├── DataSource
├── HSI50_Stock_list.csv
├── StockData
│ ├── HK.00001.csv
│ ├── HK.00002.csv
│ ├── HK.00003.csv
│ ├── HK.00005.csv
│ ├── HK.00006.csv
│ ├── HK.00011.csv
│ ├── HK.00012.csv
│ ├── HK.00016.csv
│ ├── HK.00017.csv
│ ├── HK.00027.csv
│ ├── HK.00066.csv
│ ├── HK.00101.csv
│ ├── HK.00175.csv
│ ├── HK.00241.csv
│ ├── HK.00267.csv
│ ├── HK.00288.csv
│ ├── HK.00291.csv
│ ├── HK.00386.csv
│ ├── HK.00388.csv
│ ├── HK.00669.csv
│ ├── HK.00688.csv
│ ├── HK.00700.csv
│ ├── HK.00762.csv
│ ├── HK.00823.csv
│ ├── HK.00857.csv
│ ├── HK.00868.csv
│ ├── HK.00883.csv
│ ├── HK.00939.csv
│ ├── HK.00941.csv
│ ├── HK.00960.csv
│ ├── HK.00968.csv
│ ├── HK.01038.csv
│ ├── HK.01044.csv
│ ├── HK.01093.csv
│ ├── HK.01109.csv
│ ├── HK.01113.csv
│ ├── HK.01177.csv
│ ├── HK.01211.csv
│ ├── HK.01299.csv
│ ├── HK.01398.csv
│ ├── HK.01810.csv
│ ├── HK.01876.csv
│ ├── HK.01928.csv
│ ├── HK.01997.csv
│ ├── HK.02007.csv
│ ├── HK.02018.csv
│ ├── HK.02020.csv
│ ├── HK.02269.csv
│ ├── HK.02313.csv
│ ├── HK.02318.csv
│ ├── HK.02319.csv
│ ├── HK.02331.csv
│ ├── HK.02382.csv
│ ├── HK.02388.csv
│ ├── HK.02628.csv
│ ├── HK.02688.csv
│ ├── HK.03690.csv
│ ├── HK.03968.csv
│ ├── HK.03988.csv
│ ├── HK.06098.csv
│ ├── HK.06862.csv
│ ├── HK.09618.csv
│ ├── HK.09988.csv
│ ├── HK.09999.csv
│ └── HK.800000.csv
├── full_hsi_stock_list.csv
└── research_use_39_stocks.csv
├── Images
├── optimization-snapshot.png
├── portfolio1.png
├── portfolio2.png
├── prediction-snapshot.png
├── prediction1.png
└── prediction2.png
├── LICENSE
├── README.md
├── Research-Cookbook
├── step1-stock_historical_data_download.ipynb
├── step2-stock_data_selection.ipynb
├── step3-stock_prediction_models.ipynb
├── step4-stock_prediction_result_analysis.ipynb
├── step5-stock_portfolio_optimization_models.ipynb
└── step6-portfolio_optimization_result_analysis.ipynb
├── Research-Program
├── PortfolioOptimization.py
└── StockPrediction.py
├── Results
├── PortfolioOptimization
│ ├── portfolio_optimization_results_all_period_prediction.csv
│ └── portfolio_optimization_results_all_period_prediction.xlsx
├── PortfolioResultFigures
│ ├── [All Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
│ ├── [All Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
│ ├── [All Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
│ ├── [All Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
│ ├── [All Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
│ ├── [All Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
│ ├── [All Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
│ ├── [All Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
│ ├── [All Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [All Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [All Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
│ ├── [All Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [All Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [All Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [All Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
│ ├── [All Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Covid Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
│ ├── [Covid Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
│ ├── [Covid Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
│ ├── [Covid Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Covid Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
│ ├── [Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
│ ├── [Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
│ ├── [Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
│ ├── [Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Covid Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [Covid Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [Covid Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
│ ├── [Covid Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Test Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
│ ├── [Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
│ ├── [Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
│ ├── [Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Test Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
│ ├── [Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
│ ├── [Pre Covid Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
│ ├── [Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
│ ├── [Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Pre Covid Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
│ ├── [Pre Covid Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
│ ├── [Pre Covid Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
│ ├── [Pre Covid Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
│ ├── [Time Period]-[Mean-Variance Optimization]-[prediction model]].png
│ ├── [Time]-[Hierarchical Risk Parity Optimization]-[Prediction model]].png
│ ├── [test]-[K-Mean based Mean-Variance Optimization]-[prediction model]].png
│ └── [time period]-[Equal Weighted Optimization]-[Prediction model]].png
├── PredictionResultFigures
│ ├── 0why-prediction-results-are-not-complete.txt
│ ├── [HK.00002]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00002]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00003]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00005]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ ├── [HK.00006]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
│ └── [HK.00006]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
└── StockPrediction
│ ├── Tecnical Indicators Performance Test.csv
│ ├── [prediction]-[all_time]-[accuracy].csv
│ ├── [prediction]-[all_time_results]-[results].csv
│ ├── [prediction]-[all_time_results]-[results].xlsx
│ ├── [prediction]-[covid_time]-[accuracy].csv
│ ├── [prediction]-[covid_time_results]-[results].csv
│ ├── [prediction]-[covid_time_results]-[results].xlsx
│ ├── [prediction]-[four period]-[mean_absolute_error].csv
│ ├── [prediction]-[four period]-[mean_absolute_error].xlsx
│ ├── [prediction]-[four period]-[score].csv
│ ├── [prediction]-[four period]-[score].xlsx
│ ├── [prediction]-[per_covid_time]-[accuracy].csv
│ ├── [prediction]-[pre_covid_test_time]-[accuracy].csv
│ ├── [prediction]-[pre_covid_test_time_results]-[results].csv
│ ├── [prediction]-[pre_covid_test_time_results]-[results].xlsx
│ ├── [prediction]-[pre_covid_time_results]-[results].csv
│ ├── [prediction]-[pre_covid_time_results]-[results].xlsx
│ ├── all_time_results.csv
│ ├── covid_time_results.csv
│ ├── portfolio_input_all_period_top5.csv
│ ├── portfolio_input_all_period_top5.xlsx
│ ├── pre_covid_test_time_results.csv
│ └── pre_covid_time_results.csv
└── requirements.txt
/DataSource/HSI50_Stock_list.csv:
--------------------------------------------------------------------------------
1 | Stock Code,ISIN CODE,Company Name,Industry Classification,Share Type,Weighting (%)
2 | 700,KYG875721634,TENCENT,Information Technology,Other HK-listed Mainland Co.,8
3 | 5,GB0005405286,HSBC HOLDINGS,Financials,HK Ordinary,7.71
4 | 3690,KYG596691041,MEITUAN-W,Information Technology,Other HK-listed Mainland Co.,7.62
5 | 1299,HK0000069689,AIA,Financials,HK Ordinary,7.53
6 | 9988,KYG017191142,BABA-SW,Information Technology,Other HK-listed Mainland Co.,7.13
7 | 939,CNE1000002H1,CCB,Financials,H Share,4.63
8 | 388,HK0388045442,HKEX,Financials,HK Ordinary,4.35
9 | 2318,CNE1000003X6,PING AN,Financials,H Share,2.82
10 | 2269,KYG970081173,WUXI BIO,Healthcare,HK Ordinary,2.64
11 | 1810,KYG9830T1067,XIAOMI-W,Information Technology,Other HK-listed Mainland Co.,2.63
12 | 1398,CNE1000003G1,ICBC,Financials,H Share,2.57
13 | 941,HK0941009539,CHINA MOBILE,Telecommunications,Red Chip,2.28
14 | 3968,CNE1000002M1,CM BANK,Financials,H Share,1.87
15 | 669,HK0669013440,TECHTRONIC IND,Consumer Discretionary,HK Ordinary,1.8
16 | 1211,CNE100000296,BYD COMPANY,Consumer Discretionary,H Share,1.77
17 | 3988,CNE1000001Z5,BANK OF CHINA,Financials,H Share,1.77
18 | 2331,KYG5496K1242,LI NING,Consumer Discretionary,Other HK-listed Mainland Co.,1.52
19 | 2382,KYG8586D1097,SUNNY OPTICAL,Industrials,Other HK-listed Mainland Co.,1.39
20 | 9618,KYG8208B1014,JD-SW,Information Technology,Other HK-listed Mainland Co.,1.34
21 | 2,HK0002007356,CLP HOLDINGS,Utilities,HK Ordinary,1.26
22 | 823,HK0823032773,LINK REIT,Properties & Construction,HK Ordinary,1.14
23 | 883,HK0883013259,CNOOC,Energy,Red Chip,1.14
24 | 3,HK0003000038,HK & CHINA GAS,Utilities,HK Ordinary,1.08
25 | 1,KYG217651051,CKH HOLDINGS,Conglomerates,HK Ordinary,1.07
26 | 2313,KYG8087W1015,SHENZHOU INTL,Consumer Discretionary,Other HK-listed Mainland Co.,1.07
27 | 2020,KYG040111059,ANTA SPORTS,Consumer Discretionary,Other HK-listed Mainland Co.,1
28 | 175,KYG3777B1032,GEELY AUTO,Consumer Discretionary,Other HK-listed Mainland Co.,0.99
29 | 16,HK0016000132,SHK PPT,Properties & Construction,HK Ordinary,0.98
30 | 2319,KYG210961051,MENGNIU DAIRY,Consumer Staples,Red Chip,0.97
31 | 2688,KYG3066L1014,ENN ENERGY,Utilities,Other HK-listed Mainland Co.,0.92
32 | 11,HK0011000095,HANG SENG BANK,Financials,HK Ordinary,0.86
33 | 1109,KYG2108Y1052,CHINA RES LAND,Properties & Construction,Red Chip,0.83
34 | 291,HK0291001490,CHINA RES BEER,Consumer Staples,Red Chip,0.82
35 | 1113,KYG2177B1014,CK ASSET,Properties & Construction,HK Ordinary,0.78
36 | 2628,CNE1000002L3,CHINA LIFE,Financials,H Share,0.76
37 | 2388,HK2388011192,BOC HONG KONG,Financials,HK Ordinary,0.75
38 | 27,HK0027032686,GALAXY ENT,Consumer Discretionary,HK Ordinary,0.7
39 | 386,CNE1000002Q2,SINOPEC CORP,Energy,H Share,0.7
40 | 6098,KYG2453A1085,CG SERVICES,Properties & Construction,Other HK-listed Mainland Co,0.65
41 | 9999,KYG6427A1022,NTES-S,Information Technology,Other HK-listed Mainland Co.,0.64
42 | 66,HK0066009694,MTR CORPORATION,Consumer Discretionary,HK Ordinary,0.62
43 | 1093,HK1093012172,CSPC PHARMA,Healthcare,Other HK-listed Mainland Co.,0.6
44 | 857,CNE1000003W8,PETROCHINA,Energy,H Share,0.58
45 | 1997,KYG9593A1040,WHARF REIC,Properties & Construction,HK Ordinary,0.57
46 | 688,HK0688002218,CHINA OVERSEAS,Properties & Construction,Red Chip,0.56
47 | 6,HK0006000050,POWER ASSETS,Utilities,HK Ordinary,0.53
48 | 960,KYG5635P1090,LONGFOR GROUP,Properties & Construction,Other HK-listed Mainland Co,0.53
49 | 968,KYG9829N1025,XINYI SOLAR,Industrials,Other HK-listed Mainland Co,0.51
50 | 1177,KYG8167W1380,SINO BIOPHARM,Healthcare,Other HK-listed Mainland Co,0.49
51 | 267,HK0267001375,CITIC,Conglomerates,Red Chip,0.44
--------------------------------------------------------------------------------
/DataSource/full_hsi_stock_list.csv:
--------------------------------------------------------------------------------
1 | code,lot_size,stock_name,stock_owner,stock_child_type,stock_type,list_time,stock_id,main_contract,last_trade_time
2 | HK.00001,500,长和,,,STOCK,2015-03-18,4440996184065,False,
3 | HK.00002,500,中电控股,,,STOCK,1970-01-01,2,False,
4 | HK.00003,1000,香港中华煤气,,,STOCK,1970-01-01,3,False,
5 | HK.00005,400,汇丰控股,,,STOCK,1970-01-01,5,False,
6 | HK.00006,500,电能实业,,,STOCK,1976-08-16,6,False,
7 | HK.00011,100,恒生银行,,,STOCK,1972-06-20,3865470566411,False,
8 | HK.00012,1000,恒基地产,,,STOCK,1981-07-23,18124761989132,False,
9 | HK.00016,500,新鸿基地产,,,STOCK,1972-09-08,4209067950096,False,
10 | HK.00017,1000,新世界发展,,,STOCK,1972-11-23,4535485464593,False,
11 | HK.00027,1000,银河娱乐,,,STOCK,1991-10-07,34136400068635,False,
12 | HK.00066,500,港铁公司,,,STOCK,2000-10-05,48249662603330,False,
13 | HK.00101,1000,恒隆地产,,,STOCK,1970-01-01,101,False,
14 | HK.00175,1000,吉利汽车,,,STOCK,1973-02-23,4930622455983,False,
15 | HK.00241,2000,阿里健康,,,STOCK,1972-07-06,3934190043377,False,
16 | HK.00267,1000,中信股份,,,STOCK,1986-02-26,25336012079371,False,
17 | HK.00288,500,万洲国际,,,STOCK,2014-08-05,69947837382944,False,
18 | HK.00291,2000,华润啤酒,,,STOCK,1970-01-01,291,False,
19 | HK.00386,2000,中国石油化工股份,,,STOCK,2000-10-19,48309792145794,False,
20 | HK.00388,100,香港交易所,,,STOCK,2000-06-27,47820165874052,False,
21 | HK.00669,500,创科实业,,,STOCK,1990-12-17,32873679684253,False,
22 | HK.00688,500,中国海外发展,,,STOCK,1992-08-20,35502199669424,False,
23 | HK.00700,100,腾讯控股,,,STOCK,2004-06-16,54047868453564,False,
24 | HK.00762,2000,中国联通,,,STOCK,2000-06-22,47798691037946,False,
25 | HK.00823,100,领展房产基金,,,ETF,2005-11-25,56311316218679,False,
26 | HK.00857,2000,中国石油股份,,,STOCK,2000-04-07,47472273523545,False,
27 | HK.00868,1000,信义玻璃,,,STOCK,2005-02-03,55044300866404,False,
28 | HK.00883,1000,中国海洋石油,,,STOCK,2001-02-28,48876727829363,False,
29 | HK.00939,1000,建设银行,,,STOCK,2005-10-27,56186762167211,False,
30 | HK.00941,500,中国移动,,,STOCK,1997-10-23,43619687859117,False,
31 | HK.00960,500,龙湖集团,,,STOCK,2009-11-19,62560493634496,False,
32 | HK.00968,2000,信义光能,,,STOCK,2013-12-12,68934225101768,False,
33 | HK.01038,500,长江基建集团,,,STOCK,1996-07-17,41631118001166,False,
34 | HK.01044,500,恒安国际,,,STOCK,1998-12-08,45384919417876,False,
35 | HK.01093,2000,石药集团,,,STOCK,1994-06-21,38379827758149,False,
36 | HK.01109,2000,华润置地,,,STOCK,1996-11-08,42120744272981,False,
37 | HK.01113,500,长实集团,,,STOCK,2015-06-03,71244917507161,False,
38 | HK.01177,1000,中国生物制药,,,STOCK,2003-12-08,53227529700505,False,
39 | HK.01211,500,比亚迪股份,,,STOCK,2002-07-31,51101520889019,False,
40 | HK.01299,200,友邦保险,,,STOCK,2010-10-29,64037962384659,False,
41 | HK.01398,1000,工商银行,,,STOCK,2006-10-27,57754425230710,False,
42 | HK.01810,200,小米集团-W,,,STOCK,2018-07-09,76033806042898,False,
43 | HK.01876,100,百威亚太,,,STOCK,2019-09-30,77644418778964,False,
44 | HK.01928,400,金沙中国有限公司,,,STOCK,2009-11-30,62607738275720,False,
45 | HK.01997,1000,九龙仓置业,,,STOCK,2017-11-23,75067438401485,False,
46 | HK.02007,1000,碧桂园,,,STOCK,2007-04-20,58506044508119,False,
47 | HK.02018,500,瑞声科技,,,STOCK,2005-08-09,55847459751906,False,
