├── README.md ├── math_questions_content.json ├── math_questions_knowledge.json └── math_questions_knowledgetag.json /README.md: -------------------------------------------------------------------------------- 1 | # Mathdata 2 | K12 High School Math Problems Dataset 3 | -------------------------------------------------------------------------------- /math_questions_knowledge.json: -------------------------------------------------------------------------------- 1 | [{"id":1,"uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","parent_uuid":"","name":"代数"},{"id":2,"uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"集合"},{"id":3,"uuid":"345025bf-7367-4f5b-a6b2-9e701f8e7bf5","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合的含义"},{"id":4,"uuid":"c8c45f2b-9d91-428f-acb5-88759f9d1fcb","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"元素与集合关系的判断"},{"id":5,"uuid":"bd741a24-589d-4f3b-a688-c91d1241af27","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合的确定性、互异性、无序性"},{"id":6,"uuid":"07353168-5e25-40f4-b427-82b225e7dbcd","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合的分类"},{"id":7,"uuid":"3b629b0c-15f6-4bb6-b5ba-b631dc772255","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合的表示法"},{"id":8,"uuid":"4d6bcce2-5294-48b0-b740-69ae6f91c288","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"子集与真子集"},{"id":9,"uuid":"3e4f3dcc-1f7c-4400-930d-e8711537167e","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合的包含关系判断及应用"},{"id":10,"uuid":"81ad5f30-fb99-4f68-be5e-fd3f28cdd48f","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合的相等"},{"id":11,"uuid":"78215cc8-e3c7-45d6-9972-4d0707c15cc6","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合中元素个数的最值"},{"id":12,"uuid":"a4dd969c-5e04-4ddb-b43a-11eaf248da46","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"空集的定义、性质及运算"},{"id":13,"uuid":"87c37010-f9cd-4b6c-8b69-7ad0ef1cfc4f","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"集合关系中的参数取值问题"},{"id":14,"uuid":"65a5ad79-82c7-466f-9689-436896d1ed4b","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"并集及其运算"},{"id":15,"uuid":"635750e1-dfa1-46c4-a746-688cfa593385","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"交集及其运算"},{"id":16,"uuid":"594d3c58-3803-4ebb-967f-fb0fe88f40ac","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"补集及其运算"},{"id":17,"uuid":"3c308789-5630-4af6-b99e-f030e1e47c27","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"全集及其运算"},{"id":18,"uuid":"7a5b37f7-d3ea-416e-8bac-9b4cdd10e3f2","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"交、并、补集的混合运算"},{"id":19,"uuid":"5edd7b2d-bb22-4665-8a3d-caeb8decd02a","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"子集与交集、并集运算的转换"},{"id":20,"uuid":"78fc8989-89ef-455e-8fac-68845f5eea81","parent_uuid":"59bc1079-95be-466c-9cd5-3981f4cd514e","name":"Venn图表达集合的关系及运算"},{"id":21,"uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"常用逻辑用语"},{"id":22,"uuid":"3fd25270-178f-4735-98e1-4132bb8928bf","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"四种命题"},{"id":23,"uuid":"e76261b7-8325-4efa-a91e-9a715d0bdc21","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"四种命题间的逆否关系"},{"id":24,"uuid":"96e40f35-8434-42b7-bc89-a3d3c5640b2f","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"四种命题的真假关系"},{"id":25,"uuid":"95f99c59-5c37-49b8-a396-8ad97102d4f2","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"充分条件"},{"id":26,"uuid":"a5db80bc-2393-40b9-8a00-01afe1521bf9","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"必要条件"},{"id":27,"uuid":"d92aee02-393e-4f80-aa8e-b43c80ba79c5","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"充要条件"},{"id":28,"uuid":"b6d30e02-3e24-4bb5-8f3d-5dbe62d8a49e","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"逻辑联结词“或”"},{"id":29,"uuid":"027a9741-1ed4-4d79-8bc1-222adad00751","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"逻辑联结词“且”"},{"id":30,"uuid":"20c16e8c-0245-483b-a041-652a7f6ac97b","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"逻辑联结词“非”"},{"id":31,"uuid":"eeb28637-be57-4573-9eb7-a00727a5d06b","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"复合命题"},{"id":32,"uuid":"413fac79-e04f-44a2-b908-6b33dcb9ea4e","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"复合命题的真假"},{"id":33,"uuid":"0847d3b3-b505-46eb-801d-d5821390db07","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"全称量词"},{"id":34,"uuid":"8dd9b39c-9252-4c9d-a6d0-8c7738feff0a","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"存在量词"},{"id":35,"uuid":"f01e2b4a-c9ca-47f0-8884-d35e72e5cbc3","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"全称量词命题"},{"id":36,"uuid":"0916eefc-1550-43b6-b0d7-3e847a0a6ec4","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"存在量词命题"},{"id":37,"uuid":"5098f8ec-b595-4298-9680-11b102e370ce","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"命题的否定"},{"id":38,"uuid":"e86fe0b7-d625-482a-8256-aa191d73855b","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"命题的真假判断与应用"},{"id":39,"uuid":"6b6a295d-ebf3-4b64-9a24-d8880d7c1a94","parent_uuid":"74d70ea2-86ab-445a-bb50-73bcf74ce234","name":"必要条件、充分条件与充要条件的判断"},{"id":40,"uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"函数概念"},{"id":41,"uuid":"903941c4-5eb5-407b-99e8-f3c495f3b539","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的概念及其构成要素"},{"id":42,"uuid":"c31cbed7-ff0c-482e-914c-ce715a7699ee","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"判断两个函数是否为同一函数"},{"id":43,"uuid":"a61843a6-27e2-4bf1-96cf-4572f3216f71","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的定义域及其求法"},{"id":44,"uuid":"b94ab0ba-4b04-49f7-9dc7-940a56658add","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的值域"},{"id":45,"uuid":"70868c95-274f-44ac-b1f4-a0c07cc6d993","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的图象与图象变化"},{"id":46,"uuid":"9421b9ab-1ed7-4992-a0ff-964495481705","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数解析式的求解及常用方法"},{"id":47,"uuid":"b5ee972a-1925-42fc-b2bf-27c235468f15","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"区间与无穷的概念"},{"id":48,"uuid":"cd096b48-e053-4155-a7e8-740d32d01200","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的表示方法"},{"id":49,"uuid":"fb45f5fb-3c00-4f88-a03f-c76f9c2ed8e0","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的对应法则"},{"id":50,"uuid":"04c3eb1f-20c9-468d-9d3b-8f0fcee75193","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数图象的作法"},{"id":51,"uuid":"5bd427e7-1bd7-4224-ae12-399d22ecd6a4","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"分段函数的解析式求法及其图象的作法"},{"id":52,"uuid":"43208049-3150-4066-88b9-ded3d44df2be","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"映射"},{"id":53,"uuid":"50d7714d-f020-47ab-ac71-2c6eac8c3d37","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的单调性及单调区间"},{"id":54,"uuid":"f2819aca-e779-410e-b738-53ad0448559f","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数单调性的判断与证明"},{"id":55,"uuid":"5bf094af-67ae-4c79-bdc7-9f3dee1cc70f","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数单调性的性质"},{"id":56,"uuid":"3aea654a-5c28-4fd4-b233-ec2161650a4f","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"复合函数的单调性"},{"id":57,"uuid":"2dce60d6-196d-497c-b185-0ea7f3649c33","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的最值及其几何意义"},{"id":58,"uuid":"b880b068-520a-418a-9ed3-b02bc7a1a5f9","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"奇函数"},{"id":59,"uuid":"3134ec79-dc78-42a6-b35f-fdf1249ccab3","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"偶函数"},{"id":60,"uuid":"cf2d6359-f021-4853-bd1c-83dbbae55dfd","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数奇偶性的判断"},{"id":61,"uuid":"4e35b66e-001a-4396-87a4-441009812141","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数奇偶性的性质"},{"id":62,"uuid":"2ca5e8eb-54bd-4eea-9ce6-07093bdf752e","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"奇偶函数图象的对称性"},{"id":63,"uuid":"415d089c-c2ac-44a4-84aa-4d14e7596c61","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"奇偶性与单调性的综合"},{"id":64,"uuid":"7543031a-030b-41f2-a448-b0f7d06afb08","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的图象"},{"id":65,"uuid":"30d2c9b1-869e-4b71-9229-c8bf31d8cb1a","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"抽象函数及其应用"},{"id":66,"uuid":"6c52df85-8a32-455a-b35f-2a95622a18c6","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的周期性"},{"id":67,"uuid":"4b51bcf5-8054-4044-9c9d-054d8688f56f","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数恒成立问题"},{"id":68,"uuid":"836ed601-7ecd-4d56-8c8a-da08ecf7a5c8","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的连续性"},{"id":69,"uuid":"c4d1484e-21a9-4f1e-b2a2-164769444020","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"函数的值"},{"id":70,"uuid":"d6428ed5-6810-4607-a2dc-3af1d263ed4c","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"一次函数的性质与图象"},{"id":71,"uuid":"6c166e8d-d156-4dfd-a681-d1af176f381c","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"二次函数的图象"},{"id":72,"uuid":"b2270fe3-439d-421d-afaa-35529546aea9","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"二次函数的性质"},{"id":73,"uuid":"7e126cf2-be65-47ee-a75a-54cb948ae9b7","parent_uuid":"6b3d74ed-f4fc-45a8-990e-cf72dbca471f","name":"二次函数在闭区间上的最值"},{"id":74,"uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"基本初等函数I"},{"id":75,"uuid":"5038fde8-cd47-4c8a-9966-06ef2045c9b1","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"正整数指数函数"},{"id":76,"uuid":"ad83504f-af18-4a90-9402-cbb76239b5ff","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"方根与根式及根式的化简运算"},{"id":77,"uuid":"335400c9-ff98-4b30-ad07-0bf55790278a","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"分数指数幂"},{"id":78,"uuid":"d5bc7537-503f-4f9b-bfdf-572764cd7f02","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"根式与分数指数幂的互化及其化简运算"},{"id":79,"uuid":"33cf3a9d-9b68-4624-a929-179985fbd0a7","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"有理数指数幂的运算性质"},{"id":80,"uuid":"2eda68a9-24df-4786-80f2-c97620b3fcc6","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"有理数指数幂的化简求值"},{"id":81,"uuid":"b7186a9c-4725-4ee3-bd5d-73a15e6ad