├── 3D Bounding box regressor.ipynb
├── CMakeLists.txt
├── Dataset creator.ipynb
├── Instance segmentation.ipynb
├── README.md
├── assets
├── 3d_car.jpeg
├── 3d_lidar.png
├── DBSCAN_0.png
├── car_1.jpeg
├── car_1.png
├── car_2.jpeg
├── frustum_2.png
├── instance.gif
└── original_pointcloud.png
├── dataset
├── 3d_obj_detection.csv
├── ann_points_cam
│ ├── img_pc_anno_63b89fe17f3e41ecbe28337e0e35db8e.txt
│ └── img_pc_anno_83d881a6b3d94ef3a3bc3b585cc514f8.txt
├── ann_points_lidar
│ ├── pc_anno_63b89fe17f3e41ecbe28337e0e35db8e.txt
│ └── pc_anno_83d881a6b3d94ef3a3bc3b585cc514f8.txt
├── detection_config.json
├── pcd_segmentation
│ ├── car1.pcd
│ ├── car2.pcd
│ ├── car3.pcd
│ └── car4.pcd
├── point_features
│ ├── car1cvfh_.txt
│ ├── car1esf_.txt
│ ├── car1ourcvfh_.txt
│ ├── car1vfh_.txt
│ ├── car2cvfh_.txt
│ ├── car2esf_.txt
│ ├── car2ourcvfh_.txt
│ ├── car2vfh_.txt
│ ├── car3cvfh_.txt
│ ├── car3esf_.txt
│ ├── car3ourcvfh_.txt
│ ├── car3vfh_.txt
│ ├── car4cvfh_.txt
│ ├── car4esf_.txt
│ ├── car4ourcvfh_.txt
│ └── car4vfh_.txt
└── samples
│ └── sample_ca9a282c9e77460f8360f564131a8af5_file.txt
├── requirements.txt
├── src
└── pcl_features.cpp
├── tutorials
└── 3d_to_2d_test_methods.ipynb
└── utils
├── __init__.py
├── eval.py
├── misc.py
└── vis.py
/CMakeLists.txt:
--------------------------------------------------------------------------------
1 | cmake_minimum_required (VERSION 3.5.1)
2 | project (FEATURE_EXTRACTION)
3 | find_package (PCL 1.8.1 REQUIRED)
4 |
5 | link_libraries(stdc++fs)
6 | include_directories(${PCL_INCLUDE_DIRS})
7 | link_directories(${PCL_LIBRARY_DIRS})
8 | add_definitions(${PCL_DEFINITIONS})
9 | add_executable(pcl_features src/pcl_features.cpp)
10 | target_link_libraries(pcl_features ${PCL_LIBRARIES})
11 |
12 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # 3D Object detection using classic Machine Learning
3 |
4 | This repository aims to be an end-to-end pipeline for 3D object detection using classic Machine Learning (ML) technique. The idea is to prove that classic ML is capable to tackle complex tasks such as 3D object detection for self-driving vehicles' applications.
5 |
6 |
7 |

8 |
9 |
10 | ## Description
11 |
12 | 3D object detection is a problem that has earned popularity over the last years as it provides the pose of an interest object with respect to another one e.g. ego-vehicle. This technique has a wide range of applications such as self-driving vehicles, pick-and-place for robotic arms or even surveillance. However, to deploy this systems in real-world applications, real-time inference and accurate results are mandatory.
13 |
14 |
15 |

16 |
17 |
18 | To address the fist issue we intend to provide an end-to-end 3D object detection pipeline based on classic machine learning techniques. This work is proposed over the novel [NuScenes](https://www.nuscenes.org/) dataset and is leveraged on the idea of frustum region proposal idea presented in [Frustum PointNets for 3D Object Detection from RGB-D Data](https://arxiv.org/abs/1711.08488). Our work deals with the next problems.
19 |
20 | - Floor segmentation
21 | - Instance segmentation
22 | - Global feature description from a segmented instance
23 | - Amodal 3D bounding box parameters estimation
24 |
25 | We do not deal with 2D object detection for the frustum region proposal as most of the time, this problem is considered solved using Convolutional Neural Networks (CNN).
26 |
27 | ## Installation & configuration
28 |
29 | To start using this repo, run the following command and install the needed dependencies.
30 | ```
31 | pip install -r requirements.txt
32 | ```
33 | Aditionally, you will also need to organize the workspace as shown below and create the folder *build* which is were the C++ file is compiles. We use the Mini NuScenes dataset and this can be found [here](https://www.nuscenes.org/download).
34 |
35 | ├── 3D Bounding box regressor.ipynb
36 | ├── Dataset creator.ipynb
37 | ├── Instance segmentation.ipynb
38 | ├── assets
39 | ├── CMakeLists.txt
40 | ├── build
41 | ├── dataset
42 | │ ├── 3d_obj_detection.csv
43 | │ ├── ann_points_cam
44 | │ ├── ann_points_lidar
45 | │ ├── pcd_segmentation
46 | │ ├── point_features
47 | │ └── samples
48 | │
49 | ├── requirements.txt
50 | ├── src
51 | │ └── pcl_features.cpp
52 | ├── tutorials
53 | │ └── 3d_to_2d_test_methods.ipynb
54 | └── utils
55 | │ ├── __init__.py
56 | │ ├── misc.py
57 | │ └── vis.py
58 | │ └── eval.py
59 | └── README.md
60 |
61 | ## Usage
62 |
63 | ### Dataset creation
64 |
65 | There are four main files in this project:
66 |
67 | 1. `Dataset creator.ipynb`
68 | 2. `Instance segmentation.ipynb`
69 | 3. `pcl_features.cpp`
70 | 4. `3D Bounding box regressor.ipynb`
71 |
72 | The first file is `Dataset creator.ipynb` and this is used to create the frustum region proposals out of a 2D bounding box. This is accomplished by mapping the LiDAR point cloud to the image frame, filtering the road plane and cropping the points outside the interest bounding box. Additionally, each frustum obtained will have a 3D target which will be used used for prediction. This file saves the metadata of each frustum, the point cloud and another useful information.
73 |
74 |
75 |

76 |
77 |
78 | For the instance segmentation part, `Instance segmentation.ipynb`segments the car instance out of a given frustum proposal. This is accomplished by the DBSCAN algorithm implementation provided by sklearn. The segmented cars are stored in a different folder for further extraction of the point cloud descriptors.
79 |
80 |
81 |

82 |
83 |
84 | Here `pcl_features.cpp` is used to extract the global features of the segmented point clouds through the [Ensemble of Shape Functions (ESF)](https://ieeexplore.ieee.org/document/6181760). To run this file the following steps must be followed.
85 |
86 | mkdir build
87 | cd build
88 | cmake ..
89 | make
90 | ./pcl_features
91 |
92 | This will create the global descriptor for each segmented vehicle.
93 |
94 |
95 |

96 |
97 |
98 | ### Predicting 3D bounding boxes
99 |
100 | Finally, `3D Bounding box regressor.ipynb`condense all this information in a CSV file with all the features and targets. There a supervised learning strategy is used to estimate the 3D bounding box parameters. Some of the results obtained are shown below.
101 |
102 |
103 |

104 |
105 |
106 | ### Citation
107 |
108 | If you use this code, please cite our [paper](https://arxiv.org/abs/2105.11060) in [LatinX Workshop at CVPR 2021](https://research.latinxinai.org/workshops/cvpr/cvpr-2021.html):
109 |
110 | ```
111 | @misc{salazargomez2021highlevel,
112 | title={High-level camera-LiDAR fusion for 3D object detection with machine learning},
113 | author={Gustavo A. Salazar-Gomez and Miguel A. Saavedra-Ruiz and Victor A. Romero-Cano},
114 | year={2021},
115 | eprint={2105.11060},
116 | archivePrefix={arXiv},
117 | primaryClass={cs.CV}
118 | }
119 | ```
--------------------------------------------------------------------------------
/assets/3d_car.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/3d_car.jpeg
--------------------------------------------------------------------------------
/assets/3d_lidar.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/3d_lidar.png
--------------------------------------------------------------------------------
/assets/DBSCAN_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/DBSCAN_0.png
--------------------------------------------------------------------------------
/assets/car_1.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/car_1.jpeg
--------------------------------------------------------------------------------
/assets/car_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/car_1.png
--------------------------------------------------------------------------------
/assets/car_2.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/car_2.jpeg
--------------------------------------------------------------------------------
/assets/frustum_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/frustum_2.png
--------------------------------------------------------------------------------
/assets/instance.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/instance.gif
--------------------------------------------------------------------------------
/assets/original_pointcloud.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/assets/original_pointcloud.png
--------------------------------------------------------------------------------
/dataset/ann_points_cam/img_pc_anno_63b89fe17f3e41ecbe28337e0e35db8e.txt:
--------------------------------------------------------------------------------
1 | 3.198195827797102311e+02
2 | 3.234380124117415676e+02
3 | 3.302302752619239641e+02
4 | 3.311368533582867144e+02
5 | 3.367837923178549318e+02
6 | 3.433128863810152325e+02
7 | 3.497351987943732752e+02
8 | 3.415989788856063001e+02
9 | 3.560282696654828669e+02
10 | 3.580764949734973470e+02
11 | 3.480393793179263753e+02
12 | 3.489137716557039539e+02
13 | 3.544359243038492195e+02
14 | 3.553308379752925816e+02
15 | 3.686049380740862489e+02
16 | 3.622682975407371941e+02
17 | 3.608238083067166144e+02
18 | 3.706869797061538065e+02
19 | 3.671771905109811200e+02
20 | 3.771343347474409029e+02
21 | 3.736877431885228589e+02
22 | 3.742329816179489512e+02
23 | 3.833609923731869458e+02
24 | 3.799768258036667703e+02
25 | 3.807193471335772301e+02
26 | 3.897229530723705011e+02
27 | 3.863879495907682440e+02
28 | 3.868808311989168374e+02
29 | 3.956631767699325337e+02
30 | 3.924179875469881154e+02
31 | 3.931179245174112680e+02
32 | 4.019421912547471720e+02
33 | 3.988309934297594737e+02
34 | 3.992771178923188700e+02
35 | 4.079528986738812364e+02
36 | 4.051001355261421963e+02
37 | 4.054899004142474155e+02
38 | 4.139196171881582131e+02
39 | 4.112189566656178386e+02
40 | 4.253950585374942079e+02
41 | 4.178589793747075305e+02
42 | 4.180779454625610470e+02
43 | 4.198229353587863670e+02
44 | 4.238845992989482170e+02
45 | 4.256116862082751027e+02
46 | 4.306126510574125064e+02
47 | 4.315919890014323528e+02
48 | 4.379429213244961829e+02
49 | 4.366042142070188561e+02
50 | 4.367577259231052835e+02
51 | 4.489140127382481751e+02
52 | 4.438240859699378689e+02
53 | 4.426833187005551622e+02
54 | 4.428962381500058427e+02
55 | 4.547054841425440372e+02
56 | 4.488007537604819390e+02
57 | 4.492073690248063826e+02
58 | 4.604602337487698946e+02
59 | 4.502370601892305331e+02
60 | 4.550566210978178106e+02
61 | 4.663522926207640467e+02
62 | 4.612380559536293276e+02
63 | 4.609187121566210976e+02
64 | 4.718381045124557431e+02
65 | 4.671635993083812082e+02
66 | 4.671020364046692066e+02
67 | 4.776653134222061681e+02
68 | 4.728771929105975005e+02
69 | 4.730816571050187349e+02
70 | 4.731478548002756952e+02
71 | 4.785704132253620742e+02
72 | 4.790199870654467418e+02
73 | 4.787696026214739504e+02
74 | 4.864268854648033198e+02
75 | 4.810525251501483694e+02
76 | 4.850779843355641674e+02
77 | 4.910847765402542109e+02
78 | 4.921567782555281383e+02
79 | 4.857331121357908046e+02
80 | 4.965709846124391902e+02
81 | 4.975217993714372255e+02
82 | 4.916919315732871496e+02
83 | 5.030417199821370104e+02
84 | 4.972953435505773427e+02
85 | 4.970947526152260707e+02
86 | 4.975163370214877432e+02
87 | 5.087053322238097053e+02
88 | 5.027270633739994992e+02
89 | 5.093540474568764580e+02
90 | 5.085757094725893808e+02
91 | 5.084788129086121558e+02
92 | 5.094371951422100437e+02
93 | 5.217974651160000121e+02
94 | 5.428196248965174391e+02
95 | 5.425425904854924966e+02
96 | 5.205163978053607252e+02
97 | 5.422813962166501369e+02
98 | 5.420333915011017325e+02
99 | 5.417646961017630929e+02
100 | 5.582705599970389585e+02
101 | 5.414640346598035876e+02
102 | 5.202095808321952290e+02
103 | 5.578943790092207564e+02
104 | 5.354748369911040982e+02
105 | 5.575229762038469516e+02
106 | 5.351890210217330832e+02
107 | 5.188579767325441026e+02
108 | 5.804941381339338022e+02
109 | 5.571687008945752950e+02
110 | 5.808010454953479211e+02
111 | 5.568221580927244077e+02
112 | 5.803761906216548141e+02
113 | 5.564717184595697290e+02
114 | 5.342131278329167117e+02
115 | 5.799723145569633971e+02
116 | 5.561411604083455131e+02
117 | 5.339520595652319344e+02
118 | 5.795584716468492843e+02
119 | 5.557944228403991929e+02
120 | 5.336571691476622163e+02
121 | 5.791698065996895366e+02
122 | 5.554861239848017931e+02
123 | 5.334181086227057449e+02
124 | 5.787646038455651478e+02
125 | 5.551809755243498330e+02
126 | 5.331644996638517568e+02
127 | 5.783587346774811522e+02
128 | 5.549270295856782695e+02
129 | 5.329573654674021554e+02
130 | 5.780373405587624802e+02
131 | 5.547185803732875229e+02
132 | 5.181486219135905458e+02
133 | 5.544927394162491510e+02
134 | 5.325935929806023523e+02
135 | 5.115341494348284073e+02
136 | 5.542863860980380650e+02
137 | 5.113499042180905008e+02
138 | 5.323956191117943035e+02
139 | 5.111860939591774127e+02
140 | 5.764997884554589973e+02
141 | 5.539743919344357437e+02
142 | 5.322704427371667180e+02
143 | 5.175078748536388957e+02
144 | 5.761526327417792572e+02
145 | 5.537682291004242643e+02
146 | 5.321643369173464180e+02
147 | 5.173762171949268804e+02
148 | 5.536029741362361847e+02
149 | 5.320730351236225033e+02
150 | 5.172440590206671231e+02
151 | 5.730999624861342454e+02
152 | 5.534333217772355056e+02
153 | 5.171071890790946100e+02
154 | 5.751216222036842964e+02
155 | 5.532831053686784344e+02
156 | 5.169617361149644239e+02
157 | 5.747808779766813814e+02
158 | 5.531238977924838309e+02
159 | 5.168271473375299365e+02
160 | 5.744504314405453442e+02
161 | 5.529813603014615637e+02
162 | 5.316453813537925726e+02
163 | 5.741273652985349827e+02
164 | 5.528389290567556600e+02
165 | 5.313834257608906455e+02
166 | 5.149779850207654590e+02
167 | 5.722086569303224906e+02
168 | 5.526846345383256676e+02
169 | 5.350283326782365521e+02
170 | 5.148172408319986744e+02
171 | 5.498097880911054745e+02
172 | 5.348945219712848029e+02
173 | 5.146663774254819828e+02
174 | 5.281574449832220353e+02
175 | 5.145205300130456862e+02
176 | 5.708985935909506679e+02
177 | 5.491955744757945013e+02
178 | 5.280516830906070709e+02
179 | 5.143741346521190962e+02
180 | 5.489376558013632348e+02
181 | 5.707258371172986244e+02
182 | 5.488262839239858977e+02
183 | 5.274624586578602248e+02
184 | 5.067919425988587250e+02
185 | 1.000000000000000000e+00
186 | 1.000000000000000000e+00
187 | 1.000000000000000000e+00
188 | 1.000000000000000000e+00
189 | 1.000000000000000000e+00
190 | 1.000000000000000000e+00
191 | 1.000000000000000000e+00
192 | 1.000000000000000000e+00
193 | 1.000000000000000000e+00
194 | 1.000000000000000000e+00
195 | 1.000000000000000000e+00
196 | 1.000000000000000000e+00
197 | 1.000000000000000000e+00
198 | 1.000000000000000000e+00
199 | 1.000000000000000000e+00
200 | 1.000000000000000000e+00
201 | 1.000000000000000000e+00
202 | 1.000000000000000000e+00
203 | 1.000000000000000000e+00
204 | 1.000000000000000000e+00
205 | 1.000000000000000000e+00
206 | 1.000000000000000000e+00
207 | 1.000000000000000000e+00
208 | 1.000000000000000000e+00
209 | 1.000000000000000000e+00
210 | 1.000000000000000000e+00
211 | 1.000000000000000000e+00
212 | 1.000000000000000000e+00
213 | 1.000000000000000000e+00
214 | 1.000000000000000000e+00
215 | 1.000000000000000000e+00
216 | 1.000000000000000000e+00
217 | 1.000000000000000000e+00
218 | 1.000000000000000000e+00
219 | 1.000000000000000000e+00
220 | 1.000000000000000000e+00
221 | 1.000000000000000000e+00
222 | 1.000000000000000000e+00
223 | 1.000000000000000000e+00
224 | 1.000000000000000000e+00
225 | 1.000000000000000000e+00
226 | 1.000000000000000000e+00
227 | 1.000000000000000000e+00
228 | 1.000000000000000000e+00
229 | 1.000000000000000000e+00
230 | 1.000000000000000000e+00
231 | 1.000000000000000000e+00
232 | 1.000000000000000000e+00
233 | 1.000000000000000000e+00
234 | 1.000000000000000000e+00
235 | 1.000000000000000000e+00
236 | 1.000000000000000000e+00
237 | 1.000000000000000000e+00
238 | 1.000000000000000000e+00
239 | 1.000000000000000000e+00
240 | 1.000000000000000000e+00
241 | 1.000000000000000000e+00
242 | 1.000000000000000000e+00
243 | 1.000000000000000000e+00
244 | 1.000000000000000000e+00
245 | 1.000000000000000000e+00
246 | 1.000000000000000000e+00
247 | 1.000000000000000000e+00
248 | 1.000000000000000000e+00
249 | 1.000000000000000000e+00
250 | 1.000000000000000000e+00
251 | 1.000000000000000000e+00
252 | 1.000000000000000000e+00
253 | 1.000000000000000000e+00
254 | 1.000000000000000000e+00
255 | 1.000000000000000000e+00
256 | 1.000000000000000000e+00
257 | 1.000000000000000000e+00
258 | 1.000000000000000000e+00
259 | 1.000000000000000000e+00
260 | 1.000000000000000000e+00
261 | 1.000000000000000000e+00
262 | 1.000000000000000000e+00
263 | 1.000000000000000000e+00
264 | 1.000000000000000000e+00
265 | 1.000000000000000000e+00
266 | 1.000000000000000000e+00
267 | 1.000000000000000000e+00
268 | 1.000000000000000000e+00
269 | 1.000000000000000000e+00
270 | 1.000000000000000000e+00
271 | 1.000000000000000000e+00
272 | 1.000000000000000000e+00
273 | 1.000000000000000000e+00
274 | 1.000000000000000000e+00
275 | 1.000000000000000000e+00
276 | 1.000000000000000000e+00
277 | 5.561430358886718750e+01
278 | 3.986361694335937500e+01
279 | 4.017954254150390625e+01
280 | 4.455659484863281250e+01
281 | 4.052356338500976562e+01
282 | 4.096222305297851562e+01
283 | 4.115641784667968750e+01
284 | 1.645241546630859375e+01
285 | 4.098769760131835938e+01
286 | 5.138859939575195312e+01
287 | 1.642739486694335938e+01
288 | 1.713773536682128906e+01
289 | 1.640123367309570312e+01
290 | 1.713288497924804688e+01
291 | 4.082173538208007812e+01
292 | 1.752995300292968750e+01
293 | 1.639669990539550781e+01
294 | 1.939693450927734375e+01
295 | 1.639642715454101562e+01
296 | 1.938616371154785156e+01
297 | 1.639863586425781250e+01
298 | 1.688890075683593750e+01
299 | 1.938297271728515625e+01
300 | 1.640894699096679688e+01
301 | 1.691272735595703125e+01
302 | 1.936629295349121094e+01
303 | 1.639869499206542969e+01
304 | 1.685990142822265625e+01
305 | 1.933785057067871094e+01
306 | 1.641272735595703125e+01
307 | 1.689461517333984375e+01
308 | 1.931179046630859375e+01
309 | 1.645939064025878906e+01
310 | 1.689826202392578125e+01
311 | 1.923466682434082031e+01
312 | 1.657158279418945312e+01
313 | 1.697431755065917969e+01
314 | 1.934522628784179688e+01
315 | 1.674285316467285156e+01
316 | 5.245936584472656250e+01
317 | 1.692762565612792969e+01
318 | 1.720919609069824219e+01
319 | 1.879827880859375000e+01
320 | 1.709197235107421875e+01
321 | 1.878027343750000000e+01
322 | 1.771084403991699219e+01
323 | 1.880637931823730469e+01
324 | 1.911984825134277344e+01
325 | 1.765840911865234375e+01
326 | 1.791246986389160156e+01
327 | 5.336693191528320312e+01
328 | 1.911277770996093750e+01
329 | 1.782681083679199219e+01
330 | 1.814891433715820312e+01
331 | 5.392474746704101562e+01
332 | 1.807512855529785156e+01
333 | 1.842724800109863281e+01
334 | 5.445014953613281250e+01
335 | 1.432709312438964844e+01
336 | 1.832895660400390625e+01
337 | 5.495256805419921875e+01
338 | 1.903477859497070312e+01
339 | 1.858571052551269531e+01
340 | 5.513112640380859375e+01
341 | 1.901418876647949219e+01
342 | 1.885683441162109375e+01
343 | 5.560873794555664062e+01
344 | 1.898198509216308594e+01
345 | 1.914526939392089844e+01
346 | 1.935386466979980469e+01
347 | 1.895607566833496094e+01
348 | 1.943239974975585938e+01
349 | 1.924178695678710938e+01
350 | 3.833784484863281250e+01
351 | 1.551283359527587891e+01
352 | 1.970667076110839844e+01
353 | 3.382052230834960938e+01
354 | 3.832025909423828125e+01
355 | 1.476229476928710938e+01
356 | 3.422834014892578125e+01
357 | 3.829160690307617188e+01
358 | 1.490659427642822266e+01
359 | 3.832155227661132812e+01
360 | 1.482973003387451172e+01
361 | 1.461459827423095703e+01
362 | 1.502929019927978516e+01
363 | 3.836550903320312500e+01
364 | 1.459650325775146484e+01
365 | 1.550678157806396484e+01
366 | 1.477525043487548828e+01
367 | 1.477507686614990234e+01
368 | 1.553838920593261719e+01
369 |
--------------------------------------------------------------------------------
/dataset/ann_points_lidar/pc_anno_63b89fe17f3e41ecbe28337e0e35db8e.txt:
--------------------------------------------------------------------------------
1 | 3.476955413818359375e+01
2 | 2.475304222106933594e+01
3 | 2.461189460754394531e+01
4 | 2.723161315917968750e+01
5 | 2.449436569213867188e+01
6 | 2.442894363403320312e+01
7 | 2.421801948547363281e+01
8 | 9.847034454345703125e+00
9 | 2.379984855651855469e+01
10 | 2.969700241088867188e+01
11 | 9.701239585876464844e+00
12 | 1.009768962860107422e+01
13 | 9.556082725524902344e+00