48 | HK.02020,200,安踏体育,,,STOCK,2007-07-10,58853936859108,False,
49 | HK.02269,500,药明生物,,,STOCK,2017-06-13,74371653699805,False,
50 | HK.02313,100,申洲国际,,,STOCK,2005-11-24,56307021252873,False,
51 | HK.02318,500,中国平安,,,STOCK,2004-06-24,54082228193550,False,
52 | HK.02319,1000,蒙牛乳业,,,STOCK,2004-06-10,54022098651407,False,
53 | HK.02331,500,李宁,,,STOCK,2004-06-28,54099408062747,False,
54 | HK.02382,100,舜宇光学科技,,,STOCK,2007-06-15,58746562677070,False,
55 | HK.02388,500,中银香港,,,STOCK,2002-07-25,51075751086420,False,
56 | HK.02628,1000,中国人寿,,,STOCK,2003-12-18,53270479374916,False,
57 | HK.02688,100,新奥能源,,,STOCK,2002-06-03,50852412787328,False,
58 | HK.03690,100,美团-W,,,STOCK,2018-09-20,76364518526570,False,
59 | HK.03968,500,招商银行,,,STOCK,2006-09-22,57604101377920,False,
60 | HK.03988,1000,中国银行,,,STOCK,2006-06-01,57118770073492,False,
61 | HK.06098,1000,碧桂园服务,,,STOCK,2018-06-19,75965086570450,False,
62 | HK.06862,1000,海底捞,,,STOCK,2018-09-26,76385993366222,False,
63 | HK.09618,50,京东集团-SW,,,STOCK,2020-06-18,79100412700050,False,
64 | HK.09988,100,阿里巴巴-SW,,,STOCK,2019-11-26,78224239372036,False,
65 | HK.09999,100,网易-S,,,STOCK,2020-06-11,79083232831247,False,
66 |
--------------------------------------------------------------------------------
/DataSource/research_use_39_stocks.csv:
--------------------------------------------------------------------------------
1 | Stock Code,ISIN CODE,Company Name,Industry Classification,Share Type,Weighting (%),lot_size,stock_name,list_time
2 | HK.00700,KYG875721634,TENCENT,Information Technology,Other HK-listed Mainland Co.,8.0,100,腾讯控股,2004-06-16
3 | HK.00005,GB0005405286,HSBC HOLDINGS,Financials,HK Ordinary,7.71,400,汇丰控股,1970-01-01
4 | HK.01299,HK0000069689,AIA,Financials,HK Ordinary,7.53,200,友邦保险,2010-10-29
5 | HK.00939,CNE1000002H1,CCB,Financials,H Share,4.63,1000,建设银行,2005-10-27
6 | HK.00388,HK0388045442,HKEX,Financials,HK Ordinary,4.35,100,香港交易所,2000-06-27
7 | HK.02318,CNE1000003X6,PING AN,Financials,H Share,2.82,500,中国平安,2004-06-24
8 | HK.01398,CNE1000003G1,ICBC,Financials,H Share,2.57,1000,工商银行,2006-10-27
9 | HK.00941,HK0941009539,CHINA MOBILE,Telecommunications,Red Chip,2.28,500,中国移动,1997-10-23
10 | HK.03968,CNE1000002M1,CM BANK,Financials,H Share,1.87,500,招商银行,2006-09-22
11 | HK.00669,HK0669013440,TECHTRONIC IND,Consumer Discretionary,HK Ordinary,1.8,500,创科实业,1990-12-17
12 | HK.01211,CNE100000296,BYD COMPANY,Consumer Discretionary,H Share,1.77,500,比亚迪股份,2002-07-31
13 | HK.03988,CNE1000001Z5,BANK OF CHINA,Financials,H Share,1.77,1000,中国银行,2006-06-01
14 | HK.02331,KYG5496K1242,LI NING,Consumer Discretionary,Other HK-listed Mainland Co.,1.52,500,李宁,2004-06-28
15 | HK.02382,KYG8586D1097,SUNNY OPTICAL,Industrials,Other HK-listed Mainland Co.,1.39,100,舜宇光学科技,2007-06-15
16 | HK.00002,HK0002007356,CLP HOLDINGS,Utilities,HK Ordinary,1.26,500,中电控股,1970-01-01
17 | HK.00823,HK0823032773,LINK REIT,Properties & Construction,HK Ordinary,1.14,100,领展房产基金,2005-11-25
18 | HK.00883,HK0883013259,CNOOC,Energy,Red Chip,1.14,1000,中国海洋石油,2001-02-28
19 | HK.00003,HK0003000038,HK & CHINA GAS,Utilities,HK Ordinary,1.08,1000,香港中华煤气,1970-01-01
20 | HK.02313,KYG8087W1015,SHENZHOU INTL,Consumer Discretionary,Other HK-listed Mainland Co.,1.07,100,申洲国际,2005-11-24
21 | HK.02020,KYG040111059,ANTA SPORTS,Consumer Discretionary,Other HK-listed Mainland Co.,1.0,200,安踏体育,2007-07-10
22 | HK.00175,KYG3777B1032,GEELY AUTO,Consumer Discretionary,Other HK-listed Mainland Co.,0.99,1000,吉利汽车,1973-02-23
23 | HK.00016,HK0016000132,SHK PPT,Properties & Construction,HK Ordinary,0.98,500,新鸿基地产,1972-09-08
24 | HK.02319,KYG210961051,MENGNIU DAIRY,Consumer Staples,Red Chip,0.97,1000,蒙牛乳业,2004-06-10
25 | HK.02688,KYG3066L1014,ENN ENERGY,Utilities,Other HK-listed Mainland Co.,0.92,100,新奥能源,2002-06-03
26 | HK.00011,HK0011000095,HANG SENG BANK,Financials,HK Ordinary,0.86,100,恒生银行,1972-06-20
27 | HK.01109,KYG2108Y1052,CHINA RES LAND,Properties & Construction,Red Chip,0.83,2000,华润置地,1996-11-08
28 | HK.00291,HK0291001490,CHINA RES BEER,Consumer Staples,Red Chip,0.82,2000,华润啤酒,1970-01-01
29 | HK.02628,CNE1000002L3,CHINA LIFE,Financials,H Share,0.76,1000,中国人寿,2003-12-18
30 | HK.02388,HK2388011192,BOC HONG KONG,Financials,HK Ordinary,0.75,500,中银香港,2002-07-25
31 | HK.00027,HK0027032686,GALAXY ENT,Consumer Discretionary,HK Ordinary,0.7,1000,银河娱乐,1991-10-07
32 | HK.00386,CNE1000002Q2,SINOPEC CORP,Energy,H Share,0.7,2000,中国石油化工股份,2000-10-19
33 | HK.00066,HK0066009694,MTR CORPORATION,Consumer Discretionary,HK Ordinary,0.62,500,港铁公司,2000-10-05
34 | HK.01093,HK1093012172,CSPC PHARMA,Healthcare,Other HK-listed Mainland Co.,0.6,2000,石药集团,1994-06-21
35 | HK.00857,CNE1000003W8,PETROCHINA,Energy,H Share,0.58,2000,中国石油股份,2000-04-07
36 | HK.00688,HK0688002218,CHINA OVERSEAS,Properties & Construction,Red Chip,0.56,500,中国海外发展,1992-08-20
37 | HK.00006,HK0006000050,POWER ASSETS,Utilities,HK Ordinary,0.53,500,电能实业,1976-08-16
38 | HK.00960,KYG5635P1090,LONGFOR GROUP,Properties & Construction,Other HK-listed Mainland Co,0.53,500,龙湖集团,2009-11-19
39 | HK.01177,KYG8167W1380,SINO BIOPHARM,Healthcare,Other HK-listed Mainland Co,0.49,1000,中国生物制药,2003-12-08
40 | HK.00267,HK0267001375,CITIC,Conglomerates,Red Chip,0.44,1000,中信股份,1986-02-26
41 |
--------------------------------------------------------------------------------
/Images/optimization-snapshot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Images/optimization-snapshot.png
--------------------------------------------------------------------------------
/Images/portfolio1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Images/portfolio1.png
--------------------------------------------------------------------------------
/Images/portfolio2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Images/portfolio2.png
--------------------------------------------------------------------------------
/Images/prediction-snapshot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Images/prediction-snapshot.png
--------------------------------------------------------------------------------
/Images/prediction1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Images/prediction1.png
--------------------------------------------------------------------------------
/Images/prediction2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Images/prediction2.png
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2022 AqrMaxM
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Research-on-Stock-Prediction-based-Portfolio-Optimization
2 |
3 | > An Empirical Study of Optimal Combination of Algorithms for Prediction-Based Portfolio Optimization Model using Machine Learning over Covid-19 Period using HK stock market
4 |
5 |
6 |
7 | ## What is this Project About?
8 |
9 | - This is the final year project conducted myself during the study in Hong Kong Baptist University in 2022
10 | - This project is the repository of a research which focuses on combining `Stock Prediction Algorithms` and `Portfolio Optimization Algorithms` together to maximize the portfolio performance.
11 | - This search uses the Hong Kong Stock Market and also studies the impact of Covid-19 on the stocks and portfolios performance.
12 |
13 |
14 |
15 | ## What does this Repository Include?
16 |
17 | - This Repository includes all the Data Source, Data Cleaning, Stock Prediction Algorithms, Portfolio Optimization Algorithms, Research Steps, Research Results that are needed in this research.
18 |
19 | - [**DataSource**](./DataSource): This research collects historical stock data from Hong Kong Stock Market using [FUTU Open API](https://openapi.futunn.com/futu-api-doc/en/), including all 64 Hang Seng Index Stocks
20 | - [**Research-Cookbook**](./Research-Cookbook): This is the actual practical research implementation step-by-step, from downloading source data, to data cleaning, build up all stock prediction algorithms, portfolio optimization algorithms, and finally conduct data analysis for studying results.
21 | - [**Research-Program**](./Research-Program): As building up all stock prediction models and portfolio optimization models takes much computing power and memory, it may be hard to run these two process inside the jupyter notebook. The two .py programs inside Research-Program can be used to run through all model-building process and output results.
22 | - [**Results**](./Results): All the results from overall research process are stored in this Results folder, where you can find all .csv .xlsx and figures result files.
23 |
24 |
25 |
26 | ## How to Set Up the Environment?
27 |
28 | - You can first download this repository
29 | - as a `.zip` file
30 | - or run `git clone https://github.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization` in a folder where you want to set this repository.
31 |
32 | - It is recommended to use `conda` or `virtual environment` to run the repository, for detailed installation on different operating system, please refer to:
33 | - [virtualenv Installation](https://virtualenv.pypa.io/en/latest/installation.html)
34 | - [conda Installation](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html)
35 | - If you use `virtualenv`, you can then activate the environment and `cd` to the local project repository, and then run `pip install -r requirements.txt` to install all dependcies
36 | - If you use `conda`, please note that several packages used in this research can only be installed via `pip` currently, so it is recommended to directly run the notebook and install the dependcies via searching whether it is available on `conda` when the `No module named xxx package` error message shows up.
37 |
38 |
39 |
40 | ## How to Run Through the Research Process?
41 |
42 | - After setting up the environment, you should be able to run through the research process step-by-step by following the notebooks inside [**Research-Cookbook**](./Research-Cookbook)
43 | - **If you want to use re-run the research, please go directly to the step3 inside [Research-Cookbook](./Research-Cookbook), as step1&2 downloads and cleans up the data, the clean data source is already inside the [DataSource](./DataSource) folder**
44 | - **If you want to add more stocks to your research, please go through the step1 to follow the instructions given inside to download extra stock data using[ FUTU OpenD API](https://openapi.futunn.com/futu-api-doc/en/quick/demo.html) or other Financial API, and step2 to perform data cleaning**
45 | - As step3 and step5 requires large computing power and memory, the kernel may stop when you are using a Jupyter notebook, therefore, you can directly run the `.py` program inside [**Research-Program**](./Research-Program) to output the same results.
46 |
47 |
48 |
49 | ## Which Stock Prediction Algorithms and Portfolio Optimization Algorithms are Included in this Research?
50 |
51 | | Stock Prediction Algorithms | Packages Used | Remarks |
52 | | --------------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
53 | | Linear Regression Model | [scikit-learn Linear Regression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html) | LinearRegression fits a linear model with coefficients w = (w1, …, wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation. |
54 | | Decession Tree Regressor | [scikit-learn Decision Tree Regressor](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html) | A decision tree regressor. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. A tree can be seen as a piecewise constant approximation. |
55 | | Random Forest Regressor | [scikit-learn Random Forest Regressor](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html) | A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting. |
56 | | Support Vector Machine (kernel = 'linear', 'poly', 'ref') | [scikit-learn Support Vector Machine](https://scikit-learn.org/stable/modules/svm.html) | Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. This research uses three different kernel functions for building SVM: 'linear', 'poly', 'ref' |
57 | | Long Short-Term Memory Network | [TensorFlow LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM) | Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used in the field of deep learning. Previous researches have proven its outstanding performance in stock price prediction |
58 |
59 | | Portfolio Optimization Algorithms | Packages Used | Remarks |
60 | | -------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
61 | | Equal-Weighted Portfolio | Hard-Coded | Equally divide the weight of each stock in a given portfolio, used as benchmark for comparision |
62 | | Mean-Variance Optimization | [PyPortfolioOpt Mean-Variance](https://pyportfolioopt.readthedocs.io/en/latest/MeanVariance.html) | Classic portfolio optimization approach, first developed in the Modern Portfolio Theory by Harry Max Markowitz |
63 | | Hierarchical Risk Parity Optimization | [PyPortfolioOpt Hierarchical Risk Parity](https://pyportfolioopt.readthedocs.io/en/latest/OtherOptimizers.html#hierarchical-risk-parity-hrp) | Hierarchical Risk Parity is a novel portfolio optimization method developed by Marcos Lopez de Prado, focuses on divide risk |
64 | | K-Mean Clustering based Mean-Variance Optimization | [scikit-learn K-Means](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)
[PyPortfolioOpt Mean-Variance](https://pyportfolioopt.readthedocs.io/en/latest/MeanVariance.html) | K-Means clustering is an unsupervised machine approach, this algorithm first divides the stocks into different clusters based on risk and return, then select the similar stocks to conduct Mean-Variance Optimization |
65 |
66 |
67 |
68 | ## What are the Research Results Look Like?