8db","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数型复合函数的性质及应用"},{"id":82,"uuid":"4f26de98-37a4-4567-9eeb-252a50090b4e","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数的定义、解析式、定义域和值域"},{"id":83,"uuid":"be961f7c-29af-43b3-8d6e-f8de0f325659","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数的图象与性质"},{"id":84,"uuid":"cac33b18-50a7-4913-8ffe-285b48d3b5e1","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数的图象变换"},{"id":85,"uuid":"d42e7de2-e6bf-4e5b-9a44-627df8bc7266","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数的单调性与特殊点"},{"id":86,"uuid":"fce723d6-4fd1-48d7-9946-e0b4f15de239","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数单调性的应用"},{"id":87,"uuid":"86bca97b-ae89-4e82-b828-ff98bd1d1c1a","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数的实际应用"},{"id":88,"uuid":"8d99aa9e-9627-4fc7-bf69-9aa5ba3aba2d","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数综合题"},{"id":89,"uuid":"ae577307-a0b2-4400-bb79-e041eb07d1e9","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数的概念"},{"id":90,"uuid":"8e3cc9f3-2926-489b-bc25-31a1429f4ecf","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数式与对数式的互化"},{"id":91,"uuid":"637fe352-2b5e-4968-b5b7-08dde1bb07f7","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数的运算性质"},{"id":92,"uuid":"cd494c23-8f69-4e2d-8783-c11392932f59","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"换底公式的应用"},{"id":93,"uuid":"7012efca-ee55-4705-97c6-b83e50c83689","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数的定义"},{"id":94,"uuid":"c8b99911-4ea1-4599-8312-72208f97a59e","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数的定义域"},{"id":95,"uuid":"7f697852-bb97-4830-8989-db27d9a57d28","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数的值域与最值"},{"id":96,"uuid":"19de18d3-d263-446b-9593-a7e4107ad801","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数值大小的比较"},{"id":97,"uuid":"bcad397a-68b7-4d9e-a54a-9383ca576921","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数的图象与性质"},{"id":98,"uuid":"0229006a-9a52-4a09-a939-13b26ffeffba","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数的单调性与特殊点"},{"id":99,"uuid":"6d4a9400-98ad-4203-bfd0-68fa7ad60f8b","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数的单调区间"},{"id":100,"uuid":"f5d1d94d-76fc-4e1e-8230-6c09e8e15932","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"指数函数与对数函数的关系"},{"id":101,"uuid":"4d15dbfb-b1af-4a11-b351-a5f5d3438367","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"反函数"},{"id":102,"uuid":"d491198a-e5b7-4f02-8044-cb5b1efba246","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"求对数函数解析式"},{"id":103,"uuid":"822c4cc3-f937-4efb-acde-243ef585afef","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数图象与性质的综合应用"},{"id":104,"uuid":"a0cef792-6507-4095-a486-a3485e4c203e","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"幂函数的概念、解析式、定义域、值域"},{"id":105,"uuid":"f7f672b3-b9e4-448e-8b43-6968355d4907","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"幂函数的图象"},{"id":106,"uuid":"0ff75ed2-bf06-4b14-8e2e-fe2ecbddcb6c","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"幂函数图象及其与指数的关系"},{"id":107,"uuid":"6eeea47c-d225-411b-a2eb-38b4d83da9cb","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"幂函数的性质"},{"id":108,"uuid":"bf91eb89-c2b4-405a-bb59-f24e726882b6","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"幂函数的单调性、奇偶性及其应用"},{"id":109,"uuid":"cfb9a482-ed38-4bf8-b756-448a1f4e657d","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"根据实际问题选择函数类型"},{"id":110,"uuid":"0e4d01b2-7c89-4705-9cd0-e663d40496b6","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"分段函数的应用"},{"id":111,"uuid":"2614ac0c-4f00-4730-a2e6-6d2b64cbcfd8","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数最值的应用"},{"id":112,"uuid":"8961efcd-a44b-4d52-9dcd-cf9890d05e8e","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数、指数函数与幂函数的衰减差异"},{"id":113,"uuid":"4e9758e5-9ca4-40fe-93e1-c54771006b91","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"对数函数、指数函数与幂函数的增长差异"},{"id":114,"uuid":"8909938c-e5a8-45ea-af4b-986be1e5dd55","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数与方程的综合运用"},{"id":115,"uuid":"a42297d4-9b7d-4e77-9ed4-ed3ab0f7edb4","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"二分法求方程的近似解"},{"id":116,"uuid":"62c62f72-330c-4ca7-8b06-b1bc49ecd863","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"二分法的定义"},{"id":117,"uuid":"c5a961c0-16a7-4739-bd51-abf83a0904ee","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"根的存在性及根的个数判断"},{"id":118,"uuid":"18efba74-ee31-42d5-80e8-5f78f9edb40c","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数的零点与方程根的关系"},{"id":119,"uuid":"07cdd33f-1d8a-49a8-b175-9ef6472cfb54","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数零点的判定定理"},{"id":120,"uuid":"c35d3eef-dcf0-4812-9927-1999c8baec82","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数的零点"},{"id":121,"uuid":"94330255-a352-4cf1-bcb8-9b983b6dccf7","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数的应用"},{"id":122,"uuid":"56f6f5e2-4ceb-4cbc-8126-e89e6ede934e","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"幂函数的实际应用"},{"id":123,"uuid":"3b1727f6-e6c3-46bd-8625-3d5f37ac21e4","parent_uuid":"4735ab9d-1e34-4864-88e5-56af116b77a3","name":"函数模型的选择与应用"},{"id":124,"uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"导数及其应用"},{"id":125,"uuid":"58d56f8f-8143-4ab5-a2da-34d3becb9438","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"变化的快慢与变化率"},{"id":126,"uuid":"246bd57a-a387-4548-b9ee-f3c059dde33f","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"导数的几何意义"},{"id":127,"uuid":"dd148dfa-6f92-426b-be78-5f8e6f961aac","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"导数的运算"},{"id":128,"uuid":"1b5c1ae2-0421-47b9-9705-80e5102bb803","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"导数的加法与减法法则"},{"id":129,"uuid":"9a056f3b-4cb1-4653-ba50-7c3d5ea060a1","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"导数的乘法与除法法则"},{"id":130,"uuid":"574d9a2d-0449-47f9-bdb3-2f3e6c09e09f","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"简单复合函数的导数"},{"id":131,"uuid":"dbd70f8d-e6cf-4603-9d99-63eaa77e71eb","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"定积分"},{"id":132,"uuid":"877b1669-664e-4558-bcda-d022ab66e9f2","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"微积分基本定理"},{"id":133,"uuid":"037f62eb-7c0a-4d31-8238-ee0f606637ec","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"定积分的简单应用"},{"id":134,"uuid":"1c62bba2-26f3-4eb4-9b6a-b82bfa53dde1","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"函数的单调性与导数的关系"},{"id":135,"uuid":"c4348ed0-c0b7-4874-944b-ccf86ebdf61a","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"利用导数研究函数的单调性"},{"id":136,"uuid":"c833c4d1-ba2e-40bf-bf53-79ca41c74b3d","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"函数在某点取得极值的条件"},{"id":137,"uuid":"dd4bcc74-8cbc-4e14-8499-72e0a79c7cb8","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"利用导数研究函数的极值"},{"id":138,"uuid":"2ca1c82f-d70d-4f70-a9fe-d8204e726971","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"利用导数求闭区间上函数的最值"},{"id":139,"uuid":"d9cbed1e-81c6-44f0-8234-de5f30b1a370","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"极限及其运算"},{"id":140,"uuid":"bf80d5c7-2f82-4838-9ffa-9f0af0967bf5","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"定积分在求面积中的应用"},{"id":141,"uuid":"9cd820d1-ae7b-4078-9036-fb1af2f27fbb","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"利用导数研究曲线上某点切线方程"},{"id":142,"uuid":"d47f4f1b-b035-4e1b-8355-f0fc19c49354","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"导数的概念"},{"id":143,"uuid":"0575bdd5-dca3-49bc-b876-fc9e929b3704","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"实际问题中导数的意义"},{"id":144,"uuid":"b551eae0-0038-4022-8c11-9f989d000e16","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"导数在最大值、最小值问题中的应用"},{"id":145,"uuid":"ec33466b-cadf-4ae0-97b4-3fffd318410d","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"定积分的背景"},{"id":146,"uuid":"fe9ec881-75eb-468c-937c-a0a5b026f400","parent_uuid":"8f6941f7-5b57-4381-9e7e-c71de69c6f67","name":"用定积分求简单几何体的体积"},{"id":147,"uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"不等式"},{"id":148,"uuid":"ccb21cb3-2e87-43b0-9191-34f131619750","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次方程"},{"id":149,"uuid":"1bef71a6-aa1d-4952-8c28-bd82d295a703","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"不等关系与不等式"},{"id":150,"uuid":"ac907081-2f31-450f-bfc1-bfb04f8974a2","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"不等式比较大小"},{"id":151,"uuid":"2fee1a5c-81fb-4941-8a2f-9363cdb516ea","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次不等式"},{"id":152,"uuid":"91fe6618-9b2f-47c4-bf65-ce1cc5632110","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次不等式的解法"},{"id":153,"uuid":"719ed91b-8315-47f9-98e3-341c2f1f03a7","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次不等式的应用"},{"id":154,"uuid":"2e08e199-237a-468a-88b1-b9852dba6179","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次不等式与二次函数"},{"id":155,"uuid":"cc9f6221-4a68-40f2-b297-1fe9607042ae","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次不等式与一元二次方程"},{"id":156,"uuid":"850e8b31-b6b4-4fc0-8758-54ca7f00a372","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"设计求解一元二次不等式的程序框图"},{"id":157,"uuid":"7de7383a-df80-485f-95a1-c415c9ef505f","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"二元一次不等式组"},{"id":158,"uuid":"1dfbfe24-dff8-43a5-9760-c10d28b34eaa","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"二元一次不等式的几何意义"},{"id":159,"uuid":"608a13e4-b2be-4599-87e8-c9859ad6d9a4","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"二元一次不等式(组)与平面区域"},{"id":160,"uuid":"498b5108-a744-4ecc-b186-4d79b4493763","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"简单线性规划"},{"id":161,"uuid":"92a97123-0b02-417e-a92c-10ecfe7a70d9","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"简单线性规划的应用"},{"id":162,"uuid":"6dbe9215-2d04-47d4-843a-716b2f135a69","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"其他不等式的解法"},{"id":163,"uuid":"b363059e-3a70-4be9-87ea-4ebb33390e5b","