14 | 9.958941459655761719e+00
15 | 2.305774307250976562e+01
16 | 1.004933643341064453e+01
17 | 9.423934936523437500e+00
18 | 1.091845607757568359e+01
19 | 9.295000076293945312e+00
20 | 1.075782966613769531e+01
21 | 9.164274215698242188e+00
22 | 9.422378540039062500e+00
23 | 1.060681152343750000e+01
24 | 9.042418479919433594e+00
25 | 9.300074577331542969e+00
26 | 1.044536113739013672e+01
27 | 8.906787872314453125e+00
28 | 9.142563819885253906e+00
29 | 1.028795719146728516e+01
30 | 8.792067527770996094e+00
31 | 9.031130790710449219e+00
32 | 1.012412834167480469e+01
33 | 8.686579704284667969e+00
34 | 8.904436111450195312e+00
35 | 9.940749168395996094e+00
36 | 8.617376327514648438e+00
37 | 8.814184188842773438e+00
38 | 9.855198860168457031e+00
39 | 8.579854011535644531e+00
40 | 2.595075988769531250e+01
41 | 8.535676002502441406e+00
42 | 8.668444633483886719e+00
43 | 9.423926353454589844e+00
44 | 8.491302490234375000e+00
45 | 9.280548095703125000e+00
46 | 8.646885871887207031e+00
47 | 9.154428482055664062e+00
48 | 9.172385215759277344e+00
49 | 8.495264053344726562e+00
50 | 8.609380722045898438e+00
51 | 2.484846305847167969e+01
52 | 9.030022621154785156e+00
53 | 8.442338943481445312e+00
54 | 8.585383415222167969e+00
55 | 2.472224044799804688e+01
56 | 8.423322677612304688e+00
57 | 8.573389053344726562e+00
58 | 2.457586669921875000e+01
59 | 6.653696537017822266e+00
60 | 8.399977684020996094e+00
61 | 2.440249252319335938e+01
62 | 8.583302497863769531e+00
63 | 8.383057594299316406e+00
64 | 2.410799789428710938e+01
65 | 8.434723854064941406e+00
66 | 8.361307144165039062e+00
67 | 2.391636657714843750e+01
68 | 8.286317825317382812e+00
69 | 8.347763061523437500e+00
70 | 8.432108879089355469e+00
71 | 8.141593933105468750e+00
72 | 8.330419540405273438e+00
73 | 8.249545097351074219e+00
74 | 1.607097244262695312e+01
75 | 6.613889217376708984e+00
76 | 8.300498962402343750e+00
77 | 1.399046134948730469e+01
78 | 1.579221153259277344e+01
79 | 6.204236984252929688e+00
80 | 1.392710971832275391e+01
81 | 1.552646541595458984e+01
82 | 6.151190757751464844e+00
83 | 1.527715301513671875e+01
84 | 6.024528026580810547e+00
85 | 5.936805248260498047e+00
86 | 6.093652248382568359e+00
87 | 1.502616405487060547e+01
88 | 5.827789306640625000e+00
89 | 6.068727016448974609e+00
90 | 5.792434692382812500e+00
91 | 5.790237903594970703e+00
92 | 6.067313194274902344e+00
93 | -5.676209259033203125e+01
94 | -4.096218872070312500e+01
95 | -4.127739715576171875e+01
96 | -4.567372131347656250e+01
97 | -4.162073898315429688e+01
98 | -4.205889892578125000e+01
99 | -4.225207901000976562e+01
100 | -1.749202537536621094e+01
101 | -4.208159637451171875e+01
102 | -5.251480865478515625e+01
103 | -1.746639633178710938e+01
104 | -1.818175315856933594e+01
105 | -1.743964385986328125e+01
106 | -1.817632484436035156e+01
107 | -4.192116546630859375e+01
108 | -1.856597328186035156e+01
109 | -1.743453407287597656e+01
110 | -2.043524360656738281e+01
111 | -1.743373107910156250e+01
112 | -2.042382431030273438e+01
113 | -1.743540000915527344e+01
114 | -1.793008422851562500e+01
115 | -2.041989898681640625e+01
116 | -1.744512557983398438e+01
117 | -1.795343208312988281e+01
118 | -2.040262031555175781e+01
119 | -1.743433189392089844e+01
120 | -1.789986801147460938e+01
121 | -2.037345504760742188e+01
122 | -1.744787788391113281e+01
123 | -1.793403053283691406e+01
124 | -2.034672355651855469e+01
125 | -1.749398612976074219e+01
126 | -1.793715858459472656e+01
127 | -2.026893424987792969e+01
128 | -1.760580635070800781e+01
129 | -1.801278114318847656e+01
130 | -2.037905502319335938e+01
131 | -1.777678680419921875e+01
132 | -5.356843566894531250e+01
133 | -1.796133041381835938e+01
134 | -1.824692916870117188e+01
135 | -1.984254264831542969e+01
136 | -1.812536048889160156e+01
137 | -1.982397651672363281e+01
138 | -1.874821090698242188e+01
139 | -1.984951019287109375e+01
140 | -2.015089416503906250e+01
141 | -1.869147491455078125e+01
142 | -1.894963836669921875e+01
143 | -5.447079467773437500e+01
144 | -2.014323806762695312e+01
145 | -1.885948562622070312e+01
146 | -1.918584251403808594e+01
147 | -5.502790069580078125e+01
148 | -1.910756874084472656e+01
149 | -1.946398925781250000e+01
150 | -5.555244064331054688e+01
151 | -1.535118007659912109e+01
152 | -1.936114311218261719e+01
153 | -5.605392074584960938e+01
154 | -2.006333732604980469e+01
155 | -1.961768150329589844e+01
156 | -5.623113632202148438e+01
157 | -2.004216194152832031e+01
158 | -1.988853263854980469e+01
159 | -5.670767593383789062e+01
160 | -2.000933647155761719e+01
161 | -2.017674636840820312e+01
162 | -2.038953971862792969e+01
163 | -1.998280334472656250e+01
164 | -2.046360969543457031e+01
165 | -2.027674293518066406e+01
166 | -3.940643310546875000e+01
167 | -1.653576469421386719e+01
168 | -2.073757934570312500e+01
169 | -3.487425231933593750e+01
170 | -3.938761520385742188e+01
171 | -1.578715705871582031e+01
172 | -3.528157043457031250e+01
173 | -3.935774612426757812e+01
174 | -1.593420600891113281e+01
175 | -3.938653182983398438e+01
176 | -1.585065555572509766e+01
177 | -1.563837528228759766e+01
178 | -1.605652618408203125e+01
179 | -3.942943572998046875e+01
180 | -1.561972522735595703e+01
181 | -1.652731704711914062e+01
182 | -1.579827690124511719e+01
183 | -1.580108642578125000e+01
184 | -1.656847763061523438e+01
185 | -3.123775959014892578e+00
186 | -3.357524871826171875e+00
187 | -3.371449232101440430e+00
188 | -2.495308637619018555e+00
189 | -3.388032197952270508e+00
190 | -3.412323236465454102e+00
191 | -3.416711568832397461e+00
192 | -1.871796727180480957e+00
193 | -3.391808986663818359e+00
194 | -2.831430673599243164e+00
195 | -1.863044977188110352e+00
196 | -1.456629157066345215e+00
197 | -1.854292154312133789e+00
198 | -1.451593995094299316e+00
199 | -2.245232343673706055e+00
200 | -2.461437702178955078e+00
201 | -1.847962379455566406e+00
202 | -2.702417850494384766e+00
203 | -1.842191219329833984e+00
204 | -2.692429304122924805e+00
205 | -1.836607456207275391e+00
206 | -1.418544650077819824e+00
207 | -2.683833599090576172e+00
208 | -1.832140207290649414e+00
209 | -1.416030645370483398e+00
210 | -2.673378229141235352e+00
211 | -1.825436711311340332e+00
212 | -1.407628297805786133e+00
213 | -2.661988496780395508e+00
214 | -1.821712851524353027e+00
215 | -1.406233429908752441e+00
216 | -2.650601625442504883e+00
217 | -1.821160435676574707e+00
218 | -1.402455091476440430e+00
219 | -2.632931709289550781e+00
220 | -1.827691316604614258e+00
221 | -1.404423356056213379e+00
222 | -2.640148162841796875e+00
223 | -1.840559005737304688e+00
224 | -2.794077634811401367e+00
225 | -1.854362845420837402e+00
226 | -1.414807081222534180e+00
227 | -1.030209064483642578e+00
228 | -1.866485476493835449e+00
229 | -1.026554822921752930e+00
230 | -1.446076273918151855e+00
231 | -1.025152921676635742e+00
232 | -2.582022666931152344e+00
233 | -1.914784908294677734e+00
234 | -1.457855224609375000e+00
235 | -2.810565948486328125e+00
236 | -2.574351549148559570e+00
237 | -1.927094578742980957e+00
238 | -1.472298145294189453e+00
239 | -2.831997156143188477e+00
240 | -1.947607874870300293e+00
241 | -1.489825963973999023e+00
242 | -2.851738691329956055e+00
243 | -1.948602914810180664e+00
244 | -1.968494772911071777e+00
245 | -2.870075464248657227e+00
246 | -2.544820070266723633e+00
247 | -1.989938974380493164e+00
248 | -2.872264146804809570e+00
249 | -2.535751819610595703e+00
250 | -2.012503862380981445e+00
251 | -2.889379024505615234e+00
252 | -2.525518655776977539e+00
253 | -2.036932468414306641e+00
254 | -1.545772552490234375e+00
255 | -2.516215562820434570e+00
256 | -2.061174869537353516e+00
257 | -1.533578038215637207e+00
258 | -1.997525453567504883e+00
259 | -2.074916124343872070e+00
260 | -2.083925008773803711e+00
261 | -2.635774374008178711e+00
262 | -1.991817235946655273e+00
263 | -1.580660223960876465e+00
264 | -2.660738468170166016e+00
265 | -1.985917091369628906e+00
266 | -1.195571184158325195e+00
267 | -1.982927799224853516e+00
268 | -1.975109696388244629e+00
269 | -1.558652758598327637e+00
270 | -1.202157616615295410e+00
271 | -1.980596542358398438e+00
272 | -1.553428649902343750e+00
273 | -2.051175355911254883e+00
274 | -1.567969202995300293e+00
275 | -1.177896499633789062e+00
276 | -8.272489309310913086e-01
277 |
--------------------------------------------------------------------------------
/dataset/ann_points_lidar/pc_anno_83d881a6b3d94ef3a3bc3b585cc514f8.txt:
--------------------------------------------------------------------------------
1 | -1.702317047119140625e+01
2 | -1.699100494384765625e+01
3 | -1.697468376159667969e+01
4 | -1.299597263336181641e+01
5 | -1.298490810394287109e+01
6 | -1.227384471893310547e+01
7 | -1.229694271087646484e+01
8 | -1.722665214538574219e+01
9 | -1.697200584411621094e+01
10 | -1.695138359069824219e+01
11 | -1.296561908721923828e+01
12 | -1.072905445098876953e+01
13 | -1.245364284515380859e+01
14 | -1.215053939819335938e+01
15 | -1.221566963195800781e+01
16 | -1.711626052856445312e+01
17 | -1.696319007873535156e+01
18 | -1.694027709960937500e+01
19 | -8.336550712585449219e+00
20 | -1.062579059600830078e+01
21 | -1.235808849334716797e+01
22 | -1.205025863647460938e+01
23 | -1.204439926147460938e+01
24 | -1.698844146728515625e+01
25 | -1.694175148010253906e+01
26 | -1.691372299194335938e+01
27 | -6.226294994354248047e+00
28 | -6.940645694732666016e+00
29 | -8.254863739013671875e+00
30 | -1.053226470947265625e+01
31 | -1.232917881011962891e+01
32 | -1.199646282196044922e+01
33 | -1.190177345275878906e+01
34 | -1.691991996765136719e+01
35 | -1.690946769714355469e+01
36 | -1.401235485076904297e+01
37 | -6.872302532196044922e+00
38 | -8.179162025451660156e+00
39 | -1.043701171875000000e+01
40 | -1.226047611236572266e+01
41 | -1.195597553253173828e+01
42 | -1.218001842498779297e+01
43 | -1.694943046569824219e+01
44 | -1.690237045288085938e+01
45 | -1.688235855102539062e+01
46 | -1.463497734069824219e+01
47 | -1.407082653045654297e+01
48 | -1.394265174865722656e+01
49 | -1.381446552276611328e+01
50 | -6.813434600830078125e+00
51 | -8.102017402648925781e+00
52 | -1.032972717285156250e+01
53 | -1.225419521331787109e+01
54 | -1.206545352935791016e+01
55 | -1.194011116027832031e+01
56 | -1.691387176513671875e+01
57 | -1.688179779052734375e+01
58 | -1.401767635345458984e+01
59 | -1.389295291900634766e+01
60 | -1.374756336212158203e+01
61 | -1.362011432647705078e+01
62 | -6.755266666412353516e+00
63 | -7.951531887054443359e+00
64 | -1.183163166046142578e+01
65 | -1.216477584838867188e+01
66 | -1.227871322631835938e+01
67 | -1.406532382965087891e+01
68 | -1.393192386627197266e+01
69 | -1.381635379791259766e+01
70 | -1.369860744476318359e+01
71 | -1.355761146545410156e+01
72 | -1.342796802520751953e+01
73 | -6.700257301330566406e+00
74 | -7.926921367645263672e+00
75 | -1.004829502105712891e+01
76 | -1.184511280059814453e+01
77 | -1.227353000640869141e+01
78 | -1.234427928924560547e+01
79 | -1.398213195800781250e+01
80 | -1.386924839019775391e+01
81 | -1.373454570770263672e+01
82 | -1.361748790740966797e+01
83 | -1.348835277557373047e+01
84 | -1.336720085144042969e+01
85 | -1.324177360534667969e+01
86 | -6.637284755706787109e+00
87 | -7.844929218292236328e+00
88 | -9.906225204467773438e+00
89 | -1.155135440826416016e+01
90 | -1.214602947235107422e+01
91 | -1.392649269104003906e+01
92 | -1.379074668884277344e+01
93 | -1.367182731628417969e+01
94 | -1.354040718078613281e+01
95 | -1.343009471893310547e+01
96 | -1.317278671264648438e+01
97 | -1.304974651336669922e+01
98 | -6.565764427185058594e+00
99 | -7.751770973205566406e+00
100 | -5.514168262481689453e+00
101 | -5.473732948303222656e+00
102 | -5.476841926574707031e+00
103 | -1.298070430755615234e+01
104 | -6.455103397369384766e+00
105 | -7.675354003906250000e+00
106 | -5.441582679748535156e+00
107 | -5.386580944061279297e+00
108 | -1.313749217987060547e+01
109 | -1.302441883087158203e+01
110 | -5.391313076019287109e+00
111 | -1.282781314849853516e+01
112 | -6.381675243377685547e+00
113 | -7.588697433471679688e+00
114 | -5.370003223419189453e+00
115 | -5.329070091247558594e+00
116 | -5.322465896606445312e+00
117 | -5.310214042663574219e+00
118 | -5.288910388946533203e+00
119 | -5.297503471374511719e+00
120 | -1.294939804077148438e+01
121 | -1.286560630798339844e+01
122 | -5.315743446350097656e+00
123 | -1.279006576538085938e+01
124 | -1.278456497192382812e+01
125 | -6.314090251922607422e+00
126 | -7.499150753021240234e+00
127 | -5.299339294433593750e+00
128 | -5.249234199523925781e+00
129 | -5.246161460876464844e+00
130 | -5.234885692596435547e+00
131 | -5.208576679229736328e+00
132 | -5.218806743621826172e+00
133 | -1.284147357940673828e+01
134 | -1.283101367950439453e+01
135 | -5.234250068664550781e+00
136 | -1.278016090393066406e+01
137 | -1.276622390747070312e+01
138 | -6.289186954498291016e+00
139 | -7.392114162445068359e+00
140 | -5.221779346466064453e+00
141 | -5.174795150756835938e+00
142 | -5.168286800384521484e+00
143 | -5.156230449676513672e+00
144 | -5.141397476196289062e+00
145 | -5.144617557525634766e+00
146 | -1.283833694458007812e+01
147 | -1.282140064239501953e+01
148 | -5.158144474029541016e+00
149 | -1.276393318176269531e+01
150 | -1.276117801666259766e+01
151 | -6.276479244232177734e+00
152 | -7.332818031311035156e+00
153 | -5.150363922119140625e+00
154 | -5.045068264007568359e+00
155 | -5.053781986236572266e+00
156 | -5.058242797851562500e+00
157 | -5.060581684112548828e+00
158 | -5.067828655242919922e+00
159 | -5.064654350280761719e+00
160 | -1.280115985870361328e+01
161 | -5.075268745422363281e+00
162 | -1.274006938934326172e+01
163 | -1.271963310241699219e+01
164 | -6.263885021209716797e+00
165 | -7.254985332489013672e+00
166 | -5.069506168365478516e+00
167 | -4.973886489868164062e+00
168 | -4.978437423706054688e+00
169 | -4.984290122985839844e+00
170 | -4.982378959655761719e+00
171 | -4.993057727813720703e+00
172 | -1.277149295806884766e+01
173 | -5.009518146514892578e+00
174 | -1.381006526947021484e+01
175 | -7.177465915679931641e+00
176 | -4.971667766571044922e+00
177 | -4.910424232482910156e+00
178 | -4.929012775421142578e+00
179 | -4.932253837585449219e+00
180 | -4.919491291046142578e+00
181 | -4.921742439270019531e+00
182 | -1.350387001037597656e+01
183 | -4.928104877471923828e+00
184 | -1.359500217437744141e+01
185 | -1.364812088012695312e+01
186 | -6.257415771484375000e+00
187 | -5.317886352539062500e+00
188 | -4.873925209045410156e+00
189 | -4.867620468139648438e+00
190 | -4.858469486236572266e+00
191 | -4.847483634948730469e+00
192 | -4.846406936645507812e+00
193 | -4.844909667968750000e+00
194 | -5.687813282012939453e+00
195 | -4.859963893890380859e+00
196 | -1.338618373870849609e+01
197 | -1.343065261840820312e+01
198 | -6.252632617950439453e+00
199 | -4.972959995269775391e+00
200 | -4.824310779571533203e+00
201 | -4.798534870147705078e+00
202 | -4.797142028808593750e+00
203 | -4.786422729492187500e+00
204 | -4.775541782379150391e+00
205 | -4.772861003875732422e+00
206 | -4.771349906921386719e+00
207 | -5.696419239044189453e+00
208 | -4.789392948150634766e+00
209 | -1.316992092132568359e+01
210 | -1.322256183624267578e+01
211 | -4.832131862640380859e+00
212 | -8.704710960388183594e+00
213 | -4.728128433227539062e+00
214 | -4.723229408264160156e+00
215 | -4.715301513671875000e+00
216 | -4.699722290039062500e+00
217 | -4.698373794555664062e+00
218 | -4.696846008300781250e+00
219 | -5.702683448791503906e+00
220 | -4.713838100433349609e+00
221 | -1.295698642730712891e+01
222 | -1.300324440002441406e+01
223 | -4.799121856689453125e+00
224 | -4.688960552215576172e+00
225 | -4.651918888092041016e+00
226 | -4.650509834289550781e+00
227 | -4.640777111053466797e+00
228 | -4.625368118286132812e+00
229 | -4.622742652893066406e+00
230 | -4.623568058013916016e+00
231 | -5.708958148956298828e+00
232 | -4.633305072784423828e+00
233 | -1.274359798431396484e+01
234 | -1.280027294158935547e+01
235 | -4.846813201904296875e+00
236 | -4.639271259307861328e+00
237 | -4.577765464782714844e+00
238 | -4.575568675994873047e+00
239 | -4.563588619232177734e+00
240 | -4.553781986236572266e+00
241 | -4.549639225006103516e+00
242 | -4.548089504241943359e+00
243 | -5.712762355804443359e+00
244 | -4.566144466400146484e+00
245 | -1.259123706817626953e+01
246 | -1.261268615722656250e+01
247 | -5.480016231536865234e+00
248 | -4.874384403228759766e+00
249 | -4.597527027130126953e+00
250 | -4.506863117218017578e+00
251 | -4.500834465026855469e+00
252 | -4.493563175201416016e+00
253 | -4.480003356933593750e+00
254 | -4.467509746551513672e+00
255 | -4.469788551330566406e+00
256 | -5.634430408477783203e+00
257 | -4.488377571105957031e+00
258 | -1.256149291992187500e+01
259 | -1.256750965118408203e+01
260 | -5.387586116790771484e+00
261 | -4.753969192504882812e+00
262 | -4.539872646331787109e+00
263 | -4.434512615203857422e+00
264 | -4.421321392059326172e+00
265 | -4.408685684204101562e+00
266 | -4.409135341644287109e+00
267 | -4.406071662902832031e+00
268 | -5.630036354064941406e+00
269 | -4.433261394500732422e+00
270 | -4.422018051147460938e+00
271 | -1.255827331542968750e+01
272 | -5.295456409454345703e+00
273 | -4.752906799316406250e+00
274 | -4.446838378906250000e+00
275 | -4.363068103790283203e+00
276 | -4.347737312316894531e+00
277 | -4.338940620422363281e+00
278 | -4.334520816802978516e+00
279 | -4.332931041717529297e+00
280 | -5.641830444335937500e+00
281 | -4.359708309173583984e+00
282 | -1.251112174987792969e+01
283 | -4.760270118713378906e+00
284 | -4.367275238037109375e+00
285 | -4.287613391876220703e+00
286 | -4.290869712829589844e+00
287 | -4.276838779449462891e+00
288 | -4.262979030609130859e+00
289 | -4.259322643280029297e+00
290 | -4.258469104766845703e+00
291 | -5.654109954833984375e+00
292 | -4.286963462829589844e+00
293 | -4.271661281585693359e+00
294 | -4.769866466522216797e+00
295 | -4.293523311614990234e+00
296 | -4.217858314514160156e+00
297 | -4.206414699554443359e+00
298 | -4.194180011749267578e+00
299 | -4.192401885986328125e+00
300 | -4.189347267150878906e+00
301 | -5.640749931335449219e+00
302 | -4.214572429656982422e+00
303 | -4.210124015808105469e+00
304 | -1.318945217132568359e+01
305 | -5.029902458190917969e+00
306 | -5.033446788787841797e+00
307 | -4.240636825561523438e+00
308 | -4.148176670074462891e+00
309 | -4.140528202056884766e+00
310 | -4.136112213134765625e+00
311 | -4.121867179870605469e+00
312 | -4.118214130401611328e+00
313 | -4.114471912384033203e+00
314 | -5.550323009490966797e+00
315 | -4.139255523681640625e+00
316 | -4.134170532226562500e+00
317 | -1.296100902557373047e+01
318 | -5.059247016906738281e+00
319 | -4.840343475341796875e+00
320 | -4.172692298889160156e+00
321 | -4.076468467712402344e+00
322 | -4.070981979370117188e+00
323 | -4.061195373535156250e+00
324 | -4.055318355560302734e+00
325 | -4.047469615936279297e+00
326 | -4.048418521881103516e+00
327 | -5.454352378845214844e+00
328 | -4.071578502655029297e+00
329 | -4.067751407623291016e+00
330 | -1.273374748229980469e+01
331 | -4.221807003021240234e+00
332 | -4.099545955657958984e+00
333 | -4.006967544555664062e+00
334 | -4.000815868377685547e+00
335 | -3.991637229919433594e+00
336 | -3.982554197311401367e+00
337 | -3.977555036544799805e+00
338 | -3.975890159606933594e+00
339 | -5.359908103942871094e+00
340 | -4.003248691558837891e+00
341 | -3.996186494827270508e+00
342 | -1.250294876098632812e+01
343 | -4.522673606872558594e+00
344 | -4.990728855133056641e+00
345 | -4.030900001525878906e+00
346 | -3.932930946350097656e+00
347 | -3.930755376815795898e+00
348 | -3.919135570526123047e+00
349 | -3.909468173980712891e+00
350 | -3.907056331634521484e+00
351 | -3.906038999557495117e+00
352 | -5.261736392974853516e+00
353 | -3.936282396316528320e+00
354 | -3.926620960235595703e+00
355 | -4.445536613464355469e+00
356 | -4.909497261047363281e+00
357 | -3.959469318389892578e+00
358 | -3.864329814910888672e+00
359 | -3.860136508941650391e+00
360 | -3.850657701492309570e+00
361 | -3.844415664672851562e+00
362 | -3.837363481521606445e+00
363 | -3.834991216659545898e+00
364 | -5.169611454010009766e+00
365 | -3.866014480590820312e+00
366 | -3.857787370681762695e+00
367 | -4.823519229888916016e+00
368 | -3.899992942810058594e+00
369 | -3.796446084976196289e+00
370 | -3.790987253189086914e+00
371 | -3.782233476638793945e+00
372 | -3.772099494934082031e+00
373 | -3.767760992050170898e+00
374 | -3.766030073165893555e+00
375 | -5.081485271453857422e+00
376 | -3.799737691879272461e+00
377 | -3.787078380584716797e+00
378 | -6.916099548339843750e+00
379 | -3.800701141357421875e+00
380 | -3.716369628906250000e+00