69 |
70 | - The **Key Metrics** for defining the success of prediction and optimization algorithms are below:
71 |
72 | | Types of Algorithms | Key Metrics | Purpose |
73 | | ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
74 | | Stock Prediction | [R2 Score](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html)
[Mean Absolute Error](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html)
Last day price of certain stock
Predicted future price of certain stock | Find out the models with highest prediction accuracy and select potential growing stocks to form portfolios |
75 | | Portfolio Optimization | [Sharpe Ratio](https://www.investopedia.com/terms/s/sharperatio.asp)
Cumulative Return (and price increase percentage) | Optimize the weight of each stock in a portfolio and find out their performance in balancing risk-and return, and earning ability |
76 |
77 |
78 |
79 | - All the research results are stored in two formats:`figures` and `tables`, and you can find them in the [Results folder](./Results), some of the examples are also shown below:
80 | - `Figures`: [Stock Prediction Figures](./Results/PredictionResultFigures), [Portfolio Optimization Figures](./Results/PortfolioResultFigures)
81 | - `Tables (csv + xlsx)`: [Stock Prediction Tables](./Results/StockPrediction), [Portfolio Optimization Tables](./Results/PortfolioOptimization)
82 |
83 |
84 |
85 | - Stock Prediction
86 |
87 | 
88 |
89 | 
90 |
91 | 
92 |
93 |
94 |
95 | - Portfolio Optimization
96 |
97 | 
98 |
99 | 
100 |
101 | 
102 |
103 |
104 |
105 | ## Acknowledgement
106 | This research as my final year project has received help and I would like to sincerely thank for their effort:
107 | - [**Ms. Queenie Lee**](https://fds.hkbu.edu.hk/eng/finance/staff/admin-details.jsp?id=queenieHKB&cv=00069&cid=219&cvurl=) for being my final year project supervisor and providing continuous help
108 | - [**Maggie Wong**](https://library.hkbu.edu.hk/about-us/contact-information/staff-directory/maggie-wong/) for providing HKBU Library trainings and research workshops
109 | - [**Robert Martin**](https://github.com/robertmartin8) for building [PyPortfolioOpt package](https://github.com/robertmartin8/PyPortfolioOpt) and helping me with installation problems via GitHub
110 |
111 |
--------------------------------------------------------------------------------
/Results/PortfolioOptimization/portfolio_optimization_results_all_period_prediction.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioOptimization/portfolio_optimization_results_all_period_prediction.xlsx
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[All Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Covid Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Test Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Equal Weighted Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Hierarchical Risk Parity Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[K-Mean based Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[LSTM Network]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[Linear Regression]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[Mean Average]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[Mean Average]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Pre Covid Time Period]-[Mean-Variance Optimization]-[Support Vector Machine(linear)]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Time Period]-[Mean-Variance Optimization]-[prediction model]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Time Period]-[Mean-Variance Optimization]-[prediction model]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[Time]-[Hierarchical Risk Parity Optimization]-[Prediction model]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[Time]-[Hierarchical Risk Parity Optimization]-[Prediction model]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[test]-[K-Mean based Mean-Variance Optimization]-[prediction model]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[test]-[K-Mean based Mean-Variance Optimization]-[prediction model]].png
--------------------------------------------------------------------------------
/Results/PortfolioResultFigures/[time period]-[Equal Weighted Optimization]-[Prediction model]].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PortfolioResultFigures/[time period]-[Equal Weighted Optimization]-[Prediction model]].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/0why-prediction-results-are-not-complete.txt:
--------------------------------------------------------------------------------
1 | please note that not all prediction result figures are stored here, as there are too many
2 | Files and the file-size is too large even after compress. Here are some examples of the results,
3 | And you can output all new results by going through the Cookbook or Programs
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00002]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00003]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00005]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Decision Tree]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Linear Regression]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Long Short-Term Memory (LSTM)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Random Forest]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['turnover_rate', 'volume', 'turnover', 'change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (linear)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (poly)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2012-01-01]-[2020-01-09]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2012-01-01]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2018-01-09]-[2020-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/PredictionResultFigures/[HK.00006]-[Support Vector Machine (rbf)]-[2020-01-09]-[2022-01-01]-[Forward-30-days]-['change_rate']-[close].png
--------------------------------------------------------------------------------
/Results/StockPrediction/Tecnical Indicators Performance Test.csv:
--------------------------------------------------------------------------------
1 | technical_indicators,score,mean_absolute_error
2 | [],0.5207763643294897,46.28957229511949
3 | ['pe_ratio'],0.5214201766208446,46.24953990010023
4 | ['turnover_rate'],0.5208641866064267,46.28323410655638
5 | ['volume'],0.5209057033419738,46.28007467455724
6 | ['turnover'],0.5208884401378362,46.28389351412328
7 | ['change_rate'],0.5211903329972387,46.24253992676007
8 | "['pe_ratio', 'turnover_rate']",0.5214617014405081,46.246009097052124
9 | "['pe_ratio', 'volume']",0.5215038988136715,46.24231637734288
10 | "['pe_ratio', 'turnover']",0.5215372702041496,46.239371475617595
11 | "['pe_ratio', 'change_rate']",0.5218948945404371,46.208025311559574
12 | "['turnover_rate', 'volume']",0.5288798099127756,45.403146617707364
13 | "['turnover_rate', 'turnover']",0.5207003586226373,46.301396142150466
14 | "['turnover_rate', 'change_rate']",0.521260880374574,46.23645479676108
15 | "['volume', 'turnover']",0.5207499169251321,46.29721183275437
16 | "['volume', 'change_rate']",0.5212987526016766,46.23312500651917
17 | "['turnover', 'change_rate']",0.5212703281179638,46.23746182406718
18 | "['pe_ratio', 'turnover_rate', 'volume']",0.5291557680312674,45.34647413400864
19 | "['pe_ratio', 'turnover_rate', 'turnover']",0.521381222841238,46.25229322116658
20 | "['pe_ratio', 'turnover_rate', 'change_rate']",0.5219172696056043,46.20593750193305
21 | "['pe_ratio', 'volume', 'turnover']",0.521421766239086,46.2490538328176
22 | "['pe_ratio', 'volume', 'change_rate']",0.5219554876520116,46.20231375158443
23 | "['pe_ratio', 'turnover', 'change_rate']",0.5219759251023206,46.19975852827786
24 | "['turnover_rate', 'volume', 'turnover']",0.5337095409385605,44.94832817196757
25 | "['turnover_rate', 'volume', 'change_rate']",0.5290575379234876,45.388603002161595
26 | "['turnover_rate', 'turnover', 'change_rate']",0.5210958650449354,46.25207980067154
27 | "['volume', 'turnover', 'change_rate']",0.5211498905118128,46.24802661968622
28 | "['pe_ratio', 'turnover_rate', 'volume', 'turnover']",0.5339611012231287,44.967630766832926
29 | "['pe_ratio', 'turnover_rate', 'volume', 'change_rate']",0.5293670445966464,45.329835081151266
30 | "['pe_ratio', 'turnover_rate', 'turnover', 'change_rate']",0.5218341182094608,46.21024205890224
31 | "['pe_ratio', 'volume', 'turnover', 'change_rate']",0.5218791932315592,46.20747403814001
32 | "['turnover_rate', 'volume', 'turnover', 'change_rate']",0.5340176800519025,44.91163796133372
33 | "['pe_ratio', 'turnover_rate', 'volume', 'turnover', 'change_rate']",0.5342720889271919,44.93169054289354
34 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[all_time]-[accuracy].csv:
--------------------------------------------------------------------------------
1 | stock_code,linear_regression: score,decision_tree: score,random_forest: score,support_vector_machine_linear: score,support_vector_machine_poly: score,support_vector_machine_rbf: score,lstm: score,linear_regression: mean_absolute_error,decision_tree: mean_absolute_error,random_forest: mean_absolute_error,support_vector_machine_linear: mean_absolute_error,support_vector_machine_poly: mean_absolute_error,support_vector_machine_rbf: mean_absolute_error,lstm: mean_absolute_error
2 | HK.00700,0.5340176800519025,-0.908040804782286,-1.308390974404506,0.4650289650965432,-5.967297644805033,-7.888244664734495,0.9704847898510944,44.91163796133372,100.0980327536232,112.21145803726708,50.53750279050226,177.3495986915221,229.25987315334208,11.297464903828818
3 | HK.00005,0.207681613634907,-0.1276031547518805,0.1548042596704476,0.3203979025080153,0.3296148957933239,0.0439541896995395,0.9816739492108928,4.614348751113857,5.528921200828157,4.716978734989647,4.250129447507387,4.263016862316317,4.903221495202127,0.6762334537038562
4 | HK.01299,0.6667410402973732,-1.172473211298664,-0.9496147179688836,0.6437620060128847,-1.775914235505326,-7.385632088537335,0.9280286251199564,5.464265583357456,14.349293995859217,13.420662111801246,5.755953037049649,15.833257045451203,26.723259006876773,2.641853753777482
5 | HK.00939,-0.3744427592593333,-2.282043246069294,-0.821031154745099,-0.192448879090026,-0.5467472828509214,-0.0592527920354173,0.9189237087145612,0.2959568808986297,0.4231690683229814,0.326377768115942,0.2689919100694673,0.3109044423654685,0.24508658688209,0.0666157831258215
6 | HK.00388,0.7083002414916314,-3.528922154251341,-3.354499407622757,0.7872186395593033,-4.76164108045114,-5.91510168380893,0.9554316005925206,38.67205832393168,175.28573498964803,171.7515113871636,32.11022228363258,176.1693814828085,220.4366778428391,16.253798236228945
7 | HK.02318,0.5907287341116388,0.0840920141857818,0.2536238534423944,0.5585606883376482,0.0618260975006729,-0.2481782643573178,0.9842015101411006,6.049000466959032,9.355152339544514,8.485807544513458,6.267026958661504,9.328359845367002,9.639874901224626,1.1078688739755451
8 | HK.01398,-0.2171551091137229,-2.1421432549474195,-1.1287250412406982,0.0269612690389855,-0.226132968561683,-0.34346477913588,0.935668196610534,0.2903490226620409,0.4368009316770187,0.3709413229813664,0.2476852199866153,0.2768873141194908,0.3105375300887737,0.0629154521546743
9 | HK.00941,-0.92051515321514,-2.1137445330518494,-1.4852989058578046,-0.4868799084930206,-0.7613945342455382,-1.2985849791664767,0.8925949195980615,4.651239953708527,5.674391304347826,5.026462732919255,4.054562194582176,4.603809543337082,4.929350766862809,0.9719654391808672
10 | HK.03968,0.838401294933803,-1.4274199074700138,-1.32425813987494,0.8398502217902961,-4.897440856014588,-5.108465687002427,0.9802650339002522,4.113600226132813,16.490930538302276,16.112236739130434,4.066176870607555,23.65180946981846,25.85602082961164,1.3674920086265072
11 | HK.00669,0.8684145903142032,-1.940981342966652,-1.977408903509004,0.8693075430716888,-15.51067237283288,-5.079689003957776,0.9665170846476484,10.983188511798096,53.51821946169772,53.968909937888206,10.956561287205288,112.95462447270624,80.29159640740988,4.821878107585668
12 | HK.01211,0.6907569726849487,-1.1020493820762431,-1.0405068108718225,0.7368380944537514,-6.290585614986542,-1.8758850829736688,0.9312339604565107,37.73199878355584,102.03413364389236,100.41361417598344,34.886590715704386,157.80925451412617,120.45744116227227,16.607048162659698
13 | HK.03988,0.3038336090533851,-1.4179360221078134,-0.0860755477639103,0.4655576973604787,0.3218441424431031,0.3228952225102669,0.9575315101828192,0.1307401846355951,0.2218415942028985,0.1507777929606625,0.1086751411337603,0.122067789290537,0.1275529508587561,0.0306526027391827
14 | HK.02331,0.8916440927372882,-1.2787298463140022,-1.133916876565464,0.8886662730001244,-32.18525015550466,-2.1905763901374278,0.9720275450631102,6.588638757598405,30.724355403726715,29.491746144927536,6.648262608880015,96.84020531889172,37.264194103152334,3.1900853396111573
15 | HK.02382,0.6707090601634718,-0.946460557624632,-0.5192899176581325,0.6739539636514975,-5.950411403076671,-4.1520880062375785,0.9519424978568688,21.3112503575765,52.55237474120084,45.92307536231884,21.58046094367209,88.24714720852322,82.5731357292078,7.602139740120539
16 | HK.00002,0.1059821093025934,-0.929256789976174,-0.5791063845307256,0.0660528605148819,-0.2238896577227143,-0.6319062365291399,0.9296734021431008,2.3807935718298943,3.690351966873706,3.264047619047618,2.3799367870746906,2.8055913683488245,3.0729375604283344,0.598954803282985
17 | HK.00823,0.2297813800284249,-0.6817367743279195,-0.2952979183688342,0.1795808271186373,-0.3635501507607477,-0.7529595236974009,0.8867243394249911,3.8593503822035222,5.736899377593361,4.968980477178425,3.918318990922313,5.016201445431993,5.878455566213485,1.5153347863867397
18 | HK.00883,-0.6813484691791107,-2.363303824863324,-1.278567098011926,-0.651833582995947,-0.6374441704530773,-1.26889811020224,0.9298561892339722,0.9424382857865812,1.460496894409938,1.1686997929606624,0.9545591849610162,0.9525494551839272,1.1400154262229232,0.2110818640244766
19 | HK.00003,0.332133073816479,-0.4279632563622775,-0.2658822544625041,0.3135256796339692,0.1549520362952835,-0.105499686145972,0.9345916851392928,0.5870677373590188,0.8550352927536233,0.800096014327122,0.5960522524491777,0.6557685195335934,0.6941612708812323,0.1810828110182494
20 | HK.02313,0.7893090277047945,-1.0188118884567152,-1.0571331470951146,0.7868275792873678,-5.613116003388666,-7.927698033834975,0.9626858267174836,13.229761483803289,41.9775983436853,42.26207039337474,13.232175314605737,69.83411355455274,87.86429236554224,5.128086345912484
21 | HK.02020,0.7944159099990584,-1.019359180283009,-1.0741149301140678,0.7816567130892431,-22.151403073109773,-5.493889855353337,0.9750877648841544,13.959508140889303,42.32120082815735,42.96755693581781,14.250751657147967,131.15958501953887,78.96739185312063,4.591003265887928
22 | HK.00175,0.5043691582858151,0.4531848283702472,0.5469490669563744,0.4915530485686132,-0.5543195472846718,0.0708101435652709,0.974218702296794,3.180321606705253,3.3651966873706,3.022817805383023,3.2231784911915096,5.563922769521114,4.083019659426499,0.6823671126568
23 | HK.00016,0.4198744260665268,-0.5228568274430789,0.3193576868472174,0.4849666081604828,0.4162061314547844,0.1796678894515926,0.9643999659216872,5.833234055235359,9.17463768115942,6.136853002070394,5.508340355965602,5.824972786241259,6.613980090979934,1.290020744651861
24 | HK.02319,0.7516301507849055,-1.6518294642909268,-1.6151697061721686,0.7551866702770142,-2.158521112500252,-6.814178257390727,0.979574407406588,2.988048237765894,10.51463768115942,10.396617391304348,2.978021395141461,10.208353831580798,17.583892597802347,0.8235032497418183
25 | HK.02688,0.7006651995095818,-1.3171068563958517,-1.3102138746308305,0.6964678738616075,-3.062296565519921,-4.56319246060766,0.973399819570933,12.420458201724864,33.56136645962734,33.372619047619054,12.472467909184443,37.94528988819385,54.50584084396914,3.332275131245982
26 | HK.00011,0.4556814135117876,0.1323353297088105,0.2033386716490746,0.4694904385561003,0.3105611494920444,-0.3197578783112758,0.9433837868340847,8.550204819890139,10.454451345755691,10.301656314699793,8.459154807106042,9.761149422996413,12.754464404807626,2.35309322055864
27 | HK.01109,-0.3754047581813151,-0.5972880762539983,-0.212187847620157,-0.3680106993686378,-3.532113327501313,-16.307552023571677,0.8233951292940164,2.5135632157775896,2.681113871635611,2.3995376811594205,2.4941420701467245,4.529508383048603,7.061129290462012,0.9056729848119426