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"基本不等式"},{"id":164,"uuid":"4442dc64-7092-451b-a70b-9963ed35668e","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"基本不等式在最值问题中的应用"},{"id":165,"uuid":"8b4765fe-4d2e-4ac6-88be-9b2dd8316d17","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"一元二次方程的解集及其根与系数的关系"},{"id":166,"uuid":"02b3d451-9a39-4ac1-bd59-2de9e538cecb","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"不等式的综合"},{"id":167,"uuid":"43ca40f4-cef6-4773-bf0b-4c342a1b2752","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"指、对数不等式的解法"},{"id":168,"uuid":"fcf1f3d0-0600-4fb0-82be-f78ab662e37b","parent_uuid":"36e8a80e-64cf-4069-8f4d-4b24aece96f0","name":"不等式的实际应用"},{"id":169,"uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"数列"},{"id":170,"uuid":"7329aad2-6e94-491e-8954-d8da35b29e86","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列的概念及简单表示法"},{"id":171,"uuid":"a117a371-fdfc-4491-b0c9-6f1567412b03","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列的函数特性"},{"id":172,"uuid":"0f3ea822-cc50-48be-afc9-2a21d545f11c","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差数列"},{"id":173,"uuid":"49d30bc3-5353-41c6-8f68-df0338b02c78","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差数列的通项公式"},{"id":174,"uuid":"2c616a0a-4fd2-452a-9e30-404a91d1bbba","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差数列的前n项和"},{"id":175,"uuid":"e66d0cda-0ef2-44aa-898d-3a81cb085692","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差数列与一次函数的关系"},{"id":176,"uuid":"4bbcc120-38e5-4c83-b506-6a3ceda5563f","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等比数列"},{"id":177,"uuid":"11fa97b3-2ea0-4465-9eb3-e33d37a05551","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等比数列的通项公式"},{"id":178,"uuid":"60b3cfc6-9b57-4148-ba63-e6f6f1bc226b","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等比数列的前n项和"},{"id":179,"uuid":"8b8742b8-bf64-4451-bb81-89d3a803fb6d","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等比数列与指数函数的关系"},{"id":180,"uuid":"570f8f76-0ed9-4cac-a72d-b090b8cd9250","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列的应用"},{"id":181,"uuid":"189f1068-f44e-49e3-9427-78c1fa5fb05a","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差关系的确定"},{"id":182,"uuid":"ba91a6d3-bb89-4ea7-b3b9-7ec25d7d0e3c","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等比关系的确定"},{"id":183,"uuid":"5dc31c87-bc6b-45c2-919d-614d85ee098f","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列的求和"},{"id":184,"uuid":"d85c488b-7887-4e94-bcaa-1f07b725a9af","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差数列的性质"},{"id":185,"uuid":"913bc97d-b2a1-4baf-a98d-9779a5072058","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等比数列的性质"},{"id":186,"uuid":"b0e446f6-8d33-4e3d-a321-4f370a51897c","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列递推式"},{"id":187,"uuid":"f47f445c-ea03-4869-adf8-62943f7efe80","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列与函数的综合"},{"id":188,"uuid":"2724d772-d4fe-4532-8c84-de3a4bad0d7a","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列的极限"},{"id":189,"uuid":"f9899ab2-adc3-4d0e-b002-c2e0622e28de","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列与不等式的综合"},{"id":190,"uuid":"b47a7af9-c34d-4887-843e-59d8440ac9ca","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列与向量的综合"},{"id":191,"uuid":"19034943-3b10-4e8d-a97a-413257693f6b","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"等差数列与等比数列的综合"},{"id":192,"uuid":"0f91fb98-ecf1-4148-b319-cdc48a674eab","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列与三角函数的综合"},{"id":193,"uuid":"8e21aeb2-25fb-48f5-8b87-ca262b49b985","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列与解析几何的综合"},{"id":194,"uuid":"825f39dd-edd0-443c-8f64-d3b82618270e","parent_uuid":"8c1a3d2d-560e-4992-adbc-155e3f9e9871","name":"数列与立体几何的综合"},{"id":195,"uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"平面向量"},{"id":196,"uuid":"9fc15a2a-c226-4eb1-b931-0c9312c75bfd","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的物理背景与概念"},{"id":197,"uuid":"74e40534-ee16-4b7f-bb15-ecf3a44e6b13","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的几何表示"},{"id":198,"uuid":"6763de95-2870-473e-9eb6-b7195aa91483","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的模"},{"id":199,"uuid":"23edfa8c-b709-4dda-bb5e-20a9facea800","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"零向量"},{"id":200,"uuid":"d3cb1a24-1464-48ec-a4ff-ba4606424209","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"单位向量"},{"id":201,"uuid":"7026399d-c32a-4b9f-a698-54d74af79e25","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平行向量与共线向量"},{"id":202,"uuid":"014d0388-ba50-4a7d-8341-d3a84599646d","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"相等向量与相反向量"},{"id":203,"uuid":"b50986bb-158f-4905-9cc4-e890367f5a80","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的加法及其几何意义"},{"id":204,"uuid":"2e784684-ea78-4fe0-a873-48cb80285238","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的减法及其几何意义"},{"id":205,"uuid":"226ae956-5d23-4ea0-b95d-4d37550ef167","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的三角形法则"},{"id":206,"uuid":"57266521-797b-4ef2-8475-fb1719633f6e","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量加减混合运算及其几何意义"},{"id":207,"uuid":"8ef07f37-e00d-4e7c-9b24-e5ffa044c37b","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的共线定理"},{"id":208,"uuid":"41b4ee6d-7766-4a51-8142-2f74b38bfa24","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"两向量的和或差的模的最值"},{"id":209,"uuid":"80e7d474-8cd2-4836-8d3b-75b01ad56e1f","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量数乘的运算及其几何意义"},{"id":210,"uuid":"f430ad5c-26f0-44a8-a73f-3a225db7c9c4","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量的线性运算性质及几何意义"},{"id":211,"uuid":"aaf9ad7c-ae13-41be-bbe4-08b08ca544e6","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量加减法的应用"},{"id":212,"uuid":"dbd1bac5-82f0-45d8-beb8-1522a81cb3cf","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量的基本定理及其意义"},{"id":213,"uuid":"9226e06d-94be-459d-b817-b22c3df7ae34","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量的正交分解及坐标表示"},{"id":214,"uuid":"7525092e-bbb9-47a3-9c04-1943b7bb940b","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量的坐标运算"},{"id":215,"uuid":"ea81a9de-1e66-4ed5-89e4-27189d17b785","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量共线(平行)的坐标表示"},{"id":216,"uuid":"9c8fcfcb-3635-44e6-a1e8-b69b7512563a","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"线段的定比分点"},{"id":217,"uuid":"3ba3bbd1-3045-4bb1-bdb4-20fa2d0ada66","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量坐标表示的应用"},{"id":218,"uuid":"a26b6c9f-3547-4e67-a676-9dd575087880","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量数量积的含义与物理意义"},{"id":219,"uuid":"2bb13682-1036-4aac-97a2-6ea8e9847836","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量数量积的性质及其运算律"},{"id":220,"uuid":"09cd8088-a8e9-4c02-a47a-adccdde0a0ab","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量数量积的坐标表示、模、夹角"},{"id":221,"uuid":"6d7e7cdd-6ede-4cd2-aa4c-933c91b7e817","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"数量积的坐标表达式"},{"id":222,"uuid":"a16879df-753e-4923-bd8b-d052119337d2","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量数量积的运算"},{"id":223,"uuid":"474c81bf-5385-4351-9ee5-c8d2e31a6d7a","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"数量积表示两个向量的夹角"},{"id":224,"uuid":"8382c52b-21b2-4c1b-9796-bbb085476af9","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"数量积判断两个平面向量的垂直关系"},{"id":225,"uuid":"4422f17b-d0b8-471a-b8a1-f0b845ad959d","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量数量积坐标表示的应用"},{"id":226,"uuid":"eee4ff42-1dce-44a1-bd8d-e0a983ab5eef","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量在几何中的应用"},{"id":227,"uuid":"58c27efa-493a-4588-b2bd-c2a75454c641","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"向量在物理中的应用"},{"id":228,"uuid":"cf5883f0-7e9d-4222-a2d5-f966d24bbba1","parent_uuid":"1481d269-7494-49d6-8846-156b14a7f7e2","name":"平面向量的综合题"},{"id":229,"uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","parent_uuid":"4ea785ad-8d10-4d82-9779-05c7d88430f3","name":"数系的扩充与复数"},{"id":230,"uuid":"8d612a6a-617b-4652-ae59-f43c4e10384e","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"虚数单位i及其性质"},{"id":231,"uuid":"01286db6-b734-4ad4-b4b7-b70c3473549b","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数的基本概念"},{"id":232,"uuid":"9d126508-0406-46cc-98e8-ccd9fb97d9cb","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数相等的充要条件"},{"id":233,"uuid":"1efc1317-400c-4879-8b3f-42f1d8bbd7bd","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数的代数表示法及其几何意义"},{"id":234,"uuid":"8c910520-1e79-430b-8dfb-909d4548c63d","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数代数形式的乘除运算"},{"id":235,"uuid":"c64f6dc0-251f-4660-b065-aecc198390a9","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数代数形式的加减运算"},{"id":236,"uuid":"ef1e0dba-bf13-46bf-9cfd-d4624db168a5","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数代数形式的混合运算"},{"id":237,"uuid":"8d40bd25-af9f-4baf-951d-974a5ea135a2","parent_uuid":"3ef92a68-aae0-4e1f-90bf-e95ba9934e37","name":"复数求模"},{"id":238,"uuid":"6782112d-cb8f-49c8-994f-37a0faacf239","parent_uuid":"","name":"排列组合与概率统计"},{"id":239,"uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","parent_uuid":"6782112d-cb8f-49c8-994f-37a0faacf239","name":"统计与统计案例"},{"id":240,"uuid":"ff6c0aa1-3c91-4287-9e61-cc27b64c1d7f","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"简单随机抽样"},{"id":241,"uuid":"66a01e7d-a261-4d7b-b2c8-8d652efc1874","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"分层抽样方法"},{"id":242,"uuid":"323df904-1c8c-40b8-b2a3-8e0f0a338bf0","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"系统抽样方法"},{"id":243,"uuid":"c3a6cc62-fb67-46f6-a6ae-5dcdea53f4bd","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"收集数据的方法"},{"id":244,"uuid":"4fbbfdda-e7f5-45f6-b17f-359d3fe61d99","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"分布的意义和作用"},{"id":245,"uuid":"b9a0b063-397b-40a1-89f9-58d55a296b62","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