381 | -3.687760114669799805e+00
382 | -3.688900232315063477e+00
383 | -3.693177461624145508e+00
384 | -3.692876338958740234e+00
385 | -3.696390628814697266e+00
386 | -3.694000244140625000e+00
387 | -5.133700370788574219e+00
388 | -4.435758113861083984e+00
389 | -3.717139244079589844e+00
390 | -3.845248937606811523e+00
391 | -3.745138883590698242e+00
392 | -3.617503643035888672e+00
393 | -3.621729612350463867e+00
394 | -3.620835065841674805e+00
395 | -3.621757745742797852e+00
396 | -3.625765800476074219e+00
397 | -3.624644756317138672e+00
398 | -5.129927635192871094e+00
399 | -4.361933708190917969e+00
400 | -3.646649360656738281e+00
401 | -1.312218189239501953e+01
402 | -3.755042314529418945e+00
403 | -3.597687244415283203e+00
404 | -3.550500631332397461e+00
405 | -3.557732343673706055e+00
406 | -3.556786060333251953e+00
407 | -3.557626247406005859e+00
408 | -3.559663295745849609e+00
409 | -3.556621551513671875e+00
410 | -5.037768840789794922e+00
411 | -4.291018009185791016e+00
412 | -3.578134298324584961e+00
413 | -1.286047077178955078e+01
414 | -3.889816999435424805e+00
415 | -3.662521362304687500e+00
416 | -3.573059558868408203e+00
417 | -3.514911413192749023e+00
418 | -3.509667873382568359e+00
419 | -3.506194591522216797e+00
420 | -3.487300634384155273e+00
421 | -3.493580579757690430e+00
422 | -3.488078594207763672e+00
423 | -4.957736015319824219e+00
424 | -4.213733196258544922e+00
425 | -3.507288694381713867e+00
426 | -1.259533882141113281e+01
427 | -3.904630184173583984e+00
428 | -3.587727308273315430e+00
429 | -3.510668754577636719e+00
430 | -3.449270486831665039e+00
431 | -3.442873716354370117e+00
432 | -3.436972379684448242e+00
433 | -3.424383878707885742e+00
434 | -3.422687292098999023e+00
435 | -3.419650793075561523e+00
436 | -4.953063488006591797e+00
437 | -3.436544656753540039e+00
438 | -3.438995599746704102e+00
439 | -1.234768772125244141e+01
440 | -3.540882349014282227e+00
441 | -3.425574541091918945e+00
442 | -3.375884771347045898e+00
443 | -3.376595258712768555e+00
444 | -3.370254278182983398e+00
445 | -3.357821702957153320e+00
446 | -3.354234933853149414e+00
447 | -3.350599050521850586e+00
448 | -4.900623321533203125e+00
449 | -3.351332426071166992e+00
450 | -3.370020389556884766e+00
451 | -1.211194801330566406e+01
452 | -3.542870521545410156e+00
453 | -3.352644920349121094e+00
454 | -3.310802221298217773e+00
455 | -3.306329965591430664e+00
456 | -3.298751592636108398e+00
457 | -3.286501646041870117e+00
458 | -3.283671379089355469e+00
459 | -3.282940864562988281e+00
460 | -4.821355819702148438e+00
461 | -3.300144672393798828e+00
462 | -3.471362352371215820e+00
463 | -3.285799026489257812e+00
464 | -3.241816282272338867e+00
465 | -3.238531351089477539e+00
466 | -3.230460643768310547e+00
467 | -3.220645189285278320e+00
468 | -3.218411684036254883e+00
469 | -3.215352773666381836e+00
470 | -3.242626428604125977e+00
471 | -3.213642358779907227e+00
472 | -3.233776092529296875e+00
473 | -3.399921894073486328e+00
474 | -3.215611457824707031e+00
475 | -3.174657821655273438e+00
476 | -3.171390533447265625e+00
477 | -3.165643453598022461e+00
478 | -3.182725667953491211e+00
479 | -3.186000108718872070e+00
480 | -3.178939580917358398e+00
481 | -3.181178569793701172e+00
482 | -3.808519363403320312e+00
483 | -3.164146423339843750e+00
484 | -3.331459283828735352e+00
485 | -3.158207893371582031e+00
486 | -3.131163358688354492e+00
487 | -3.116122961044311523e+00
488 | -3.137516498565673828e+00
489 | -3.407295227050781250e+00
490 | -5.225763320922851562e+00
491 | -5.212762832641601562e+00
492 | -4.574503421783447266e+00
493 | -3.726681709289550781e+00
494 | -3.645225524902343750e+00
495 | -3.312740087509155273e+00
496 | -3.739032983779907227e+00
497 | -3.095400810241699219e+00
498 | -3.114417076110839844e+00
499 | -3.134903669357299805e+00
500 | -4.799883842468261719e+00
501 | -5.111248493194580078e+00
502 | -5.105873584747314453e+00
503 | -4.475190162658691406e+00
504 | -3.647147178649902344e+00
505 | -7.521645069122314453e+00
506 | -3.574069976806640625e+00
507 | -3.295616149902343750e+00
508 | -3.285351037979125977e+00
509 | -3.101594924926757812e+00
510 | -3.119982004165649414e+00
511 | -4.699583530426025391e+00
512 | -4.999529361724853516e+00
513 | -4.989956378936767578e+00
514 | -4.375241279602050781e+00
515 | -3.183988809585571289e+00
516 | -7.289206981658935547e+00
517 | -3.492815494537353516e+00
518 | -3.530155181884765625e+00
519 | -3.525173664093017578e+00
520 | -3.119194984436035156e+00
521 | -3.144804954528808594e+00
522 | -3.161446094512939453e+00
523 | -4.884166717529296875e+00
524 | -4.876863956451416016e+00
525 | -4.275619983673095703e+00
526 | -3.199257612228393555e+00
527 | -7.077424526214599609e+00
528 | -9.804913520812988281e+00
529 | -3.419339895248413086e+00
530 | -3.452806949615478516e+00
531 | -3.494759082794189453e+00
532 | -3.129943609237670898e+00
533 | -3.160970926284790039e+00
534 | -3.177547216415405273e+00
535 | -4.775441646575927734e+00
536 | -4.776827812194824219e+00
537 | -4.765916824340820312e+00
538 | -4.176624298095703125e+00
539 | -3.215953826904296875e+00
540 | -6.909798145294189453e+00
541 | -9.477017402648925781e+00
542 | -3.338579177856445312e+00
543 | -3.321614027023315430e+00
544 | -3.313993453979492188e+00
545 | -3.149488687515258789e+00
546 | -3.174593925476074219e+00
547 | -3.189309835433959961e+00
548 | -4.675344467163085938e+00
549 | -4.659687995910644531e+00
550 | -4.649384021759033203e+00
551 | -4.077262878417968750e+00
552 | -3.224931716918945312e+00
553 | -7.074299812316894531e+00
554 | -9.252687454223632812e+00
555 | -3.261917829513549805e+00
556 | -3.290402173995971680e+00
557 | -3.329779863357543945e+00
558 | -3.156414508819580078e+00
559 | -3.182488203048706055e+00
560 | -4.573042869567871094e+00
561 | -4.549315452575683594e+00
562 | -4.537660121917724609e+00
563 | -3.976675748825073242e+00
564 | -6.736102581024169922e+00
565 | -6.813066959381103516e+00
566 | -9.094345092773437500e+00
567 | -3.186917781829833984e+00
568 | -3.209984779357910156e+00
569 | -3.249733448028564453e+00
570 | -3.170122861862182617e+00
571 | -3.200685977935791016e+00
572 | -3.222928524017333984e+00
573 | -4.435719013214111328e+00
574 | -4.426990032196044922e+00
575 | -3.882722139358520508e+00
576 | -6.674528598785400391e+00
577 | -6.524512290954589844e+00
578 | -8.877111434936523438e+00
579 | -3.208618640899658203e+00
580 | -3.207859754562377930e+00
581 | -3.191065788269042969e+00
582 | -3.208326578140258789e+00
583 | -3.241309404373168945e+00
584 | -4.322678565979003906e+00
585 | -4.318202018737792969e+00
586 | -4.313182830810546875e+00
587 | -3.788214206695556641e+00
588 | -7.699947357177734375e+00
589 | -6.389777660369873047e+00
590 | -3.204714059829711914e+00
591 | -3.224910259246826172e+00
592 | -3.217054367065429688e+00
593 | -3.234543323516845703e+00
594 | -3.262277841567993164e+00
595 | -4.212615489959716797e+00
596 | -4.205018043518066406e+00
597 | -3.299242973327636719e+00
598 | -1.336620044708251953e+01
599 | -6.399221897125244141e+00
600 | -8.217213630676269531e+00
601 | -3.291682720184326172e+00
602 | -3.234238624572753906e+00
603 | -3.218750476837158203e+00
604 | -4.107959747314453125e+00
605 | -4.101212501525878906e+00
606 | -4.091383457183837891e+00
607 | -3.324354648590087891e+00
608 | -7.314048767089843750e+00
609 | -8.753308296203613281e+00
610 | -8.040141105651855469e+00
611 | -4.205176830291748047e+00
612 | -3.231768608093261719e+00
613 | -3.502007246017456055e+00
614 | -3.539162635803222656e+00
615 | -3.993902206420898438e+00
616 | -3.990798234939575195e+00
617 | -3.981493949890136719e+00
618 | -3.347754716873168945e+00
619 | -7.158120632171630859e+00
620 | -7.703965187072753906e+00
621 | -7.832058429718017578e+00
622 | -3.186566352844238281e+00
623 | -3.194762945175170898e+00
624 | -3.217380285263061523e+00
625 | -3.515504837036132812e+00
626 | -3.553384304046630859e+00
627 | -3.883166551589965820e+00
628 | -3.880486011505126953e+00
629 | -3.870434761047363281e+00
630 | -3.367651939392089844e+00
631 | -6.981029033660888672e+00
632 | -7.421742439270019531e+00
633 | -7.540460586547851562e+00
634 | -3.215098381042480469e+00
635 | -3.234033584594726562e+00
636 | -3.479905128479003906e+00
637 | -3.772938728332519531e+00
638 | -3.767453193664550781e+00
639 | -3.757505416870117188e+00
640 | -6.601804733276367188e+00
641 | -8.286822319030761719e+00
642 | -7.215847015380859375e+00
643 | -7.400409698486328125e+00
644 | -3.312196493148803711e+00
645 | -3.258030414581298828e+00
646 | -3.662838697433471680e+00
647 | -3.656531095504760742e+00
648 | -3.649529933929443359e+00
649 | -6.556164264678955078e+00
650 | -8.617810249328613281e+00
651 | -6.911485195159912109e+00
652 | -7.383426666259765625e+00
653 | -3.288774013519287109e+00
654 | -3.285569906234741211e+00
655 | -3.576137304306030273e+00
656 | -3.562515497207641602e+00
657 | -3.539979457855224609e+00
658 | -3.534097909927368164e+00
659 | -3.493250370025634766e+00
660 | -6.396571636199951172e+00
661 | -7.121837615966796875e+00
662 | -6.658999443054199219e+00
663 | -3.311632871627807617e+00
664 | -3.311174154281616211e+00
665 | -3.453673601150512695e+00
666 | -3.462517023086547852e+00
667 | -3.441167593002319336e+00
668 | -3.421270847320556641e+00
669 | -3.435021162033081055e+00
670 | -7.103537082672119141e+00
671 | -7.704172611236572266e+00
672 | -6.466084003448486328e+00
673 | -3.535296440124511719e+00
674 | -3.041587114334106445e+00
675 | -3.530977010726928711e+00
676 | -8.276197433471679688e+00
677 | -3.330699682235717773e+00
678 | -6.101120948791503906e+00
679 | -6.617477893829345703e+00
680 | -6.748599529266357422e+00
681 | -6.258373260498046875e+00
682 | -6.951301574707031250e+00
683 | -3.482803821563720703e+00
684 | -3.513349771499633789e+00
685 | -3.582235097885131836e+00
686 | -1.206965351104736328e+01
687 | -3.516515016555786133e+00
688 | -6.613467216491699219e+00
689 | -6.380256175994873047e+00
690 | -6.408004760742187500e+00
691 | -6.352668762207031250e+00
692 | -6.723612785339355469e+00
693 | -2.886327743530273438e+00
694 | -2.862582921981811523e+00
695 | -2.850622892379760742e+00
696 | -1.169560050964355469e+01
697 | -6.331849098205566406e+00
698 | -6.259495258331298828e+00
699 | -6.155888557434082031e+00
700 | -6.620616436004638672e+00
701 | -6.271982669830322266e+00
702 | -6.514737129211425781e+00
703 | -2.786392688751220703e+00
704 | -5.606961250305175781e+00
705 | -2.812301635742187500e+00
706 | -1.131357002258300781e+01
707 | -7.544798851013183594e+00
708 | -6.129934310913085938e+00
709 | -5.849740505218505859e+00
710 | -5.948458671569824219e+00
711 | -6.387134075164794922e+00
712 | -6.528965473175048828e+00
713 | -5.887318611145019531e+00
714 | -2.683642864227294922e+00
715 | -2.667352914810180664e+00
716 | -2.651217699050903320e+00
717 | -2.692258834838867188e+00
718 | -1.103646850585937500e+01
719 | -6.265117645263671875e+00
720 | -6.103517532348632812e+00
721 | -5.643030166625976562e+00
722 | -2.590834140777587891e+00
723 | 2.891080284118652344e+01
724 | 2.887795639038085938e+01
725 | 2.887238693237304688e+01
726 | 2.205915260314941406e+01
727 | 2.204828071594238281e+01
728 | 2.099814605712890625e+01
729 | 2.105498123168945312e+01
730 | 2.967029190063476562e+01
731 | 2.923711585998535156e+01
732 | 2.922408485412597656e+01
733 | 2.232498168945312500e+01
734 | 1.853810691833496094e+01
735 | 2.159569740295410156e+01
736 | 2.106889343261718750e+01
737 | 2.120067024230957031e+01
738 | 2.988070678710937500e+01
739 | 2.962131118774414062e+01
740 | 2.960420227050781250e+01
741 | 1.450815486907958984e+01
742 | 1.861048507690429688e+01
743 | 2.171417999267578125e+01
744 | 2.118083381652832031e+01
745 | 2.118729972839355469e+01
746 | 3.006294441223144531e+01
747 | 2.999073028564453125e+01
748 | 2.996430206298828125e+01
749 | 1.088389205932617188e+01
750 | 1.218571472167968750e+01
751 | 1.456998157501220703e+01
752 | 1.870859146118164062e+01
753 | 2.197311401367187500e+01
754 | 2.138725280761718750e+01
755 | 2.123252677917480469e+01
756 | 3.037954902648925781e+01
757 | 3.037219619750976562e+01
758 | 2.517438316345214844e+01
759 | 1.222819137573242188e+01
760 | 1.463696384429931641e+01
761 | 1.878856468200683594e+01
762 | 2.215481567382812500e+01
763 | 2.161275672912597656e+01
764 | 2.203337478637695312e+01
765 | 3.083323669433593750e+01
766 | 3.077146148681640625e+01
767 | 3.075947761535644531e+01
768 | 2.662503242492675781e+01
769 | 2.560495758056640625e+01
770 | 2.538887786865234375e+01
771 | 2.516173553466796875e+01
772 | 1.229898357391357422e+01
773 | 1.470181465148925781e+01
774 | 1.886290740966796875e+01
775 | 2.246544456481933594e+01
776 | 2.212230110168457031e+01
777 | 2.190653610229492188e+01
778 | 3.121371269226074219e+01
779 | 3.116596412658691406e+01
780 | 2.585692405700683594e+01
781 | 2.563357734680175781e+01
782 | 2.538211822509765625e+01
783 | 2.516392898559570312e+01
784 | 1.236657810211181641e+01
785 | 1.462875175476074219e+01
786 | 2.198640823364257812e+01
787 | 2.262498283386230469e+01
788 | 2.285919952392578125e+01
789 | 2.627187538146972656e+01
790 | 2.604062843322753906e+01
791 | 2.584274482727050781e+01
792 | 2.562948608398437500e+01
793 | 2.538270950317382812e+01
794 | 2.515713310241699219e+01
795 | 1.244096660614013672e+01
796 | 1.479319095611572266e+01
797 | 1.886808967590332031e+01
798 | 2.232757568359375000e+01
799 | 2.315788841247558594e+01
800 | 2.331294059753417969e+01
801 | 2.647776985168457031e+01
802 | 2.627145576477050781e+01
803 | 2.603426742553710938e+01
804 | 2.583065032958984375e+01
805 | 2.559237670898437500e+01
806 | 2.538022232055664062e+01
807 | 2.515945053100585938e+01
808 | 1.250101661682128906e+01
809 | 1.484965038299560547e+01
810 | 1.886565399169921875e+01
811 | 2.207935523986816406e+01
812 | 2.324461174011230469e+01
813 | 2.672919082641601562e+01
814 | 2.648718452453613281e+01
815 | 2.626611137390136719e+01
816 | 2.603185653686523438e+01
817 | 2.583835601806640625e+01
818 | 2.536760902404785156e+01
819 | 2.514822006225585938e+01
820 | 1.254474925994873047e+01
821 | 1.489099979400634766e+01
822 | 1.048900413513183594e+01
823 | 1.042729949951171875e+01
824 | 1.047822570800781250e+01
825 | 2.536820793151855469e+01
826 | 1.251624584197998047e+01
827 | 1.495899486541748047e+01
828 | 1.050586223602294922e+01
829 | 1.041834735870361328e+01
830 | 2.600205993652343750e+01
831 | 2.579705238342285156e+01
832 | 1.046390819549560547e+01
833 | 2.543412780761718750e+01
834 | 1.255538845062255859e+01
835 | 1.500694274902343750e+01
836 | 1.051952362060546875e+01
837 | 1.044567680358886719e+01
838 | 1.043663120269775391e+01
839 | 1.042090892791748047e+01
840 | 1.038674163818359375e+01
841 | 1.040860939025878906e+01
842 | 2.600440597534179688e+01
843 | 2.585598373413085938e+01
844 | 1.046850681304931641e+01
845 | 2.573480987548828125e+01
846 | 2.574572372436523438e+01
847 | 1.260667419433593750e+01
848 | 1.504900169372558594e+01
849 | 1.053450393676757812e+01
850 | 1.044061183929443359e+01
851 | 1.043872737884521484e+01
852 | 1.042473602294921875e+01
853 | 1.037967395782470703e+01
854 | 1.040523624420166016e+01
855 | 2.617038726806640625e+01
856 | 2.617148017883300781e+01
857 | 1.046013832092285156e+01
858 | 2.609987831115722656e+01
859 | 2.609368324279785156e+01
860 | 1.274738979339599609e+01
861 | 1.505456066131591797e+01
862 | 1.053462219238281250e+01
863 | 1.044583129882812500e+01
864 | 1.043669700622558594e+01
865 | 1.042085647583007812e+01
866 | 1.039909553527832031e+01
867 | 1.041032505035400391e+01
868 | 2.655885505676269531e+01
869 | 2.654661560058593750e+01
870 | 1.046192073822021484e+01
871 | 2.646034622192382812e+01
872 | 2.647777175903320312e+01
873 | 1.291707134246826172e+01
874 | 1.516714382171630859e+01
875 | 1.054686737060546875e+01
876 | 1.033299446105957031e+01
877 | 1.036085414886474609e+01
878 | 1.037480068206787109e+01
879 | 1.038917541503906250e+01
880 | 1.041399288177490234e+01
881 | 1.041666030883789062e+01
882 | 2.690811920166015625e+01
883 | 1.045331478118896484e+01
884 | 2.682551383972167969e+01
885 | 2.679327583312988281e+01
886 | 1.309714603424072266e+01
887 | 1.523487186431884766e+01
888 | 1.054321861267089844e+01
889 | 1.034684085845947266e+01
890 | 1.036115932464599609e+01
891 | 1.038328552246093750e+01
892 | 1.038860511779785156e+01
893 | 1.041626071929931641e+01
894 | 2.727071952819824219e+01
895 | 1.047558593750000000e+01
896 | 2.955769729614257812e+01
897 | 1.530401420593261719e+01
898 | 1.049633884429931641e+01
899 | 1.037208175659179688e+01
900 | 1.041735649108886719e+01
901 | 1.043403434753417969e+01
902 | 1.041572952270507812e+01
903 | 1.042528820037841797e+01
904 | 2.930391883850097656e+01
905 | 1.046321296691894531e+01
906 | 2.954373168945312500e+01
907 | 2.968748092651367188e+01
908 | 1.349962520599365234e+01
909 | 1.142217063903808594e+01
910 | 1.045711612701416016e+01
911 | 1.044780921936035156e+01
912 | 1.043714809417724609e+01
913 | 1.042241287231445312e+01
914 | 1.042475223541259766e+01
915 | 1.043112754821777344e+01
916 | 1.232185935974121094e+01
917 | 1.047917079925537109e+01
918 | 2.954091072082519531e+01
919 | 2.966732597351074219e+01
920 | 1.370511436462402344e+01
921 | 1.082935905456542969e+01
922 | 1.050440025329589844e+01
923 | 1.045616912841796875e+01
924 | 1.045779037475585938e+01
925 | 1.044344234466552734e+01
926 | 1.042865085601806641e+01
927 | 1.042735767364501953e+01
928 | 1.043377494812011719e+01
929 | 1.254015731811523438e+01
930 | 1.048928833007812500e+01
931 | 2.951860046386718750e+01
932 | 2.966546058654785156e+01
933 | 1.068904876708984375e+01
934 | 1.956065368652343750e+01
935 | 1.046570014953613281e+01
936 | 1.046447181701660156e+01
937 | 1.045106220245361328e+01
938 | 1.042524528503417969e+01
939 | 1.043211078643798828e+01
940 | 1.043856620788574219e+01
941 | 1.275898647308349609e+01
942 | 1.049249076843261719e+01
943 | 2.951517868041992188e+01
944 | 2.963514518737792969e+01
945 | 1.078858947753906250e+01
946 | 1.054253578186035156e+01
947 | 1.046642684936523438e+01
948 | 1.046801280975341797e+01
949 | 1.045537185668945312e+01
950 | 1.042947673797607422e+01
951 | 1.042822360992431641e+01
952 | 1.044021129608154297e+01
953 | 1.299027824401855469e+01
954 | 1.047799205780029297e+01
955 | 2.949352264404296875e+01
956 | 2.965435791015625000e+01
957 | 1.108102798461914062e+01
958 | 1.060106372833251953e+01
959 | 1.046583271026611328e+01
960 | 1.046555900573730469e+01
961 | 1.044734096527099609e+01
962 | 1.043427085876464844e+01
963 | 1.042934322357177734e+01
964 | 1.043589115142822266e+01
965 | 1.321560001373291016e+01
966 | 1.049396228790283203e+01
967 | 2.961414527893066406e+01
968 | 2.969355773925781250e+01
969 | 1.278188133239746094e+01
970 | 1.133388900756835938e+01
971 | 1.067965316772460938e+01
972 | 1.047211170196533203e+01
973 | 1.046258258819580078e+01
974 | 1.045538711547851562e+01
975 | 1.043306159973144531e+01
976 | 1.040786933898925781e+01
977 | 1.042368602752685547e+01
978 | 1.324868869781494141e+01
979 | 1.048388576507568359e+01
980 | 3.003307723999023438e+01
981 | 3.007673645019531250e+01
982 | 1.277309894561767578e+01
983 | 1.123293209075927734e+01
984 | 1.072116947174072266e+01
985 | 1.047425460815429688e+01
986 | 1.045744609832763672e+01
987 | 1.043688297271728516e+01
988 | 1.044307613372802734e+01
989 | 1.044596385955810547e+01
990 | 1.346346092224121094e+01
991 | 1.052831363677978516e+01
992 | 1.051116466522216797e+01
993 | 3.055867767333984375e+01
994 | 1.276367187500000000e+01
995 | 1.142977046966552734e+01
996 | 1.067526435852050781e+01
997 | 1.047774791717529297e+01
998 | 1.045530414581298828e+01
999 | 1.044397640228271484e+01
1000 | 1.044353485107421875e+01
1001 | 1.045016193389892578e+01
1002 | 1.372470951080322266e+01
1003 | 1.053277111053466797e+01
1004 | 3.095937347412109375e+01
1005 | 1.164184951782226562e+01
1006 | 1.066657352447509766e+01
1007 | 1.047597217559814453e+01
1008 | 1.049497985839843750e+01
1009 | 1.046458816528320312e+01
1010 | 1.044021797180175781e+01
1011 | 1.044163894653320312e+01
1012 | 1.045014190673828125e+01
1013 | 1.400232219696044922e+01
1014 | 1.053860569000244141e+01
1015 | 1.051045513153076172e+01
1016 | 1.187174320220947266e+01
1017 | 1.066588878631591797e+01
1018 | 1.048226165771484375e+01
1019 | 1.046896743774414062e+01
1020 | 1.044823074340820312e+01
1021 | 1.044893264770507812e+01
1022 | 1.045190620422363281e+01
1023 | 1.421476650238037109e+01
1024 | 1.053322887420654297e+01
1025 | 1.053272247314453125e+01
1026 | 3.381397247314453125e+01
1027 | 1.276234912872314453e+01
1028 | 1.278490066528320312e+01
1029 | 1.071883106231689453e+01
1030 | 1.048811149597167969e+01