28 | HK.00291,0.6351498607325816,-1.547724009450869,-1.3995750116482215,0.6326244677267557,-5.232961514019862,-6.6371010664565775,0.9680175258648004,5.864820804365718,15.990944099378885,15.566606211180124,5.870390653487113,22.488579020244565,27.42620345292158,1.661446732819567
29 | HK.02628,-0.1195724445222408,-1.1261543066109088,-0.4658796011884574,-0.1106740600400255,-0.3328014462893949,-0.9092143066169968,0.9646818713136568,1.5009429431044734,2.168932277432712,1.8055658757763977,1.5518842140960334,1.814993483035454,1.824911838801355,0.2355913542305539
30 | HK.02388,0.2666582517033269,-0.8995937876412197,-0.1693441674245148,0.2515552962857595,0.0068922535547757,-0.01232096221769,0.9514307412461858,1.5813490812991315,2.5564182194616976,2.046893167701864,1.600821050359752,1.8230019607753252,1.8585009693607133,0.4162121409783583
31 | HK.00027,0.3763711790195386,-0.1504413676362357,0.3432919205913153,0.3659473722337373,0.0787419182713899,0.1060841003137806,0.9649390020145404,5.832056299921463,7.416356107660456,5.719420289855073,5.926262030605608,7.353634300230096,6.646750917841274,1.25336936512364
32 | HK.00386,-1.380057711841472,-1.2634419508418255,-0.1893230763736821,0.2318973522154581,0.2812842038101881,0.2192236851740995,0.8934220303175269,0.5038260717608682,0.4686299385093168,0.3566828721118012,0.2863539910040306,0.2755132544368927,0.2867186215236566,0.1101697346833886
33 | HK.00066,0.1620424990592534,-1.4337267118705204,-0.3739956844941052,0.1551434288643092,-0.9596087441182204,-0.2038384926627441,0.917080708921846,1.8762306651070448,2.9620124481327803,2.315697095435685,1.8696731685235308,2.8858342365382343,2.022922430948773,0.5716924774317003
34 | HK.01093,-0.0158105174136682,-2.9939358420305107,-0.9124588243758072,-0.0423285064875698,-1.869131786303162,-0.1759021584988249,0.9108067126912864,0.9492829297830272,1.7751714242236027,1.1826949291097308,0.9578494156577376,1.520729127552463,0.8799768257176028,0.2627214493882429
35 | HK.00857,0.4463678091453159,-4.001918466837952,-2.990259474066164,0.4337026924391726,-1.5102649000295472,-115.66794359429372,0.9484182510228688,0.3393469085025455,1.1472429606625258,1.0275131283643892,0.3475291337724404,0.8357428674806093,4.827046574471429,0.108632870389069
36 | HK.00688,0.2366804380522168,-0.0718010307352963,0.3441157669468354,0.6160848701623736,0.5366881445560185,0.5085659542213212,0.9709604178185762,1.886326006256868,2.2210973084886128,1.819706004140787,1.3456618110641152,1.4523843831892709,1.4690401738891432,0.3542404387309269
37 | HK.00006,0.4957903986103592,0.2109827175983273,0.4513120004149759,0.5229723173149181,0.3381204588379102,0.4196295840642654,0.9546633233619082,2.2494913470392643,3.1277800829875515,2.51948755186722,2.181173981506346,2.62791918296432,2.399582029243631,0.6838671264980587
38 | HK.00960,0.341360223664463,-1.896968512908284,-1.9579741376820667,0.3482090350901922,-28.218369109610705,-27.203101238127267,0.9271501329691316,3.2672155110514223,6.996547619047618,7.136118240165631,3.2607317532361035,23.662109213691785,25.59095734856741,0.9923637061762656
39 | HK.01177,0.4314307937784288,-0.3663781142192845,-0.0529605178958603,0.4167008069117496,-2.824268405328774,-0.724382362851258,0.9432126611650304,0.7128819469100209,1.0942295248447205,0.966419068716356,0.7401795827685693,1.777236275707463,1.0586178197257443,0.2211726087631482
40 | HK.00267,-0.7495967321929511,-0.8565578536782579,-0.3634205142385918,0.2168443185236227,0.0210831238302159,-0.1271808778067296,0.9605893506131644,1.361723309647591,1.282656314699793,1.1873302277432711,0.8694908077384614,0.9996603124995967,1.0179776963644418,0.1976441630059996
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[all_time_results]-[results].csv:
--------------------------------------------------------------------------------
1 | stock_code,historical_price,linear_regression: future_price,support_vector_machine_linear: future_price,lstm: future_price,mean_future_price
2 | HK.00700,443.37008,477.9600509462192,499.0189005651917,439.076382291667,472.018444601026
3 | HK.00005,46.9,46.83638406013059,46.8614480545007,47.03328175647259,46.91037129036797
4 | HK.01299,78.6,86.03282084875013,87.21940745678283,82.03437985997199,85.09553605516832
5 | HK.00939,5.4,5.347860701005736,5.207756595447643,5.383545516239405,5.313054270897594
6 | HK.00388,455.4,439.8271567662735,465.7108533053225,437.4259932637215,447.6546677784392
7 | HK.02318,56.15,58.89175725729551,58.77921551732511,56.69226200537682,58.121078259999145
8 | HK.01398,4.4,4.371861034134531,4.286229899164844,4.420817935259342,4.359636289519572
9 | HK.00941,46.8,50.83346940730082,50.303088787833175,47.07448529362678,49.40368116292026
10 | HK.03968,60.55,65.71432526743781,64.8431082960494,60.41108370946103,63.65617242431608
11 | HK.00669,155.2,171.56098354736548,173.31038413524772,149.33459807887672,164.73532192049663
12 | HK.01211,266.6,272.8199087735593,286.65714117460533,224.6145125603354,261.36385416950003
13 | HK.03988,2.81,2.81463653909185,2.7605974942890428,2.834152823529243,2.8031289523033784
14 | HK.02331,85.35,98.77398850085731,101.0344896217364,78.34970855944991,92.7193955606812
15 | HK.02382,246.6,231.4841781789932,245.1536954278573,234.5586584855318,237.06551069746078
16 | HK.00002,78.75,75.88317543828069,75.4231413699449,78.52011060655117,76.6088091382589
17 | HK.00823,68.65,70.82297046968492,70.86511242251792,69.06122423602342,70.24976904274207
18 | HK.00883,8.03,8.400805909261422,7.997948450085097,8.144959967136383,8.181238108827634
19 | HK.00003,12.14,11.731080244663133,11.773708126075936,12.31757628721994,11.940788219319671
20 | HK.02313,149.9,166.25821409928437,168.0211680854117,148.93870277762414,161.07269498744006
21 | HK.02020,116.6,139.7519311236361,142.4064434566255,116.56970308780672,132.90935922268943
22 | HK.00175,21.3,26.980673668738653,27.04214946930445,21.411680005073546,25.144834381038887
23 | HK.00016,94.6,101.75389680800144,100.14793536118096,95.496321195364,99.13271778818212
24 | HK.02319,44.2,46.139228832191385,46.130160028478855,44.90580058226705,45.725063147645756
25 | HK.02688,146.8,141.21903818967235,143.76389549658364,144.71505575394033,143.2326631467321
26 | HK.00011,142.7,145.02518918280077,143.30920516541016,143.50229773521423,143.9455640278084
27 | HK.01109,32.8,34.98551436068205,35.07615712501327,33.621883645873545,34.561185043856284
28 | HK.00291,63.85,65.65612668340623,66.67392047823887,61.52808042687178,64.61937586283896
29 | HK.02628,12.92,15.09367938643297,14.881771054499849,13.061556425752196,14.34566895556167
30 | HK.02388,25.55,24.60499670431656,24.689783791521997,25.894790875196456,25.06319045701167
31 | HK.00027,40.4,47.8595012712674,48.2704567470653,40.000222326517104,45.376726781616604
32 | HK.00386,3.63,4.148054325814676,3.6774053360215953,3.716862640031577,3.847440767289283
33 | HK.00066,41.85,42.93787606884011,42.38456380911354,42.270794413685806,42.531078097213154
34 | HK.01093,8.47,8.347736493076646,8.387610536611819,8.232927645525653,8.322758225071372
35 | HK.00857,3.47,3.595939305687619,3.5811526657883017,3.532024939600378,3.5697056370254328
36 | HK.00688,18.46,19.72730919761027,18.84200343910188,18.3557856798172,18.97503277217645
37 | HK.00006,48.6,47.49241928094904,47.047999203871896,49.311797677278506,47.950738720699825
38 | HK.00960,36.7,41.15202429166962,41.05907759522775,36.91336799082755,39.70815662590831
39 | HK.01177,5.46,5.878410988326127,5.857685713494085,5.600615510965347,5.77890407092852
40 | HK.00267,7.7,7.996064995955423,7.764065521474734,7.852705004930497,7.8709451741202185
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[all_time_results]-[results].xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/[prediction]-[all_time_results]-[results].xlsx
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[covid_time]-[accuracy].csv:
--------------------------------------------------------------------------------
1 | stock_code,linear_regression: score,decision_tree: score,random_forest: score,support_vector_machine_linear: score,support_vector_machine_poly: score,support_vector_machine_rbf: score,lstm: score,linear_regression: mean_absolute_error,decision_tree: mean_absolute_error,random_forest: mean_absolute_error,support_vector_machine_linear: mean_absolute_error,support_vector_machine_poly: mean_absolute_error,support_vector_machine_rbf: mean_absolute_error,lstm: mean_absolute_error
2 | HK.00700,-6.616543141654666,-14.278175186006935,-17.461850086761252,-3.443764218046309,-2.005634576408216,-13.088475086060452,0.0485175187236535,49.40942235686232,62.495035,75.93256999999997,33.35821093828996,26.661909598108828,69.6500750969995,17.149739682987565
3 | HK.00005,-0.8109121850647154,-1.3741857624135556,-0.8212504358275066,-1.6198832965798062,-1.8749491139117933,-0.7535456569103958,0.7724512689993098,2.728735278509419,3.2817754347826087,2.7460911304347824,3.1439329702797365,3.34535828944865,2.6622971684283177,0.9103968155583316
4 | HK.01299,-0.2879263878358371,-5.205065782232105,-3.3832781867242687,0.1844765428050809,0.2580335833840624,-4.392865369683266,0.834569846310224,5.046020937052719,10.782684782608696,9.1805652173913,4.061067291409524,3.86810564691835,10.458270942768896,1.6901892657985491
5 | HK.00939,-0.8162863593754976,-4.800026256431926,-1.3658545394070072,-0.4780407763063874,-0.4013505252748792,-0.1602138020954846,0.8590670101438617,0.2043284885788826,0.3518156521739131,0.2251652608695652,0.1890190447840656,0.1825733611517243,0.1597838115649106,0.0514993070018047
6 | HK.00388,-2.4840358139171443,-5.058511369304187,-2.7983995380027205,-11.23807059446759,-2.7721458769646974,-8.730817999768087,0.3248395746501139,28.259813478977925,34.20097826086955,27.97869565217391,57.16972700666368,29.38784792307303,42.38726172241029,11.753293618961264
7 | HK.02318,-13.796884410913016,-27.960472688526902,-36.818334168913815,-17.78992478538781,-20.34908453004449,-55.57405902369469,-0.1502590494820068,9.986462042989071,14.997938478260869,17.471279173913043,11.746499292530997,12.869374111038471,21.21104052897424,3.56848153151174
8 | HK.01398,-2.817865077898269,-33.408631162795366,-14.096673039363967,-2.929394798225968,-2.173027443795042,-1.519461257447435,-0.153827181672433,0.1245126859211256,0.3840379347826087,0.2282422608695652,0.128254962783319,0.1127531391038857,0.088006365456966,0.0666154726946385
9 | HK.00941,-0.5470528423087204,-9.561327851484922,-3.308967867638469,-0.3608333949790594,-0.4374661432512803,-1.546878879234463,0.5701594506044204,0.997786317669384,2.2645434782608693,1.567742391304347,0.933761196110694,0.9592813725040772,1.1956539413952476,0.5387211439408824
10 | HK.03968,-1.5253658540298267,-2.07789915991072,-0.8619629105428757,-1.289703092213652,-2.172360379675772,-2.061661928912869,0.0367456504707178,3.54405194127255,3.9489884782608695,3.055216717391304,3.3314286145553624,4.026696970972013,3.505539274389719,2.034200891904668
11 | HK.00669,-6.638577790000825,-15.2891317053761,-15.135552577435728,-6.372495647678633,-14.938450785837723,-70.21217401362759,-0.2778061069049091,14.691049645136252,24.291304347826088,24.51026086956522,14.051412991964751,21.765411877544462,50.6058222654538,5.840687440670267
12 | HK.01211,-1.636667778727114,-17.80308527235177,-15.836434599620162,-1.5314290927347476,-9.277571592349744,-19.642095534246117,0.7421148352176488,33.015862799671545,92.44859,87.93585139130435,32.27942287327673,58.130945561227286,99.7789176768032,8.823664025855887
13 | HK.03988,-2.3349075425184265,-34.818472160749,-5.649797148496067,-8.730283506854871,-9.4540278262135,-10.500746177282618,-2.1934543861483484,0.0481091182472603,0.1682991304347825,0.0606356956521739,0.0920694848195443,0.0956278141763467,0.0985756326490663,0.0502994691712028
14 | HK.02331,-6.15962452879314,-0.8850566004547031,-0.5062235581700387,-8.187060046298882,-45.58911486132928,-12.202663608239224,0.5046623386971728,14.18847363472125,7.016304347826087,6.342228260869568,17.06037474940738,40.62257870693121,19.83737802148484,3.717580217041897
15 | HK.02382,-0.8727472500996929,-7.361559795665908,-3.3761027077295465,-1.2002641107610883,-1.4456678761695665,-9.093655321693776,0.729164915729291,18.276325285720965,39.298021739130434,26.575676086956516,19.098489651267315,20.99116229085547,40.4916494227669,6.228714737161689
16 | HK.00002,-0.7214551480919575,-12.068519999384204,-3.345846914009294,-1.7542439657030575,-1.2126447524562232,-2.7617496967717745,0.5565810059080618,1.3502332403897888,3.2121739130434763,1.972043478260871,1.7477475934381033,1.5925651756121686,2.024510644237282,0.6829265758699301
17 | HK.00823,-1.9537579393123876,-6.945035023914686,-5.287556512427846,-2.0697937144914342,-1.6949199887807906,-4.553620314445346,0.6011490484456348,2.873889416003118,5.085877173913042,4.39972043478261,3.0324813882551385,2.8125013902491327,4.164096555259971,1.1463940158049664
18 | HK.00883,-0.7939433624360746,-2.5283575491750545,-1.2451983599050245,-0.5161374503432141,-0.3832818089035197,-0.4478363908494396,0.4339470124515688,0.4235490299384136,0.658586956521739,0.5403478260869568,0.3966260623237117,0.3807503355220212,0.4088384705308755,0.2589515892401025
19 | HK.00003,-0.5828094537351589,-3.9825571789437326,-1.456407739939384,-0.4944555979800622,-0.6843057745219869,-1.4218649286950549,0.8713893013127008,0.3423697541780834,0.6365430130434782,0.4498553947826084,0.3311905458999721,0.3583186392018093,0.3604223765003003,0.1057244677483269
20 | HK.02313,-1.1323594828785422,-6.267353605545127,-3.7481643340092106,-1.7566443269135732,-3.96556806707759,-11.65535806147865,0.4484456256394071,10.49457434154195,20.05282608695652,16.571521739130432,12.0940059830729,16.937983211157526,26.138751554387127,5.614951511505918
21 | HK.02020,-2.75522858376364,-2.843567699695379,-2.04526703472456,-4.159829426526096,-8.302094060441252,-2.8074011162248387,0.7659765706466665,27.92639136278202,24.70065217391305,23.03729347826087,33.33447541268199,43.01632596501291,26.605384202543316,6.854452637811106
22 | HK.00175,-0.7909682510138683,-3.3573152493684777,-1.1418572282656516,-1.281656140783399,-1.713690166320477,-3.856240275286873,0.5465355867717983,2.3741961088956867,3.6469565217391295,2.4224239130434797,2.555574657098646,2.7229140339573648,3.565078754320608,1.1132312896574026
23 | HK.00016,-1.4674432389948515,-3.0330278213191013,-1.6417364595298358,-0.8680921690984236,-1.1233712510339768,-3.969066144513654,0.8139268383314978,6.3110060012226885,8.019021739130435,6.254402173913041,5.420511992739383,5.892710989783882,8.46317728211351,1.52664895592904
24 | HK.02319,-1.6528564883550685,-2.903997480140521,-2.088746380443112,-1.6878969144796545,-2.13182455817055,-2.4959900633727594,0.651818341717943,2.7070854917652216,3.0599782608695647,2.8212847826086964,2.5053447742159385,2.8154067941768037,2.943980007464721,0.934031286699432
25 | HK.02688,-5.466858121790399,-3.640117597543476,-3.5831566077311763,-5.049221980585295,-9.495527294923267,-2.330656885019394,0.5308984106422271,24.49441507552832,21.60684782608696,21.081065217391306,24.25565351677019,31.38427810819235,18.27644375461592,6.920635718520806
26 | HK.00011,-1.9451976384632408,-5.757709914883635,-4.100762046437728,-1.9089551524591477,-1.8505550756483475,-8.216321785133944,0.5989727149134618,6.70602614828685,9.6804347826087,7.981195652173909,6.467763548417288,6.371547940577087,11.21195113823094,2.2542002511267785
27 | HK.01109,0.1177907370264396,-1.652263930469608,-0.1584725931035984,0.0771065515668077,0.0925539416643523,-2.6689902184167305,0.7916175478101011,1.7940357898209132,3.11,2.009684782608696,1.8286934287817207,1.824301620033265,3.202845463866027,0.8071554680816372
28 | HK.00291,-0.7902054044772377,-3.947326455772081,-3.46633393450906,-0.934949705385292,-1.6245489921068104,-6.204329783458111,0.6009120862160522,3.472989624474004,5.4405869565217415,5.308443478260871,3.61931363917904,4.109716891605541,6.673742551324574,1.4781938774439751
29 | HK.02628,-9.756251761881696,-66.76616817683198,-25.14499447515185,-4.105053534856593,-4.111018758494276,-46.782545585576834,0.4846915546512438,1.3477090085069048,2.657606195652173,1.781986826086957,0.8287311251566661,0.8362669723813375,2.341944467888049,0.2445036949166598
30 | HK.02388,-0.8214488607201427,-20.17149565806433,-13.41382026286497,-1.6423513004683965,-2.053806015773008,-7.5839781313063135,0.6950853759607685,0.885951724793576,2.8132065217391298,2.498835869565217,1.0246840270992514,1.0800136977814387,1.9737076537509788,0.3357995100057861
31 | HK.00027,-9.360604600463953,-10.251064949584856,-9.402160321440416,-4.76071198829327,-4.642455239472236,-7.630567450778319,0.2703997068481957,12.33381286339852,12.542934782608697,12.10978260869565,8.770505178324317,8.756195555882808,10.179270326299344,2.48418436116368
