├── .DS_Store ├── .gitattributes ├── Dockerfile ├── LFQ_report.Rmd ├── LICENSE ├── R ├── demo_functions.R ├── enrichment_functions.R ├── functions.R ├── tests.R └── volcano_function.R ├── README.md ├── data ├── .DS_Store ├── create_example_data.R ├── demo_data.RData ├── example_data.RData ├── exp_design_p10_0144.txt ├── lfq_results.RData └── proteinGroups.txt ├── dependencies.txt ├── docs ├── CV_plot.png ├── PCA_plot.png ├── Protein_number.png ├── Protein_overlap.png ├── _config.yml ├── correlation_plot.png ├── heatmap.png ├── imputation.png ├── index.md ├── missing_heatmap.png ├── missing_quant.png ├── pvalue_hist.png └── volcano_plot.png ├── global.R ├── google_analytics-GA4.html ├── google_analytics.js ├── server.R ├── shiny-server.conf ├── ui.R └── www ├── CV_plot.png ├── Info.Rmd ├── Info.html ├── Info.md ├── Info_cache ├── html │ ├── __packages │ ├── exp_design_b71c6ebe27cac9dec05c8ffe7432463e.RData │ ├── exp_design_b71c6ebe27cac9dec05c8ffe7432463e.rdb │ └── exp_design_b71c6ebe27cac9dec05c8ffe7432463e.rdx └── markdown_strict │ ├── __packages │ ├── exp_design_ba255ed02e26d1f4a5a14728288efd24.RData │ ├── exp_design_ba255ed02e26d1f4a5a14728288efd24.rdb │ └── exp_design_ba255ed02e26d1f4a5a14728288efd24.rdx ├── LFQ-Analyst_manual.pdf ├── LFQ-Analyst_report.pdf ├── LFQ_analyst.png ├── LFQ_analyst.svg ├── PCA_plot.png ├── Protein_number.png ├── Protein_overlap.png ├── correlation_plot.png ├── css └── custom.css ├── data ├── experimental_design_example.txt ├── experimental_design_example_feb19.txt ├── proteinGroups_example.txt └── proteinGroups_example_feb19.txt ├── google-analytics.js ├── google_analytics.js ├── heatmap.png ├── imputation.png ├── js └── google_analytics.js ├── mbpf_logo.jpg ├── mbpf_logo.png ├── missing_heatmap.png ├── missing_quant.png ├── monash_logo.png ├── pvalue_hist.png └── volcano_plot.png /.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/.DS_Store -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | # Source files 2 | # ============ 3 | *.Rdata text 4 | *.rdb binary 5 | *.rds binary 6 | *.Rd text 7 | *.Rdx binary 8 | *.Rmd text 9 | *.R text -------------------------------------------------------------------------------- /Dockerfile: -------------------------------------------------------------------------------- 1 | # syntax=docker/dockerfile:1 2 | FROM rocker/shiny-verse:4.2.1 3 | 4 | RUN apt-get update && apt-get install -yq \ 5 | libhdf5-dev libnetcdf-dev build-essential libgd-dev libbz2-dev libudunits2-dev libproj-dev libgdal-dev \ 6 | texlive-latex-base texlive-fonts-recommended texlive-fonts-extra texlive-latex-extra 7 | 8 | RUN Rscript -e 'install.packages(c("devtools", "tidyverse", "ggrepel", "httr", "rjson", "mvtnorm", "tmvtnorm", \ 9 | "imputeLCMD", "plotly", "DT", "BiocManager","testthat", "RColorBrewer", "shiny","shinyalert","shinydashboard", \ 10 | "shinyjs", "svglite", "rhandsontable", "shinyBS", "shinyWidgets", "ggVennDiagram", "shinycssloaders","shiny.info"), dependencies=TRUE)' 11 | 12 | #FROM bioconductor/bioconductor_docker:RELEASE_3_15 13 | RUN Rscript -e 'BiocManager::install(pkgs=c("DEP", "SummarizedExperiment", "limma", "ComplexHeatmap","pcaMethods","impute"), ask=F, dependencies=TRUE)' 14 | 15 | COPY ./ /srv/shiny-server/lfq-analyst 16 | COPY shiny-server.conf /etc/shiny-server/shiny-server.conf 17 | #RUN rm -f /srv/shiny-server/lfq-analyst/.Rprofile 18 | RUN chmod -R +r /srv/shiny-server/lfq-analyst -------------------------------------------------------------------------------- /LFQ_report.Rmd: -------------------------------------------------------------------------------- 1 | --- 2 | title: "LFQ-Analyst report" 3 | date: "`r format(Sys.time(), '%d %B, %Y')`" 4 | params: 5 | data: NA 6 | alpha: NA 7 | lfc: NA 8 | num_signif: NA 9 | tested_contrasts: NA 10 | numbers_input: NA 11 | coverage_input: NA 12 | pca_input: NA 13 | correlation_input: NA 14 | missval_input: NA 15 | detect_input: NA 16 | imputation_input: NA 17 | p_hist_input: NA 18 | heatmap_input: NA 19 | dep: NA 20 | pg_width: NA 21 | cvs_input: NA 22 | output: 23 | pdf_document: 24 | fig_caption: yes 25 | --- 26 | ```{r setup, include=FALSE} 27 | knitr::opts_chunk$set(opts.label="kill_prefix") # Remove line number and Comment "##" from printing 28 | ``` 29 | 30 | ## Method details 31 | 32 | The raw data files were analyzed using MaxQuant to obtain protein identifications and their respective label-free quantification values using in-house standard parameters. Of note, the data were normalization based on the assumption that the majority of proteins do not change between the different conditions. 33 | Statistical analysis was performed using an in-house generated R script based on the ProteinGroup.txt file. First, contaminant proteins, reverse sequences and proteins identified “only by site” were filtered out. In addition, proteins that have been only identified by a single peptide and proteins not identified/quantified consistantly in same condition have been removed as well. The LFQ data was converted to log2 scale, samples were grouped by conditions and missing values were imputed using the ‘Missing not At Random’ (MNAR) method, which uses random draws from a left-shifted Gaussian distribution of 1.8 StDev (standard deviation) apart with a width of 0.3. Protein-wise linear models combined with empirical Bayes statistics were used for the differential expression analyses. The _limma_ package from R Bioconductor was used to generate a list of differentially expressed proteins for each pair-wise comparison. A cutoff of the _adjusted p-value_ of 0.05 (Benjamini-Hochberg method) along with a |log2 fold change| of 1 has been applied to determine significantly regulated proteins in each pairwise comparison. 34 | 35 | 36 | ### Quick summary of parameters used: 37 | 38 | * Tested pairwise comparisons = `r params$tested_contrasts` 39 | * Adjusted _p-value_ cutoff <= `r params$alpha` 40 | * Log fold change cutoff >= `r params$lfc` 41 | 42 | ## Results 43 | 44 | #### MaxQuant result output contains `r nrow(params$data)` proteins groups of which _`r nrow(params$dep())`_ proteins were reproducibly quantified. 45 | 46 | #### `r params$num_signif` proteins differ significantly between samples. 47 | 48 | \pagebreak 49 | 50 | 51 | ## Exploratory Analysis (QC Plots) 52 | 53 | #### Principle Component Analysis (PCA) plot 54 | 55 | 56 | ```{r pca_plot, echo=FALSE, fig.height= 4, fig.align='center', warning=FALSE} 57 | print(params$pca_input()) 58 | ``` 59 | \pagebreak 60 | 61 | #### Sample Correlation matrix 62 | 63 | ```{r correlation_heatmap, echo=FALSE, fig.keep='first',fig.align='center'} 64 | print(params$correlation_input()) 65 | ``` 66 | \pagebreak 67 | 68 | #### Sample Coefficient of variation (CVs) 69 | 70 | ```{r sample_cv, echo=FALSE, warning=FALSE, message=FALSE, fig.align='center'} 71 | print(params$cvs_input()) 72 | ``` 73 | \pagebreak 74 | 75 | ### Proteomics Experiment Summary 76 | 77 | Protein quantified per sample (after pre-processing). 78 | 79 | ```{r numbers, echo=FALSE, warning=FALSE, results='hide', message=FALSE } 80 | print(params$numbers_input()) 81 | ``` 82 | \pagebreak 83 | 84 | Protein overlap in all samples. 85 | 86 | 87 | ```{r coverage, echo=FALSE, warning=FALSE} 88 | print(params$coverage_input()) 89 | ``` 90 | \pagebreak 91 | 92 | 93 | 94 | ## Missing Value handling 95 | 96 | #### Missing value heatmap 97 | A heatmap for proteins with missing value in each dataset. Each row represent a protein with missing value in one or more replicate. Each replicate is clustered based on presence of missing values in the sample. 98 | 99 | 100 | ```{r missing_value_heatmap, echo=FALSE, message=FALSE, results='hide',warning=FALSE, tidy=TRUE} 101 | params$missval_input() 102 | ``` 103 | \pagebreak 104 | 105 | #### Missing value distribution 106 | Protein expression distribution before and after imputation. The plot showing the effect of imputation on protein expression distribution. 107 | 108 | ```{r imputation_effect, echo=FALSE, message=FALSE, warning=FALSE, results='hide'} 109 | print(params$imputation_input()) 110 | ``` 111 | \pagebreak 112 | 113 | ## Differential Expression Analysis (Results Plots) 114 | 115 | #### Heatmap 116 | A plot representing an overview of expression of all significant (differencially expressed) proteins (rows) in all samples (columns). 117 | 118 | 119 | ```{r heatmap_2, echo=FALSE, warning=FALSE, results='hide', fig.keep='first',fig.align='center'} 120 | print(params$heatmap_input()) 121 | ``` 122 | 123 | \pagebreak 124 | 125 | #### Volcano Plots 126 | 127 | ```{r volcano, echo=FALSE, warning=FALSE, comment=NA,fig.align='center'} 128 | for(i in params$tested_contrasts){ 129 | # print(paste0('volcano_plot_',i,sep="")) 130 | print(plot_volcano_new(params$dep(),contrast = i,label_size = 2, add_names = F)) 131 | } 132 | ``` 133 | 134 | 135 | 136 | 137 | 138 | 139 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /R/demo_functions.R: -------------------------------------------------------------------------------- 1 | ### functions to deal with demo data 2 | 3 | LoadToEnvironment <- function(RData, env=new.env()) { 4 | load(RData, env) 5 | return(env) 6 | } 7 | 8 | #env<-LoadToEnvironment("data/example_data.RData") 9 | 10 | #https://stackoverflow.com/questions/31794702/r-shiny-dashboard-tabitems-not-apparing 11 | convertMenuItem <- function(mi,tabName) { 12 | mi$children[[1]]$attribs['data-toggle']="tab" 13 | mi$children[[1]]$attribs['data-value'] = tabName 14 | mi 15 | } 16 | 17 | progress_indicator<-function(text_message){ 18 | withProgress(message = text_message, 19 | detail = 'Please wait for a while', value = 0, { 20 | for (i in 1:15) { 21 | incProgress(1/15) 22 | Sys.sleep(0.25) 23 | } 24 | }) 25 | } 26 | #env<-LoadToEnvironment("data/example_data.RData") 27 | -------------------------------------------------------------------------------- /R/enrichment_functions.R: -------------------------------------------------------------------------------- 1 | enrichr_mod <- function(genes, databases = NULL) { 2 | httr::set_config(httr::config(ssl_verifypeer = 0L)) 3 | cat("Uploading data to Enrichr... ") 4 | if (is.vector(genes) & ! all(genes == "") & length(genes) != 0) { 5 | temp <- POST(url="http://maayanlab.cloud/Enrichr/enrich", 6 | body=list(list=paste(genes, collapse="\n"))) 7 | } else if (is.data.frame(genes)) { 8 | temp <- POST(url="http://maayanlab.cloud/Enrichr/enrich", 9 | body=list(list=paste(paste(genes[,1], genes[,2], sep=","), 10 | collapse="\n"))) 11 | } else { 12 | warning("genes must be a non-empty vector of gene names or a dataframe with genes and score.") 13 | } 14 | GET(url="http://maayanlab.cloud/Enrichr/share") 15 | cat("Done.\n") 16 | dbs <- as.list(databases) 17 | dfSAF <- options()$stringsAsFactors 18 | options(stringsAsFactors = FALSE) 19 | result <- lapply(dbs, function(x) { 20 | cat(" Querying ", x, "... ", sep="") 21 | r <- GET(url="http://maayanlab.cloud/Enrichr/export", 22 | query=list(file="API", backgroundType=x)) 23 | r <- gsub("'", "'", intToUtf8(r$content)) 24 | tc <- textConnection(r) 25 | r <- read.table(tc, sep = "\t", header = TRUE, quote = "", comment.char="") 26 | close(tc) 27 | cat("Done.\n") 28 | return(r) 29 | }) 30 | options(stringsAsFactors = dfSAF) 31 | cat("Parsing results... ") 32 | names(result) <- dbs 33 | cat("Done.\n") 34 | return(result) 35 | } 36 | 37 | 38 | ###### ========= Test_gsea new 39 | 40 | 41 | test_gsea_mod <- function(dep, 42 | databases, 43 | contrasts = TRUE) { 44 | # Show error if inputs are not the required classes 45 | assertthat::assert_that(inherits(dep, "SummarizedExperiment"), 46 | is.character(databases), 47 | is.logical(contrasts), 48 | length(contrasts) == 1) 49 | 50 | 51 | row_data <- rowData(dep, use.names = FALSE) 52 | # Show error if inputs do not contain required columns 53 | if(any(!c("name", "ID") %in% colnames(row_data))) { 54 | stop("'name' and/or 'ID' columns are not present in '", 55 | deparse(substitute(dep)), 56 | "'\nRun make_unique() and make_se() to obtain the required columns", 57 | call. = FALSE) 58 | } 59 | if(length(grep("_p.adj|_diff", colnames(row_data))) < 1) { 60 | stop("'[contrast]_diff' and/or '[contrast]_p.adj' columns are not present in '", 61 | deparse(substitute(dep)), 62 | "'\nRun test_diff() to obtain the required columns", 63 | call. = FALSE) 64 | } 65 | 66 | 67 | 68 | # Run background list 69 | message("Background") 70 | background <- gsub("[.].