYWwLLrNLs3THsPIJvJHNE56rG9t\nMbeYwcpncS0baZpEscJ2DHqHbarLeWpPn7L3qMbs0gKZrI1pgj/2saRBs9XkzNYGKp0ljkL+8J//\nr3z3e28SBRoB88cjojDGNCPCyMBxs5q7Zlv4Ycx/+c/+GxaWV8hl02QLBQypReJx0ikKI6FRCe1s\nZavnAu2TE9mzCzYp55JA+7scASbA7vOfD8OQg4MDXFevLjAMjQlGUczDB9ssLMyRyaZxUymO/j/O\n3jzW0vu87/v83v097/ue/Z67L7NzZjhcRFGkRImWK8ubahuOHcSpE8SJKxlo4QIBCrRFUdQGUqBw\n0BRNW6BOuqSx49RxnMp1vUiiF0nURnIokkMOOTN35s7dt7Ofd1/7x3vunSFNUjVfYGbOnXtwcM59\nn/t7tu+y32Vr44DE7XF0eJflS5dotlrcvHNAbaGOyhELzfPcvb2NWTFotZrMzLTJsoIwDKcCkUqp\naK8oGIbx1w++MIqLMEmJk5Q4PYEKCXIh4ScpcZSwv7FBv7tPb3/AcHyP/Z09xuOAx5/9YSSlgMRg\nfmWF7sEuSxcvkcchm/d2CaOEWk3G9yfs3D9kfraJO/YRqsTS0gxxmFKrlQYjRS7QTJ3WfJsiHDMa\neEi6Rvc4pjNfZzIaEQcK564ukUQhCytLID1o8xW1IOoNac04vPrSm/T6IZpSIKkWmoh46lOPkaUZ\n45FLY3GWLCt4/cUX+B//+39CHGXkRak2YOsarp/Q7qzijjfRNROBRLVVZ9ztUWnN8V//+n9Fe2ER\nIUvoskAkCYHn49Tr5NKpmBkSYJ4M7076BSHe9e8HXadulFNW23u9LlzXJY7j9/hj5MRxXKqOidIH\ndzAYEgQhM+321Io1JIpCKlapw3d8OOTf/dvfIQh2uHT546hqkzEGVTPF7U9Ymu/wyOVHcBwHVVWI\n45g4TqjXa6fD/DRNPzD4fkDNp6AiCP2QNIqJ05iskBGKjCRkijijvbhGnBzzzk2XH/qJX8Kwc771\nlT/nnbe+i6PqnL96jSRy8UITqSiYPXcWSbERWcTEj5hfNFg9KyFnGZohUzENFE0hCEdMRj6ddhXX\nVajP1FEMHTcuGE161GWbx565gOUYdLe7KIrMzFIHKc842D1kOHLJM4FIXbK0nL2RD9jdz7n8+HmW\nVheIooQwjkiEYOP2IWsXOkDBYP8+/+Kf/zOiOKPIBCWsTKA2qvydv/WLfO4Ln+EPfud3+fM/+xOi\nJGFWztiNE6KjXf7kD7/ML37pP0YFkigtR0S1WmnKAg+wg0Xpk1FaWz1QSnhXkD30+P3u3sMn3+Hh\nIY1G43S8IYRgMpkgyzKyLDMajXAch8lkgmmayIpMu90mTVNO4lbXdUajMULy6XbH7O7scfna00yG\nqwihUq06PH5uiXZzljfevMHFixexLQsocF0X27axrAdyuR9mAPMDg68octIkJc0yTNvGFIJ+t0tv\n95iJN8J1MySRc3y0zeLyKm/fvMXKubNceuJJFtcuMupt880X/gjdrnHl6jO4fYXdzdt4I5/mwhnO\nXLrI0cYb1GfO4A9G5FlM72jE+ccuIE0EeW7QG0yo1mcRIuHg7j6TYIQoAt568wYTt0etYbC7cYiQ\n66jv3MZUNFqdBjMzM6gVDUUTJEHA8fYR3YOIxz++RLNZA0mmUq9QJad3OGJ2voZQFBQKurubHB4c\ngGRgWzp5phGkMY4zS6utIRcSZx95nFeuX+dgf4cgKtCEipAE3/r2S3zm3/sCMzNNDFXGaVRLGP20\nmjuRIZpOPabckL/ygz9tQj7sOlGCF0JgGAaTyeQ0pVYqFYLAR5al0691XccwShjaiZAkFKVY0HR9\nNjff4Tvffpk8z3nsscvIsuA733mFa9euMj8/g6zIXL/+Oq1mE9MwSJIY3/fpdDqnQZcXOVlWatmd\n4P3++sFHgaZrmJmBpOjkRU61VmPQH6EpBoZRYJoZu5saCxc7pMGIeLhFdfEsFdPEaTj8VLvDX3zt\nq3z9q7/N2uocSA0uP/4sR1t3Gey+ztBNaC+CnOcYpkwWdHnteoIqFczMVAm8Lv3jA3oDl7W1RVrt\nKnv7OYtLDeZXFmivdIiDW6w9soxRbzDudRGKiqwo6JVSdFvIOb2+T31+ibQoiFCwazbR2KPX66Oa\nBs25NrJUaofOzC1MV00ReZEgCYWikJmfb3Lz5i4zs/s89YlrbN75GP/2323S641AElRtncWVZVrN\nOs2GQ5akeJ6HbpXwphNFrNM/opTbeADPP/m586Cwe58gfLCiE6cztGq1Sr/fJ4oixuMxzWYT0yzF\nvrOsYDQan55KJwEeRRF7uwesnVlBiFL67oUXvs78fIfz588RxzHf/vZ3+dSnPolpGiiKyub9LSaj\nCefPnSNNM3JyZmY7QAm7L9HOMmmaoCgqkPNB05YP12TOcqI0Joli/KFLHCUcH3fJhYwwbZY7Dv29\nDVYvPYZRMZHaDfbu32G8tcPS2hKEEyZHO1x74tOcO3+FnY23GB3u8Ee//8+59tg1/P4xTucq7tE6\n7TPXMNWIe/sp9cJnYWWB46Mx/iRifvUclz7RwVBVJGQG7hEzHYf9g20Ojw6Ijg/pt3SUiYehS+RZ\niOer3L29hyxDNJngByFPnL2K503wxmPymSrb9zaRhMyj55fRVAkFicCP0FQHRTdJAw9SgW3qKIZO\nkvgk0ZCjvfs0G2A7FeZmaoRBhF2tkMYl5bvTaZZweUVGm0KXmAZePr3x7+pypw8eti847W3fd2Ty\n7kA8uVqtFsC0mYhx3RjHcU5VA06e+6BWzLGdCuPJBF1TefHFl+h0Zrh48QKvv/YW6+t3+KHPfhrH\nsZlMPDY2NrEsi09+6hl6vS7N1gxBEJR8lCw9Nf7z/YB6vU6WJSiK8cHv/UORzHFcRFHEaDhBMw2G\nQw8/SBCKAnKBNwnYvnubxfOP4I59FFMljAr6B7sITcWutgn6fYSkMLMyj2GqRP1j/vgP/w2OaZLF\nE7rjiJ3NdTRrjk6nwvziCrXmInVHxXVznnjqClEYodsNau1ZDncHyKqJ3TRI/JDh/j693R3OXL1C\npVGlyCMUAbKio6oye7d3sDottm+9w8c++wyDXZdqQ0WWBS9/4xWeef4ZTNugopQetFEQ47o+337x\n+7x+43Vef+1ldC1FkiVMrc7O9h3mZlvoVp0rZ1a4t/EmaZ4TJTP81M/9HHNzbZ585omSeC4EOuVc\nL6VEs+TTNCtToE3h8CVMvtTdozhhpZW14An65iR4H8hjfPBVjltytre3qddrp05AJwPfPM+Joogg\nCNnbO2Q8GXF8dMTq6ir1Rg1Zktnb2+fy5UtUrAqHB4cc7B/TajfIspwgipifmyXwA6q1KlmWEkfl\nblhVlelpXJ6spln5QBj9D2g4JPKsQNN1RuMJpu2AnDJxfVQhkaFQSCaiyLGdGoouo6oZ7SeusfXW\nDUbDHqqkI+sVkgJMkSJ0mx//2V9k+9422xtvcW3JRJEKzlx+Gm90zOg4YP3mN3DaC/QONnjt1e9j\naiqqoVBkKYPxiLMXz3P2zAXIZeyqzq3br3L5449jWypSppDmKWno8vZbd9nfGZDcjBmOfY6HY0LX\nJcs9uscB7dY83ldeIE9zHFvCNEwGg5BKTUdSJH7iJ3+Sg91b3L51lzyX+Nznn+d40Gd2ZZXPPPd5\n3n7jVbb3huiaxk//wk/whS98BqGoRAJkpKmiQHG6OhNwqgdYoqSB4sRSoSAXD4Rf8gJOuF/FQ3Xh\nSb148nrvd5VqsoLVtWXiKGXz/jazcx0cxwbKEYxpGhiGjqYpfO1rt3nmmaexLAtdL13DFxfn6PeH\nvPrqa9RrdTqzbUzTZP/gAF0vgbnOKTHcQK5JJHGCLMtIkkQQBOR5OXP8SK6TWZqT5wV5XmBbNjmQ\nRiEyEp6X0GjWGeybOM0Z9rd20HOdYJKhGzqK0iGfHBLEE85de5TR4IhxUmN0dFDq+06O6R31SbJZ\nllYfJRwPCcdjOvPLfP4LP0prbglJgyyBMPYIxh6G5bC/tUPkjdnb7TEaHtHdv4s/GfOb/8M/Ynnt\nGqZeQ1N9giAjjuHq1ausXj5PFgUEfsHcQp1KRaMoJHRNQVenW/8iQxIFgZ+jOQZZFJUbhTxDyKDL\nJp989il2Nq+zvr7JwsIm5y+e49vf+RZxLqMbNoWildYMJyssIEOa+nIU03XgFGkzTcfSNFCLIp8C\nvEpi0Ykz5vsHWPkqD2etd6fm/JTcrmkKC4vzBEFAt1v6pZ0YH/q+z9e//i2efvopZmc709SpkGUZ\ne3uH7O3t0mjUse0qtm2xv3/ATLuFaZpYlnUqAJSmKYIHRs9ZlhFFEdVq9aODSfO8hP4qioyQZOIk\nIUsKJFlQb5hYTQfbljAM0DWdzmyN/Wifw+1NDnZu0ese8vY7t9jcu03FcEhzBafSZH5phstPPcvj\nz30WUUBzrkMcBdx+9bsE4wnD7jaHh11q7SZxmqKoKpEXEO3vc/6R8wwPddrzs2iVj7O/fR/XjTE1\nnTBPkCRozz3OTKeG60UoeUDgTWi2ZvH8LtVm7fQ3UUgCWSlTX1YoJQEoDCniiP3tQxRVIktyTF1n\naWmBt298j3vrtxh58PuHv8ff+KmfKT3XkoIoiEovt8BFNU1kSUYTUyi9AGWKLDnx0Cgeaj5gCqUq\npmm5KJuRh41p3r0FgSwrfVQl8cAFqIRICZgqKcRxhqIomKaOYeh4nk+v1y/xi8d9rr9ynU9+6hM0\nGnWSJEEIwXg84eiwi+1YfOypx0mThNHIZXt7m7m5eXy/FAa6cuXKaeNTjnweDLVPDJ8/zH3oBwYf\nFEgiI4gikjRmOB7iTQKsZpPRoMvB/gbbW7d4463XiUMZq2qSZxlhLCPpdS49foGzjz3Ozr1Dnvv8\n5zBMA9f3qTg1utsbNBeXyJOM7uERzc4cj37yR5n09xge7LF5a5NLj13Bbs9wsN2nesZi3J9wcHDE\n/t4AJY9p1MclZ0KTaM93UDQb3/VQ5ITuzgaSalCdbWIoDpOhx/JqC0nOShh7nJGnCUIRSIqKqkiE\nScbx4SF/9OXfJlPX+Ozz1yikFEnA0eEuQTAC2cCyFXRN4o2bL2EYBnGSkRUp41Gff/yP/hv+7i//\nMo8+chlZkR80EeIBlu/9jrMT3b0T7u+HbT0EoMgyRZ6TJAm7u/u0Wi10XeO426diVjAMle5xD8M0\nkaRSVzuKU1RV4lsvvkR/NOCzzz9HFAVsbu2yu3eEZVWgSLj8yCUMQ8P3Q7a3d3Ach2ZrBlVTaBpN\nVldX39W8lLPEEhuYZSnjsYfjmKVB9ocE4Ic2HJ7nFa47IQgCxiMfL5wwGRwxnITomkkhdApZQTKr\nFImP5Th0j0YoQqXaruNOYhbXZnnnje8DEhevXkVSSqfFtMiwa63yceSR+BGaXSEKPdIwREVwvLtN\nEAU0584gaQqaJmNZVWRdgyQi9Ev1gft37hBNPA52d7n48aeYnWmjV3SkPOPWW3dwgxhdVZibaSPj\nIcsy21v7nL14EUvTkDUFo2Kws3GH3/+9f83tO7cxKk0evXaZ2zeuc3zokRQJjuXgBSFJkaMJgSxJ\nxHlOLiQeffLj1CoaN298n2Zrlp//uZ/hJ37ixxCSPBXofghl8gHd63vvxfs97+HtxgkW70RpoTzt\n4hKyJcRUGVTmgaeHxGA45P/5v/+Ey4+uUK92CKOYxaV5HNtGIBgMhoxGI1qtJpZlMRgMcV0XIRTW\n1hbLNeEUMJDn+anRX3kKZhzsdynIsG0Hy6qc1IAfYbebJIUfBPR6PaK4oChC0tSkkARKKUhHkuWY\ndoW7dzbIFIfmXBNTUdAsA/KCietxvH3E1tsv4dQ71JdWaDTb6KaCatZRFMFk1Md3I2qNGmbFOiVK\nC5EzOd5n3O0Thhlzays4tRqSKCHKhSg9aAsytm/foV512Lp/SLVVJQkKNEumYqrUmg0kFIosJ4g9\nqoZGNpXFGI0m5FnG/EKH4eE6/91v/AaGoZFGMa4fIImcsZcQJym6phEnKXkhSiHtk7GxEBimxmyz\nXqpcCcHZi1f4T//hP0TT9Xc7a70nqN5btz0wrvngAD0Vi3zfIC2mgVGwu7uPosi0Wk0URWZj4z7X\nX7mBJAyeevosjcYM9+7ucmv9JrMzHXa2dlhZW+bZZ59BVRWEgP5gRBREmJZFtWpNP3f5PgeDwQkv\nd0qZLLvnTqeJZdmnpcBH6nazolwG1eszJGnIzvYYXavSaNkcHXUxLBtvNMD1I2aWl0jDGF2WUFWZ\nwPWIwxhRyEiazvKVj+P2h0SjLqEkkxUVbFmmdzimXqthdkyKTKY40fAsymGDVWuj6ya7d++SJSEF\nVXJRIBUpwXCEUbGRVZ0L1x4n9kasyTq9Xhe5yJjvLGA5FmmW4tgmqmFQiBYCCUUq2XmdokCWC/Iw\n5I2XN0nyHEeVeerqCq++06fICipOQL8XASV/RNVMkjRmfsahagg0VaIfxDz26BrdwYS7d3vsHXbZ\n2d1lbXV1Orz+q3vb9/7i/yB/2vcGW5KU3WVRlFo6RQGmpaPIKlmeMTc3y/7+Af3BgDdvvMP+/gHP\nP/8c16+/SZKWFNIrV8+xdmaR8WTCI49c4uDggG9+80UajToLCwvUanVsq0IYRyU1tCjXriBOA698\nT6XqQbvdwHGc09Pxww63D1WpyrLs14qp2E0QxhR5Qq+7T7/vohgVTKuC78YgCyqWiT+ckAMZGXGY\nkcceW9tDzpxfpGLVqLctci/g4PCIwI0wKiat+dmSOxulIGUlvU/kJR3P81AlCcO0ac112L+3Tegn\nFMDh1j4FOU6rgZAUQELXK1SqDrV6FUWRibOcaqNKvWaVIwEhUxRTVSipBHrmRVnO/+Hv/Et+91//\nS8IwxnUDDDzubnZxvQnDoUechMR5Vu5SRUocpViaQpQEJHHM0IvwhmOyJGYwmhC6Y7773es88+wz\n2PYDN+6HTzcohR1LwXBxWhv+/wm8dzcYEIYRk8mEE4EjP4hI0pDh0OWtN9ep123OnVulKCT29o9Y\nPbPCTKt5+lq2ZVPk5Ym5srKMqmrcv3+f3d0dsiwvGyhNQ5JkPM9FkkBRlTLIBCRJynA4ot1uvssK\nFUCSpF9/v8/yAxuOQhR4vkcYuOR5wcLKGQ67B/QO7jLoVdB0izyK2Tw4JgwiVi6uoksSQs25v+Vx\n7vwyqlkhHI8RUs7x0GdheZUE8FyPqj1hNIqozdSRZYnIHaNqKjmlsuUD0eOC5UfOsnXjNmkUM39m\nCcOQT0pzJAmKPEOSBZrjMFe1IE1J4pg0zZGVktNAXhLX8vzEgLncYRdZTFGoGEaBpij0PIVa3ebJ\nyytcf+UGaa7w6U9e4/rLrzHxUz7+iUfp7m8xHCUsnekwi8TusY+uJNiGSqWigyyhqFoZ8O+XeU4A\nLR9S271f4L3f1/V6jXq9CmQUhUSapbx6fR1VU3juuSepVh0QMBn7dFoONccmjEI8L8CqWBRFhqYr\n1Os1DEMjjmOeeOJxwjDkrbdu8vLLr9Bs1LFsB8PQqdVqzM7OYjsWsqxwcHCEopQAB8dxsCz7Qw1g\nfmDwFQVlfaMo5FlBXmiMJyPq1SaapHB3/W1anXOoqoUq7yOUuKzT+mNUQ+fsxSWsWp0oSpm4AwLf\n5/LHrraXC6wAACAASURBVHHv5n0uPHWecDjilRdf5hPPP4Oilgz3w909FpcXMSwHKG3eS9KLIHF9\nOovzKJqEbsr0j0c0281SBDtNkYSEIpc1VpHLFJKMbmkICZJsCpQoOPGMQpJK6dm8gPbCHCM3QJYk\nFCnmuD/CqZgI/4hPXLQhSZHGu1xbtRBxiiz6OA0VuZ4TpCGeUNna7mI7JmEs0LSYx564gGNXTjF4\nJzD2h2mTJ9zd0+5xWrM9+Pshw4PTgDyp+U7quxM3pFLVfnt7n9u3d7hyZY25uTYPAMUCWQZVsdDU\n0iRQU1VG4xG6plOt2lhWeUobho7vBxweHrK0tMCnPvVsyUGRZXq9Pv1+n5deeonZ2bnp68rMzrYx\njAr9fg9dN04Hzh8x+ETJ4/Dc0oRElMTj8WCEqulUW2fYvPsqheRw6dEn8AY++1t9jIoCXszy1TnI\nAzZv3qK9ssj8+QVELpifbxL2ffxEsLS6xM033sJyarRmGiyszHLc7dIxdNIsI0tTfC9E5AlV28Zp\nV+kf7LF7Y536TJ0o8knSBLvioMhauYYqHmwB8pzSiv70dhYURbmHlGRpusqSWD13CSEppGmCpAlE\nJmFULJrtWdzxCLfbo6ILbKeOpBnkkoxZlVDxQNK4c5Cg6gpBlKBpGkECFas