32 | HK.00386,-2.2311963480078987,-3.721116219856037,-1.7239077816383253,-3.0647309852098434,-3.221190812823705,-2.27437563651651,0.8018309474774554,0.2455649555508754,0.2892003260869565,0.2151315869565217,0.2894029831583845,0.2935794628807912,0.2413725691364988,0.0645392602226807
33 | HK.00066,-1.9183167039041416,-4.548906148815157,-1.7013986187224237,-0.998093562868288,-0.5530686802820897,-1.195724034396222,0.8392588467448224,1.5221289071357216,1.9861956521739133,1.4888586956521734,1.2585292101658485,1.110781258564721,1.2641253240290538,0.3794867145528608
34 | HK.01093,-0.0418170655211842,-3.077200361948254,-1.0171536333368285,0.1200862842171333,0.2414334317066532,-0.3735857182794833,0.9397417440951932,0.6534855582466946,1.1058019456521742,0.8402452930434786,0.591460476335386,0.5459521923864152,0.6962894682651013,0.1613631242615895
35 | HK.00857,-4.798851984740351,-8.666630699263113,-7.518910989184379,-5.352279756811715,-4.941262166779705,-12.214516365195603,0.7690729609393775,0.5846930877757198,0.7619885869565218,0.7543772391304348,0.6245513487104657,0.5708747861697157,0.9035318146825344,0.1117103847425719
36 | HK.00688,-0.0428256978547658,-2.060892942452332,-0.8708063042779326,-0.0752497677994437,-0.1993057930413433,-1.4038052066146287,0.3923471672364884,0.6004190825958169,1.0615217391304348,0.812663043478261,0.6105881921440401,0.6341893103103332,0.9190552458640756,0.4510576098305838
37 | HK.00006,-2.0833947594527173,-12.181603145745507,-5.64652289864635,-2.682484314841638,-3.484885613315408,-7.584416392654502,0.7787283321659235,1.7121858597910384,3.0176086956521746,2.313554347826086,1.857280293096489,2.036937970199596,2.5305996690069037,0.4418234167901841
38 | HK.00960,-3.3346090295646924,-4.511837440247019,-4.9413603576457445,-1.2801060926811774,-0.992101321899379,-8.278244601151973,0.3068450726949588,3.769410060796653,4.4042,4.522274130434783,2.8419330322988547,2.687591621663579,5.248329593867406,1.5425256114657429
39 | HK.01177,-7.845760901596208,-14.590833042131251,-17.333018684179983,-6.139114330605918,-7.467027392984571,-22.683921658687836,0.3733850473102958,1.237169819621837,1.5750699499999998,1.7633244667391306,1.1026215319594963,1.2018981927234054,1.8644629464712397,0.3208596449010832
40 | HK.00267,-0.8032898935763888,-0.6735973766581906,-0.3435893083057053,-0.6634913308650263,-0.8311560137609275,-1.178877286564727,0.8359362203414369,0.8937386980514432,0.8308804347826088,0.716133695652174,0.8358814308404243,0.8991059308534316,0.9041166647991564,0.2372957598871113
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[covid_time_results]-[results].csv:
--------------------------------------------------------------------------------
1 | stock_code,historical_price,linear_regression: future_price,support_vector_machine_linear: future_price,lstm: future_price,mean_future_price
2 | HK.00700,443.37008,507.03725538904087,484.2189071630019,438.773098157919,476.67642023665394
3 | HK.00005,46.9,42.32750283503387,42.290744385149466,46.33257570201874,43.650274307400686
4 | HK.01299,78.6,86.36822292639197,85.77023991544135,79.59692991164326,83.91179758449219
5 | HK.00939,5.4,5.433036885844608,5.446029446786833,5.360152916822433,5.413073083151292
6 | HK.00388,455.4,485.3637988629688,503.8461279488442,460.6050724178553,483.2716664098894
7 | HK.02318,56.15,67.20481673172016,67.30665239213621,60.08703876275063,64.86616929553567
8 | HK.01398,4.4,4.258685582832791,4.416858562177891,4.296581367548406,4.3240418375196965
9 | HK.00941,46.8,47.02034077373073,47.487639047093175,47.34755056074262,47.285176793855506
10 | HK.03968,60.55,65.27399870901064,64.34661300493396,61.41999921347677,63.68020364247379
11 | HK.00669,155.2,176.8407100883681,169.70069439366944,157.94193495035174,168.16111314412976
12 | HK.01211,266.6,322.8147664647579,339.2237250692845,259.4581161681193,307.16553590072056
13 | HK.03988,2.81,2.7141406167872,2.6834223354206084,2.739167160396576,2.712243370868128
14 | HK.02331,85.35,112.20370420345532,109.28879789798904,83.8797987901032,101.79076696384918
15 | HK.02382,246.6,222.375470921742,225.73378823090584,241.6534748119712,229.92091132153965
16 | HK.00002,78.75,74.04937722990452,73.85818884399748,78.43433898031712,75.44730168473971
17 | HK.00823,68.65,70.10373681213218,69.21623105860218,68.35694004011154,69.22563597028197
18 | HK.00883,8.03,7.714125818658368,7.764482847688505,7.89024467766285,7.789617781336574
19 | HK.00003,12.14,11.465413620479293,11.47834786118106,12.18703568652277,11.710265722727707
20 | HK.02313,149.9,166.37316850607792,168.95149469934782,154.73412206411362,163.3529284231798
21 | HK.02020,116.6,146.9368489483038,151.05094168955603,120.47008864045144,139.48595975943707
22 | HK.00175,21.3,25.658039773448834,25.06640103259219,20.67733244687319,23.800591084304738
23 | HK.00016,94.6,102.3151579822492,101.2901193568242,94.13532510399816,99.24686748102386
24 | HK.02319,44.2,47.018860083378,45.37565947771654,44.27847921693325,45.5576662593426
25 | HK.02688,146.8,149.05085398407869,157.25775519833013,150.08908653616905,152.13256523952597
26 | HK.00011,142.7,142.9539767682282,140.2960072468953,145.54118101596833,142.93038834369727
27 | HK.01109,32.8,32.09722784746142,33.415174300364164,32.883887633800505,32.798763260542025
28 | HK.00291,63.85,65.43874475348969,64.91725685380023,64.17747372484207,64.84449177737731
29 | HK.02628,12.92,14.658860517206367,14.319028056202066,13.123028268520832,14.033638947309756
30 | HK.02388,25.55,24.196021449817245,23.78209409132424,25.56759614914656,24.515237230096016
31 | HK.00027,40.4,57.17142896266987,53.24154130859216,42.93167849704624,51.114882922769425
32 | HK.00386,3.63,3.5759654461168604,3.452077196048251,3.64971646643877,3.559253036201294
33 | HK.00066,41.85,43.34168332759173,42.07851395462319,41.892341895103456,42.43751305910613
34 | HK.01093,8.47,8.598575989703711,8.497269598166774,8.227292179504062,8.441045922458182
35 | HK.00857,3.47,3.001706846588883,2.9544067013517674,3.4780114659065005,3.14470833794905
36 | HK.00688,18.46,18.29246477584785,18.31457154014261,18.364488067626954,18.323841461205802
37 | HK.00006,48.6,45.96893081427193,45.66014302204366,49.10317719459534,46.91075034363698
38 | HK.00960,36.7,41.30936074337343,39.63939270659231,38.28817224303186,39.74564189766587
39 | HK.01177,5.46,6.872513409600261,6.730508912142048,5.809576864540577,6.470866395427628
40 | HK.00267,7.7,6.8054685999673525,7.015932463843773,7.689149995684624,7.170183686498583
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[covid_time_results]-[results].xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/[prediction]-[covid_time_results]-[results].xlsx
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[four period]-[mean_absolute_error].csv:
--------------------------------------------------------------------------------
1 | time period,performance metrics,mean,median
2 | all time,linear_regression: mean_absolute_error,7.286628649461085,3.2672155110514223
3 | all time,decision_tree: mean_absolute_error,20.04344504416886,5.674391304347826
4 | all time,random_forest: mean_absolute_error,19.668775562309527,4.968980477178425
5 | all time,support_vector_machine_linear: mean_absolute_error,7.154202620997726,3.2607317532361035
6 | all time,support_vector_machine_poly: mean_absolute_error,31.32140174520928,5.016201445431993
7 | all time,support_vector_machine_rbf: mean_absolute_error,30.78324641269396,5.878455566213485
8 | all time,lstm: mean_absolute_error,2.4456310857876304,0.9056729848119426
9 | covid time,linear_regression: mean_absolute_error,7.63020474416468,2.7070854917652216
10 | covid time,decision_tree: mean_absolute_error,11.22787223846154,3.2817754347826087
11 | covid time,random_forest: mean_absolute_error,10.473760775981047,2.7460911304347824
12 | covid time,support_vector_machine_linear: mean_absolute_error,8.07356980616171,2.555574657098646
13 | covid time,support_vector_machine_poly: mean_absolute_error,9.33057268487008,2.7229140339573648
14 | covid time,support_vector_machine_rbf: mean_absolute_error,12.954776932589782,3.202845463866027
15 | covid time,lstm: mean_absolute_error,2.535813598934368,0.934031286699432
16 | pre covid time,linear_regression: mean_absolute_error,4.261601201032306,2.379095302480143
17 | pre covid time,decision_tree: mean_absolute_error,7.250351004341215,4.767376623376623
18 | pre covid time,random_forest: mean_absolute_error,6.69843931384009,4.084425974025974
19 | pre covid time,support_vector_machine_linear: mean_absolute_error,4.355446202974723,2.24328247951841
20 | pre covid time,support_vector_machine_poly: mean_absolute_error,9.537662461474365,3.981423566933743
21 | pre covid time,support_vector_machine_rbf: mean_absolute_error,11.780265905198009,5.081485865010189
22 | pre covid time,lstm: mean_absolute_error,1.293047486116956,0.7380186059740196
23 | pre covid test time,linear_regression: mean_absolute_error,3.92709308716201,2.5196503913078017
24 | pre covid test time,decision_tree: mean_absolute_error,5.790587603465764,3.9447252747252737
25 | pre covid test time,random_forest: mean_absolute_error,5.006538643609468,3.2863856153846145
26 | pre covid test time,support_vector_machine_linear: mean_absolute_error,3.8888330048196735,2.311959311545333
27 | pre covid test time,support_vector_machine_poly: mean_absolute_error,4.026281282256698,2.3679017671302005
28 | pre covid test time,support_vector_machine_rbf: mean_absolute_error,6.727165764381327,3.737652044210256
29 | pre covid test time,lstm: mean_absolute_error,1.355541056121833,0.9496680548166496
30 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[four period]-[mean_absolute_error].xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/[prediction]-[four period]-[mean_absolute_error].xlsx
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[four period]-[score].csv:
--------------------------------------------------------------------------------
1 | time period,performance metrics,mean,median
2 | all time,linear_regression: score,0.27212868147002683,0.4198744260665268
3 | all time,decision_tree: score,-1.1960540364349581,-1.1020493820762431
4 | all time,random_forest: score,-0.74551506005021,-0.5791063845307256
5 | all time,support_vector_machine_linear: score,0.37540815087799895,0.4650289650965432
6 | all time,support_vector_machine_poly: score,-3.9810187976137454,-0.7613945342455382
7 | all time,support_vector_machine_rbf: score,-6.038996148160534,-0.7529595236974009
8 | all time,lstm: score,0.9456125302598344,0.9546633233619082
9 | covid time,linear_regression: score,-2.8286937678642827,-1.6528564883550685
10 | covid time,decision_tree: score,-10.000771703114285,-5.058511369304187
11 | covid time,random_forest: score,-6.25097002936061,-3.3761027077295465
12 | covid time,support_vector_machine_linear: score,-3.026539012615276,-1.6878969144796545
13 | covid time,support_vector_machine_poly: score,-4.589190773679034,-2.005634576408216
14 | covid time,support_vector_machine_rbf: score,-9.796238394622716,-4.392865369683266
15 | covid time,lstm: score,0.47042150647723074,0.5989727149134618
16 | pre covid time,linear_regression: score,0.07604003484886257,0.1669266493451826
17 | pre covid time,decision_tree: score,-1.9048561794168342,-0.7239412029254146
18 | pre covid time,random_forest: score,-1.1519153542510396,-0.4909665598971326
19 | pre covid time,support_vector_machine_linear: score,0.14068889413785923,0.216568758743105
20 | pre covid time,support_vector_machine_poly: score,-3.156300263890741,-1.4610406781463752
21 | pre covid time,support_vector_machine_rbf: score,-6.754085919149721,-2.073172124600041
22 | pre covid time,lstm: score,0.9251829520442653,0.9343732350146025
23 | pre covid test time,linear_regression: score,-4.733496621580085,-2.527090481177692
24 | pre covid test time,decision_tree: score,-9.638987090230435,-4.781196291633687
25 | pre covid test time,random_forest: score,-7.906879306487113,-2.8626572949755933
26 | pre covid test time,support_vector_machine_linear: score,-4.103128052748817,-1.8864470235234
27 | pre covid test time,support_vector_machine_poly: score,-4.949788175409125,-1.9845491642216104
28 | pre covid test time,support_vector_machine_rbf: score,-14.155774620044477,-7.306960802605609
29 | pre covid test time,lstm: score,0.4741232718635996,0.6025009954867793
30 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[four period]-[score].xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/[prediction]-[four period]-[score].xlsx
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[per_covid_time]-[accuracy].csv:
--------------------------------------------------------------------------------
1 | stock_code,linear_regression: score,decision_tree: score,random_forest: score,support_vector_machine_linear: score,support_vector_machine_poly: score,support_vector_machine_rbf: score,lstm: score,linear_regression: mean_absolute_error,decision_tree: mean_absolute_error,random_forest: mean_absolute_error,support_vector_machine_linear: mean_absolute_error,support_vector_machine_poly: mean_absolute_error,support_vector_machine_rbf: mean_absolute_error,lstm: mean_absolute_error
2 | HK.00700,-0.6030242354545909,-2.3563572223378006,-2.100493652596509,-1.0285021921005937,-3.4766566000243824,-2.5581089559989976,0.809887360265424,29.69119831368375,41.91318431168831,40.40726942077922,32.73676009365732,47.56682217633976,42.92935255135592,10.573312836428045
3 | HK.00005,0.0411775642968336,-2.136938562299722,-0.3806156569315562,0.1283718043586137,-0.1208486828729145,-0.7394285524256978,0.9230228874051986,2.31334727878167,4.541846415584415,2.9773399948051944,2.230717819639913,2.612904844187693,3.334930581504732,0.7349922854752396
4 | HK.01299,0.4843639620634722,-0.2333495886849645,-0.1563818874620486,0.4530409122103492,-2.464538802430051,-10.85221720747724,0.9569831411546128,4.377216774610575,7.104607792207793,6.779722337662338,4.531574804482847,11.287374458360604,20.584250271539865,1.200757884964856
5 | HK.00939,-1.3962526578310812,-8.081708869232171,-6.549584908236134,-0.9582789126631664,-2.427099024747833,-1.9189422400817229,0.8862397925985317,0.3528338511530763,0.7299137142857144,0.7033916207792209,0.3400064217999584,0.4347194767251613,0.4064474109044616,0.0828768772567659
6 | HK.00388,0.2048237122195205,-1.1264412521669,-0.7815811976026115,0.1560227069955201,-1.339902624001835,-1.5881600378309648,0.9586543081081,15.766135400420351,23.07425974025974,23.007612987012987,16.30482056507453,25.230943864831477,26.82819770964177,3.3178645717030557
7 | HK.02318,0.6118185792499551,-0.8989813503337241,-0.3777590678753191,0.6164540294348815,-1.6048781102870455,-2.070005957919204,0.9276474703653992,5.052257749394408,11.64783612987013,10.410030077922078,4.987009077964226,12.713431738447278,13.47112698588814,2.2653258445239404
8 | HK.01398,-1.1035131893879715,-5.918546795560907,-2.617122269546015,-0.9230498714157628,-1.654301464526934,-1.5443841170995158,0.8929798249998395,0.2899086725963161,0.5330562337662338,0.3879320571428571,0.3006101536201389,0.3485343643143044,0.3255013358801931,0.066185589286464
9 | HK.00941,0.3994960596000136,-0.4018434310131882,0.1903807799210234,0.4200226021328972,0.4234232124159623,0.092260510472111,0.9723862014429906,3.729224805620389,5.331828571428571,4.084425974025974,3.562452667159253,3.4610694547498326,4.235512566426533,0.7380186059740196
10 | HK.03968,0.5526726074701989,-0.4245846806055646,-0.2005209791199924,0.6194759781853267,-2.6107300274388647,-0.7937523293066293,0.9540097296184956,2.379095302480143,4.6390570129870135,4.28356574025974,2.24328247951841,6.984813971782115,4.749972324808264,0.7569333944857671
11 | HK.00669,0.4944305428347326,-0.5434498889774122,-0.5012957435470928,0.5051484113014144,-2.5381304979722934,-5.652017950516584,0.9257621482449102,4.484770587045136,7.630636363636364,7.51682922077922,4.450388398571191,10.965943770181893,13.994910742652388,1.5907369767792552
12 | HK.01211,0.1575366362563891,-2.12737603880912,-0.6552253657332878,0.1349939622934034,0.0676972507377533,-0.4842314201557331,0.9307147135280268,4.114301315569472,7.1283921298701305,5.340232561038961,4.091687187424936,4.179373381673485,5.081485865010189,1.084822687158616
13 | HK.03988,-0.8119906851524201,-6.309741346862711,-2.364215233920715,-0.2861343893458634,-0.7893781892161214,-0.6113778926641673,0.9343732350146025,0.158482552297228,0.2993292207792207,0.217027135064935,0.1375917944205122,0.1639643981119446,0.1520436349252417,0.0305238023991763
14 | HK.02331,0.8190681863555578,-0.6842684414311442,-0.6230737572035665,0.825600782990864,-4.123078189044382,-3.436448416474949,0.9889358052511468,2.153478125564959,6.358375302857143,6.197276745870131,2.1555659666752565,8.639187814660186,10.69578683607874,0.4764663186751626
