├── .gitignore
├── README.md
├── api.py
├── assets
├── background
│ └── background.jpg
├── sample_image
│ ├── female.jpeg
│ └── male.jpeg
└── sample_video
│ └── sample.mp4
├── bg_remove.py
├── inference.py
├── output
├── male.png
├── sample.gif
├── sample.mp4
└── web_view.png
├── pretrained
└── README.md
├── requirements.txt
├── src
└── models
│ ├── backbones
│ ├── __init__.py
│ ├── mobilenetv2.py
│ └── wrapper.py
│ └── modnet.py
├── web_requirements.txt
└── web_solution
├── static
└── js
│ └── detection.js
└── template
└── home.html
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
131 | pretrained/*.ckpt
132 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # MODNet Background Remover
2 |
3 | ## Application
4 |
5 | A deep learning approach to remove background and adding new background image
6 |
7 | - Remove background from **images,videos & live webcam**
8 | - Adding new background to those **images,videos & webcam footage**
9 |
10 | ### Demo
11 |
12 |
13 |
14 | Before removing the background |
15 | After replacing the background with new image |
16 |
17 |
18 |  |
19 |  |
20 |
21 |
22 | Before removing the background from video |
23 | After replacing the background with new image in this video |
24 |
25 |
26 |  |
27 |
28 |
29 |
30 | ### Web View
31 |
32 |
33 | Before removing the background |
34 | After removing the background |
35 |
36 |
37 |  |
38 |  |
39 |
40 |
41 |
42 | ## Installation
43 |
44 | ### Python Version
45 |
46 | - Python == 3.8
47 |
48 | ### Virtual Environment
49 |
50 | #### Windows
51 |
52 | - `python -m venv venv`
53 | - `.\venv\Scripts\activate`
54 | - If any problem for scripts activation
55 | - Execute following command in administration mode
56 | - `Set-ExecutionPolicy Unrestricted -Force`
57 | - Later you can revert the change
58 | - `Set-ExecutionPolicy restricted -Force`
59 |
60 | #### Linux
61 |
62 | - `python -m venv venv`
63 | - `source venv/bin/activate`
64 |
65 | ### Library Installation
66 |
67 | - Library Install
68 | - `pip install --upgrade pip`
69 | - `pip install --upgrade setuptools`
70 | - `pip install -r requirements.txt`
71 | - To run in **web interface**
72 | - `pip install -r web_requirements.txt`
73 |
74 | ### Pretrained Weights Download
75 | - [Weights Detail](pretrained/README.md)
76 |
77 |
78 | ## Inference
79 |
80 | ### Image
81 |
82 | #### Single image
83 |
84 | It will generate the output file in **output/** folder
85 |
86 | - `python inference.py --image image_path` **[Without background image]**
87 | - `python inference.py --image image_path --background True` **[With background image]**
88 | - Example:
89 | - `python inference.py --image assets/sample_image/female.jpeg`
90 | - `python inference.py --image assets/sample_image/male.jpeg --background True`
91 |
92 | #### Folder of images
93 |
94 | It will generate the output file in **output/** folder
95 |
96 | - `python inference.py --folder folder_path` **[Without background image]**
97 | - `python inference.py --folder folder_path --background True` **[With background image]**
98 | - Example:
99 | - `python inference.py --folder assets/sample_image/`
100 | - `python inference.py --folder assets/sample_image/ --background True`
101 |
102 | ### Video
103 |
104 | It will generate the output file in **output/** folder
105 |
106 | - `python inference.py --video video_path` **[Without background image]**
107 | - `python inference.py --video video_path --background True` **[With background image]**
108 | - Example:
109 | - `python inference.py --video assets/sample_video/sample.mp4`
110 | - `python inference.py --video assets/sample_video/sample.mp4 --background True`
111 |
112 | ### Webcam
113 |
114 | - `python inference.py --webcam True` **[Without background image]**
115 | - `python inference.py --webcam True --background True` **[With background image]**
116 |
117 | ### Webinterface
118 |
119 | - `python api.py`
120 | - Click on this [link/localhost](http://127.0.0.1:8000)
121 | - Upload the image and wait
122 |
123 | ## Reference
124 |
125 | - [A Trimap-Free Solution for Portrait Matting in Real Time under Changing Scenes](https://github.com/ZHKKKe/MODNet)
126 | - Sample Female photo by Michael Dam on Unsplash
127 | - Sample Male photo by Erik Lucatero on Unsplash
128 |
--------------------------------------------------------------------------------
/api.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import glob
4 | import time
5 |
6 | from flask import Flask, request, render_template, jsonify
7 | from flask_cors import CORS
8 |
9 | from werkzeug.utils import secure_filename
10 |
11 | from bg_remove import BGRemove
12 |
13 |
14 | root = os.path.split(os.path.abspath(__file__))[0]
15 | ckpt_image = 'pretrained/modnet_photographic_portrait_matting.ckpt'
16 | bg_remover = BGRemove(ckpt_image)
17 |
18 | ALLOWED_EXTENSIONS = set(['jpg', 'png', 'jpeg'])
19 |