1RXWcbHXfb2z8npHK\n9L1n08eSOLHkEqeQ/IKcNM05ODxkZqZFtzuk1arj+z4vfe81Go0Gz336sakh80O6zmT0ey6LK7Mk\nSYamS9RqVRqNGmmSMXFd4ijCqTrs7u4iyzIXLlwo12WidEUqHYVUDEPj6qNXKQrBztYOi0tzhFFE\nGMbIsozrulSr1Q+t+T7cCkHkSKJAVTUqtSZmmBCTkacZg6FPpZLz5HM/jpAFO7ffZmd/SJYXmLoN\nhklCQjAZUWnOkecSR90RwaALYcz6SxvMrs2hZYKKqTEeDpn096k4NWaWlvDHYwzTQK9UyjWQWgZW\nniUISeXcxSUO9weEbkC9M4NUiHetoU7jTQJZFqe0QG8yIgljGjMt8kIgFJDJEUWGKDIoclSpIC5k\n0jijf3hAkctohk0mDCZBgiVLiDggMk0kxUSzqmRiQJ4WSLJavoc8xrI08jyFQpmOO07GJOLdKfSh\nfW1BuXAptx8n8KsHUhtlEJbBtLd3zAtf/QYXLp3h7l2F4bDH9tYmX/rSL6Go5fNKgGhMEATYlk2v\nO2T1zHwpJCRLFPm0u5bKrcv2ziGev86lS+eZabemDQ2EYYjneWRZRrfbQwiwHQdJKFQdm6WlpRJG\nRXlCB0GA7/sldvAjWSGUIQhCIi/K3zhdVvCiDCmTaDRq6LaFUdGpf+wZLoucG6++ws7WHr0dj2jY\n4NyVR5ifb2HUqmRxyDBRePE7L9I6c42de0dcunqWc5fWSNMMzVDZ39hCiiOqzTqaUSkVE2S1rI9E\nTjg1rpMUg+Uz9vQ8KaDIKSTlVD39gV0VZFlOEif4E48gDJhdnCs/n1TyGt7+/kv89v/2mzimShiX\nebkQAlWRUYREJunkaUg8GpLrKmGikQU+chjRj1Nm6hGztSpzLZWBL9FpVhh6CWn/Tf7yT7/MJz/7\nBarVymmufZB+H2o+ioL0JNjEifRQGXjl5yh3xCeOlLIiuProeXZ3Dtm6v8/nPv9pbPsygf/UQze7\nQNf1KZ1RQlUVtrd3sKtl4xBGIY5j4Xk+6+t3qVRMFhY7qOoSw8GAqlNF1U7eZykcpGkqi4uLU36G\nSv94QL1mk+cFqqqQphmu65IkyYd67cIPgtGHUREkOXEcMh75aJUKeZYxHHgIWeC5HkpFYnQ8QShW\nqYWnSGyv32PnqMewew9VmPS7O2RxgqZkZFhYtRaznUUeffIqoRvQXJpFt2z8o0PccZ/Zc+cZ97oU\nokA3bWrVJrImk0QpORK6rhKFHrKsEiYpsT9B0wz0ahWR5mRpjFExyxSbJvh+hKpppWDQSUQKyAKX\nP/rd3+IvXvgq7bqJpUgsr8whSYIMGcuq4O7dxnUTokJQtRqkaVgOxr0JUuqjViwUVcao1/DdgFgy\niKOCSRRT0TVqNiwuXeIzP/qzLK2sIUvyFKHy7vR7kmpPJXA5CcAHIuRQkKUJo9GEexsb7O50WV1b\nZnPjLp/94U8jCZX9g31m5zpoqspgMKLTKQUcPS/k9u27HB11ee65p9E0jYODHlmWYpg6eZ6jKiUU\ny/Mm+EHEzs4u7Xa5OfH9gCzNWFiYp91u0ahXQQjuvrXOyoVlClH6DA+HQzRNo16vI0mlBexHIhAF\nYVhESUaWp7iTkDQrAYeZmA5bsxRZiskLFVk3kIRMQsb1r32ZxbNPcNAbYmsFEy/FqddYmqly5/Vv\nsT9KSuvM+VXc8QjLcWg168RZhjdKOffEWcKRS6PTpEhzBoMRvhvQbM2gWRUQMsP+EZkkIysm9YaB\nIqml1aZmoBk6kgBvNGTiB7TbrakgeJmaMzKO797m//hf/ikHW1tcOddGyV3SwsaxdRRZo1AlTFVD\nLSZ4k5hEtpEUDdd1KeKYKCoFhJx6A5IUTReYSkGhyPihRCZLJHGKZVXIRYFtWTzy5I/w1Ceepeo4\n07HLu0cS+UmCLcr6rJjOWdM0w/UChsMJb964w3jcZ26uxQ89/wxhGPOXf/EtfuTzz2MYZgnwnK61\nXNfDti2yLOPmzbd59fqbrJ1bYHlpjd5wQpGn6KrKwvwsYRjR6bSmFqglwPXw6BjbsojjeKpCKhME\nAQcHB8iSoNXqcLC5Q6VZKijUanXm5+cxjBLDdxJbH0kcMoriIk5SgsBnMnHxw4IwCkgLiSQco2oW\nhmWQhCkJGUfdgE7b4dZL36Fz9hpeXPo5zHXmqdRk8iTjePOYwhAc3XuD43FKw6nhOFWi0KfdmWc8\n6eM0F5iZsbGdUiPFHY3odyPOXJxD1S2QVexGDUlRSbMcKFdIYgpTKkKf4WBIlia0ZxdKqdfpgZLl\nEd/92h/yf/3Wv6BpV7h6voWhKAyHIXEaURRyid7WNJRshExKLlsURhMUDXc4wHNHyDmILESVwahW\nkSUFnRzPHyIZdaLYx2nNEYUeRS4hqSq37myzsPwIf/9XvsTa6uq7OsGHa8Aoirj+/deQZJOiUPBC\nj0bdoepUyLKcsytzqIpaftYcXnnldR5//Aq6rpNlGUkSo2klLTLPS+LQ1tYWr736Dj/yY59hPHFJ\n04KDwwNarRZ2xUISlHalkU/gB2i6hu9HZGkp+niCWCmmEPnJxOX7r15HyjOWz55jcWkBXTNOeRsn\nEP88zz+aXIYQUJRa/iiqgimrKJpMEqd4kUWrUyOME4Z9jzCYUNEd9nd3OTrexRUWupGjyTJH3W3q\nrkG3W/poBL2cZz/zI/hxRH+/hL2HkYtmmzjGIoYEndk21VYDqchI5zuYOwOasx3iOMawTCRFKmu9\n6dI8T2LiKCWKArI0xqlVkRWtnLPlAkgJJj2+/K/+V/78T/+Cq4+sMONAnkj4QsdZWEFRVLI4RZIz\nRscHFFqDJPLRFQ05n1BkJkkUQpqTZAm6phHFLorQ0Mw2o1EPtA45MoqmMQwEjtHEHx+y1mnTeCJl\nZ2udf/pr/yU/+8u/wqef+/S7EMYnl6ZpPPnE42R5hqpqIApkSUYUJYOwzNgnNs8ZQoDnuahqqZuX\n5+WJmSQJ4/EYSZJptWdwnH1qNZtGo06apATeBFNTmJ1tsnl/hzCMcBwTTdMZDj1euf4qP/szP47n\nlXK4sqqgSOWoZX39DoZicOnqeaq1ejkZyfJpTfoATPCR7a/8MCjiOCUMQsIgJIhLzTY3GHO4eYDZ\n7lBpzSCLnI2br7G704Wsz/27R1y4+hirF86j6hq+GzDoD6gZObff3mfp0iO0mhaKnpOFAYZqE6U+\ng/4IRbOIJmMqDYcolTGkDCHrFHKJdJOLEHecYOkCuWKS5YIky5ldmEGVVQxdR65oFJlAUdXyJhUZ\nW7dv8M/+p3+CCFwunrEwJBlNNZAVgaJWSyd1Vabvx6RhCMTEKYRhgqbbGJpEEsfIxOSiyngyJJMV\nWk6FTMilBouskEQRkqKh2TZ2bYYsTYgmRzT0kCAOsC04uNdlw6/z8Wd/iL/9t3+emlMr60Dx3jpw\nWvc9RCg6nQYWkMQJ48mY9bv3uXTx/HTI/OA18jwrFURVmRuv3+bll1/h7/zdv0mlYk2/n05PX3Ga\nqoMwgkLwzW9eZ2GpRrvZxrItTNNgOBiyfuc2VsVmZW2Vva1drjz2CAUSWZqRJFmptDplzGVZeqLb\n8tc/+SgykjjA911838P3I0YjhTjxEFKf+2/vgQyhGzIMUxaXlxkdptTqKUmRcLR1D92sEKYqjbrM\n+hvrONUWaRKQSjbeKCCPfLKqiVWt0VErdLvH+GHOfK1Fs90mKyK27u6TZzn1dptq3UQROUKSMSo6\ng+MJqiJT6zQoyBke91DJMJ0qFII8i3jxT/6A3/lX/ydLrTqXL9VxB0MCvYWs24RJQDweIEkZgWIQ\nBiGqVqArAk1RqKngugOCRCs5Cqh4kYtMjpGHuIMAwzawbKn0LJFUkkwljVNid0Icj2g6NapmQTU1\nMaQhRU1hJBu88NU/ZmPjLl/64hc5c2Zlmq4engX+1X3wyf8LAZIslUTtICBJE4oiR5IeLP4lScEw\nBMfHXV742l/yC//BT6Pr6mmdKYRMmmanX4/HHptbW1OwqMby4jKVSoU8z7m/sUm322V9/Q7LS0sc\nHnY5d34JkJAlGUmVHupuS13mkxXgB10ffvJFaZHGCaNhn+Goy7Dbxw1DXM8li12CUKZWNYgKhyR0\nEdkYJJvhOGZpbYlKxSCJQlTdwQ08Ml/GnqkxO9/BrNtIaYYgQ9F1Qt+jdzyiPdNk1B3gzDhEfoaQ\nVQxdBkkgKzJFLsiSCKSCPM2IAmh2HCRFJggiFEVG1XQKkeMPuvzu//6bvPK9F1mdrXNusYlSeIy9\nCMOeQ5YUhCyxOFMwPh5wr6+im1WyPKSSHaNmGW4mIU/HLYIcFJWJl6HIIGkGFVUgkpQwHmMbMqpc\nIKsqQaRgVgwWF5scdnNyFTr6BElK6Q9k9oYZhaqyfzzCC3P+wT/4Is9/5rkpBOqDb9jDDUrJ1YgZ\nDifs7R1w9erl98zUyqXA+vom9+9v8MM//EPIU828MuhgMBxCkaMoKt1ej6KArY0tnnzqMeqNKlma\nc3x8yN7uEWkak+cZMzMt3EmMaalUq3U0TT2tL0/kOnS97Hinp+D7nnwfDixIk19LszI4NNNCtWqI\nIiFyPaRKg4pTQyJFUiw6i4v0xxGGDGa1gyzJhGmAJuXcfusO87OzJOGYMCqotmziKEHVFKIgRdZV\n0qyg0amXpBlJJxi7BFFGrVEhnkyIogTlxGpZVtB1jSwvh6ReMGEyHFNvlJAmURQc3bvJ//zf/jrb\nd9/m/NIsjl1lPAlRlAqyUimplarg0ppDQwvY3usjSSHRpEcWjVHlgjDVGbgpdUfBmKqES1mCJAQN\nR0MRMB4PCeOEqmNCCjkySSrIFANEQUXJWV6ok+YCPzFJc0EaukiqhkgnWLpKIRRe+PqLDIdDLl28\neKqdfFLgn4xeThhneZYTJzGu6yJJJXPsrbduns7fHg7Uvb0D7t3b4qmnnkTXVXq9PrIil3ouQqCp\nKmmWkSQJiILQT0jSCMexeeedO7z55jtomornhShq+b5GowlJnDA736FarVKZLgLSNDmFYpU0TXES\n7O8LLPiBc744SfH8kDhJGE18NN1EUSGJQna3dhj5Ad7omP29fUy7yaS/j944w5mFNrNzTUzTYnvj\nPoNRSOT3eezTn6PeapRwIF0jnAQUsqBWs9BlhSSI6B0c4/ljQj+iYlWRlIwk9NGNGq25xnRnqHB3\nfZd6y8SqVqmYBkJRSfOY9e+9wPW/+Dd0+zFLc1XyRKbSmCVJEnIhkwUhzSosz2koeYrvT/jOa/dp\nm4I4LchVjUKYZHFClCpYpokgQNHrZJJEEgZAjJZExIpKmgtss4Tc54qJlCXImokcu4xTjace71Bv\nzXB0OGF3r4ekWQRegKHkuN4EoVfxY7i3d8Dc3AW++KUvcubsMrJUqlSNJ5PpsBiODo/J0ow8z6jW\nbGzbQdNKoe5+f8DVq5emJ2fJvXnl5deYm+uwtDxPgSBN0qkcboEbhOzu7tKZmcGxKwSey/VX3uST\nzz1NUaSMRi6GYVCpVIiiiCzPaDZqRFHMnXc2OHdxFVlWppovCVCm2ZItdzJQlz7iqCWOiyTJiJKM\ntChwh33ipOzkJmGE7Zhopk7qB3z7ha/QbC+SRjFKbZHmjM5gf5M//ePfo2I1WF29xkJHJcXEsuqc\nOX8B1VCYjHxmVhcIXZ+Dwy5pFGOqcHjg0pltYddsJDVHNysISUMWGW5vQK/vMzNj0+w0GU1ikgxC\nr8+Nb/weW299hygC8pSKZRLnBopZR4gUTa+y2IKOkzLau8eLN/ZYW1vAH7iYwkfSKuSqQ5BJqHJp\n7pJmErppg2yi50MUkTHpd0njDFWT0KsOWqVOmhbImoYqchAKaRbTG7ggcnRN5sknrqCoJq+9sYHr\nxjRqJr47QpF1vDgmk0x2+y69Yczf+Pm/xc/81I+hqXopp3ay/cjTcgpByS4sCZmQZRnXX7nB0594\nbFr3FQwGY+7cucuVKxcwKxZJkrK1ucnS0hJQTjAEBVmeEoUJ/d6Q9bvrzM/PkSQxa2tnUFUVwyit\nS6M4ntaSsH7zPhevnptC5zP29g5I04R2u02lUimDa0rX/EjBF4RRUeQFQVS6GGZJQlYI3DAGWWc0\nHJXTfr/P6LCHWTW5+fp1Pva5f5/u/ibf/LM/wB3LPP/Zn2RptcE7b7xKXijEqc9klPC5H/0xOott\nDvcGJEmOrqvUZ1ps3H6TKDZZO7tMc6FNluZohkwUxeRpwqQ3xpmp4Q08RFZQyAJ3sMWtb/0WvYMD\n+uMcoTjkkYeiGUQxOI0ZbEvlwrxM3UzwggmH+z2OhjG5XEEkI1QgjgsSJCTNIQ5dLKuOG2e4boRk\n2Fxop8hxrzTVyyUa7Q6apaHKGqPCRE5i4tjD0GQ0WTAYBAghMxgHLC53OHduHk2vsbM3ZGNjC9Ws\nMhmNkCWJvMioVFT8zOKt9R0eufIUv/KlX2J+/sQt6P0bjzIl57zy8k2uPnoO0zxB0hTvei4wDZ4S\nyVNydMrUnhfw9lvrzM23aTRqPJDNfXAVRcHE9UnTjK27d7j2sScRFAyHI9I0PZXqOHlunucoivKB\nNd8POPmSIo5jJuMRcZIxGg6RdQe9YiMUiSBMCEfHjLv7hElOFOe89p3/l439EZJq8/ynf5LPfO5Z\ntEqF8fEx3T0XRc3I84BCytm6u847d97GsmsoepVGs41cROSFioTF0595iigrmFtskcYJ9+9s4LQa\ntOfmgJyb33sNRVMZdd/m8M0/YtgbE8UapqkgC4UwySlUAykX1B2NC+dqmJnHq6/dYJhYXFhzGLgS\nk3EIkowhYqKk3Jt6fkQhFISskUUxiqljiAxLDUHWMSsVTDUjK1TSHHK/SxIngEwk2aRJhqnlRGGG\nZmlkssnMjM3hYUCzYXPh/BoH3RH7hx5B4FM3U5IpWDUvDGLZ5u27e0Sixq988T/k2U88iayqCB5o\nKT/A7pRjlddfu8XK6iLNZvU9XfO7A0gIHvpeGbhJmvK1P/0GP/y5T2FOTf5OgDTitN6EMPQ5Ohji\ne2NWz58l8DzSNJlC9UuE80ngxVNpuI9k9pxnKVlWjjWKvGw8sjRnOByjKQWhP2HcP+bw+Ag3CHjz\njesIucWTH7+GZbRotBtsbu5TazUIRx5ROgRZI81LN6PHPrXE577wk3znGy8iqybjyQg5t4jCIVoR\nsbc/Zn6pyb1b94nCkFazSbXVIo0ijne26R3t8K1vfIV+d4cnzzaJ4wJJ0SAWjBUTs+KgqhMWmlWW\nZ3SCYMBwMkEYDWbqNmmmUdMTEpER5xIpKm6cI8c59Uan1Kqp2GTRBJWEQjaQogzTcchTGS/wkQ2V\n/f19bDVFliCVdAaTCEstxxhCQB7maI4giBXGoaC3fUwuZC6dW6RSrXJn4whZchF+QG7NASoVEfHU\no+e5td3jH//Gb/CFn/4pfuFv/iyOU+PE77eYEpMKMhCg6yqD/pBGowSVCvHw7S14cM6cjHAeCsZC\nIEtKCQGbHrLlfPFBiBcFCEkwGo5YWGxi6BqmruG6kwcYxWmgRlGEJEkfnTpZTHmhum6QJhkiKJAJ\nqBo6g94+Wzv7TEZjtrfuYVaXePa5n0bVDKqNBpvrtyAL2Nvos7F+i8HxCNvI8RKNxeUmTamgM3MO\nN0yp1uaQrBoZW9iaws5hCZ8f9HdJMw/dtqk1G3hRTLDXYzzs01//Pn/w5d+lEAXXLi5C5pFmBWrF\nxtBjSDNkyefCygx1LWB74x3ubHpcu2TRaVQZDY6JMxOKjCDwsWfm8YdDqraBO/Rxx2N0JSf2huRp\ngWZVqNug2Q2OjvqYjTaaapIio5g1vKxgabEFAmq5xGTQhcgHckSRo0lAMKbTdkiyKo5d4ZUbtzi7\nMs/Tj51j4859docRReqjAVajxqh7yGJNwzxb5at//GV2Njf41V/9VVqt1un87CRzTcYuURxzf/Me\nZ88tw0Oiaw8Yb+8FtD74f0mCVrsxHWY/DGhlihSaDq2jBM9z0c3FKUMunypfyXieN2W3CZKkxDWe\n6MT8tYNPVgRhFBGFIUmaoCoFSQrbW++wubHJYDRBEbC4doW5xVXMioVuGOR5yuzqMnv3bxNORjRq\nS1y+PMfm/XWqrVkai1dRDIMbb90k8nOKzGXWmaWzeJ5wMka3ErbW32DlcoeZmQZWvYUbRYx294ly\nifDgFjtv/yVLs23OzUGWeziajF5YDOOQsTBYnjFYW6oiUo808vFDwfxigzA38AYHCMXGaMyQxzFm\nApphojYFwfAYQ5eQNUEapxSSimJqVExBJFnIpkm1I5P5A6JCQaQJlmZh1erolkKBQjgZQjBBKKCo\nakl2SiNUWcaQQmS7yXA44Hivx2Doc2l1wtr5M+iGjOfFRHmKKstIRUo2HrHablG1Fnn1rTf4z/7z\n/4K/9/f+Ps8++zSaNtVeyXL6/TEvvXydMHB5/vlPYVVsilPWMLiuxzu3bnP27BnqtSoPlDmmQSoE\nkjylFpSJljgpiel5nmLoOnlB6btbKOiaQRiGU+RKmW5VTUUSEoPBkGrVOXWm/MD4+rA5X1FIvyZL\nEkEQ4nsuvcEh23t7RF6AbjrMzs2jKhKdTgfDsJida0MBvf6YZrVGZ36Nc+dW0AyB77lU7FlmZ2ew\nNIP5eRtFkkiKjGZjhqPDA27feAmn2WFtbYk0MQjCCUWacrDfxdIlktEeb3/vTykmm0hyhqP6KIqO\nIhtIikomFKxqm0vnl1maUfC7m3zrlXVqrTqWbZMHffxRD6HoVEyJIg4o4iGDUQm7Cr0JQVQQ5ioJ\nKpKkosshSpERez1E4qNWSmvRNIjIowBFTlHVjDzoE467kAtMvVzpVbSEJJfRtQxTBkUGRYQUqoMo\nJKx6HU03cAyNOJzg1E06s6UqQNDfg8xFr9awGjWSMGZ+YZbxZMKffOXPOOoOWF5exvdiRoMJjmPz\nzCeeolq1+frXX5zajdrlLphSNkPXtZL6KAR+ELO1tUMUhZimgTv2CIIA0zSnqJRytSfJpQZLUQji\nKCZNM44Od5hbWEDTpiMb1ysDsCg4OjqkUqm8SyTygwhEP0AWNywm7oh+r8dkHFDkPqAhyxUqtk33\n+D6jcUG92cYwK6SJx/G+y7lrZ8nCiFanwe7du+hWjUKRufHSq/S7e1x49OMcH23hTiLiwGPx/JM0\nGg67m+s0Vy+Qxx7d3X2Wz67h9Q5ZOrvCa9/6czZf/wp5ZZEVq0886aNaDWK5iYh9UtVGk2POnFnB\n1gpG4x3u3zsE1SlRKkqM390nlxTM6ix54eNNUtIkZq+b4RgFhpwSCwMykAyV2bpFGvfJC4Nk0see\nmUFRDBTDIA9HjAcjRJoiTDAljULVUXWTKE3JAw9RJPiFjaHkOKZCXGgUik6CxqjXRzUdDKdOGuyx\nc3+Erqs8/fRFnNYMe7tDtu/eJY9j9IqNZWb4uUyYGbiZwVt3djArTf6TX/2PuHr1MnmWU6noFEXp\ni/tnf/aXTCY+KyuLOLaNbuinsPa8yNE0gzRNOTo8ZHFpkcFgQMWs4LoTHn30EUCcptEwSjk86nJ/\n4x5kKksrVc5fuHyq1xdFEe12A0kqjVvr9eZ01Vc2Rx+p23Xd/4+0N/m1LT3P+35fs/q129PdtnpW\nsYqU2JhF24wZOxGiQRAnE08MIU6CIEAUBFAmmfM/yCjIMAg8ihFFgS0hjiMlsmlQdIlSUWyqvVV1\nb93m9Ltb/be+JoN9qkABImkxe7hxRmu/51vf+77P83u6MFrDaC3eC6zZ4yqaeuDw+IjV+VPuvPg6\n6/WG1bomSSLSTPLOX7wFIaOYHpLGnquzFXWAeKjprWB+dIv58SHZbEF11ZAvc5rVGYcnz3P83DHC\n9Hzvj97ija+9zjBU/PP/7R8jug2LxQHLiSQJNZ0dyMcWkx1hLKSx4Pk7CX57wfd/+JDXvvoGuIHO\n5QTT022eEqOwRYlyPYPIMZsd1rTs+pjZoiSKY7I84/L0jDgCIQLSg04Eph+JixlZFiFkYKxqQpTR\n7vZ2ydlySSwMgwOHIhEw6ojBjBzPUrx3jLLk4rJmOk3wbkQj6FVBSs24qVnJCV/6wgnCBRZHh7St\n5cFPfkiiBUFGOJUSvGe1aTDRnLNNzeVVw2//N/8tr776Raq6QiA5O7vCmI5PPv6EN9549QZ9KxjM\nyE9+/A5lOSHNS6Ta3/XG0WKMYbvesdte8uKLL90kiS9JkowoSkEotBZcX1wSRMfrr/8a0+mMzWZD\nkuzFqJMyZ75YkiQpwzDsX61K/dy83X8LPd9I03R7Bt0wcH76GDtUnJ5fM5/ephvWuKC5Pn1EWh6w\n607HrgAAIABJREFU214zO7jFfHHIwdEBWkoePrri9S+/xE/e/gEYQTQ9ZuivmUwO2Gx7Xnr1ZZ49\nesLLX3sd01nGYcvl4zWL48D3fu9/5uNn17x8d4EIgtnsgOlswvWjBwx6SqIHDg8S7s01prvmg0+e\nsOlL0mLKi/ePqHZXxIx0dYO1gUg5ghR4Y+hGwThaqkExKWOSOGMIEbm2DE3D6ARxmaHCyCgSZrMD\nXBwT6YxgKrrNFtvXGBOIJxOKxONDwHoFwwqhY5qQc1SAjgTNoDBGkZcJfd/R7bZ4rxFjTVpklMcn\ntPWO82vHvJC8/oU76GTK++9/zOriHF0UTGdHCDydcXSjYNV63v3gCffuv8y3v/1tXnv1izz33B36\nYcCOlhdfuru3n7JvMJ4+PePgYEGa7s1F++Yj0HUDP/3Ju7zw4n2s9TRNw+PHn7K6XrOrN1gj6GxP\nJCPu3dlPAsqy5Nat2yilaJuB7faa45MjptPZDYZt//r91ZTMXRsGY/ayciup2mvq1ZbBDlw+/pAQ\nH1BENeeXDVkxpWoqRFSwvlqTTpaoOIVhC9GSOJaYZsU4Rrzx5jexPvDRjx7w2tdfRaP49KNP+dK3\nvkS1G9icPuW973+X99//LgdFSj7NiW2DHVO0b9j0DpU6JvGC+8+VLJORDx6ecu9kyeX1FvL7BL9D\nWE8QoPorBmeJpKRtBoRUCAWj8fhgWNeaealA5aybQKYGylTS1C16skSnKdPDOwztmnEY0bHeWwOt\nwY01OIHVOUmeoBEYB7a5wpmKyqVkESyKhNqWGNMz9PvEJW0bUj3SyyXlwZIiSzEWrlbXeAuvvXRA\noiWzowWPPr7k08ePCVFOkUYkpcAayfV6ZETx/sMrhC74L/6z/5y/+bfe5KMPH/HVr71+g6a9wQ+F\nwPX1hsVidtOB7meFbdvz0Ucf88orL5OmyV5hfVOshEC1q6jrmnfefYgb17z62hcZrSN4i3X7hiSK\nEuI4/hwaVJb7vN0kSX5u8f1bAMEdPtQEG5B+TQg9xjii7Bb3Xvsi1eU5t8qYYr6k2u6wxqDFGYe3\n76OKCBU8fR+YLSZcPnmPTx9tOH/2CaefVnhGtldbbp/MyTOFGR3V+SO+9//8Pt3pO7xyZ07TVcj+\nAici+tGTyI6iXPDc/YLDHLytefD+p/zooxWfPKt4/YUZno4k9AxdRxtSUueQod/z5+KSvrF7Emg8\nJc0EeujZbRuCrpkvD5nM5khTE4TEMZKqOeeX15ydXlIPDh08i2XKYpJwOJ8RExDGYuuanQ2UyiM1\nyBAxTSLifInxnkgHNqstyo6Uan9ayuDRQeD7iqB77HpNIuaYOPDo2RWPP73m1776OkPvufXSF1ld\nbWj6msv1FhULZlmJwpK8fMinp1v+p//xf+D//eM3+e3f/i+RSvKzIxfgZygH+8LrOsO777zP6298\nkTTLIPC5ArkfBi4vLhAojk+OCPY9vvHmmwgd0TUtOorQN9GewQd29Y4oSiiKjDzPb173v6Kkqh+G\nALDZXLFa1RTllNE7rHGcXa732WQ+UG93XF/UfPErX2IYerSLKJYpURbTNQ1t3XFw+4hqteLRh5fc\nefmYphrw/Zrz8w3LgwWXZ5+STzJ+8q//CYiCF+7G2L7h6rqhLHPiJMMMPZie+8/fZhEbLq63RPmU\n09NnCCsIzlAsjkFYbHWx1+uZgFYxUdIj3YhwUA/gTIV3MUbAZj0yKUuksjTNwK3n7jIJK5zOCPGS\n959u+OjJhl01ImKFFAI3WJSWvP7CnFfu5eQqIL1hUzuUtCQiJsrn1P2aOD6mq64JvieKYqI0wrF/\ndpnSNJsLZBIjdUEYVpj4hDgrkEpydn5Nmsa88sIB84lCMOHBT9+hqmtEJIiLKZsuYEdPiDNOrwYu\nVxuOj1/kd/673+HVL7zyl2Ttu13DdFoixD6J6Idvv8frb7xClqeAIHiPtTcg8zjZ0+y15unjSx4/\neoc3v/VtCIHV9YpttWboDGVZIqRkMskpiinGDGgdE4L/rHv+60uqrLXfMaMjijKSBE6ffkK1vqZp\nOtJ8yWw25+RkSZwVBBzPHjxCJxnlIkfHEY8/eoqQEYf3brHbbvGjpV1vObp/n+liwuZyR7Y4YHqS\n8Wf/9z/jre/+n9w6OibKpiTSY4wmiyS27ehGy6Qoefm5GU215enjS955/xzjAycHM5zoIb0Fo0GH\nASlSlJLE6QQtDInax9x3PmboerxR2CBwYp+YGYuRcjljUmhirdEKRp3x5MkpP3m4Iy8PeOHlN/g7\nf+ffZTq/xde//jWqquLJ6TlpBAezAlxLNLYQHEIJknmJc6CiiKzIUHGOFh0xNTpbkNHhXE2WZ/Q2\nxfYtwgdiZVHeEuIZaVlSqJbVqub9956wXGjuv/w8Ks7pu5bRRqAyGqPZbVvyOPDCvdts1lv+4A/+\nkCTNeP75F5Byn6B5cXH5+SD4B3/6Y+7cOSFJI+qq/vxkjKLoJjohQmuFdZ5/8y//hK9988sUxRTr\nLFEUcX52ynQ24fatOyyWS9I0wxhzQze1ZFn+2W73rxy1/OLic+Y7fWewbkTHJXEEl2dP8d5QtYYs\ni7g6vyJNEgQZMh344Z98l6pzXJ6ecn52Sl0bum6Hq0eaZsXl40csb99nqC+5fvqQpnO89/1/SuIu\n0CIwKxK8M5QYiDOSMmLdC7I4J5tmbC4vMEYyOEe+mDASI60ntB3KtuA9TesZO0dnJcLW+GHA+Qiv\n96sooROiJCJLFVFwGAT37mRYQCUzFqXCETBtx48ebmltzJvf+k0OD6ZcV5bX33gdqRS3Tm7x8OEn\nDEPLNBWoKGLdOryPAUXwI8JDnEjiOAEkSlhM16OHHd6M6Dwj0T1ZGuGtguApT24RK4XQgTB6rMxp\nuwEnC66uKyYTzWKSUswXrHaGphoJpmOueoLQyKFlusiYzFL+8I++ywcffMRyeYAPsNtu2W7XeB8w\npuf+/Tufz+WSJPkccbF/NXuc93z07sekuaacLnDB709vrdms1iwWC9IiRyu9/z6K9tI174njGK31\nz53z/ZLiC9/RSrLbXTMMDisy4jTHOku1WVPvOpIkoRssV8/OWSxz3vjyl7EjdPUpEftdsAPK+SG2\nu2R93hFlirP3f0xtDe+99XvU24qp2IIXTCYl4+hJlUVZQ9cYbt+e8uKtiHp7xbipmC6XTOTA0Afm\nWUCZBp1FRMogw4gDMrljFtUoKRndSBAGRkMUKXyICX2HGQytUThhifEMI5jrM9arDTpN6azh/ccj\nL776ZV586UWeXK756OOnvPnt3+BwPuH66orpJOPJ409ZzGKmiUDkByhionLKbH6I6RvC7oq+b8ny\nmDRJcSIhDDX64C4qmuDEFOEteTyCGLDtCm92SBTj7gqGnjiOSacTJtMIQcb7P/kx927NOb5zB6sz\nusESvCHYhqScIJRkMSuYlDnvP3jA2z/8KV/+0uvcvXuXoigxZuALr764d7lJgbxRsfyskT0QaJqW\np5885Svf/ApFUaKk3PcBfs/WMuNItas+x4KEsH+d53l+Y1ZXv1rxmdF8p+0GCNDULdlkuc/Y6sEH\nQ1OdcX1xSlNX5AdLNus1Z+dbZKRxVrJrruj7DcvZbV547Tn6zlKvetrhnPNP/ox3//xPOFoWmB5O\nsh7hLaN1lPOIREdI5aE4ZJl5THvNkydrdnWL8QopJLFWKAYkBh0kfW8YZUyiDc5bRhEjxT5kINYR\nK04wKgORIJVGJzFWgBk9xSRH6pQ0l3TdgBApu87y8KIlK28hZcw3/97f47jUuKA4OD7g7R+8xeXF\nU9bXF0zShINkYHtxjtSKOJszWgdhQChBKnu0GzDNmnG3JiomhHgCPuB0xlCtCBJGUgaXY8SEJHZI\nFUiylDxsCFGEdYKnp+dc14Gri2tOjhKODmYQxdhQEERMZzXWQlP19LsVxwdzuqHhX333e9S7huXh\nIS+98PwNZ+8v74Cdc9R1hZQCM1h+9IMf89IXX2QyKXHe451DaYn3gYefPOHs9JSj4/0VbN8c751r\nUaRvmo2AUvqvX3yjdd9BCLx3NHWDkpJu8ERRoNl2FPPnKWcJ1dV77C62CBVRzA+RdgQhSfFk8zs0\nm8d88s5PMf1As3nMxcf/mth3TMoUEXqq1rGYl1gSyvmCRPUElVBMJF0/IL3ZG7d9IIsls8PbmLEF\nlZKOO4ihcxGGmInqiKUFeRM7ZSxDfEJ6cBuVTtFjBd014JBiBA/GjhymDZGvCQ7i2R0mswxjPbvd\ngEwPuN6umE4O+OJXv8ZsMeHZgwe89f3vk6Ypwaw5mComqSArDkiLnL4fka5BmJogxB5XoRN8MiVN\nSlD7f1DnDCI40jTB+QizuyaVPTIJeGNRUpFIQ5wInFxgB4NMlmRpxtEiZvSSy6dPePm5BTpLWdeO\nNE+QQTF4Rd+2bDYVxSTlZDnlxz/+MVfXa5574Tnmsxn2htUif8YX0tQ70jTn4YNHLA7nHN0+ZrfZ\n8fjjT0iSFOc9T54+oR96bt9eolWy11r+DIN5HA0Qbl67v8KdTyjxHdN3BDSTScH5+SPaZkRFOVpF\n9C6AzLh1+w6Elk8efYIKI2kxo0wtLkwINJiuJ59kmOoZ9dmP8LuGdJLSVRVWJQipcEOLwBJCxLTI\nmM9jhPC4wfLxx2fIbE6sAl4romzCaEem8YBQls04JZcjyrUEIbEiwcczLIFsMkWmBaPXdKtTpKnR\ndkvnI0adM/YdIXhmuacNOX4YMN2O6voaGUauB0nwhpPbL3Dx7Bl913Hx+DHb7Yo7d454/PHbJJHn\n9jzdh8X4Aadi8tiQyh7jwHtFO0i8SvHOMJoGr3JcMUPJDEWLVnbPsMpKkihHRxGBHNu0NF2gHRXZ\n9AiilEQ4VBoRpOPJ0wsurweqzYoXb2WoaO87cW2FUJI7z93j+NYRZZEh45wshevrK/75v/hjDo5O\nODo6JFIaKfcjlg8/eIAPnqEf+PDHP+K1X39jL+ZNUrI8pZhMePb0GZOi5P7z97m62lIWJWfnp1S7\nLVor4mSft/uZJ/lXOvms9d/RUbRn63WG5clddpcPuDg7ozOWod6gZERUzvDRId/81jc4Pj7gw3fe\nRhKxOFpweXbF3bu3qc/e5/TBW3SjZrqQVNuGEAxKxBSlIiOwqhzFdErbOKJY8PTZmsI1NJ2jmE0Z\n6yuG1hMFjwoN42BZVx6tUsy4x+i6IJAqp7KexLa4AJ31qGCIpQfXIbVEJIeMMkH2V4xDIE81iQwM\nTYPKjigPbzGdLcjTlN5sobvgunZEScblasPl6Se895O/4CCzlGnCLNe0HUTSYbsaEBT53oQ+OomU\nKZG0yLHB6oyEHi0jfHtFiqXrLL2a7OeLoUdlJZmokcKiJrfBbOmqLUmWksaOPPLYoMkjiUtm5EWG\n0JqrjaXtR+KiQAnHsN0hlaY1A0PbkJclR8spZhz5P37/9+majpPjE3Sk0XqPiPvowQc0m4o3/+63\niJKIWEeMztLVe0CoGQaOTo7pu5Y41pw+fYYIcHh8wNHh0edjHefczdD5ry6+XzjnM2YMg/XYcWC7\nXrHd7fBe01Y1de8x/RlND07kFNkBx3eP8EB7fcEw7jh7+CMGM7CMN7z37iOk2sNkjg8PmC9yttsd\nvenwg6RINee7njTOOZik7K6fks3m3CoGLmuBHAayVNL1LXG8oB9HLIJFkRBEu1de3MzMpcyQRQTD\nGjNKRlUwEw07l6GDJVOCHkc9aOL+GSGbMIlTxqEG77BRiRExhW9wAq6HiFiNaCxvfaxwXvCFW2Fv\nop+kvHDnGG0N680K37aIWBNPD1iUMaMZuVq1FNKhIkGpDD7KEa7Zy7Vsh8fj1RTSktB3tHULSlGW\nKdoOdCQoYXGmhqQgjmKE6fAIjDF06hAlPZ882XHn7hGNiemFQlkw7QpkIM9LiknJ2Axs6p4gAllR\n8tMPP+XW7ef47f/6tzm5dYskTXj44SPu3DtmtlywWW/ZbndcX11yfHxIPxgm5RShPMIL0rzYa/qS\nhK7vCIEbRbO/2XIolPqrcRm/mEZvbGj6AWsNu12FNT3r1QV106GjOeeXj5CmZRRTrNVYOobWkS0P\nyZKUSVHzL//pP6btAnlWcjK1KJ3QrS/48OkVOpkjfIdOChaTnM16zTzP2A2B6SQhuBGhEqb5QN85\nJnmMUhOK2ZwxKIQ1NNWnJDIQ+i04jUUSlwuySGEI2GHADSNeCEYhUFGG63YIFWOArurIJxEH8xjf\n1ux6S2CC0ppYjMSTKYOPcd5hTMVm1aK05rnbJWebkeBilApkWtH1NcJ2LOZTxjCSK4GKM+rtmmky\