├── .gitignore ├── LICENSE ├── README.md ├── clean.sh ├── contributors.txt ├── data ├── create_examples_list.py ├── git.dir ├── readme.md └── relation_tag_to_id.py ├── datasets.py ├── debug └── git.dir ├── debug_test └── git.dir ├── model.py ├── predict.py ├── settings.py ├── slim ├── BUILD ├── README.md ├── __init__.py ├── collections_test.py ├── inception_model.py ├── inception_test.py ├── losses.py ├── losses_test.py ├── ops.py ├── ops_test.py ├── scopes.py ├── scopes_test.py ├── slim.py ├── variables.py └── variables_test.py ├── train.sh ├── train_operation.py └── trainer.py /.gitignore: -------------------------------------------------------------------------------- 1 | *.pyc 2 | *.png 3 | *.jpg 4 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2016 Masahiro Imai, Yixuan Hu (yeephycho) 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # InceptionV3_TensorFlow # 2 | InceptionV3_TensorFlow is an implementation of inception v3 using tensorflow and slim according to our guidline. 3 | 4 | 5 | ## Dependencies ## 6 | - TensorFlow (>= 0.12) 7 | 8 | 9 | ## Features ## 10 | - train 11 | - predict 12 | - save checkpoint 13 | - real time data augumentation 14 | 15 | ## Quick start ## 16 | If you want a quick start to run training of Inception_v3, you can simply do: 17 | ``` bash 18 | ./train.sh 19 | ``` 20 | The above script has passed test under Ubuntu15.10, CentOS and macOS. 21 | 22 | If you want to go through the train process step by step, please take the following content as example. 23 | 24 | ### Setup ### 25 | 1. download data in data/readme.md 26 | 2. execute "data/create_examples_list.py" 27 | 3. execute "data/relation_tag_to_id.py" 28 | 4. you can see train_csv.txt and test_csv.txt 29 | 30 | ### Start to train## 31 | ``` 32 | python trainer.py 33 | ``` 34 | Pass test under Ubuntu15.10 and CentOS 35 | 36 | ### How to use your own data sets ### 37 | - create train_csv.txt and test_csv.txt in data directory. 38 | 39 | ### datalist format ### 40 | 41 | ``` 42 | ,