20 | TEMPLATE_FOLDER = os.path.join(root, 'web_solution', 'template')
21 | STATIC_FOLDER = os.path.join(root, 'web_solution', 'static')
22 | STATIC_IMAGE_PATH = os.path.join(root, 'web_solution', 'static', 'images')
23 |
24 | UPLOAD_FOLDER = os.path.join(STATIC_IMAGE_PATH, 'test_images')
25 | RESULT_IMAGE = os.path.join(STATIC_IMAGE_PATH, 'result_images')
26 |
27 | make_directory = [os.makedirs(path,exist_ok=True) for path in [UPLOAD_FOLDER, RESULT_IMAGE]]
28 |
29 | app = Flask(__name__, template_folder=TEMPLATE_FOLDER,
30 | static_folder=STATIC_FOLDER)
31 | cors = CORS(app)
32 |
33 | app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
34 | app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
35 | app.config['SECRET_KEY'] = 'PrinceAPI'
36 |
37 |
38 | HOMEPAGE = 'home.html'
39 |
40 |
41 | def allowed_file(filename):
42 | return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
43 |
44 |
45 | @app.route('/', methods=['GET', 'POST'])
46 | def upload_file():
47 | if request.method == 'POST':
48 | # check if the post request has the file part
49 | if 'files[]' not in request.files:
50 | resp = jsonify({'message': 'No file part in the request'})
51 | resp.status_code = 400
52 |
53 | files = request.files.getlist('files[]')
54 | errors = {}
55 | success = False
56 | file = files[0]
57 | filename = ""
58 |
59 | if file and allowed_file(file.filename):
60 | ts = time.time()
61 | filename = f"{str(ts)}-{file.filename}"
62 | filename = secure_filename(filename)
63 | file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
64 | success = True
65 | else:
66 | errors['message'] = 'File type is not allowed'
67 |
68 | if success and errors:
69 | resp = jsonify({"filepath": f"{app.config['UPLOAD_FOLDER']}/{filename}", "filename": filename,
70 | 'message': 'Files successfully uploaded'})
71 | resp.status_code = 206
72 | if success:
73 | resp = jsonify({"filepath": f"{app.config['UPLOAD_FOLDER']}/{filename}", "filename": filename,
74 | 'message': 'Files successfully uploaded'})
75 | resp.status_code = 201
76 | else:
77 | resp = jsonify(errors)
78 | resp.status_code = 400
79 | resp.html = render_template(HOMEPAGE)
80 | return resp
81 |
82 | return render_template(HOMEPAGE)
83 |
84 |
85 | @app.route('/process/')
86 | def process(input_filename):
87 | image = os.path.join(UPLOAD_FOLDER, input_filename)
88 | output_filename = bg_remover.image(
89 | image, background=False, output=RESULT_IMAGE, save=True)
90 |
91 | return render_template(HOMEPAGE, input_filename=input_filename, output_filename=output_filename)
92 |
93 |
94 | if __name__ == '__main__':
95 | app.run(debug=False, host='0.0.0.0', port=8000)
96 |
--------------------------------------------------------------------------------
/assets/background/background.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/assets/background/background.jpg
--------------------------------------------------------------------------------
/assets/sample_image/female.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/assets/sample_image/female.jpeg
--------------------------------------------------------------------------------
/assets/sample_image/male.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/assets/sample_image/male.jpeg
--------------------------------------------------------------------------------
/assets/sample_video/sample.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/assets/sample_video/sample.mp4
--------------------------------------------------------------------------------
/bg_remove.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import copy
4 | import warnings
5 |
6 | import numpy as np
7 | import cv2
8 |
9 | import torch
10 | import torch.nn as nn
11 | import torch.nn.functional as F
12 | import torchvision.transforms as transforms
13 |
14 | from src.models.modnet import MODNet
15 |
16 |
17 | warnings.filterwarnings("ignore")
18 |
19 |
20 | class BGRemove():
21 | # define hyper-parameters
22 | ref_size = 512
23 |
24 | # define image to tensor transform
25 | im_transform = transforms.Compose(
26 | [
27 | transforms.ToTensor(),
28 | transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
29 | ]
30 | )
31 | device = 'cuda' if torch.cuda.is_available() else 'cpu'
32 |
33 | # create MODNet and load the pre-trained ckpt
34 | modnet = MODNet(backbone_pretrained=False)
35 | modnet = nn.DataParallel(modnet)
36 | if device == 'cuda':
37 | modnet = modnet.cuda()
38 |
39 | def __init__(self, ckpt_path):
40 | self.parameter_load(ckpt_path)
41 |
42 | def parameter_load(self, ckpt_path):
43 | BGRemove.modnet.load_state_dict(
44 | torch.load(ckpt_path, map_location=BGRemove.device))
45 | BGRemove.modnet.eval()
46 |
47 | def file_load(self, filename):
48 | im = cv2.imread(filename)
49 | im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
50 | if len(im.shape) == 2:
51 | im = im[:, :, None]
52 | if im.shape[2] == 1:
53 | im = np.repeat(im, 3, axis=2)