1031 | 1.047910499572753906e+01
1032 | 1.047286987304687500e+01
1033 | 1.044648647308349609e+01
1034 | 1.044793224334716797e+01
1035 | 1.044906044006347656e+01
1036 | 1.423071479797363281e+01
1037 | 1.053070545196533203e+01
1038 | 1.052840805053710938e+01
1039 | 3.380708312988281250e+01
1040 | 1.307755756378173828e+01
1041 | 1.250219058990478516e+01
1042 | 1.073859786987304688e+01
1043 | 1.048789787292480469e+01
1044 | 1.048445796966552734e+01
1045 | 1.046955871582031250e+01
1046 | 1.045923995971679688e+01
1047 | 1.044946861267089844e+01
1048 | 1.045737361907958984e+01
1049 | 1.423121070861816406e+01
1050 | 1.054179191589355469e+01
1051 | 1.053694057464599609e+01
1052 | 3.380057144165039062e+01
1053 | 1.105736446380615234e+01
1054 | 1.073215389251708984e+01
1055 | 1.049285888671875000e+01
1056 | 1.048750209808349609e+01
1057 | 1.046809768676757812e+01
1058 | 1.045471572875976562e+01
1059 | 1.045240592956542969e+01
1060 | 1.045918655395507812e+01
1061 | 1.423484420776367188e+01
1062 | 1.055058670043945312e+01
1063 | 1.054277706146240234e+01
1064 | 3.378150177001953125e+01
1065 | 1.208562374114990234e+01
1066 | 1.338127326965332031e+01
1067 | 1.074919319152832031e+01
1068 | 1.049054813385009766e+01
1069 | 1.049009704589843750e+01
1070 | 1.046943378448486328e+01
1071 | 1.045413398742675781e+01
1072 | 1.045303153991699219e+01
1073 | 1.046172714233398438e+01
1074 | 1.423502922058105469e+01
1075 | 1.056270027160644531e+01
1076 | 1.054745197296142578e+01
1077 | 1.209688854217529297e+01
1078 | 1.340454578399658203e+01
1079 | 1.075192356109619141e+01
1080 | 1.049647045135498047e+01
1081 | 1.049035930633544922e+01
1082 | 1.047528076171875000e+01
1083 | 1.046936130523681641e+01
1084 | 1.045507717132568359e+01
1085 | 1.046004390716552734e+01
1086 | 1.424303627014160156e+01
1087 | 1.056506824493408203e+01
1088 | 1.055355548858642578e+01
1089 | 1.341419219970703125e+01
1090 | 1.078817272186279297e+01
1091 | 1.050385951995849609e+01
1092 | 1.049392509460449219e+01
1093 | 1.048071098327636719e+01
1094 | 1.046344184875488281e+01
1095 | 1.045669937133789062e+01
1096 | 1.046357536315917969e+01
1097 | 1.426172065734863281e+01
1098 | 1.057822990417480469e+01
1099 | 1.055363750457763672e+01
1100 | 1.959666442871093750e+01
1101 | 1.070292282104492188e+01
1102 | 1.046315002441406250e+01
1103 | 1.039166259765625000e+01
1104 | 1.040691471099853516e+01
1105 | 1.042516136169433594e+01
1106 | 1.043625545501708984e+01
1107 | 1.045851802825927734e+01
1108 | 1.046353054046630859e+01
1109 | 1.469158554077148438e+01
1110 | 1.265920352935791016e+01
1111 | 1.056138515472412109e+01
1112 | 1.104646301269531250e+01
1113 | 1.076187133789062500e+01
1114 | 1.039482307434082031e+01
1115 | 1.041321563720703125e+01
1116 | 1.042265033721923828e+01
1117 | 1.043754196166992188e+01
1118 | 1.045544624328613281e+01
1119 | 1.046425437927246094e+01
1120 | 1.497838497161865234e+01
1121 | 1.268870353698730469e+01
1122 | 1.056057262420654297e+01
1123 | 3.899139785766601562e+01
1124 | 1.099496936798095703e+01
1125 | 1.053135108947753906e+01
1126 | 1.040068435668945312e+01
1127 | 1.042861080169677734e+01
1128 | 1.043804073333740234e+01
1129 | 1.045293998718261719e+01
1130 | 1.046518898010253906e+01
1131 | 1.046835327148437500e+01
1132 | 1.499676513671875000e+01
1133 | 1.272718143463134766e+01
1134 | 1.056494235992431641e+01
1135 | 3.896026611328125000e+01
1136 | 1.162766361236572266e+01
1137 | 1.093328762054443359e+01
1138 | 1.067014884948730469e+01
1139 | 1.050318241119384766e+01
1140 | 1.049311733245849609e+01
1141 | 1.049491596221923828e+01
1142 | 1.044895458221435547e+01
1143 | 1.047452545166015625e+01
1144 | 1.047011947631835938e+01
1145 | 1.505240917205810547e+01
1146 | 1.274644088745117188e+01
1147 | 1.056136322021484375e+01
1148 | 3.891435623168945312e+01
1149 | 1.191406822204589844e+01
1150 | 1.092420291900634766e+01
1151 | 1.069477748870849609e+01
1152 | 1.051412010192871094e+01
1153 | 1.050021076202392578e+01
1154 | 1.049437618255615234e+01
1155 | 1.046736240386962891e+01
1156 | 1.046825599670410156e+01
1157 | 1.047144412994384766e+01
1158 | 1.534823417663574219e+01
1159 | 1.054410648345947266e+01
1160 | 1.056484127044677734e+01
1161 | 3.891915893554687500e+01
1162 | 1.101047706604003906e+01
1163 | 1.064655590057373047e+01
1164 | 1.049987506866455078e+01
1165 | 1.051513195037841797e+01
1166 | 1.050103950500488281e+01
1167 | 1.047397136688232422e+01
1168 | 1.047545909881591797e+01
1169 | 1.047675418853759766e+01
1170 | 1.550025939941406250e+01
1171 | 1.049850177764892578e+01
1172 | 1.057228565216064453e+01
1173 | 3.896002197265625000e+01
1174 | 1.125247669219970703e+01
1175 | 1.064224433898925781e+01
1176 | 1.051821613311767578e+01
1177 | 1.050994682312011719e+01
1178 | 1.049832248687744141e+01
1179 | 1.047118854522705078e+01
1180 | 1.046827507019042969e+01
1181 | 1.047912120819091797e+01
1182 | 1.557890987396240234e+01
1183 | 1.056925964355468750e+01
1184 | 1.125781345367431641e+01
1185 | 1.065029907226562500e+01
1186 | 1.051643753051757812e+01
1187 | 1.051197338104248047e+01
1188 | 1.049838924407958984e+01
1189 | 1.047886466979980469e+01
1190 | 1.047785568237304688e+01
1191 | 1.048108959197998047e+01
1192 | 1.058670043945312500e+01
1193 | 1.049544620513916016e+01
1194 | 1.057714748382568359e+01
1195 | 1.126270484924316406e+01
1196 | 1.064644336700439453e+01
1197 | 1.051997470855712891e+01
1198 | 1.051549339294433594e+01
1199 | 1.050954055786132812e+01
1200 | 1.058203983306884766e+01
1201 | 1.060007953643798828e+01
1202 | 1.058972644805908203e+01
1203 | 1.061133480072021484e+01
1204 | 1.278329467773437500e+01
1205 | 1.057325458526611328e+01
1206 | 1.128500080108642578e+01
1207 | 1.068633556365966797e+01
1208 | 1.060578536987304688e+01
1209 | 1.056723880767822266e+01
1210 | 1.064914417266845703e+01
1211 | 1.161127662658691406e+01
1212 | 1.802451705932617188e+01
1213 | 1.800255012512207031e+01
1214 | 1.576425457000732422e+01
1215 | 1.279273700714111328e+01
1216 | 1.265712547302246094e+01
1217 | 1.147734260559082031e+01
1218 | 1.301815414428710938e+01
1219 | 1.072226238250732422e+01
1220 | 1.080502128601074219e+01
1221 | 1.089334583282470703e+01
1222 | 1.688127517700195312e+01
1223 | 1.802396583557128906e+01
1224 | 1.801643371582031250e+01
1225 | 1.576777744293212891e+01
1226 | 1.280105495452880859e+01
1227 | 2.680029487609863281e+01
1228 | 1.268345260620117188e+01
1229 | 1.168330955505371094e+01
1230 | 1.166190242767333984e+01
1231 | 1.099686050415039062e+01
1232 | 1.109487915039062500e+01
1233 | 1.691759109497070312e+01
1234 | 1.803234100341796875e+01
1235 | 1.802184677124023438e+01
1236 | 1.577913856506347656e+01
1237 | 1.140076351165771484e+01
1238 | 2.658202552795410156e+01
1239 | 1.269967269897460938e+01
1240 | 1.284805870056152344e+01
1241 | 1.284753131866455078e+01
1242 | 1.133425235748291016e+01
1243 | 1.144640541076660156e+01
1244 | 1.152516555786132812e+01
1245 | 1.803895950317382812e+01
1246 | 1.802375030517578125e+01
1247 | 1.577951240539550781e+01
1248 | 1.173328685760498047e+01
1249 | 2.641031074523925781e+01
1250 | 3.677811431884765625e+01
1251 | 1.271746635437011719e+01
1252 | 1.285448551177978516e+01
1253 | 1.303367996215820312e+01
1254 | 1.165235900878906250e+01
1255 | 1.177969264984130859e+01
1256 | 1.186040878295898438e+01
1257 | 1.803100967407226562e+01
1258 | 1.804899215698242188e+01
1259 | 1.803267097473144531e+01
1260 | 1.578121471405029297e+01
1261 | 1.207730197906494141e+01
1262 | 2.639946746826171875e+01
1263 | 3.639292907714843750e+01
1264 | 1.271612071990966797e+01
1265 | 1.266827487945556641e+01
1266 | 1.264742088317871094e+01
1267 | 1.201938343048095703e+01
1268 | 1.213593101501464844e+01
1269 | 1.220254325866699219e+01
1270 | 1.808185958862304688e+01
1271 | 1.804648399353027344e+01
1272 | 1.803208160400390625e+01
1273 | 1.578039360046386719e+01
1274 | 1.242491531372070312e+01
1275 | 2.772432708740234375e+01
1276 | 3.639778137207031250e+01
1277 | 1.273998165130615234e+01
1278 | 1.286379337310791016e+01
1279 | 1.304147434234619141e+01
1280 | 1.236235809326171875e+01
1281 | 1.247667026519775391e+01
1282 | 1.813878059387207031e+01
1283 | 1.805599212646484375e+01
1284 | 1.803577995300292969e+01
1285 | 1.578543567657470703e+01
1286 | 2.700735092163085938e+01
1287 | 2.736070060729980469e+01
1288 | 3.669672775268554688e+01
1289 | 1.276089859008789062e+01
1290 | 1.286548137664794922e+01
1291 | 1.304920196533203125e+01
1292 | 1.274027442932128906e+01
1293 | 1.287620353698730469e+01
1294 | 1.298807239532470703e+01
1295 | 1.805126571655273438e+01
1296 | 1.804266929626464844e+01
1297 | 1.580460548400878906e+01
1298 | 2.744661140441894531e+01
1299 | 2.686262321472167969e+01
1300 | 3.673360824584960938e+01
1301 | 1.319031143188476562e+01
1302 | 1.321783542633056641e+01
1303 | 1.316741943359375000e+01
1304 | 1.326137256622314453e+01
1305 | 1.341165351867675781e+01
1306 | 1.803353881835937500e+01
1307 | 1.804273033142089844e+01
1308 | 1.804965591430664062e+01
1309 | 1.582132434844970703e+01
1310 | 3.257867050170898438e+01
1311 | 2.701657676696777344e+01
1312 | 1.354136848449707031e+01
1313 | 1.366150569915771484e+01
1314 | 1.363808250427246094e+01
1315 | 1.373617362976074219e+01
1316 | 1.387930202484130859e+01
1317 | 1.806964492797851562e+01
1318 | 1.805055809020996094e+01
1319 | 1.410819053649902344e+01
1320 | 5.833941650390625000e+01
1321 | 2.776605224609375000e+01
1322 | 3.581290054321289062e+01
1323 | 1.432695484161376953e+01
1324 | 1.409386634826660156e+01
1325 | 1.404776763916015625e+01
1326 | 1.807124519348144531e+01
1327 | 1.807066345214843750e+01
1328 | 1.805617904663085938e+01
1329 | 1.461600971221923828e+01
1330 | 3.263893508911132812e+01
1331 | 3.919587326049804688e+01
1332 | 3.600202560424804688e+01
1333 | 1.893797874450683594e+01
1334 | 1.449616527557373047e+01
1335 | 1.575113010406494141e+01
1336 | 1.594884300231933594e+01
1337 | 1.807422447204589844e+01
1338 | 1.807489585876464844e+01
1339 | 1.806233406066894531e+01
1340 | 1.515620326995849609e+01
1341 | 3.283965682983398438e+01
1342 | 3.543045806884765625e+01
1343 | 3.608602905273437500e+01
1344 | 1.465498924255371094e+01
1345 | 1.471904087066650391e+01
1346 | 1.485140800476074219e+01
1347 | 1.627432823181152344e+01
1348 | 1.648191452026367188e+01
1349 | 1.807583618164062500e+01
1350 | 1.807846069335937500e+01
1351 | 1.806199455261230469e+01
1352 | 1.569660854339599609e+01
1353 | 3.294857788085937500e+01
1354 | 3.511154556274414062e+01
1355 | 3.574047088623046875e+01
1356 | 1.525812053680419922e+01
1357 | 1.537736320495605469e+01
1358 | 1.660288810729980469e+01
1359 | 1.807875061035156250e+01
1360 | 1.808397483825683594e+01
1361 | 1.806748962402343750e+01
1362 | 3.204105758666992188e+01
1363 | 4.038121795654296875e+01
1364 | 3.517857742309570312e+01
1365 | 3.611880874633789062e+01
1366 | 1.622756767272949219e+01
1367 | 1.597067832946777344e+01
1368 | 1.808097839355468750e+01
1369 | 1.808230972290039062e+01
1370 | 1.806321144104003906e+01
1371 | 3.279209518432617188e+01
1372 | 4.329422760009765625e+01
1373 | 3.468251419067382812e+01
1374 | 3.714260864257812500e+01
1375 | 1.660319900512695312e+01
1376 | 1.661776542663574219e+01
1377 | 1.815275382995605469e+01
1378 | 1.809882545471191406e+01
1379 | 1.801586914062500000e+01
1380 | 1.801922798156738281e+01
1381 | 1.784052848815917969e+01
1382 | 3.299357604980468750e+01
1383 | 3.684362411499023438e+01
1384 | 3.449073791503906250e+01
1385 | 1.728064155578613281e+01
1386 | 1.731145858764648438e+01
1387 | 1.808892631530761719e+01
1388 | 1.817115211486816406e+01
1389 | 1.809196281433105469e+01
1390 | 1.800243949890136719e+01
1391 | 1.811132240295410156e+01
1392 | 3.790567398071289062e+01
1393 | 4.117959213256835938e+01
1394 | 3.457161712646484375e+01
1395 | 1.908860397338867188e+01
1396 | 1.640598678588867188e+01
1397 | 1.914071655273437500e+01
1398 | 4.547370147705078125e+01
1399 | 1.812491989135742188e+01
1400 | 3.356250381469726562e+01
1401 | 3.646845245361328125e+01
1402 | 3.727213287353515625e+01
1403 | 3.460783386230468750e+01
1404 | 3.851658248901367188e+01
1405 | 1.946780014038085938e+01
1406 | 1.966132736206054688e+01
1407 | 2.009492492675781250e+01
1408 | 6.868460845947265625e+01
1409 | 1.978033447265625000e+01
1410 | 3.758939361572265625e+01
1411 | 3.628782272338867188e+01
1412 | 3.652203369140625000e+01
1413 | 3.631472396850585938e+01
1414 | 3.853509140014648438e+01
1415 | 1.659400558471679688e+01
1416 | 1.648949050903320312e+01
1417 | 1.643630599975585938e+01
1418 | 6.882034301757812500e+01
1419 | 3.721302413940429688e+01
1420 | 3.682203674316406250e+01
1421 | 3.628342819213867188e+01
1422 | 3.913212203979492188e+01
1423 | 3.709148788452148438e+01
1424 | 3.862283325195312500e+01
1425 | 1.661518669128417969e+01
1426 | 3.393928527832031250e+01
1427 | 1.686500167846679688e+01
1428 | 6.906458282470703125e+01
1429 | 4.604027557373046875e+01
1430 | 3.738033294677734375e+01
1431 | 3.573376846313476562e+01
1432 | 3.642274093627929688e+01
1433 | 3.917700576782226562e+01
1434 | 4.014317321777343750e+01
1435 | 3.624304199218750000e+01
1436 | 1.659984588623046875e+01
1437 | 1.653449440002441406e+01
1438 | 1.646978187561035156e+01
1439 | 1.674897193908691406e+01
1440 | 6.991118621826171875e+01
1441 | 3.962366867065429688e+01
1442 | 3.863545608520507812e+01
1443 | 3.577515411376953125e+01
1444 | 1.666717147827148438e+01
1445 | 1.600399971008300781e+00
1446 | 2.386394739151000977e+00
1447 | 3.175883054733276367e+00
1448 | 4.273466587066650391e+00
1449 | 4.896128654479980469e+00
1450 | 1.174424216151237488e-02
1451 | 5.854866504669189453e-01
1452 | 1.636638045310974121e+00
1453 | 2.407850027084350586e+00
1454 | 3.203573465347290039e+00
1455 | 4.939757347106933594e+00
1456 | -1.005027770996093750e+00
1457 | -5.739474296569824219e-01
1458 | 1.181805692613124847e-02
1459 | 5.876398086547851562e-01
1460 | 1.642822861671447754e+00
1461 | 2.431285381317138672e+00
1462 | 3.234267234802246094e+00
1463 | -1.188319563865661621e+00
1464 | -1.005509138107299805e+00
1465 | -5.751217603683471680e-01
1466 | 1.193709019571542740e-02
1467 | 5.853912830352783203e-01
1468 | 1.647484660148620605e+00
1469 | 2.453447580337524414e+00
1470 | 3.262708187103271484e+00
1471 | -1.501649141311645508e+00
1472 | -1.336822390556335449e+00
1473 | -1.189226984977722168e+00
1474 | -1.007266163825988770e+00
1475 | -5.797598958015441895e-01
1476 | 1.216206792742013931e-02
1477 | 5.847402811050415039e-01
1478 | 2.476887464523315430e+00
1479 | 3.296219110488891602e+00
1480 | 5.507618904113769531e+00
1481 | -1.337144494056701660e+00
1482 | -1.190686821937561035e+00
1483 | -1.008298993110656738e+00
1484 | -5.824883580207824707e-01
1485 | 1.240682695060968399e-02
1486 | 6.050283908843994141e-01
1487 | 1.678873419761657715e+00
1488 | 2.500747680664062500e+00
1489 | 3.327105283737182617e+00
1490 | 3.609821796417236328e+00
1491 | 4.169772148132324219e+00
1492 | 4.830289840698242188e+00
1493 | 5.487600326538085938e+00
1494 | -1.340221643447875977e+00
1495 | -1.192009449005126953e+00
1496 | -1.008871078491210938e+00
1497 | -5.884161591529846191e-01
1498 | 1.296680513769388199e-02
1499 | 5.996368527412414551e-01
1500 | 1.694096565246582031e+00
1501 | 2.524749994277954102e+00
1502 | 3.495596885681152344e+00
1503 | 4.161444187164306641e+00
1504 | 4.814061641693115234e+00
1505 | 5.470561027526855469e+00
1506 | -1.343116760253906250e+00
1507 | -1.182603240013122559e+00
1508 | -5.745161175727844238e-01
1509 | 1.351845078170299530e-02
1510 | 6.238977313041687012e-01
1511 | 2.124628305435180664e+00
1512 | 2.803695917129516602e+00
1513 | 3.483028173446655273e+00
1514 | 4.148070335388183594e+00
1515 | 4.799462795257568359e+00
1516 | 5.452399730682373047e+00
1517 | -1.346747994422912598e+00
1518 | -1.191768050193786621e+00
1519 | -1.002909064292907715e+00
1520 | -5.812931060791015625e-01
1521 | 1.410212926566600800e-02
1522 | 6.344211697578430176e-01
1523 | 1.429632663726806641e+00
1524 | 2.118201017379760742e+00
1525 | 2.794575929641723633e+00
1526 | 3.470926284790039062e+00
1527 | 4.129649639129638672e+00
1528 | 4.784536361694335938e+00
1529 | 5.436471462249755859e+00
1530 | -1.348908305168151855e+00
1531 | -1.192542195320129395e+00
1532 | -9.997470974922180176e-01
1533 | -5.733105540275573730e-01
1534 | 1.419164054095745087e-02
1535 | 7.255148887634277344e-01
1536 | 1.425907135009765625e+00
1537 | 2.111489295959472656e+00
1538 | 2.786018610000610352e+00
1539 | 3.461633682250976562e+00
1540 | 4.767977237701416016e+00
1541 | 5.417934894561767578e+00
1542 | -1.349415540695190430e+00
1543 | -1.192077636718750000e+00
1544 | -5.679630041122436523e-01
1545 | 8.087572496151551604e-06
1546 | 1.708556413650512695e+00
1547 | 4.753703594207763672e+00
1548 | -1.342384457588195801e+00
1549 | -1.193815946578979492e+00
1550 | -5.671018362045288086e-01
1551 | 2.800175547599792480e-01
1552 | 2.766460418701171875e+00
1553 | 3.435785055160522461e+00
1554 | 1.701307535171508789e+00
1555 | 4.752146720886230469e+00
1556 | -1.342525124549865723e+00
1557 | -1.194041609764099121e+00
1558 | -5.661510229110717773e-01
1559 | -2.799323201179504395e-01
1560 | 2.633732583490200341e-05
1561 | 2.792817950248718262e-01
1562 | 5.590666532516479492e-01
1563 | 8.400042653083801270e-01
1564 | 2.758836746215820312e+00
1565 | 3.433750391006469727e+00
1566 | 1.697141051292419434e+00
1567 | 4.793972969055175781e+00
1568 | 5.496704101562500000e+00
1569 | -1.343952417373657227e+00
1570 | -1.193855881690979004e+00
1571 | -5.652922391891479492e-01
1572 | -2.790059149265289307e-01
1573 | 3.257722710259258747e-05
1574 | 2.785935699939727783e-01
1575 | 5.571061372756958008e-01
1576 | 8.373537063598632812e-01
1577 | 2.768486022949218750e+00
1578 | 3.465450286865234375e+00
1579 | 1.691012144088745117e+00
1580 | 4.847542762756347656e+00
1581 | 5.554477214813232422e+00
1582 | -1.354570746421813965e+00
1583 | -1.190919637680053711e+00
1584 | -5.637043714523315430e-01
1585 | -2.783460915088653564e-01
1586 | 3.421613655518740416e-05
1587 | 2.777115702629089355e-01
1588 | 5.565727949142456055e-01
1589 | 8.354102373123168945e-01
1590 | 2.801417350769042969e+00
1591 | 3.504881858825683594e+00
1592 | 1.686564803123474121e+00
1593 | 4.900134086608886719e+00
1594 | 5.619694709777832031e+00
1595 | -1.368129849433898926e+00
1596 | -1.196096897125244141e+00
1597 | -5.627553462982177734e-01
1598 | -2.747991681098937988e-01
1599 | -4.499942224356345832e-05
1600 | 2.757147252559661865e-01
1601 | 5.545160174369812012e-01
1602 | 8.333255052566528320e-01
1603 | 1.111934542655944824e+00
1604 | 3.542438268661499023e+00
1605 | 1.680435776710510254e+00
1606 | 4.953054428100585938e+00
1607 | 5.670394420623779297e+00
1608 | -1.382606506347656250e+00
1609 | -1.197975277900695801e+00
1610 | -5.609851479530334473e-01
1611 | -2.743616998195648193e-01
1612 | -4.071902367286384106e-05
1613 | 2.751714885234832764e-01
1614 | 5.529357194900512695e-01
1615 | 8.312393426895141602e-01
1616 | 3.579764366149902344e+00
1617 | 1.679350972175598145e+00
1618 | 5.437227249145507812e+00
1619 | -1.199992060661315918e+00
1620 | -5.571199059486389160e-01
1621 | -2.742371559143066406e-01
1622 | 2.518847759347409010e-05
1623 | 2.757880985736846924e-01
1624 | 5.528765916824340820e-01
1625 | 8.297188878059387207e-01
1626 | 3.833806753158569336e+00
1627 | 1.672939062118530273e+00
1628 | 5.420339584350585938e+00
1629 | 6.241977691650390625e+00
1630 | -1.415973067283630371e+00
1631 | -9.033299684524536133e-01
1632 | -2.755787968635559082e-01
1633 | 6.278244109125807881e-05
1634 | 2.751456499099731445e-01
1635 | 5.517696738243103027e-01
1636 | 8.274898529052734375e-01
1637 | 1.104531288146972656e+00
1638 | 1.628700375556945801e+00
1639 | 1.671012043952941895e+00
1640 | 5.405733585357666016e+00
1641 | 6.221577167510986328e+00
1642 | -1.433023691177368164e+00
1643 | -8.562644124031066895e-01
1644 | -5.545876622200012207e-01
1645 | -2.748331129550933838e-01
1646 | 7.774822734063491225e-05
1647 | 2.745997607707977295e-01
1648 | 5.506626963615417480e-01
1649 | 8.255436420440673828e-01
1650 | 1.101937413215637207e+00
1651 | 1.652637004852294922e+00
1652 | 1.668244004249572754e+00
1653 | 5.387864112854003906e+00
1654 | 6.205269336700439453e+00
1655 | -8.434398770332336426e-01
1656 | -1.004048347473144531e+00
1657 | -2.743547558784484863e-01
1658 | 8.905962022254243493e-05
1659 | 2.741011977195739746e-01
1660 | 5.490790009498596191e-01
1661 | 8.237394094467163086e-01
1662 | 1.099531531333923340e+00
1663 | 1.676574230194091797e+00
1664 | 1.664354324340820312e+00
1665 | 5.373257637023925781e+00
1666 | 6.183375835418701172e+00
1667 | -8.487679362297058105e-01
1668 | -5.536060929298400879e-01
1669 | -2.736532688140869141e-01