*", "", row_data$name) 71 | background_enriched <- enrichr_mod(background, databases) 72 | df_background <- NULL 73 | for(database in databases) { 74 | temp <- background_enriched[database][[1]] %>% 75 | mutate(var = database) 76 | df_background <- rbind(df_background, temp) 77 | } 78 | df_background$contrast <- "background" 79 | df_background$n <- length(background) 80 | 81 | OUT <- df_background %>% 82 | mutate(bg_IN = as.numeric(gsub("/.*", "", Overlap)), 83 | bg_OUT = n - bg_IN) %>% 84 | select(Term, bg_IN, bg_OUT) 85 | 86 | if(contrasts) { 87 | # Get gene symbols 88 | df <- row_data %>% 89 | as.data.frame() %>% 90 | select(name, ends_with("_significant")) %>% 91 | mutate(name = gsub("[.].*", "", name)) 92 | 93 | # Run enrichR for every contrast 94 | df_enrich <- NULL 95 | for(contrast in colnames(df[2:ncol(df)])) { 96 | message(gsub("_significant", "", contrast)) 97 | significant <- df[df[[contrast]],] 98 | genes <- significant$name 99 | enriched <- enrichr_mod(genes, databases) 100 | 101 | # Tidy output 102 | contrast_enrich <- NULL 103 | for(database in databases) { 104 | temp <- enriched[database][[1]] %>% 105 | mutate(var = database) 106 | contrast_enrich <- rbind(contrast_enrich, temp) 107 | } 108 | 109 | if (nrow(contrast_enrich) != 0){ 110 | contrast_enrich$contrast <- contrast 111 | contrast_enrich$n <- length(genes) 112 | 113 | # Background correction 114 | cat("Background correction... ") 115 | contrast_enrich <- contrast_enrich %>% 116 | mutate(IN = as.numeric(gsub("/.*", "", Overlap)), 117 | OUT = n - IN) %>% 118 | select(-n) %>% 119 | left_join(OUT, by = "Term") %>% 120 | mutate(log_odds = log2((IN * bg_OUT) / (OUT * bg_IN))) 121 | cat("Done.") 122 | 123 | df_enrich <- rbind(df_enrich, contrast_enrich) %>% 124 | mutate(contrast = gsub("_significant", "", contrast)) 125 | } else { 126 | cat("No enough significant genes for enrichment analysis") 127 | } 128 | } 129 | } else { 130 | # Get gene symbols 131 | significant <- row_data %>% 132 | as.data.frame() %>% 133 | select(name, significant) %>% 134 | filter(significant) %>% 135 | mutate(name = gsub("[.].*", "", name)) 136 | 137 | # Run enrichR 138 | genes <- significant$name 139 | enriched <- enrichr_mod(genes, databases) 140 | 141 | # Tidy output 142 | df_enrich <- NULL 143 | for(database in databases) { 144 | temp <- enriched[database][[1]] %>% 145 | mutate(var = database) 146 | df_enrich <- rbind(df_enrich, temp) 147 | } 148 | df_enrich$contrast <- "significant" 149 | df_enrich$n <- length(genes) 150 | 151 | # Background correction 152 | cat("Background correction... ") 153 | df_enrich <- df_enrich %>% 154 | mutate(IN = as.numeric(gsub("/.*", "", Overlap)), 155 | OUT = n - IN) %>% 156 | select(-n) %>% 157 | left_join(OUT, by = "Term") %>% 158 | mutate(log_odds = log2((IN * bg_OUT) / (OUT * bg_IN))) 159 | cat("Done.") 160 | } 161 | 162 | return(df_enrich) 163 | } 164 | 165 | 166 | #gene_names_true<-read_table("R/gene_names.txt",col_names = F) 167 | -------------------------------------------------------------------------------- /R/functions.R: -------------------------------------------------------------------------------- 1 | 2 | matrixplot_modify<-function(data, mapping, pts=list(), smt=list(), ...){ 3 | ggplot(data = data, mapping = mapping, ...) + 4 | do.call(geom_point, pts) + 5 | do.call(geom_smooth, smt) 6 | } 7 | 8 | 9 | LFQ_wrapper<-function(maxquant_data,expdesign){ 10 | 11 | ### Import input MaxQuant proteinGroups.txt file 12 | maxquant_output<- maxquant_data 13 | 14 | ## Optional experimental structure file 15 | exp_design <- expdesign 16 | 17 | ######========= DATA PREPROCESSING =========####### 18 | # Filter proteins by removing 19 | # 1. Reverse sequences 20 | # 2. Potential contaminants 21 | # 3. Proteins only identified by sites 22 | # 4. Proteins identified by single peptide 23 | data <- maxquant_output %>% 24 | dplyr:::filter(Reverse!="+", Only.identified.by.site!="+", Razor...unique.peptides>=2) 25 | 26 | ## Make data unique by combining gene names and protein ids in rows where either of them is absent 27 | data_unique<- DEP:::make_unique(data,"Gene.names","Protein.IDs",delim=";") 28 | 29 | #####======= Gnerating Summerised Experiment Object for differential expression analysis =======###### 30 | 31 | ## get the location of LFQ intensity columns 32 | lfq_columns<-grep("LFQ.", colnames(data_unique)) 33 | 34 | ## Convert the protein dataframe into Summerised experiment object for further analysis 35 | data_se<-DEP:::make_se(data_unique,lfq_columns,exp_design) 36 | 37 | 38 | ## Remove the rows with lot of missing values 39 | ## This is important step and depends of "thr" option 40 | ## If thr=0, it means all the replicates in each sample should have valid values, no missing values is allowed 41 | ## thr=1 means atleast 2 out 3 replicates should have valid values in each sample 42 | data_filter<-DEP:::filter_missval(data_se, thr = 1) 43 | 44 | # meanSdPlot(data_filter) This can be optional 45 | 46 | ######============== Normalisation ===========######## 47 | ## This function uses variance stabilizing transofmation (vsn) function for background correction 48 | ## Not much useful for proteomics datasets 49 | data_norm<-DEP:::normalize_vsn(data_filter) 50 | #meanSdPlot(data_norm)# Can be optional 51 | 52 | ######================ MISSING VALUE IMPUTATION ===============########## 53 | ## As for this dataset protein intensity plot indicated that proteins with missing value have on average low intensities, 54 | ## I choose missing value imputation to be one of MNAR method 55 | ## Following code will impute missing value with algorithm similar to perseus 56 | ## i.e. random values drawn from normal distribution of 1.8 SD apart with the width of 0.3 57 | data_imp_man<-DEP:::impute(data_filter,fun="man",shift=1.8,scale=0.3) 58 | 59 | 60 | ######============= DIFFERENTIAL EXPRESSION ANALYSIS ============########### 61 | 62 | ## This test uses protein-wise linear model with emperical Bayes statistics (used in R package limma) 63 | ## Limma is modified version of t-test and widely used for transcriptomics analysis 64 | ## Number of different options available such as "all", "control" and "man" to compare various conditions 65 | ## "all"- compares all pairwise comparisons 66 | ## "control"- asks to specify the control sample and compares every other sample against control 67 | ## "man"- manually specify which condition to test 68 | 69 | #data_diff_all_contrasts<-test_diff(data_imp_man,type='all') 70 | # If the data has multiple pairwise comparisions we need to generate volcano plot for each comparison 71 | # "comparison" is a character vectors that stores the name of all comparison and captured from 72 | # the message generated by "test_diff" function 73 | # Example of message "Tested_contrasts: "Control_vs_Condition1", "Control_vs_Condition2"" 74 | comparisons<-capture.output(data_diff_all_contrasts<-test_diff(data_imp_man,type='all'),type = "message") 75 | 76 | ## Remove "Tested contrasts:" 77 | comparisons<-gsub(".*: ","",comparisons) 78 | ## Split conditions into character vector 79 | comparisons<-unlist(strsplit(comparisons,",")) 80 | ## Remove leading and trailing spaces 81 | comparisons<-trimws(comparisons) 82 | 83 | ## Mark significantly different proteins 84 | ## Input needed to define the threshold 85 | ## "alpha"- adjusted p-value cutoff 86 | ## "lfc"- log2(Fold Change) cutoff 87 | alpha<- 0.05 88 | lfc<- 1 89 | param<- data.frame(alpha, lfc) 90 | dep<-DEP:::add_rejections(data_diff_all_contrasts,alpha = 0.05,lfc = log2(1)) 91 | 92 | 93 | ## Plot multiple scatterplots 94 | ## First get the LFQ expression data 95 | ## Use ggpairs function from GGally library to generate multiple matrix plots 96 | paired_data<-as.data.frame(assay(dep)) 97 | 98 | 99 | 100 | 101 | ######=============== ENRICHMENT ANALYSIS ============== ########## 102 | ## Protein Set Enrichment Analysis is based on EnrichR 103 | ## Need to specify the databases to perform enrichment test 104 | 105 | ## Gene Ontology Enrichment 106 | # gsea_results_GO <- test_gsea(dep) 107 | 108 | 109 | ## KEGG enrichment 110 | # results_kegg<- test_gsea(dep,databases = c("KEGG_2016")) 111 | 112 | 113 | ####=============== Write Results ===========####### 114 | data_result<-get_results(dep) 115 | # write.csv(data_result,"LFQ_results.csv",row.names = FALSE) 116 | 117 | save.image (file="data/lfq_results.RData") 118 | return(dep) 119 | 120 | } 121 | 122 | # get_pdf_plot<-function(type_of_plot){ 123 | # pdf(paste0(type_of_plot,".pdf",sep="") 124 | # plot(type_of_plot) 125 | # dev.off() 126 | # } 127 | 128 | coef_variation<-function(x){ 129 | coef=sd(x)/mean(x) 130 | } 131 | 132 | #### Plot CVs 133 | 134 | plot_cvs<-function(se) { 135 | 136 | ## backtransform data 137 | untransformed_intensity<- 2^(assay(se)) 138 | exp_design<-colData(se) 139 | 140 | ### merge untransformed to exp design and calculate cvs 141 | 142 | cvs_group<- untransformed_intensity %>% data.frame() %>% 143 | tibble::rownames_to_column() %>% 144 | tidyr::gather("ID", "Intensity", -rowname) %>% 145 | dplyr::left_join(.,data.frame(exp_design), by="ID") %>% 146 | dplyr::group_by(rowname,condition) %>% 147 | dplyr::summarise(cvs=coef_variation(Intensity)) %>% 148 | dplyr::group_by(condition)%>% 149 | dplyr::mutate(condition_median=median(cvs)) 150 | 151 | p1 <- ggplot(cvs_group, aes(cvs, color=condition, fill=condition)) + 152 | geom_histogram(alpha=.5, bins= 20, show.legend = FALSE) + 153 | facet_wrap(~condition) + 154 | geom_vline(aes(xintercept=condition_median, group=condition),color='grey40', 155 | linetype="dashed") + 156 | labs(title= 'Sample Coefficient of Variation', x="Coefficient of Variation", y="Count") + 157 | theme_DEP2() + 158 | theme(plot.title = element_text(hjust = 0.5,face = "bold")) 159 | 160 | p1 +geom_text(aes(x=max(cvs_group$cvs)-0.6, 161 | y=max(ggplot_build(p1)$data[[1]]$ymax*1.1), 162 | label=paste0("Median =",round(condition_median,2)*100,"%",by="")), 163 | show.legend = FALSE, size=4) 164 | 165 | } 166 | 167 | 168 | #### Get individual clusters from heatmap 169 | get_cluster_heatmap <- function(dep, type = c("contrast", "centered"), 170 | kmeans = FALSE, k = 6, 171 | col_limit = 6, indicate = NULL, 172 | clustering_distance = c("euclidean", "maximum", "manhattan", "canberra", 173 | "binary", "minkowski", "pearson", "spearman", "kendall", "gower"), 174 | row_font_size = 6, col_font_size = 10, plot = TRUE, ...) { 175 | 176 | # Show error if inputs are not the required classes 177 | if(is.integer(k)) k <- as.numeric(k) 178 | if(is.integer(col_limit)) col_limit <- as.numeric(col_limit) 179 | if(is.integer(row_font_size)) row_font_size <- as.numeric(row_font_size) 180 | if(is.integer(col_font_size)) col_font_size <- as.numeric(col_font_size) 181 | assertthat::assert_that(inherits(dep, "SummarizedExperiment"), 182 | is.character(type), 183 | is.logical(kmeans), 184 | is.numeric(k), 185 | length(k) == 1, 186 | is.numeric(col_limit), 187 | length(col_limit) == 1, 188 | is.numeric(row_font_size), 189 | length(row_font_size) == 1, 190 | is.numeric(col_font_size), 191 | length(col_font_size) == 1, 192 | is.logical(plot), 193 | length(plot) == 1) 194 | 195 | # Show error if inputs do not contain required columns 196 | type <- match.arg(type) 197 | clustering_distance <- match.arg(clustering_distance) 198 | 199 | # Extract row and col data 200 | row_data <- rowData(dep) 201 | col_data <- colData(dep) %>% 202 | as.data.frame() 203 | 204 | # Show error if inputs do not contain required columns 205 | if(any(!c("label", "condition", "replicate") %in% colnames(col_data))) { 206 | stop(paste0("'label', 'condition' and/or 'replicate' columns are not present in '", 207 | deparse(substitute(dep)), "'"), 208 | call. = FALSE) 209 | } 210 | if(length(grep("_diff", colnames(row_data))) < 1) { 211 | stop(paste0("'[contrast]_diff' columns are not present in '", 212 | deparse(substitute(dep)), 213 | "'.\nRun test_diff() to obtain the required columns."), 214 | call. = FALSE) 215 | } 216 | if(!"significant" %in% colnames(row_data)) { 217 | stop(paste0("'significant' column is not present in '", 218 | deparse(substitute(dep)), 219 | "'.