54 | elif im.shape[2] == 4:
55 | im = im[:, :, 0:3]
56 |
57 | return im
58 |
59 | def dir_check(self, path):
60 | os.makedirs(path, exist_ok=True)
61 | if not path.endswith('/'):
62 | path += '/'
63 | return path
64 |
65 | def pre_process(self, im):
66 | self.original_im = copy.deepcopy(im)
67 |
68 | # convert image to PyTorch tensor
69 | im = BGRemove.im_transform(im)
70 |
71 | # add mini-batch dim
72 | im = im[None, :, :, :]
73 |
74 | # resize image for input
75 | im_b, im_c, im_h, im_w = im.shape
76 | self.height, self.width = im_h, im_w
77 |
78 | if max(im_h, im_w) < BGRemove.ref_size or min(im_h, im_w) > BGRemove.ref_size:
79 | if im_w >= im_h:
80 | im_rh = BGRemove.ref_size
81 | im_rw = int(im_w / im_h * BGRemove.ref_size)
82 | elif im_w < im_h:
83 | im_rw = BGRemove.ref_size
84 | im_rh = int(im_h / im_w * BGRemove.ref_size)
85 | else:
86 | im_rh = im_h
87 | im_rw = im_w
88 |
89 | im_rw = im_rw - im_rw % 32
90 | im_rh = im_rh - im_rh % 32
91 | im = F.interpolate(im, size=(im_rh, im_rw), mode='area')
92 | if BGRemove.device == 'cuda':
93 | im = im.cuda()
94 | return im
95 |
96 | def post_process(self, mask_data, background=False, backgound_path='assets/background/background.jpg'):
97 | matte = F.interpolate(mask_data, size=(
98 | self.height, self.width), mode='area')
99 | matte = matte.repeat(1, 3, 1, 1)
100 | matte = matte[0].data.cpu().numpy().transpose(1, 2, 0)
101 | height, width, _ = matte.shape
102 | if background:
103 | back_image = self.file_load(backgound_path)
104 | back_image = cv2.resize(
105 | back_image, (width, height), cv2.INTER_AREA)
106 | else:
107 | back_image = np.full(self.original_im.shape, 255.0)
108 |
109 | self.alpha = np.uint8(matte[:, :, 0]*255)
110 |
111 | matte = matte * self.original_im + (1 - matte) * back_image
112 | return matte
113 |
114 | def image(self, filename, background=False, output='output/', save=True):
115 | output = self.dir_check(output)
116 |
117 | self.im_name = filename.split('/')[-1]
118 | im = self.file_load(filename)
119 | im = self.pre_process(im)
120 | _, _, matte = BGRemove.modnet(im, inference=False)
121 | matte = self.post_process(matte, background)
122 |
123 | if save:
124 | matte = np.uint8(matte)
125 | msg, name = self.save(matte, output, background)
126 | return name
127 | else:
128 | h, w, _ = matte.shape
129 | r_h, r_w = 720, int((w / h) * 720)
130 | image = cv2.resize(self.original_im, (r_w, r_h), cv2.INTER_AREA)
131 | matte = cv2.resize(matte, (r_w, r_h), cv2.INTER_AREA)
132 |
133 | full_image = np.uint8(np.concatenate((image, matte), axis=1))
134 | self.save(full_image, output, background)
135 | exit_key = ord('q')
136 | while True:
137 | if cv2.waitKey(exit_key) & 255 == exit_key:
138 | cv2.destroyAllWindows()
139 | break
140 | cv2.imshow(
141 | 'MODNet - {} [Press "Q" To Exit]'.format(self.im_name), full_image)
142 |
143 | def video(self, filename, background=False, output='output/'):
144 | output = self.dir_check(output)
145 |
146 | output_name = filename.split('/')[-1]
147 | extension = output_name.split('.')[-1]
148 | output_name = output_name.replace(extension, 'mp4')
149 |
150 | fourcc = cv2.VideoWriter_fourcc(*'MP4V')
151 |
152 | cap = cv2.VideoCapture(filename)
153 | flag = 1
154 | if (cap.isOpened() == False):
155 | print("Error opening video stream or file")
156 | while (cap.isOpened()):
157 | ret, frame = cap.read()
158 | if flag:
159 | height, width, _ = frame.shape
160 | out = cv2.VideoWriter(output+output_name,
161 | fourcc, 20.0, (2*width, height))
162 | flag = 0
163 |
164 | if ret:
165 | print('Video is processing..', end='\r')
166 |
167 | im = self.pre_process(frame)
168 | _, _, matte = BGRemove.modnet(im, inference=False)
169 | matte = np.uint8(self.post_process(matte, background))
170 | full_image = np.concatenate((frame, matte), axis=1)
171 | full_image = np.uint8(cv2.resize(
172 | full_image, (2*width, height), cv2.INTER_AREA))
173 | out.write(full_image)
174 | else:
175 | break
176 | cap.release()
177 | out.release()
178 | cv2.destroyAllWindows()
179 |
180 | def folder(self, foldername, background=False, output='output/'):
181 | output = self.dir_check(output)
182 | foldername = self.dir_check(foldername)
183 |
184 | for filename in os.listdir(foldername):
185 | try:
186 | self.im_name = filename
187 | im = self.file_load(foldername+filename)
188 | im = self.pre_process(im)
189 | _, _, matte = BGRemove.modnet(im, inference=False)
190 | matte = self.post_process(matte, background)
191 | status = self.save(matte, output, background)
192 | print(status)
193 | except:
194 | print('There is an error for {} file/folder'.format(foldername+filename))
195 |
196 | def webcam(self, background=False):
197 | cap = cv2.VideoCapture(0)
198 | cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
199 | cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
200 | width, height = 455, 512
201 |