1670 | 9.688980935607105494e-05
1671 | 2.735065519809722900e-01
1672 | 5.478765368461608887e-01
1673 | 8.213673830032348633e-01
1674 | 1.096936106681823730e+00
1675 | 1.701919078826904297e+00
1676 | 1.657940745353698730e+00
1677 | 5.356037616729736328e+00
1678 | 6.171536445617675781e+00
1679 | -8.685339093208312988e-01
1680 | -5.551217198371887207e-01
1681 | -2.729535102844238281e-01
1682 | 9.842356666922569275e-05
1683 | 2.726198732852935791e-01
1684 | 5.467679500579833984e-01
1685 | 8.194193840026855469e-01
1686 | 1.093777179718017578e+00
1687 | 1.726559638977050781e+00
1688 | 1.656292200088500977e+00
1689 | 5.364588737487792969e+00
1690 | 6.164530754089355469e+00
1691 | -1.326274514198303223e+00
1692 | -8.852736949920654297e-01
1693 | -5.576405525207519531e-01
1694 | -2.724321484565734863e-01
1695 | 9.894426329992711544e-05
1696 | 2.721683979034423828e-01
1697 | 5.453733801841735840e-01
1698 | 8.157725930213928223e-01
1699 | 1.089866399765014648e+00
1700 | 1.726597547531127930e+00
1701 | 1.650717973709106445e+00
1702 | 5.426640987396240234e+00
1703 | 6.228261470794677734e+00
1704 | -1.322194814682006836e+00
1705 | -8.756151795387268066e-01
1706 | -5.583363175392150879e-01
1707 | -2.718220651149749756e-01
1708 | 2.715713977813720703e-01
1709 | 5.442632436752319336e-01
1710 | 8.165129423141479492e-01
1711 | 1.089523196220397949e+00
1712 | 1.749832391738891602e+00
1713 | 1.653553843498229980e+00
1714 | 1.929717540740966797e+00
1715 | 6.312095165252685547e+00
1716 | -1.318115830421447754e+00
1717 | -8.880919814109802246e-01
1718 | -5.547491312026977539e-01
1719 | -2.712575197219848633e-01
1720 | 2.708765566349029541e-01
1721 | 5.433434844017028809e-01
1722 | 8.145643472671508789e-01
1723 | 1.087302803993225098e+00
1724 | 1.778924703598022461e+00
1725 | 1.650222897529602051e+00
1726 | 6.379175186157226562e+00
1727 | -1.203596115112304688e+00
1728 | -5.529845356941223145e-01
1729 | -2.705588340759277344e-01
1730 | 1.468783884774893522e-04
1731 | 2.704730629920959473e-01
1732 | 5.418530106544494629e-01
1733 | 8.124735951423645020e-01
1734 | 1.084705591201782227e+00
1735 | 1.809893608093261719e+00
1736 | 1.647171735763549805e+00
1737 | 1.920322179794311523e+00
1738 | -1.223592400550842285e+00
1739 | -5.516770482063293457e-01
1740 | -2.700837850570678711e-01
1741 | 2.699716389179229736e-01
1742 | 5.410271883010864258e-01
1743 | 8.112300038337707520e-01
1744 | 1.082482457160949707e+00
1745 | 1.832660317420959473e+00
1746 | 1.642716050148010254e+00
1747 | 1.920026540756225586e+00
1748 | 6.929578304290771484e+00
1749 | -1.308821320533752441e+00
1750 | -9.818906784057617188e-01
1751 | -5.530130267143249512e-01
1752 | -2.696091532707214355e-01
1753 | 1.375152205582708120e-04
1754 | 2.694690823554992676e-01
1755 | 5.397250056266784668e-01
1756 | 8.092799186706542969e-01
1757 | 1.079696536064147949e+00
1758 | 1.830587983131408691e+00
1759 | 1.638542413711547852e+00
1760 | 1.914837718009948730e+00
1761 | 6.912891864776611328e+00
1762 | -1.336900234222412109e+00
1763 | -9.588984251022338867e-01
1764 | -5.527080297470092773e-01
1765 | -2.690019309520721436e-01
1766 | 1.473315351177006960e-04
1767 | 2.687734663486480713e-01
1768 | 5.391840338706970215e-01
1769 | 8.076115846633911133e-01
1770 | 1.078223466873168945e+00
1771 | 1.826639890670776367e+00
1772 | 1.636610150337219238e+00
1773 | 1.912256836891174316e+00
1774 | 6.896576404571533203e+00
1775 | -8.506733179092407227e-01
1776 | -5.512207746505737305e-01
1777 | -2.685280144214630127e-01
1778 | 1.547980646137148142e-04
1779 | 2.681723833084106445e-01
1780 | 5.377858877182006836e-01
1781 | 8.060840964317321777e-01
1782 | 1.076000094413757324e+00
1783 | 1.823160767555236816e+00
1784 | 1.634396672248840332e+00
1785 | 1.909024953842163086e+00
1786 | 6.878025531768798828e+00
1787 | -1.233751654624938965e+00
1788 | -1.019182443618774414e+00
1789 | -5.508252978324890137e-01
1790 | -2.678762376308441162e-01
1791 | 1.618669775780290365e-04
1792 | 2.676208019256591797e-01
1793 | 5.365780591964721680e-01
1794 | 8.044146895408630371e-01
1795 | 1.073963403701782227e+00
1796 | 1.819212794303894043e+00
1797 | 1.632743835449218750e+00
1798 | 1.905791640281677246e+00
1799 | -1.232249975204467773e+00
1800 | -1.018737196922302246e+00
1801 | -5.497937798500061035e-01
1802 | -2.674480080604553223e-01
1803 | 1.662951981415972114e-04
1804 | 2.672134041786193848e-01
1805 | 5.362262725830078125e-01
1806 | 8.028861284255981445e-01
1807 | 1.071550130844116211e+00
1808 | 1.816435098648071289e+00
1809 | 1.629688501358032227e+00
1810 | 1.902884244918823242e+00
1811 | -1.017329454421997070e+00
1812 | -5.504023432731628418e-01
1813 | -2.670646011829376221e-01
1814 | 1.739082363201305270e-04
1815 | 2.668058872222900391e-01
1816 | 5.348264575004577637e-01
1817 | 8.013577461242675781e-01
1818 | 1.069700598716735840e+00
1819 | 1.815062403678894043e+00
1820 | 1.628315567970275879e+00
1821 | 1.898997306823730469e+00
1822 | 3.990847110748291016e+00
1823 | -8.176997900009155273e-01
1824 | -5.336089730262756348e-01
1825 | -2.638864219188690186e-01
1826 | 8.387445268454030156e-05
1827 | 2.648462057113647461e-01
1828 | 5.323787927627563477e-01
1829 | 7.998292446136474609e-01
1830 | 1.067475557327270508e+00
1831 | 1.865010499954223633e+00
1832 | 1.936204910278320312e+00
1833 | 1.896416068077087402e+00
1834 | -8.410404920578002930e-01
1835 | -5.468829870223999023e-01
1836 | -2.634142637252807617e-01
1837 | 9.462629532208666205e-05
1838 | 2.642441689968109131e-01
1839 | 5.313594341278076172e-01
1840 | 7.980164289474487305e-01
1841 | 1.065436601638793945e+00
1842 | 1.896915912628173828e+00
1843 | 1.936796069145202637e+00
1844 | 1.892528414726257324e+00
1845 | 7.848620891571044922e+00
1846 | -8.356512784957885742e-01
1847 | -5.347378253936767578e-01
1848 | -2.630326747894287109e-01
1849 | 1.155638237833045423e-04
1850 | 2.641257643699645996e-01
1851 | 5.311006903648376465e-01
1852 | 7.971941232681274414e-01
1853 | 1.063773393630981445e+00
1854 | 1.895542621612548828e+00
1855 | 1.938788175582885742e+00
1856 | 1.889619350433349609e+00
1857 | 7.827461242675781250e+00
1858 | -1.174408316612243652e+00
1859 | -8.295761942863464355e-01
1860 | -5.403596758842468262e-01
1861 | -2.649132907390594482e-01
1862 | 1.899520430015400052e-04
1863 | 2.650736570358276367e-01
1864 | 5.298895239830017090e-01
1865 | 7.963710427284240723e-01
1866 | 1.061921596527099609e+00
1867 | 1.898855447769165039e+00
1868 | 1.937976360321044922e+00
1869 | 1.885404348373413086e+00
1870 | 7.803693294525146484e+00
1871 | -1.199919223785400391e+00
1872 | -8.273496627807617188e-01
1873 | -5.405150651931762695e-01
1874 | -2.646653950214385986e-01
1875 | 2.016583748627454042e-04
1876 | 2.645666599273681641e-01
1877 | 5.298203825950622559e-01
1878 | 7.944154739379882812e-01
1879 | 1.060069203376770020e+00
1880 | 1.931931257247924805e+00
1881 | 1.607422590255737305e+00
1882 | 1.882493734359741211e+00
1883 | 7.790347576141357422e+00
1884 | -8.319959640502929688e-01
1885 | -5.372093319892883301e-01
1886 | -2.638408541679382324e-01
1887 | 2.219474554294720292e-04
1888 | 2.642529904842376709e-01
1889 | 5.291794538497924805e-01
1890 | 7.934509515762329102e-01
1891 | 1.058593153953552246e+00
1892 | 1.947195291519165039e+00
1893 | 1.597635269165039062e+00
1894 | 1.880236506462097168e+00
1895 | 7.784448146820068359e+00
1896 | -8.479140400886535645e-01
1897 | -5.359987616539001465e-01
1898 | -2.637701630592346191e-01
1899 | 2.206530625699087977e-04
1900 | 2.636976242065429688e-01
1901 | 5.280630588531494141e-01
1902 | 7.914940118789672852e-01
1903 | 1.056927442550659180e+00
1904 | 1.953320741653442383e+00
1905 | 1.876346468925476074e+00
1906 | -8.467884063720703125e-01
1907 | -5.354270339012145996e-01
1908 | -2.632573843002319336e-01
1909 | 2.270704135298728943e-04
1910 | 2.632376551628112793e-01
1911 | 5.275166034698486328e-01
1912 | 7.908109426498413086e-01
1913 | 1.055261731147766113e+00
1914 | 1.335578322410583496e+00
1915 | 1.591516852378845215e+00
1916 | 1.874413728713989258e+00
1917 | -8.456634283065795898e-01
1918 | -5.343089699745178223e-01
1919 | -2.628781199455261230e-01
1920 | 2.349720598431304097e-04
1921 | 2.630680203437805176e-01
1922 | 5.317313671112060547e-01
1923 | 7.984810471534729004e-01
1924 | 1.064115405082702637e+00
1925 | 1.336305975914001465e+00
1926 | 1.926059126853942871e+00
1927 | 1.870522618293762207e+00
1928 | -8.457752466201782227e-01
1929 | -5.352864861488342285e-01
1930 | -2.644061148166656494e-01
1931 | 2.953268704004585743e-04
1932 | 2.661474049091339111e-01
1933 | 5.818520188331604004e-01
1934 | 1.344877958297729492e+00
1935 | 1.789245128631591797e+00
1936 | 1.966065287590026855e+00
1937 | 1.924123525619506836e+00
1938 | -1.258364200592041016e+00
1939 | -8.581203818321228027e-01
1940 | -6.447550058364868164e-01
1941 | -2.666439116001129150e-01
1942 | 5.555679090321063995e-04
1943 | 2.718465328216552734e-01
1944 | 8.416971564292907715e-01
1945 | 1.342643141746520996e+00
1946 | 1.787771582603454590e+00
1947 | 1.963281273841857910e+00
1948 | 1.922186732292175293e+00
1949 | 4.648619651794433594e+00
1950 | -1.258890867233276367e+00
1951 | -8.714278936386108398e-01
1952 | -5.795994997024536133e-01
1953 | -2.725180089473724365e-01
1954 | 2.764773964881896973e-01
1955 | 8.421085476875305176e-01
1956 | 1.341115832328796387e+00
1957 | 1.785361051559448242e+00
1958 | 1.961435556411743164e+00
1959 | 1.713590621948242188e+00
1960 | 4.603631496429443359e+00
1961 | -1.258313298225402832e+00
1962 | -9.530413150787353516e-01
1963 | -6.345922946929931641e-01
1964 | -2.798103988170623779e-01
1965 | 1.254304545000195503e-03
1966 | 2.868324220180511475e-01
1967 | 1.339447498321533203e+00
1968 | 1.782760262489318848e+00
1969 | 1.958415985107421875e+00
1970 | 1.759601116180419922e+00
1971 | 4.567122459411621094e+00
1972 | 7.266505718231201172e+00
1973 | -1.258105874061584473e+00
1974 | -9.520552158355712891e-01
1975 | -6.424022316932678223e-01
1976 | -2.866596579551696777e-01
1977 | 1.616487279534339905e-03
1978 | 2.948096990585327148e-01
1979 | 8.943600654602050781e-01
1980 | 1.338200807571411133e+00
1981 | 1.780910372734069824e+00
1982 | 1.955630302429199219e+00
1983 | 1.807293176651000977e+00
1984 | 4.558348178863525391e+00
1985 | 7.180163383483886719e+00
1986 | -1.256061315536499023e+00
1987 | -9.373250007629394531e-01
1988 | -6.232501268386840820e-01
1989 | -2.946178317070007324e-01
1990 | 2.002931898459792137e-03
1991 | 3.029329478740692139e-01
1992 | 8.955310583114624023e-01
1993 | 1.335964441299438477e+00
1994 | 1.778121232986450195e+00
1995 | 1.952609658241271973e+00
1996 | 1.855267405509948730e+00
1997 | 4.777330398559570312e+00
1998 | 7.170524120330810547e+00
1999 | -1.256404519081115723e+00
2000 | -9.498081803321838379e-01
2001 | -6.408055424690246582e-01
2002 | -3.019984960556030273e-01
2003 | 2.372016431763768196e-03
2004 | 8.969882726669311523e-01
2005 | 1.334717035293579102e+00
2006 | 1.775894641876220703e+00
2007 | 1.950292587280273438e+00
2008 | 3.979133367538452148e+00
2009 | 4.708515644073486328e+00
2010 | 7.218228816986083984e+00
2011 | -1.256565332412719727e+00
2012 | -9.485483169555664062e-01
2013 | -6.402356624603271484e-01
2014 | -3.101778626441955566e-01
2015 | 2.803530776873230934e-03
2016 | 3.216546177864074707e-01
2017 | 1.332478046417236328e+00
2018 | 1.774042487144470215e+00
2019 | 1.949848294258117676e+00
2020 | 4.037491798400878906e+00
2021 | 4.617184162139892578e+00
2022 | 7.215289115905761719e+00
2023 | -1.295488238334655762e+00
2024 | -6.472264528274536133e-01
2025 | -3.194656074047088623e-01
2026 | 3.219333710148930550e-03
2027 | 3.317671418190002441e-01
2028 | 8.893252015113830566e-01
2029 | 1.329956173896789551e+00
2030 | 1.772190451622009277e+00
2031 | 1.949169397354125977e+00
2032 | 4.778100967407226562e+00
2033 | 4.636795520782470703e+00
2034 | -1.326878786087036133e+00
2035 | -6.670588254928588867e-01
2036 | -3.297287225723266602e-01
2037 | 3.730337368324398994e-03
2038 | 3.429475426673889160e-01
2039 | 1.330122709274291992e+00
2040 | 1.769959688186645508e+00
2041 | 1.739190816879272461e+00
2042 | 8.512999534606933594e+00
2043 | 4.757883071899414062e+00
2044 | 7.016896247863769531e+00
2045 | -6.972759962081909180e-01
2046 | -3.396371901035308838e-01
2047 | 4.065953660756349564e-03
2048 | 8.888034224510192871e-01
2049 | 1.328448414802551270e+00
2050 | 1.768106937408447266e+00
2051 | 1.798276662826538086e+00
2052 | 4.774242401123046875e+00
2053 | 6.687356948852539062e+00
2054 | 7.044486045837402344e+00
2055 | -9.114680886268615723e-01
2056 | -3.483032882213592529e-01
2057 | 5.890741944313049316e-03
2058 | 3.934447765350341797e-01
2059 | 8.877803087234497070e-01
2060 | 1.327056407928466797e+00
2061 | 1.766439914703369141e+00
2062 | 1.861112952232360840e+00
2063 | 4.797268390655517578e+00
2064 | 6.041958332061767578e+00
2065 | 7.051596164703369141e+00
2066 | -1.068137884140014648e+00
2067 | -7.137167453765869141e-01
2068 | -3.559067547321319580e-01
2069 | 6.450569722801446915e-03
2070 | 4.061772227287292480e-01
2071 | 8.867557048797607422e-01
2072 | 1.325663328170776367e+00
2073 | 1.764208555221557617e+00
2074 | 1.923948407173156738e+00
2075 | 4.807114124298095703e+00
2076 | 5.980644702911376953e+00
2077 | 6.976039409637451172e+00
2078 | -7.379220724105834961e-01
2079 | -3.673669099807739258e-01
2080 | 6.801643408834934235e-03
2081 | 8.858259320259094238e-01
2082 | 1.324412107467651367e+00
2083 | 1.762541174888610840e+00
2084 | 3.889963388442993164e+00
2085 | 5.875267028808593750e+00
2086 | 5.984592914581298828e+00
2087 | 7.040861606597900391e+00
2088 | -7.820717096328735352e-01
2089 | -3.803340494632720947e-01
2090 | 8.848947882652282715e-01
2091 | 1.322735071182250977e+00
2092 | 1.760119795799255371e+00
2093 | 3.975776195526123047e+00
2094 | 6.288920402526855469e+00
2095 | 5.894233226776123047e+00
2096 | 7.230424880981445312e+00
2097 | -7.986273169517517090e-01
2098 | -3.944982290267944336e-01
2099 | 8.455176837742328644e-03
2100 | 4.447144567966461182e-01
2101 | 8.807244300842285156e-01
2102 | 1.316666841506958008e+00
2103 | 1.736658096313476562e+00
2104 | 3.995491504669189453e+00
2105 | 5.351780891418457031e+00
2106 | 5.855105400085449219e+00
2107 | -8.291158080101013184e-01
2108 | -4.096813797950744629e-01
2109 | 8.385677821934223175e-03
2110 | 4.459973573684692383e-01
2111 | 8.834133744239807129e-01
2112 | 1.313997030258178711e+00
2113 | 1.760725855827331543e+00
2114 | 4.580542564392089844e+00
2115 | 5.970421314239501953e+00
2116 | 5.862310886383056641e+00
2117 | -9.119721651077270508e-01
2118 | -3.888287544250488281e-01
2119 | 9.505121037364006042e-03
2120 | 2.209288835525512695e+00
2121 | 1.321381211280822754e+00
2122 | 3.240054607391357422e+00
2123 | 4.403373718261718750e+00
2124 | 5.401751995086669922e+00
2125 | 5.862011432647705078e+00
2126 | 7.471057415008544922e+00
2127 | -9.285264611244201660e-01
2128 | -4.616797268390655518e-01
2129 | 1.051902491599321365e-02
2130 | 1.689432144165039062e+00
2131 | 9.632824063301086426e-01
2132 | 2.722449779510498047e+00
2133 | 3.497838497161865234e+00
2134 | 4.405273437500000000e+00
2135 | 6.142662048339843750e+00
2136 | 7.466985702514648438e+00
2137 | -1.195115208625793457e+00
2138 | -7.898982167243957520e-01
2139 | -3.887037932872772217e-01
2140 | 1.691159605979919434e+00
2141 | 2.692734479904174805e+00
2142 | 3.545580148696899414e+00
2143 | 4.372481346130371094e+00
2144 | 5.658106803894042969e+00
2145 | 6.267008781433105469e+00
2146 | 7.476689815521240234e+00
2147 | -1.195371985435485840e+00
2148 | -7.814354300498962402e-01
2149 | 7.078799419105052948e-03
2150 | 1.695509791374206543e+00
2151 | 2.230040550231933594e+00
2152 | 2.702104091644287109e+00
2153 | 3.437952995300292969e+00
2154 | 4.384694099426269531e+00
2155 | 5.658972263336181641e+00
2156 | 6.771840095520019531e+00
2157 | 7.012372016906738281e+00
2158 | -1.193155884742736816e+00
2159 | -7.904093265533447266e-01
2160 | -3.886680305004119873e-01
2161 | 6.955377757549285889e-03
2162 | 1.714751720428466797e+00
2163 | 1.918264627456665039e+00
2164 | 2.789780139923095703e+00
2165 | 3.438725709915161133e+00
2166 | -1.196711540222167969e+00
2167 |
--------------------------------------------------------------------------------
/dataset/detection_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "class_range": {
3 | "car": 50,
4 | "truck": 50,
5 | "bus": 50,
6 | "trailer": 50,
7 | "construction_vehicle": 50,
8 | "pedestrian": 40,
9 | "motorcycle": 40,
10 | "bicycle": 40,
11 | "traffic_cone": 30,
12 | "barrier": 30
13 | },
14 | "dist_fcn": "center_distance",
15 | "dist_ths": [0.5, 1.0, 2.0, 4.0],
16 | "dist_th_tp": 2.0,
17 | "min_recall": 0.1,
18 | "min_precision": 0.1,
19 | "max_boxes_per_sample": 500,
20 | "mean_ap_weight": 5
21 | }
22 |
23 |
--------------------------------------------------------------------------------
/dataset/pcd_segmentation/car1.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/dataset/pcd_segmentation/car1.pcd
--------------------------------------------------------------------------------
/dataset/pcd_segmentation/car2.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/dataset/pcd_segmentation/car2.pcd
--------------------------------------------------------------------------------
/dataset/pcd_segmentation/car3.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/dataset/pcd_segmentation/car3.pcd
--------------------------------------------------------------------------------
/dataset/pcd_segmentation/car4.pcd:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/dataset/pcd_segmentation/car4.pcd
--------------------------------------------------------------------------------
/dataset/point_features/car1cvfh_.txt:
--------------------------------------------------------------------------------
1 | (236, 0, 0, 0, 0, 1, 11, 11, 5, 3, 2, 0, 0, 0, 0, 3, 21, 8, 5, 9, 5, 1, 3, 4, 4, 0, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 1, 2, 4, 0, 5, 233, 0, 0, 0, 0, 2, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 8, 16, 17, 16, 16, 18, 14, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2, 4, 3, 4, 1, 7, 1, 5, 7, 4, 3, 3, 3, 5, 6, 47, 43, 39, 80, 37, 10, 5, 7, 6, 7, 3, 2, 2, 3, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 7, 4, 12, 11, 8, 7, 26, 26, 32, 30, 34, 22, 46, 17, 15, 6, 2, 2, 5, 6, 2, 2, 0, 4, 2, 1, 4, 1, 5, 5, 2, 1, 1, 0, 1, 0, 0, 0, 1, 0, 4, 1, 2, 233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 7, 7, 8, 13, 8, 5, 6, 3, 5, 5, 4, 7, 2, 2, 4, 5, 3, 0, 2, 1, 1, 1, 2, 3, 3, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car1esf_.txt:
--------------------------------------------------------------------------------