"频率分布表"},{"id":246,"uuid":"eaefe44f-7848-498b-b188-d7310ca8688e","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"频率分布直方图"},{"id":247,"uuid":"61e10d16-4dc2-4cab-a56f-7fafad2744fc","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"频率分布折线图、密度曲线"},{"id":248,"uuid":"41f34107-60c8-4200-8b3f-65f69a10401c","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"茎叶图"},{"id":249,"uuid":"15b9c3d0-1be1-4a1e-9a97-e2ccf5e38d0c","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"众数、中位数、平均数"},{"id":250,"uuid":"2c55fe70-3ef6-4905-a267-1ddaedba219b","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"极差、方差与标准差"},{"id":251,"uuid":"09515946-b57f-40dd-86bb-e1a84fefb596","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"用样本的频率分布估计总体分布"},{"id":252,"uuid":"cda7ce69-efdc-4b6b-b88f-e09585233f1c","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"用样本的数字特征估计总体的数字特征"},{"id":253,"uuid":"ed04e973-4058-4906-8313-d4a7f850910d","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"随机抽样和样本估计总体的实际应用"},{"id":254,"uuid":"83f90f79-57f4-4799-a795-add2dee17e50","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"变量间的相关关系"},{"id":255,"uuid":"a958fe0f-1b93-48db-b76c-dce0b369986e","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"两个变量的线性相关"},{"id":256,"uuid":"37d46c5a-6186-4f69-96bb-7e9e54fefad0","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"散点图"},{"id":257,"uuid":"b3029420-1b5b-441f-9f50-f3417a46a9be","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"最小二乘法"},{"id":258,"uuid":"6535b5f6-76fa-4bb7-8169-2d1858b764d1","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"线性回归方程"},{"id":259,"uuid":"0a06d5ec-5f3e-4b20-aa52-8dcbb1c6b9f4","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"独立性检验"},{"id":260,"uuid":"de5483bf-016e-47aa-83d6-82403375dd75","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"独立性检验的基本思想"},{"id":261,"uuid":"f2068351-7380-4569-87d2-1ddcc8134c61","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"独立性检验的应用"},{"id":262,"uuid":"ee799576-250c-417b-bc85-25ca130e64ba","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"回归分析"},{"id":263,"uuid":"13274ab3-ef3a-4f51-9a99-b14e8266dd3c","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"回归分析的初步应用"},{"id":264,"uuid":"b92ba4a1-33dc-4de2-a2a5-2995248268fa","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"可线性化的回归分析"},{"id":265,"uuid":"8009788e-e3cd-435d-90bf-b38f5e62b838","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"相关系数"},{"id":266,"uuid":"1f070b47-a53c-4ad9-864b-3380f5323d7d","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"实际推断原理和假设检验"},{"id":267,"uuid":"70986734-e20f-493c-9675-ff1a92f01ac0","parent_uuid":"05b81420-224b-439f-b4b5-d887c4b59a54","name":"实际推断原理和假设检验的应用"},{"id":268,"uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","parent_uuid":"6782112d-cb8f-49c8-994f-37a0faacf239","name":"概率"},{"id":269,"uuid":"9ef72572-bc31-4c8a-af94-2a446b10654a","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"随机事件"},{"id":270,"uuid":"922a1f85-578a-476a-a8b8-b67459279de0","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"概率的意义"},{"id":271,"uuid":"635c4022-6fd1-4f13-a714-32561c7cdbb4","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"概率的基本性质"},{"id":272,"uuid":"46345e40-0916-446f-a3b3-aa6fbac33a53","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"互斥事件与对立事件"},{"id":273,"uuid":"33c74f93-3155-4a76-bc1f-70556ba6ed5f","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"互斥事件的概率加法公式"},{"id":274,"uuid":"a05e58f9-bb6e-4fa0-bb46-7f2fa4b870d4","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"等可能事件"},{"id":275,"uuid":"65da4d3b-3283-4c6a-9b6c-2d385c5adfd6","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"等可能事件的概率"},{"id":276,"uuid":"7185e56a-b52b-46fe-9ac2-b7697ec875a1","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"相互独立事件"},{"id":277,"uuid":"3b48f78e-e44c-4775-97ef-b527dd7b57ff","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"相互独立事件的概率乘法公式"},{"id":278,"uuid":"69b8d1a1-c436-4253-99db-227488620438","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"n次独立重复试验中恰好发生k次的概率"},{"id":279,"uuid":"3ee57853-0abc-443f-976f-35f2f478d9aa","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"古典概型及其概率计算公式"},{"id":280,"uuid":"8034fe81-77d2-4a5f-8521-3e5da155a713","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"列举法计算基本事件数及事件发生的概率"},{"id":281,"uuid":"e2790d40-abb2-46f8-ba86-51d2e6c80614","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"随机数的含义与应用"},{"id":282,"uuid":"c4be4e53-0972-4218-a6bb-22af084a993c","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"模拟方法估计概率"},{"id":283,"uuid":"02905b07-aae9-4719-aa7c-891865d29bc8","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"几何概型"},{"id":284,"uuid":"c8e28f81-e651-43a6-88fe-76dce5ff9cdb","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"离散型随机变量及其分布列"},{"id":285,"uuid":"0b70e9b3-7303-4bf4-a529-0062c97f2785","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"离散型随机变量的期望与方差"},{"id":286,"uuid":"ae108098-b4ef-4069-9c36-0360f4a7e348","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"分布列对于刻画随机现象的重要性"},{"id":287,"uuid":"994507f6-f34b-4bbf-95c8-3eb685d10dcb","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"总体分布的估计"},{"id":288,"uuid":"496dc63a-540e-46ff-8662-59300398d29a","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"超几何分布"},{"id":289,"uuid":"a0fb8e08-c8c1-471c-9ace-83c569bd2094","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"超几何分布的应用"},{"id":290,"uuid":"d2a0574b-4f19-4857-bed6-4fcdd7ec90ce","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"条件概率与独立事件"},{"id":291,"uuid":"083519e8-7c50-418d-8afa-24dfbd3660d3","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"二项分布与n次独立重复试验的模型"},{"id":292,"uuid":"85e4f70a-da00-45f6-a936-1c7bf15bfcb5","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"连续型随机变量"},{"id":293,"uuid":"b27cd00d-6a67-4f2c-9ade-c63a0aa9dce1","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"正态分布曲线的特点及曲线所表示的意义"},{"id":294,"uuid":"14209071-6a36-4fe8-b180-527a4b2a4fd5","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"概率与函数的综合"},{"id":295,"uuid":"15c2cb14-75f0-49c0-9d4a-549f0ea57604","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"事件与基本事件空间"},{"id":296,"uuid":"7a158659-fab1-4cd4-9cc4-969b1003aa68","parent_uuid":"d8c1a078-123a-4d2c-abc2-e0bbcfc785d2","name":"概率的应用"},{"id":297,"uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","parent_uuid":"6782112d-cb8f-49c8-994f-37a0faacf239","name":"计数原理"},{"id":298,"uuid":"e5e2b387-7616-45ca-86fd-cb084b3d1151","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"分类加法计数原理"},{"id":299,"uuid":"1e5df9d4-b9a2-4b1d-a1b1-8441b6ac85ef","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"分步乘法计数原理"},{"id":300,"uuid":"75642d54-4ffb-47e7-b423-77d23af8290a","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"计数原理的应用"},{"id":301,"uuid":"04e50524-2697-46e8-981e-7a62ea87aa88","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"排列及排列数公式"},{"id":302,"uuid":"d5b84de6-7518-4e3b-8614-818d35c8a74c","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"组合及组合数公式"},{"id":303,"uuid":"7e6a7120-2bb3-4003-a645-ca6e790f5b79","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"排列数公式的推导"},{"id":304,"uuid":"0113471b-54dc-4a04-8622-e7109b6842e8","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"组合数公式的推导"},{"id":305,"uuid":"ad05f8fc-a03f-4066-ad9d-91a29c567508","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"排列、组合的实际应用"},{"id":306,"uuid":"4b85a4b4-8311-437d-a2ad-cf3061121525","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"排列、组合及简单计数问题"},{"id":307,"uuid":"543487e5-bffa-491e-90b2-e8864418841c","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"二项式定理"},{"id":308,"uuid":"3938547a-8462-497c-b62e-dffa4c2f0c7f","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"二项式系数的性质"},{"id":309,"uuid":"29d7bd09-65fc-4f98-a060-1f7b11de9515","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"二项式定理的应用"},{"id":310,"uuid":"91798eb0-e665-411b-8ed8-ab5df578528f","parent_uuid":"8227f68b-6b99-4cde-b187-daf9fdf6b211","name":"排列与组合的综合"},{"id":311,"uuid":"a09ad908-2e9d-4403-89c8-22558eb8e36a","parent_uuid":"","name":"算法与框图"},{"id":312,"uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","parent_uuid":"a09ad908-2e9d-4403-89c8-22558eb8e36a","name":"算法初步与框图"},{"id":313,"uuid":"78a364b9-6d0a-4411-a401-bf58d8d8865a","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"辗转相除法与更相减损术"},{"id":314,"uuid":"020895cb-67b9-40ff-ab7e-95daeef22651","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"进位制"},{"id":315,"uuid":"4e527026-e69f-4243-9754-5b414ad63dcb","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"算法的概念"},{"id":316,"uuid":"4a6aeae3-0e24-4866-8133-62f3de035d13","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"算法的特点"},{"id":317,"uuid":"927ba35f-65b7-4e4a-9c4a-f8bdc7613431","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"排序问题与算法的多样性"},{"id":318,"uuid":"ad9cc5d3-305b-4c32-850a-9d8d3b8fca57","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"流程图的概念"},{"id":319,"uuid":"74453f7b-98cf-4b4d-b44f-bd512693e6da","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"顺序结构"},{"id":320,"uuid":"e70f3b48-2cf9-4866-90f1-14ac5da01da5","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"选择结构"},{"id":321,"uuid":"d8e99a7b-d970-4338-8d47-553593300e2c","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"循环结构"},{"id":322,"uuid":"98b9082c-6ccd-4ea1-8774-6ce03eaa7137","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"设计程序框图解决实际问题"},{"id":323,"uuid":"3cfb7aa0-fb03-4ca5-a3e5-a737540e5ff3","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"程序框图的三种基本逻辑结构的应用"},{"id":324,"uuid":"bc8a2163-501d-4842-ad1d-56b247fc7e2f","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"伪代码"},{"id":325,"uuid":"c2c1d756-1da6-4b32-9b02-9691bf3f7847","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"赋值语句"},{"id":326,"uuid":"bf37f6a2-0b71-4ce1-b1d0-4b5ad698fabd","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