202 | exit_key = ord('q')
203 | while(True):
204 | _, frame_np = cap.read()
205 | frame_np = cv2.resize(frame_np, (width, height), cv2.INTER_AREA)
206 | im = self.pre_process(frame_np)
207 | _, _, matte = BGRemove.modnet(im, inference=False)
208 | processed_image = self.post_process(matte, background)
209 |
210 | full_image = np.concatenate((frame_np, processed_image), axis=1)
211 | full_image = np.uint8(cv2.resize(
212 | full_image, (2*width, height), cv2.INTER_AREA))
213 |
214 | if cv2.waitKey(exit_key) & 255 == exit_key:
215 | cv2.destroyAllWindows()
216 | break
217 | cv2.imshow('MODNet - WebCam [Press "Q" To Exit]', full_image)
218 |
219 | def save(self, matte, output_path='output/', background=False):
220 | name = '.'.join(self.im_name.split('.')[:-1])+'.png'
221 | path = os.path.join(output_path, name)
222 |
223 | if background:
224 | try:
225 | matte = cv2.cvtColor(matte, cv2.COLOR_RGB2BGR)
226 | cv2.imwrite(path, matte)
227 | return "Successfully saved {}".format(path), name
228 | except:
229 | return "Error while saving {}".format(path), ''
230 | else:
231 | w, h, _ = matte.shape
232 | png_image = np.zeros((w, h, 4))
233 | png_image[:, :, :3] = matte
234 | png_image[:, :, 3] = self.alpha
235 | png_image = png_image.astype(np.uint8)
236 | try:
237 | png_image = cv2.cvtColor(png_image, cv2.COLOR_RGBA2BGRA)
238 | cv2.imwrite(path, png_image, [
239 | int(cv2.IMWRITE_PNG_COMPRESSION), 9])
240 | return "Successfully saved {}".format(path), name
241 | except:
242 | return "Error while saving {}".format(path), ''
243 |
--------------------------------------------------------------------------------
/inference.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | from bg_remove import BGRemove
3 |
4 | if __name__ == "__main__":
5 | parser = argparse.ArgumentParser()
6 | parser.add_argument('--ckpt_image', type=str, default='pretrained/modnet_photographic_portrait_matting.ckpt',
7 | required=False, help='Checkpoint path')
8 | parser.add_argument('--ckpt_video', type=str, default='pretrained/modnet_webcam_portrait_matting.ckpt',
9 | required=False, help='Checkpoint path')
10 | parser.add_argument('--image', type=str, default='',
11 | required=False, help='Inference image filename')
12 | parser.add_argument('--video', type=str, default='',
13 | required=False, help='Inference image filename')
14 | parser.add_argument('--webcam', type=bool, default=False,
15 | required=False, help='Realtime webcam')
16 | parser.add_argument('--folder', type=str, default='assets/sample_image',
17 | required=False, help='Inference images foldername')
18 | parser.add_argument('--background', type=bool, default=False,
19 | required=False, help='Background image adding')
20 |
21 | args = parser.parse_args()
22 | try:
23 | if args.webcam or args.video:
24 | bg_remover = BGRemove(args.ckpt_video)
25 | else:
26 | bg_remover = BGRemove(args.ckpt_image)
27 |
28 | if args.image:
29 | bg_remover.image(args.image, background=args.background)
30 | elif args.video:
31 | bg_remover.video(args.video, background=args.background)
32 | elif args.webcam:
33 | bg_remover.webcam(background=args.background)
34 | else:
35 | bg_remover.folder(args.folder, background=args.background)
36 |
37 | except Exception as Err:
38 | print("Erro happend {}".format(Err))
39 |
--------------------------------------------------------------------------------
/output/male.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/output/male.png
--------------------------------------------------------------------------------
/output/sample.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/output/sample.gif
--------------------------------------------------------------------------------
/output/sample.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/output/sample.mp4
--------------------------------------------------------------------------------
/output/web_view.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Mazhar004/MODNet-BGRemover/75d30850430b506776ce3f4774d209ef2064ffdf/output/web_view.png
--------------------------------------------------------------------------------
/pretrained/README.md:
--------------------------------------------------------------------------------
1 | ## MODNet - Pre-Trained Models
2 | ### This folder is the pretrained models of MODNet:
3 | - You can download them from this [link](https://drive.google.com/file/d/11SBrkihQhtitVLqCKPW8mdQM2T1G0LTE/view?usp=sharing)
4 | - Extract It and copy the following files in **MODNet-BGRemover/pretrained** folder:
5 | - modnet_photographic_portrait_matting.ckpt
6 | - modnet_webcam_portrait_matting.ckpt
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy~=1.22
2 | opencv-python~=4.5.1.48
3 | torch~=1.7.1
4 | torchvision~=0.2.2.post3
5 | Pillow~=6.2.2
--------------------------------------------------------------------------------
/src/models/backbones/__init__.py:
--------------------------------------------------------------------------------
1 | from .wrapper import *
2 |
3 |
4 | #------------------------------------------------------------------------------
5 | # Replaceable Backbones
6 | #------------------------------------------------------------------------------
7 |
8 | SUPPORTED_BACKBONES = {
9 | 'mobilenetv2': MobileNetV2Backbone,
10 | }
11 |
--------------------------------------------------------------------------------
/src/models/backbones/mobilenetv2.py:
--------------------------------------------------------------------------------
1 | """ This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch"""
2 |
3 | import math
4 | import json
5 | from functools import reduce
6 |
7 | import torch
8 | from torch import nn
9 |
10 |
11 | #------------------------------------------------------------------------------
12 | # Useful functions
13 | #------------------------------------------------------------------------------
14 |
15 | def _make_divisible(v, divisor, min_value=None):
16 | if min_value is None:
17 | min_value = divisor
18 | new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
19 | # Make sure that round down does not go down by more than 10%.
20 | if new_v < 0.9 * v:
21 | new_v += divisor
22 | return new_v
23 |
24 |
25 | def conv_bn(inp, oup, stride):
26 | return nn.Sequential(
27 | nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
28 | nn.BatchNorm2d(oup),
29 | nn.ReLU6(inplace=True)
30 | )
31 |
32 |
33 | def conv_1x1_bn(inp, oup):
34 | return nn.Sequential(
35 | nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
36 | nn.BatchNorm2d(oup),
37 | nn.ReLU6(inplace=True)
38 | )
39 |
40 |
41 | #------------------------------------------------------------------------------
42 | # Class of Inverted Residual block
43 | #------------------------------------------------------------------------------
44 |
45 | class InvertedResidual(nn.Module):
46 | def __init__(self, inp, oup, stride, expansion, dilation=1):
47 | super(InvertedResidual, self).__init__()
48 | self.stride = stride
49 | assert stride in [1, 2]
50 |
51 | hidden_dim = round(inp * expansion)
52 | self.use_res_connect = self.stride == 1 and inp == oup
53 |
54 | if expansion == 1:
55 | self.conv = nn.Sequential(
56 | # dw
57 | nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
58 | nn.BatchNorm2d(hidden_dim),
59 | nn.ReLU6(inplace=True),
60 | # pw-linear
61 | nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
62 | nn.BatchNorm2d(oup),
63 | )
64 | else:
65 | self.conv = nn.Sequential(
66 | # pw
67 | nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
68 | nn.BatchNorm2d(hidden_dim),
69 | nn.ReLU6(inplace=True),
70 | # dw
71 | nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
72 | nn.BatchNorm2d(hidden_dim),
73 | nn.ReLU6(inplace=True),
74 | # pw-linear
75 | nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
76 | nn.BatchNorm2d(oup),
77 | )
78 |
79 | def forward(self, x):
80 | if self.use_res_connect:
81 | return x + self.conv(x)
82 | else:
83 | return self.conv(x)
84 |
85 |
86 | #------------------------------------------------------------------------------
87 | # Class of MobileNetV2
88 | #------------------------------------------------------------------------------
89 |
90 | class MobileNetV2(nn.Module):
91 | def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
92 | super(MobileNetV2, self).__init__()
93 | self.in_channels = in_channels
94 | self.num_classes = num_classes
95 | input_channel = 32
96 | last_channel = 1280
97 | interverted_residual_setting = [
98 | # t, c, n, s
99 | [1 , 16, 1, 1],
100 | [expansion, 24, 2, 2],
101 | [expansion, 32, 3, 2],
102 | [expansion, 64, 4, 2],
103 | [expansion, 96, 3, 1],
104 | [expansion, 160, 3, 2],
105 | [expansion, 320, 1, 1],
106 | ]
107 |
108 | # building first layer
109 | input_channel = _make_divisible(input_channel*alpha, 8)
110 | self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel
111 | self.features = [conv_bn(self.in_channels, input_channel, 2)]
112 |
113 | # building inverted residual blocks
114 | for t, c, n, s in interverted_residual_setting:
115 | output_channel = _make_divisible(int(c*alpha), 8)
116 | for i in range(n):
117 | if i == 0:
118 | self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
119 | else:
120 | self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
121 | input_channel = output_channel
122 |
123 | # building last several layers
124 | self.features.append(conv_1x1_bn(input_channel, self.last_channel))
125 |
126 | # make it nn.Sequential
127 | self.features = nn.Sequential(*self.features)
128 |
129 | # building classifier
130 | if self.num_classes is not None:
131 | self.classifier = nn.Sequential(
132 | nn.Dropout(0.2),
133 | nn.Linear(self.last_channel, num_classes),
134 | )
135 |
136 | # Initialize weights
137 | self._init_weights()
138 |
139 | def forward(self, x, feature_names=None):