nMlCiaNBa4ojROmE0I0JoRlUiRIcf7B7R4UdEnBIliigFpXJao1hdrYiISKc5AoMdA6MuESLiw0fX\n3J0ZtuOM2qVIYdEyxjUXBDcQJQu0brAhI1GOOAqovOSTpxVNn/AP/9Pfwg+Bw6M5f+tb32R0gYcf\nfYTSmnt37wOCfuiZzQqs9Wy3FUJIlJIYM2Ctpe978jxnOp0SRfozjvNfv/i888GFgPWO0Xo26y3W\nOWy/5sMPTzm6e58iLmiaNVerBgQoDYPZ8NN/8ydcXX2AcIZZpLjaDiRZwayI6URgqhPKqaKtDYMx\ntG1NEQt0doRw3d740zSoSKPGFcYXRHHMZtewOJgzW9zGb07p3MCqatACpsLhCJRx4Lw2xEmMUgPC\nC+pRoUOgCgViuAatcWS0VYPSglni2BnBvVszrtcdSEXlNUmsqJvAIlf0xmHbLfk0Q0s4uxxoh44s\nyzmcRQy7LdMyIUsThE7Jygw7jmglUVqhkxTTO9atJ6iMQnlcsyEwQNA4KdDKoYB5ETi9qJAqI8sL\nvHM4pXDVDmcDIVJ0gydNHJFOEFHB44uG44MYxhFjA05E5LFFK4mxCV4Epos7bLYbrBdM5xlhWNN0\nEU/P14wh4sXbJ/xXv/Pfo6OY+XxKnheM4z5ttCynZHnK+ekVz54+4YUX98SCrusRApYHC5IkpWma\nz+OxbobWf/3ic84FF2B0Duf3AXV9P3B5vuXy7Cc8fXzGi194k2I2ozeGzdUl9XrL5vRtPvzgA45n\ncHFxBQgWuWbVK46PDpGhJ09i1qtnCJERx5LrXaBIDGWhcfoW9eqSyfIAFRyh36FEhy6OIfRsNj1l\nqnF+Ry5r7JgzqAIXEqwbmI1r+v3CkWbM0OmIcB7rPc5ogpR7/6q3XHeeKBHcnktGPSGJNFLtsWRe\nSDrjaLue43Sks5Iii4lSDUFi2oZVaylmxwgG0jAwDAMBxaDmLOYzvGlZtZalqhC+QaqUoXV4GfAI\nyrDDWoWLS3S5ZHSBMXgCEBGTDRd46xmlICiB9CClJnjLZoDnDiWdkQzykMfnG7TdocsFU93ivMAK\nRVIs6JqGpJhDkiG9YFO1BA+F3PDxs4HJ/JC+3yFlxr2XXuc/+o//Pmmc8tzzd9msK955512+9KXX\n6YeRSMVMZylJkvD+ex8Cgqrecv/+XZYHh3vwZNcxm+3VLb+SdXK0NozWYaxDRTHWW5zbm0rsaDj7\n+Ef88O33WBw+TzQ7IHSXvPv2vyIKHcbConC89cOPePmlE0R7yaYrWRzsF/HnqxXOJyxmOb7f0LqY\n+weKroWN82TSs9113L5zG9v0jCEwFVuCb3C6II8sQcZ0g2XdSFp1QD/UOOsZnWaejczZIuOIYnaA\nloLeKrq6QtgeFRzVuP+hnR04Kj2JUFRMmE4nRJHHOTh9+gztAu1gWExSDu8vmBTw7kcerSVZound\nTTSp8PR1hbCOXAusEkg/kJUTfAiYwZD6DREx25CCGfBjh80OGF3MmE9xQdK2ln4YEELy3KHibrmh\nrh2zNKLuHSLKqIcRGU/J8jm7puXqumdbV9w5cKRRih1HAoJNG+HtQBpJRhEzm06o654gFMYHnj92\ntD1crSwfXI5Ib9BRxvP3bvEP/uE/om9rfv3XvoKQkOU5abLXJl6eX9APhsVySVHktG1LVW33YCId\nE8cxWZbd0Az+6t3uL244RhOs87iw5wgHBEEKEBLrHX038uSdv6BuoK6e8uzZYx4++DFDgKMyRsea\nzfUVi1lB4hzGgdItOzMj+JG+aRH0RDohUhoRZyyXku16INGCSMVkcY1UKZshMB13mGxJPFyCTDBe\n8uDckOQTLq53bGpLlibcvbvAtDX3JoFyOGUIiiAjBp2SupqApPcZynm2pqdMEooEnA84B14FtLfU\nbcBJwbYFlSS8+WrGdLogUrBpe959/wlBZKQaeivxWIRQlFlgqkY2Y8pCt2xqR56nJNoTgqSuW6pO\nosNImmd7yLqYcjEuCSJweb3F20CWR2RJzPOLgaPJ/qTN5IhUnq0rObm1ZDCKZxcNTbVGA83geP7+\nEX1nUApClDK0PZM8oWtbjPN4M0KcouMc7WvksOWjS/h4pUlSxcGk5B/91j/gb//G3+f02adoFXHv\n3n3quqfvO3bbiuVywXI5Bynwzn8e9VDXe26z1vrzHfLPK75fkrerEfImldGDx+G8wPmAVIoohntv\nfIl3/vRtZPEC0+klz91/js31M87OtohEsUhTuq5jNQwcHt5itefSUMaWs6ri9kFBtdswPbjF9vqa\nLNpbIzEer+q9Gtl6iumCioQiSRDqBN9cc72qqMeCrhnIU8nJyQlZVnC1brA2pTJrEqWQIYAfSRz0\noyAKnk44qlHgxpRoWlAmMThDfX2JUpLRhb0sXinKwiKdwLsELyRCSyKd0w0pVVMxSRPiTLAoY/JU\nIFRMZXIOj5eEsSYMK7xM6JFEWc5ysiRpHaMLkCgS61lXHtyeFFXX4z4eQXoW04xdrykLzWRZMDaW\nZuhBCq5WFVXtuH1SwvEdTi92dBjitACdkSiNcSPlMmK73TF6QTT2jDIiyxIULXY0xGng8HjCw02D\nc5LFwZJv/Du/QRJpXnj+Zd5++0f85Mfv3QhHBcvDObPF9PPC6/uBvmuxbm8VTZLkJof358upfmnx\ncYNl/czw6f1et6Wkwn+2txMFX/qb3+D808e8vz4gLiGsPdNlilKOZamRboPRnvbiyZ7d2wvcoJhl\nCidTktRS5hFpOiOODO88WPHVl07waCI/EMyW008bptMJdW8ZXcEYYqZ3bvOGjrA2x4XAB5885PLy\nlCRLuHNYQkjp/YgTioBD2hEhC3rniIAynWLEjkxrjDf044DOErRM8cFTZjHGQS4jxqHjpw+e8ZUv\nPwcj/MWffYwOmpMMfORwY2DXxYRgibKU2TTlYlUjgqP3e15gqiPGeoPKE4IXeBRhZ3CRx4eE4Ee2\ndY8XCo+g6j3ZbmB2qMiko+8CsRhJ3QZvJbGX6EjQXfVsTYaz45729TRQZIHOgZrNCd01qRvpekEv\nU3Z1IBlqXnzhkETUVK1mMAYzOuY64YuvnHB6dkk4XTMONZ8+fMjtu7cZxoG7R7fYrLY8+vgRt+/c\nIk5SnPUcHh4wL/YI3q7r2G63P2NG+lWKj/1qzQex54VIiZD7k+8zWjoSojThzisvM5mUfPDeh6Tq\nmh/8+Yaj+YQgY3TbEMUp0SJhSgpXLVYFJlFE3e3oe0e03hGMZxVJ7ty+z9YO5FLQtI5R5xweaLCG\nPmjq9pJcKS5OA6PKMP2nPLrcZ+3uYwIs3luEipgsZxgrWW9qIgWJ6KltvE/G6HZU3UicdCTBELwj\nicCYjqAi+s7gVITxAS1jrFc4VeCLlCT7GOyIVgIzjoj8YC9QDZK2swRXk3iPdB6nY8o0IuiIPGxo\nVhusA68yrB0pXIySEikSnJAkGrwQOLNXClcGagup2dEMHTLRmM4BHo9FRhmZ7tgZiXeWk2NowwTh\nA/lkgZwe4C1MmpoilQxuRMoIKxSjiRjwDEaQ6hidev7D/+S3qBpLU604Ol7y1a9/laLI+OlP3+Hi\nYsXBwYKT42OQkvligbWe3W7H5dUVSRKRZftRy2co3V+p+MI+f2AP+fsMzX+TNBCC34Ojhdyjw4Sn\nvHWLl6TAtWe8+tKGqezZtTVhdpcs0UTjjtXVjtEOlNkMKTqyoBmHiiLquGoCbeuZlJZYxnjh2MkJ\ni0SR65FepyRO8uIrt7jYVLQbwW5Xs6oNTecRSu7DCp3AOskwtNTXaxSKqQ+sxZJyHnFCoB4l6/WA\nDwOur4mLCGMDxgzk2jOOFeMIXqd0tkQLD1JTjZrQDri+J4oiXO+wLiKKHVEUIChUsIwGytTS9SOu\n6RhEuo8K01OSaYHpLSqeEKcJaaLhrEHKgAr7e3Waxog45XgZcTLN6etTOjMSx4owKBpSDpIE29eo\nziKkIpYjIWhaV1CWCTJ4hB0ISmBW17h6zSYoXnztFQZTs20G7jy/BCJecIIXX9ZMZ4e8+5OPePWN\n17h7Y9WcTPfRZK+//gY/fPttprOczW5kOp2yXq04O73k8GjBvXv3iCL9OUnhl+XI/RIms7gByXCT\n6vNZtoX4GUrIzXc3D206X5ClPX4cGRJJngYCPZu146pxLLOIRI+MtkbSUTeSclnSdi27puPl2xnr\nZkfwGf3WsCgVw5Az1D1CtWitOH1oqUfP6KcclZaLVQAl9877IJFColQgzyfIdIoXAoknGQWbxlPm\nEQHPrICrbUSkU6rWIosZaRbROovONf36eo8+GwLGKZz3fO8HHzGZpMxNRHCayIMKPcPqnHKi8ZFG\nxjHOempRkpcL8u4M3beEoaeR+3yPw8RhXE1dlYxuivN+PyeVgt4YjB3AgRYxeMPdqaIs5thg2HaS\nkzJm8IqzVvHVl6dcbQyFd2RNw9AH2q7Be8vRAthckpqBIgvY0dI2W3yAqrIMIiXR8oburHj/k2d8\n89sz7j13H60kUZwRJzFDPxBFEX/7W9/i3XffY7lcfH6/e/W1lz6nFsBfzhj5lU++z0wnn4fvfXb0\nhZsw4RD20ewhECS0q0v+9I/+gEc//VOeririRLJMAlGRommZyZFHT2vsKHjpKBBIqbstzz+/Voqy\nAAAgAElEQVQ/49PVyJ1lShwaiijCjY4itWy7gkgakJbERQjpiFPPraJED/DBOge5QQSJEG4fOiT2\n5piuXiNaw6hyDg9nlLbietuz3ThUliPGmklkwXgSbfGtZzP0iNGCEixyMI3DB4mWKcYLyknBateQ\nLu5wNFHoWLO72lBGFdeV5GSR4ESClg411rhmwxgigkoZQyBSMSQxQxS4rnoiPWLaDblMqNAoIQlC\ns1dBgnGCdgx0TjNNWvRo9n+73hHGnhme08sIFSkSLKnynK8rFtOCREuuq47IOA4Wc3bbhiEEHj7s\nuGoqrIf+ky1a6psii9BK8Lv/++/yHzSOb/yNv8E4jjeASsFyeQAEvv71r/Hw4UOcc8xmM7z3jKMl\nSdRf8uv+ss8vFBYA3wkIxtERCIzWfg6m9oB1Fu88Dsd7P/gT/vD3/lfef/ABSSyIgqXre7xUaJ2T\nZ3Ouzp6y3hqSyZxo7CFK6EXJPHFshsCkjNj1MfUwIoLGygQjYpZpz6HuOMw15zvHxQ7yKGPrFYOJ\nSISmNj2LRJJoTRRLJoXCe8vgNELBYdIQrEFoD14SnGV0nl0rmOVQlpJARJYrJoVmEgv65Ig4K0mz\nKbVR1EFzfHKbOOo5vW6JgidqLpkkBiNO0NOcKJtSd45hhEhF+MFR2ZjBwuBAqcAsGZBji5aOCzOh\nChFWZoxWs2sMxhokHhEESaxIIk2RWnpj2fUQy5FCGzI1kmcS29Xo4OiYseotURKznM1IM00hPSHN\nqAbPetMijOV83XO1bRFSE4IEoRltwBHox33mx0cPHvD4yadIGTGZ5MznC6QUn8N/lssldV2zXq/J\nsoyqqoii6EZUyufCghuJ1V8pLPglJ9/+tPucuaZvcsFuEFjOe4R3fPLeO/zx//XPaNoeETRXO0MR\nx7hxoJeOO8eS86sNnQWL4uRoSRQKYnpiEfP07CnlZI7wHpnG3M4jnGjZViPzuEELyyWHTIsJB7Gj\nHDx5rEi2A1oMkAheunNAV9U823aUkSZ4CF7cPDBL0410o0dLgZMKM4x0jaX3gs5F+K1l9BCkJVGK\nNFLUuzVaR3Qiox1gebAkTlPm+h6DOeXpdUVxMsH0FY2rKdQhm83AweGCvm1pug5cRBRLhmF/HXC2\np90ZyhyEyrhd7AguZjU6gsv2OcBBEYRE4G+iDTSDEcxnOVEq9xD2fmQWbyBYprllNRhyf0nqR5rL\nNU93Z7QUFFlCWuRMZCCOY1orUAkskwwZJzRth9QxZujRQpBFyZ5E259RVxussbz22qt7RBr7u/5o\n9nELBwdLrq9XXF/vm5Cry0vieO/jECIwmU7IsuznltYvGbXsU3EARmMIUiCjmOBBK0G3ueL7//p7\nPHv8IUNQOKnwdsQHGK2nRUHjWV11rLdblrpgkwyYdsWslDx8dEF5/AbnjUfYKzrvmRYpj7uRNJ1w\nawHZTdzUVEu0zvDCoFEo7VneOsCtG/78/TPMuMO4m7gEIVF4bh+VxKKjNQVtAGKBVBGTPGZXr7Gh\nhW3PaMB4SaIHbPB7bZuxTGWHYYoDclUzcQbR1MRyZBq2PG56Hm/n3Mpicj1iTUWkJfWu35Peowyt\nNMHuf2ClIZUpSmUENVJGlrZ35EmLQXI1BLQKiLDf9Qb2aeA+gNTx/oqDxzqN9yMhAhU0jYVplhJM\nwyJ2dJFgOZ0wSydYJ2gGaIIk+ILzqw0jAusCND2LWYZ1UCQZQgpuH0/YVvv8jyzVVKsn/O4/+V/4\nyte+xa9/9deIZMJu12CGgdXVjn6oqes1z4oShGd5MOXWyV2yvLxRSv/8zy89+aQQBBGI4wQvPE4E\n8IZ3/+KH/OjtP2e1WeP6nlTt2Qu1tXivIOzTuEMI1EOP8hHJdEp/+Yjp3SVjv6N1ns3VU+apwIuc\nWd5RDZ5RznjtuSlj5RCFo99VpIspvtvhQ0qa5Yx25MGn51zVnkxpIqH26ytAqX0YYBjBO41UAScV\nWZJA6BmqFZlr8FozyzTTk3ts1htuLQaSKGY7CNrmAi9iBjlBmZZJ0lNXK0SXAA6pJWkC28agdMpr\nJ/uNTNWN9DZQZIpM5cTScXW2ZWwrkvkcVUzoB0vVCtJ0Tqw7lKzpx332r1QaFyLkDfw8OEVA7kcv\nIaBuGr8kGnBIJI7BBbJFiqkM0kb759oaMnq0gLn2GC+pTCDRYPoe4cUeipSmZJncW1NNwDpHpDUB\n2NQGoTXDszOuNv+Ct976AScHB8RKsjyeU85LZssZL3/h1+m6FqVijk9OgP3t7P9Xt3sTA7bH3MMN\ndiEQnGfstnS7HX3d0XYNY1thCeB6TDvglKPeViiVsAqKPK6oTcrx8QRvW05rRW8EibToNOZ4krCt\nRoLW3Dkp6doWPT3EGsXhq19idXlKbwN5muDdFW57yUKl7OKS3aanMYFIKZaFxokbEYEFhUM7jWWk\n61dkyhAHWLEkLQXCtphmSxpbnlUFR4czQmxJdcnFqiGOBS9/4SXGds3p2ZpEWvAd0g7cmwS2Q0ff\nCT7dzbl/mLGrWpbJis11hggDQkrMAFJGuH5gPVqKPGGSApFBoDkzE4z3SC0QCoQ3BLFXAXvh9qgz\nGZNPNIlQIAKtyai6ijTNaEfD9trizYwizxHinFwPaGswQhPrgb4L2FGgCKRC0uHQWnB6dr1X3miJ\n0jGnzxRFmRPHEaMLDG2KRCOTiH//37vNb/7mbzBdHuyLw++LzFrHZLqgriu22w2z2YzPvCG/qOP9\npZGnIuzVLCHs2W2eQFARr/76V3j8/k8p8ylNrTAmxjlD00SEYh/ZlMQx1imeX0BjUs4uHzFd3uXi\n8hIXxVSN5e6Jol51nI97/dpU99jtFpVqUhkTLWJOL1akWYLtJEmR0VRQlg277UjTDtigkRhevL3k\n2cWKeZYilUVG0BuAAbxB6IiRfeOgVML5tqIfYqZlQhKVeDxV1bJuBvrRkuUph3fvc35xzrNPHrKt\nLKrMefFuySx4DhcjY1B8+MxwtdmBjyg1hOyYSAwoEeOlwoceZyVeSgKO1u4H98pLBreXesnP5qlB\ngNwPZ5XYx5s6L7DWY3qLw1OUCcK3HM/2Q+nr647DWYmWimbYizlnsxSdKGQUgy/Q25HGC/y6YzA9\neInG8dJxRpmk4BybVjJdLihyxSRPiLWgs5J2jNHS8+bXvsF8eXwzw+Pz5VcU7QttOp2x3W6pqobJ\nZMLPYnv/+icffB4wLAGh9kehCIG22TKf5qhub4DpFAydoMxhMBJve4T3FNoj0jmR6ZmlmnF05LGg\nul4zCokMBdNDTV31vHq7ZLftadoBdXgLj+Pp0xVRrNk0DTo6oLp8ihkDlz1UJnA0zSm1ohMl11WN\nhf2mwTmUUDgtMaNFDRYXSUYkjnRPXJURre8x7YiVmspGaO3Z9RbhBpbZwO4CzLAjznOWqeT4pdfo\nLh+xi2d0ux2jjZgkls1VxYfrnleeu02161AyocwTsD3tYFBC4Q2kmeZwWiLsgI00Q+XxWpGmiu2m\nRyCR3uGlxiMQfs9LEV6yrnrKvMTsBgoxsLrqaeuaPEupalBBMvQNVdWwmeWUUjOOgu1uQA07hsEj\nXCAOPV4pGicR3nE0yRj/P9LebNeyKzvT+2a7mt2dcyKCDDKZXSmrcZVsw4ANA7av/Yh+Dr+BAQMG\n7IJdcEm2SspUiiKTZDCa0+xmNbMdvpj7BFOSlZKoAwRJxAUj9tpjzTnGP/4mB+g6dD9iLGRxkDXW\nDex6jzeVh/e/45f/5r/6WyeZfDzdtNYcDq0AY4x0XffPKz6ufr1/+/cup0eWKKBaBNNgNeMGTmdh\nrdDVgKkFZUZYLyynE0+nRLd5z8V/husTu85zf/rASMb2B759H+ncgHQ9vRfef/ie0WlMycRU8O5C\nmR7p7cDkNrzY3/BhDvzu3YUlBkTD4Dzr6UxQcJoEWy/s1cyxbvBSKTGBTqyzQ9elZWakjDfClHas\npaPXwt5eyKvw57+9xynDzz+p2GHPy1c/JTz9R7b1kQdGfvsu8asveu42gSSed09H/vUvfsKLw0iO\nhWW5YOwHNIVVGbblwvH79zgs0d3gS0a0YjGWWh1G9W2rhEAVBKGUjEghl0JZH1A1cAxnrDH0umJy\nRnRmWSo1rPRKgXFYDUVaXEKsFq0X9hvHq/GOt+8T+ZI5rYVvnwo77+iUUC/fU4wjDxuytpT0iDI9\n7sVLvv/2a6gZjOP3o7laGrl8VK91XcfpdGIcR4Zh+HsJBn94w4GiSv1oXF6vOfJKhMvTiVoKOSxA\n/hilHnNGp4XLMjN0jhifwL7ktEaCaH7+yR2/+fJbEhrnMjurcWEhzguXKJhPbri96clPX3NrKlPo\nUTc/wY5Cnk6o/U+pZWW5v/D9aeJxFWJJaNsyYsW0vmlwHcpapArfLx3DZiQWIWlHFEOxBlshF+Ep\nO6w9MJGQUrnRF754oZgvK8OnKzfbntPpwqZ7wc8//4Iv/yTy5rwQpPJHdx0bFXmshXma+WyEX//V\nN/zs0x0pJG4PA9H2rcgFEgNq2OF05il4tnvD+2O+PluD0Y2NLSLoq6xRihDTwm6j+PTFhi+/Sbz+\n/N+CEcLje3xpsgCthdSPDBJ4vL/QHQb81vF6q6n7gadzx/dvj5TvT9y9fsFaNb0Rdr3CI8izo1Ws\niCS8tYy+R2mDVsL9uzfkdcGPBqFR6xRcnerb37WUgtaa29tbSmnu+n/fzz+44fg74XPXCr88PVLW\nmfVyJsULpAgpI6kgeaXGSM1z0xnkOw4dnGfB6J6NjXxz1vyP/+1/xvl3XxJ3n9ERGbcDi9wwHb/n\n/VrZdZpaA/P9Ey8/u+F3c2RTCg8PK9k0pVrO6eMWRgR0MRgRLiEzx5XRGLQdUMpyWVeqtqhaWXKm\nU0KssMaK1Iy2lcFrxs3I+zVwXgpe9VzSzPuw4+2333H/P/9P1HBirQPS7QlVQdVseuEnt5lPx4kv\nHzLfvq/cbgcezgs6aYbUqObzqrFiGHcdLmdKyYxdhDiR5AVK3WK54qkUkKYEWy6Z1RjS/MSrLvLm\nm8ph6EnrieiBZWpcwWAIoTA4wegK5cwcHaE24sXh0HGeKm/eL5RaCMrQGddYMFFRvcFraY6r9UIe\nD3TetKy5mlnWC3bYohD0712Iz9fu8ykIrff8Q3zRf3jgABB1HT4a9VtyIK0TWmt010EVUqmEvFBi\noqbmRSzGYnSP1IZ0i7Ms85FRa7zruOkMF61JVXH38qeoNPH2u2/55NVLPMDYMXiN626wStB64Pvz\ngvJdy6ywhpqX665ZrkSIiul/iAm9FKFXkXieKUWje4/WitEo0ukDe2Pp+8qpFDqVONy84td//ZbB\ne0xNkCLvGYilMHYDk99g+oHzU+J4EpRWTMnw09uOz7qJn75yaF/5izcLT0rzq90J6wUxhmodyoxs\nb17he9hnRwwJ6jdsDlvsunI8R0Q12cLzNj2LwvoOsR1zCCjbDCxv1RtKl4nsuNiOrYpYWfHGcX9p\nU7NnQ9GWtGQ6r5qb1NBxWishVdCgqBwnTzc0zxvXdRi9kvwdpTi6LNguk5fA6f4d25tPWzzGtbD+\n9jT7+5Ybf4jT9w/3fDyTCq7VKJU4PzKvK6LBO0dcZ2ISdI4sSyCnSAgZ3zfp4NuHGZ06rDHsxqZS\n+xe/+Dn3b94wTRm9Nczf/ZZlSex0JT0J4+hJAfzG8vThDe+UYeMtu93Au8eFNbVciSr1hxdFq5b5\nJY6tF17uOp7WirGe03pBa8tlCZCFXCMmG5ZUCW5PLSs3+47j/bcQFkrtcH2z+UVlfFFEMZzvZ3ov\n+MHSJUNVGaVHvj2tKHriB88SI50vzOvM12bD62GlV1Bqwkng/HjPSXdoKtY4OrNhqhol9zgqWjtU\nySAGraDUSsrNTNwKHJNiSR1PJXFRA51tQctH5Uh+x/mcOKVCMDs+nISND+x9oopimSOq69iPCQka\nyY1ssDt05KSbazmCiANpzzPEgvErWgrT6QOl5uuV26IygL9RiL9/2v1oqOUHNkFbqygRpFbW6Yg2\nhr7vSWEmeY3aOqzdEZJQlXBwns5UjotGA/1hC3nHxMDT/D3/3a++4Lv/8BvGw+eofOQYA9rBsGvG\n0su6MHJEXTKDeMS8wtpCSZXOKE5VU0pt8I9ctwDP1C9t6FzCszBoz25b2XaOumROUZGXM1VpgnIU\nJXhWtjeZ4+wxwy2HA7zqV9YamYNmXgVlO4ZRsx0rtSpQA12fOS+Jd/dH7u5u2HaGY1iJuWPsJiiB\n98fM1h84dBf2LjO6M1M6U7s9Gwf3F0OKQu+Fk2i0Ti1L94rziVSQTEqWWAwozYYVi6FkAa0QnfG6\n9YwX1XFzO3BeIsOmZ8qZEBVaF0LMiNJQBK0ESsFiuLsd+PR2A77j3cPK5bSyZs0giaoqDB1GK3pf\nqWVu3EOEUoUq+SNt/mPVqB9atR998j2XXpWKVKilcauW4xmqYV0vLJdETMKSFCU7chZiTDilSfXC\nsnYMfmFZNTe7yOOpEovl1iXMv/wVOU58+OrMqg68fnnD/SVhdcU7x4ewZQoVpyDkREkLo4WaDVLb\n/rZUofW0iioZtAMqH45Crj1BFKfHQlxj+zDGEFRHqhq0wdiZ7aCIs2WpUE6Zzgq+U9w/wSV1aA1j\nn3h6SJxnS5XAp3cVbRSH7Z5UAnm+EGqP7gWkIGJ4dQPmVPirdycuNztedSvOCpmesbR+y3jQzjGU\niVN2IAVrLDnF50aCWoRKBdVxoWf0BqUN2/7CDQVQfH1SbJziIBeejgnJgfu379kPHuuEtRRKUby8\n8cSYKQLRVEQr3j5ldmOipkrNglGFUQtGGbzXLcJBC11veffmK/5NW19gTYsqqldDSefc3xgwnk/A\nHxUCI7T7Vl1liKU2dss6PbGmBtx6V8kidNKImLut43C4ZY4Jg+UnfSQtid9dFC8PlZgyP/38NdYX\nvv7yK1xn4PanDPOJ7373NbpvsQnJNPsLbw2pWBwZq3PrL6sjSzuN24f9IUesbWAy4gzb0bPRtiXn\nuEoN4HXmMbcTUlGxJeOMhs5SSgWppGT58kkjohl7xe5mJK3CzQvPz381IDWRQiKlGZcvDdi96SFH\nvLFgDK5mfnJrkRCZlszTlDgMAy/7TFCOHk1C0ClTvCBWkRaFXGGWBl0IQqVWRy0KihCoWJN4uAS6\nUqErnIJhnQq3LxySA4NtpuQlVeYyY41lxbKWRLjAaWkM6SRwOUc4Fg5OsH1HbyK7vpCSpeiKtx2b\nV68xzpGsY5rPhOVCPx54jr9s+cB/96T7563Xnq9uqeQUUQK5BNbTE502ROOIKRJiRbKiKEsobY0T\nQ0XllRInyiqorNF54nSB//p/+C/46stvyHpkOk4o+ZrBFTol6PKBIj3Dzc/Y2MzD40zNmd4rUCNV\n1eapVyu5tIQcpVq0e6m17UFF6GXh6WkiV08IoFRAG0MSS9GarTewPvLFp5opOZ4eBTdsuLvxTMcL\nawoM44AfD6xxRdkWMVrnmaqFVAXfH5A6crtJXM5HtBqYo+fm7iVc3vF4nOhN5naEt+cTf/1hg/ts\nyysXsN7w5mTpnWbE8RAMTmY8LSBZrpOu0Iow1UqWjCJx52Z2d47jrJn5hCQXfvFJ4u0x8HpneJqE\n0WkkXxg2GWFg7AyDByUrOTvMoFkCxJAoNZJKYVkF6YWsHdLufow4Hu9PdOOW1Cu0vZDCgh92aMzH\n1/73r9p/iET6jyq+5w/+jOOkWpC8EGPCqEgtK3WdMCURxbE5vAQsU4h0w4CSkZQi3/7V78hq5e0R\n5kvB+p5337/j6XhBO8OgM2vWnBL0esCZnvePK6XTzCmBKPKccKpQKyQZW6FJU8IpDSIFRW1YH9dI\nz9KyZLO0aySVQhZN74SwXNj6wpIcIYL3iiUsvHm3MPSKm5cvidmyLpGa4Zc/HXnzTpjRjMMWfb6n\nM5X3j4XDix2bvSddHokpcrwoVLVkc8d2PPHSRQA+TJkv3yf86x6XKs5ajBJSAqMq56pRktGqQ0pB\nXcmltWaohhLgMTv2tuNhVThtqGEhRMM3S8Ioy+MlINpStTDZgcE5XFoZ48JjUpyTwbEyXyJRDCIw\neAN5oTeKGivZDgxD12LPaqHTC2O1iLuhyMB5mtnetM3Lx9FC/fAfvx8YqP9/ki//UcXH9ehPKVJz\nppZMmifWXEliqWZDdYJTM2laOD1OlJSpceUUMqMX4hpQ1uBq4s0Rbu9e8f6v/iMlntj7RGRkrJla\nCk46JIFSCZ2PxGVhQKjWo7SwdUeoHU9poFSuJ11pbUH72ChdMNpy2N1SpWBRqDVR6oTUvm0ESkLr\nnu3hZUvCdpUcW7TTzX7ADxsKnvPlyLYfKCrxp39x4Td/+ZfQziSU1vzs85/xR788QF5aIuXuNd10\nJCwzph8YXIW1sh8Mpzlz8JEPa+U372/4dz/fsdOJc0iMNvBCPXKOPSczXl98Bap+PNWBttf1Ch0X\nNqpj6CzGZMQXvrqPfLLRSDWQCpqM0Rus3yDlDaWuWCyOitSIs432RlUkLEU7tt6gdQdWk4Fhf8vY\nmWb30fcYVajhwpuv/pyXr75AG8VHG5YqH80g5Vp5glAVv3c+/hOK79mpspRMiBMlRJbzkVIyNA4L\nNaeGVZWKLoFKS+i+O+ybOWKpHA499/cLa9H8q8/uuNz/OSE6vBUOQ0WixXuNzyPd2BNDoleK4npS\ntXQGtCk8LBtGK5QilHwdgOBq0XoVraDJceV8XChVEOUQIkEM1iYGneiGnnmNEC9kKZxmTyiV3aGn\n63d0vedymrg9bPmLP/+G83RqKeJWQxUcimrgzZuv+PC04cXhhv/8j7csUyJ0ezwnLvNCTAOvNxu8\nPPJ6K8T9HeVD4Gk68etvHa+6yM3oKcXyvmxZnUVqh9UtfvSjUKuRrykYKAUZBmyMmFr59hF2Fl50\nEEvlGDSiO0rOzMuRLl0wIkxuRxKF0YVUDVYnHDAOiikKCYUxbZDQUkkhk4xwSRUnGjVlTFwYx5H5\nco/WllgKTtmP3qaVRqGvDQNrhfnDnuKfVnw1R0qOzTYszKRpZpmecMOBgieUC8aPSIqs6yOklRQS\nsRa0OqHTzBQiUwJtLE4rvvh8w598qSnWUqtQpohkMMaRraGrlSwKasDirzYdhVocYmCWZ2ilMalr\nNe3zKcEodd1DK4qCRMZb3bxQSkJSYjhojHEU0TycFrADp1jZbjr67kDXOTqjmVXi//7T78jLjHGa\nqjPTEgmxMDiD0pqub3LON2+/I+XMF5/vGLxn6faE03tCWXlnNhxe3/L5iw2PTxp/+Yb09MhDvofD\nQBWQtKJtA9sLinqlsjlvKblQc0YqxCLkCrkqZtmRcsb0YHUkiWNWHtMXLudCsZBCpe8sqVi6DmqC\nWtqfca4dfuhYHo/sdiPddsfN5zeoXImpYMIFLQsl2nbiOY3rO3zveHo8E3OgimYOM9ZqvPNIad9D\nm0MELf8M0biIgpzI0xkVZzSZuAZSiuScKHFFIeRc0U4RkmpkUymEAlbRBNui8F5BUnR1QatIZwRq\nh+8HTmWlU4pljZhq2A6OOXVsXWEtF2peGIzgNBTreVotNTd2jbX1B3nnVTjUYAmh06Z9WdbSW8tu\n94rtviMuCxLeUbTmdM7cvtrT+xHf9Ww6xdv3R3771++pacF6w+mykmIi1dpiE3Rb5cUlUV3Be8fj\n4wMilZd3Ay9utyzjjhQn1jnzV28y8+nCKUaG3YEvjOW7D0c+nGa2456DBacy2ilO54AxI31vUNq1\nftYIz2nKylhysTirmYrns0MLmwlVCJPh071hssJ5Er6cA+PouaxC1gVRlmFw1CVCrpRqsLpnWhaU\nMdzdC8pCyRpjfNMQe42g6HUlL0eqrZzffcP9+/fcffKaUgo5JVLMH2MUjGmcw1IKRv/IsGeojbel\nNEprRClynHBSyYBTUFRm7ISituRUUVJwuuKrkLKC61t7yprbwyuUClQ3spaMVkJYCrFCKs1RqSrN\n4yWTTEfMmjkJg3GEVNDGkopnzZmYK/3Ys92PCAolilwS6xqoRRECWG9QGkZv8d2GfuhQXY/ME95U\nzgF2twf2uxdUKrvBE2Llq6/fMs8L1igeLzNxTY1QoUCrCkZhUJgi1CisOWI7w8P9O6x9zScv7rjZ\nV+6PAnkiZMfl/MR+M7JutvhuSxDN8fjIh8uMHQe26kItfQPLtXB3u8VohdYbqIlpXjHKEIrhqDru\nOoPXmodpQemKVIXvheOqOMXWImhtiaIZBoW2js1oyQUeHgq3XcHUieoVa1YYDNvdhlpBbwzeeh6O\nEzdbx+jAWsE6hTUZO2aW03vC4SUpF5RULpcTXdeRcub25gZtNM5YRP3I3W47/SpKV7SCtE4ULKIt\nKV/IAiG2OPVYI2gDpqNoiCmjrcebmeOaSXXkv/9v/hXx8lsMK/Oq6HxCFUHXQiga3fUYY9j0ltMc\n6U1uiYs5E5VhFodzI1IntNLUHEmV1pRfya4lRkznWuSB0fSDI9cOZRvFyGiLJaNVwg4veP3Ja+Ia\n2N1s2W8t/8v/+n+htaJ3irf3E6lWmiDrut9GsK1Ppyqugp9KWBObref09J4/+03ij//1L7jZKaZJ\nCDEQ7Zbj5UK/0yhVsbZj8BuQzIc58OJlj0kLtRiy+Na/XnvunBOiLTFXhs7ys11AYmDDymocc94Q\nk3DQ5YoPaqwqXFLiuGQ6A9Z07eRWiqGDkgtrUZxXyDVh9cy79wmvPAHD0HlQjvvjysWC9R6MYG2h\nWyObr3/NpVpGN5BSYNwMzMuF3a75ZTssVWso4Jz7EcX3rFhSnlimhq3pjqIimB7XKVhmOqfxDpzO\nPJw1netRMVBzwYxCnh6Z54V5Bnl3JKmB/UGopXCOit1YWacWKJyCEJfIKoKuFq0zZ+m43Tt2ShHz\nzFkCP3s5UnPmEqDTM5QI1nAfIjun+O59RnvLYWfY7w2d1e16lhYEc14sNz+5JaNakHOiPRkAACAA\nSURBVJ8R/o//89d01uC84dvvH8m1opQgSv+NBLNqFKYqlIBCI6qSCywr3O060rzwl1++4Zc/f0VM\nPSVnVuU49BlvAAdIxXuL1p7T5cJv7hU/udvzST9hzIWSA9o0EoTvFaOLGKWYas9vngZe9zMp9jzl\njk/HgkjknHZ4NfHKatZ1YkBQ0xPduGHNhZmOL3bCwQheW+ag0SZzfzHUfKGsW8adAdH4esZTcNqh\nikeCULqBvgevYTl+Q+5uOBuL7zxwg/Oe6XKhc56aE9YYbOd/3MknSmGsIy0zo/cUB3INhcu52WWB\nEJbIZVoaIzispLUBwJd5paTcFtQ68fU3v+UQKzEWeu0xCFYrtr3iOGV0yaAjuRYGfXWXKoWcFbGO\nJGOoErDGXmnngrVw6CxKIpRCYqTkQsoLHz4kvhXNv/u3P0FC4x/GTU+IhTIc2G+3fDie+OTmhjXC\nflBsP7nlT/7sDXNISBFENKohCFQEq0B1zasG1bydjRIshpgSqdirF3NAWc9h71uEaJww4uD4yFqF\nHBas6/jdm3vefli4udnhrOFXL3soGWe3nNZMrR4liX3fQvySdKTzhTTPzXJjfIXzA/1+w7QUzifN\nps9E41klU7TFGIVOBVUToZjWm6NJEZbS+uTEFtEVo2c2rgexzEnjxNIpj+882jbdsbKKMJ+Jxwc2\nhxs6Rs6XE5txg3OWEFa87/4gnQr+diTh3y0/0ArlB5L25KqxWvBG46zjcNixP+wZxi3kjKkLN33m\n4Ge69IRNM85rSlFoZfkv/8ULLtORm0E4zoFAotOBeS1MUViV4VQHhs2IVsJZHMlt2W08JUTSMqFT\n5G4sdH7Di08+4dWLW8a7F1SzIyaBnKnWs/GeYXT84vMNOQmhtIl7v6/EktgfbhAFu8FyMxTevfmK\n159/ypI0b96fUdIIk0q11WKTybdfCg1aXYeaxhSuAkZpLtOKaIcqK999/4CRSN/3WKVRqsP1I6Pr\nqNUwzRFvNZ+92HI5nSm1cjqvxCnxdEqsyaOdoK1F/MhD6DCXIy+7iVQ9u8Mtr/pIioHvvntCz+/Z\nSuBN8tTO8/LQysrZiZfdyk83j2zKI/Oa2DKx1RM7FdjY5uWXlkCvKi/7wlYVnBQowhwLKQZMjs2o\nc01IzKzTiZhWjG5wV4wrQiXE+NEkqJTy404+pTQ1F0pt4X9LKsQsLClSq7DOM2E5s0wTuWTWKMSc\nqaKR6kAlSs6AcPPiU7QkQnb0Xqha44zBmRVVIkZZeq2pqrIuEdGWXA1zNnS2Qq3EFFlKQXeOjcms\nUVOUYVozl0sbCnJVSDVkKikmHk6OnxxgGDqGzoEyzLnwerflMi+83O95OK18+unnbHYD/9u//zOk\nXoG1Z+a20kjDERpmdU3bVKppLJRSZCNYUehSmeeFz15syKU27t1QCdEhquC7jmI1Wre9+W7TsQRB\nn4TRgS8BKbGZVLot0m+xJKiKWAp7SRALS+zoNi15fNx4zBxIIXOJiewsbuPoted8DqQ+kRRUHLUa\nQkwcRVNLJRRIWcgOVnHMeiDOivNcsNZdIWPTIiViwnaKmjI+RKpfGfsdx+MTm922ZYdcuXfPqscf\n79UiFa0U3lTm+Uipkc471MYzSSIuEUPBqIq2HtVtsbagVSY5j3aJcDqTRfjs5UvevXlLNZopVRzC\naVHkYth1jqoqwyCkohHTYUTYGeFxnthvNhipeGf4cBFeSSEe3+LqwHF2UFfGHqbVs90alhzwTvHq\nbuT909JQ/fWCEng/FYy7YdMZ5twx9Jp5mTl0B06Pj7x/PyFotAZVNUo9Xw7tqlVNTYujOTegGwTi\nlcLUigIu5xX76Q1xPRHXAWM7ejdgXCScznR6ZWsmbBFOWfH2+xO/+nTk9Rix2iCyZ7lAqYX5EjDW\nQJohCt8i/HRr2OkLeZp5Wj0xeYxSyLAjpsRGG9IaWJZCssI4joSwUFPhXfTc9JqwZihXK+Cs2W16\ntNX4/kA/GpbywGcbQVlNpeD6njWDGm/Z7Ub6fmTRmrdv37Hf7XDOUmsDmbVWpJRIKf0NqtU/qfj0\n9Q2PMTFdFnJWpBQJa2kW/CmzroklRELMV4F5IYdCFVjWuelngdef3vD05V83uOIaEleoLEmhnKHo\ngtLPMUqGWgq6SlOqPYTWuJbWc53miSkaJiqbjWBEo3WlpkwosBbVYJ5a0ApsecJYOHSVN0+G8bCH\nmnDW8vi0AI5+M/Lr335Fqvnjsk6h0KadmjFGYiwopRsjRnG1jWsYnLn+W5QiRgHXcbfxhKDoVMFq\ni6oK9EyKH9j5SkkaiZG7w8DYWZalcOg0sRZ8p9ChUFkBg8wPWN1j7EBvJ47HwFwNc3XcisF2IKKb\nx3RKnEJEKUNKlTBdUF6jdBs0TmvBlErFUGvEOMPD6cTYeZ6O4CbFtMCTc/QUwjrjA9RuQ1wKS0p0\n/cr+bgAKKQec69FaYY0hx0h16co6+pHXrlTINbPGQqqCKEuuNOq1Fny/IedMXi4Yo8nrDGWlpEAs\nFa07SlmpVfHpp7e8/X8WbC4sayApz1IUh05YppW+eo6nma7TxCQUSWzHkd63zNfjaWHrI13X8mt1\n1/HixQFlLOucqSqx22tE95QlEnPGK331E2zX3JorU3L0Unh8StweXuJ8xNkNrtvw8Li0/WQqbbWl\nFEYbhn7EGEuMJ9R1VV6f07qVQj1T2LRCl0aDOq+JF7uRhynQDR3aOdYoaOPplUPrRNcJm+B4ih1Z\nw7F6Dn3BPJzY3Wwx+5HjXKgp021H6gQqJ74Ntxxed/hUOGhNqoYlV7Yu8+rFjhgS+97Qxcw5Gobt\nyJQ1R3F89mnHPMOSCssyo4uml3YQOAKHXrMZtrzYgrKezrbo1cdZ89lhZBgcy1oYBhhd5RRWilV8\n9+1X3N3eEm1H3490XW5bJfmR0y6qqbvydY9aSwGBkiGEwhoLsQoihpwCKbcHFTLEDFoJGU1BQTpT\nwollfd75KX75SpGmwrcXIUlHhxCWRBGNdr6RRJWjVE2QhKywloY9itEczytRBEsTZBM9yiqctZSU\nCSVjtMJ1FucMUzIt/yzOHHPlxSvN48PEZ5/vUFrxdJkRaRDKRzeuWijlhx5GpDYg+Eri1GhEN7KB\n1LaFMQLzEun6Pek4YdQeUDw8PGKd5tX+FmMiZrT0EnBTYNM1iKfkQN9pzpeJyIKojrKu2I1Bm0ws\nwjolQrTM60JnNLrzpGrJEaROKOORkFESSUXxcMqIc4xdc3ryxjQIKTmeponzoojaUIpwfxTWsNKN\ne+JS2Lq2jhMsIWqcg+1hYOg3FBFCXHFDByGQUsDa5sUsUpFa4A9MvP8IkFlaBVdpnH0qpWRKqRhJ\nqLhiJNH52r4ca5phTzUESay5Mm53OLXyNu+xrlAl46zn/qwwOoNKVGPxO890ijgdkRhYFJQU8FrT\nKfBOsdaeXa8asVUyoyytf9FwipZ+cGgpOG+ZLrlpOgqQFhBFZy27wfJwrhQRxs1A1ztKjsSQ0ddn\nJUohpaKcw9gmllEoqhLEaKRWdCN2owSKEgytaLWGZY1o47FuJdcmjZSw0HnHduxQ0fG4ANoQw0qv\nHH5NiCrQW0zWmNSYxGIsgiFpwyUrvCo8PjxStGN2mluf8KZgnSUEjUkXYimI8kw58KgGTDHUdeXh\nolhWsGZueF7fQa4sUdBSWUPhMFqciUzBcDTws0927ATa8jZxmTwhTOx3fTMdXyPDvru+sPKxbto7\n/M8wh3SdMIyKFNvaR6nmvSYlo4lolVCS24PXDusKxiXSkgipkMVwszvw+OGRKSheDhlJEWcVTrf9\nYsqQjRDmgDaV7eCQqsim57JEqgWRBEVzSRnrRnQVwhJQJVHosSyUIuSsmJbAEhrSLzURS0KU4LSn\npJnL5JGsuDyt1HLhxatXUCO51KsvioAqKK3RymB0R1H1o/lNKQmnG5ujXrlrBoVIaeaOWl/d+yHG\nSimWXCJd57EEvB7JnUbOF9BtDYbS+F6w3mO7HmMBaYJxZz2pFqxz2BgwJbDziuIsoRR65xg9aF2Z\nZtj2lt41jXJvIxuncZKISqi1IEZIa8BpIRdNiaDEg/RtU2M0u8FjbM/DVEnLhLEWZXpGpzktGb/p\n6axhEE3RBmM1Ka5sxi3PqjuplT9Qe/+wLa61FusMuUAobQ+Yr/yvIo7EQDKwxJWnNVCiIgSD0pFY\nFULixd2ey+UDvlPM1VOMIS/gjSZkwypgamaKGm003x0LRRTUMzULS26pOyVXqhLePs6gG6FgUD2x\nZGIyrS+9TM3fSdpLonRP1luEym478moDl1nz3Tzx+P5rxt0eLRZF480JCmXMRzfOEALfv/3243Kt\nvTSGIoJUaZm+XGEXZa4qv8aDrMpAic0h3yl2PXy6T3R54umYCHMiV0EZQ7+5A+8IRlO1IauC3uYG\nZluDN824ZxwjlITJiaw03ngylclYjHYcXhRyKmjtiDnz8oVns+tRJdAZQ8rCsBMu54F5DcRc8Equ\nligGNzqS33JMHcqOvPzEUQRU1wOGS+4Y716iBCJwd7cl1gFlLFY3ypeiNsctdaVX/Zjik+tOc10S\nKVSWNTGvicscOE2B+Ry5TIk1tN1mjJE4r5yXmVoqKUWcN3zx2Sv+5H//f3l8ChgqVYQ1Ny+6GDNr\noW1BAKQ2CSSaIvUHm1We+4hGlUddv/Dr5qHpHa4TqDRlldK69VHaEUPkEgz95oC4wLv7b/njf/kF\nj08PGFNJa7qCyfywhrv+2dfp4+MVkkWQqmiJYhVNswgW1fJKilZoKdRYsRTOU2I4eJaoudltUFj6\naBDlWNeFnGc+3J/aKKMbG3tzOLDbbRuSowq1KrTd0ds2tU6Xe1jPdDUQpE3NptvgNwPYhBTF0HXc\njp4UV3IqlFjJtSC1UmoLZTaiIGUoiq5XfPr5LZvtphWT8SjvWyaw8xjX2C7WW0QSWQZSMBSEvlO8\neLFHa8cwNndY7a7boR9TfM9icd81GV/nLMEKgxOqq6jOUHOzxxULvbVkP3B745immadTJmbofKWz\njl/+pKfERCxwnFeqgHOGrlyNfQx429ZquVZq1Vf0XKgi13fTkmtlO3qKQEhwDgWjNSk3mKQ5pkoD\necnUOWF1Yb8f2sMXwWjH7YsXKG3ZjoY5a5RqkkKtnscJ9dEO4lqVUBsoW2rBeYOWqzb12mQrBaoa\njNbstz3lbsM5BDbe8Hg6c562TWDkHMfpTDWmaW7ngJLcWnttSXIiLGecaRw5bTqqPODIXKZAqhVn\nBWMNtQjaCOt05nx2dBLI0ky+rWtxVVIiGkspQqoZqkLVzHLOzCERRROy50//0zv+6PMBpzW+66nK\n0A+esetw1rEqz9APDL5jLROXaSbaA5/1juPlxDDs0CFhTHO2+GfaZZT2xWs+4jjWarQxWGfpnUMP\nA7OyhLC0iPMsqGJRyoKKqJz5/nFBdwMllUZ81xajFBmDkZa0qEwz2PbSNBlJwZoiSlt6o4ip4DrH\noCu1tKEgSsY5fy2SchWPa0rMAGy88JMXgVIydT4CQqcT26HHu55hLISkmOKVESLPke/6ow5BqWd6\neDvdjOLaFz7DzlfBtEBD/Jo/4FoNxnXsxoTrOlK5UMWwZMFYT8aRq6YUSFgQy+A12iqccRhnKSUT\nS6FERUmJvqvEaomloozlcp6xWhHiVVBgBRUL2lVUrQQp+K6nt55chDUJ2lgG3abYohRZFVDtJF5K\nk53u9h1m7fDOsVyE0xIZB8OUC26Em9GwHS3e9ZzWzOkcsF2HdhWTKi4XSql/aNj9w8VXspAihNCA\n4XbpaJTxGG9xSSGdwUglhbWtzGyHtpoaCyxn9ocbTE2E2iOrYFVLL9K05EctzeDHGNMoP9WivVCx\nDEaBaJTq8U6j9ITzjl5Xjo8z1ntKEpS1TYtaCt3VH0Sj0TTvFa8juYKSBa9XdAk4c4NIZrPZopQl\nZ0WtFngGRdUPMMGVk6au/3DW4J4hmSss81yAQkWktFiokEBbrLPtxAwndkah1kjOgk+C1rsGaaWK\nspZcGkNmnhPdqtkMjhCFzjTKmjMDyge09CAK7VvgoKdwCYl935O8xvuRGDOdBpUKJTfUotOaFAIi\nJ0KsqNzjtSKgUcYiVNZYGYswdC3xvWhPikJKibuNx3aRl9ueUiODThhRrGtqN0JuOupyPfHk7z/4\n/jCxQIQWhFKeH736OAGKGIooQhGCGDANkkglUWIkpObPd3t3w+l4j/WeKpWqVGNF5AgKxm2HdRax\njn7wOAtzFEJRxEzLgrBQJaFVpeQWESUWiq7tzS2ZUtbm5KkNWSlEN2xuM6hmhihN7GIoaGmJkvJM\nFtCNs1hV20M3mEA+PoNn668fLCFab/mDMusq7lY/eFiLKHIu5JI/4oYCmDozuEqVQjZQw6mxgFUT\nIoY1UEWhnMJKodKMLEUsVTtC6Yi5UtFUbVmToqqeLM2p4XEOlCTM84WYGukAaXprrRp3T6ymDp+g\nxldkY1H9hqIMIQZCzCQp2G5DUR2YPUoMRrcDAREMhsscr7yTfG2NKiUKKcrHE+9ZY/P3/fwj3Oiv\nqiTV6NTatCWz1ga0QWmL0hlrPXE6Imml5kTJkaVkXt7uub//Hd7opj2tGaukxQgYT1lmdGnpPrbb\nIDW0wMHr/LW/uWM6n7C2Nce1RkRrwBBCoveeZV3bgFArRdpDMVWIIgxGIGWyjRh69LUolVbkpOlH\n2/7fKGqRj32eUm3abUPGD/4jz3oYUc2i4xnPeq7DeqVaaV3Z9A4jA9Pj2kTuVVFSpehWvM56sivN\nkoKEkYx3miyCoqc6RU0rNSsiDnJAD4pCE7gbmlJQTGQwgqmZpQp+3GG1UFMlVXV9gTK3t5+gtObd\n9284znOL4KqKUlNjZSshY6lmC7pnnR/R2uO8w8hVE60MBUvVG7b7W9x2y84q5ueiq+2FFXl+Zj8a\nZL4+8CrU2sy9Sy7kXIixfLTGiCFRUmiinVxBFIOH3o28vOn4D//piZSEYdORUzOZWcPUXK+q4LqR\nqiKSl9Y36eZTR01M50dUTUzTFWfvOrRYitJoLFY0Y5cRBzk3+9h8DUtGFJfS0zHQY0i5I6XAOWq0\nNtRcWZfKPF/p9/wgfnlmZ7TC+/gkeL4B2ma0/SgRlDTREhp0bS7yaIUSc00Q160PNIYYK8aCpyJW\nQCqSCsm1lw5fMDVitUOX0vBHDb3RrNMFnEYU5FLR1rJkYa26eSV6zTovKNMW/DnJVWhVsPNCioGK\npaqI7luykL6yd+Q6pMQYmC8f6C2UeETrkd3or6hDUyl6v8G7Abd9iYtnRNbr45ErLNXuW/Xxdvgn\nFp9IgxmacPyKVqt29bb4eYfrenKupFJRrmJdbDqArClSeHlzQzUbkCOCxwIpRKxoXOexbkSUoaZK\njqVtUnRlu90xnS4449qwIIqaC6G0h9Xbwrb3rKXytGZyFsDgnUHXBjCvKXEJDrs4FifsJZNyz1Ns\nthulFP6/9t6sV7bryPP7Ray19pCZZ7gjLylSolSyrBq63dVdNsoN2/CDX9rPfvAHMOBP5hd/AAMe\n2oAbZRs22u12Da5SlVRSUZx5hzNl5t57TX6ItfMclUWxRaGhFyZIXPKezDw7c8eK4R//+EcREzOs\nqieDvfd/pZ3eVljUVcYiYw1dpapt42wOEtZKO1X2x8jgC7EKOQtzHbiad3T5wBggV8d+UrbDSEU5\nzJm5ZEL2SBBK3dKPyvljx34fydX62el4h/rAZ69e4Sj4Gkh5wamwTAviKknMC+3Ozlu4XSys5oXQ\ndYaPJjs0SCLVSsoep46YClE6eoU5VnzvOERPCAa/hK6nFsfx9opaC+dnPWWsDGcQBoc4bUVpE5L/\nesZXfyHXMd2QbHhbNfgjZVr1qixLRXRgWW64nSslznz62Suub2dSzvhSSXFhOh5wfrTiZBjZ7++Q\nrBznW5zvyceJEovtc02FeckstSC5IAo+KCqeqRQEW26SciSX2ljTjloSSMUH2PYFLYV5sXVdvkLE\nkcXyyVwzOeXG32u0qRZSH7aMwKKA/Wk5XhWhSLHkubZOR8smY850bUvnMVsYnw4HkBltWOGUlIyS\nigHKKpWSI7MoXVYkeXSfzbOWQkxC7XdU31N5Q0mFUidKmqlpBvHEuODHkVgLN9d3hM4Z2TNGUEVq\nRkWJbcdJalRFGgQzz9UIo77HE9EykefMRnouLgPOC1ULpSzE4x3DI8e3337M0G3ZhIGhH+mGjr73\nfIlG0Fcb3/o4TaVXQ63VqbFZYrQLTpE0L1Ar83RkyYVpyfzg++8h6YaqgX44I5cFoRD6gZIr8bin\n6wLbwUMu1Nwz7h5xe3tLSTOCN7Zv6NgFZREbSi+CNfPnhDTYh4aRxdTKiCLkars3qiT6YDtsK0In\nYuLYBYJXBq94acLWGBOmUJoUtcXcNXgI2GbLFoG1GXypxuWLokbA1MrZdsTlA16q5c4103lnXoMR\nUYU6UXIibBxnzhPVPLjlvRMpVq7mO+alMu4ucSmT4sJ+/zmhsxUFy7ygKrihI+ZqO0icp1bbqZEX\nw1Q1DJYKqEPVU+pCSTNBHXOpNjRuN5zBO6iZ7da2Hoko2ispWQdIxFYn+N4zbs+5CC9sva0MeH9G\n8APBB/yvWATzb6RGT6v4YlyYl4llPlr15BQRcFqRdrOESkmVEjPf/vbbfP7hTwldx+3VG3I+MDqH\nSiQ3gZ/rm4nLx48pTBziNaEqy3wkSGI/RcT1lDTTl56chZgyyzEy9I7BK8cpc5wW8lJPuVqlQhGG\nLvBkm7kcEnESYsmkKeFKRHhGKplUlP0Mx8Vg5VJy67Dc5yrSCKO1VE6QfateqxjNtBSxlVW14vCU\nDDFaaE6p4J0l/b3z+C6waEeOSl8m+rayoesyxzkx9iMka31NKXM+9qgeOd7dkfCEzuTh0hRxTkix\n2FgplaCF0Jni6SYoMS049eQqeNcxx0jYbohLNgwyeCiJuD8Cahy/PFOi5cCHWrgYL5mPtlkqlcqF\nzmz7wNgLkpV4F3HPMtudEroO5wO+Dzh1J/HIX9v49NRdwOTDVPEhWPWbs6kTxMTVYWY+LhwPR2qO\nzPPM+Wbk8mzgX370OTdvbMQxF2XOBeccuWbiPLEs1xz2V4SglAJffPEF8xLpnCC+I9WE5kw8Wleh\nMRvY7zOLE1LrONCqT6SFRoXHjzy7fsYzgRtY5gOhJBsKEqNmHQ4ToduznyakNnq7YHF1fb8VYllF\niE8lb2u1ISxGAcRrRaSSauXq9sBZ74i50iFMsZJjIh8SKVSu72x1664XDtlzm+2QJ1EkeI77O1xn\nffSlzIgGlpiZrm8YgjeII2X6PjBPCykVyiDkKZkOYTSYp6ripXB1fUXVQOgit9evUOeZBUqOpkqF\nkqrgqrKkhaGDvkKaI7EoOu9xGqhFmaaZfjMi8Y5lD9OV7VmLHFG1QXalfn1K1Sp1tRYcMWWmGIm5\nkmtlSZnrw5H9HNFam7xDJB0yg/OUaOySfmfEx5itEkq54NQbvWgsiHaggRwnHImldNweZ47LhPeB\ncQjEaN5GRCk1k0XBGf5k+sBW4ZaSmecKufLiyRmHZSa5kZwgF0G853BISKcsWeg6O5m5zbSWFlJN\n98UMrD4wwPrA8EBIOVNETfGzVGKBhAlHxpQ5UskZcgbUc1wSnQgpVWv1ZaVzM3dRuS09jy8c1MJU\nMos4XBKubg9sNo40zcQauTjvTCXWdgAiVM4uOmpN1KyoV+sKlZ6K0d9KrVx0G2LMxHzD5iywzHP7\nPJUEdJ3nLHQEKVxc9Dy9GBn6LYSRR9tLtBa8d2x3A94F1PX4vmfxHePZjs3mDMThXAetG/SrkL6v\nXvasSgiebhgY42JbEHMh5cwQI+dlR1ALlTV59lOEWjkfetTP+HHLkAvZgcvRquaUKVRyLUAHGaQk\nanXWphdhHDqbB3HemB8BS9JrBQK+NsGgNh1lwGa1cJQzF9seFTjOjsX31v1QRyyWdMfa1DSj0Gki\nqBqYLCbxYGoBgZSaBuCK9TUPoU4pteCKM8HzYooOXqw9JxSCs6GhUk0wnWoMHR8qS65sxp6hn5ni\nQAmBDz6+4fPY46RQpBBTQcWmBVU9vQ9Mh9mEvFtf/PGZ5+52TyyK8xkpagNBmBGPndC5SsmJTOD2\nuKDO2bxFjXh1zEsBXIPSFoa+562nZ/iYIR4oOZIc9MPGroVq+iwexrHDDVuWHHj96g2XTx+jzrct\nSu43EAR/4DKdmDiiqm9DIh7vO7rQk3tDtOcaifkWUeXp88e8/GJPqoEMJJIxYmsxIBZOCX2thbpK\nv56SezWRxFpPIZJakao4NezN6b3c/orLpZRY0kLwntt9YtMJ03G26tzbgsC5RIovzPPRGM7HyO1h\nwjnFNTl/gLKYNO1DwUMDoO9xQhXB630YV+yQ5Fw4TAudF2LO+JwQlH1x+AqVTC6JPhSORZlvZ3rv\n2e4cS6zs54yK0Pcdzx6dsRkDec5sUV5dH5iWxKa3njbqSbUwTQVX7KAkIqBcHyLBKaU6Ex3CcTgc\nqaUyDiM5Jc52G2vxlQqp4nXhzcvXnPlADR2ZwkYXq8bzclKDFVVEjgy+5/r6inEInF8+Qno11oy5\nsK9nfAYVVjKFRGYpiUwiUykaqT6jHfispCJ0qsibyG4z8t3vv8uf/eiv0DDYHl1t8ERphMZiXqRU\nWwosdTVGobTlIdJkb23PhlDb6ZRfCIOGoudcKFjyr+pwTrjdTxymDlEhOMeSDWYoGlARlph4c33D\nF69viPOEKnRDT23AclerhfkHApmigg++dXjUtgIlU23tVIkpk6tV26/fWGdmf5yhFFzwFNdxFRd2\nDjwTy2KY2WZUlpRIqefp0wteOFDxti/YmVxa11XG8zOeP2sUL9eoX84gGqpSS7UuDpZm5GItw1KU\nXDIlJ8src26diIKKzR2nbP1fp569jEZe7Xpwjuuk9Hkgh46+9iyTY8Bx4XtKkEXkyQAAIABJREFU\nFPIx4kJHTImN6xAX7Dv62kxmEaoUimSSJBY9MuuBQ71lX264mffsDwfSMnFYJuJ+IZXC5W7g1euP\n+dvXn3BHQtXx6PKMeAioJuK+N6C2Qq6F4DsohuKviwZzKUi10FbaxmqbnzDvuG6xVm1yuJLQKiSJ\ndMGxJPOGLpixLppRFYLzqHNoKlzfHVHvSLEwdJ7tztapllKMfePNmFcV1FwagbRheSdvjJBKpVZp\n8m1CH6wIuEsRH5RYoRu9VeLqua2OWjtKnNAaKdlz+WTHhx9fUevWsMJqnRInBdGAU9tr4bxrsFfF\nOWMUerEhBxFLQVbvLRgbCWm7e7EOlHnwSvAB8QafBLX+t0jFqcdWHQheBOeUcbthN27YbEdC16Ea\nTNquRpYk5NIzxcSFV3v9KvXwdYxPFXyAbhT6UtkKECo5JOo2o7vMMCVyjVxNe67/BhLCW08ucSHi\n3jvQx5nLJ5Wxf8mSHPEodB98l7jvDJKokFOi1GTDO1iuWZsXg4JUDMtrX+aaexmhIJNiIsdEypEQ\nHNPB8ENxjopJeKVo7xcB5z2pRrx0BG+Lk3Py9MNANw6cjSNSjI+GtmspK8BO23pUqEXt2jGaWMmF\nmKzqrFU4TkfAVifEZUIUHJ7N2Jm8SMxQFXUwz4VNmXjvxQWhh6Cu3TyDcEq1sF1yW/mgRt+yMU6l\n1pX4YQwh55xR8dXhVUGy8f4aeO68YwhK54Vh7Bg2PWebge12ZLs7I/hA1/dcXD5G1eGdp9tsCL7D\n+RF1PSqKtAJDWq9f1SF1VVOtvwGNXsF5IfSFUUC80PVK6ITzxTMvjnnpuJtnBpSrPy0Mm8CTJ+fc\nHD/i/O3KLnkOh5neFbaDkM6PbJ98Qf/yPW4/Fg6zUsWjVU4qSmvxIFQQKwwqahIMNH6drDfBtODI\ndqpjWlqJj6UHJZPSTIrRWCUiBkLXhBBwLQSrawoYzuFF8eopdWX9cp93Ii1MpVOuSmuxAVAzS5zJ\nraBJOSF4+hBQB533BO8ZNxv6TpFaqFVJaeGQZvDKttvwZJNZ6sBxAdeY3QVBnTGnfRvOLg06D17p\nvafvHcM40PVC75Xt2Rmdt/HPruvYbEYkWATouh7nerwfEB+QtulSC4iz3N6IEtq+d0epjhIVTRlx\nggum7KDVgOgqHiNLtUZ3/dr6fLK+Ba5aAplrJmtl1swkmds8s8+Z/RfC8Qa6PnD+ZMv8uvLOZWBa\njqStIipM8Q4nwtx9xPL4mu8/ep/+6oK//ixzjEKHQ/CG/FOakWXKCcC7h9+QtcVvLBAaTuiDyaN5\n59pMRTvxWlF1aNMPMWNJoI4cI04hiKLet0Fno6uHYDSiUrIB0CINJ6x4J6hTC//VIZIoFYZ+gzox\nSKgsUNypYBNNtv1IHVSPqol+pxxRX1DJlOzw6rm9fQPac7br2fTGJj6/PGfcDPR9wIeO4IPhberx\n6lHxJ1FJMxZto6qt8yIW+rWNIlSsQubExrGh+NZpbKMyzQqKkU9dG3gCk9xINZkYkbgm4PCwJfs1\nw67RiuzF5hlsT4UmhaPgDko9gKNw+6FDamK7EUiFbfc5ywxk4bgM3JYbYh/QWjjOGblN/OSTT7ng\njrf+wY7l+Iib1xNl2jGUjiIRzZ5cDUMzcmKj9bTw532g5ITLaz8Xy4ca58k5qDi6cQApxi+rGd93\nOHVkElorqj3i7OQ68Yjtkrc0QLR1eYwk6r2Fc6mJ4IXeB4ZO6PvKxfnI0G9IOeHUtZDThIWwKlpD\nR62FXBJ5SdScQR1VFOcsdwPl7OwRm7MNsc646hAdwHUgdqhoB49qYbatarOIoNrWgtl4p2KLWsy+\nVqqTnKCpSvt7aRuc2rtTxfJF1lRHcVg7U08D+ay5ELRlMN4bwVW1nt7t1zY+2zpUiAscZuHmtrI/\nCjk5xtKhcWZ8tWE+wNUn1/RnlX0+sJ8+paRL5g8W3txFJir+W4ormU3q+OAnmVefLwy85nvvwO7m\nY7peeHO50Kd3eZt/yEY3WG6cWeZKiibllYvNJQTviWkil8GWvogxNIoY4YmqxpapGednarH8cRg2\nDP2ADzbU7p0zT6lqkIna82h8NN+1atkbdlexkOyd4ENg3GzY7R6jbsSHnlKzbWzClOS9dk3V1fJG\n+17bSGE1ochSW37bdp1Z2876zKFIQwEst621Ukg4td7tOleNNlngYqMEVsU2NdnVKlsCZgYlJ10V\ny2nbbt9iuSUiTYbOUavJhEh7TS3FKmzVNrXXwhAFaULmcoLRvtz45Ff9cJpu62G+Zj/fsJ+uOMRr\njss1++MVd3d3HOIN5RbevD5QpfDF/BlLPfL8DD66viG7hYXMu9stN28+Y7u5RNwN811hSYlFbOgn\nSuGd0XMXZpJ3/KD7I/74+T/l7PIRzttJL6WQ8wLisFwiGiaoguAoJbVRz8E+NMZ6LsWhWshV6PrR\nwNXmPVaS7Ck/scrGbmJr00ljuYh6YA0rkHNqiwa9FSOU5hHb7EfFyAGi7SbZ+5dSGqbU/IsTVq65\ntspaGuRUVw9Q74NXLZGUJ1IqODeuiKlxIFsTfwWLjcGs97hkQwyMGbfmYwJSW0pgRplLpgBOjGIl\nqi1UuxOtbpUSUbXv0vkGPzmPU38qelQd6rpfWnZ8pVyGqOC8afKawGCl75TYV7x23Pkbhn7h6vUb\nNn1iqMJtnWAb2bjM002mzFdcPOpI6Y5d36MuEQiEdM2ZH7heEp/tI1tRejxp8wk/vvpzni7/Lt9+\n8V18UGpKbSDJo8EUlWo2RggSUMkWMtUWPEu12tbXZDMnrRHlvWGLVbHdu9VIBE4tF0olt3zHn3JE\nS6TX9Z1mLM7ZYmQ5DRGlhkfaVppSDA5CEmRQDeaJHtTxotry0baoGgi+s+eIQU61bZ6spUE76nBh\nIGTTzMvZhLgpbT+I2NYLdb7lz76RLYzFoy29WD079R5OIlkbTlU5HiZijORYuZsn5nlBcbx451vU\nOttohStI5xm6gbE7owsD4ishrGfLipUv63F8Jc4HVsaXoggB1UCNSghKjZGNFopbkEeBkBLTAntJ\n7HygLBWNhTP/lE+Pn+Ai3JRIKomzS9jEkdvYc1OuCL1n6jqmlLnd3/CX87/gffcpTC956+3fY9zs\nrPdqXxVSPN5dUEOxRLoYyIo4JAiiFV8qtbYt3tmSa8Sbh5CGA/oK1VExDT7njHa1UsdW41rDyyqb\nsf73yqIRtbTADki9N5gHOU9uBcvqnSjrxEfbMIk2vuBK3l07t7VRtnQNoDjvUOepJRuXMSeE5rGp\nUIxnSM32PlVBom3MRKhlZjkciAJ5PnLz6nM+e/mKq7sjXZe4qV+wvRBe7T/leh6YJnDzjnc+fptC\nRENHtxW6bmQ3bNmNZ2z8Iza7DWfbS843jxmHLaPu8PS/vvEVaK0xw+8WKlPNHDLkKBwRpixMzmCQ\nJRbEC+lauLsTjgVqEY7jgRSUzrZtUlX44DBzuBWcz5Qa6Grl9hiZUqZSOHPKeAGTVLrtlrwccG7E\nuRXXOBLLDNrRdVuE2oaILJSWqnbaNTRZi7aR3FWoCWpGdcC5YNWqc216DVY3JHJfcNyzmE35XZ0R\nLiwtuJ9XaLbTDi8PcEvLSaVN8q8/uzdNA3JXprRN+K2VZjOYUx61XptHnKdzgVoyc1zIOaJ01oKU\n9nlqZVmOXF295s3+Fa9ff0LNA2U58unrn1PnwvFww6fpGl4ceffsCbuh48N6y9RXUjhw9mSH+hu0\nrwQP3u8QF2y9lk9It6BdxG8iGrINYwl8ud/7KpB53c3YFtA51+RgXWVCWJp3CKgpD0QlUnAbjy+F\nM1FqDuAmxtyxdcpxTrxOC4fbjulD4cmZcvas52o/oXVm9D0X6vijs+8ypGc8vnyLXo7cTXfQCTlb\nbuPcQJBgfjDOqO9Q76gpUcpicE2xHESdQzwoDud6I1KuOnwPZvvum+DN+Jy2FpR1L0StpaVe7GUN\nk5QWJm3+w7ybtHwUrF8MeiKhniro9vtrw5BSyvf4ZZuNq2Qb8G7dAtXWRSlWVOS4EGOkEskxsr99\nifoNF0/fNapUSczzG97c/g0/e/Vn/Pzwc45pYYme/ZuFR4Pnuy++xxUTj3LPdbriw+UTtqlnu922\nMF5QV+ldJS4zaemZJbPbDfRDT+d7SlRSqNbzd0IIYvQ0vT9ev57xiZXaXg13iuLwLrBqEgcNpKy4\nxVPpiMxNTizgNHHmPClHDnFgCgtzKsy9MIRANzrKPhD2PTc3E8sgDH3gh/KU9y9+l6fDu1w+eUrf\ndZR4gBrJZcZpR9XQ2MbWp8Qbs8Q8RcYAA0t2K6UpbKmF0iZztobL9SYLLcdag5usEh0ZS+ibn6rr\ns81Yc85UsomHt7xQZB0xtTBZ2nJCHzw02KOsRAV1LU/k1HIsJZtKFiAlkFMh5Zn5eKSkhWWZOR4P\n9H1HCEroe8QZU3tz/pQ03fL5Rz/BUajec4g/53/9i/8WsqPbvMWPP/kZ168dx8PEk+969sNfIg7u\n7irD6BicY9gMlLKACI92W2LsmCaPPyrPnwnzEHDe48QT50TfjwTnDO9snRcV/Q08X+sg2E2ztokX\nsdXsvueQj0jf0UumizOSPEetjGHGdQNSM1fFgSTu9ooPmds7A1tdUM7fO0P2FSlKFzM/HL/Dd3b/\nmPPNJS/eeZvpeMC7Hhd6kH0zAgtNrlG51QvqB1bcihwRMpV4Qth4mAvVVtk17ZcWw6xCLE3mTYwF\nUcoJ8Tq19KR5plUfxnvfMMa6tkGarqBtBddT2KzWMfkFR7D+zNZzIcrh+prD8UhJE4e4sNy8IcXJ\nKnBnB1c0sjl7wrjryNl0nl1rgVXnia7nw7/7f1A38dJ9wMdf/C27zTuU7jV30w3PLx/zbAd+NAk1\nnTPxCCF11FIYdpUgR2b1bFxHyZkpRdwEfe45L2dIGriLyhQzF5dbht4z+oAvAc0OxaP4Eyb5axsf\nonhxdKJEEVxLXLU6ahJEbGoqVSHWQPQdNWdi8sTZcSh7DlXYZyET0OTZ+ELab1n2Cx/nO868R5fC\n9vEZT8cf8uTyKU8eP6YUoQsDod/i+wHdXxuT2neI72HtZ0qllGgGVAzeMGeVjUkjtNkEaRWeYZdm\nrDQ8yyNaCK0yLHn1dLAiqQbLCKd51FYVGqyRjGrWJDZMSs7YMKoNu6v3g+crQXfFwVbd5yqVw91H\nVH9Jtz0jkOAssExH8jKzPTsnpYmLx+/gu61BJVIpuZyUuSiJzz79hDkuXPieu+kVnx6u2XWekhe6\njRJwlANo6bkYhRgToesZn1Zuj4Ghh3pw+N4xETj3I49QHm3OeGd7QR8GNuEZc+3Q/jm9Bgbt8TIS\n6ojkQE0e6doo6NcxvpVM6ltS652j8z1LPjB0HXl2pOIoEpC6MAbH4AJ5gTJUch6pOdK5QKoT9WXl\nkTvDR8+T/pKXNwtPHgXefvwOm8tznj57xsVwwX46MPiAG3Ysd7ccbj6jqhLCABpwrm/dClOtUjHm\nrjgFgmnFJdN4MazJWzhrAuflZDyusaDNC63S/fIg91vB1fa/0ChdrGOk7ZBaebZihrRwbSH2BMS2\nN7k3QHuO/WPTbMO44/b159wmePz8WxwPJt/2/Fv/DqEf23s0byKGGfrgyXlpI5wKJfHnP/qI//Df\n/w7fH/+Al1dfcJcjY+3ZxY5pt3BVExHblyd1REsk3gYkKPsIu7HHZQ+NJLvZ2dTaq8nqtXeCY5oz\nL5485+njc0oVOt8b0bQLBq7j+FUyVb/a+Fj7dR7nO0JyhKQEDRwqdBLIIdggeOjxWkkIV0lIKaE5\n4HolLZkxFMYXG0quzNeJYQi8vzvj4uISJfD47C0uL55TjgeGfsA5Tz88ohxf4nyPSEDd0HIkqGJS\naiqruGLXugYVVHHSnfI7obYZBWxvWnWnRH+tUlew3cipYDO7K1wlJy/XzOf0urV6XdndckL35VRU\nrMa9Fi9WNORTp8GqZes8nJ0/4/bNSy4fP2N/+5q7mzdcbAc+++Rz3v3O+1ijxuAT62DYARQcoonj\nfuLjVwd++sEHfO+7z7kYE0/De0T3EWfbHonKRgQue5PVqBFXRnwt5KJMUyHeKPsbpcOz6QPbbY8v\nHvSc5IQlCZ/s33AxnPPFyw+Yprd5+vg5uRTOzy8QrSeQ+Wt7PhCceFQDIo6gnsEFiutgMzItCR8j\nUQp315nFZRYHXgNDt3DHzHE/Mc+F6noOOVHSEVXPF1Pm33vxLbzznO0u2IyOdEx451C3YdiMHK4+\nI8lgzXff4cOAiK1KVddZLlhbf8IFRCC3DYgudEYnkntWxkpQkLY1UpoxWWfAIIzSoA6458Qh0mhU\npvDkGom0tlnbXHPbtFgM/tBKaTrOqqshrsaozQOvlbQZOjhrvzlP6Hvmw5FSlPNHz9iMHR998AXp\nXVDXSA+tpTUdDnhvmz1vbif+5H/7v/nx332I+IH/41//jH/2n/wBv/N0y27a8dH1x6RS2JQNvofr\nu4nDHAhilanTQK+C2yhSOjoJaBC8Btw04AZH7wYGAoPvGHSgkljiDVf7wjB2yDQxdBf4MPxKCv1X\nGp+d4ha2xKN+oKQFYSJNiVfTLRf9SNHMcD5wuBFe373h7u6Ob+9ekK/h9otrosC48xy5JpD4/fPf\n4/3td+hK4e333iVFE+52nUPDBiee5c72fjgNOOdR1zdC52xJfFFsHMOMzIzHWL99CMQYkepNmKh5\nIXdC+w3QVe8M9mvFgjhbdCwKta79TatY1TUqdiO6rqHTqcOJLbbTdcOi0Aoix4md8wDV0zYbLMIp\nt7ROh7XwunFLvptxDo63t0x7T5yuubmbeHyxQb1rK8gioTP9vVevXvO//Mm/5tOXV8RlYhi3pGXh\nX/31S77z1nNifos312+IeuR6ht0YmPYRX7YcjkecBsZzRy7w+EmAqrgp2N7araNmj+8dm0tnBaOY\nMNSGwfrdXlHpcNUYzDbE9BsY3/pFqni8D8Ti6EJHLAPpmLm+veGie4RXWIqj33huXt/y6OIx2XWM\n58I7/gm8cnx29YonT855q7vkD578EO8dj54+JccF7Qa6fkM37KBCnPekPFlbzPfmutdxWXU4P96D\nrK2S5cS28JRaCJ0J/6wtLaOXmydb1dLbh7NMTe89I2JttXUupJaCqPVtbQQgn6pcwZ2gGzkZXz31\nU43kade3ejjD68x75RbaRWr7iIXN+YbMQo4ORwCp8KSS4hcg37ExVsxYDS4qfPTJp2RRnBNC6AkB\nal54+fIlfVDOtx2P3VvE8TWHOfHZh4Xds3OGYWAYPfGghFops0MXx+ZCkNADSpVAdo4sgZt9ILge\ndcGEKwfH6B0a2litHwihaxzERtL4Erjlq4fGEbx6Ou0ouiVKxDEQ/BlSleB2HG4h9wUWhey5lCfM\ndSZseuZ8R//Y8eTqkiH0PB2fEvoNl5ePKWpdhn7zCO0UTyDGOygRdZb3oR5pmneqwQxPu1OyvSb4\npRZyguDb1BSgvhURrf222oblSIKUSnUWhhFBtKCUVkU7VvFv84Slqac6fLDdErURBET05MGML2eG\nnR8YvD3cAxrSqlfcWnFqTGgRx7B5j3HzrsE95NYaXEA6gwTFpEq88/YVFGG3GxmHnt1ug/dGhHXD\nQE6Z65sD773zgrPzLTU/4vPxMzbnheVQSctMij1uEFwXGEaj/M8HG8/cDgO1VoZxQEpHnHpc6Nhe\n9Ow2W7q+M6FN19F5zzj29MH0oUtN2Nfyy83sqzeNY9Xdj3/2V9xOB+b0hvfe/T6fv/6cUhwfvP6I\nvETurm64HJ9zffcx1/oOOkZqueViCCyLY/f0krPxjI9uPud3z3+XH7/6G77/5Lv89e3HvNs5nss5\nh8OnFB/QKogLoN48V864rjP2RBjshq6ctEY90tZFqA1O4QREt2rY39ON11yklHw6mKuY4SrsbfT3\n9QCaF/O94WA2I+GxkGoVpmk2tGdra9npQ5kc+y4fFi7333Nr8DfYZS1AxNkchTihMJioTxMvWjVh\nrKgWvvPd7/Dzj6/JtaA6sywzPjhqyKRU+OTlNb/z3rfIdYN+HkGueXLhccsFx1I4LBVKRUNm91bP\nblfpnWM6mELqZusYQuC8v6Cjt+FzOnpGXOoZhx1dN9J5z9XdK/7qp/8ThcIP3v9D3n/xe7++8a05\nSqmFH33w5+xr5M9++i/4L8b/ip9++hFzfcOj9JS//exHHJZX/Of/+L/k3Sc/ZNDAxzc/JceZH774\nA2pXOMSIciC5Aded89//+L/h2bP/mn/58b/ii9uX/Gc/+I8o6i0XC/1pYqvkbBCDCwQ/IOob56y2\nfPRhh1ROtCKjBRm7ZZ3OEjXY5MQscWoUqGoNeOd8a73FewxwZe2uw0LrTAT2M0EoDWPUh+SDkxHD\n/WjAvbGqrMjNAzHKYn3tVYyzom1NfMHhrZOCedmSEynOON8BjrHf8u1336J++JrgJ6bJGC9dp211\nV+L1zZHnzy95/52Ol8eP8dsjIfeoD+w5Qih4VeapUI6OunU8ehTwtaNmh2+7d8UHAgOkEe/OGf3W\ntA/pqNXxf/7lP2e/vKL35/xf/+//8JsYn/375OI5brnjH3z7j/nss4840w2H+TWUyjCc8fzRu7y8\n/YRH2+eMbsv7/vd4vf+EQS54dPmEn3zxF7y+ecOzi7f48auf8/vv/BN+/PmP+f3nf0igQvXosLNN\nh9n4cuod3dBxomyTjRa0kiHFpFxXxYKVDFBrba2dBo1Uy7RyzsgpH7Ne6SoOZFV0JufU2Mq27XsV\nAKL1UnlgXPb/7sT70xOzpRlPM6z7tZ8NRxQxtShZq2AzZtf5tUnSrs1yu9LYOevnqo1RLhTmwx05\nW6X53rtv8erqgHpHCN7AY+8YemM1394def7iLd5+8YhH0yM+v/s5EiLLVGzrubfD1W0rIh2UzK7f\nMXjjPvY6EJcO7z3B9WzPN3QyElxPFzaEbmjtzJmshR986/f5/PpnX2pd/0YqVc55/vgf/qd4F5jm\nmUpkPy3sly9QlP/5z/87/oMf/scsy8RxPiJR+dbZC2v5SME74R995x9xXG7Ybc7pw5aE6TPXOLHk\nAyqBsSo4pXptlaQl1JW1umw3BSM4inraGNfKBWggmzF0Dc5Ycbx7r7OC5ybzlllp5d43MLoYBujV\n4RpV3Qzc9GKU1biSsVX0Xrn0RBqQ+3WfpdwXPiuRwRjJtXVb6mkuQmR9jiAEqNYxWV9jRUpmmhfS\nUqnibNO384zbnnffec7nr2+ZjjPLYr3v4D25ROKycHt9zbvPzhjOdgy795nqG+YlIR5SXjgeI67v\nCaMNt6sLJitCB12g8z1D19G70Xa0+AHvO8LY0YcOqnC2e0G5i/zk0z9lUy+/1K5+JZO51lTvqzVa\ngmwlfoxHpnzkeDjwv//on/NPvvdPuVsO+Fo5GzaE6lHnCW4djbRkXZ1HtYcyM022GNkLTS7MII0q\njSGLtgmyaK0rbSxmXekAZownL4S2CtAIn6s3PHHqqrWgnK6VqL2edTMPawi0cUsV65euo5w2RFRO\n8xA2n+Eazgam+9xgHwymOnH+KhZCGyhcVzXQZpwr69fYx+WUHtjvk5MHra03nbPNn5RqyqW5pLb7\nJPL5y1tb1rgsrTIuqArT8YhzHc+eXvLkogenTNxwSAdiLcSY8C4QOsF3Rjr1EuxAZ49qx9AFxjDQ\nuZ4QRjO80NP5kRB6QEjxwN998peUWnnv7R+yHS5/KdL8Fcb3y39YSiLlzJ/86f/Ikm391R9+74+s\nyR06uqYF4rwSp4N5HZXW9zSCQimJUgsprzQj17hx2uCVlY6erVXVeqPSCosVXKbVls5KRkRc63Na\n5WqN/ZVzl5qqqJ46JcZmMfjE5nS1TXDRptzKyUuqGpxj7bl8gm9W+nlrsTSweh3QSa2YaP3hxrIp\nK8Sy0rbK6QO1z1IBY82Uis0eZ+uKqBphweT0DHSuzfWnbGsJrm/3pLaOoBTrcy/LYjQG73nnnWeM\nfSDXxO38huvbmYzQhUq/daiCao8XofOeJSvjMFjbE4/XDu97um4ghB4noeGUlj+vObOhWeHXNz7u\nM/nVGFlDWCmwn2/4m5//Be8//x2C8wR1VBWETEntSy/pNIZHIxfmUu49z6kVZbxB1dAa8o3E2S5D\nmyrqaebihJvouhDcOHSNcbJ6PwtfDQZp1WkDOKyAaAayarIYdie/5POulau0uYUWOosJC1UE3Bp+\n7RBUbKnMuprBvKoNDNn73OeFFtrX63xIYG1esFZqzSf5kPVu5tK2E6kzCbl2iF5d3ZCSyYis3s+m\n5rLtk/OOF289ZegcKLy+ec0xzq0tZpGo61zD1T3OBfq+o/ehzWgEk8htshjS8vJ7szndXOTE0via\nxvfweSb2U2xTUC22S0NK47RVG6hOqYXGsgYhRIRUEut0fV0LBBo1Xdfq7iFNva4OpY0DrqDsalZy\n+phrhrC2eGV9Ybv+Bx/mvipdQ+3pveXU2bj/lhrkhBlbTvcogE3zmxfF2XdTy2qgq28+vcUpb1s9\n5EN6/t+/FyvxQFR/4TUWtsuDUEw7HNVYPRSWOXE4TiaRUe6XLp8MWoSu8zx79sTwRc0cpj0pVWIy\nmn7fWYoj6ulaWmDSaMbvXD+jPCBU/FIj+5LVk1/L+O5/VOFB7rKGxnXX6jqzub6ylEKupeFV601Y\nT8dqKM1T/QIboj7493Tp7XWcDPDhaVvbV+sz64M/f+HD1ftTei8+1Dxm88qcvBAnw10/zxruVk+9\nDljfKy6s3sw8so1Htt++vv+K361XtR7K9YJrPV2/tJVkteb7RSu1njDZCq07I8QlkU5G14gSpwNt\nzx9HG0CvpYAUUlmotFUUjbUj7YCp+qbB8vfv24O7sh64B/byGxvfr3zS6T3WP9cCYP07+3dVe7q/\nkgf/Jev7fNmH+v9dOr946XYDpcXV2uJwLb/4XlL/3ku4v/bawuE9G+XynhAiAAAAm0lEQVTh56k8\n9KQPP7sVRvYZV/LA6eft1zw0r1PVvv4+7j3z/a9oqUO7TnnwhvdX1aCg0+n6BTFfSr5Xc/0FFYEH\nX5xR5tYRSCu2bELAmNirEX7Zffmyv/v7T/mlf/kVxvfN45vHv7XHr6YdfPP45vFv8fGN8X3z+K09\nvjG+bx6/tcc3xvfN47f2+Mb4vnn81h7fGN83j9/a4/8DedxgfjqQr3QAAAAASUVORK5CYII=\n", 1412 | "text/plain": [ 1413 | "
" 1414 | ] 1415 | }, 1416 | "metadata": {}, 1417 | "output_type": "display_data" 1418 | }, 1419 | { 1420 | "name": "stdout", 1421 | "output_type": "stream", 1422 | "text": [ 1423 | "ImageNet label: bell cote, bell cot \n", 1424 | "\n", 1425 | "---------------\n", 1426 | "\n", 1427 | "# Objects: 2\n", 1428 | "Main label: church, church building\n", 1429 | "\n", 1430 | "Objects:\n", 1431 | "church, church building\n", 1432 | "bell cote, bell cot\n" 1433 | ] 1434 | } 1435 | ], 1436 | "source": [ 1437 | "IMAGENET_PATH = '/scratch/datasets/imagenet-pytorch/val'\n", 1438 | "\n", 1439 | "vis_idx = 2\n", 1440 | "\n", 1441 | "img, label = info_classify.index[vis_idx], info_classify.iloc[vis_idx]['imagenet_label']\n", 1442 | "image_path = f\"{IMAGENET_PATH}/{label_to_wnid[label]}/{img}\"\n", 1443 | "annotations = {k: info_classify.iloc[vis_idx][k] for k in ['main_top', 'num_objects', 'objects']}\n", 1444 | "objects = set([sorted((-v[0], k) for k, v in o.items())[0][1] for o in annotations['objects']])\n", 1445 | "\n", 1446 | "img = Image.open(image_path)\n", 1447 | "plt.imshow(img)\n", 1448 | "plt.axis('off')\n", 1449 | "plt.show()\n", 1450 | "\n", 1451 | "\n", 1452 | "print(f\"ImageNet label: {label_map[label]} \\n\")\n", 1453 | "print(f\"---------------\\n\")\n", 1454 | "print(f\"# Objects: {annotations['num_objects']}\")\n", 1455 | "print(f\"Main label: {label_map[annotations['main_top']]}\\n\")\n", 1456 | "print(\"Objects:\")\n", 1457 | "for oi, o in enumerate(objects):\n", 1458 | " print(f\"{label_map[o]}\")\n" 1459 | ] 1460 | }, 1461 | { 1462 | "cell_type": "code", 1463 | "execution_count": null, 1464 | "metadata": {}, 1465 | "outputs": [], 1466 | "source": [] 1467 | } 1468 | ], 1469 | "metadata": { 1470 | "kernelspec": { 1471 | "display_name": "Python 3", 1472 | "language": "python", 1473 | "name": "python3" 1474 | }, 1475 | "language_info": { 1476 | "codemirror_mode": { 1477 | "name": "ipython", 1478 | "version": 3 1479 | }, 1480 | "file_extension": ".py", 1481 | "mimetype": "text/x-python", 1482 | "name": "python", 1483 | "nbconvert_exporter": "python", 1484 | "pygments_lexer": "ipython3", 1485 | "version": "3.6.3" 1486 | } 1487 | }, 1488 | "nbformat": 4, 1489 | "nbformat_minor": 2 1490 | } 1491 | -------------------------------------------------------------------------------- /data/annotations_classify_task.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/annotations_classify_task.pkl -------------------------------------------------------------------------------- /data/annotations_contains_task.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/annotations_contains_task.pkl -------------------------------------------------------------------------------- /data/image_info.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/image_info.pkl -------------------------------------------------------------------------------- /data/imagenet_label_map.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/imagenet_label_map.npy -------------------------------------------------------------------------------- /data/imagenet_label_to_wnid.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/imagenet_label_to_wnid.npy -------------------------------------------------------------------------------- /data/model_predictions.pkl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/model_predictions.pkl -------------------------------------------------------------------------------- /data/superclasses.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/data/superclasses.npy -------------------------------------------------------------------------------- /pipeline.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MadryLab/ImageNetMultiLabel/f939d1f4d4d40ce5e2d77dd82fddd58028781a50/pipeline.jpg --------------------------------------------------------------------------------