"输入、输出语句"},{"id":327,"uuid":"c6a9b7ee-3bfa-4103-9c99-032e5a8b54f6","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"条件语句"},{"id":328,"uuid":"5222375b-a5da-413f-89a2-071cfb2d9cb4","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"循环语句"},{"id":329,"uuid":"5cba8082-1116-424f-997e-3c0ddd83976e","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"程序框图"},{"id":330,"uuid":"e2d0ef63-a1d2-4da1-b211-9b2080037389","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"工序流程图(即统筹图)"},{"id":331,"uuid":"a5e07053-37d6-4f77-9380-d63bb7ddb91b","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"绘制简单实际问题的流程图"},{"id":332,"uuid":"3036a4f0-4a79-4639-9d3d-79deb6f31fbf","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"流程图的作用"},{"id":333,"uuid":"6795b855-dadf-4c4d-9324-acb8fb142952","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"结构图"},{"id":334,"uuid":"d99afdb4-aeb6-4781-8781-527d17534c03","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"绘制结构图"},{"id":335,"uuid":"38640131-b67d-4c80-bf15-bce7f37e66b2","parent_uuid":"586dcf62-3cb5-4203-83ac-f57dd6ae4fbc","name":"秦九韶算法"},{"id":336,"uuid":"ac576de1-dbb3-40d6-9341-3f9d0e3c016f","parent_uuid":"","name":"推理与证明"},{"id":337,"uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","parent_uuid":"ac576de1-dbb3-40d6-9341-3f9d0e3c016f","name":"推理与证明"},{"id":338,"uuid":"b957440a-c4b0-493e-babe-a766d410d74b","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"数学归纳法"},{"id":339,"uuid":"e9ae134d-107b-45ea-9201-db5e2e3cf5b1","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"数学归纳法的作用"},{"id":340,"uuid":"eab420c6-80cc-4420-a2dd-daa4ea54ba15","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"数学归纳法的证明步骤"},{"id":341,"uuid":"10d9ca98-288b-4ae5-879b-646e07a93024","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"归纳推理"},{"id":342,"uuid":"663d143d-53c6-4add-98e7-57314893e69e","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"合情推理的含义与作用"},{"id":343,"uuid":"afdbb309-c4a2-4c70-8072-7d2ec0523705","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"类比推理"},{"id":344,"uuid":"e4d800d2-4ba6-41ac-8f89-4fdeb92e2980","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"进行简单的合情推理"},{"id":345,"uuid":"cd8bdc1d-0e7c-4409-9ba8-49e37d98b0f8","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"演绎推理的意义"},{"id":346,"uuid":"3cf3b1ae-877c-4b37-9e59-82d0509597eb","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"演绎推理的基本方法"},{"id":347,"uuid":"b14fe32d-8597-4bbe-83da-892e5beedb43","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"进行简单的演绎推理"},{"id":348,"uuid":"c4fc14ca-37af-4c5b-b318-6c6850365b30","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"合情推理和演绎推理之间的联系和差异"},{"id":349,"uuid":"06019fe2-6a17-4575-82a7-2fa505e4873a","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"分析法和综合法"},{"id":350,"uuid":"de30928e-f674-4659-9909-bd2919814d90","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"分析法的思考过程、特点及应用"},{"id":351,"uuid":"4437cabf-4720-4dee-8cd7-2306042f84c9","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"综合法的思考过程、特点及应用"},{"id":352,"uuid":"639d1e3f-30ef-45f2-902a-84dc685f2f94","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"反证法"},{"id":353,"uuid":"0e8c67fe-f063-47fa-a0fb-c0aa47286bca","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"反证法的应用"},{"id":354,"uuid":"a7337081-1846-438f-af1d-a1fc5055bcc5","parent_uuid":"14dc08a9-8472-49fd-9b43-bb756ae0ee46","name":"公理化思想"},{"id":355,"uuid":"56c54822-27fa-4581-80c5-db522ef380a7","parent_uuid":"","name":"三角函数"},{"id":356,"uuid":"b7309453-b182-4e39-88fb-317fc084bde1","parent_uuid":"56c54822-27fa-4581-80c5-db522ef380a7","name":"任意角与任意角三角函数"},{"id":357,"uuid":"b5d08f44-0ef7-41c3-8e8b-31acaa39e2db","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"任意角"},{"id":358,"uuid":"dfb8c94c-b222-4d46-918e-707e67cb76da","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"象限角、轴线角"},{"id":359,"uuid":"9c3cde2f-bbac-45fc-ba17-b55f08fb52c9","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"终边相同的角"},{"id":360,"uuid":"2163778d-5ef1-4b4f-a8d4-a8afc8f2f5d8","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"弧度制、角度制及其之间的换算"},{"id":361,"uuid":"2f150b3c-b7f5-4fbe-87d6-29418282c9ad","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"扇形的弧长与面积"},{"id":362,"uuid":"375a73f9-fb7f-49ba-8960-ee68d6cdf1c6","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"任意角三角函数的定义"},{"id":363,"uuid":"160531fc-5e17-465d-a34b-d6a3fee2edc4","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"三角函数值的符号"},{"id":364,"uuid":"10ffa6e5-cbc7-4765-9953-edc11935b414","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"单位圆与三角函数线"},{"id":365,"uuid":"38ac48e6-b404-4e33-9ccf-facb777dc0f6","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"同角三角函数间的基本关系"},{"id":366,"uuid":"f1daf95c-56d1-444f-9e88-2009761584b2","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"同角三角函数基本关系的运用"},{"id":367,"uuid":"8131d9d7-cfe1-4920-b7bd-8f993258dd15","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"诱导公式"},{"id":368,"uuid":"b9694a4e-7b91-4362-b624-19fcdf86dbad","parent_uuid":"b7309453-b182-4e39-88fb-317fc084bde1","name":"运用诱导公式化简求值"},{"id":369,"uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","parent_uuid":"56c54822-27fa-4581-80c5-db522ef380a7","name":"三角函数的图像与性质"},{"id":370,"uuid":"aca14cda-164b-4c1d-b618-ce72d939b87f","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正弦函数的定义域和值域"},{"id":371,"uuid":"708de225-6b87-48c5-ac21-f791cb4520c8","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正弦函数的周期性"},{"id":372,"uuid":"25f12dd3-eeaf-4a66-86f7-2041b832831f","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正弦函数的奇偶性与对称性"},{"id":373,"uuid":"75647163-a346-4485-825a-0d0c98aff141","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正弦函数的单调性"},{"id":374,"uuid":"4a116d7d-55a7-4457-a8e2-a93a86c7c829","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正弦函数的零点与最值"},{"id":375,"uuid":"3112e56a-0f9a-49c3-9443-c2e6def3d62e","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正弦函数的图象"},{"id":376,"uuid":"329ce42d-e91a-4495-a56f-da52903a3ee9","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"余弦函数的定义域和值域"},{"id":377,"uuid":"bd001429-c594-49ad-b1ab-20f4d7e6d327","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"余弦函数的周期性"},{"id":378,"uuid":"c0ee2108-8169-486c-8832-c0631168722f","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"余弦函数的奇偶性与对称性"},{"id":379,"uuid":"8ff30dd2-89b5-4cbf-96bc-d0d7ab62e676","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"余弦函数的单调性"},{"id":380,"uuid":"b7e38e41-ca87-4c9d-ac50-1089b7341ad8","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"余弦函数的零点与最值"},{"id":381,"uuid":"84054f5e-a752-4e84-b4db-3992d22b0350","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"余弦函数的图象"},{"id":382,"uuid":"977416f2-0e57-46b6-86f7-8aeefc5761d8","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正切函数的定义域和值域"},{"id":383,"uuid":"a03d1428-a8e4-42dd-95fb-6e02f30c0f93","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正切函数的周期性"},{"id":384,"uuid":"270e6ad5-9dc9-455e-861e-d179b73f34c1","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正切函数的奇偶性与对称性"},{"id":385,"uuid":"e3dde2a2-a60e-40ab-908a-100f7329391f","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正切函数的单调性"},{"id":386,"uuid":"a268d714-cbae-4cc3-b815-e005ddf1e1b1","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"正切函数的图象"},{"id":387,"uuid":"3d6a9619-baf6-4631-9c6b-0222ec8dffd7","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"三角函数的定义域"},{"id":388,"uuid":"fb618631-ea20-4f22-995d-6c2ebfef3730","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"三角函数的周期性及其求法"},{"id":389,"uuid":"b4249957-9404-4143-b214-2b71096fde4e","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"三角函数的最值"},{"id":390,"uuid":"d7b877dd-6697-45e6-8b69-7d0803aada7f","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"y=Asin(ωx+φ)中参数的物理意义"},{"id":391,"uuid":"11c5c343-c455-46ef-bc42-dad5bd0fa52d","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"五点法作函数y=Asin(ωx+φ)的图象"},{"id":392,"uuid":"20b365bf-8fcf-4d21-a604-23c029c9ef22","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"函数y=Asin(ωx+φ)的图象变换"},{"id":393,"uuid":"86889c44-9ea7-4dfd-a119-5c34bf7f6af4","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"由y=Asin(ωx+φ)的部分图象确定其解析式"},{"id":394,"uuid":"8017f9e5-3003-4119-be74-db1d97073a53","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"复合三角函数的单调性"},{"id":395,"uuid":"c02b3956-d7ef-474f-bef8-eac061ee1961","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"三角函数模型的简单应用"},{"id":396,"uuid":"be12f222-0357-45d2-bacc-055a510a62a9","parent_uuid":"cad97247-f610-4769-ba06-2a85d57fc0fe","name":"反三角函数的运用"},{"id":397,"uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","parent_uuid":"56c54822-27fa-4581-80c5-db522ef380a7","name":"三角恒等变换"},{"id":398,"uuid":"9dfb8b29-61f6-4cc9-8b0c-73f634a19798","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"两角和与差的余弦公式"},{"id":399,"uuid":"48b6a004-df09-41eb-ad68-6fac18b4d398","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"两角和与差的正弦公式"},{"id":400,"uuid":"718c503c-5f63-4196-8610-590158c5875c","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"两角和与差的正切公式"},{"id":401,"uuid":"15cee102-beb1-4550-b62e-d415deffb144","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"二倍角的正弦公式"},{"id":402,"uuid":"6fdf0296-51d9-483f-911d-102cc3f5fd6d","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"二倍角的余弦公式"},{"id":403,"uuid":"49a4ffe4-a9c3-45fb-89f3-889191109aab","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"二倍角的正切公式"},{"id":404,"uuid":"1cf9ecf4-7f9b-402c-9c2b-6abf71d1a2de","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"半角的三角函数"},{"id":405,"uuid":"ac55d22b-6408-44ac-8ac5-b713d83b8ece","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"三角函数的积化和差公式"},{"id":406,"uuid":"276f33ab-62b1-439f-9f16-c86de3b59c16","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"三角函数的和差化积公式"},{"id":407,"uuid":"9a7fca26-8e7c-4957-a376-ce0078088016","