140 | # Stage1
141 | x = reduce(lambda x, n: self.features[n](x), list(range(0,2)), x)
142 | # Stage2
143 | x = reduce(lambda x, n: self.features[n](x), list(range(2,4)), x)
144 | # Stage3
145 | x = reduce(lambda x, n: self.features[n](x), list(range(4,7)), x)
146 | # Stage4
147 | x = reduce(lambda x, n: self.features[n](x), list(range(7,14)), x)
148 | # Stage5
149 | x = reduce(lambda x, n: self.features[n](x), list(range(14,19)), x)
150 |
151 | # Classification
152 | if self.num_classes is not None:
153 | x = x.mean(dim=(2,3))
154 | x = self.classifier(x)
155 |
156 | # Output
157 | return x
158 |
159 | def _load_pretrained_model(self, pretrained_file):
160 | pretrain_dict = torch.load(pretrained_file, map_location='cpu')
161 | model_dict = {}
162 | state_dict = self.state_dict()
163 | print("[MobileNetV2] Loading pretrained model...")
164 | for k, v in pretrain_dict.items():
165 | if k in state_dict:
166 | model_dict[k] = v
167 | else:
168 | print(k, "is ignored")
169 | state_dict.update(model_dict)
170 | self.load_state_dict(state_dict)
171 |
172 | def _init_weights(self):
173 | for m in self.modules():
174 | if isinstance(m, nn.Conv2d):
175 | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
176 | m.weight.data.normal_(0, math.sqrt(2. / n))
177 | if m.bias is not None:
178 | m.bias.data.zero_()
179 | elif isinstance(m, nn.BatchNorm2d):
180 | m.weight.data.fill_(1)
181 | m.bias.data.zero_()
182 | elif isinstance(m, nn.Linear):
183 | n = m.weight.size(1)
184 | m.weight.data.normal_(0, 0.01)
185 | m.bias.data.zero_()
186 |
--------------------------------------------------------------------------------
/src/models/backbones/wrapper.py:
--------------------------------------------------------------------------------
1 | import os
2 | from functools import reduce
3 |
4 | import torch
5 | import torch.nn as nn
6 |
7 | from .mobilenetv2 import MobileNetV2
8 |
9 |
10 | class BaseBackbone(nn.Module):
11 | """ Superclass of Replaceable Backbone Model for Semantic Estimation
12 | """
13 |
14 | def __init__(self, in_channels):
15 | super(BaseBackbone, self).__init__()
16 | self.in_channels = in_channels
17 |
18 | self.model = None
19 | self.enc_channels = []
20 |
21 | def forward(self, x):
22 | raise NotImplementedError
23 |
24 | def load_pretrained_ckpt(self):
25 | raise NotImplementedError
26 |
27 |
28 | class MobileNetV2Backbone(BaseBackbone):
29 | """ MobileNetV2 Backbone
30 | """
31 |
32 | def __init__(self, in_channels):
33 | super(MobileNetV2Backbone, self).__init__(in_channels)
34 |
35 | self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
36 | self.enc_channels = [16, 24, 32, 96, 1280]
37 |
38 | def forward(self, x):
39 | x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
40 | enc2x = x
41 | x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
42 | enc4x = x
43 | x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
44 | enc8x = x
45 | x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
46 | enc16x = x
47 | x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
48 | enc32x = x
49 | return [enc2x, enc4x, enc8x, enc16x, enc32x]
50 |
51 | def load_pretrained_ckpt(self):
52 | # the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
53 | ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
54 | if not os.path.exists(ckpt_path):
55 | print('cannot find the pretrained mobilenetv2 backbone')
56 | exit()
57 |
58 | ckpt = torch.load(ckpt_path)
59 | self.model.load_state_dict(ckpt)
60 |
--------------------------------------------------------------------------------
/src/models/modnet.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 |
5 | from .backbones import SUPPORTED_BACKBONES
6 |
7 |
8 | #------------------------------------------------------------------------------
9 | # MODNet Basic Modules
10 | #------------------------------------------------------------------------------
11 |
12 | class IBNorm(nn.Module):
13 | """ Combine Instance Norm and Batch Norm into One Layer
14 | """
15 |
16 | def __init__(self, in_channels):
17 | super(IBNorm, self).__init__()
18 | in_channels = in_channels
19 | self.bnorm_channels = int(in_channels / 2)
20 | self.inorm_channels = in_channels - self.bnorm_channels
21 |
22 | self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
23 | self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
24 |
25 | def forward(self, x):
26 | bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
27 | in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
28 |
29 | return torch.cat((bn_x, in_x), 1)
30 |
31 |
32 | class Conv2dIBNormRelu(nn.Module):
33 | """ Convolution + IBNorm + ReLu
34 | """
35 |
36 | def __init__(self, in_channels, out_channels, kernel_size,
37 | stride=1, padding=0, dilation=1, groups=1, bias=True,
38 | with_ibn=True, with_relu=True):
39 | super(Conv2dIBNormRelu, self).__init__()
40 |
41 | layers = [