1 | (2.13348e-06, 2.13348e-05, 4.2954e-05, 7.35339e-05, 0.000115777, 0.000160864, 0.000198129, 0.000241794, 0.000228567, 0.000239519, 0.000244639, 0.000272374, 0.000255733, 0.000283895, 0.000304092, 0.000280339, 0.000293282, 0.000347046, 0.000272943, 0.000299256, 0.000315755, 0.000305941, 0.00030651, 0.000349891, 0.000365536, 0.000304092, 0.000313195, 0.000292287, 0.000325711, 0.000264978, 0.000317035, 0.000352309, 0.000316466, 0.000303381, 0.000292998, 0.00032372, 0.000291718, 0.000318173, 0.000292287, 0.000316466, 0.000309212, 0.000293567, 0.000276926, 0.000318173, 0.00031163, 0.000272232, 0.00030779, 0.000255164, 0.00028546, 0.000319311, 0.000303523, 0.000322298, 0.000272801, 0.00033965, 0.000294705, 0.000362407, 0.000306794, 0.000311346, 0.000348611, 0.000293567, 0.000298118, 0.000237243, 0.000310635, 0.000140098, 9.814e-06, 6.62801e-05, 9.37309e-05, 0.000122462, 0.000176794, 0.000199836, 0.000311915, 0.000321302, 0.000333818, 0.000376346, 0.000327845, 0.000332112, 0.000366532, 0.000390284, 0.000386871, 0.00036326, 0.000432243, 0.000354158, 0.000396685, 0.000382746, 0.000377057, 0.000423709, 0.000395974, 0.000424847, 0.000368807, 0.000359705, 0.000400667, 0.000348468, 0.000399103, 0.000390427, 0.000380044, 0.000371652, 0.000370372, 0.000348184, 0.000384737, 0.000412046, 0.000382888, 0.000375919, 0.000408206, 0.000359136, 0.000349322, 0.000398392, 0.000352024, 0.000361411, 0.000353731, 0.000340788, 0.000311061, 0.000402374, 0.000396827, 0.000425131, 0.000372505, 0.000374781, 0.000330689, 0.000371652, 0.000383742, 0.000371652, 0.000422429, 0.000400383, 0.000373359, 0.000374497, 0.000404934, 0.000414464, 0.000433239, 0.000178643, 1.86324e-05, 0.000175656, 0.000296554, 0.000442768, 0.000513884, 0.000612593, 0.000686838, 0.000764355, 0.000715853, 0.000850405, 0.000901751, 0.000875153, 0.000852396, 0.000943567, 0.000922374, 0.000923939, 0.000923939, 0.00104327, 0.000902177, 0.000935886, 0.000998326, 0.000985099, 0.00096988, 0.000953807, 0.00102194, 0.000868042, 0.00107684, 0.000999606, 0.00100003, 0.00108039, 0.000964333, 0.000928206, 0.000931904, 0.0010006, 0.000917538, 0.00103559, 0.00102777, 0.000937735, 0.000948118, 0.000963195, 0.00104668, 0.000867615, 0.000950678, 0.00107798, 0.00104612, 0.000946411, 0.0010134, 0.000995766, 0.000987801, 0.000939158, 0.00102763, 0.000963906, 0.00101724, 0.00102919, 0.00103075, 0.0010501, 0.001137, 0.00117697, 0.0011215, 0.00121537, 0.00118166, 0.00109007, 0.00112761, 0.000585142, 0, 4.55142e-06, 3.186e-05, 4.55142e-05, 8.19256e-05, 0.000168403, 0.000236674, 0.000291291, 0.000368665, 0.000664508, 0.000755536, 0.00086477, 0.000914836, 0.00103772, 0.00127895, 0.00103772, 0.00135177, 0.00122888, 0.0012835, 0.00120613, 0.00123344, 0.00114241, 0.00109234, 0.000887527, 0.000587134, 0.000482451, 0.000395974, 0.000300394, 0.000200263, 0.000145646, 9.10285e-05, 5.46171e-05, 3.64114e-05, 1.82057e-05, 0, 1.82057e-05, 0, 9.10285e-06, 4.55142e-06, 4.55142e-06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000122888, 0.000277637, 0.000523414, 0.000946696, 0.00106958, 0.00152473, 0.00179781, 0.00202083, 0.0022393, 0.00227571, 0.00213007, 0.00221199, 0.00198897, 0.00188884, 0.00153383, 0.00151107, 0.00123799, 0.000974004, 0.000646302, 0.000582582, 0.000509759, 0.000464245, 0.000386871, 0.00028674, 0.000263983, 0.000314048, 0.000213917, 0.000172954, 0.000177505, 0.00012744, 0.000131991, 0.000150197, 0.00012744, 8.6477e-05, 4.09628e-05, 7.73742e-05, 5.00656e-05, 5.46171e-05, 6.37199e-05, 3.186e-05, 3.64114e-05, 3.64114e-05, 3.64114e-05, 4.55142e-06, 9.10285e-06, 9.10285e-06, 9.10285e-06, 9.10285e-06, 4.55142e-06, 0, 0, 4.55142e-06, 4.55142e-06, 0, 0, 0, 0, 4.55142e-06, 0, 0, 0, 0, 0, 0, 0, 0, 9.10285e-06, 3.64114e-05, 0.000136543, 0.000327702, 0.000345908, 0.000427834, 0.000691816, 0.00080105, 0.00105593, 0.00149287, 0.00138363, 0.00162941, 0.00200263, 0.00234853, 0.00229392, 0.00233943, 0.00272175, 0.00259431, 0.00297663, 0.00291291, 0.00308586, 0.00305856, 0.00313138, 0.00310407, 0.00301304, 0.00296753, 0.0028674, 0.0028674, 0.0028947, 0.00265803, 0.00266713, 0.00230302, 0.00202993, 0.00181147, 0.00154748, 0.00136543, 0.00142004, 0.00122888, 0.000946696, 0.000882976, 0.000946696, 0.000646302, 0.000773742, 0.000537068, 0.000518862, 0.000400525, 0.000345908, 0.000300394, 0.000273085, 0.000245777, 0.00019116, 0.00012744, 0.000136543, 8.19256e-05, 0.000100131, 2.73085e-05, 2.73085e-05, 1.82057e-05, 1.82057e-05, 2.73085e-05, 9.10285e-06, 7.28228e-05, 0.00230302, 0.00296298, 0.00435571, 0.00556639, 0.00779204, 0.00792403, 0.00788306, 0.00940324, 0.00852481, 0.00912105, 0.0092758, 0.00884341, 0.00909374, 0.00853847, 0.00834276, 0.00762818, 0.00725497, 0.00584403, 0.00595781, 0.00427379, 0.00392788, 0.00361838, 0.00304945, 0.00233488, 0.00199807, 0.00155659, 0.00117427, 0.00092849, 0.000482451, 0.000232123, 0.000136543, 5.46171e-05, 2.27571e-05, 9.10285e-06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00092849, 0.00249418, 0.00298573, 0.00331344, 0.00302214, 0.00389602, 0.00693637, 0.0057712, 0.00668149, 0.00493374, 0.00467886, 0.00340446, 0.00355011, 0.00484271, 0.00604429, 0.00593505, 0.00568018, 0.00633558, 0.0044786, 0.00313138, 0.00214827, 0.00245777, 0.00284009, 0.00172954, 0.00143825, 0.00134722, 0.00227571, 0.00196621, 0.00242136, 0.00282188, 0.0025488, 0.00249418, 0.00116516, 0.000291291, 3.64114e-05, 0.00025488, 0.000182057, 0.000327702, 0.000546171, 0.000564376, 0.00101952, 0.000345908, 0.00025488, 0.00080105, 0.00038232, 0.000309497, 0.000527965, 0.00025488, 0.000618993, 0.000910285, 0.00196621, 0.00182057, 0.00152928, 0.000964902, 0.000436937, 9.10285e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5.46171e-05, 0.00100131, 0.00214827, 0.00333164, 0.00710022, 0.00786486, 0.00740972, 0.00919387, 0.0111237, 0.0118883, 0.0121614, 0.0124527, 0.0106503, 0.0100313, 0.0118701, 0.011415, 0.0103408, 0.0110873, 0.0107778, 0.00964902, 0.00919387, 0.00892079, 0.00855667, 0.00804691, 0.00821077, 0.00875694, 0.00811974, 0.00648123, 0.0073733, 0.00946696, 0.00890258, 0.00977646, 0.00755536, 0.00653584, 0.00500656, 0.00464245, 0.00307676, 0.00234853, 0.00194801, 0.00183877, 0.00163851, 0.00196621, 0.00258521, 0.00245777, 0.00180236, 0.00105593, 0.00092849, 0.00038232, 7.28228e-05, 5.46171e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7.28228e-05, 0.000873873, 0.00038232, 0.000263983, 0.000300394, 0.000291291, 0.000564376, 0.000955799, 0.000837462, 0.00103772, 0.00240315, 0.00218468, 0.00284919, 0.00248508, 0.0031951, 0.00322241, 0.00252149, 0.00474258, 0.000227571, 0.00466976, 0.00423282, 0.00336805, 0.00386871, 0.00522503, 0.00299484, 0.00395063, 0.00693637, 0.00329523, 0.0060807, 0.00679983, 0.00499746, 0.00632648, 0.00436937, 0.00903002, 0.0063993, 0.00570748, 0.00229392, 0.0113148, 0.00202993, 0.00683624, 0.00978556, 0.00299484, 0.00355011, 0.0025579, 0.000518862, 8.19256e-05, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car1ourcvfh_.txt:
--------------------------------------------------------------------------------
1 | (236, 0, 0, 0, 0, 1, 11, 11, 5, 3, 2, 0, 0, 0, 0, 3, 21, 8, 5, 9, 5, 1, 3, 4, 4, 0, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 1, 2, 4, 0, 5, 233, 0, 0, 0, 0, 2, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 8, 16, 17, 16, 16, 18, 14, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 2, 4, 3, 4, 1, 7, 1, 5, 7, 4, 3, 3, 3, 5, 6, 47, 43, 39, 80, 37, 10, 5, 7, 6, 7, 3, 2, 2, 3, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 7, 7, 8, 13, 8, 5, 6, 3, 5, 5, 4, 7, 2, 2, 4, 5, 3, 0, 2, 1, 1, 1, 2, 3, 3, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car1vfh_.txt:
--------------------------------------------------------------------------------
1 | (66.2922, 0, 0, 0, 0, 0.280899, 3.08989, 3.08989, 1.40449, 0.842697, 0.561798, 0, 0, 0, 0, 0.842697, 5.89888, 2.24719, 1.40449, 2.52809, 1.40449, 0.280899, 0.842697, 1.1236, 1.1236, 0, 0.842697, 0.842697, 0.280899, 0, 0, 0, 0, 0, 0, 0, 0, 0.280899, 0.561798, 0.842697, 0.280899, 0.561798, 1.1236, 0, 1.40449, 65.4495, 0, 0, 0, 0, 0.561798, 0.561798, 0.280899, 0.561798, 0, 0, 0.280899, 0, 0, 0, 0, 0, 0, 0.280899, 2.24719, 4.49438, 4.77528, 4.49438, 4.49438, 5.05618, 3.93258, 0.280899, 0, 0, 0, 0.280899, 0, 0.280899, 0, 0.561798, 0, 0, 0.280899, 0, 0.842697, 0, 0.280899, 0, 0, 0, 0, 0.280899, 0.280899, 0.280899, 0, 0.561798, 1.1236, 0.842697, 1.1236, 0.280899, 1.96629, 0.280899, 1.40449, 1.96629, 1.1236, 0.842697, 0.842697, 0.842697, 1.40449, 1.68539, 13.2023, 12.0787, 10.9551, 22.4719, 10.3933, 2.80899, 1.40449, 1.96629, 1.68539, 1.96629, 0.842697, 0.561798, 0.561798, 0.842697, 0, 0.561798, 0, 0.280899, 0, 0, 0, 0, 0, 0.280899, 0.280899, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 65.2662, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.560224, 0.280112, 0.560224, 1.96078, 1.96078, 2.2409, 3.92157, 1.96078, 1.40056, 1.68067, 1.40056, 1.40056, 1.40056, 1.96078, 0.560224, 0.560224, 1.12045, 1.40056, 0.560224, 0.840336, 0.560224, 0, 0.280112, 0.280112, 0.840336, 0.560224, 0.840336, 0.280112, 0, 0.560224, 0.280112, 0, 0.280112, 0.840336, 0, 0.560224, 0, 0, 0.280112, 0.280112, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.280112, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car2cvfh_.txt:
--------------------------------------------------------------------------------
1 | (29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 2, 2, 2, 1, 1, 2, 1, 0, 3, 0, 0, 2, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car2esf_.txt:
--------------------------------------------------------------------------------
1 | (0.000302861, 0.000839039, 0.000891261, 0.00109097, 0.00099299, 0.00089488, 0.000524028, 0.000584393, 0.000270804, 0.000273518, 0.00035728, 0.000139603, 0.000105607, 4.6405e-05, 6.98014e-06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000102634, 0.000230086, 0.00030131, 0.000327033, 0.000360641, 0.000292649, 0.000471289, 0.000312555, 0.000516918, 0.000643466, 0.00105025, 0.000861143, 0.000935856, 0.00104948, 0.00120278, 0.00118107, 0.00140585, 0.00142369, 0.00158113, 0.00118456, 0.00165895, 0.00139926, 0.00158721, 0.00182053, 0.00150887, 0.0018319, 0.00250458, 0.0024318, 0.00182324, 0.00169359, 0.00253108, 0.00205772, 0.0020289, 0.00148199, 0.00164408, 0.00147397, 0.00252474, 0.00216927, 0.00204622, 0.00151456, 0.00106564, 0.00127943, 0.00179157, 0.00178937, 0.00176947, 0.00210038, 0.00115935, 0.00123523, 0.00108528, 0.00104689, 0.00105361, 0.00171569, 0.00194681, 0.001596, 0.0019896, 0.00141154, 0.00106227, 0.0009948, 0.000952273, 0.00127258, 0.00100656, 0.00145833, 0.00201313, 0.00066208, 0, 1.30555e-05, 6.4631e-07, 2.90839e-05, 4.98951e-05, 8.77689e-05, 0.000108192, 0.000199451, 0.0003048, 0.000210309, 0.000167136, 0.000109097, 0.000142059, 0.000322896, 0.00055699, 0.000653031, 0.000677074, 0.000518987, 0.000641915, 0.000530879, 0.000717662, 0.000485379, 0.000502183, 0.000633901, 0.000512265, 0.000456553, 0.000642949, 0.000748297, 0.000351463, 0.000309582, 0.000524286, 0.0003905, 0.000311521, 0.000228277, 0.000273648, 0.000277138, 0.000533852, 0.000416482, 0.000342803, 0.000310229, 0.000109873, 0.00023823, 0.000382745, 0.00049391, 0.000421006, 0.000279723, 0.000469738, 0.000206431, 0.000198934, 0.000239005, 0.000207724, 0.000580515, 0.000719601, 0.000561643, 0.000377703, 0.000502183, 0.00026615, 0.00032393, 0.000297949, 0.00026964, 0.000204622, 0.00042036, 0.000810989, 0.000157441, 0, 0.000289547, 0.000533593, 0.000901731, 0.000992732, 0.00105064, 0.00102169, 0.000603912, 0.000475684, 0.000289547, 0.000173728, 0.00010341, 0.000115819, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000554275, 0.00067423, 0.000488093, 0.000182001, 8.27276e-05, 0.000124091, 9.51368e-05, 0.000111682, 0.0044342, 0.00145601, 0.000496366, 0.000492229, 0.00526561, 0.00156355, 0.00082314, 0.00482716, 0.000562548, 0.0033877, 0.00180346, 0.00234946, 0.00243633, 0.00197305, 0.00132778, 0.0012161, 0.00146842, 0.000802458, 0.00131123, 0.00126573, 0.00178278, 0.00161733, 0.00136914, 0.00166696, 0.00153046, 0.00125746, 0.00141051, 0.000934822, 0.000996868, 0.00062873, 0.000686639, 0.000541866, 0.000566684, 0.000488093, 0.000326774, 0.000641139, 0.000318501, 0.00028541, 0.000368138, 0.000318501, 0.000293683, 0.000177864, 0.000210955, 0.000115819, 0.00014891, 8.6864e-05, 0.000248183, 0.000347456, 0.00014891, 0.000326774, 0.000111682, 4.13638e-05, 0.000115819, 2.06819e-05, 3.72274e-05, 0, 0, 0, 0, 0, 8.27276e-06, 2.48183e-05, 5.79093e-05, 9.92732e-05, 0, 2.48183e-05, 2.48183e-05, 0.000182001, 0.00023991, 0.000306092, 0.000595639, 0.00038882, 0.000380547, 0.000413638, 0.000653548, 0.000579093, 0.00105064, 0.00161319, 0.00241565, 0.00358211, 0.00162973, 0.00412811, 0.00125746, 0.00186964, 0.00182001, 0.000595639, 0.000380547, 0.000347456, 6.61821e-05, 4.13638e-05, 0.000231637, 0.000182001, 0.000347456, 0.000562548, 0.000405365, 0.000289547, 0.000380547, 0.000438456, 0.000256456, 0.000273001, 0.000264728, 6.61821e-05, 0.000215092, 0.000124091, 0, 4.96366e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0113709, 0.00170419, 0, 0.00794599, 0.00352833, 0, 0.00423152, 0.0061508, 0, 0.00307333, 0.00598534, 0, 0.00122437, 0.0054228, 0.0012161, 0.00058323, 0.00387165, 0.00245701, 0, 0.00298647, 0.00241978, 0, 0.0019896, 0.00248597, 0, 0.00058323, 0.00254387, 0, 0.000566684, 0.000608048, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00269692, 0, 0, 0.00228328, 0, 0.036698, 0.0518868, 0.0450204, 0.0302618, 0.0261419, 0.0248348, 0.0275318, 0.0023991, 0.0250665, 0.0199705, 0.0140472, 0.0194906, 0.00752821, 0.0166779, 0.0150895, 0.0162312, 0.0115322, 0.0153212, 0.0138486, 0.0208474, 0.0149241, 0.0152715, 0.0149075, 0.0102086, 0.016893, 0.00986113, 0.0121775, 0.0147421, 0.0121775, 0.00774331, 0.0162643, 0.00488093, 0.0101259, 0.0113999, 0.00698221, 0.00708149, 0.010341, 0.00714767, 0.0068333, 0.00228328, 0.0071973, 0.00231637, 0, 0, 0.0023991, 0, 0.00269692, 0, 0, 0.0023991, 0, 0.00231637, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00225019, 0, 0, 0.0025811, 0, 0, 0, 0.00137328, 0.00269692, 0, 0.0051953, 0.0023991, 0, 0.00499675, 0, 0, 0.00246528, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00123264, 0, 0.00119955, 0, 0.00129882, 0, 0.00122437, 0.00071973, 0, 0.000686639, 0, 0, 0.000653548, 0.00129055, 0, 0.000554275, 0, 0, 0.000570821, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00134846, 0, 0, 0.00119955, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car2ourcvfh_.txt:
--------------------------------------------------------------------------------
1 | (29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car2vfh_.txt:
--------------------------------------------------------------------------------
1 | (103.571, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103.571, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 103.571, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car3cvfh_.txt:
--------------------------------------------------------------------------------
1 | (97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 3, 2, 1, 6, 4, 1, 5, 5, 3, 3, 7, 6, 2, 4, 9, 6, 4, 4, 2, 2, 3, 2, 0, 0, 0, 1, 2, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car3esf_.txt:
--------------------------------------------------------------------------------
1 | (1.51941e-05, 7.81554e-05, 8.19291e-05, 7.16011e-05, 5.10443e-05, 4.3199e-05, 3.16793e-05, 2.3536e-05, 1.59886e-05, 1.07253e-05, 1.48962e-06, 1.88685e-06, 8.34187e-06, 1.58893e-06, 7.64671e-06, 3.37647e-06, 2.18478e-06, 0, 1.88685e-06, 1.98616e-06, 0, 0, 0, 0, 0, 1.09239e-06, 1.09239e-06, 0, 0, 0, 0, 1.39031e-06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.37647e-05, 0.00011629, 0.00020378, 0.000280346, 0.000382435, 0.000405574, 0.000437452, 0.000549074, 0.000514813, 0.000580257, 0.000601211, 0.000572113, 0.000588598, 0.00066298, 0.00065434, 0.000598331, 0.000671322, 0.000647885, 0.000657618, 0.000720082, 0.000644807, 0.00076914, 0.000716309, 0.000759011, 0.000830413, 0.000850474, 0.000898638, 0.000887019, 0.00103926, 0.00104055, 0.000947994, 0.00103161, 0.00107272, 0.00104512, 0.00101503, 0.00118991, 0.0011047, 0.00127432, 0.00122099, 0.00105763, 0.00117799, 0.00121364, 0.00125962, 0.00109805, 0.00135545, 0.00131464, 0.00114433, 0.0011619, 0.00113906, 0.00104373, 0.00112367, 0.00106806, 0.00110242, 0.00124443, 0.00118296, 0.00102347, 0.00105664, 0.00109209, 0.00103419, 0.000916315, 0.000997747, 0.000883047, 0.000975701, 0.00063567, 1.63858e-05, 0.000140719, 0.000359296, 0.000511933, 0.000679863, 0.000663278, 0.000704193, 0.000732496, 0.000689992, 0.00067738, 0.000809857, 0.000707669, 0.000749378, 0.000761295, 0.000724551, 0.000697241, 0.000591081, 0.000660597, 0.000643615, 0.000751265, 0.000676585, 0.000692177, 0.000696348, 0.000567148, 0.000613028, 0.000580555, 0.00069883, 0.000594756, 0.000676585, 0.000577277, 0.000540136, 0.000610049, 0.000613425, 0.000613227, 0.00064729, 0.00068304, 0.000629712, 0.000667449, 0.000646793, 0.000739745, 0.000699526, 0.000856333, 0.000837961, 0.000659902, 0.000905689, 0.000719387, 0.00083518, 0.000701512, 0.000762189, 0.000778475, 0.000710747, 0.000862391, 0.000604587, 0.000880465, 0.000776092, 0.00077202, 0.000730013, 0.000784434, 0.000882649, 0.00071611, 0.00081373, 0.000757223, 0.000694064, 0.000344301, 0, 2.2245e-05, 8.26242e-05, 9.21578e-05, 0.000139826, 5.08457e-05, 5.40235e-05, 2.86007e-05, 3.17786e-06, 0, 3.17786e-06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.17786e-06, 0.000130292, 0.000162071, 0.000127114, 7.94464e-05, 0.000743618, 0.000104869, 0.00109636, 0.00097878, 0.000759508, 0.00134423, 0.00109954, 0.00168426, 0.00152219, 0.00166837, 0.00142368, 0.00118216, 0.00136648, 0.00134423, 0.00121712, 0.00135059, 0.00111861, 0.00114403, 0.00102009, 0.000870732, 0.0009184, 0.000927934, 0.000877088, 0.000759508, 0.000899333, 0.000781753, 0.000794464, 0.000762685, 0.000807175, 0.00066735, 0.000708662, 0.00065146, 0.000699128, 0.000673705, 0.000603793, 0.000537058, 0.000514813, 0.000403588, 0.000470323, 0.000298718, 0.000251051, 0.000301896, 0.000305074, 0.000209738, 0.000158893, 0.000108047, 0.000120759, 8.58021e-05, 7.30907e-05, 5.08457e-05, 4.449e-05, 3.49564e-05, 2.86007e-05, 4.13121e-05, 1.58893e-05, 1.90671e-05, 6.35571e-06, 6.35571e-06, 3.17786e-06, 0, 0, 6.35571e-06, 0, 3.81343e-05, 0.000184316, 0.000152537, 0.000483034, 0.000324141, 0.00053388, 0.000985135, 0.000775397, 0.000877088, 0.0014491, 0.00143639, 0.00147453, 0.00155079, 0.00177324, 0.0019512, 0.00198298, 0.00162706, 0.00201476, 0.00171604, 0.0020084, 0.00176053, 0.00227534, 0.00198934, 0.00186858, 0.00193849, 0.00139826, 0.00169697, 0.00132834, 0.00123936, 0.00124572, 0.00114403, 0.000883444, 0.000826242, 0.000718195, 0.000597437, 0.000457611, 0.000502101, 0.000457611, 0.000413121, 0.000197027, 0.00022245, 0.00017796, 0.00022245, 0.000158893, 0.000139826, 0.00013347, 9.53357e-05, 7.62685e-05, 4.449e-05, 5.08457e-05, 0.000101691, 2.54228e-05, 1.27114e-05, 0, 4.449e-05, 1.90671e-05, 6.35571e-06, 1.90671e-05, 0, 0, 0, 0, 0.0027552, 0.000470323, 0.00207832, 0.00222132, 0.000320963, 0.00217683, 0.000209738, 0.00187811, 0.000152537, 0.0015063, 0.00138555, 0.000117581, 0.00124254, 9.85135e-05, 0.000988313, 3.49564e-05, 0.000715018, 0.000581548, 0.000120759, 0.000432188, 6.6735e-05, 0.000448078, 0, 0.000330497, 0.000244695, 3.17786e-05, 0.000130292, 0, 7.62685e-05, 0, 4.449e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0169825, 0.0165757, 0.0135758, 0.0129657, 0.010131, 0.00280922, 0.0114784, 0.0212662, 0.0238593, 0.0220162, 0.0140334, 0.0118216, 0.0149868, 0.0072328, 0.011364, 0.0200332, 0.0149232, 0.0137665, 0.0113132, 0.013525, 0.0140843, 0.0137156, 0.0146054, 0.0100547, 0.0076777, 0.0131563, 0.00883444, 0.00882173, 0.00709297, 0.00742347, 0.00766499, 0.00615233, 0.0048939, 0.00481763, 0.00415664, 0.00350835, 0.00349564, 0.00448713, 0.00286007, 0.00333039, 0.00302532, 0.00288549, 0.00165248, 0.00125843, 0.00162706, 0.00125843, 0.000915222, 0.000826242, 0.000292363, 0.000165248, 0, 0.000953357, 0.00162706, 0.00062286, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000101691, 0.000127114, 0, 0.000317786, 0, 0.000406766, 0.000279651, 0.00026694, 0.0100293, 0.0110081, 0.00596166, 0.00716924, 0.00404223, 0.00528795, 0.00490661, 0.0135631, 0.0194231, 0.0135885, 0.00814802, 0.00784295, 0.0077921, 0.00577099, 0.00911409, 0.0166011, 0.0117326, 0.0077921, 0.00636842, 0.00408037, 0.00414392, 0.00186858, 0.00363547, 0.00203383, 0.00106776, 0.00161435, 0.00232619, 0.00120759, 0.00102963, 0.0066735, 0.00392783, 0.00316514, 0.0028982, 0.0020084, 0.00207196, 0.00124572, 0.000915222, 0.000724551, 0.000788108, 0.00062286, 0.000495746, 0.000305074, 0.000152537, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00225628, 0, 0.000794464, 0.000858021, 0.00084531, 0.00168426, 0.00305074, 0.00122665, 0.00524982, 0.00137919, 0.00312065, 0.00716289, 0.00670528, 0.00760779, 0.00367996, 0.00813531, 0, 0.00636842, 0.00681332, 0.00569472, 0.0212217, 0.00906324, 0.00193214, 0.00148724, 0.00312701, 0.000171604, 0.00194485, 0.000317786, 0, 9.53357e-05, 0.000381343, 0.00017796, 7.62685e-05, 3.17786e-05, 9.53357e-05, 0.000114403, 5.08457e-05, 0, 0.00026694, 0, 0.00013347, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car3ourcvfh_.txt:
--------------------------------------------------------------------------------
1 | (97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 97, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car3vfh_.txt:
--------------------------------------------------------------------------------
1 | (101.042, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101.042, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101.042, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car4cvfh_.txt:
--------------------------------------------------------------------------------
1 | (402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 13, 19, 13, 22, 20, 14, 14, 20, 19, 19, 21, 25, 23, 22, 20, 19, 15, 9, 10, 3, 4, 2, 2, 3, 2, 4, 3, 2, 3, 8, 4, 6, 2, 2, 1, 5, 0, 3, 1, 2, 402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car4esf_.txt:
--------------------------------------------------------------------------------