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"三角函数恒等式的证明"},{"id":408,"uuid":"80b90721-30c1-4e6d-bfe5-df0bc6248412","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"三角函数的恒等变换及化简求值"},{"id":409,"uuid":"a4d5f5bd-7296-42f0-87cb-8e5a86971c3d","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"三角函数中的恒等变换应用"},{"id":410,"uuid":"ee46496f-bc13-4126-b5a7-275eee78afc9","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"弦切互化"},{"id":411,"uuid":"5b9597da-a294-4ae8-ae67-0bc2b9a38917","parent_uuid":"b8e4b5aa-88ad-43c7-8204-848adee3e20a","name":"三角函数的化简求值"},{"id":412,"uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","parent_uuid":"56c54822-27fa-4581-80c5-db522ef380a7","name":"解直角三角形"},{"id":413,"uuid":"33769075-0171-4887-9447-95cc9852c268","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"正弦定理"},{"id":414,"uuid":"2f682aae-4cc9-4b99-95b6-d72ac1bc6a99","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"余弦定理"},{"id":415,"uuid":"4c35314d-e913-4a48-bd7c-86367b85fff1","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"解三角形"},{"id":416,"uuid":"5e10f6d7-544f-4fcd-8aba-6355afb51f65","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"正弦定理的应用"},{"id":417,"uuid":"4c3eddf4-71f5-497a-9363-0e2e86cf8807","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"余弦定理的应用"},{"id":418,"uuid":"76984b9f-52c5-49ed-8f24-39fa418e283d","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"解三角形的实际应用"},{"id":419,"uuid":"b75f63ca-984a-4689-aad9-cd62780f07c4","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"三角形中的几何计算"},{"id":420,"uuid":"d5d06bec-afe2-4e11-9305-10a04a9c5b0b","parent_uuid":"a03c6445-27c0-464d-8d1b-3a3e0e41be5f","name":"三角形的形状判断"},{"id":421,"uuid":"d349c931-9c11-44d2-acaf-9c8e1c171668","parent_uuid":"","name":"平面解析几何"},{"id":422,"uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","parent_uuid":"d349c931-9c11-44d2-acaf-9c8e1c171668","name":"直线与方程"},{"id":423,"uuid":"85ab87df-1838-4c1e-97a8-5d920e595d24","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"确定直线位置的几何要素"},{"id":424,"uuid":"bb437706-51c3-43ff-97a2-029d733c368d","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的倾斜角"},{"id":425,"uuid":"189065dc-8b32-4463-96d9-101efaf8a056","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的斜率"},{"id":426,"uuid":"d383f053-8b08-421f-9c54-33ab4f2d3325","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"斜率的计算公式"},{"id":427,"uuid":"bb81abc5-1eac-4d05-affa-88a59ab8835c","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的图象特征与倾斜角、斜率的关系"},{"id":428,"uuid":"f6550753-4c92-421c-ae01-662a2df02a11","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"三点共线"},{"id":429,"uuid":"7f389f29-3df2-4d6a-b349-3389555ea25e","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两条直线平行的判定"},{"id":430,"uuid":"2c05c8c5-4cd5-4dd2-906e-c0f03208035d","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两条直线平行与倾斜角、斜率的关系"},{"id":431,"uuid":"b83ca34a-c480-4a5f-9923-a3a3fc0efd1b","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两条直线垂直的判定"},{"id":432,"uuid":"09de7952-e427-4111-b460-1536365b1e2f","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两条直线垂直与倾斜角、斜率的关系"},{"id":433,"uuid":"725157c9-bc44-4b3d-bfef-b528132d82c2","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的点斜式方程"},{"id":434,"uuid":"59592fa0-3272-492a-9397-3b39daab8da7","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的斜截式方程"},{"id":435,"uuid":"71c2b66f-6918-499f-95be-147458e8be46","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的两点式方程"},{"id":436,"uuid":"c86420e7-e79b-45ec-866c-22d07743ec42","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的截距式方程"},{"id":437,"uuid":"c12a0d5d-cc0b-4efe-a225-1fda6dad7b01","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"中点坐标公式"},{"id":438,"uuid":"046b1f4a-5ea3-42a2-96e9-b19b47b428cc","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的一般式方程"},{"id":439,"uuid":"3bd7812b-bbcd-4828-93d8-1c401935dc8e","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的一般式方程与直线的性质"},{"id":440,"uuid":"ba35d357-48ec-4e3f-a941-56895ff77fd3","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的一般式方程与直线的平行关系"},{"id":441,"uuid":"dd4e062d-2511-477b-8a0c-4aba6bd86dd9","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"直线的一般式方程与直线的垂直关系"},{"id":442,"uuid":"350289e5-d068-46a7-8447-b1ea0de86f0d","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"待定系数法求直线方程"},{"id":443,"uuid":"e9aba1c3-5f4d-4d71-b695-f1ce74ff86d0","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"斜截式与一次函数的关系"},{"id":444,"uuid":"1330bd70-79b4-4016-af68-c6b03195b230","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两条直线的交点坐标"},{"id":445,"uuid":"80369c0c-0a69-4d1d-8f0b-41cfe7598d2c","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"方程组解的个数与两直线的位置关系"},{"id":446,"uuid":"c967397c-1e34-485b-9d78-1d60288df4cb","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"过两条直线交点的直线系方程"},{"id":447,"uuid":"8cf6b492-29a9-4b0f-9553-529f39647d02","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"恒过定点的直线"},{"id":448,"uuid":"48850aab-e061-434e-be2c-8b8f3801105b","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"与直线关于点、直线对称的直线方程"},{"id":449,"uuid":"6aa2dc8e-93c3-405e-93d1-19ad3f46c130","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两点间的距离公式"},{"id":450,"uuid":"94ac7eed-ab66-488d-9771-83565e9b77cd","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两点间距离公式的应用"},{"id":451,"uuid":"7e93baf8-e2c5-4d7a-8c30-eafa7b294e23","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"点到直线的距离公式"},{"id":452,"uuid":"029975c2-f0ba-47d8-b2b6-e362d2a946f6","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两条平行直线间的距离"},{"id":453,"uuid":"cc3eefe1-b0b2-45b5-a319-4a9328f24171","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"两直线的夹角与到角问题"},{"id":454,"uuid":"6361ea38-0483-4e29-b1b9-b5093f44d904","parent_uuid":"8d0eea9e-0cff-420c-91cd-67554b92cd2a","name":"与直线有关的动点轨迹方程"},{"id":455,"uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","parent_uuid":"d349c931-9c11-44d2-acaf-9c8e1c171668","name":"圆与方程"},{"id":456,"uuid":"a32bb754-61a6-4488-af41-0437882ca32b","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"圆的标准方程"},{"id":457,"uuid":"9dd99ed4-ae96-4065-a39f-4211f976cbfb","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"圆的一般方程"},{"id":458,"uuid":"c8e9f9d6-e280-47c9-825e-f5c61dc36cd2","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"轨迹方程"},{"id":459,"uuid":"ca6a56f4-6d45-4b48-a177-b0c8a71e3728","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"二元二次方程表示圆的条件"},{"id":460,"uuid":"29b2799a-b7c1-4cc5-8229-b85317b58737","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"点与圆的位置关系"},{"id":461,"uuid":"f0d1c843-257f-487e-bc65-807ebed713fd","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"关于点、直线对称的圆的方程"},{"id":462,"uuid":"016ca19a-9f6b-413a-8486-3efe16eaebde","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"圆的切线方程"},{"id":463,"uuid":"dd03ad4d-1a94-4e70-a749-e7faff97176e","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"直线与圆相交的性质"},{"id":464,"uuid":"c50a10fb-87bd-465b-a05a-78cfbe8bea8d","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"直线与圆的位置关系"},{"id":465,"uuid":"256fbb75-7a5e-4e57-84f7-9744ea044a67","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"圆与圆的位置关系及其判定"},{"id":466,"uuid":"4b2a9944-5924-469b-ad30-c0fcb3211ac6","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"两圆的公切线条数及方程的确定"},{"id":467,"uuid":"a2fa3b83-5a84-4b88-a980-99c7cf57d585","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"圆系方程"},{"id":468,"uuid":"4c758dc5-4b45-4139-ac6b-ec7c3158e062","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"相交弦所在直线的方程"},{"id":469,"uuid":"a6f843d5-38c7-4cba-8d34-acfacadcb6eb","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"直线和圆的方程的应用"},{"id":470,"uuid":"a3a6cc9c-a337-4375-ab88-1ed71e634ae5","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"圆方程的综合应用"},{"id":471,"uuid":"eac10915-15ff-4c9d-9097-ca9ea4f05b70","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"空间直角坐标系"},{"id":472,"uuid":"fdb76998-321f-4f2d-a34a-bccb7fd071e3","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"空间中的点的坐标"},{"id":473,"uuid":"fd4d4953-b890-4783-9385-007c7c46cdfb","parent_uuid":"6c82543c-2979-4cbb-942d-86577e1f540d","name":"空间两点间的距离公式"},{"id":474,"uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","parent_uuid":"d349c931-9c11-44d2-acaf-9c8e1c171668","name":"圆锥曲线与方程"},{"id":475,"uuid":"b82039f5-4d7b-44f8-884e-eda45da4d814","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"圆锥曲线的实际背景及作用"},{"id":476,"uuid":"864fc11b-7c43-4cca-9ee3-6e83edd9889d","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"椭圆的定义"},{"id":477,"uuid":"694376ec-97f8-4216-8fce-c0ed6c96b391","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"椭圆的标准方程"},{"id":478,"uuid":"b3f9ec72-52e1-4ad5-a7e6-0db2eea44093","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"椭圆的简单性质"},{"id":479,"uuid":"cd7ce74c-5032-4c40-bc6f-172a505cf91c","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"椭圆的应用"},{"id":480,"uuid":"5ccde686-0b9f-4d4a-b1e0-19ac30e7a614","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"抛物线的定义"},{"id":481,"uuid":"c29a105e-5a6b-45e8-9c5e-bfe1cbbc2495","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"抛物线的标准方程"},{"id":482,"uuid":"6d8ef665-06ad-482c-8061-ad31ede87936","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"抛物线的简单性质"},{"id":483,"uuid":"d8f8a63e-cb82-43d7-ac11-92919f55668e","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"抛物线的应用"},{"id":484,"uuid":"63a28199-247b-4539-8cb7-44bea863bb68","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"双曲线的定义"},{"id":485,"uuid":"8b28191c-a550-432e-a344-30ba97a33a85","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"双曲线的标准方程"},{"id":486,"uuid":"38684376-d5ac-42fe-9f59-01d2591e9c3f","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"双曲线的简单性质"},{"id":487,"uuid":"f1134874-974a-451b-be0c-ff9c83084174","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"双曲线的应用"},{"id":488,"uuid":"422b0beb-70c1-4f9a-81df-8d05b0afef