42 | nn.Conv2d(in_channels, out_channels, kernel_size,
43 | stride=stride, padding=padding, dilation=dilation,
44 | groups=groups, bias=bias)
45 | ]
46 |
47 | if with_ibn:
48 | layers.append(IBNorm(out_channels))
49 | if with_relu:
50 | layers.append(nn.ReLU(inplace=True))
51 |
52 | self.layers = nn.Sequential(*layers)
53 |
54 | def forward(self, x):
55 | return self.layers(x)
56 |
57 |
58 | class SEBlock(nn.Module):
59 | """ SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
60 | """
61 |
62 | def __init__(self, in_channels, out_channels, reduction=1):
63 | super(SEBlock, self).__init__()
64 | self.pool = nn.AdaptiveAvgPool2d(1)
65 | self.fc = nn.Sequential(
66 | nn.Linear(in_channels, int(in_channels // reduction), bias=False),
67 | nn.ReLU(inplace=True),
68 | nn.Linear(int(in_channels // reduction), out_channels, bias=False),
69 | nn.Sigmoid()
70 | )
71 |
72 | def forward(self, x):
73 | b, c, _, _ = x.size()
74 | w = self.pool(x).view(b, c)
75 | w = self.fc(w).view(b, c, 1, 1)
76 |
77 | return x * w.expand_as(x)
78 |
79 |
80 | #------------------------------------------------------------------------------
81 | # MODNet Branches
82 | #------------------------------------------------------------------------------
83 |
84 | class LRBranch(nn.Module):
85 | """ Low Resolution Branch of MODNet
86 | """
87 |
88 | def __init__(self, backbone):
89 | super(LRBranch, self).__init__()
90 |
91 | enc_channels = backbone.enc_channels
92 |
93 | self.backbone = backbone
94 | self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
95 | self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
96 | self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
97 | self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)
98 |
99 | def forward(self, img, inference):
100 | enc_features = self.backbone.forward(img)
101 | enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
102 |
103 | enc32x = self.se_block(enc32x)
104 | lr16x = F.interpolate(enc32x, scale_factor=2, mode='bilinear', align_corners=False)
105 | lr16x = self.conv_lr16x(lr16x)
106 | lr8x = F.interpolate(lr16x, scale_factor=2, mode='bilinear', align_corners=False)
107 | lr8x = self.conv_lr8x(lr8x)
108 |
109 | pred_semantic = None
110 | if not inference:
111 | lr = self.conv_lr(lr8x)
112 | pred_semantic = torch.sigmoid(lr)
113 |
114 | return pred_semantic, lr8x, [enc2x, enc4x]
115 |
116 |
117 | class HRBranch(nn.Module):
118 | """ High Resolution Branch of MODNet
119 | """
120 |
121 | def __init__(self, hr_channels, enc_channels):
122 | super(HRBranch, self).__init__()
123 |
124 | self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
125 | self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
126 |
127 | self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
128 | self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
129 |
130 | self.conv_hr4x = nn.Sequential(
131 | Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
132 | Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
133 | Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
134 | )
135 |
136 | self.conv_hr2x = nn.Sequential(
137 | Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
138 | Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
139 | Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
140 | Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
141 | )
142 |
143 | self.conv_hr = nn.Sequential(
144 | Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
145 | Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
146 | )
147 |
148 | def forward(self, img, enc2x, enc4x, lr8x, inference):
149 | img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
150 | img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)
151 |
152 | enc2x = self.tohr_enc2x(enc2x)
153 | hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
154 |
155 | enc4x = self.tohr_enc4x(enc4x)
156 | hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
157 |
158 | lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
159 | hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
160 |
161 | hr2x = F.interpolate(hr4x, scale_factor=2, mode='bilinear', align_corners=False)
162 | hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
163 |
164 | pred_detail = None
165 | if not inference:
166 | hr = F.interpolate(hr2x, scale_factor=2, mode='bilinear', align_corners=False)
167 | hr = self.conv_hr(torch.cat((hr, img), dim=1))
168 | pred_detail = torch.sigmoid(hr)
169 |
170 | return pred_detail, hr2x
171 |
172 |
173 | class FusionBranch(nn.Module):
174 | """ Fusion Branch of MODNet
175 | """
176 |
177 | def __init__(self, hr_channels, enc_channels):
178 | super(FusionBranch, self).__init__()
179 | self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
180 |
181 | self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
182 | self.conv_f = nn.Sequential(
183 | Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