\nRun add_rejections() to obtain the required column."), 220 | call. = FALSE) 221 | } 222 | 223 | # Heatmap annotation 224 | if(!is.null(indicate) & type == "contrast") { 225 | warning("Heatmap annotation only applicable for type = 'centered'", 226 | call. = FALSE) 227 | } 228 | if(!is.null(indicate) & type == "centered") { 229 | ha1 <- get_annotation(dep, indicate) 230 | } else { 231 | ha1 <- NULL 232 | } 233 | 234 | # Filter for significant proteins only 235 | filtered <- dep[row_data$significant, ] 236 | 237 | # Check for missing values 238 | if(any(is.na(assay(filtered)))) { 239 | warning("Missing values in '", deparse(substitute(dep)), "'. ", 240 | "Using clustering_distance = 'gower'", 241 | call. = FALSE) 242 | clustering_distance <- "gower" 243 | obs_NA <- TRUE 244 | } else { 245 | obs_NA <- FALSE 246 | } 247 | 248 | # Get centered intensity values ('centered') 249 | if(type == "centered") { 250 | rowData(filtered)$mean <- rowMeans(assay(filtered), na.rm = TRUE) 251 | df <- assay(filtered) - rowData(filtered)$mean 252 | } 253 | # Get contrast fold changes ('contrast') 254 | if(type == "contrast") { 255 | df <- rowData(filtered) %>% 256 | data.frame() %>% 257 | column_to_rownames(var = "name") %>% 258 | select(dplyr::ends_with("_diff")) 259 | colnames(df) <- 260 | gsub("_diff", "", colnames(df)) %>% 261 | gsub("_vs_", " vs ", .) 262 | } 263 | 264 | # Facultative kmeans clustering 265 | if(kmeans & obs_NA) { 266 | warning("Cannot perform kmeans clustering with missing values", 267 | call. = FALSE) 268 | kmeans <- FALSE 269 | } 270 | if(kmeans & !obs_NA) { 271 | set.seed(1) 272 | df_kmeans <- kmeans(df, k) 273 | if(type == "centered") { 274 | # Order the k-means clusters according to the maximum fold change 275 | # in all samples averaged over the proteins in the cluster 276 | order <- data.frame(df) %>% 277 | cbind(., cluster = df_kmeans$cluster) %>% 278 | dplyr::mutate(row = apply(.[, seq_len(ncol(.) - 1)], 1, function(x) max(x))) %>% 279 | dplyr::group_by(cluster) %>% 280 | dplyr::summarize(index = sum(row)/n()) %>% 281 | dplyr::arrange(desc(index)) %>% 282 | dplyr::pull(cluster) %>% 283 | match(seq_len(k), .) 284 | df_kmeans$cluster <- order[df_kmeans$cluster] 285 | } 286 | if(type == "contrast") { 287 | # Order the k-means clusters according to their average fold change 288 | order <- cbind(df, cluster = df_kmeans$cluster) %>% 289 | dplyr::gather(condition, diff, -cluster) %>% 290 | dplyr::group_by(cluster) %>% 291 | dplyr::summarize(row = mean(diff)) %>% 292 | dplyr::arrange(desc(row)) %>% 293 | dplyr::pull(cluster) %>% 294 | match(seq_len(k), .) 295 | df_kmeans$cluster <- order[df_kmeans$cluster] 296 | } 297 | } 298 | 299 | if(ncol(df) == 1) { 300 | col_clust = FALSE 301 | } else { 302 | col_clust = TRUE 303 | } 304 | if(nrow(df) == 1) { 305 | row_clust = FALSE 306 | } else { 307 | row_clust = TRUE 308 | } 309 | if(clustering_distance == "gower") { 310 | clustering_distance <- function(x) { 311 | dist <- cluster::daisy(x, metric = "gower") 312 | dist[is.na(dist)] <- max(dist, na.rm = TRUE) 313 | return(dist) 314 | } 315 | } 316 | 317 | # Legend info 318 | legend <- ifelse(type == "contrast", 319 | "log2 Fold change", 320 | "log2 Centered intensity") 321 | 322 | # Heatmap 323 | ht1 = Heatmap(df, 324 | col = circlize::colorRamp2( 325 | seq(-col_limit, col_limit, (col_limit/5)), 326 | rev(RColorBrewer::brewer.pal(11, "RdBu"))), 327 | split = if(kmeans) {df_kmeans$cluster} else {NULL}, 328 | cluster_rows = col_clust, 329 | cluster_columns = row_clust, 330 | row_names_side = "left", 331 | column_names_side = "top", 332 | clustering_distance_rows = clustering_distance, 333 | clustering_distance_columns = clustering_distance, 334 | heatmap_legend_param = list(color_bar = "continuous", 335 | legend_direction = "horizontal", 336 | legend_width = unit(5, "cm"), 337 | title_position = "lefttop"), 338 | name = legend, 339 | row_names_gp = gpar(fontsize = row_font_size), 340 | column_names_gp = gpar(fontsize = col_font_size), 341 | top_annotation = ha1, 342 | ...) 343 | # return (row_order(ht1)) 344 | # Return data.frame 345 | p <- draw(ht1, heatmap_legend_side = "top") 346 | row_clusters<- row_order(ht1) 347 | #mat<-as.matrix(df) 348 | 349 | # for (i in 1:length(row_clusters)){ 350 | # if (i==1){ 351 | # clu <-t(t(row.names(ht1[row_clusters[[i]],]))) 352 | # out <-cbind (clu, paste("cluster", i, sep="")) 353 | # colnames(out)<- c("ProteinID", "Cluster") 354 | # } 355 | # else{ 356 | # clu <- t(t(row.names(ht1[row_clusters[[i]],]))) 357 | # clu <- cbind(clu, paste("cluster", i, sep = "")) 358 | # out <- cbind(out, clu) 359 | # } 360 | # } 361 | heatmap_list <- list(p, row_clusters) 362 | return(heatmap_list) 363 | } 364 | 365 | # Internal function to get ComplexHeatmap::HeatmapAnnotation object 366 | get_annotation <- function(dep, indicate) { 367 | assertthat::assert_that( 368 | inherits(dep, "SummarizedExperiment"), 369 | is.character(indicate)) 370 | 371 | # Check indicate columns 372 | col_data <- colData(dep) %>% 373 | as.data.frame() 374 | columns <- colnames(col_data) 375 | if(all(!indicate %in% columns)) { 376 | stop("'", 377 | paste0(indicate, collapse = "' and/or '"), 378 | "' column(s) is/are not present in ", 379 | deparse(substitute(dep)), 380 | ".\nValid columns are: '", 381 | paste(columns, collapse = "', '"), 382 | "'.", 383 | call. = FALSE) 384 | } 385 | if(any(!indicate %in% columns)) { 386 | indicate <- indicate[indicate %in% columns] 387 | warning("Only used the following indicate column(s): '", 388 | paste0(indicate, collapse = "', '"), 389 | "'") 390 | } 391 | 392 | # Get annotation 393 | anno <- dplyr::select(col_data, indicate) 394 | 395 | # Annotation color 396 | names <- colnames(anno) 397 | anno_col <- vector(mode="list", length=length(names)) 398 | names(anno_col) <- names 399 | for(i in names) { 400 | var = anno[[i]] %>% unique() %>% sort() 401 | if(length(var) == 1) 402 | cols <- c("black") 403 | if(length(var) == 2) 404 | cols <- c("orangered", "cornflowerblue") 405 | if(length(var) < 7 & length(var) > 2) 406 | cols <- RColorBrewer::brewer.pal(length(var), "Pastel1") 407 | if(length(var) > 7) 408 | cols <- RColorBrewer::brewer.pal(length(var), "Set3") 409 | names(cols) <- var 410 | anno_col[[i]] <- cols 411 | } 412 | 413 | # HeatmapAnnotation object 414 | ComplexHeatmap::HeatmapAnnotation(df = anno, 415 | col = anno_col, 416 | show_annotation_name = TRUE) 417 | } 418 | 419 | 420 | #### ===== limma BH FDR ===== ##### 421 | 422 | test_limma <- function(se, type = c("control", "all", "manual"), 423 | control = NULL, test = NULL, 424 | design_formula = formula(~ 0 + condition), 425 | paired = FALSE) { 426 | #require("dplyr", "tidyr", "purrr") 427 | 428 | # Show error if inputs are not the required classes 429 | assertthat::assert_that(inherits(se, "SummarizedExperiment"), 430 | is.character(type), 431 | class(design_formula) == "formula") 432 | if (paired == FALSE){ 433 | design_formula <- design_formula 434 | }else{ 435 | design_formula<-formula(~ 0 + condition + replicate) 436 | } 437 | 438 | 439 | # Show error if inputs do not contain required columns 440 | type <- match.arg(type) 441 | 442 | col_data <- colData(se) 443 | raw <- assay(se) 444 | 445 | if(any(!c("name", "ID") %in% colnames(rowData(se)))) { 446 | stop("'name' and/or 'ID' columns are not present in '", 447 | deparse(substitute(se)), 448 | "'\nRun make_unique() and make_se() to obtain the required columns", 449 | call. = FALSE) 450 | } 451 | if(any(!c("label", "condition", "replicate") %in% colnames(col_data))) { 452 | stop("'label', 'condition' and/or 'replicate' columns are not present in '", 453 | deparse(substitute(se)), 454 | "'\nRun make_se() or make_se_parse() to obtain the required columns", 455 | call. = FALSE) 456 | } 457 | if(any(is.na(raw))) { 458 | warning("Missing values in '", deparse(substitute(se)), "'") 459 | } 460 | 461 | if(!is.null(control)) { 462 | # Show error if control input is not valid 463 | assertthat::assert_that(is.character(control), 464 | length(control) == 1) 465 | if(!control %in% unique(col_data$condition)) { 466 | stop("run test_diff() with a valid control.\nValid controls are: '", 467 | paste0(unique(col_data$condition), collapse = "', '"), "'", 468 | call. = FALSE) 469 | } 470 | } 471 | 472 | # variables in formula 473 | variables <- terms.formula(design_formula) %>% 474 | attr(., "variables") %>% 475 | as.character() %>% 476 | .[-1] 477 | 478 | # Throw error if variables are not col_data columns 479 | if(any(!variables %in% colnames(col_data))) { 480 | stop("run make_diff() with an appropriate 'design_formula'") 481 | } 482 | if(variables[1] != "condition") { 483 | stop("first factor of 'design_formula' should be 'condition'") 484 | } 485 | 486 | # Obtain variable factors 487 | for(var in variables) { 488 | temp <- factor(col_data[[var]]) 489 | assign(var, temp) 490 | } 491 | 492 | # Make an appropriate design matrix 493 | design <- model.matrix(design_formula, data = environment()) 494 | colnames(design) <- gsub("condition", "", colnames(design)) 495 | 496 | # Generate contrasts to be tested 497 | # Either make all possible combinations ("all"), 498 | # only the contrasts versus the control sample ("control") or 499 | # use manual contrasts 500 | conditions <- as.character(unique(condition)) 501 | if(type == "all") { 502 | # All possible combinations 503 | cntrst <- apply(utils::combn(conditions, 2), 2, paste, collapse = " - ") 504 | 505 | if(!is.null(control)) { 506 | # Make sure that contrast containing 507 | # the control sample have the control as denominator 508 | flip <- grep(paste("^", control, sep = ""), cntrst) 509 | if(length(flip) >= 1) { 510 | cntrst[flip] <- cntrst[flip] %>% 511 | gsub(paste(control, "- ", sep = " "), "", .) %>% 512 | paste(" - ", control, sep = "") 513 | } 514 | } 515 | 516 | } 517 | if(type == "control") { 518 | # Throw error if no control argument is present 519 | if(is.null(control)) 520 | stop("run test_diff(type = 'control') with a 'control' argument") 521 | 522 | # Make contrasts 523 | cntrst <- paste(conditions[!conditions %in% control], 524 | control, 525 | sep = " - ") 526 | } 527 | if(type == "manual") { 528 | # Throw error if no test argument is present 529 | if(is.null(test)) { 530 | stop("run test_diff(type = 'manual') with a 'test' argument") 531 | } 532 | assertthat::assert_that(is.character(test)) 533 | 534 | if(any(!unlist(strsplit(test, "_vs_")) %in% conditions)) { 535 | stop("run test_diff() with valid contrasts in 'test'", 536 | ".\nValid contrasts should contain combinations of: '", 537 | paste0(conditions, collapse = "', '"), 538 | "', for example '", paste0(conditions[1], "_vs_", conditions[2]), 539 | "'.", call. = FALSE) 540 | } 541 | 542 | cntrst <- gsub("_vs_", " - ", test) 543 | 544 | } 545 | # Print tested contrasts 546 | message("Tested contrasts: ", 547 | paste(gsub(" - ", "_vs_", cntrst), collapse = ", ")) 548 | 549 | # Test for differential expression by empirical Bayes moderation 550 | # of a linear model on the predefined contrasts 551 | fit <- lmFit(raw, design = design) 552 | made_contrasts <- makeContrasts(contrasts = cntrst, levels = design) 553 | contrast_fit <- contrasts.fit(fit, made_contrasts) 554 | 555 | if(any(is.na(raw))) { 556 | for(i in cntrst) { 557 | covariates <- strsplit(i, " - ") %>% unlist 558 | single_contrast <- makeContrasts(contrasts = i, levels = design[, covariates]) 559 | single_contrast_fit <- contrasts.fit(fit[, covariates], single_contrast) 560 | contrast_fit$coefficients[, i] <- single_contrast_fit$coefficients[, 1] 561 | contrast_fit$stdev.unscaled[, i] <- single_contrast_fit$stdev.unscaled[, 1] 562 | } 563 | } 564 | 565 | eB_fit <- eBayes(contrast_fit) 566 | 567 | # function to retrieve the results of 568 | # the differential expression test using 'fdrtool' 569 | retrieve_fun <- function(comp, fit = eB_fit){ 570 | res <- topTable(fit, sort.by = "t", adjust.method="BH", coef = comp, 571 | number = Inf, confint = TRUE) 572 | # res <- res[!is.na(res$t),] 573 | #fdr_res <- fdrtool::fdrtool(res$t, plot = FALSE, verbose = FALSE) 574 | # res$qval <- res$adj.P.Value 575 | #res$lfdr <- fdr_res$lfdr 576 | res$comparison <- rep(comp, dim(res)[1]) 577 | res <- tibble::rownames_to_column(res) 578 | return(res) 579 | } 580 | 581 | #limma_res<- topTable(eB_fit, sort.by = 'B', adjust.method="BH", coef = cntrst, number = Inf, confint = T ) 582 | # limma_res$comparison <- rep(cntrst, dim(limma_res)[1]) 583 | #limma_res <- rownames_to_column(limma_res) 584 | # Retrieve the differential expression test results 585 | limma_res <- purrr::map_df(cntrst, retrieve_fun) 586 | 587 | # Select the logFC, CI and qval variables 588 | table <- limma_res %>% 589 | dplyr::select(rowname, logFC, CI.L, CI.R, P.Value, adj.P.Val, comparison) %>% 590 | dplyr::mutate(comparison = gsub(" - ", "_vs_", comparison)) %>% 591 | tidyr::gather(variable, value, -c(rowname,comparison)) %>% 592 | dplyr::mutate(variable = dplyr::recode(variable, logFC = "diff", P.Value = "p.val", adj.P.Val = "p.adj")) %>% 593 | tidyr::unite(temp, comparison, variable) %>% 594 | tidyr::spread(temp, value) 595 | 596 | # avoid wrong order of similar comparison names 597 | comp_list <- sort(gsub(" - ", "_vs_", cntrst)) 598 | ordered_colNames <- c("rowname" , 599 | lapply(comp_list, function(x) colnames(table)[grep(paste0(x, "(_CI.L|_CI.R|_diff|_p.adj|_p.val)"), colnames(table))]) %>% unlist()) 600 | 601 | table <- table %>% select(all_of(ordered_colNames)) 602 | 603 | rowData(se) <- merge(rowData(se), table, 604 | by.x = "name", by.y = "rowname", all.x = TRUE) 605 | return(se) 606 | #return(table) 607 | } 608 | 609 | get_results_proteins <- function(dep) { 610 | # Show error if inputs are not the required classes 611 | assertthat::assert_that(inherits(dep, "SummarizedExperiment")) 612 | 613 | row_data <- rowData(dep) 614 | # Show error if inputs do not contain required columns 615 | if(any(!c("name", "ID") %in% colnames(row_data))) { 616 | stop("'name' and/or 'ID' columns are not present in '", 617 | deparse(substitute(dep)), 618 | "'\nRun make_unique() and make_se() to obtain the required columns", 619 | call. = FALSE) 620 | } 621 | if(length(grep("_p.adj|_diff", colnames(row_data))) < 1) { 622 | stop("'[contrast]_diff' and/or '[contrast]_p.adj' columns are not present in '", 623 | deparse(substitute(dep)), 624 | "'\nRun test_diff() to obtain the required columns", 625 | call. = FALSE) 626 | } 627 | 628 | # Obtain average protein-centered enrichment values per condition 629 | row_data$mean <- rowMeans(assay(dep), na.rm = TRUE) 630 | centered <- assay(dep) - row_data$mean 631 | centered <- data.frame(centered) %>% 632 | tibble::rownames_to_column() %>% 633 | tidyr::gather(ID, val, -rowname) %>% 634 | dplyr::left_join(., data.frame(colData(dep)), by = "ID") 635 | centered <- dplyr::group_by(centered, rowname, condition) %>% 636 | dplyr::summarize(val = mean(val, na.rm = TRUE)) %>% 637 | dplyr::mutate(val = signif(val, digits = 3)) %>% 638 | tidyr::spread(condition, val) 639 | colnames(centered)[2:ncol(centered)] <- 640 | paste(colnames(centered)[2:ncol(centered)], "_centered", sep = "") 641 | 642 | # Obtain average enrichments of conditions versus the control condition 643 | ratio <- as.data.frame(row_data) %>% 644 | # tibble::column_to_rownames("name") %>% 645 | dplyr::select(dplyr::ends_with("diff")) %>% 646 | signif(., digits = 3) %>% 647 | tibble::rownames_to_column() 648 | colnames(ratio)[2:ncol(ratio)] <- 649 | gsub("_diff", "_log2 fold change", colnames(ratio)[2:ncol(ratio)]) 650 | # df <- left_join(ratio, centered, by = "rowname") 651 | 652 | # Select the adjusted p-values and significance columns 653 | pval <- as.data.frame(row_data) %>% 654 | # tibble::column_to_rownames("name") %>% 655 | dplyr::select(dplyr::ends_with("p.val"), 656 | dplyr::ends_with("p.adj"), 657 | dplyr::ends_with("significant")) %>% 658 | tibble::rownames_to_column() 659 | pval[, grep("p.adj", colnames(pval))] <- 660 | pval[, grep("p.adj", colnames(pval))] %>% 661 | signif(digits = 3) 662 | pval[, grep("p.val", colnames(pval))] <- 663 | pval[, grep("p.val", colnames(pval))] %>% 664 | signif(digits = 3) 665 | 666 | # Join into a results table 667 | ids <- as.data.frame(row_data) %>% dplyr::select(name, ID) 668 | table<-dplyr::left_join(ids,ratio, by=c("name"="rowname")) 669 | table <- dplyr::left_join(table, pval, by = c("name" = "rowname")) 670 | # table <- dplyr::left_join(table, centered, by = c("name" = "rowname")) %>% 671 | # dplyr::arrange(desc(significant)) 672 | table<-as.data.frame(row_data)[, colnames(row_data) %in% c("name", "imputed", "num_NAs", "Protein.names")] %>% 673 | dplyr::left_join(table, ., by = "name") 674 | table<-table %>% dplyr::arrange(desc(significant)) 675 | colnames(table)[1]<-c("Gene Name") 676 | colnames(table)[2]<-c("Protein IDs") 677 | table <- table %>% dplyr::relocate(Protein.names, .after = last_col()) 678 | table <- table %>% dplyr::select(grep("[^Protein.names]",colnames(table)), "Protein.names") 679 | # table$Gene_name<-table$name 680 | return(table) 681 | } 682 | 683 | 684 | 685 | ####################################################### 686 | ## Plot Enrichment Results 687 | ####################################################### 688 | 689 | plot_enrichment <- function(gsea_results, number = 10, alpha = 0.05, 690 | contrasts = NULL, databases = NULL, 691 | nrow = 1,term_size = 8) { 692 | assertthat::assert_that(is.data.frame(gsea_results), 693 | is.numeric(number), 694 | length(number) == 1, 695 | is.numeric(alpha), 696 | length(alpha) == 1, 697 | is.numeric(term_size), 698 | length(term_size) == 1, 699 | is.numeric(nrow), 700 | length(nrow) == 1) 701 | 702 | # Check gsea_results object 703 | if(any(!c("Term", "var", 704 | "contrast","Adjusted.P.value") 705 | %in% colnames(gsea_results))) { 706 | stop("'", deparse(substitute(gsea_results)), 707 | "' does not contain the required columns", 708 | "\nMake sure that HGNC gene symbols are present", 709 | "\n in your 'Gene Names' column of Results table", 710 | call. = FALSE) 711 | } 712 | 713 | no_enrichment_text <- paste("Enrichment could not be performed.\n", 714 | "\nDownload enrichment result table for more details. \n") 715 | 716 | if(!is.null(contrasts)) { 717 | assertthat::assert_that(is.character(contrasts)) 718 | 719 | valid_contrasts <- unique(gsea_results$contrast) 720 | 721 | if(!all(contrasts %in% valid_contrasts)) { 722 | # valid_cntrsts_msg <- paste0("Valid contrasts are: '", 723 | # paste0(valid_contrasts, collapse = "', '"), 724 | # "'") 725 | # stop("Not a valid contrast, please run `plot_gsea()`", 726 | # "with a valid contrast as argument\n", 727 | # valid_cntrsts_msg, 728 | # call. = FALSE) 729 | return(ggplot() + 730 | annotate("text", x = 4, y = 25, size=8, label = no_enrichment_text) + 731 | theme_void() 732 | ) 733 | } 734 | if(!any(contrasts %in% valid_contrasts)) { 735 | contrasts <- contrasts[contrasts %in% valid_contrasts] 736 | message("Not all contrasts found", 737 | "\nPlotting the following contrasts: '", 738 | paste0(contrasts, collapse = "', '"), "'") 739 | } 740 | 741 | gsea_results <- filter(gsea_results, contrast %in% contrasts) 742 | } 743 | if(!is.null(databases)) { 744 | assertthat::assert_that(is.character(databases)) 745 | 746 | valid_databases <- unique(gsea_results$var) 747 | 748 | if(all(!databases %in% valid_databases)) { 749 | valid_cntrsts_msg <- paste0("Valid databases are: '", 750 | paste0(valid_databases, collapse = "', '"), 751 | "'") 752 | stop("Not a valid database, please run `plot_gsea()`", 753 | "with valid databases as argument\n", 754 | valid_cntrsts_msg, 755 | call. = FALSE) 756 | } 757 | if(any(!databases %in% valid_databases)) { 758 | databases <- databases[databases %in% valid_databases] 759 | message("Not all databases found", 760 | "\nPlotting the following databases: '", 761 | paste0(databases, collapse = "', '"), "'") 762 | } 763 | 764 | gsea_results <- filter(gsea_results, var %in% databases) 765 | } 766 | 767 | # Get top enriched gene sets 768 | terms <- gsea_results %>% 769 | dplyr::group_by(contrast, var) %>% 770 | dplyr::filter(Adjusted.P.value <= alpha) %>% 771 | dplyr::arrange(Adjusted.P.value) %>% 772 | dplyr::slice(seq_len(number)) %>% 773 | .$Term 774 | subset <- gsea_results %>% 775 | dplyr::filter(Term %in% terms) %>% 776 | dplyr::arrange(var, Adjusted.P.value) 777 | 778 | subset$Term <- readr::parse_factor(subset$Term, levels = unique(subset$Term)) 779 | subset$var <- readr::parse_factor(subset$var, levels = unique(subset$var)) 780 | 781 | # Plot top enriched gene sets 782 | if (nrow(subset) == 0){ 783 | p <- ggplot() + 784 | annotate("text", x = 4, y = 25, size=8, label = no_enrichment_text) + 785 | theme_void() 786 | } else { 787 | p<-ggplot(subset, aes(Term, 788 | y=-log10(`Adjusted.P.value`))) + 789 | geom_col(aes(fill = log_odds )) + 790 | facet_wrap(~contrast, nrow = nrow) + 791 | coord_flip() + 792 | labs(y = "-Log10 adjusted p-value", 793 | fill = "Log2 odds ratio (vs. current background)") + 794 | theme_bw() + 795 | theme(legend.position = "top", 796 | legend.text = element_text(size = 9)) + 797 | scale_fill_distiller(palette="Spectral") 798 | } 799 | } 800 | 801 | #### ==== get prefix function 802 | 803 | get_prefix <- function(words) { 804 | # Show error if input is not the required class 805 | assertthat::assert_that(is.character(words)) 806 | 807 | # Show error if 'words' contains 1 or less elements 808 | if(length(words) <= 1) { 809 | stop("'words' should contain more than one element") 810 | } 811 | # Show error if 'words' contains NA 812 | if(any(is.na(words))) { 813 | stop("'words' contains NAs") 814 | } 815 | 816 | # Truncate words to smallest name 817 | minlen <- min(nchar(words)) 818 | truncated <- substr(words, 1, minlen) 819 | 820 | # Show error if one of the elements is shorter than one character 821 | if(minlen < 1) { 822 | stop("At least one of the elements is too short") 823 | } 824 | 825 | # Get identifical characters 826 | mat <- data.frame(strsplit(truncated, ""), stringsAsFactors = FALSE) 827 | identical <- apply(mat, 1, function(x) length(unique(x)) == 1) 828 | 829 | # Obtain the longest common prefix 830 | prefix <- as.logical(cumprod(identical)) 831 | paste(mat[prefix, 1], collapse = "") 832 | } 833 | 834 | #### ===== delete prefix function 835 | 836 | delete_prefix <- function(words) { 837 | # Get prefix 838 | prefix <- get_prefix(words) 839 | # Delete prefix from words 840 | gsub(paste0("^", prefix), "", words) 841 | } 842 | 843 | ### Filter missing values use different threshold per conditions/groups 844 | threshold_detect <- function(sample_rep){ 845 | valid_keep <- trunc(sample_rep/2) + 1 846 | threshold <- sample_rep - valid_keep 847 | return(threshold) 848 | } 849 | 850 | keep_function <- function(se){ 851 | # Show error if inputs are not the required classes 852 | 853 | # Show error if inputs do not contain required columns 854 | if(any(!c("name", "ID") %in% colnames(rowData(se, use.names = FALSE)))) { 855 | stop("'name' and/or 'ID' columns are not present in '", 856 | deparse(substitute(se)), 857 | "'\nRun make_unique() and make_se() to obtain the required columns", 858 | call. = FALSE) 859 | } 860 | if(any(!c("label", "condition", "replicate") %in% colnames(colData(se)))) { 861 | stop("'label', 'condition' and/or 'replicate' columns are not present in '", 862 | deparse(substitute(se)), 863 | "'\nRun make_se() or make_se_parse() to obtain the required columns", 864 | call. = FALSE) 865 | } 866 | 867 | # Make assay values binary (1 = valid value) 868 | bin_data <- assay(se) 869 | 870 | # new, removed ref columns from dataset 871 | bin_data <- bin_data %>% data.frame() 872 | idx <- is.na(bin_data) # idx <- is.na(assay(se)) 873 | bin_data[!idx] <- 1 874 | bin_data[idx] <- 0 875 | 876 | # Filter se on the maximum allowed number of 877 | # missing values per condition (defined by thr) 878 | keep <- bin_data %>% 879 | data.frame() %>% 880 | rownames_to_column() %>% 881 | gather(ID, value, -rowname) %>% 882 | left_join(., data.frame(colData(se)), by = "ID") %>% 883 | group_by(rowname, condition) %>% 884 | summarize(miss_val = n() - sum(value)) 885 | return(keep) 886 | } 887 | 888 | filter_missval_new <- function(se,one_condition,exp_df){ 889 | threshold <- exp_df$thr[exp_df$condition==one_condition] %>% unlist() 890 | keep <- keep_function(se) 891 | keep1 <- keep %>% 892 | dplyr::filter(condition == one_condition) %>% 893 | dplyr::filter(miss_val <= threshold) 894 | keep1 <- keep1 %>% 895 | tidyr::spread(condition, miss_val) 896 | se_fltrd <- se[keep1$rowname, ] 897 | return(se_fltrd) 898 | } -------------------------------------------------------------------------------- /R/tests.R: -------------------------------------------------------------------------------- 1 | ### Test if column names are proper in experiment design file 2 | 3 | exp_design_test<-function(exp_design){ 4 | col_names<-colnames(exp_design) 5 | ## 6 | if(!"label" %in% col_names){ 7 | stop(safeError("The column 'label'(case sensitive) is not found in the Experimental Design File")) 8 | } 9 | 10 | else if (!"condition" %in% col_names){ 11 | stop(safeError("The column 'condition' (case sensitive) is not found in the Experimental Design File")) 12 | } 13 | 14 | else if (!"replicate" %in% col_names){ 15 | stop(safeError("The column 'replicate' (case sensitive) is not found in the