49","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"曲线与方程"},{"id":489,"uuid":"97ccf476-8797-4eb4-b28f-da1a3216503f","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"圆锥曲线的共同特征"},{"id":490,"uuid":"e484b5d4-ba4e-4dd2-ac5a-27b713018c5f","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"圆锥曲线的综合"},{"id":491,"uuid":"25444dbc-9e11-4c99-80c9-9ea21a650089","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"圆锥曲线的轨迹问题"},{"id":492,"uuid":"13473b7d-5cca-4930-822d-dabf452afda9","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"直线与圆锥曲线的关系"},{"id":493,"uuid":"ce87187a-f2c8-4bd3-bb03-5a759bada6bc","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"直线与圆锥曲线的综合问题"},{"id":494,"uuid":"f2411526-17dc-4f70-98f2-c2de56dd2664","parent_uuid":"c6744d40-2d92-4c1d-8305-3804f4b2dbd0","name":"圆与圆锥曲线的综合"},{"id":495,"uuid":"9a476c4b-2f98-4c36-b5c7-9b7b6b1839bf","parent_uuid":"","name":"立体几何"},{"id":496,"uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","parent_uuid":"9a476c4b-2f98-4c36-b5c7-9b7b6b1839bf","name":"空间几何体"},{"id":497,"uuid":"4ba8fbe9-505f-4984-bd33-a980e97eda9a","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"由三视图求面积、体积"},{"id":498,"uuid":"3c9ee2d4-8e54-495d-9d00-34dba00c8be5","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"三垂线定理"},{"id":499,"uuid":"b627b4bb-eaed-475b-9851-34fa25d28ea6","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"三角形五心"},{"id":500,"uuid":"95b75460-b3fe-478c-bfd9-ec345849c6e0","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"球面距离及相关计算"},{"id":501,"uuid":"dbd38148-8a71-4abf-b2b1-15e645850ea4","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"组合几何体的面积、体积问题"},{"id":502,"uuid":"d8213d87-9326-4f88-803f-c3554a0e48f0","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"构成空间几何体的基本元素"},{"id":503,"uuid":"67fe655c-89f3-49ea-9b7c-68eda63c2ec5","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"棱柱的结构特征"},{"id":504,"uuid":"967fbd2e-3cdc-4a8d-87d0-5046d14f7f0f","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"棱锥的结构特征"},{"id":505,"uuid":"c1552696-430a-4484-8bc0-76e5fe0e3e6b","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"棱台的结构特征"},{"id":506,"uuid":"19a4ac0f-a9a6-4b71-94f2-2f12b785729b","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"旋转体(圆柱、圆锥、圆台)"},{"id":507,"uuid":"190f41c5-9cd0-430c-b5fe-6b6ac1903e7d","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"简单组合体的结构特征"},{"id":508,"uuid":"f2782512-078f-4dee-b9a6-cb9ae6e6da62","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"简单空间图形的三视图"},{"id":509,"uuid":"a56a0085-ce76-4652-8745-0f2f65e21d91","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"由三视图还原实物图"},{"id":510,"uuid":"b2771525-c058-4f2b-8eb0-7c8a2d2db83d","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"中心投影及中心投影作图法"},{"id":511,"uuid":"c9ac346c-a3b4-460e-8e36-7fa00844d7a5","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平行投影及平行投影作图法"},{"id":512,"uuid":"d68a1c56-b438-4674-bdcd-ab3e98d240f3","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面图形的直观图"},{"id":513,"uuid":"4b97f449-1404-4743-8b20-438c4de18c3d","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"空间几何体的直观图"},{"id":514,"uuid":"9f40467e-bdfa-4671-a345-2eb2b7a3e6dd","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"斜二测画法直观图"},{"id":515,"uuid":"20e2fbbf-572f-4e47-97bd-7dbd86fa7d05","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"棱柱、棱锥、棱台的侧面积和表面积"},{"id":516,"uuid":"b3952b3f-f3d4-4c5f-b672-3bc6768a6f03","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"棱柱、棱锥、棱台的体积"},{"id":517,"uuid":"00658fef-59c3-45aa-b0e8-0179b7bc9eca","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"球的体积和表面积"},{"id":518,"uuid":"a586702e-723e-403f-af15-16cf76fb3d64","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"多面体和旋转体表面上的最短距离问题"},{"id":519,"uuid":"4f6d7ecd-de3a-47e0-8c53-6517aa389551","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面的概念、画法及表示"},{"id":520,"uuid":"69a738af-c9fb-47ea-bda3-2bf9912083c8","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面的基本性质及推论"},{"id":521,"uuid":"47969a2b-0508-42b6-9023-fd6db91e9ef7","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平行公理"},{"id":522,"uuid":"442b7802-67b8-4a1b-9634-7e1b873e8013","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"空间图形的公理"},{"id":523,"uuid":"6c14c770-6b53-45d6-bfbc-60a64a1afeaf","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"异面直线及其所成的角"},{"id":524,"uuid":"c6eb3c9b-4856-471c-a8ea-b5aea7c72965","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"异面直线的判定"},{"id":525,"uuid":"4b936ca1-3e0d-485c-94db-3a9e395886bf","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"空间中直线与直线之间的位置关系"},{"id":526,"uuid":"b3e67834-27ef-4aa8-9eb9-b48242a20c01","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"空间中直线与平面之间的位置关系"},{"id":527,"uuid":"9c47b001-2510-4bde-a124-67412f44075d","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面与平面之间的位置关系"},{"id":528,"uuid":"7d5cb617-3aaa-4883-9088-e71a18447a71","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"球内接多面体"},{"id":529,"uuid":"952b5ff3-1263-403c-81d5-85d91cf01502","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"直线与平面平行的判定"},{"id":530,"uuid":"d457473b-088c-43bc-a2d2-7e134a695d8d","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"直线与平面平行的性质"},{"id":531,"uuid":"8db9384f-7427-4b52-976b-08208167540f","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面与平面平行的判定"},{"id":532,"uuid":"0b5a88fb-9423-45c9-81e7-502d6e3f3075","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面与平面平行的性质"},{"id":533,"uuid":"8294682f-0b7c-45b8-9d2b-8a0b57fa674b","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"直线与平面垂直的判定"},{"id":534,"uuid":"8784dfb6-3b43-4bc7-a5d2-df043509f9ce","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"直线与平面垂直的性质"},{"id":535,"uuid":"dee57f54-4a93-4e57-83c6-7320d58e67f9","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面与平面垂直的判定"},{"id":536,"uuid":"3ba17f08-63be-448e-ba8c-0d23f7e4f5d5","parent_uuid":"4a2f1a75-d6c7-485e-9ef8-e563a8f5e5e8","name":"平面与平面垂直的性质"},{"id":537,"uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","parent_uuid":"9a476c4b-2f98-4c36-b5c7-9b7b6b1839bf","name":"空间向量与立体几何"},{"id":538,"uuid":"d6ceb629-ecc4-4ee9-8c7f-71f0436e55fc","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的概念"},{"id":539,"uuid":"fd74b3c6-ad70-4f30-bad1-bfd151f9d3d9","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的基本定理及其意义"},{"id":540,"uuid":"5525153f-f9ee-4eac-b850-a79e8c0a8344","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的加减法"},{"id":541,"uuid":"c9794c42-a4f0-4299-8a08-16fc18b4efaa","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的数乘运算"},{"id":542,"uuid":"372ad48d-bf99-470d-b70d-638bed76b5a9","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"共线向量与共面向量"},{"id":543,"uuid":"a102f823-54d7-48b1-92cf-cec52d98b410","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的数量积运算"},{"id":544,"uuid":"48c47ca3-a90a-4d5e-8789-74e78077787d","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的夹角与距离求解公式"},{"id":545,"uuid":"18391b04-2a7f-4c9e-912e-b0e4d003c3c3","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量的正交分解及其坐标表示"},{"id":546,"uuid":"0d46e252-61e5-4249-8ab0-707db3ffd078","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间向量运算的坐标表示"},{"id":547,"uuid":"83ac8af8-f957-4412-af4d-a93cc8babbd5","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"向量的数量积判断向量的共线与垂直"},{"id":548,"uuid":"de68928a-1abf-4988-8703-ca4814e730bb","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间点、线、面的位置"},{"id":549,"uuid":"a0037b58-e736-459e-976a-eddde4804388","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"直线的方向向量"},{"id":550,"uuid":"567795ee-9f9f-4b29-9efa-5bfdb8ae3454","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"平面的法向量"},{"id":551,"uuid":"b9d4e71b-36cc-4a3d-b4fc-88ed2c1239d4","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"空间直线的向量参数方程"},{"id":552,"uuid":"be6eb419-50a8-415a-8ace-aa8d512147ad","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"用向量证明平行"},{"id":553,"uuid":"a29e8645-ee5c-46ea-a3f2-ce7815d526aa","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"用向量证明垂直"},{"id":554,"uuid":"9fdb4c12-4a53-41b9-b6a3-99f02d513588","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"异面直线"},{"id":555,"uuid":"26c1e5a0-319e-4e09-91f3-2157736c476b","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"直线与平面所成的角"},{"id":556,"uuid":"d124ae6f-c61f-4ff4-85d2-eb676519cafd","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"与二面角有关的立体几何综合题"},{"id":557,"uuid":"295d5291-0bc0-411c-a29b-eb21eb8bb560","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"点、线、面间的距离计算"},{"id":558,"uuid":"6c266420-b3e9-4512-9be8-e5cd26df813b","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"向量语言表述线线的垂直、平行关系"},{"id":559,"uuid":"fcd471eb-12f1-4fd1-8f3f-50a0a858492a","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"向量语言表述线面的垂直、平行关系"},{"id":560,"uuid":"f18274a0-55fb-4fb4-b444-2632f999d3aa","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"向量语言表述面面的垂直、平行关系"},{"id":561,"uuid":"02790351-8ed3-4802-8cd9-3e2d6e189d68","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"向量方法证明线、面的位置关系定理"},{"id":562,"uuid":"6121c6f2-7507-4d3e-887f-20ec628fe40b","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"用空间向量求直线间的夹角、距离"},{"id":563,"uuid":"833c21f2-845e-4eb6-b948-a9876e539e76","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"用空间向量求直线与平面的夹角"},{"id":564,"uuid":"0095c36f-2ad9-4593-9482-806e28a55275","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"用空间向量求平面间的夹角"},{"id":565,"uuid":"635f1182-a83b-4dd4-9052-da1b81c27ba5","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"向量的投影"},{"id":566,"uuid":"78e779b0-49af-4c1c-9e92-69f0bd3168ef","parent_uuid":"412ec553-5f43-45ae-993d-6aa34f4a3179","name":"二面角的平面角及求法"},{"id":567,"uuid":"cc21f788-aa3a-4521-9a09-155e0bafa8eb","parent_uuid":"","name":"高等数学"},{"id":568,"uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","parent_uuid":"cc21f788-aa3a-4521-9a09-155e0bafa8eb","name":"几何证明选讲"},{"id":569