├── Final Project.ipynb ├── README.md └── certificate.pdf /README.md: -------------------------------------------------------------------------------- 1 | # IBM-final-project-Machine-Learning 2 | Final project of IBM's course https://www.coursera.org/learn/machine-learning-with-python on coursera 3 | 4 | A simple comparison between KNN,SVM,Decision Tree and Logistic Regression models on a given data set of loans records. 5 | final results: 6 | 7 | 8 | | Algorithm | Jaccard | F1-score | LogLoss | 9 | |--------------------|---------|----------|---------| 10 | | KNN | 0.7407 | 0.7144 | NA | 11 | | Decision Tree | 0.7592 | 0.7618 | NA | 12 | | SVM | 0.7592 | 0.6959 | NA | 13 | | LogisticRegression | 0.7777 | 0.7089 | 0.4947 | 14 | 15 | 16 | Please read the note book for information about the data and implementation of classifiers used. 17 | 18 | *Please note that results may be improved by engineering new features or using different hyper parameters ,I have tried just to create a simple prediction only for demonstrating use of different classifiers from scikit learn library .* 19 | -------------------------------------------------------------------------------- /certificate.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/Moeinh77/IBM-final-project-Machine-Learning/b99f24a053235f59537a851307402f3e1777b771/certificate.pdf --------------------------------------------------------------------------------