Experimental Design File")) 16 | } 17 | 18 | } 19 | 20 | ### Test if column names are proper in maxquant ProteinGroups file 21 | maxquant_input_test<-function(maxquant_input){ 22 | col_names<-colnames(maxquant_input) 23 | ## 24 | if(!"Gene.names" %in% col_names){ 25 | stop(safeError("The column 'Gene names' is not found in the MaxQuant proteinGroups File")) 26 | } 27 | 28 | else if (any(grepl("LFQ", col_names))==FALSE){ 29 | stop(safeError("Columns starting with 'LFQ' are not found in the MaxQuant proteinGroups File")) 30 | } 31 | 32 | else if (!"Protein.IDs" %in% col_names){ 33 | stop(safeError("The column 'Protein IDs' is not found in the MaxQuant proteinGroups File")) 34 | } 35 | 36 | else if (!"Reverse" %in% col_names){ 37 | stop(safeError("The column 'Reverse' is not found in the MaxQuant proteinGroups File")) 38 | } 39 | 40 | else if (!"Potential.contaminant" %in% col_names){ 41 | stop(safeError("The column 'Potential contaminant' is not found in the MaxQuant proteinGroups File")) 42 | } 43 | 44 | else if (!"Only.identified.by.site" %in% col_names){ 45 | stop(safeError("The column 'Only identified by site' is not found in the MaxQuant proteinGroups File")) 46 | } 47 | 48 | else if (!"Razor...unique.peptides" %in% col_names){ 49 | stop(safeError("The column 'Razor + unique peptides' is not found in the MaxQuant proteinGroups File")) 50 | } 51 | 52 | else if (!"Protein.names" %in% col_names){ 53 | stop(safeError("The column 'Protein names' is not found in the MaxQuant proteinGroups File")) 54 | } 55 | 56 | } 57 | 58 | 59 | ### Test if experimental design names and LFQ column names match 60 | 61 | test_match_lfq_column_design<-function(unique_data, lfq_columns, exp_design){ 62 | # Show error if inputs are not the required classes 63 | assertthat::assert_that(is.data.frame(unique_data), 64 | is.integer(lfq_columns), 65 | is.data.frame(exp_design)) 66 | 67 | # Show error if inputs do not contain required columns 68 | if(any(!c("name", "ID") %in% colnames(unique_data))) { 69 | stop(safeError("'Gene name' and/or 'Protein ID' columns are not present in 70 | protein groups input file" 71 | )) 72 | } 73 | 74 | if(any(!c("label", "condition", "replicate") %in% colnames(exp_design))) { 75 | stop(safeError("'label', 'condition' and/or 'replicate' columns 76 | are not present in the experimental design")) 77 | } 78 | 79 | if(any(!apply(unique_data[, lfq_columns], 2, is.numeric))) { 80 | stop(safeError("specified 'columns' should be numeric 81 | Run make_se_parse() with the appropriate columns as argument")) 82 | } 83 | 84 | raw <- unique_data[, lfq_columns] 85 | 86 | expdesign <- mutate(exp_design, condition = make.names(condition)) %>% 87 | unite(ID, condition, replicate, remove = FALSE) 88 | rownames(expdesign) <- expdesign$ID 89 | 90 | matched <- match(make.names(delete_prefix(expdesign$label)), 91 | make.names(delete_prefix(colnames(raw)))) 92 | 93 | if(any(is.na(matched))) { 94 | stop(safeError("The labels/'run names' in the experimental design DID NOT match 95 | with lfq column names in maxquants proteinGroups file 96 | Run LFQ-Analyst with correct labels in the experimental design")) 97 | } 98 | } 99 | 100 | 101 | 102 | enrichment_output_test<-function(dep, database){ 103 | significant <- SummarizedExperiment::rowData(dep) %>% 104 | as.data.frame() %>% 105 | dplyr::select(name, significant) %>% 106 | dplyr::filter(significant) %>% 107 | dplyr::mutate(name = gsub("[.].*", "", name)) 108 | test_enrichment_output<-enrichr_mod(significant$name, databases = database) 109 | if(nrow(test_enrichment_output[[1]])==0) 110 | stop(safeError("Enrichment analysis failed. 111 | Please check if the gene names are in Entrenz Gene Symbol format. 112 | (eg. ASM24, MYO6)")) 113 | } 114 | 115 | null_enrichment_test<-function(gsea_result,alpha=0.05){ 116 | gsea_df<-gsea_result %>% group_by(contrast, var) %>% dplyr::filter(Adjusted.P.value <= alpha) 117 | if(nrow(gsea_df)==0){ 118 | stop(safeError("No enriched term found at FDR cutoff 0.05. 119 | Enrichment plot could not be displayed. 120 | However, the results (non-significant hits) can still be accessed 121 | through 'Download table' tab.")) 122 | } 123 | } 124 | 125 | ids_test<-function(filtered_data){ 126 | if("Evidence.IDs" %in% colnames(filtered_data)){ 127 | filtered_data$`Evidence.IDs`<-stringr::str_trunc(as.character(filtered_data$`Evidence.IDs`), 25000) 128 | } 129 | if("MS.MS.IDs" %in% colnames(filtered_data)){ 130 | filtered_data$`MS.MS.IDs`<-stringr::str_trunc(as.character(filtered_data$`MS.MS.IDs`), 25000) 131 | } 132 | 133 | return(filtered_data) 134 | 135 | } 136 | 137 | -------------------------------------------------------------------------------- /R/volcano_function.R: -------------------------------------------------------------------------------- 1 | ## New function for volcano plot 2 | #library(dplyr) 3 | plot_volcano_new <- function(dep, contrast, label_size = 3, 4 | add_names = TRUE, adjusted = FALSE, plot = TRUE) { 5 | # Show error if inputs are not the required classes 6 | if(is.integer(label_size)) label_size <- as.numeric(label_size) 7 | assertthat::assert_that(inherits(dep, "SummarizedExperiment"), 8 | is.character(contrast), 9 | length(contrast) == 1, 10 | is.numeric(label_size), 11 | length(label_size) == 1, 12 | is.logical(add_names), 13 | length(add_names) == 1, 14 | is.logical(adjusted), 15 | length(adjusted) == 1, 16 | is.logical(plot), 17 | length(plot) == 1) 18 | 19 | row_data <- rowData(dep, use.names = FALSE) 20 | 21 | # Show error if inputs do not contain required columns 22 | if(any(!c("name", "ID") %in% colnames(row_data))) { 23 | stop(paste0("'name' and/or 'ID' columns are not present in '", 24 | deparse(substitute(dep)), 25 | "'.\nRun make_unique() to obtain required columns."), 26 | call. = FALSE) 27 | } 28 | if(length(grep("_p.adj|_diff", colnames(row_data))) < 1) { 29 | stop(paste0("'[contrast]_diff' and '[contrast]_p.adj' columns are not present in '", 30 | deparse(substitute(dep)), 31 | "'.\nRun test_diff() to obtain the required columns."), 32 | call. = FALSE) 33 | } 34 | if(length(grep("_significant", colnames(row_data))) < 1) { 35 | stop(paste0("'[contrast]_significant' columns are not present in '", 36 | deparse(substitute(dep)), 37 | "'.\nRun add_rejections() to obtain the required columns."), 38 | call. = FALSE) 39 | } 40 | 41 | # Show error if an unvalid contrast is given 42 | if (length(grep(paste("^",contrast,"_diff", sep = ""), 43 | colnames(row_data))) == 0) { 44 | valid_cntrsts <- row_data %>% 45 | data.frame() %>% 46 | select(ends_with("_diff")) %>% 47 | colnames(.) %>% 48 | gsub("_diff", "", .) 49 | valid_cntrsts_msg <- paste0("Valid contrasts are: '", 50 | paste0(valid_cntrsts, collapse = "', '"), 51 | "'") 52 | stop("Not a valid contrast, please run `plot_volcano()` with a valid contrast as argument\n", 53 | valid_cntrsts_msg, 54 | call. = FALSE) 55 | } 56 | 57 | # Generate a data.frame containing all info for the volcano plot 58 | diff <- grep(paste("^",contrast,"_diff", sep = ""), 59 | colnames(row_data)) 60 | if(adjusted) { 61 | p_values <- grep(paste("^",contrast, "_p.adj", sep = ""), 62 | colnames(row_data)) 63 | } else { 64 | p_values <- grep(paste("^",contrast, "_p.val", sep = ""), 65 | colnames(row_data)) 66 | } 67 | signif <- grep(paste("^",contrast, "_significant", sep = ""), 68 | colnames(row_data)) 69 | df_tmp <- data.frame(diff = row_data[, diff], 70 | p_values = -log10(row_data[, p_values]), 71 | signif = row_data[, signif], 72 | name = row_data$name) 73 | df<- df_tmp %>% data.frame() %>% filter(!is.na(signif)) %>% 74 | arrange(signif) 75 | 76 | name1 <- gsub("_vs_.*", "", contrast) 77 | name2 <- gsub(".*_vs_", "", contrast) 78 | #return(df) 79 | # Plot volcano with or without labels 80 | p <- ggplot(df, aes(diff, p_values)) + 81 | geom_vline(xintercept = 0) + 82 | geom_point(aes(col = signif)) + 83 | geom_text(data = data.frame(), aes(x = c(Inf, -Inf), 84 | y = c(-Inf, -Inf), 85 | hjust = c(1, 0), 86 | vjust = c(-1, -1), 87 | label = c(name1, name2), 88 | size = 5, 89 | fontface = "bold")) + 90 | labs(title = contrast, 91 | x = expression(log[2]~"Fold change")) + 92 | theme_DEP1() + 93 | theme(legend.position = "none") + 94 | scale_color_manual(values = c("TRUE" = "black", "FALSE" = "grey")) 95 | if (add_names) { 96 | p <- p + ggrepel::geom_text_repel(data = filter(df, signif), 97 | aes(label = name), 98 | size = label_size, 99 | box.padding = unit(0.1, 'lines'), 100 | point.padding = unit(0.1, 'lines'), 101 | segment.size = 0.5) 102 | } 103 | if(adjusted) { 104 | p <- p + labs(y = expression(-log[10]~"Adjusted p-value")) 105 | } else { 106 | p <- p + labs(y = expression(-log[10]~"P-value")) 107 | } 108 | if(plot) { 109 | # return(list(p, df)) 110 | # return(df) 111 | return(p) 112 | } else { 113 | df <- df %>% 114 | select(name, diff, p_value, signif) %>% 115 | arrange(desc(x)) 116 | colnames(df)[c(1,2,3)] <- c("protein", "log2_fold_change", "p_value_-log10") 117 | if(adjusted) { 118 | colnames(df)[3] <- "adjusted_p_value_-log10" 119 | } 120 | return(df) 121 | } 122 | } 123 | 124 | 125 | #####====== get_volcano_df =======####### 126 | get_volcano_df <- function(dep, contrast, adjusted = FALSE) { 127 | # Show error if inputs are not the required classes 128 | assertthat::assert_that(inherits(dep, "SummarizedExperiment"), 129 | is.character(contrast), 130 | length(contrast) == 1) 131 | 132 | row_data <- rowData(dep, use.names = FALSE) 133 | 134 | # Show error if inputs do not contain required columns 135 | if(any(!c("name", "ID") %in% colnames(row_data))) { 136 | stop(paste0("'name' and/or 'ID' columns are not present in '", 137 | deparse(substitute(dep)), 138 | "'.\nRun make_unique() to obtain required columns."), 139 | call. = FALSE) 140 | } 141 | if(length(grep("_p.adj|_diff", colnames(row_data))) < 1) { 142 | stop(paste0("'[contrast]_diff' and '[contrast]_p.adj' columns are not present in '", 143 | deparse(substitute(dep)), 144 | "'.\nRun test_diff() to obtain the required columns."), 145 | call. = FALSE) 146 | } 147 | if(length(grep("_significant", colnames(row_data))) < 1) { 148 | stop(paste0("'[contrast]_significant' columns are not present in '", 149 | deparse(substitute(dep)), 150 | "'.\nRun add_rejections() to obtain the required columns."), 151 | call. = FALSE) 152 | } 153 | 154 | # Show error if an unvalid contrast is given 155 | if (length(grep(paste(contrast, "_diff", sep = ""), 156 | colnames(row_data))) == 0) { 157 | valid_cntrsts <- row_data %>% 158 | data.frame() %>% 159 | select(ends_with("_diff")) %>% 160 | colnames(.) %>% 161 | gsub("_diff", "", .) 162 | valid_cntrsts_msg <- paste0("Valid contrasts are: '", 163 | paste0(valid_cntrsts, collapse = "', '"), 164 | "'") 165 | stop("Not a valid contrast, please run `plot_volcano()` with a valid contrast as argument\n", 166 | valid_cntrsts_msg, 167 | call. = FALSE) 168 | } 169 | 170 | # Generate a data.frame containing all info for the volcano plot 171 | diff <- grep(paste(contrast, "_diff", sep = ""), 172 | colnames(row_data)) 173 | if(adjusted) { 174 | p_values <- grep(paste(contrast, "_p.adj", sep = ""), 175 | colnames(row_data)) 176 | } else { 177 | p_values <- grep(paste(contrast, "_p.val", sep = ""), 178 | colnames(row_data)) 179 | } 180 | signif <- grep(paste(contrast, "_significant", sep = ""), 181 | colnames(row_data)) 182 | df_tmp <- data.frame(diff = row_data[, diff], 183 | p_values = -log10(row_data[, p_values]), 184 | signif = row_data[, signif], 185 | name = row_data$name) 186 | df<- df_tmp %>% data.frame() %>% filter(!is.na(signif)) %>% 187 | arrange(signif) 188 | 189 | return(df) 190 | } 191 | 192 | ### Function to plot intensities of individual proteins 193 | plot_protein<-function(dep, protein, type){ 194 | assertthat::assert_that(inherits(dep, "SummarizedExperiment"), 195 | is.character(protein), 196 | is.character(type)) 197 | subset<-dep[protein] 198 | 199 | df_reps <- data.frame(assay(subset)) %>% 200 | rownames_to_column() %>% 201 | gather(ID, val, -rowname) %>% 202 | left_join(., data.frame(colData(subset)), by = "ID") 203 | df_reps$rowname <- parse_factor(as.character(df_reps$rowname), levels = protein) 204 | 205 | df_CI<- df_reps %>% 206 | group_by(condition, rowname) %>% 207 | summarize(mean = mean(val, na.rm = TRUE), 208 | sd = sd(val, na.rm = TRUE), 209 | n = n()) %>% 210 | mutate(error = qnorm(0.975) * sd / sqrt(n), 211 | CI.L = mean - error, 212 | CI.R = mean + error) %>% 213 | as.data.frame() 214 | df_CI$rowname <- parse_factor(as.character(df_CI$rowname), levels = protein) 215 | 216 | if(type=="violin"){ 217 | p<-ggplot(df_reps, aes(condition, val))+ 218 | geom_violin(fill="grey90", scale = "width", 219 | draw_quantiles = 0.5, 220 | trim =TRUE) + 221 | geom_jitter(aes(color = factor(replicate)), 222 | size = 3, position = position_dodge(width=0.3)) + 223 | labs( 224 | y = expression(log[2]~"Intensity"), 225 | col = "Replicates") + 226 | facet_wrap(~rowname) + 227 | scale_color_brewer(palette = "Dark2")+ 228 | theme_DEP1()+ 229 | theme(axis.title.x = element_blank()) 230 | } 231 | 232 | if(type=="boxplot"){ 233 | p<-ggplot(df_reps, aes(condition, val))+ 234 | geom_boxplot()+ 235 | geom_jitter(aes(color = factor(replicate)), 236 | size = 3, position = position_dodge(width=0.3)) + 237 | labs( 238 | y = expression(log[2]~"Intensity"), 239 | col = "Replicates") + 240 | facet_wrap(~rowname) + 241 | scale_color_brewer(palette = "Dark2")+ 242 | theme_DEP1() + 243 | theme(axis.title.x = element_blank()) 244 | } 245 | 246 | if(type=="interaction"){ 247 | p<-ggplot(df_reps, aes(condition, val))+ 248 | geom_point(aes(color = factor(replicate)), 249 | size = 3) + 250 | geom_line(aes(group= factor(replicate), color= factor(replicate)))+ 251 | labs( 252 | y = expression(log[2]~"Intensity"), 253 | col = "Replicates") + 254 | facet_wrap(~rowname) + 255 | scale_color_brewer(palette = "Dark2")+ 256 | theme_DEP1()+ 257 | theme(axis.title.x = element_blank()) 258 | } 259 | 260 | if(type=="dot"){ 261 | p<-ggplot(df_CI, aes(condition, mean))+ 262 | geom_point(data=df_reps, aes(x=condition, y=val, color = factor(replicate)), 263 | size = 3, position= position_dodge(width = 0.2)) + 264 | geom_errorbar(aes(ymin = CI.L, ymax = CI.R), width = 0.2)+ 265 | labs( 266 | y = expression(log[2]~"Intensity"~"(\u00B195% CI)"), 267 | col = "Replicates") + 268 | facet_wrap(~rowname) + 269 | scale_color_brewer(palette = "Dark2")+ 270 | theme_DEP1() + 271 | theme(axis.title.x = element_blank()) 272 | } 273 | 274 | return(p) 275 | } 276 | 277 | plot_volcano_mod <- function(dep, contrast, label_size = 3, 278 | add_names = TRUE, adjusted = FALSE, plot = TRUE) { 279 | # Show error if inputs are not the required classes 280 | if(is.integer(label_size)) label_size <- as.numeric(label_size) 281 | assertthat::assert_that(inherits(dep, "SummarizedExperiment"), 282 | is.character(contrast), 283 | length(contrast) == 1, 284 | is.numeric(label_size), 285 | length(label_size) == 1, 286 | is.logical(add_names), 287 | length(add_names) == 1, 288 | is.logical(adjusted), 289 | length(adjusted) == 1, 290 | is.logical(plot), 291 | length(plot) == 1) 292 | 293 | row_data <- rowData(dep, use.names = FALSE) 294 | 295 | # Show error if inputs do not contain required columns 296 | if(any(!c("name", "ID") %in% colnames(row_data))) { 297 | stop(paste0("'name' and/or 'ID' columns are not present in '", 298 | deparse(substitute(dep)), 299 | "'.\nRun make_unique() to obtain required columns."), 300 | call. = FALSE) 301 | } 302 | if(length(grep("_p.adj|_diff", colnames(row_data))) < 1) { 303 | stop(paste0("'[contrast]_diff' and '[contrast]_p.adj' columns are not present in '", 304 | deparse(substitute(dep)), 305 | "'.\nRun test_diff() to obtain the required columns."), 306 | call. = FALSE) 307 | } 308 | if(length(grep("_significant", colnames(row_data))) < 1) { 309 | stop(paste0("'[contrast]_significant' columns are not present in '", 310 | deparse(substitute(dep)), 311 | "'.\nRun add_rejections() to obtain the required columns."), 312 | call. = FALSE) 313 | } 314 | 315 | # Show error if an unvalid contrast is given 316 | if (length(grep(paste("^",contrast, "_diff", sep = ""), 317 | colnames(row_data))) == 0) { 318 | valid_cntrsts <- row_data %>% 319 | data.frame() %>% 320 | select(ends_with("_diff")) %>% 321 | colnames(.) %>% 322 | gsub("_diff", "", .) 323 | valid_cntrsts_msg <- paste0("Valid contrasts are: '", 324 | paste0(valid_cntrsts, collapse = "', '"), 325 | "'") 326 | stop("Not a valid contrast, please run `plot_volcano()` with a valid contrast as argument\n", 327 | valid_cntrsts_msg, 328 | call. = FALSE) 329 | } 330 | 331 | # Generate a data.frame containing all info for the volcano plot 332 | diff <- grep(paste("^",contrast, "_diff", sep = ""), 333 | colnames(row_data)) 334 | if(adjusted) { 335 | p_values <- grep(paste("^",contrast, "_p.adj", sep = ""), 336 | colnames(row_data)) 337 | } else { 338 | p_values <- grep(paste("^", contrast, "_p.val", sep = ""), 339 | colnames(row_data)) 340 | } 341 | signif <- grep(paste("^",contrast, "_significant", sep = ""), 342 | colnames(row_data)) 343 | df <- data.frame(x = row_data[, diff], 344 | y = -log10(row_data[, p_values]), 345 | significant = row_data[, signif], 346 | name = row_data$name) %>% 347 | filter(!is.na(significant)) %>% 348 | arrange(significant) 349 | 350 | name1 <- gsub("_vs_.*", "", contrast) 351 | name2 <- gsub(".*_vs_", "", contrast) 352 | 353 | # Plot volcano with or without labels 354 | p <- ggplot(df, aes(x, y)) + 355 | geom_vline(xintercept = 0) + 356 | geom_point(aes(col = significant)) + 357 | geom_text(data = data.frame(), aes(x = c(Inf, -Inf), 358 | y = c(-Inf, -Inf), 359 | hjust = c(1, 0), 360 | vjust = c(-1, -1), 361 | label = c(name1, name2), 362 | size = 5, 363 | fontface = "bold")) + 364 | labs(title = contrast, 365 | x = expression(log[2]~"Fold change")) + 366 | theme_DEP1() + 367 | theme(legend.position = "none") + 368 | scale_color_manual(values = c("TRUE" = "black", "FALSE" = "grey")) 369 | if (add_names) { 370 | p <- p + ggrepel::geom_text_repel(data = filter(df, significant), 371 | aes(label = name), 372 | size = label_size, 373 | box.padding = unit(0.1, 'lines'), 374 | point.padding = unit(0.1, 'lines'), 375 | segment.size = 0.5) 376 | } 377 | if(adjusted) { 378 | p <- p + labs(y = expression(-log[10]~"Adjusted p-value")) 379 | } else { 380 | p <- p + labs(y = expression(-log[10]~"P-value")) 381 | } 382 | if(plot) { 383 | return(p) 384 | } else { 385 | df <- df %>% 386 | select(name, x, y, significant) %>% 387 | arrange(desc(x)) 388 | colnames(df)[c(1,2,3)] <- c("protein", "log2_fold_change", "p_value_-log10") 389 | if(adjusted) { 390 | colnames(df)[3] <- "adjusted_p_value_-log10" 391 | } 392 | return(df) 393 | } 394 | } 395 | 396 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | [![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) 2 | ![GitHub](https://img.shields.io/github/license/Monashbioinformaticsplatform/LFQ-Analyst?color=brightgreen) 3 | ![R](https://img.shields.io/badge/R-%3E4.2-brightgreen) 4 | 5 | # LFQ-Analyst 6 | A tool for analysing label-free quantitative proteomics dataset https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst/ 7 | 8 | ![LFQ-analyst_pipeline](./www/LFQ_analyst.svg) 9 | 10 | 11 | 12 | 13 | 14 | 15 | ## Motivation 16 | 17 | - Automate downstream statistical analysis of Label free quantitative proteomics data (generated by MaxQuant) 18 | 19 | 20 | ### Input 21 | 22 | - MaxQuant **proteinGroups.txt** file 23 | - An experiment design table (tab separated file) containing three columns ("label", "condition", "replicate") 24 | 25 | #### Data pre-filtering criteria 26 | 27 | - Remove potential contaminants 28 | - Remove reverse sequences 29 | - Remove proteins identified only by sites 30 | - Remove proteins identified/quantified by a single Razor or unique peptide 31 | - Remove observation with high proportion of missing values (intensity values must be present 32 | at least 2 out of three replicates) 33 | 34 | #### Advanced parameters to choose 35 | 36 | - Differencial expression cutoff 37 | - Adjusted p-value cutoff (FDR cutoff on quantitation) 38 | - Log2 fold change cutoff 39 | - Option to choose paired test for matched pair data 40 | - Types of imputation 41 | - A number of missing value imputation options including knn, Minpob etc. 42 | - Type of FDR correction 43 | - Benjamin Hochberg (BH) method 44 | - t-statistics correction: Implemented in 45 | [fdrtools](http://strimmerlab.org/software/fdrtool/) 46 | - Option to include proteins identified/quantified with a single unique peptide. 47 | - Select how many clusters of differentially expressed proteins needed for the heatmap (default is 6) 48 | 49 | 50 | 51 | ### Outputs 52 | 53 | #### Result table 54 | 55 | - **LFQ Results Table:** Includes names (Gene names), Protein Ids, Log 56 | fold changes/ ratios (each pairwise comparisons), Adjusted 57 | *p-values* (applying FDR corrections), *p-values*, Boolean values 58 | for significance, average protein intensity (log transformed) in 59 | each sample. 60 | 61 | #### Result Plots 62 | 1. Interactive volcano plot for each pairwise comparison. 63 | 2. Heatmap of differencially expressed proteins 64 | 3. Protein intensity plots for a single or group of selected proteins from table. 65 | 66 | #### QC Plots 67 | 1. PCA plot (Could move to QC section) 68 | 2. Sample Correlation (pearson correlation) 69 | 3. Sample Coefficient of variations (CVs) 70 | 4. Number of proteins per sample 71 | 5. Sample coverage (overlap of identified proteins across every sample) 72 | 6. Missing value heatmap 73 | 7. Imputation effect on sample distribution 74 | 75 | ### Download options 76 | 77 | **Download tables** (csv format) 78 | 79 | 1. Results: Same as *LFQ Results Table* 80 | 2. Unimputed data matrix: Original protein intensities before 81 | imputation in each sample. 82 | 3. Imputed data matrix: Protein intensities after performing selected 83 | imputation method 84 | 4. Full results: Combined table of all above data outputs i.e. with and 85 | without imputation information, along with fold change and p-values. 86 | 87 | **Download Report** 88 | - A summary report for each analysis that 89 | includes method, summary statistics and plots. 90 | 91 | 92 | ### Local installation 93 | 94 | The current version of LFQ-Analyst is hosted on `R - 4.2.1`. The detailed dependency information can be found in the `dependencies.txt` file. 95 | 96 | Once installed all the dependencies following steps to run the server locally. 97 | 98 | - Using git and Rstudio 99 | ``` 100 | ## Clone the repository 101 | git clone https://github.com/MonashBioinformaticsPlatform/LFQ-Analyst.git 102 | 103 | ## Move to the folder 104 | cd LFQ-Analyst 105 | 106 | ## Inside R console or R studio 107 | > library("shiny") 108 | 109 | > runApp() 110 | 111 | ``` 112 | 113 | - Using Docker 114 | 115 | Install & start Docker demon on your PC 116 | 117 | ``` 118 | ## Option one: 119 | ## Pull LFQ-Analyst image from Docker Hub (From terminal) 120 | > docker pull haileyzhang/lfq-analyst:tagname 121 | 122 | ## Option two: 123 | ## Clone the repository 124 | git clone https://github.com/MonashBioinformaticsPlatform/LFQ-Analyst.git 125 | 126 | ## Move to the folder 127 | cd LFQ-Analyst 128 | 129 | ## Build LFQ-Analyst (Any name after -t) 130 | > docker build -f Dockerfile -t LFQ-Analyst . 131 | 132 | ## Run LFQ-Analyst (From terminal) 133 | 134 | > docker run -p 3838:3838 LFQ-Analyst 135 | 136 | ## Open local interface 137 | 138 | https://localhost:3838/LFQ-Analyst 139 | 140 | 141 | ``` 142 | -------------------------------------------------------------------------------- /data/.DS_Store: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/data/.DS_Store -------------------------------------------------------------------------------- /data/create_example_data.R: -------------------------------------------------------------------------------- 1 | ### create example data rds 2 | 3 | maxquant_output<-read.table("data/proteinGroups.txt",header=TRUE,sep="\t") 4 | 5 | exp_design <- read.table("data/exp_design_p10_0144.txt", 6 | header=TRUE, 7 | sep = "\t", 8 | stringsAsFactors=FALSE) 9 | 10 | save(maxquant_output, exp_design, file = "data/example_data.RData") 11 | 12 | -------------------------------------------------------------------------------- /data/demo_data.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/data/demo_data.RData -------------------------------------------------------------------------------- /data/example_data.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/data/example_data.RData -------------------------------------------------------------------------------- /data/exp_design_p10_0144.txt: -------------------------------------------------------------------------------- 1 | label condition replicate 2 | H1 CD34High 1 3 | H2 CD34High 2 4 | H3 CD34High 3 5 | H4 CD34High 4 6 | L1 CD34Low 1 7 | L2 CD34Low 2 8 | L3 CD34Low 3 9 | L4 CD34Low 4 10 | N1 CD34Neg 1 11 | N2 CD34Neg 2 12 | N3 CD34Neg 3 13 | N4 CD34Neg 4 -------------------------------------------------------------------------------- /data/lfq_results.