1 | (8.64171e-05, 0.000310023, 0.000466683, 0.000537973, 0.000625888, 0.000643261, 0.000612259, 0.000660485, 0.000628134, 0.000698676, 0.000518952, 0.000603872, 0.000516855, 0.000501878, 0.000484355, 0.00054636, 0.000470277, 0.000436129, 0.000496487, 0.000471924, 0.000478814, 0.000426844, 0.000440473, 0.000425346, 0.000402581, 0.000397938, 0.000376072, 0.000431337, 0.000405127, 0.000446164, 0.000370081, 0.000374724, 0.000324851, 0.000309724, 0.000343722, 0.000300588, 0.000399436, 0.000299989, 0.000341625, 0.000268837, 0.00028651, 0.000285611, 0.000281867, 0.000281867, 0.000265991, 0.000288756, 0.000283215, 0.000281268, 0.000210127, 0.000265991, 0.000256406, 0.000255807, 0.000272132, 0.000276175, 0.000238883, 0.000221509, 0.000291452, 0.000204585, 0.000261498, 0.000282166, 0.000268537, 0.00025386, 0.000287857, 0.000131348, 6.29033e-06, 4.26844e-05, 7.69816e-05, 0.000134643, 0.000171786, 0.000244874, 0.000230196, 0.000280369, 0.00036394, 0.000333238, 0.000382512, 0.000374724, 0.000438226, 0.000408272, 0.000484655, 0.000499931, 0.000550853, 0.000476567, 0.000522247, 0.000528088, 0.000539171, 0.000518952, 0.000607017, 0.000586049, 0.000645957, 0.000681602, 0.000577662, 0.000621245, 0.000594137, 0.000603123, 0.000678757, 0.000672167, 0.000661233, 0.000655991, 0.000723837, 0.000688042, 0.000781948, 0.00068325, 0.000610911, 0.000695381, 0.000776556, 0.000734022, 0.000648054, 0.000653595, 0.000692835, 0.000610611, 0.000775358, 0.000683998, 0.00070901, 0.000668872, 0.00072174, 0.000723088, 0.000600876, 0.000596233, 0.000595784, 0.000658987, 0.00068939, 0.00062469, 0.000592639, 0.000550554, 0.000620197, 0.000642213, 0.000654194, 0.000313468, 5.54148e-06, 4.65784e-05, 0.000125058, 0.000240081, 0.000477616, 0.000605369, 0.000808757, 0.000850842, 0.00107295, 0.00118393, 0.00122062, 0.0012714, 0.00138971, 0.00140289, 0.00137848, 0.00143824, 0.00125372, 0.00142371, 0.00132996, 0.00128458, 0.0012347, 0.00135422, 0.00126181, 0.00124189, 0.00112956, 0.00122781, 0.00112971, 0.00124489, 0.00118273, 0.0011727, 0.0012696, 0.00114784, 0.00122796, 0.001201, 0.00119501, 0.00110875, 0.00118303, 0.00114095, 0.00115233, 0.00119726, 0.00121943, 0.0011056, 0.0010728, 0.00105663, 0.000957628, 0.00105483, 0.00106187, 0.000963918, 0.000933215, 0.000929471, 0.00102383, 0.00101993, 0.000959874, 0.000966913, 0.000932167, 0.000864171, 0.000808158, 0.0008459, 0.000775208, 0.000819241, 0.000733273, 0.000773261, 0.000651049, 0.000391947, 0, 4.79263e-06, 2.39632e-05, 5.2719e-05, 0.000143779, 0.000134194, 0.00018212, 0.000292351, 0.000292351, 0.000369033, 0.00052719, 0.000565531, 0.000752443, 0.000886637, 0.000924978, 0.00122212, 0.00104959, 0.00120774, 0.00112148, 0.00113106, 0.00115023, 0.000977697, 0.000963319, 0.000968112, 0.000733273, 0.000613457, 0.000570323, 0.000536775, 0.000330692, 0.000354655, 0.000292351, 0.000311521, 0.000234839, 0.000206083, 0.000143779, 0.000138986, 0.000119816, 9.106e-05, 8.62674e-05, 5.2719e-05, 6.23042e-05, 4.31337e-05, 1.91705e-05, 9.58526e-06, 9.58526e-06, 4.79263e-06, 1.43779e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.83411e-05, 0.000129401, 0.000340277, 0.000450507, 0.000608664, 0.000771614, 0.00110231, 0.00124608, 0.00138507, 0.00167742, 0.00159115, 0.00172055, 0.00169659, 0.00165825, 0.00167742, 0.00161032, 0.00144737, 0.00141383, 0.0013659, 0.00121254, 0.00116461, 0.00104479, 0.00104479, 0.000905807, 0.000872259, 0.000824333, 0.00080037, 0.000781199, 0.000723687, 0.00063742, 0.000589494, 0.000632627, 0.000575116, 0.000407374, 0.000369033, 0.000335484, 0.000311521, 0.000230046, 0.000297143, 0.000167742, 0.000206083, 0.000138986, 0.000143779, 8.62674e-05, 0.000119816, 0.000115023, 5.75116e-05, 9.106e-05, 3.83411e-05, 1.91705e-05, 2.87558e-05, 2.39632e-05, 1.91705e-05, 4.79263e-06, 9.58526e-06, 4.79263e-06, 4.79263e-06, 4.79263e-06, 0, 4.79263e-06, 0, 0, 0, 0, 0, 0, 9.58526e-06, 1.91705e-05, 0.000105438, 5.75116e-05, 6.70968e-05, 0.000153364, 0.000134194, 0.000210876, 0.000172535, 0.000230046, 0.000460093, 0.000469678, 0.000690139, 0.000843503, 0.000968112, 0.00144737, 0.00159115, 0.00215668, 0.00216627, 0.00228129, 0.00253051, 0.00286599, 0.00314397, 0.00282765, 0.00322065, 0.00314397, 0.0033836, 0.0033165, 0.00327816, 0.00298102, 0.00300019, 0.00258802, 0.00253051, 0.00242507, 0.00242507, 0.00237715, 0.00198415, 0.00202249, 0.00166784, 0.00166784, 0.00145696, 0.00147613, 0.00114065, 0.000987282, 0.000948941, 0.000853088, 0.00070931, 0.000450507, 0.000440922, 0.000450507, 0.000354655, 0.000268387, 0.000239632, 0.000105438, 0.000143779, 0.000105438, 6.70968e-05, 3.83411e-05, 1.91705e-05, 0, 2.87558e-05, 9.58526e-06, 0.00158157, 0.00283245, 0.00557383, 0.00488848, 0.00835835, 0.00797015, 0.0100885, 0.00904849, 0.00966195, 0.0104336, 0.0096284, 0.00929771, 0.00866508, 0.00755319, 0.0063742, 0.00549715, 0.00488369, 0.00439005, 0.00360406, 0.00322065, 0.00300019, 0.00240111, 0.00208959, 0.00239152, 0.00198415, 0.00202249, 0.00180203, 0.00162949, 0.00145217, 0.00157678, 0.00141383, 0.00133235, 0.00124129, 0.0011694, 0.00126046, 0.00118378, 0.000915393, 0.00110231, 0.00104959, 0.000790784, 0.000877052, 0.000738065, 0.000666176, 0.000776406, 0.000661383, 0.000560738, 0.000431337, 0.000551153, 0.000407374, 0.000436129, 0.000321106, 0.000206083, 0.000206083, 0.000129401, 9.106e-05, 5.75116e-05, 3.35484e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000402581, 0.000210876, 0.00111189, 0.00212793, 0.0023388, 0.0051377, 0.00726563, 0.00734231, 0.00839669, 0.00832001, 0.00935522, 0.00841586, 0.00795577, 0.00720812, 0.00759153, 0.00724646, 0.00665217, 0.00678637, 0.006633, 0.00653715, 0.00569365, 0.00659466, 0.00617291, 0.0054636, 0.00550194, 0.00523355, 0.00542526, 0.00603872, 0.00540609, 0.00538692, 0.0051377, 0.00486931, 0.00391079, 0.00385328, 0.00350821, 0.00369991, 0.00310563, 0.00335484, 0.00358489, 0.00245383, 0.0036424, 0.00433254, 0.004946, 0.00416, 0.00385328, 0.00285641, 0.00195539, 0.0014953, 0.000939356, 0.000843503, 0.000939356, 0.000402581, 0.000498434, 0.000230046, 3.83411e-05, 5.75116e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.58526e-05, 0.000421752, 0.00141862, 0.00241549, 0.00343152, 0.00410249, 0.00398747, 0.00582784, 0.00646047, 0.00703558, 0.00669051, 0.00678637, 0.00557862, 0.00555945, 0.0054636, 0.00563614, 0.00540609, 0.00515687, 0.00596203, 0.00557862, 0.00561696, 0.00554028, 0.00571282, 0.00506102, 0.00498434, 0.00446673, 0.00440922, 0.00483097, 0.0048118, 0.00402581, 0.00465844, 0.00529107, 0.00542526, 0.0064413, 0.00511853, 0.00561696, 0.00534858, 0.00452424, 0.00488848, 0.00416, 0.00416, 0.00412166, 0.00337401, 0.00316314, 0.002473, 0.00220461, 0.00159115, 0.00138028, 0.000383411, 0.000498434, 0.000230046, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000335484, 0.000843503, 0.00148572, 0.00158157, 0.00158157, 0.00216627, 0.00285641, 0.0012365, 0.00267429, 0.0027989, 0.0036424, 0.00286599, 0.00323023, 0.00310563, 0.00355613, 0.00270304, 0.00518563, 0.000249217, 0.00515687, 0.00404498, 0.0026647, 0.00308645, 0.00264553, 0.00172535, 0.00187871, 0.00276056, 0.000843503, 0.00207042, 0.00313438, 0.00124608, 0.00256885, 0.00192664, 0.00342194, 0.00235797, 0.00200332, 0.000670968, 0.00432295, 0.00112148, 0.00277973, 0.00375742, 0.00228129, 0.00216627, 0.00218544, 0.0014282, 0.00112148, 0.00124608, 4.79263e-05, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car4ourcvfh_.txt:
--------------------------------------------------------------------------------
1 | (402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 402, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/point_features/car4vfh_.txt:
--------------------------------------------------------------------------------
1 | (100.249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100.249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
--------------------------------------------------------------------------------
/dataset/samples/sample_ca9a282c9e77460f8360f564131a8af5_file.txt:
--------------------------------------------------------------------------------
1 | {
2 | "instance": [
3 | {
4 | "annotation_token": "83d881a6b3d94ef3a3bc3b585cc514f8",
5 | "sample_token": "ca9a282c9e77460f8360f564131a8af5",
6 | "camera_token": "e3d495d4ac534d54b321f50006683844",
7 | "pointcloud_path": "/home/gus/Documents/AI_S/ML/PF/3d_obj_detection/dataset/ann_points_lidar/pc_anno_83d881a6b3d94ef3a3bc3b585cc514f8.txt",
8 | "pcl_shape": [
9 | 3,
10 | 720
11 | ],
12 | "img_pc_path": "/home/gus/Documents/AI_S/ML/PF/3d_obj_detection/dataset/ann_points_cam/img_pc_anno_83d881a6b3d94ef3a3bc3b585cc514f8.txt",
13 | "img_pcl_shape": [
14 | 4,
15 | 720
16 | ],
17 | "pcd_path": "/home/gus/Documents/AI_S/ML/PF/3d_obj_detection/dataset/pcd_segmentation/pcd_segmentation_83d881a6b3d94ef3a3bc3b585cc514f8.pcd",
18 | "point_features_path": "/home/gus/Documents/AI_S/ML/PF/3d_obj_detection/dataset/point_features/pcd_segmentation_83d881a6b3d94ef3a3bc3b585cc514f8.txt",
19 | "position_coord": [
20 | -4.498643300135364,
21 | 15.253322510367285,
22 | 0.39639350348944496
23 | ],
24 | "wlh_values": [
25 | 2.877,
26 | 10.201,
27 | 3.595
28 | ],
29 | "orientation_value": -91.43362845660991,
30 | "rotation_axis": -0.999643749035948,
31 | "category": "vehicle"
32 | }
33 | ]
34 | }
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | Shapely==1.7.0
2 | open3d==0.10.0.0
3 | pyquaternion==0.9.5
4 | numpy==1.19.1
5 | opencv_python==3.4.11.39
6 | nuscenes_devkit==1.1.0
7 | matplotlib==3.3.0
8 | Pillow>=8.1.1
9 |
--------------------------------------------------------------------------------
/src/pcl_features.cpp:
--------------------------------------------------------------------------------
1 | /**
2 | * @file pcl_features.cpp
3 | * @authors Miguel Saavedra - Gustavo Salazar
4 | * @brief Global feature extractor
5 | * @version 0.1
6 | * @date 25-09-2020
7 | *
8 | * useful links: http://robotica.unileon.es/index.php/PCL/OpenNI_tutorial_4:_3D_object_recognition_(descriptors)
9 | *
10 | * http://www.willowgarage.com/sites/default/files/Rusu10IROS.pdf
11 | *
12 | */
13 |
14 | #include
15 | #include
16 | #include
17 | #include
18 | #include
19 | // Descriptors
20 | #include
21 | #include
22 | #include
23 | #include
24 | #include
25 |
26 | #include
27 | #include
28 | #include
29 | #include
30 | // #include
31 | #include
32 | #include
33 | #include
34 | #include
35 |
36 | namespace fs = std::experimental::filesystem;
37 |
38 | int main (int argc, char** argv)
39 | {
40 |
41 | //std::vector hist;
42 | // pcl::VFHSignature308 hist;
43 | pcl::ESFSignature640 hist;
44 | // Cloud for storing the object.
45 | pcl::PointCloud::Ptr object(new pcl::PointCloud);
46 | // Object for storing the normals.
47 | //pcl::PointCloud::Ptr normals(new pcl::PointCloud);
48 | // Object for storing the VFH descriptor.
49 | //pcl::PointCloud::Ptr descriptor(new pcl::PointCloud);
50 | // Object for storing the ESF descriptor.
51 | pcl::PointCloud::Ptr descriptor(new pcl::PointCloud);
52 |
53 | float radius_search = 0.03;
54 |
55 | // Object for storing the normals
56 | //pcl::NormalEstimation normalEstimation;
57 | // KDtree object to search the normals
58 | //pcl::search::KdTree::Ptr kdtree(new pcl::search::KdTree);
59 | // VFH estimation object.
60 | //pcl::VFHEstimation vfh;
61 | // ESF estimation object.
62 | pcl::ESFEstimation esf;
63 |
64 | // Iterate over all the instance in the folder
65 | std::string path = "../dataset/pcd_segmentation/";
66 | std::string token;
67 | std::vector splitter;
68 |
69 | double time_val = 0;
70 | int cont = 0;
71 | for (const auto & entry : fs::directory_iterator(path))
72 | {
73 | //std::cout << entry.path() << std::endl;
74 | // Save token as a string
75 | // Start counter
76 | std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
77 | token = entry.path();
78 |
79 | // Read a PCD file from disk.
80 | if (pcl::io::loadPCDFile(token, *object) != 0)
81 | {
82 | return -1;
83 | }
84 |
85 | // Uncomment to visualize pointcloud with PCL
86 | //pcl::visualization::CloudViewer viewer ("Simple Cloud Viewer");
87 | //viewer.showCloud (object);
88 | //while (!viewer.wasStopped ())
89 | //{
90 | //}
91 |
92 | // Estimate the point cloud normals
93 | //normalEstimation.setInputCloud(object);
94 | //normalEstimation.setRadiusSearch(radius_search);
95 | //normalEstimation.setSearchMethod(kdtree);
96 | //normalEstimation.compute(*normals);
97 |
98 | // Set parameters for VFH estimator
99 | //vfh.setInputCloud(object);
100 | //vfh.setInputNormals(normals);
101 | //vfh.setSearchMethod(kdtree);
102 | // Optionally, we can normalize the bins of the resulting histogram,
103 | // using the total number of points.
104 | //vfh.setNormalizeBins(true);
105 | // Also, we can normalize the SDC with the maximum size found between
106 | // the centroid and any of the cluster's points.
107 | //vfh.setNormalizeDistance(false);
108 | // Compute descriptor
109 | //vfh.compute(*descriptor);
110 |
111 | // ESF estimation object.
112 | esf.setInputCloud(object);
113 |
114 | esf.compute(*descriptor);
115 |
116 | hist = descriptor->points[0];
117 |
118 | //std::cout << hist << std::endl;
119 |
120 | // Plotter object. Uncomment this line to see the histogram
121 | //pcl::visualization::PCLHistogramVisualizer viewer_h;
122 | // We need to set the size of the descriptor beforehand.
123 | //viewer_h.addFeatureHistogram(*descriptor, 308);
124 | //viewer_h.spin();
125 |
126 | // Split the input screen and obtain the instance's name
127 | boost::split(splitter, token, [](char c){return c == '/' || c == '.';});
128 |
129 | // Writting the vector
130 | // Object to save descriptor vectors
131 | std::ofstream outfile;
132 | outfile.open("../dataset/point_features/" + splitter[5] + ".txt", std::ios_base::app);
133 | outfile << hist;
134 | outfile.close();
135 | cont ++;
136 | // End time
137 | std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
138 | time_val = double(std::chrono::duration_cast(end - begin).count()) / 1000000;
139 | }
140 |
141 | std::cout << "The total number of instances proccessed were: " << cont << std::endl;
142 | std::cout << "The avg proccessing time is: " << time_val / cont << std::endl;
143 |
144 | // This method also saves the vector as pcd, however, open3d is not able to openit
145 | // pcl::io::savePCDFileASCII ("../segmentation/car_vfh.pcd", *descriptor);
146 |
147 | return 0;
148 |
149 | }
150 |
151 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MikeS96/3d_obj_detection/4715fffb04d6abad8daf0f2fd2a87504cf7c6ba6/utils/__init__.py
--------------------------------------------------------------------------------
/utils/eval.py:
--------------------------------------------------------------------------------
1 | # Code written by Miguel Saavedra & Gustavo Salazar, 2020.
2 | # Compute 3D IoU and BeV IoU of for 3D object detection tasks
3 |
4 | import numpy as np
5 | from shapely.geometry import Polygon
6 | import shapely.ops as so
7 | import matplotlib.pyplot as plt
8 |
9 | def volume_box3d(corners: np.array):
10 | '''
11 | Compute the volume of a 3D bounding box given their 8 points.
12 | :param corners: point cloud mapped in the image frame.
13 | :return Volume of the current bounding box as a float.
14 | '''
15 | a = np.sqrt(np.sum((corners[0,:] - corners[3,:])**2)) # Height
16 | b = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2)) # Lenghth
17 | c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2)) # Width
18 | return a*b*c
19 |
20 | def box3d_iou(corners1: np.array,
21 | corners2: np.array,
22 | vis_result: bool = False):
23 | '''
24 | Compute 3D bounding box IoU.
25 | :param corners1: Bounding predicted box coordinates.
26 | :param corners2: Bounding ground truth box coordinates.
27 | :param vis_result: Visualize union of bounding boxes in XY plane.
28 | :return iou: 3D IoU between ground truth and prediction.
29 | :return iou_2d: BEV IoU in XY plane.
30 | '''
31 |
32 | # Compute corners within xy plane for ground truth and bounding box
33 | rect1_xy = [[corners1[i,0], corners1[i,1]] for i in [0, 1, 5, 4]]
34 | rect2_xy = [[corners2[i,0], corners2[i,1]] for i in [0, 1, 5, 4]]
35 |
36 | # Create the polygon out of the given points
37 | poly1 = Polygon(rect1_xy).convex_hull
38 | poly2 = Polygon(rect2_xy).convex_hull
39 |
40 | # Area of each polygon
41 | area1 = poly1.area
42 | area2 = poly2.area
43 |
44 | if not poly1.intersects(poly2):
45 | inter_area = 0
46 | else:
47 | inter_area = poly1.intersection(poly2).area
48 | # Plot the union of the shapes if desired
49 | if vis_result:
50 | #cascaded union can work on a list of shapes
51 | new_shape = so.cascaded_union([poly1,poly2])
52 | # exterior coordinates split into two arrays, xs and ys
53 | xs, ys = new_shape.exterior.xy
54 | #plot it
55 | fig, axs = plt.subplots()
56 | axs.fill(xs, ys, alpha=0.5, fc='r', ec='none')
57 | plt.show() #if not interactive
58 |
59 |
60 | # Computing IoU in 2D (XY plane)
61 | iou_2d = inter_area / (area1 + area2 - inter_area)
62 | # Intersection in Z
63 | zmax = min(corners1[0,2], corners2[0,2])
64 | zmin = max(corners1[3,2], corners2[3,2])
65 |
66 | # Intersection volume
67 | inter_vol = inter_area * max(0.0, zmax - zmin)
68 |
69 | # Computing the volume of the 3D bounding boxes
70 | vol1 = volume_box3d(corners1)
71 | vol2 = volume_box3d(corners2)
72 |
73 | # 3D IoU volume computation
74 | iou = inter_vol / (vol1 + vol2 - inter_vol)
75 | return iou, iou_2d
--------------------------------------------------------------------------------
/utils/misc.py:
--------------------------------------------------------------------------------
1 | # Code written by Miguel Saavedra & Gustavo Salazar, 2020.
2 |
3 | """
4 | Set
5 | Note: Util functions to sample 2d bounding boxes, 3d targets w.r.t to camera frame and point clouds of a specific instance.
6 | Describe longer Gus
7 | """
8 |
9 | import numpy as np
10 | import cv2
11 | from PIL import Image
12 | import json
13 | import open3d as o3d
14 |
15 | import matplotlib.pyplot as plt
16 | from matplotlib.axes import Axes
17 | from matplotlib import rcParams
18 | from shapely.geometry import MultiPoint, box
19 |
20 | from pyquaternion import Quaternion
21 | import os.path as osp
22 | from nuscenes import NuScenes
23 |
24 | # Utils for Lidar and Radar
25 | from nuscenes.nuscenes import NuScenes
26 | from nuscenes.utils.geometry_utils import view_points, BoxVisibility
27 | from nuscenes.utils.data_classes import LidarPointCloud
28 | from nuscenes.utils.data_classes import RadarPointCloud
29 | from nuscenes.scripts.export_2d_annotations_as_json import get_2d_boxes, post_process_coords
30 |
31 | from typing import Tuple, List, Dict, Union
32 |
33 | def middle_func(axis_array):
34 | """
35 | Given an array for an axis calc the middle point.
36 | :param axis_array: array to calc middle.
37 | :return middle_result: operation result.
38 | """
39 |
40 | middle_result = ((np.max(axis_array)-np.min(axis_array))//2)+np.min(axis_array)
41 |
42 | return middle_result
43 |
44 | def load_pcl_txt(dataroot: str,
45 | shape_info):
46 | """
47 | Given a dataroot this method load the PointCloud from a .txt file and reshape to its original size.
48 | :param dataroot: dataroot to load the file.
49 | :return data_pcl: PointCloud from file.
50 | """
51 | data_pcl = np.loadtxt(dataroot).reshape(shape_info[0], shape_info[1])
52 |
53 | return data_pcl
54 |
55 |
56 | def save_to_txt(dataroot: str ,
57 | data_txt):
58 | """
59 | Given a dataroot and an array with the info pointclouds in the camera frame, this method
60 | stores the data in a .txt file.
61 | :param dataroot: dataroot to store the file.
62 | :param data_txt: array with the info.
63 | """
64 |
65 | a_file = open(dataroot, "w")
66 |
67 | for row in data_txt:
68 | np.savetxt(a_file, row)
69 |
70 | a_file.close()
71 |
72 | def load_file(dataroot: str):
73 | """
74 | Given a dataroot this method load the data from a .txt file in JSON format.
75 | :param dataroot: dataroot to load the file.
76 | :return data: dictionary with the info from file.
77 | """
78 | with open(dataroot) as json_file:
79 | data = json.load(json_file)
80 | return data
81 |
82 | def save_in_file(dataroot: str ,
83 | data_json: dict):
84 | """
85 | Given a dataroot and a dictionary with the info, this method stores the data
86 | in a .txt file in JSON format.
87 | :param dataroot: dataroot to store the file.
88 | :param data_json: dictionary with the info.
89 | """
90 | with open(dataroot, 'w') as outfile:
91 | json.dump(data_json, outfile, indent= 4)
92 |
93 |
94 | def bbox_3d_to_2d(nusc: NuScenes,
95 | camera_token: str,
96 | annotation_token: str,
97 | visualize: bool = False) -> List:
98 |
99 | """
100 | Get the 2D annotation bounding box for a given `sample_data_token`. return None if no
101 | intersection (bounding box).
102 | :param nusc: NuScenes instance.
103 | :param camera_token: Camera sample_data token.
104 | :param annotation_token: Sample data token belonging to a camera keyframe.
105 | :param visualize: bool to plot the resulting bounding box.