15 | HK.02382,0.0603029570914339,-0.674528560647073,-0.4698780081625009,-0.1034229776621187,-1.9108748448575497,-0.9222850929971842,0.9308881884326774,17.470879777726033,26.04245194805195,23.95451636363637,18.793888168628328,29.59085044323228,26.876695338952707,4.780538588430573
16 | HK.00002,-0.0693833818754148,-7.945152265115167,-7.011653094770159,-0.12202423044618,-2.3744301360218896,-51.9170183617398,0.607879641165544,2.880517648729525,10.042441558441556,9.430672727272723,2.950526956060865,5.349968822286535,25.06672257721909,2.0806858682510523
17 | HK.00823,0.6766825631946691,-10.791132278723422,-7.576935279918706,0.6809547601037838,-7.790044744753432,-22.478922787497847,0.96722135864584,4.363180801720174,27.99590208333333,24.20715809895833,4.352706969672624,21.737241434975925,39.04054548138624,1.242990466521551
18 | HK.00883,-0.921331931578538,-2.9720847330103743,-1.8380953987025055,-1.0670872422557718,-1.4610406781463752,-2.073172124600041,0.8919680753492744,0.9615002763460556,1.359168831168831,1.191649350649351,1.001289606429773,1.105686399610978,1.1568025497084615,0.2210064498664777
19 | HK.00003,0.5726041927549865,-2.709791368801951,-2.2790743107048987,0.6099008971426749,-1.1225056033258909,-18.21482327810131,0.9341153323888044,0.6556367119813401,2.010436946493506,1.8384830301298696,0.6277647681343729,1.3509770513578416,3.943173197818358,0.2778490055150204
20 | HK.02313,-0.0896080942399644,-1.2853117252437642,-0.9463516699521526,0.0218373696574334,-53.29827588368868,-82.65834554383709,0.8171788716658879,6.83479480174763,9.630909090909087,8.932376623376625,6.456617171118748,54.61255586934263,69.98687062535687,2.594170237843642
21 | HK.02020,0.8179801917276168,-0.1977957853148149,-0.1895074030741623,0.8186311124735213,-6.572027894407384,-5.947952312104933,0.9715243785810718,5.01093846604522,11.791506493506494,11.725363636363635,4.994549649740365,27.92023390533784,27.630878715489885,1.8534164796316088
22 | HK.00175,-0.5280443336552747,-5.803595938116664,-3.466292222711707,-0.465201820654479,-2.9972586650550053,-3.814268329281336,0.9226871424625938,2.049224483839862,4.767376623376623,4.072124675324677,2.01931244746245,3.750183837025338,3.88052762276785,0.508713303083654
23 | HK.00016,0.2682088446348254,-0.082405185065884,0.0839963635275539,0.2235697216160258,0.0072325553461916,-1.0377336705963116,0.9492982792998222,7.13251438229442,9.173896103896103,8.603012987012987,7.44910764947164,8.077814708395989,11.594575798264996,1.8006826486886307
24 | HK.02319,0.6390797863644226,0.4087044549816593,0.3777421863530268,0.6446866216398579,-0.8318808422991042,-3.5107912294642416,0.9652637802972944,1.5789512138306536,2.1951194805194807,2.2618700779220777,1.5645732124483556,3.653134941222684,4.8997382179847,0.4865352680699028
25 | HK.02688,0.1669266493451826,-0.0179228035391931,-0.0069794039213291,0.1679770553360556,-5.906194106166632,-12.684057740563151,0.916135892984732,5.135299270835284,5.630571428571429,5.640244155844156,5.15797960006445,15.380001578799192,21.506363194757697,1.463447732627162
26 | HK.00011,0.1133134156302464,0.2636752671188918,0.3446705516682055,0.1600815189992658,-2.6079383721122924,-6.973627441156382,0.943216802851272,10.491328066532422,10.394025974025976,10.137844155844157,10.316207863711243,22.09010612932924,29.356639552701168,2.6265025089159013
27 | HK.01109,0.344912315964799,-1.3515568946750318,-0.862993449912496,0.4455196550542126,-0.2583207479484322,-3.0599738098195832,0.8741739706540421,2.421928437604219,4.933293506493506,4.3434542857142855,2.333930883877268,3.251879672789578,5.740439394074532,1.1623147887745844
28 | HK.00291,0.5927012890134024,0.3820169181505731,0.3103940830266423,0.6178593334087896,-3.46910587852185,-2.3755068467885074,0.9239380435933356,2.956162745733029,3.532384415584416,3.670228571428571,2.8594091285423446,9.64136994267846,7.024431485988509,1.2497349296314335
29 | HK.02628,-0.1286179078323757,-1.3221916576809396,-0.4909665598971326,-0.0745301484642848,0.0114448115218804,-0.2054256545916379,0.9552036574882088,1.5481857217938657,2.100880155844156,1.7032673090909092,1.5268331002390605,1.4911280772733455,1.5674678567254208,0.2830948444151819
30 | HK.02388,0.1565925574733068,-0.6424412118534086,-0.5482356777108786,0.216568758743105,-0.1290918834464585,-0.5681208794827677,0.9739551907898724,2.327157534953036,3.269233766233766,3.185664935064936,2.23371476433371,2.7494416742785983,3.103955985257301,0.3984192673251452
31 | HK.00027,-0.5424811591375645,-2.4719017934218024,-1.6607076102251326,-0.6044806100573246,-1.2874158134667737,-2.4876539736548624,0.905265617015256,4.947415911528534,7.197376623376623,6.318348051948051,5.049635412178669,6.198400552493868,7.08691952001173,1.1753569851202128
32 | HK.00386,0.533473696655804,0.0988185559219254,0.4689924864328829,0.6700290677735197,0.4451420987397108,-0.3910007478294457,0.9838919459154946,0.5079082324636398,0.6650773758441559,0.5105995688051949,0.3764985080337596,0.4829996047981834,0.6268575979496621,0.0846232703653931
33 | HK.00066,0.4728608198147214,-0.3296098435902626,-0.398224492670167,0.4400758239059561,-0.7644150787312283,-2.657475685706024,0.9724935314116984,2.4582421815509994,3.857636363636364,3.995755844155845,2.544528034841126,3.981423566933743,5.435168415647405,0.53131691337699
34 | HK.01093,-0.4482667212924143,-0.4850541109284263,-0.3191957070039364,-0.0951312036684819,-5.3538283321502975,-2.502539208061971,0.9160459544936694,1.5526194109536684,1.5524774103896104,1.4832836661818185,1.371306521141377,2.96336962588926,2.077896936044365,0.3763433026751174
35 | HK.00857,0.5912314622550844,0.1309811583108314,0.4135333601843444,0.6058201303578739,0.5630843339201811,0.5340980021191408,0.9818882251502942,0.3678169075731058,0.5629419480519481,0.4540632675324674,0.3630286838661593,0.3903861374947673,0.4053465836895163,0.0752880592432502
36 | HK.00688,0.0860821804074801,-0.8395144920616027,-0.2859257919734579,-0.1352860532053426,-0.1130433371497332,-0.4002648532623236,0.934809129328412,1.7366141024118769,2.334467532467533,2.0151168831168835,1.945727976970732,1.890708182592428,2.1599635174320206,0.4234257775499397
37 | HK.00006,-0.6814764431563478,-2.6952270763101778,-0.5453983539099854,-0.0603171412842333,-0.3232672771546774,-1.473457040462927,0.9266672787198234,1.9436617185490384,3.31625974025974,2.1730571428571435,1.8251763799507108,2.064246489275475,2.611801569571052,0.4542114022717108
38 | HK.00960,0.650249507716202,-0.5655082409659726,-0.5125707276940727,0.7486010289016328,-0.7574796954155658,-2.944265669710835,0.9465341119855228,2.203585544128856,5.370906493506493,5.185825454545454,2.2162399085264117,5.254316939038562,7.909552365807771,1.0026252026103957
39 | HK.01177,-0.40260436567976,-0.4233327154337436,-0.2475612869433756,0.2311144595064413,-2.360793695793715,-0.7076073655083588,0.9430183119148666,1.261489496753488,1.3304295309090912,1.2595211791688308,0.9215179270119708,1.8467949382815023,1.4154155608855123,0.2431283008453449
40 | HK.00267,0.1835661849885024,-0.7239412029254146,-0.1499924572706186,0.2479551600766931,0.2250411687550495,0.2196553653399403,0.9652757991437564,0.5426422634164912,0.7741948051948052,0.6329753246753246,0.5378631935492068,0.5545317584002565,0.5361018246131249,0.1136126818010569
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[pre_covid_test_time]-[accuracy].csv:
--------------------------------------------------------------------------------
1 | stock_code,linear_regression: score,decision_tree: score,random_forest: score,support_vector_machine_linear: score,support_vector_machine_poly: score,support_vector_machine_rbf: score,lstm: score,linear_regression: mean_absolute_error,decision_tree: mean_absolute_error,random_forest: mean_absolute_error,support_vector_machine_linear: mean_absolute_error,support_vector_machine_poly: mean_absolute_error,support_vector_machine_rbf: mean_absolute_error,lstm: mean_absolute_error
2 | HK.00700,-0.7809296189011035,-3.8876490390745966,-2.0879770416249213,-1.234679697355883,-0.6027912318393147,-7.306960802605609,0.6146417827086246,16.14073609440976,29.45504351648351,23.70951815384615,19.167738815396746,16.251762850932828,37.60416027309157,7.647348838042967
3 | HK.00005,-3.567735022549684,-4.497657175612844,-3.916349298918948,-2.7767402758553343,-3.251205319844371,-6.403249165875078,0.4625396200341028,2.6975156054321383,3.382248461538462,3.2863856153846145,2.311959311545333,2.560727172933551,3.7802708381763104,1.046480152322418
4 | HK.01299,-1.084462297487613,-2.7421670565219016,-1.2839067220024196,-1.390789824206709,-1.760920953242762,-3.939918950806346,0.6369954779071717,3.2081753197544027,4.008274725274724,3.1536483516483518,3.435057384813405,3.684343619046889,4.701823216872897,1.3436926749179676
5 | HK.00939,-0.4704697303575675,-0.6112189316766532,-0.0059107386473651,0.0601843123971983,0.1140324543972677,-0.1490427649357288,0.8691609950613812,0.2595476192245093,0.2638841758241756,0.2077052747252747,0.1944025364761423,0.1859013949009161,0.2332795184515644,0.0840950449539419
6 | HK.00388,-1.6099786078642837,-5.7850718945171895,-2.8626572949755933,-0.8002068846908987,-0.8525764812968932,-7.6113635660881105,0.6916645438829176,10.832943131049444,18.845824175824177,13.733186813186814,10.088425792476368,10.07770357416783,20.224815721851503,3.729323027902044
7 | HK.02318,-2.551597987603407,-7.185454621221561,-7.371580652361111,-11.18957625944924,-10.39247755423705,-9.238625260719097,-0.1566713864083975,2.731784936737657,4.435200659340657,4.616728428571426,5.551184514465855,5.228504116197207,4.7565504975394175,1.7661632159879317
8 | HK.01398,-0.14739114007229,-0.2069419366928135,0.2162422770334342,-0.0670869354759384,-0.0437491163598477,0.0614041196386832,0.8736350668086492,0.2849023513373252,0.2391075824175823,0.2158105054945056,0.2616482668529948,0.2577006498657593,0.2472279628143071,0.0960307585842891
9 | HK.00941,-5.073827549463302,-6.305274819677628,-5.14951996126044,-1.6133477151284032,-1.9845491642216104,-26.81877873057553,0.6886508341452464,4.766684046424527,4.344252747252747,4.34995934065934,2.916537689562764,3.1314407061766225,7.224104151058274,0.9624795580477138
10 | HK.03968,-0.9158207721694418,-3.454534838054726,-1.164814490972705,-1.8864470235234,-2.0310620771931265,-2.8444226939216803,0.3240661348576045,1.315877115766099,2.1812218681318685,1.5628819450549445,1.8081011423727695,1.854518006920142,1.761220032604393,0.8410521599505096
11 | HK.00669,-2.653877786274246,-1.8043860236351952,-1.3859706510284195,-3.005185747535326,-2.7221007806457003,-3.718820881374511,0.6278619722491106,5.476385968932296,4.602005494505495,4.380563186813187,5.96654005725162,5.6823150224132535,5.764503299432104,1.7253993707833812
12 | HK.01211,-20.415941967050937,-60.99888939094825,-60.352639387750045,-22.399604688138776,-27.518372743986166,-99.34471021608742,-0.5278059847223526,6.575341170273375,11.274116923076924,11.36323481318681,7.060218014348917,7.838839955060677,13.17139136867556,1.974379648922896
13 | HK.03988,-0.3988295821106442,-0.7673676835552861,-0.3877127193091396,-0.5342961442944691,-0.4326227440520886,-1.035273905668189,0.7665759182910783,0.0853038063773494,0.1075637362637362,0.0988443846153846,0.0881360800021745,0.0847263967530551,0.1193787541414424,0.0433142400049863
14 | HK.02331,-1.961762667823804,-6.675277585555301,-9.229469237053324,-1.0861568457025474,-23.842439466037963,-39.77109806956175,0.480522040288476,1.8655513598352875,3.9447252747252737,4.742118901098901,1.9278500110529784,6.020077186815517,8.83989117204312,1.0866298098548417
15 | HK.02382,-2.187701355157486,-5.806585963146417,-2.851502523562104,-2.2968970193682643,-3.166989722977793,-8.155025308250686,0.6193645983204725,17.956845604898795,24.486329670329663,17.852083516483514,18.231428909218167,21.057955639272315,26.78220903476629,5.836820166863125
16 | HK.00002,-6.88552378546747,-26.90770846236688,-24.093093803830392,-6.150329775032363,-4.256452952359269,-27.13330752692278,-0.1952401758070265,2.882007577127879,6.0735164835164825,5.986417582417585,2.557820930222158,2.064520175103159,6.108487046215195,1.0979790209771418
17 | HK.00823,-2.527090481177692,-5.041151739997743,-4.610129496601334,-3.3161872307403417,-3.548687690496924,-4.20411378126724,0.5835644131911224,5.937376184320111,7.776910989010989,7.576356593406593,6.5902413599404905,6.689839436409412,7.035662580783947,1.8622676290854403
18 | HK.00883,-1.5742369756885788,-6.154229734909985,-2.75333881280711,-0.7001839491934705,-0.7638223501471548,-6.978547667595628,0.4275441220020701,0.63977140691243,1.1554945054945056,0.8533846153846153,0.5391012280948724,0.5462936739920149,0.8983362458128258,0.3378505271058725
19 | HK.00003,-24.090273182367497,-27.789366585590564,-25.19167485135975,-28.368758610569675,-27.638978278151907,-35.56463201911972,0.1755502240050387,0.9610113158453206,1.2182603384615385,1.1685192171428578,1.0698107864512092,0.9992648784891284,1.2397316887874794,0.2347869094331853
20 | HK.02313,-7.091374501812613,-4.781196291633687,-4.668326285785091,-1.4948128257840971,-1.1350174265318258,-13.551594740075656,-0.3920358088395637,4.372885081143571,5.213186813186813,5.430439560439559,3.521776267531942,3.206557978143632,8.812588280789488,2.849071121553781
21 | HK.02020,-1.7693825450501235,-13.3299178229935,-12.149542397434889,-1.9160760905466376,-1.1717033444603353,-27.20707209601143,0.8542313376074075,7.489960570522956,18.78384615384616,18.102340659340665,7.913584169867884,6.639318568369585,26.10242727045348,1.7867087176411376
22 | HK.00175,-4.419954521663507,-1.8546425376542968,-0.729087629518089,-0.7456760742420039,-0.7570486785746584,-2.0299697664182155,0.8854450482227287,2.5196503913078017,1.5269230769230768,1.2590219780219778,1.340106762904334,1.37787466042743,1.6549104979348583,0.3835255413771289
23 | HK.00016,-10.53496588585788,-11.657536970176666,-5.483431409894444,-2.698102428629466,-3.095107656885613,-11.316605747175805,0.2603630916326939,8.921139906227161,10.421978021978022,6.758516483516485,4.574992080958563,4.787702820499473,8.995987868628688,2.4526802897453304
24 | HK.02319,-0.840378324113684,-1.4838839959921906,-0.8012316072294736,-0.7412989775190455,-1.085248345386213,-3.34638540487191,0.2665831683120525,1.154753938920162,1.2125494505494503,1.093865934065935,1.1244607988037727,1.213951825266985,1.3939568094302035,0.683369241259764
25 | HK.02688,-5.487525510121682,-12.61987017650615,-9.791851669225188,-4.18492381572361,-5.386810053205111,-19.110246341104904,-0.0729328361811822,6.642497019558025,9.733406593406594,8.66342857142857,5.789306256015398,6.574601272193651,11.96447513903597,2.448446732028242
26 | HK.00011,-9.116981755990691,-10.485122571102618,-8.950590826693816,-10.848424490404554,-12.048789780998687,-17.56758831417593,0.3848082179403106,13.271770586468357,13.453846153846154,13.679890109890112,14.441407055477988,16.090923061374482,16.721500326520434,2.9280246491592004
27 | HK.01109,-4.372758869143411,-2.6124139352879,-2.47406526813793,-2.118538536605671,-1.7259743182800102,-4.983349535043716,0.6224482021573097,2.322166617191,2.8367472527472524,2.739047252747253,2.730653795233414,2.533627700087364,3.374005378336278,0.9496680548166496
28 | HK.00291,-14.513789591673827,-36.7072763070064,-30.46830787770149,-13.243986720547518,-11.136076824324125,-42.103907709424654,0.1977976215058305,4.323998600276209,7.36268131868132,6.747736263736262,4.034732484768661,3.5098904340490478,7.621038266003181,1.1048387053504427
29 | HK.02628,-0.4292007635532122,-2.751320446419435,-1.074858050173901,-0.8516543998310682,-1.0380159111979852,-1.050995332724165,0.8305333956863082,1.1312289967321778,1.906956483516484,1.4470155604395605,1.310570409914553,1.3704831206974235,1.278583265831757,0.3898429056673943
30 | HK.02388,-8.225391352230934,-30.970025786150792,-29.170908941136645,-8.83254811678404,-10.144825274860672,-33.969445183735814,0.1694590225102663,1.47455523825488,3.298472527472527,3.3545428571428584,1.5670619703947544,1.8181442608567355,3.5650279549723924,0.5153010499818433
31 | HK.00027,-0.6401984373365759,-4.02667560018378,-0.5614746621843405,-0.2202454093773218,-0.2082792329548699,-2.402270613296736,0.7813285808634798,2.8203458419666614,4.974395604395604,2.5269010989011,2.378763332758661,2.3679017671302005,3.737652044210256,1.081919336908871
32 | HK.00386,-15.983506312115129,-24.760336200752985,-22.463664323433544,-7.349186577794853,-9.70757622237145,-28.112409982098256,0.3097415258978422,0.5335963682113296,0.5301983516483518,0.5740058681318684,0.3542583915972443,0.4163906159937886,0.526451995551875,0.092192597062025