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/data/lfq_results.RData -------------------------------------------------------------------------------- /dependencies.txt: -------------------------------------------------------------------------------- 1 | R version 4.2.1 (2022-06-23) 2 | Platform: x86_64-pc-linux-gnu (64-bit) 3 | Running under: Ubuntu 16.04.3 LTS 4 | 5 | Matrix products: default 6 | LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib 7 | 8 | locale: 9 | [1] LC_CTYPE=en_AU.UTF-8 LC_NUMERIC=C 10 | [3] LC_TIME=en_AU.UTF-8 LC_COLLATE=en_AU.UTF-8 11 | [5] LC_MONETARY=en_AU.UTF-8 LC_MESSAGES=en_AU.UTF-8 12 | [7] LC_PAPER=en_AU.UTF-8 LC_NAME=C 13 | [9] LC_ADDRESS=C LC_TELEPHONE=C 14 | [11] LC_MEASUREMENT=en_AU.UTF-8 LC_IDENTIFICATION=C 15 | 16 | attached base packages: 17 | [1] grid parallel stats4 stats graphics grDevices utils 18 | [8] datasets methods base 19 | 20 | other attached packages: 21 | [1] shinycssloaders_1.0.0 svglite_2.1.0 22 | [3] rjson_0.2.21 httr_1.4.4 23 | [5] ggrepel_0.9.1 DT_0.25 24 | [7] limma_3.52.4 ComplexHeatmap_2.12.1 25 | [9] shinyalert_3.0.0 shinyjs_2.1.0 26 | [11] shinydashboard_0.7.2 testthat_3.1.5 27 | [13] DEP_1.18.0 forcats_0.5.2 28 | [15] stringr_1.4.1 dplyr_1.0.10 29 | [17] purrr_0.3.5 readr_2.1.3 30 | [19] tidyr_1.2.1 tibble_3.1.8 31 | [21] ggplot2_3.3.6 tidyverse_1.3.2 32 | [23] shiny_1.7.2 SummarizedExperiment_1.26.1 33 | [25] Biobase_2.56.0 GenomicRanges_1.48.0 34 | [27] GenomeInfoDb_1.32.4 IRanges_2.30.1 35 | [29] S4Vectors_0.34.0 BiocGenerics_0.42.0 36 | [31] MatrixGenerics_1.8.1 matrixStats_0.62.0 37 | 38 | loaded via a namespace (and not attached): 39 | [1] uuid_1.1-0 readxl_1.4.1 40 | [3] backports_1.4.1 circlize_0.4.15 41 | [5] systemfonts_1.0.4 plyr_1.8.7 42 | [7] gmm_1.7 crosstalk_1.2.0 43 | [9] BiocParallel_1.30.4 digest_0.6.30 44 | [11] foreach_1.5.2 htmltools_0.5.3 45 | [13] magick_2.7.3 fansi_1.0.3 46 | [15] memoise_2.0.1 magrittr_2.0.3 47 | [17] googlesheets4_1.0.1 cluster_2.1.4 48 | [19] doParallel_1.0.17 tzdb_0.3.0 49 | [21] modelr_0.1.9 imputeLCMD_2.1 50 | [23] sandwich_3.0-2 colorspace_2.0-3 51 | [25] rvest_1.0.3 haven_2.5.1 52 | [27] xfun_0.34 crayon_1.5.2 53 | [29] RCurl_1.98-1.9 jsonlite_1.8.2 54 | [31] impute_1.70.0 zoo_1.8-11 55 | [33] iterators_1.0.14 glue_1.6.2 56 | [35] gtable_0.3.1 gargle_1.2.1 57 | [37] zlibbioc_1.42.0 XVector_0.36.0 58 | [39] GetoptLong_1.0.5 DelayedArray_0.22.0 59 | [41] shape_1.4.6 scales_1.2.1 60 | [43] vsn_3.64.0 mvtnorm_1.1-3 61 | [45] DBI_1.1.3 Rcpp_1.0.9 62 | [47] mzR_2.30.0 xtable_1.8-4 63 | [49] clue_0.3-62 preprocessCore_1.58.0 64 | [51] MsCoreUtils_1.8.0 htmlwidgets_1.5.4 65 | [53] RColorBrewer_1.1-3 ellipsis_0.3.2 66 | [55] farver_2.1.1 pkgconfig_2.0.3 67 | [57] XML_3.99-0.11 sass_0.4.2 68 | [59] dbplyr_2.2.1 utf8_1.2.2 69 | [61] labeling_0.4.2 tidyselect_1.2.0 70 | [63] rlang_1.0.6 later_1.3.0 71 | [65] munsell_0.5.0 cellranger_1.1.0 72 | [67] tools_4.2.1 cachem_1.0.6 73 | [69] cli_3.4.1 generics_0.1.3 74 | [71] broom_1.0.1 fdrtool_1.2.17 75 | [73] evaluate_0.17 fastmap_1.1.0 76 | [75] mzID_1.34.0 yaml_2.3.6 77 | [77] knitr_1.40 fs_1.5.2 78 | [79] ncdf4_1.19 mime_0.12 79 | [81] xml2_1.3.3 brio_1.1.3 80 | [83] compiler_4.2.1 rstudioapi_0.14 81 | [85] png_0.1-7 affyio_1.66.0 82 | [87] reprex_2.0.2 bslib_0.4.0 83 | [89] stringi_1.7.8 highr_0.9 84 | [91] MSnbase_2.22.0 lattice_0.20-45 85 | [93] ProtGenerics_1.28.0 Matrix_1.5-1 86 | [95] tmvtnorm_1.5 vctrs_0.4.2 87 | [97] pillar_1.8.1 norm_1.0-10.0 88 | [99] lifecycle_1.0.3 BiocManager_1.30.18 89 | [101] jquerylib_0.1.4 MALDIquant_1.21 90 | [103] GlobalOptions_0.1.2 bitops_1.0-7 91 | [105] httpuv_1.6.6 R6_2.5.1 92 | [107] pcaMethods_1.88.0 affy_1.74.0 93 | [109] renv_0.16.0 promises_1.2.0.1 94 | [111] codetools_0.2-18 MASS_7.3-58.1 95 | [113] assertthat_0.2.1 fontawesome_0.3.0 96 | [115] withr_2.5.0 GenomeInfoDbData_1.2.8 97 | [117] parallel_4.2.1 hms_1.1.2 98 | [119] rmarkdown_2.17 googledrive_2.0.0 99 | [121] Cairo_1.6-0 lubridate_1.8.0 100 | [123] tinytex_0.42 101 | 102 | -------------------------------------------------------------------------------- /docs/CV_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/CV_plot.png -------------------------------------------------------------------------------- /docs/PCA_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/PCA_plot.png -------------------------------------------------------------------------------- /docs/Protein_number.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/Protein_number.png -------------------------------------------------------------------------------- /docs/Protein_overlap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/Protein_overlap.png -------------------------------------------------------------------------------- /docs/_config.yml: -------------------------------------------------------------------------------- 1 | theme: jekyll-theme-cayman -------------------------------------------------------------------------------- /docs/correlation_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/correlation_plot.png -------------------------------------------------------------------------------- /docs/heatmap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/heatmap.png -------------------------------------------------------------------------------- /docs/imputation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/imputation.png -------------------------------------------------------------------------------- /docs/index.md: -------------------------------------------------------------------------------- 1 | Differential expression analysis of label-free proteomics data 2 | =========================================================== 3 | 4 | # Introduction 5 | ------------ 6 | 7 | This tool is developed to automate downstream statistical analysis of 8 | quantitative proteomics (label-free) datasets generated by MaxQuant. 9 | 10 | # Input 11 | ----- 12 | 13 | - MaxQuant **proteinGroups.txt** file that **Must** contain *Gene 14 | name* and *Protein IDs* column. 15 | - An **experiment design table**: A tab separated file **only** 16 | containing **three** columns namely: "*label*", "*condition*", 17 | "*replicate*". The column names are **case sensitive** 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
labelconditionreplicate
H1CD34High1
H2CD34High2
H3CD34High3
H4CD34High4
L1CD34Low1
L2CD34Low2
L3CD34Low3
L4CD34Low4
70 | 71 | **Note:** The label column must match the labels present in **LFQ 72 | Intensity** columns of **proteinGroups.txt** file. For example, include 73 | **"H1"** in label column if **"LFQ Intensity H1"** column present in 74 | your proteinGroups file. 75 | 76 | ## Advanced Options 77 | ---------------- 78 | 79 | #### Significant protein filtering criteria 80 | 81 | - Adjusted p-value cutoff: default is **0.05** 82 | - Log fold change cutoff: default is **1** 83 | 84 | #### Missing value imputation options 85 | 86 | - **Perseus-type:** This method is based on popular missing value 87 | imputation procedure implemented in *Perseus* software by MaxQuant 88 | team. The missing values are replaced by random numbers drawn from a 89 | normal distribution of *1.8* standard deviation down shift and with a 90 | width of *0.3* of each sample. 91 | - **bpca:** Bayesian missing value imputation 92 | - **knn:** Missing values replace by nearest neighbor averaging 93 | technique 94 | - **QRILC:** A missing data imputation method that performs the 95 | imputation of left-censored missing data using random draws from a 96 | truncated distribution with parameters estimated using quantile 97 | regression. 98 | - **MinDet:** Performs the imputation of left-censored missing data 99 | using a deterministic minimal value approach. Considering a 100 | expression data with n samples and p features, for each sample, the 101 | missing entries are replaced with a minimal value observed in that 102 | sample. The minimal value observed is estimated as being the q-th 103 | quantile (default q = 0.01) of the observed values in that sample. 104 | - **MinProb:** Performs the imputation of left-censored missing data 105 | by random draws from a Gaussian distribution centered to a minimal 106 | value. Considering an expression data matrix with n samples and p 107 | features, for each sample, the mean value of the Gaussian 108 | distribution is set to a minimal observed value in that sample. The 109 | minimal value observed is estimated as being the q-th quantile 110 | (default q = 0.01) of the observed values in that sample. The 111 | standard deviation is estimated as the median of the feature 112 | standard deviations. Note that when estimating the standard 113 | deviation of the Gaussian distribution, only the peptides/proteins 114 | which present more than 50% recorded values are considered. 115 | - **min:** Replaces the missing values by the smallest non-missing 116 | value in the data. 117 | - **zero:** Replaces the missing values by **0**. 118 | 119 | #### False Discovery Rate (FDR) correction option 120 | 121 | - Benjamin Hochberg (BH) method 122 | - t-statistics correction: Implemented in 123 | [fdrtools](http://strimmerlab.org/software/fdrtool/) 124 | 125 | #### Data pre-filtering criteria 126 | 127 | Following data-cleaning criteria is applied before performing 128 | differential expression analysis. 129 | 130 | - Remove potential contaminants 131 | - Remove reverse sequences 132 | - Remove proteins identified only by sites 133 | - Remove proteins identified/quantified by a single Razor or unique 134 | peptide 135 | - Remove observation with high proportion of missing values (intensity 136 | values must be present at least 2 out of three replicates) 137 | 138 | #### Differential expression analysis 139 | 140 | Protein-wise linear models combined with empirical Bayes statistics are 141 | used for the differential expression analysis. We use a *Bioconductor* 142 | package *limma* to carry out the analysis using automatically generates 143 | the contrasts from experiment design table provided by the user allowing 144 | the generation of results for all possible comparisons. It also take 145 | into account user defined cutoffs to filter significantly different 146 | proteins. 147 | 148 | Output 149 | ------ 150 | 151 | #### Result table 152 | 153 | - **LFQ Results Table:** Includes names (Gene names), Protein Ids, Log 154 | fold changes/ ratios (each pairwise comparisons), Adjusted 155 | *p-values* (applying FDR corrections), *p-values*, Boolean values 156 | for significance, average protein intensity (log transformed) in 157 | each sample. 158 | 159 | #### Result Plots 160 | 161 | 1. **PCA plot**: A Principal Component Analysis(PCA) is a technique 162 | used to emphasize variation and bring out strong patterns in a 163 | dataset. In brief, the more similar 2 samples are, the closer they 164 | cluster together. Of course, this means that biological replicates 165 | (and in particular technical replicates) should cluster tightly 166 | together. For further information, here are a few links, which 167 | explains the principals of PCAs: 168 | [Info](ttp://ordination.okstate.edu/PCA.htm) and [Basic 169 | introduction](http://setosa.io/ev/principal-component-analysis/) 170 | 171 | ![PCA\_plot](PCA_plot.png) 172 | 173 | 1. **Heatmap**: The heatmap representation gives an overview of all 174 | significant/differentially expressed proteins (rows) in all samples 175 | (columns). This visualization allows the identification of general 176 | trends such as if one sample or replicate is highly different 177 | compared to the others and might be considered as an outlier. 178 | Additionally, the hierarchical clustering of samples (columns) 179 | indicates how related the different samples are and 180 | hierarchical clustering of proteins (rows) identifies similarly 181 | behaving proteins. This analysis divides differentially expressed 182 | proteins into *six* clusters/groups. User also have option to 183 | download protein information from individual cluster. 