,"uuid":"508b6560-e396-4839-9be8-7669bfa3f5a4","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"平行线等分线段定理"},{"id":570,"uuid":"a6ec8d78-cd7d-4ccc-8b2e-c79eab87330a","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"平行线分线段成比例定理"},{"id":571,"uuid":"d495e3c8-2e17-49b2-8883-a39f428a05b3","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"相似三角形的判定"},{"id":572,"uuid":"7881cb4b-01ed-478b-b807-a793b5de78e7","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"相似三角形的性质"},{"id":573,"uuid":"1d65fd31-4a86-4aa0-861e-ce9c22c61d55","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"直角三角形的射影定理"},{"id":574,"uuid":"575359ca-e491-46dd-bdb9-54e7ee4ec9d0","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"圆周角定理"},{"id":575,"uuid":"33bff3f9-27fb-4906-891d-cf8f09186081","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"圆內接多边形的性质与判定"},{"id":576,"uuid":"a00e0536-dd4e-4b20-acfd-17d88534af82","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"圆的切线的判定定理的证明"},{"id":577,"uuid":"3b128837-8111-417e-ab40-db0a71dddb90","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"圆的切线的性质定理的证明"},{"id":578,"uuid":"aec76cb7-c5fc-4f90-b4b5-8a6b7f51616d","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"弦切角"},{"id":579,"uuid":"5df84e63-8458-4684-9046-0e4ef0ec9111","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"与圆有关的比例线段"},{"id":580,"uuid":"7fd7fbd1-e492-48ca-a5d3-005631baea10","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"球的性质"},{"id":581,"uuid":"3be675e8-dff2-4113-87f2-679aff0910c3","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"平面与圆柱面的截线"},{"id":582,"uuid":"f130f4eb-b64a-42f3-b052-ce118dc442aa","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"平面与圆锥面的截线"},{"id":583,"uuid":"cfb4029a-9dcb-4bf9-ae3b-b771c0b46cba","parent_uuid":"8f629ed8-08d9-4447-acb1-f68a854f232e","name":"圆锥曲线的几何性质"},{"id":584,"uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","parent_uuid":"cc21f788-aa3a-4521-9a09-155e0bafa8eb","name":"矩阵与变换"},{"id":585,"uuid":"b63e673d-513a-472c-bbeb-0e4a7dc1da3b","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"二阶矩阵"},{"id":586,"uuid":"61eb4bb7-d91f-4444-b2f8-05815de85b34","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"二阶矩阵与平面向量的乘法"},{"id":587,"uuid":"1b62d03a-f333-4b37-aa76-f4a6602f9c81","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"旋转变换"},{"id":588,"uuid":"38924d91-452d-4dd4-8017-40845376c490","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"伸缩变换"},{"id":589,"uuid":"f9c09dd6-3d70-4834-bea5-93ed809424ea","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"变换、矩阵的相等"},{"id":590,"uuid":"006e48d5-2f3e-485d-93b9-586cec17e657","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"矩阵与向量乘法的意义"},{"id":591,"uuid":"e31ccf0e-c5a8-40f4-9a58-0dd648d7c990","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"几种特殊的矩阵变换"},{"id":592,"uuid":"4d8d8885-fc90-4ad6-8799-38ee9a5f236f","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"矩阵变换的性质"},{"id":593,"uuid":"2cbb3e01-5825-4110-8bda-d3c44220d1d9","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"矩阵与矩阵的乘法的意义"},{"id":594,"uuid":"79a9b7dd-fd2c-46b0-9dbd-e7bd2093cced","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"矩阵乘法的性质"},{"id":595,"uuid":"c9eeafd8-a5cc-410e-8fcb-56515bf78fb9","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"逆变换与逆矩阵"},{"id":596,"uuid":"fe2fb0f2-ad29-4e5d-a02b-32630836747d","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"二阶行列式的定义"},{"id":597,"uuid":"f598080a-1c38-4999-bde6-ea7da2281a50","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"二阶行列式与逆矩阵"},{"id":598,"uuid":"d9b16cd1-017f-4d47-9208-ab3256f6ab06","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"二元一次方程组的矩阵形式"},{"id":599,"uuid":"4fffa1d0-6d07-4c81-a49f-cd55e8b17355","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"系数矩阵的逆矩阵解方程组"},{"id":600,"uuid":"49f913df-f9ee-4fcd-8e77-b333d371b98e","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"线性方程组解的存在性,唯一性"},{"id":601,"uuid":"76850a6d-e46f-4b4c-956f-256e4b8b70ed","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"特征值与特征向量的计算"},{"id":602,"uuid":"9dca7d55-2685-40fc-bffe-267f797e8db0","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"特征值、特征向量的应用"},{"id":603,"uuid":"eeafc695-7ed8-458d-b44e-c57a21d6c3e6","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"矩阵的应用"},{"id":604,"uuid":"7c3c3586-fdc2-42ea-bd0b-40b4ad60ba99","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"三阶矩阵"},{"id":605,"uuid":"2d181da9-dd16-42fa-b470-bc61322ec9f5","parent_uuid":"8ad905a1-365c-45ea-a8c4-9cefb67dc58b","name":"高阶矩阵"},{"id":606,"uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","parent_uuid":"cc21f788-aa3a-4521-9a09-155e0bafa8eb","name":"坐标系与参数方程"},{"id":607,"uuid":"e686849f-f0ea-44fc-87ca-86875380a382","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"平面直角坐标系与曲线方程"},{"id":608,"uuid":"24bb2131-698e-46e8-ac82-c87089b77d9b","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"极坐标系"},{"id":609,"uuid":"4c3b4293-b2ec-4445-97f8-dd200f525e72","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"简单曲线的极坐标方程"},{"id":610,"uuid":"87f9fea6-668e-4e80-bafb-5fcb5ffe7025","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"平面直角坐标轴中的伸缩变换"},{"id":611,"uuid":"cc72c746-548a-4c59-a7bf-292940f66ba4","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"极坐标刻画点的位置"},{"id":612,"uuid":"8683e66c-055c-47d0-acf4-da4139ee8bdc","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"极坐标系和平面直角坐标的区别"},{"id":613,"uuid":"8f9837aa-8d03-46ac-ac65-297576de6767","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"点的极坐标和直角坐标的互化"},{"id":614,"uuid":"eafb00a3-df20-47b9-b598-38d4c1fd80b0","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"参数方程的概念"},{"id":615,"uuid":"9f20e204-f93d-48f3-95a4-5fc7e9bc1eaf","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"抛物运动轨迹的参数方程"},{"id":616,"uuid":"e05242f7-ac97-4b52-b4b8-9a89b5a37000","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"参数方程化成普通方程"},{"id":617,"uuid":"848bb839-a2d6-426d-99ba-3d31beb5350e","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"直线的参数方程"},{"id":618,"uuid":"0d5a779b-8981-4d9d-b7f5-61f73bd4a0d8","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"圆的参数方程"},{"id":619,"uuid":"b4b344b2-294f-4ffe-88a6-963d50d2fd02","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"椭圆的参数方程"},{"id":620,"uuid":"f5e47b03-5390-452a-8ef4-980657899cce","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"双曲线的参数方程"},{"id":621,"uuid":"d7ce9979-b8e4-44e1-a4d7-ba82eafbe4b8","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"抛物线的参数方程"},{"id":622,"uuid":"75ce8439-68ff-462d-a45e-0a84be46474f","parent_uuid":"9627c505-f81d-4076-9c4f-f981eb013fad","name":"渐开线的生成过程及其参数方程"},{"id":623,"uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","parent_uuid":"cc21f788-aa3a-4521-9a09-155e0bafa8eb","name":"不等式选讲"},{"id":624,"uuid":"3d348af1-9c71-483e-8a04-483f8fb26081","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"不等式"},{"id":625,"uuid":"ac89a5c5-464f-4fa3-933c-efa2d8a7ea60","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"绝对值不等式"},{"id":626,"uuid":"9cc2196f-22d9-4153-b121-e4f5730c1afb","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"不等式的基本性质"},{"id":627,"uuid":"3fda5b64-02c5-44e5-9cb4-51ef60c718d9","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"绝对值三角不等式"},{"id":628,"uuid":"aec5a3e9-88ec-48a9-8dff-bc56e3793182","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"绝对值不等式的解法"},{"id":629,"uuid":"5bf87fdb-4c56-4c99-8795-2c2a14b58071","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"不等式的证明"},{"id":630,"uuid":"c02e77e4-82a0-4b8b-a4cc-9ebea44fb3fb","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"比较法"},{"id":631,"uuid":"00b1141b-763f-424f-9f6b-7422603d23e9","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"综合法与分析法(选修)"},{"id":632,"uuid":"5c77e080-4486-486f-be69-d7318ed03f6f","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"反证法与放缩法"},{"id":633,"uuid":"56073bb4-f957-4b3d-8533-161fe23e914c","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"二维形式的柯西不等式"},{"id":634,"uuid":"8d6a16ec-3ea9-4305-8736-0c30d520c0b4","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"一般形式的柯西不等式"},{"id":635,"uuid":"3cfb2475-37bc-4e13-9481-0b564a48518b","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"柯西不等式的几何意义"},{"id":636,"uuid":"2e9e886a-099e-41c1-84a1-796c2bf6e3d5","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"排序不等式"},{"id":637,"uuid":"359a6bf1-e530-4257-923c-c71d8cc4def1","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"数学归纳法"},{"id":638,"uuid":"14ef8c14-0a2b-4dac-9dde-ee2ea9f4da55","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"平均值不等式"},{"id":639,"uuid":"3bd4aef3-b08f-4197-9f1b-e57f1878955f","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"平均值不等式在函数极值中的应用"},{"id":640,"uuid":"250983f9-3d77-4195-8fe4-cb4e36ef3a5f","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"柯西不等式在函数极值中的应用"},{"id":641,"uuid":"b17c68e4-a3ee-4327-ba7c-ad7f5a27c34e","parent_uuid":"7dc7fad0-455d-4304-bd69-af491513ea05","name":"用数学归纳法证明不等式"},{"id":642,"uuid":"f5d440d9-53c7-441c-adf7-49cd12d00264","parent_uuid":"cc21f788-aa3a-4521-9a09-155e0bafa8eb","name":"初等数论初步、优选法与试验设计初步"},{"id":643,"uuid":"bbec981b-07ac-4b1f-830d-0c88dfb92d7d","parent_uuid":"","name":"数学知识延伸"},{"id":644,"uuid":"ffcc2070-67a3-4e7e-ae11-5b12ae526dfa","parent_uuid":"bbec981b-07ac-4b1f-830d-0c88dfb92d7d","name":"数学史选讲"},{"id":645,"uuid":"4e1c9b16-f41a-4fbc-a735-1f4a80e553f0","parent_uuid":"bbec981b-07ac-4b1f-830d-0c88dfb92d7d","name":"初等数论的有关知识"},{"id":646,"uuid":"0aedd17e-0ddf-44b6-8b4b-22296bf81049","parent_uuid":"4e1c9b16-f41a-4fbc-a735-1f4a80e553f0","name":"多项式"},{"id":647,"uuid":"f45ba7a7-db3c-479b-bf98-8f65aee15dd7","parent_uuid":"bbec981b-07ac-4b1f-830d-0c88dfb92d7d","name":"对称与群"},{"id":648,"uuid":"cf57742c-fbc9-4dba-873c-2b946612ef8e","parent_uuid":"bbec981b-07ac-4b1f-830d-0c88dfb92d7d","name":"三等分角与数域扩充"}] --------------------------------------------------------------------------------