33 | HK.00066,-7.640057971581502,-12.513196661401889,-8.217670783731016,-3.869239248410981,-4.901031346002074,-24.237991840239843,0.5341976819493308,3.3020609933995426,4.075714285714286,3.5165934065934072,2.277560050211131,2.4046385511325097,5.3042310005573095,0.7692665265085781
34 | HK.01093,-1.4317120440835902,-3.9812872734320894,-2.8572916831603785,-0.9268661986279316,-1.2614269943700709,-3.4381184395709683,0.8082166179469978,1.269099265957304,1.7079209945054947,1.5772677996703297,1.1074814071186283,1.1961201683485567,1.6373623210757613,0.4023479643530009
35 | HK.00857,-3.2871071190262926,-1.3153589641164114,-0.9841698271744436,-2.430686823932066,-3.263893541083669,-6.552428399188717,0.6025009954867793,0.3257577500853286,0.2349138461538461,0.2146244835164835,0.296616709064997,0.3254056754274479,0.3079492246859783,0.099892261991467
36 | HK.00688,-0.350437127121435,-1.8935404069224724,-0.7237221868399313,-0.3162888519096141,-0.3649230364679532,-0.446127912354072,0.880278648286957,1.437998621818829,2.274175824175824,1.6460439560439557,1.4165493083604532,1.446494266499144,1.5508790186281982,0.4409877288740936
37 | HK.00006,-0.7408185256054474,-3.0305398447541023,-1.028559405873874,-1.02964634132661,-1.2462726683078578,-1.7314789064644245,0.8150367921634449,1.779113211745288,2.7397802197802203,1.7289230769230772,1.9135429340668475,1.9913876308985956,2.0500346109196577,0.532289324667035
38 | HK.00960,-0.17546705331494,-3.558995099982237,-3.3841014359223847,-0.6106358022578364,-0.2828779971080775,-2.727925630329215,0.8637600194316257,2.0993194100854997,4.027737362637362,3.956196483516485,2.583881657971684,2.202662634519029,3.562909999657057,0.7351145782715908
39 | HK.01177,-6.656810872629884,-11.493296025969109,-5.299082207138779,-4.998576297234027,-6.513514714909805,-8.300986050507971,0.141921148823946,0.8462608998381028,1.0257026747252749,0.7383903257142856,0.7459813488769981,0.8435352594436191,0.778036919419261,0.3341320517910608
40 | HK.00267,-2.001098648009879,-3.4731301177927483,-2.604349067576035,-1.838289715851063,-1.8715592999821684,-7.731825045185911,0.7845049344605264,0.5007104749494974,0.6978021978021978,0.6428681318681317,0.4749971655244109,0.4909232812022333,0.9264132151114852,0.1703890560022027
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[pre_covid_test_time_results]-[results].csv:
--------------------------------------------------------------------------------
1 | stock_code,historical_price,linear_regression: future_price,support_vector_machine_linear: future_price,lstm: future_price,mean_future_price
2 | HK.00700,361.83968,315.7430794668977,331.2998857017379,358.98461120118617,335.3425254566073
3 | HK.00005,59.14282,57.94986312378013,57.88156890281674,59.10056412432849,58.31066538364178
4 | HK.01299,79.134,75.6606083211359,75.48267407315114,78.67549909228087,76.60626049552263
5 | HK.00939,5.98942,5.538374052619123,5.633283185756644,5.907776169295906,5.693144469223892
6 | HK.00388,237.15,245.5823087656232,233.6902750460264,240.27873017430304,239.85043799531755
7 | HK.02318,87.05385,86.7810045562712,81.52925036588191,85.80051457415104,84.70358983210137
8 | HK.01398,5.39266,4.911349894784244,5.046337821346816,5.29919277644813,5.08562683085973
9 | HK.00941,58.857,59.562262771425466,57.99702003231124,57.7076189044714,58.4223005694027
10 | HK.03968,37.23285,36.386037572183696,34.61638066563743,36.78266566470028,35.92836130084047
11 | HK.00669,60.77,52.96809018589175,51.50955099973324,59.00783118724824,54.49515745762441
12 | HK.01211,38.60439,43.417906814102814,44.097765130694015,40.28187932537258,42.599183756723136
13 | HK.03988,2.88304,2.79567906222095,2.815747368258469,2.8445855513833465,2.818670660620922
14 | HK.02331,22.93562,29.321035695664143,27.748438929411822,22.532989344455004,26.534154656510324
15 | HK.02382,133.033,118.47408199140676,120.44863534494252,131.6957908592224,123.53950273185723
16 | HK.00002,75.72,76.59729678240089,76.18240878849176,76.67115167558192,76.4836190821582
17 | HK.00823,76.547,76.20785446983761,76.97108154733992,75.83689279966354,76.33860960561368
18 | HK.00883,11.76,11.219975606719329,11.06163184160765,11.629987658262252,11.303865035529745
19 | HK.00003,13.1428944,13.458710591277043,13.505473735236242,13.133522930341243,13.365902418951508
20 | HK.02313,109.84,100.41826056596145,99.30570819699363,104.57170648813248,101.43189175036252
21 | HK.02020,67.81,66.42246209044117,71.01423590224651,69.18344335317613,68.87338044862128
22 | HK.00175,14.79,13.315093938887363,14.27445538631856,14.248492391109467,13.946013905438463
23 | HK.00016,109.4,123.68514016815884,102.5976663412338,108.79570899009704,111.69283849982988
24 | HK.02319,30.977,29.55026292293612,29.58987591954608,30.630173505902288,29.9234374494615
25 | HK.02688,80.47,74.106138988237,74.94585847285714,78.41868981182576,75.82356242430664
26 | HK.00011,148.2,159.9610367824641,165.91019019607478,151.82268299460412,159.231303324381
27 | HK.01109,36.086,32.37145389499948,29.425705438995337,34.26192852783203,32.01969595394228
28 | HK.00291,42.433,40.18908355450993,40.86795003368043,41.91792986094951,40.991654483046624
29 | HK.02628,20.08213,18.26072571457929,18.220259916729884,19.507826682996747,18.662937438101974
30 | HK.02388,24.369,25.27770650572836,25.555715551439267,24.704496014595037,25.179306023920887
31 | HK.00027,56.95,52.32762186852947,53.24563282826185,56.17211512863637,53.915123275142555
32 | HK.00386,4.05433,4.159532720328178,4.136900018439878,3.9165833353546256,4.071005358040893
33 | HK.00066,43.59,43.206244948231344,41.936567222477215,43.99537171363831,43.0460612947823
34 | HK.01093,9.3653614,9.233126402086564,9.817547114084434,9.125740303794682,9.39213793998856
35 | HK.00857,3.47707,3.352360845109096,3.467919883424816,3.355235025092364,3.3918385845420924
36 | HK.00688,28.15,24.281073657310824,23.87496585364054,27.586179131269454,25.247406214073607
37 | HK.00006,51.38,49.251148742250734,48.307891752412985,51.97163021147251,49.84355690204541
38 | HK.00960,33.2831,29.59101533594136,28.09415773193196,32.10136422850489,29.928845765459403
39 | HK.01177,7.173373,7.1481446925731165,7.1007795948840045,7.021963777285785,7.0902960215809685
40 | HK.00267,9.497,9.708830244245616,9.671086379801954,9.42597694259882,9.601964522215463
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[pre_covid_test_time_results]-[results].xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/[prediction]-[pre_covid_test_time_results]-[results].xlsx
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[pre_covid_time_results]-[results].csv:
--------------------------------------------------------------------------------
1 | stock_code,historical_price,linear_regression: future_price,support_vector_machine_linear: future_price,lstm: future_price,mean_future_price
2 | HK.00700,375.81632,335.4109091196087,341.3820426271982,380.3264028776033,352.37311820813676
3 | HK.00005,58.14282,57.82530364400516,57.37314273319446,58.51425323056698,57.90423320258886
4 | HK.01299,82.934,78.11576384734168,79.18894747652261,81.19677471288443,79.5004953455829
5 | HK.00939,5.92942,5.911870982182597,5.676526316614772,5.943599577723742,5.84399895884037
6 | HK.00388,258.95,227.46748433278077,230.7761352319653,256.3651317238807,238.20291709620892
7 | HK.02318,88.45385,88.65463041899677,87.65441776308786,91.27745116130112,89.19549978112859
8 | HK.01398,5.33266,5.316936394607229,5.095006348235005,5.342437297792435,5.2514600135448894
9 | HK.00941,58.207,57.00976486120017,56.12930779917326,57.86959628760815,57.00288964932719
10 | HK.03968,37.68285,38.12098929744395,36.19461542602793,38.29705031008828,37.537551677853386
11 | HK.00669,60.77,59.97787760003549,59.7262003888934,60.82291956230997,60.17566585041296
12 | HK.01211,38.55439,39.144880709980896,38.312869240398896,38.57856057464093,38.67877017500691
13 | HK.03988,2.82304,2.8716967993690807,2.7725019306560106,2.830298404849171,2.8248323782914206
14 | HK.02331,26.08562,23.19556855136686,24.32183697541682,23.657759551429745,23.725055026071143
15 | HK.02382,139.133,135.27904031064486,138.1583192406411,133.9242392830849,135.78719961145694
16 | HK.00002,76.22,74.66580478846282,74.64082645269288,78.12976452291012,75.81213192135527
17 | HK.00823,75.447,75.12801410687105,75.54057416962974,75.32912961710691,75.33257263120255
18 | HK.00883,12.48,10.46564921947542,10.292259537659902,12.406266034841538,11.054724930658955
19 | HK.00003,13.215456,12.89729549748714,12.922350347565535,12.889460223034307,12.903035356028994
20 | HK.02313,108.94,110.90498209330168,109.23079603888928,108.68188355445862,109.6058872288832
21 | HK.02020,75.56,77.1127284922162,78.80384664648786,70.9766284584999,75.63106786573465
22 | HK.00175,15.63,15.32266414505893,15.335684754840338,15.506340779304503,15.388229893067923
23 | HK.00016,108.3,105.16800107688069,103.26618535947202,106.49266420602798,104.97561688079357
24 | HK.02319,32.077,30.231112030293843,30.4065188431382,31.652425464679595,30.76335211270388
25 | HK.02688,84.57,80.94763331812837,80.6451543220093,82.84272449874283,81.4785040462935
26 | HK.00011,150.2,152.56570836009348,151.29535451144577,150.25977272987365,151.37361186713764
27 | HK.01109,35.736,30.8396875488198,30.842883742728567,33.979369568604945,31.887313620051106
28 | HK.00291,42.133,45.41328094486332,44.90364910362011,42.433306473344565,44.250078840609326
29 | HK.02628,20.93213,19.34473517937736,19.05060592781389,20.86201680964768,19.75245263894631
30 | HK.02388,24.869,25.31063536416944,24.988062694053976,24.576619779348373,24.958439279190596
31 | HK.00027,59.75,54.259648626382464,54.07224526927289,58.71795783758164,55.683283911079
32 | HK.00386,4.13433,4.152586138562352,3.872334413593809,4.189620964736939,4.071513838964367
33 | HK.00066,43.59,42.87441061357559,42.97171836657265,43.49509300291538,43.11374066102121
34 | HK.01093,9.1466128,11.030086861949172,10.702620201286026,9.338695734263338,10.357134265832846
35 | HK.00857,3.66707,3.5025064124593697,3.4756947878662947,3.626031734222174,3.534744311515946
36 | HK.00688,27.75,23.818095911128214,23.329660330719705,27.37098053693771,24.839578926261876
37 | HK.00006,52.13,49.8999706176858,48.54477810421994,51.9846475791931,50.14313210036628
38 | HK.00960,34.6331,32.05323126220178,29.819649682398907,32.2142904817462,31.36239047544896
39 | HK.01177,7.173373,8.868594280266354,7.549387597090639,7.293823513803482,7.903935130386825
40 | HK.00267,9.097,9.215769373054902,9.29056933043885,8.989366828918458,9.165235177470736
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/[prediction]-[pre_covid_time_results]-[results].xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/[prediction]-[pre_covid_time_results]-[results].xlsx
--------------------------------------------------------------------------------
/Results/StockPrediction/covid_time_results.csv:
--------------------------------------------------------------------------------
1 | stock_code,linear_regression: score,linear_regression: mean_absolute_error,linear_regression: last_day_value,linear_regression: future_price,decision_tree: score,decision_tree: mean_absolute_error,decision_tree: last_day_value,decision_tree: future_price,random_forest: score,random_forest: mean_absolute_error,random_forest: last_day_value,random_forest: future_price,support_vector_machine_linear: score,support_vector_machine_linear: mean_absolute_error,support_vector_machine_linear: last_day_value,support_vector_machine_linear: future_price,support_vector_machine_poly: score,support_vector_machine_poly: mean_absolute_error,support_vector_machine_poly: last_day_value,support_vector_machine_poly: future_price,support_vector_machine_rbf: score,support_vector_machine_rbf: mean_absolute_error,support_vector_machine_rbf: last_day_value,support_vector_machine_rbf: future_price,lstm: score,lstm: mean_absolute_error,lstm: last_day_value,lstm: future_price
2 | HK.00700,-6.616543141654666,49.40942235686232,443.37008,507.03725538904087,-14.278175186006937,62.495034999999994,443.37008,525.96814,-17.461850086761252,75.93256999999997,443.37008,505.1002399999999,-3.443764218046309,33.35821093828996,443.37008,484.2189071630019,-2.005634576408216,26.661909598108828,443.37008,484.51970779864774,-13.088475086060452,69.6500750969995,443.37008,527.0405592606719,0.04851751872365351,17.149739682987565,443.37008,438.773098157919
3 | HK.00005,-0.8109121850647154,2.728735278509419,46.9,42.32750283503387,-1.3741857624135556,3.2817754347826087,46.9,48.65589,-0.8212504358275066,2.7460911304347824,46.9,48.54589,-1.6198832965798062,3.1439329702797365,46.9,42.290744385149466,-1.8749491139117933,3.34535828944865,46.9,41.84891163034215,-0.7535456569103958,2.6622971684283177,46.9,47.698916874392374,0.7724512689993098,0.9103968155583317,46.9,46.33257570201874
4 | HK.01299,-0.2879263878358371,5.046020937052719,78.6,86.36822292639197,-5.205065782232105,10.782684782608696,78.6,102.417,-3.3832781867242687,9.180565217391301,78.6,94.85040000000001,0.18447654280508097,4.061067291409524,78.6,85.77023991544135,0.25803358338406246,3.86810564691835,78.6,84.86214826815655,-4.392865369683266,10.458270942768895,78.6,82.22690934821732,0.834569846310224,1.6901892657985493,78.6,79.59692991164326
5 | HK.00939,-0.8162863593754976,0.20432848857888264,5.4,5.433036885844608,-4.800026256431926,0.3518156521739131,5.4,5.47916,-1.3658545394070072,0.2251652608695652,5.4,5.491212,-0.4780407763063874,0.1890190447840656,5.4,5.446029446786833,-0.40135052527487924,0.1825733611517243,5.4,5.42753892678465,-0.16021380209548464,0.15978381156491067,5.4,5.4030753615837686,0.8590670101438617,0.05149930700180478,5.4,5.360152916822433
6 | HK.00388,-2.4840358139171443,28.259813478977925,455.4,485.36379886296874,-5.058511369304187,34.20097826086955,455.4,524.81,-2.7983995380027205,27.97869565217391,455.4,489.41999999999996,-11.23807059446759,57.16972700666368,455.4,503.8461279488442,-2.7721458769646974,29.38784792307303,455.4,471.89758861916414,-8.730817999768087,42.38726172241029,455.4,461.3465828999504,0.3248395746501139,11.753293618961264,455.4,460.6050724178553
7 | HK.02318,-13.796884410913016,9.986462042989071,56.15,67.20481673172016,-27.960472688526902,14.997938478260869,56.15,75.07618,-36.818334168913815,17.471279173913043,56.15,75.74752199999999,-17.78992478538781,11.746499292530997,56.15,67.30665239213621,-20.34908453004449,12.869374111038471,56.15,68.62753690233643,-55.574059023694694,21.211040528974237,56.15,79.46647664673631,-0.15025904948200686,3.5684815315117397,56.15,60.08703876275063
8 | HK.01398,-2.817865077898269,0.12451268592112567,4.4,4.258685582832791,-33.408631162795366,0.3840379347826087,4.4,3.69009,-14.096673039363967,0.22824226086956526,4.4,3.7920900000000004,-2.929394798225968,0.12825496278331902,4.4,4.416858562177891,-2.173027443795042,0.11275313910388574,4.4,4.394046954683477,-1.519461257447435,0.08800636545696609,4.4,4.304871097989462,-0.15382718167243303,0.0666154726946385,4.4,4.296581367548406
9 | HK.00941,-0.5470528423087204,0.9977863176693841,46.8,47.02034077373073,-9.561327851484922,2.2645434782608693,46.8,47.37,-3.3089678676384695,1.5677423913043467,46.8,47.31,-0.3608333949790594,0.9337611961106941,46.8,47.487639047093175,-0.4374661432512803,0.9592813725040771,46.8,47.28938167099118,-1.546878879234463,1.1956539413952476,46.8,46.843183156652636,0.5701594506044204,0.5387211439408824,46.8,47.34755056074262
10 | HK.03968,-1.5253658540298267,3.54405194127255,60.55,65.27399870901064,-2.0778991599107197,3.9489884782608695,60.55,65.69562,-0.8619629105428757,3.055216717391304,60.55,63.182372,-1.289703092213652,3.3314286145553624,60.55,64.34661300493396,-2.172360379675772,4.026696970972013,60.55,64.86255507181555,-2.061661928912869,3.505539274389719,60.55,65.22184821066361,0.03674565047071787,2.0342008919046677,60.55,61.41999921347677
11 | HK.00669,-6.638577790000825,14.691049645136252,155.2,176.8407100883681,-15.2891317053761,24.291304347826088,155.2,139.85,-15.135552577435728,24.51026086956522,155.2,151.72,-6.372495647678633,14.051412991964753,155.2,169.70069439366944,-14.938450785837725,21.765411877544462,155.2,197.48499202423983,-70.21217401362759,50.6058222654538,155.2,100.37906381226612,-0.27780610690490914,5.840687440670267,155.2,157.94193495035174
12 | HK.01211,-1.636667778727114,33.015862799671545,266.6,322.8147664647579,-17.80308527235177,92.44859000000001,266.6,180.42012,-15.836434599620162,87.93585139130435,266.6,186.00810800000002,-1.5314290927347476,32.27942287327673,266.6,339.2237250692845,-9.277571592349744,58.130945561227286,266.6,437.32768976290134,-19.642095534246113,99.77891767680319,266.6,162.86874162799057,0.7421148352176488,8.823664025855887,266.6,259.4581161681193