184 | Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
185 | )
186 |
187 | def forward(self, img, lr8x, hr2x):
188 | lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
189 | lr4x = self.conv_lr4x(lr4x)
190 | lr2x = F.interpolate(lr4x, scale_factor=2, mode='bilinear', align_corners=False)
191 |
192 | f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
193 | f = F.interpolate(f2x, scale_factor=2, mode='bilinear', align_corners=False)
194 | f = self.conv_f(torch.cat((f, img), dim=1))
195 | pred_matte = torch.sigmoid(f)
196 |
197 | return pred_matte
198 |
199 |
200 | #------------------------------------------------------------------------------
201 | # MODNet
202 | #------------------------------------------------------------------------------
203 |
204 | class MODNet(nn.Module):
205 | """ Architecture of MODNet
206 | """
207 |
208 | def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
209 | super(MODNet, self).__init__()
210 |
211 | self.in_channels = in_channels
212 | self.hr_channels = hr_channels
213 | self.backbone_arch = backbone_arch
214 | self.backbone_pretrained = backbone_pretrained
215 |
216 | self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
217 |
218 | self.lr_branch = LRBranch(self.backbone)
219 | self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
220 | self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
221 |
222 | for m in self.modules():
223 | if isinstance(m, nn.Conv2d):
224 | self._init_conv(m)
225 | elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
226 | self._init_norm(m)
227 |
228 | if self.backbone_pretrained:
229 | self.backbone.load_pretrained_ckpt()
230 |
231 | def forward(self, img, inference):
232 | pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
233 | pred_detail, hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)
234 | pred_matte = self.f_branch(img, lr8x, hr2x)
235 |
236 | return pred_semantic, pred_detail, pred_matte
237 |
238 | def freeze_norm(self):
239 | norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
240 | for m in self.modules():
241 | for n in norm_types:
242 | if isinstance(m, n):
243 | m.eval()
244 | continue
245 |
246 | def _init_conv(self, conv):
247 | nn.init.kaiming_uniform_(
248 | conv.weight, a=0, mode='fan_in', nonlinearity='relu')
249 | if conv.bias is not None:
250 | nn.init.constant_(conv.bias, 0)
251 |
252 | def _init_norm(self, norm):
253 | if norm.weight is not None:
254 | nn.init.constant_(norm.weight, 1)
255 | nn.init.constant_(norm.bias, 0)
256 |
--------------------------------------------------------------------------------
/web_requirements.txt:
--------------------------------------------------------------------------------
1 | Flask~=2.1.1
2 | Flask-Cors~=3.0.10
3 | Werkzeug~=2.1.1
--------------------------------------------------------------------------------
/web_solution/static/js/detection.js:
--------------------------------------------------------------------------------
1 | var API_URL = "http://0.0.0.0:8000/";
2 |
3 | $(document).ready(function () {
4 | $('#customFile').change(function () {
5 | let fileName = $(this).val().split('\\').pop();
6 | document.getElementById('UploadLabel').innerHTML = fileName
7 | });
8 | });
9 |
10 | function upload()
11 | {
12 |
13 | console.log(document.getElementById('customFile'))
14 | var form_data = new FormData();
15 | var ins = document.getElementById('customFile').files.length;
16 | console.log("ins is : ", ins, " files : ", document.getElementById('customFile').files[0]);
17 | if (ins == 0) {
18 | $('#msg').html('Select at least one file');
19 | return;
20 | }
21 |
22 | // for (var x = 0; x < ins; x++) {
23 | form_data.append("files[]", document.getElementById('customFile').files[0]);
24 | // }
25 | console.log("Form Data : ", form_data)
26 | $.ajax({
27 | url: '/', // point to server-side URL
28 | dataType: 'json', // what to expect back from server
29 | cache: false,
30 | contentType: false,
31 | processData: false,
32 | data: form_data,
33 | type: 'post',
34 | success: function (response) { // display success response
35 | axios.post(API_URL + '/', {
36 | filelocation: response.filepath
37 | })
38 | if (response.filename)
39 | {
40 | for (var x = 0; x < 100000; x++)
41 | {
42 | console.log(document.getElementById('customFile'))
43 | }
44 | window.location = "/process/"+response.filename;
45 | }
46 | }
47 |
48 | });
49 |
50 |
51 |
52 | }
--------------------------------------------------------------------------------
/web_solution/template/home.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 | Object Detection
19 |
20 |
21 |
22 |
37 | {% if output_filename %}
38 |
39 |
40 |
41 |
42 | Before Background Remove |
43 | After Background Remove |
44 |
45 |
46 |
47 |
48 |  }}) |
50 |  }}) |
52 |
53 |
54 |
55 |
56 | {% endif %}
57 |
58 |
59 |
--------------------------------------------------------------------------------