106 | :return: List of 2D annotation record that belongs to the input `sample_data_token`
107 | """
108 |
109 | # Obtain camera sample_data
110 | cam_data = nusc.get('sample_data', camera_token)
111 |
112 | # Get the calibrated sensor and ego pose record to get the transformation matrices.
113 |
114 | # From camera to ego
115 | cs_rec = nusc.get('calibrated_sensor', cam_data['calibrated_sensor_token'])
116 | # From ego to world coordinate frame
117 | pose_rec = nusc.get('ego_pose', cam_data['ego_pose_token'])
118 | # Camera intrinsic parameters
119 | camera_intrinsic = np.array(cs_rec['camera_intrinsic'])
120 |
121 | # Obtain the annotation from the token
122 | annotation_metadata = nusc.get('sample_annotation', annotation_token)
123 |
124 | # Get the box in global coordinates from sample ann token
125 | box = nusc.get_box(annotation_metadata['token'])
126 |
127 | # Mapping the box from world coordinate-frame to camera sensor
128 |
129 | # Move them to the ego-pose frame.
130 | box.translate(-np.array(pose_rec['translation']))
131 | box.rotate(Quaternion(pose_rec['rotation']).inverse)
132 |
133 | # Move them to the calibrated sensor frame.
134 | box.translate(-np.array(cs_rec['translation']))
135 | box.rotate(Quaternion(cs_rec['rotation']).inverse)
136 |
137 | # Filter out the corners that are not in front of the calibrated sensor.
138 | corners_3d = box.corners() # 8 corners of the 3d bounding box
139 | in_front = np.argwhere(corners_3d[2, :] > 0).flatten() # corners that are behind the sensor are removed
140 | corners_3d = corners_3d[:, in_front]
141 |
142 | # Project 3d box to 2d.
143 | corner_coords = view_points(corners_3d, camera_intrinsic, True).T[:, :2].tolist()
144 |
145 | # Filter points that are outside the image
146 | final_coords = post_process_coords(corner_coords)
147 |
148 | if final_coords is None:
149 | return None
150 |
151 | min_x, min_y, max_x, max_y = [int(coord) for coord in final_coords]
152 |
153 | if visualize:
154 | # Load image from dataroot
155 | img_path = osp.join(nusc.dataroot, cam_data['filename'])
156 | img = cv2.imread(img_path, 1)
157 |
158 | # Draw rectangle on image with coords
159 | img_r = cv2.rectangle(img, (min_x,min_y),(max_x,max_y),(255, 165, 0) , 3)
160 | img_r = img_r[:, :, ::-1]
161 |
162 | plt.figure(figsize=(12, 4), dpi=100)
163 | plt.imshow(img_r)
164 | plt.show()
165 |
166 | return final_coords
167 |
168 | def get_camera_data(nusc: NuScenes,
169 | annotation_token: str,
170 | box_vis_level: BoxVisibility = BoxVisibility.ANY):
171 |
172 | """
173 | Given an annotation token (3d detection in world coordinate frame) this method
174 | returns the camera in which the annotation is located. If the box is splitted
175 | between 2 cameras, it brings the first one found.
176 | :param nusc: NuScenes instance.
177 | :param annotation_token: Annotation token.
178 | :param box_vis_level: If sample_data is an image, this sets required visibility for boxes.
179 | :return camera channel.
180 | """
181 | #Get sample annotation
182 | ann_record = nusc.get('sample_annotation', annotation_token)
183 |
184 | sample_record = nusc.get('sample', ann_record['sample_token'])
185 |
186 | boxes, cam = [], []
187 |
188 | #Stores every camera
189 | cams = [key for key in sample_record['data'].keys() if 'CAM' in key]
190 |
191 | #Try with every camera a match for the annotation
192 | for cam in cams:
193 | _, boxes, _ = nusc.get_sample_data(sample_record['data'][cam], box_vis_level=box_vis_level,
194 | selected_anntokens=[annotation_token])
195 | if len(boxes) > 0:
196 | break # Breaks if find an image that matches
197 | assert len(boxes) < 2, "Found multiple annotations. Something is wrong!"
198 |
199 | return cam
200 |
201 | def target_to_cam(nusc: NuScenes,
202 | pointsensor_token: str,
203 | annotation_token: str,
204 | pointsensor_channel: str = 'LIDAR_TOP'):
205 | """
206 | Given an annotation token (3d detection in world coordinate frame) and pointsensor sample_data token,
207 | transform the label from world-coordinate frame to LiDAR.
208 | :param nusc: NuScenes instance.
209 | :param pointsensor_token: Lidar/radar sample_data token.
210 | :param annotation_token: Camera sample_annotation token.
211 | :param pointsensor_channel: Laser channel name, e.g. 'LIDAR_TOP'.
212 | :return box with the labels for the 3d detection task in the LiDAR channel frame.
213 | """
214 |
215 | # Point LiDAR sample
216 | point_data = nusc.get('sample_data', pointsensor_token) # Sample LiDAR info
217 |
218 | # From LiDAR to ego
219 | cs_rec = nusc.get('calibrated_sensor', point_data['calibrated_sensor_token'])
220 | # Transformation metadata from ego to world coordinate frame
221 | pose_rec = nusc.get('ego_pose', point_data['ego_pose_token'])
222 |
223 | # Obtain the annotation from the token
224 | annotation_metadata = nusc.get('sample_annotation', annotation_token)
225 |
226 | # Obtain box parameters
227 | box = nusc.get_box(annotation_metadata['token'])
228 |
229 | # Move them to the ego-pose frame.
230 | box.translate(-np.array(pose_rec['translation']))
231 | box.rotate(Quaternion(pose_rec['rotation']).inverse)
232 |
233 | # Move them to the calibrated sensor frame.
234 | box.translate(-np.array(cs_rec['translation']))
235 | box.rotate(Quaternion(cs_rec['rotation']).inverse)
236 |
237 | return box
238 |
239 | def map_pointcloud_to_image_(nusc: NuScenes,
240 | bbox,
241 | pointsensor_token: str,
242 | camera_token: str,
243 | min_dist: float = 1.0,
244 | dist_thresh: float = 0.1,
245 | visualize: bool = False) -> Tuple:
246 | """
247 | Given a point sensor (lidar/radar) token and camera sample_data token, load point-cloud and map it to the image
248 | plane.
249 | :param nusc: NuScenes instance.
250 | :param bbox: object coordinates in the current image.
251 | :param pointsensor_token: Lidar/radar sample_data token.
252 | :param camera_token: Camera sample_data token.
253 | :param min_dist: Distance from the camera below which points are discarded.
254 | :param dist_thresh: Threshold to consider points within floor plane.
255 | :return (points_ann , coloring_ann , ori_points_ann, image ).
256 | """
257 | cam = nusc.get('sample_data', camera_token) # Sample camera info
258 | pointsensor = nusc.get('sample_data', pointsensor_token) # Sample point cloud
259 | # pcl_path is the path from root to the pointCloud file
260 | pcl_path = osp.join(nusc.dataroot, pointsensor['filename'])
261 | # Open the pointCloud path using the Lidar or Radar class
262 | if pointsensor['sensor_modality'] == 'lidar':
263 | # Read point cloud with LidarPointCloud (4 x samples) --> X, Y, Z and intensity
264 | pc = LidarPointCloud.from_file(pcl_path)
265 | # To access the points pc.points
266 | else:
267 | # Read point cloud with LidarPointCloud (18 x samples) -->
268 | # https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/utils/data_classes.py#L296
269 | pc = RadarPointCloud.from_file(pcl_path)
270 |
271 | # Open image of the interest camera
272 | im = Image.open(osp.join(nusc.dataroot, cam['filename']))
273 |
274 | # Save original points (X, Y and Z) coordinates in LiDAR frame
275 | ori_points = pc.points[:3, :].copy()
276 |
277 | # Points live in the point sensor frame. So they need to be transformed via global to the image plane.
278 | # First step: transform the point-cloud to the ego vehicle frame for the timestamp of the sweep.
279 | cs_record = nusc.get('calibrated_sensor', pointsensor['calibrated_sensor_token']) # Transformation matrix of pointCloud
280 | # Transform the Quaternion into a rotation matrix and use method rotate in PointCloud class to rotate
281 | # Map from the laser sensor to ego_pose
282 | # The method is a dot product between cs_record['rotation'] (3 x 3) and points (3 x points)
283 | pc.rotate(Quaternion(cs_record['rotation']).rotation_matrix)
284 | # Add the traslation vector between ego vehicle and sensor
285 | # The method translate is an addition cs_record['translation'] (3,) and points (3 x points)
286 | pc.translate(np.array(cs_record['translation']))
287 |
288 | # Second step: transform to the global frame.
289 | poserecord = nusc.get('ego_pose', pointsensor['ego_pose_token'])
290 | # Same step as before, map from ego_pose to world coordinate frame
291 | pc.rotate(Quaternion(poserecord['rotation']).rotation_matrix)
292 | pc.translate(np.array(poserecord['translation']))
293 |
294 | # Third step: transform into the ego vehicle frame for the timestamp of the image.
295 | poserecord = nusc.get('ego_pose', cam['ego_pose_token'])
296 | # Same step as before, map from world coordinate frame to ego vehicle frame for the timestamp of the image.
297 | pc.translate(-np.array(poserecord['translation']))
298 | pc.rotate(Quaternion(poserecord['rotation']).rotation_matrix.T)
299 |
300 | # Fourth step: transform into the camera.
301 | cs_record = nusc.get('calibrated_sensor', cam['calibrated_sensor_token'])
302 | # Same step as before, map from ego at camera timestamp to camera
303 | pc.translate(-np.array(cs_record['translation']))
304 | pc.rotate(Quaternion(cs_record['rotation']).rotation_matrix.T)
305 |
306 | # Fifth step: actually take a "picture" of the point cloud.
307 | # Grab the depths (camera frame z axis points away from the camera).
308 | depths = pc.points[2, :]
309 |
310 | # Retrieve the color from the depth.
311 | coloring = depths
312 |
313 | # Take the actual picture (matrix multiplication with camera-matrix + renormalization).
314 | # Normalization means to divide the X and Y coordinates by the depth
315 | # The output dim (3 x n_points) where the 3rd row are ones.
316 | points = view_points(pc.points[:3, :], np.array(cs_record['camera_intrinsic']), normalize=True)
317 |
318 | # bounding box coordinates
319 | min_x, min_y, max_x, max_y = [int(points_b) for points_b in bbox]
320 |
321 | # Floor segmentation
322 | points_img, coloring_img, ori_points_img = segment_floor(points, coloring, ori_points,
323 | (im.size[0], im.size[1]), dist_thresh, 1.0)
324 |
325 | # Filter the points within the annotaiton
326 | # Create a mask of bools the same size of depth points
327 | mask_ann = np.ones(coloring_img.shape[0], dtype=bool)
328 | # Keep points such as X coordinate is bigger than bounding box minimum coordinate
329 | mask_ann = np.logical_and(mask_ann, points_img[0, :] > min_x + 1)
330 | # remove points such as X coordinate is bigger than bounding box maximum coordinate
331 | mask_ann = np.logical_and(mask_ann, points_img[0, :] < max_x - 1)
332 | # Keep points such as Y coordinate is bigger than bounding box minimum coordinate
333 | mask_ann = np.logical_and(mask_ann, points_img[1, :] > min_y + 1)
334 | # remove points such as Y coordinate is bigger than bounding box maximum coordinate
335 | mask_ann = np.logical_and(mask_ann, points_img[1, :] < max_y - 1)
336 | # Keep only the interest points
337 | points_ann = points_img[:, mask_ann]
338 | coloring_ann = coloring_img[mask_ann]
339 | ori_points_ann = ori_points_img[:, mask_ann]
340 |
341 | if visualize:
342 | plt.figure(figsize=(9, 16))
343 | plt.imshow(im)
344 | plt.scatter(points_ann[0, :], points_ann[1, :], c = coloring_ann, s = 5)
345 | plt.axis('off')
346 |
347 | return points_ann, coloring_ann, ori_points_ann, im
348 |
349 | def segment_floor(points: np.array,
350 | coloring: np.array,
351 | ori_points: np.array,
352 | imsize: Tuple[float, float] = (1600, 900),
353 | dist_thresh: float = 0.3,
354 | min_dist: float = 1.0) -> Tuple:
355 | """
356 | Given a point sensor (lidar/radar) token and camera sample_data token, load point-cloud and map it to the image
357 | plane.
358 | :param points: point cloud mapped in the image frame
359 | :param coloring: depth of the point cloud in the camera frame
360 | :param ori_points: point cloud in LiDAR coordinate frame
361 | :param imsize: Size of image to render. The larger the slower this will run.
362 | :param dist_thresh: Threshold to consider points within floor plane.
363 | :param min_dist: Distance from the camera below which points are discarded.
364 | :return (points_img , coloring_img , ori_points_img).
365 | """
366 |
367 | # Remove points that are either outside or behind the camera. Leave a margin of 1 pixel for aesthetic reasons.
368 | mask_img = np.ones(coloring.shape[0], dtype=bool)
369 | mask_img = np.logical_and(mask_img, coloring > min_dist)
370 | mask_img = np.logical_and(mask_img, points[0, :] > 1)
371 | mask_img = np.logical_and(mask_img, points[0, :] < imsize[0] - 1)
372 | mask_img = np.logical_and(mask_img, points[1, :] > 1)
373 | mask_img = np.logical_and(mask_img, points[1, :] < imsize[1] - 1)
374 |
375 | # Filter the points within the image with the generated mask
376 | points_img = points[:, mask_img]
377 | coloring_img = coloring[mask_img]
378 | ori_points_img = ori_points[:, mask_img]
379 |
380 | # Segmenting the point cloud's floor
381 | lidar_points = np.asarray(ori_points_img.T, np.float32)
382 | pcd = o3d.geometry.PointCloud()
383 | pcd.points = o3d.utility.Vector3dVector(lidar_points)
384 |
385 | # inliers are the indeces of the the inliers (plane points)
386 | plane_model, inliers = pcd.segment_plane(distance_threshold = dist_thresh,
387 | ransac_n = 20,
388 | num_iterations = 1000)
389 | # Obtaining the plane's equation
390 | [a, b, c, d] = plane_model
391 | # print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
392 |
393 | # These lines plot the point cloud inliers and outliers
394 | # inlier_cloud = pcd.select_by_index(inliers)
395 | # inlier_cloud.paint_uniform_color([1.0, 0, 0])
396 | # outlier_cloud = pcd.select_by_index(inliers, invert=True)
397 | # o3d.visualization.draw_geometries([outlier_cloud])
398 |
399 | # Create a floor mask with the indeces inverted, points that are not in plane are of interest
400 | mask_floor = np.arange(points_img.shape[1])
401 | mask_floor = np.full(points_img.shape[1], True, dtype=bool)
402 | mask_floor[inliers] = False
403 |
404 | # Filter the points which are floor
405 | points_img = points_img[:, mask_floor]
406 | coloring_img = coloring_img[mask_floor]
407 | ori_points_img = ori_points_img[:, mask_floor]
408 |
409 | return points_img, coloring_img, ori_points_img
410 |
411 | def parse_features_to_numpy(path: str):
412 | """
413 | Given a features' vector path, read the txt file and parse the info as a numpy array
414 | :param path: Path to the features' vector file.
415 | :return (descriptor_array .
416 | """
417 |
418 | # Reading the file
419 | file = open(path,"r")
420 | file = file.read()
421 | # Replace undesired elements
422 | file = file.replace('(', '').replace(')', '').replace(' ', '')
423 | # Split the string and create a numpy array with floats
424 | descriptor_array = np.array(file.split(',')).astype(float)
425 |
426 | return descriptor_array
427 |
428 | def pred_to_world(nusc: NuScenes,
429 | pointsensor_token: str,
430 | bbox_3d,
431 | pointsensor_channel: str = 'LIDAR_TOP'):
432 | """
433 | Given an annotation token (3d detection in world coordinate frame) and pointsensor sample_data token,
434 | transform the label from world-coordinate frame to LiDAR.
435 | :param nusc: NuScenes instance.
436 | :param pointsensor_token: Lidar/radar sample_data token.
437 | :param bbox_3d: box object with the predicted 3D bbox info.
438 | :param pointsensor_channel: Laser channel name, e.g. 'LIDAR_TOP'.
439 | :return box mapped in the world coordinate frame.
440 | """
441 |
442 | # Point LiDAR sample
443 | point_data = nusc.get('sample_data', pointsensor_token) # Sample LiDAR info
444 |
445 | # From LiDAR to ego
446 | cs_rec = nusc.get('calibrated_sensor', point_data['calibrated_sensor_token'])
447 | # Transformation metadata from ego to world coordinate frame
448 | pose_rec = nusc.get('ego_pose', point_data['ego_pose_token'])
449 |
450 | # Map tp ego-vehicle coordinate frame
451 | bbox_3d.rotate(Quaternion(cs_rec['rotation']))
452 | bbox_3d.translate(np.array(cs_rec['translation']))
453 |
454 | # Map from ego-vehicle to world coordinate frame
455 | bbox_3d.rotate(Quaternion(pose_rec['rotation']))
456 | bbox_3d.translate(np.array(pose_rec['translation']))
457 |
458 | return bbox_3d
--------------------------------------------------------------------------------
/utils/vis.py:
--------------------------------------------------------------------------------
1 | # Code written by Miguel Saavedra & Gustavo Salazar, 2020.
2 |
3 | """
4 | Set
5 | Note: Util functions to plot the 3D bounding box in the image frame
6 | Describe longer Gus
7 | """
8 |
9 | import numpy as np
10 | from PIL import Image
11 |
12 | import matplotlib.pyplot as plt
13 | from matplotlib.axes import Axes
14 | from matplotlib import rcParams
15 | from shapely.geometry import MultiPoint, box
16 |
17 | from pyquaternion import Quaternion
18 | import os.path as osp
19 | from nuscenes import NuScenes
20 |
21 | # Utils for Lidar and Radar
22 | from nuscenes.nuscenes import NuScenes
23 | from nuscenes.utils.geometry_utils import view_points, BoxVisibility
24 | from nuscenes.utils.data_classes import LidarPointCloud
25 | from nuscenes.utils.data_classes import RadarPointCloud
26 | from nuscenes.scripts.export_2d_annotations_as_json import get_2d_boxes, post_process_coords
27 |
28 | from typing import Tuple, List, Dict, Union
29 |
30 |
31 | def plot_3d_image_(nusc: NuScenes,
32 | camera_token: str,
33 | label: str,
34 | sample_token: str,
35 | bbox_3d: box,
36 | gt_bbox_3d,
37 | pointsensor_channel: str = 'LIDAR_TOP'):
38 | """
39 | Given a 3D box, this method plots the Bounding box in the image frame
40 | :param nusc: NuScenes instance.
41 | :param camera_token: Camera sample_data token.
42 | :param label: Class' label.
43 | :param sample_token: Sample data token belonging to a camera keyframe.
44 | :param bbox_3d: box object with the predicted 3D bbox info.
45 | :param gt_bbox_3d: box object with the ground truth 3D bbox info.
46 | :param pointsensor_channel: Channel of the point cloud sensor.
47 | """
48 |
49 | # Sample record
50 | sample_record = nusc.get('sample', sample_token)
51 | # Sample cam sensor
52 | cam = nusc.get('sample_data', camera_token)
53 | # Sample point cloud
54 | pointsensor_token = sample_record['data'][pointsensor_channel]
55 | pointsensor = nusc.get('sample_data', pointsensor_token)
56 |
57 | # Obtain transformation matrices
58 | # From camera to ego
59 | cs_rec_cam = nusc.get('calibrated_sensor', cam['calibrated_sensor_token'])
60 | # From ego to world coordinate frame Cam
61 | pose_rec_cam = nusc.get('ego_pose', cam['ego_pose_token'])
62 |
63 | # From LiDAR to ego
64 | cs_rec_point = nusc.get('calibrated_sensor',
65 | pointsensor['calibrated_sensor_token'])
66 | # Transformation metadata from ego to world coordinate frame
67 | pose_rec_point = nusc.get('ego_pose', pointsensor['ego_pose_token'])
68 |
69 | # Transform box to camera frame
70 | # From LiDAR point sensor to ego vehicle
71 | bbox_3d.rotate(Quaternion(cs_rec_point['rotation']))
72 | bbox_3d.translate(np.array(cs_rec_point['translation']))
73 |
74 | # Move box to world coordinate frame
75 | bbox_3d.rotate(Quaternion(pose_rec_point['rotation']))
76 | bbox_3d.translate(np.array(pose_rec_point['translation']))
77 |
78 | # Move box to ego vehicle coord system.
79 | bbox_3d.translate(-np.array(pose_rec_cam['translation']))
80 | bbox_3d.rotate(Quaternion(pose_rec_cam['rotation']).inverse)
81 |
82 | # Move box to sensor coord system (cam).
83 | bbox_3d.translate(-np.array(cs_rec_cam['translation']))
84 | bbox_3d.rotate(Quaternion(cs_rec_cam['rotation']).inverse)
85 |
86 | # Draw vertical lines of 3D bounding box with this method
87 |
88 | def draw_rect(selected_corners, color, axes):
89 | prev = selected_corners[-1]
90 | for corner in selected_corners:
91 | axes.plot([prev[0], corner[0]], [prev[1], corner[1]],
92 | color=color, linewidth=2)
93 | prev = corner
94 |
95 | # Map corners to 2D image plane
96 | cs_record_calib = nusc.get(
97 | 'calibrated_sensor', cam['calibrated_sensor_token'])
98 | corners = view_points(bbox_3d.corners(), view=np.array(
99 | cs_record_calib['camera_intrinsic']), normalize=True)[:2, :]
100 |
101 | # Create axis and image
102 | fig, axes = plt.subplots(1, 1, figsize=(18, 9))
103 | # Open image of the interest camera
104 | im = Image.open(osp.join(nusc.dataroot, cam['filename']))
105 | axes.imshow(im)
106 |
107 | # Draw the sides of the bounding box
108 | colors = ('b', 'k', 'k')
109 |
110 | for i in range(4):
111 | axes.plot([corners.T[i][0], corners.T[i + 4][0]],
112 | [corners.T[i][1], corners.T[i + 4][1]],
113 | color=colors[2], linewidth=2)
114 |
115 | # Draw front (first 4 corners) and rear (last 4 corners) rectangles(3d)/lines(2d)
116 | draw_rect(corners.T[:4], colors[0], axes)
117 | draw_rect(corners.T[4:], colors[1], axes)
118 |
119 | # Draw line indicating the front
120 | center_bottom_forward = np.mean(corners.T[2:4], axis=0)
121 | center_bottom = np.mean(corners.T[[2, 3, 7, 6]], axis=0)
122 | axes.plot([center_bottom[0], center_bottom_forward[0]],
123 | [center_bottom[1], center_bottom_forward[1]],
124 | color=colors[0], linewidth=2)
125 |
126 | # If none nothing else is plotted, otherwise the ground truth is plotted.
127 | if gt_bbox_3d is not None:
128 | # Transform box to camera frame
129 | # From LiDAR point sensor to ego vehicle
130 | gt_bbox_3d.rotate(Quaternion(cs_rec_point['rotation']))
131 | gt_bbox_3d.translate(np.array(cs_rec_point['translation']))
132 |
133 | # Move box to world coordinate frame
134 | gt_bbox_3d.rotate(Quaternion(pose_rec_point['rotation']))
135 | gt_bbox_3d.translate(np.array(pose_rec_point['translation']))
136 |
137 | # Move box to ego vehicle coord system.
138 | gt_bbox_3d.translate(-np.array(pose_rec_cam['translation']))
139 | gt_bbox_3d.rotate(Quaternion(pose_rec_cam['rotation']).inverse)
140 |
141 | # Move box to sensor coord system (cam).
142 | gt_bbox_3d.translate(-np.array(cs_rec_cam['translation']))
143 | gt_bbox_3d.rotate(Quaternion(cs_rec_cam['rotation']).inverse)
144 |
145 | corners_gt = view_points(gt_bbox_3d.corners(), view = np.array(cs_record_calib['camera_intrinsic']), normalize = True)[:2, :]
146 |
147 | # Draw the sides of the bounding box
148 | colors_gt = ('m', 'm', 'm')
149 |
150 | for i in range(4):
151 | axes.plot([corners_gt.T[i][0], corners_gt.T[i + 4][0]],
152 | [corners_gt.T[i][1], corners_gt.T[i + 4][1]],
153 | color=colors_gt[2], linewidth = 2)
154 |
155 | # Draw front (first 4 corners) and rear (last 4 corners) rectangles(3d)/lines(2d)
156 | draw_rect(corners_gt.T[:4], colors_gt[0], axes)
157 | draw_rect(corners_gt.T[4:], colors_gt[1], axes)
158 |
159 | # Draw line indicating the front
160 | center_bottom_forward = np.mean(corners_gt.T[2:4], axis=0)
161 | center_bottom = np.mean(corners_gt.T[[2, 3, 7, 6]], axis=0)
162 | axes.plot([center_bottom[0], center_bottom_forward[0]],
163 | [center_bottom[1], center_bottom_forward[1]],
164 | color=colors_gt[0], linewidth=2)
165 |
166 | axes.set_title(nusc.get('sample_data', cam['token'])['channel'])
167 | axes.axis('off')
168 | axes.set_aspect('equal')
169 |
--------------------------------------------------------------------------------