13 | HK.03988,-2.3349075425184265,0.048109118247260385,2.81,2.7141406167872,-34.818472160748996,0.16829913043478256,2.81,2.73,-5.649797148496067,0.06063569565217391,2.81,2.6872160000000003,-8.730283506854871,0.09206948481954433,2.81,2.6834223354206084,-9.4540278262135,0.09562781417634678,2.81,2.6824847884826957,-10.500746177282618,0.09857563264906634,2.81,2.6820079586619765,-2.1934543861483484,0.05029946917120288,2.81,2.739167160396576
14 | HK.02331,-6.15962452879314,14.18847363472125,85.35,112.20370420345532,-0.8850566004547031,7.016304347826087,85.35,94.2,-0.5062235581700387,6.342228260869568,85.35,90.71000000000001,-8.187060046298882,17.06037474940738,85.35,109.28879789798904,-45.58911486132928,40.62257870693121,85.35,135.57242868437714,-12.202663608239224,19.83737802148484,85.35,76.30396477235949,0.5046623386971728,3.717580217041897,85.35,83.8797987901032
15 | HK.02382,-0.8727472500996929,18.276325285720965,246.6,222.37547092174202,-7.361559795665908,39.298021739130434,246.6,231.2,-3.3761027077295465,26.575676086956513,246.6,236.73430000000002,-1.2002641107610885,19.098489651267315,246.6,225.73378823090582,-1.4456678761695665,20.99116229085547,246.6,239.2214532939318,-9.093655321693776,40.4916494227669,246.6,166.1400778251194,0.729164915729291,6.228714737161689,246.6,241.6534748119712
16 | HK.00002,-0.7214551480919575,1.3502332403897888,78.75,74.04937722990452,-12.068519999384204,3.2121739130434763,78.75,72.54,-3.345846914009294,1.9720434782608707,78.75,70.83,-1.7542439657030577,1.7477475934381033,78.75,73.85818884399748,-1.2126447524562232,1.5925651756121686,78.75,74.3976514510189,-2.7617496967717745,2.024510644237282,78.75,73.43408121045256,0.5565810059080618,0.6829265758699301,78.75,78.43433898031712
17 | HK.00823,-1.9537579393123874,2.873889416003118,68.65,70.10373681213218,-6.945035023914686,5.085877173913042,68.65,73.7707,-5.287556512427846,4.39972043478261,68.65,72.71003,-2.0697937144914342,3.0324813882551385,68.65,69.21623105860218,-1.6949199887807906,2.8125013902491327,68.65,68.6626382861013,-4.553620314445346,4.164096555259971,68.65,72.57704412211211,0.6011490484456348,1.1463940158049664,68.65,68.35694004011154
18 | HK.00883,-0.7939433624360746,0.4235490299384136,8.03,7.714125818658368,-2.5283575491750545,0.658586956521739,8.03,8.11,-1.2451983599050243,0.5403478260869568,8.03,7.9239999999999995,-0.5161374503432141,0.3966260623237117,8.03,7.764482847688505,-0.3832818089035197,0.38075033552202125,8.03,7.828561801252478,-0.4478363908494396,0.4088384705308755,8.03,7.792836954879381,0.43394701245156886,0.25895158924010253,8.03,7.89024467766285
19 | HK.00003,-0.5828094537351589,0.3423697541780834,12.14,11.465413620479293,-3.9825571789437326,0.6365430130434782,12.14,10.97523,-1.456407739939384,0.4498553947826084,12.14,11.5388492,-0.4944555979800622,0.3311905458999721,12.14,11.47834786118106,-0.6843057745219869,0.3583186392018093,12.14,11.415397372931988,-1.4218649286950549,0.36042237650030035,12.14,11.650747148845577,0.8713893013127008,0.10572446774832697,12.14,12.18703568652277
20 | HK.02313,-1.1323594828785422,10.49457434154195,149.9,166.37316850607792,-6.267353605545127,20.05282608695652,149.9,163.34,-3.7481643340092106,16.571521739130432,149.9,169.57000000000002,-1.7566443269135732,12.094005983072899,149.9,168.95149469934782,-3.96556806707759,16.937983211157526,149.9,172.57526951600852,-11.65535806147865,26.138751554387127,149.9,167.44907814746747,0.44844562563940715,5.614951511505918,149.9,154.73412206411362
21 | HK.02020,-2.75522858376364,27.92639136278202,116.6,146.9368489483038,-2.843567699695379,24.700652173913046,116.6,116.33,-2.0452670347245596,23.03729347826087,116.6,142.24800000000002,-4.1598294265260956,33.33447541268199,116.6,151.05094168955603,-8.302094060441252,43.01632596501291,116.6,150.88915390459118,-2.8074011162248387,26.605384202543313,116.6,110.57218960459342,0.7659765706466665,6.854452637811106,116.6,120.47008864045144
22 | HK.00175,-0.7909682510138683,2.3741961088956867,21.3,25.658039773448834,-3.3573152493684777,3.6469565217391304,21.3,25.95,-1.1418572282656516,2.4224239130434793,21.3,22.000999999999998,-1.281656140783399,2.555574657098646,21.3,25.06640103259219,-1.713690166320477,2.7229140339573648,21.3,25.624492353271886,-3.856240275286873,3.565078754320608,21.3,18.698836375525556,0.5465355867717983,1.1132312896574026,21.3,20.67733244687319
23 | HK.00016,-1.4674432389948517,6.3110060012226885,94.6,102.31515798224919,-3.0330278213191013,8.019021739130435,94.6,112.5,-1.6417364595298358,6.254402173913041,94.6,95.695,-0.8680921690984236,5.420511992739383,94.6,101.2901193568242,-1.1233712510339768,5.892710989783882,94.6,101.00260856607474,-3.969066144513654,8.46317728211351,94.6,104.63243785466929,0.8139268383314978,1.52664895592904,94.6,94.13532510399817
24 | HK.02319,-1.6528564883550683,2.7070854917652216,44.2,47.018860083377994,-2.9039974801405215,3.0599782608695647,44.2,45.1,-2.088746380443112,2.8212847826086964,44.2,43.9824,-1.6878969144796545,2.5053447742159385,44.2,45.37565947771654,-2.13182455817055,2.8154067941768033,44.2,45.892180852639726,-2.4959900633727594,2.9439800074647215,44.2,43.52586240114253,0.651818341717943,0.934031286699432,44.2,44.27847921693325
25 | HK.02688,-5.466858121790399,24.49441507552832,146.8,149.05085398407869,-3.640117597543476,21.60684782608696,146.8,148.41,-3.5831566077311763,21.081065217391306,146.8,159.28000000000003,-5.049221980585295,24.25565351677019,146.8,157.25775519833013,-9.495527294923267,31.38427810819235,146.8,163.4795596632121,-2.330656885019394,18.276443754615922,146.8,138.1997510903341,0.5308984106422271,6.920635718520806,146.8,150.08908653616905
26 | HK.00011,-1.9451976384632412,6.70602614828685,142.7,142.9539767682282,-5.757709914883635,9.6804347826087,142.7,147.4,-4.100762046437728,7.981195652173909,142.7,147.28000000000003,-1.9089551524591473,6.467763548417288,142.7,140.2960072468953,-1.8505550756483475,6.371547940577087,142.7,139.75346037810039,-8.216321785133944,11.21195113823094,142.7,116.02984145262529,0.5989727149134618,2.2542002511267785,142.7,145.54118101596833
27 | HK.01109,0.11779073702643961,1.7940357898209132,32.8,32.09722784746142,-1.652263930469608,3.11,32.8,35.68,-0.1584725931035984,2.009684782608696,32.8,33.3286,0.07710655156680779,1.8286934287817211,32.8,33.415174300364164,0.09255394166435238,1.8243016200332651,32.8,33.34864556921309,-2.6689902184167305,3.202845463866027,32.8,34.00977910122734,0.7916175478101011,0.8071554680816372,32.8,32.883887633800505
28 | HK.00291,-0.7902054044772377,3.472989624474004,63.85,65.43874475348969,-3.947326455772081,5.4405869565217415,63.85,70.825,-3.46633393450906,5.308443478260871,63.85,70.77579999999999,-0.934949705385292,3.61931363917904,63.85,64.91725685380023,-1.6245489921068104,4.109716891605541,63.85,64.94325109108554,-6.204329783458111,6.673742551324574,63.85,70.80288120274736,0.6009120862160522,1.4781938774439753,63.85,64.17747372484207
29 | HK.02628,-9.756251761881696,1.3477090085069048,12.92,14.658860517206369,-66.76616817683198,2.6576061956521735,12.92,13.03213,-25.144994475151854,1.781986826086957,12.92,13.726917,-4.105053534856593,0.8287311251566661,12.92,14.319028056202066,-4.111018758494276,0.8362669723813375,12.92,14.285968742946098,-46.782545585576834,2.3419444678880494,12.92,14.681754472869184,0.4846915546512438,0.2445036949166598,12.92,13.123028268520832
30 | HK.02388,-0.8214488607201427,0.885951724793576,25.55,24.196021449817245,-20.171495658064334,2.8132065217391298,25.55,22.969,-13.41382026286497,2.498835869565217,25.55,21.169,-1.6423513004683965,1.0246840270992514,25.55,23.78209409132424,-2.053806015773008,1.0800136977814387,25.55,23.65214729425061,-7.5839781313063135,1.9737076537509788,25.55,20.860424357404945,0.6950853759607685,0.3357995100057861,25.55,25.56759614914656
31 | HK.00027,-9.360604600463951,12.33381286339852,40.4,57.17142896266987,-10.251064949584856,12.542934782608697,40.4,58.65,-9.402160321440416,12.10978260869565,40.4,53.625,-4.76071198829327,8.770505178324317,40.4,53.24154130859216,-4.642455239472236,8.756195555882808,40.4,52.32569873260253,-7.630567450778319,10.179270326299344,40.4,38.272924026036016,0.2703997068481957,2.4841843611636802,40.4,42.931678497046235
32 | HK.00386,-2.2311963480078987,0.24556495555087549,3.63,3.5759654461168604,-3.721116219856037,0.28920032608695656,3.63,3.99339,-1.7239077816383253,0.21513158695652174,3.63,3.7059219999999997,-3.0647309852098434,0.28940298315838453,3.63,3.452077196048251,-3.2211908128237052,0.2935794628807912,3.63,3.4459968208727627,-2.2743756365165106,0.24137256913649885,3.63,3.642390695613793,0.8018309474774554,0.0645392602226807,3.63,3.64971646643877
33 | HK.00066,-1.9183167039041416,1.5221289071357216,41.85,43.341683327591724,-4.548906148815157,1.9861956521739135,41.85,42.7,-1.7013986187224237,1.4888586956521734,41.85,40.585000000000015,-0.9980935628682879,1.2585292101658483,41.85,42.07851395462319,-0.5530686802820897,1.110781258564721,41.85,42.03004142593177,-1.195724034396222,1.2641253240290538,41.85,42.45274027500974,0.8392588467448224,0.3794867145528608,41.85,41.892341895103456
34 | HK.01093,-0.04181706552118425,0.6534855582466946,8.47,8.598575989703711,-3.077200361948254,1.1058019456521742,8.47,7.3,-1.0171536333368283,0.8402452930434786,8.47,8.05911106,0.1200862842171333,0.591460476335386,8.47,8.497269598166774,0.2414334317066532,0.5459521923864152,8.47,8.476438205387542,-0.3735857182794833,0.6962894682651013,8.47,8.757315581728108,0.9397417440951931,0.16136312426158952,8.47,8.227292179504062
35 | HK.00857,-4.798851984740351,0.5846930877757198,3.47,3.001706846588883,-8.666630699263113,0.7619885869565218,3.47,2.66707,-7.518910989184379,0.7543772391304348,3.47,2.37507,-5.352279756811715,0.6245513487104657,3.47,2.9544067013517674,-4.941262166779705,0.5708747861697157,3.47,2.9972080056440653,-12.214516365195603,0.9035318146825344,3.47,2.6632728236252214,0.7690729609393775,0.11171038474257196,3.47,3.4780114659065005
36 | HK.00688,-0.042825697854765865,0.6004190825958169,18.46,18.292464775847854,-2.060892942452332,1.0615217391304348,18.46,16.78,-0.8708063042779326,0.812663043478261,18.46,17.338,-0.0752497677994437,0.6105881921440401,18.46,18.314571540142612,-0.19930579304134333,0.6341893103103332,18.46,18.025373749413912,-1.4038052066146287,0.9190552458640756,18.46,17.411110660118116,0.39234716723648844,0.4510576098305838,18.46,18.364488067626954
37 | HK.00006,-2.0833947594527173,1.7121858597910384,48.6,45.96893081427193,-12.181603145745507,3.0176086956521746,48.6,48.02,-5.64652289864635,2.313554347826086,48.6,48.7,-2.682484314841638,1.8572802930964887,48.6,45.66014302204366,-3.4848856133154076,2.036937970199596,48.6,45.35568186449807,-7.584416392654502,2.5305996690069033,48.6,48.64881676388313,0.7787283321659235,0.4418234167901841,48.6,49.10317719459534
38 | HK.00960,-3.3346090295646924,3.769410060796653,36.7,41.30936074337343,-4.511837440247019,4.4042,36.7,37.0242,-4.9413603576457445,4.522274130434783,36.7,42.474529999999994,-1.2801060926811774,2.8419330322988547,36.7,39.63939270659231,-0.992101321899379,2.687591621663579,36.7,39.18115210661307,-8.278244601151973,5.248329593867406,36.7,43.096072473211464,0.30684507269495886,1.5425256114657429,36.7,38.28817224303186
39 | HK.01177,-7.845760901596208,1.237169819621837,5.46,6.872513409600261,-14.590833042131253,1.5750699499999998,5.46,7.3467072,-17.333018684179983,1.7633244667391306,5.46,7.66536644,-6.139114330605918,1.1026215319594963,5.46,6.730508912142048,-7.467027392984571,1.2018981927234054,5.46,6.9058812877717095,-22.683921658687833,1.8644629464712394,5.46,9.060072575416267,0.37338504731029587,0.32085964490108326,5.46,5.809576864540577
40 | HK.00267,-0.8032898935763888,0.8937386980514432,7.7,6.8054685999673525,-0.6735973766581906,0.8308804347826088,7.7,8.672,-0.34358930830570533,0.716133695652174,7.7,6.62,-0.6634913308650263,0.8358814308404243,7.7,7.0159324638437734,-0.8311560137609275,0.8991059308534316,7.7,6.942256904134704,-1.178877286564727,0.9041166647991565,7.7,6.7362665313027925,0.8359362203414369,0.23729575988711138,7.7,7.689149995684624
41 |
--------------------------------------------------------------------------------
/Results/StockPrediction/portfolio_input_all_period_top5.csv:
--------------------------------------------------------------------------------
1 | time period,model,portfolio stock input
2 | all_time_results,Linear Regression,"['HK.00700', 'HK.02020', 'HK.00669', 'HK.02313', 'HK.02331']"
3 | all_time_results,Support Vector Machine(linear),"['HK.00700', 'HK.02020', 'HK.01211', 'HK.02313', 'HK.00669']"
4 | all_time_results,LSTM Network,"['HK.01299', 'HK.00016', 'HK.01109', 'HK.00011', 'HK.00006']"
5 | all_time_results,Mean Average,"['HK.00700', 'HK.02020', 'HK.02313', 'HK.00669', 'HK.02331']"
6 | covid_time_results,Linear Regression,"['HK.00700', 'HK.01211', 'HK.02020', 'HK.00388', 'HK.02331']"
7 | covid_time_results,Support Vector Machine(linear),"['HK.01211', 'HK.00388', 'HK.00700', 'HK.02020', 'HK.02331']"
8 | covid_time_results,LSTM Network,"['HK.00388', 'HK.02313', 'HK.02318', 'HK.02020', 'HK.02688']"
9 | covid_time_results,Mean Average,"['HK.01211', 'HK.00700', 'HK.00388', 'HK.02020', 'HK.02331']"
10 | pre_covid_time_results,Linear Regression,"['HK.00291', 'HK.00011', 'HK.02313', 'HK.01093', 'HK.01177']"
11 | pre_covid_time_results,Support Vector Machine(linear),"['HK.02020', 'HK.00291', 'HK.01093', 'HK.00011', 'HK.01177']"
12 | pre_covid_time_results,LSTM Network,"['HK.00700', 'HK.02318', 'HK.00002', 'HK.03968', 'HK.00005']"
13 | pre_covid_time_results,Mean Average,"['HK.00291', 'HK.01093', 'HK.00011', 'HK.02318', 'HK.01177']"
14 | pre_covid_test_time_results,Linear Regression,"['HK.00016', 'HK.00011', 'HK.00388', 'HK.02331', 'HK.01211']"
15 | pre_covid_test_time_results,Support Vector Machine(linear),"['HK.00011', 'HK.01211', 'HK.02331', 'HK.02020', 'HK.02388']"
16 | pre_covid_test_time_results,LSTM Network,"['HK.00011', 'HK.00388', 'HK.01211', 'HK.02020', 'HK.00002']"
17 | pre_covid_test_time_results,Mean Average,"['HK.00011', 'HK.01211', 'HK.02331', 'HK.00388', 'HK.00016']"
18 |
--------------------------------------------------------------------------------
/Results/StockPrediction/portfolio_input_all_period_top5.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MaxMA2000/Research-on-Stock-Prediction-based-Portfolio-Optimization/765a081b0dfc9756bbd4cec268bf287f53cb764a/Results/StockPrediction/portfolio_input_all_period_top5.xlsx
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | anyio==3.5.0
2 | appnope==0.1.3
3 | argon2-cffi==21.3.0
4 | argon2-cffi-bindings==21.2.0
5 | asttokens==2.0.5
6 | attrs==21.4.0
7 | Babel==2.9.1
8 | backcall==0.2.0
9 | beautifulsoup4==4.11.1
10 | bleach==5.0.0
11 | certifi==2021.10.8
12 | cffi==1.15.0
13 | charset-normalizer==2.0.12
14 | cmake==3.22.4
15 | cycler==0.11.0
16 | debugpy==1.6.0
17 | decorator==5.1.1
18 | defusedxml==0.7.1
19 | entrypoints==0.4
20 | et-xmlfile==1.1.0
21 | executing==0.8.3
22 | fastjsonschema==2.15.3
23 | fonttools==4.32.0
24 | futu-api==6.1.2608
25 | idna==3.3
26 | importlib-resources==5.7.1
27 | ipykernel==6.13.0
28 | ipython==8.2.0
29 | ipython-genutils==0.2.0
30 | jedi==0.18.1
31 | Jinja2==3.1.1
32 | joblib==1.1.0
33 | json5==0.9.6
34 | jsonschema==4.4.0
35 | jupyter-client==7.2.2
36 | jupyter-core==4.10.0
37 | jupyter-server==1.16.0
38 | jupyterlab==3.3.4
39 | jupyterlab-pygments==0.2.2
40 | jupyterlab-server==2.12.0
41 | kiwisolver==1.4.2
42 | MarkupSafe==2.1.1
43 | matplotlib==3.5.1
44 | matplotlib-inline==0.1.3
45 | mistune==0.8.4
46 | nbclassic==0.3.7
47 | nbclient==0.6.0
48 | nbconvert==6.5.0
49 | nbformat==5.3.0
50 | nest-asyncio==1.5.5
51 | notebook==6.4.11
52 | notebook-shim==0.1.0
53 | numpy==1.22.3
54 | openpyxl==3.0.9
55 | packaging==21.3
56 | pandas==1.4.2
57 | pandocfilters==1.5.0
58 | parso==0.8.3
59 | pexpect==4.8.0
60 | pickleshare==0.7.5
61 | Pillow==9.1.0
62 | prometheus-client==0.14.1
63 | prompt-toolkit==3.0.29
64 | protobuf==3.20.0
65 | psutil==5.9.0
66 | ptyprocess==0.7.0
67 | pure-eval==0.2.2
68 | pycparser==2.21
69 | pycryptodome==3.14.1
70 | Pygments==2.11.2
71 | pyparsing==3.0.8
72 | pyrsistent==0.18.1
73 | python-dateutil==2.8.2
74 | pytz==2022.1
75 | pyzmq==22.3.0
76 | requests==2.27.1
77 | scikit-learn==1.0.2
78 | scipy==1.8.0
79 | Send2Trash==1.8.0
80 | simplejson==3.17.6
81 | six==1.16.0
82 | sniffio==1.2.0
83 | soupsieve==2.3.2.post1
84 | stack-data==0.2.0
85 | terminado==0.13.3
86 | threadpoolctl==3.1.0
87 | tinycss2==1.1.1
88 | tornado==6.1
89 | traitlets==5.1.1
90 | urllib3==1.26.9
91 | wcwidth==0.2.5
92 | webencodings==0.5.1
93 | websocket-client==1.3.2
94 | zipp==3.8.0
95 | pyportfolioopt==1.5.1
96 | pyfolio==0.9.2
97 |
--------------------------------------------------------------------------------