184 | 185 | ![heatmap](heatmap.png) 186 | 187 | 1. **Volcano plot**: A volcano plot is generated for each pairwise 188 | comparison. It is a graphical visualization by plotting the “Fold 189 | Change (Log2)” on the x-axis versus the –log10 of the “ *p-value*” 190 | on the y-axis. Interesting candidate proteins are located in the 191 | left and right upper quadrant. User can toggle the display name 192 | checkbox to highlight names of differentially expressed proteins or 193 | use 'adjusted *p-value*' as y-axis. Importantly, user can highlight 194 | protein or their interest (colored maroon) by selecting the row from 195 | "**LFQ Results Table**". This highlighted plot can be downloaded 196 | using " *Save Highlighted Plot*" button. 197 | 198 | ![volcano\_plot](volcano_plot.png) 199 | 200 | #### QC plots 201 | 202 | 1. **Sample Correlation Plot**: A correlation matrix is plotted as a 203 | heatmap to visualize the Pearson correlation coefficients between 204 | the different samples. ![corr\_plot](correlation_plot.png) 205 | 2. **Sample CVs Plots**: A plot representing distribution of protein 206 | level coefficient of variation for each condition. Each plot also 207 | contains a vertical line representing median CVs percentage within 208 | that condition. ![cv\_plot](CV_plot.png) 209 | 3. **Protein Numbers**: A bar-plot representing number of proteins 210 | identified and quantified in each sample. 211 | ![proteins](Protein_number.png) 212 | 4. **Sample coverage**: A plot highlighting overlap between identified 213 | proteins across all samples in the experiment. 214 | ![overlap](Protein_overlap.png) 215 | 5. **Normalization**: Two plots representing the effect of variant 216 | stabilizing normalization (vsn) method on protein intensity 217 | distribution in each sample. **Note**: As MaxQuant protein intensity 218 | is already been normalized using MaxLFQ algorithm, further 219 | normalisation is not done during data analysis. This plot is just 220 | for visualisation purpose. 221 | 6. **Missing values- Quant**: To check whether missing values are 222 | biased to lower intense proteins, the densities and cumulative 223 | fractions are plotted for proteins with and without missing values. 224 | ![missing\_quant](missing_quant.png) 225 | 7. **Missing values- Heatmap**: To explore the pattern of missing 226 | values in the data, a heatmap is plotted indicating whether values 227 | are missing (0) or not (1). Only proteins with at least one missing 228 | value are visualized. ![missing\_heatmap](missing_heatmap.png) 229 | 8. **Imputation**: A density plot of protein intensity (log2) 230 | distribution for each condition after and before missing value 231 | imputation being performed. ![imputation](imputation.png) 232 | 9. ***p-value* Histogram**: A histogram of p-value distribution for all 233 | the proteins across all pairwise comparison. 234 | ![histo\_p](pvalue_hist.png) 235 | 236 | ## Download options 237 | 238 | - **Download tables** (csv format) 239 | 240 | 1. Results: Same as *LFQ Results Table* 241 | 2. Unimputed data matrix: Original protein intensities before 242 | imputation in each sample. 243 | 3. Imputed data matrix: Protein intensities after performing selected 244 | imputation method 245 | 4. Full results: Combined table of all above data outputs i.e. with and 246 | without imputation information, along with fold change and p-values. 247 | 248 | - **Download Report** (word format) A summary report document 249 | including some statistics and plots. 250 | 251 | - **Download Plots** (PDF format) A PDF document containing all the 252 | plots generated during the analysis. 253 | -------------------------------------------------------------------------------- /docs/missing_heatmap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/missing_heatmap.png -------------------------------------------------------------------------------- /docs/missing_quant.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/missing_quant.png -------------------------------------------------------------------------------- /docs/pvalue_hist.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/pvalue_hist.png -------------------------------------------------------------------------------- /docs/volcano_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/docs/volcano_plot.png -------------------------------------------------------------------------------- /global.R: -------------------------------------------------------------------------------- 1 | VERSION <- "v1.3" 2 | 3 | library("SummarizedExperiment") 4 | library("tidyverse") 5 | library("DEP") 6 | library("testthat") 7 | library("shiny") 8 | library("shinydashboard") 9 | library("shinyjs") 10 | library("shinyalert") 11 | library("ComplexHeatmap") 12 | library("limma") 13 | library("DT") 14 | library("ggrepel") 15 | library("httr") 16 | library("rjson") 17 | library("svglite") 18 | library("shinycssloaders") 19 | library("shiny.info") 20 | source("R/functions.R") 21 | source("R/volcano_function.R") 22 | source("R/tests.R") 23 | source("R/demo_functions.R") 24 | source("R/enrichment_functions.R") 25 | 26 | 27 | 28 | -------------------------------------------------------------------------------- /google_analytics-GA4.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | -------------------------------------------------------------------------------- /google_analytics.js: -------------------------------------------------------------------------------- 1 | // ============ NOTE ================= 2 | // Users of this app are encouraged to keep this analytics script in the app directory 3 | // This will help developer track the usage for future funding persective. 4 | 5 | // Initial Tracking Code 6 | (function(i,s,o,g,r,a,m){ 7 | i['GoogleAnalyticsObject']=r; 8 | i[r]=i[r] || 9 | function(){ 10 | (i[r].q=i[r].q||[]).push(arguments); 11 | },i[r].l=1*new Date(); 12 | a=s.createElement(o), 13 | m=s.getElementsByTagName(o)[0]; 14 | a.async=1; 15 | a.src=g; 16 | m.parentNode.insertBefore(a,m); 17 | })(window,document,'script', 18 | 'https://www.google-analytics.com/analytics.js','ga'); 19 | 20 | ga('create', 'UA-66833365-2', 'auto'); 21 | ga('send', 'pageview'); 22 | 23 | // Event Tracking Code 24 | $(document).on('shiny:inputchanged', function(event) { 25 | if(event.name == 'bins' || event.name == 'col'){ 26 | ga('send', 'event', 'input', 27 | 'updates', event.name, event.value); 28 | } 29 | }); 30 | 31 | // User Tracking Code 32 | $(document).one('shiny:idle', function() { 33 | ga('set','userId', Shiny.user); 34 | }); 35 | -------------------------------------------------------------------------------- /shiny-server.conf: -------------------------------------------------------------------------------- 1 | # Instruct Shiny Server to run applications as the user "shiny" 2 | run_as shiny; 3 | http_keepalive_timeout 600; 4 | preserve_logs true; 5 | 6 | # Define a server that listens on port 3838 7 | server { 8 | listen 3838; 9 | 10 | # Define a location at the base URL 11 | location / { 12 | 13 | # Host the directory of Shiny Apps stored in this directory 14 | site_dir /srv/shiny-server; 15 | 16 | # Log all Shiny output to files in this directory 17 | log_dir /var/log/shiny-server; 18 | 19 | # When a user visits the base URL rather than a particular application, 20 | # an index of the applications available in this directory will be shown. 21 | directory_index on; 22 | disable_websockets off; 23 | app_init_timeout 1800; 24 | app_idle_timeout 1800; 25 | } 26 | } 27 | -------------------------------------------------------------------------------- /ui.R: -------------------------------------------------------------------------------- 1 | # Define UI for data upload app ---- 2 | ui <- function(request){shinyUI( 3 | dashboardPage( 4 | skin = "blue", 5 | dashboardHeader(title = "LFQ-Analyst"), 6 | # disable = TRUE),# Disable title bar 7 | dashboardSidebar( 8 | useShinyalert(), 9 | sidebarMenu( 10 | id="tabs_selected", 11 | convertMenuItem(menuItem('Home', icon=icon("home"), selected = TRUE, tabName = "home"), tabName = "home"), 12 | convertMenuItem(menuItem("Analysis", tabName="analysis", icon=icon("flask"), 13 | #menuItem("Input Files", tabName="file", icon=icon("file"), #selected = TRUE, 14 | fileInput('file1', 15 | 'Upload MaxQuant ProteinGroups.txt', 16 | accept=c('text/csv', 17 | 'text/comma-separated-values,text/plain', 18 | '.csv')), 19 | 20 | fileInput('file2', 21 | 'Upload Experimental Design Matrix', 22 | accept=c('text/csv', 23 | 'text/comma-separated-values,text/plain', 24 | '.csv')), 25 | 26 | 27 | # ), 28 | tags$hr(), 29 | menuItem("Advanced Options",tabName="advanced", icon = icon("cogs"), 30 | numericInput("p", 31 | "Adjusted p-value cutoff", 32 | min = 0.0001, max = 0.1, value = 0.05), 33 | numericInput("lfc", 34 | "Log2 fold change cutoff", 35 | min = 0, max = 10, value = 1), 36 | checkboxInput("paired", 37 | "Paired test", FALSE), 38 | 39 | radioButtons("imputation", 40 | "Imputation type", 41 | choices = c("Perseus-type"="man", MsCoreUtils::imputeMethods())[1:9], 42 | selected = "man"), 43 | 44 | radioButtons("fdr_correction", 45 | "Type of FDR correction", 46 | choices = c("Benjamini Hochberg"="BH", 47 | "t-statistics-based"="fdrtool" 48 | ), selected= "BH"), 49 | checkboxInput("single_peptide", 50 | "Include single peptide identifications", FALSE), 51 | numericInput("k_number", 52 | "Number of clusters in heatmap", 53 | min = 1, max = 20, value = 6) 54 | ), 55 | tags$hr(), 56 | actionButton("analyze", "Start Analysis"), 57 | tags$hr(), 58 | p(a("Example LFQ data", target= "_blank", 59 | href="data/proteinGroups_example.txt", 60 | download="proteinGroups_example.txt")), 61 | p(a("Example Experimental Design file", target= "_blank", 62 | href="data/experimental_design_example.txt", 63 | download="experimental_design_example.txt")) 64 | 65 | #, 66 | #actionButton("load_data", "Load example data") 67 | ), tabName = 'analysis'), 68 | 69 | convertMenuItem(menuItem('Demo', icon=icon("eye"), tabName = "demo"), tabName = "demo"), 70 | convertMenuItem(menuItem('User Guide', icon=icon("question"), 71 | #href = "https://monashbioinformaticsplatform.github.io/LFQ-Analyst/", 72 | tabName = "info"), tabName = "info") 73 | ) 74 | ), # sidebar close 75 | 76 | ################################################################ 77 | ## DASHBOARD BODY 78 | ################################################################ 79 | 80 | dashboardBody( 81 | useShinyjs(), #imp to use shinyjs functions 82 | tags$head(includeScript("google_analytics.js")), 83 | tags$head(includeHTML(("google_analytics-GA4.html"))), 84 | 85 | tags$head( 86 | tags$link(rel = "stylesheet", type = "text/css", href = "./css/custom.css") 87 | ), 88 | 89 | tags$style( 90 | ".box { 91 | border-top: none; 92 | box-shadow: 0 0px 0px rgb(0 0 0 / 10%); 93 | }" 94 | ), 95 | 96 | # Add logo to the body 97 | # tags$img(src="mbpf_logo.jpg",height=50, align="right"), 98 | 99 | ## Add tabItems 100 | # id="body", 101 | tabItems( 102 | 103 | tabItem(tabName = "home", 104 | fluidRow( 105 | box( 106 | title = "Important Updates", 107 | # h3("LFQ-Analyst: An easy-to-use interactive web-platform to analyze and visualize proteomics data 108 | # preprocessed with MaxQuant."), 109 | # tags$hr(), 110 | h4(tags$b("Analyst Suites")," Website available now"), 111 | h5(tags$ul( 112 | "Get access to additional Analyst Apps: ", tags$a(href = "https://analyst-suites.org/", 113 | target = "_blank", "https://analyst-suites.org/") 114 | )), 115 | # br(), 116 | h4(tags$b("Developer Version (recommended)")), 117 | h5(tags$ul( 118 | "Includes more features: ", tags$a(href = "https://analyst-suites.org/apps/lfq-analyst-dev/", 119 | target = "_blank", "LFQ-Analyst(Dev.)") 120 | )), 121 | # br(), 122 | h4(tags$b("Questions/Suggestions/Bug reports: ")), 123 | h5(tags$ul( 124 | "Leave comments to our GitHub: ", tags$a(href = "https://github.com/MonashBioinformaticsPlatform/LFQ-Analyst", 125 | target = "_blank", "here") 126 | )), 127 | width = 12, 128 | solidHeader = TRUE, 129 | status = "primary" 130 | ), # box 1 closed 131 | box( 132 | title = "Overview", 133 | h3("LFQ-Analyst: An easy-to-use interactive web-platform to analyze and visualize proteomics data 134 | preprocessed with MaxQuant."), 135 | p("LFQ-Analyst is an easy-to-use, interactive web application developed to perform 136 | differential expression analysis with “one click” and to visualize label-free quantitative proteomic 137 | datasets preprocessed with MaxQuant. LFQ-Analyst provides a wealth of user-analytic features 138 | and offers numerous publication-quality result output graphics and tables to facilitate statistical 139 | and exploratory analysis of label-free quantitative datasets. "), 140 | br(), 141 | HTML('
'), 142 | br(), 143 | h4("Sidebar tabs"), 144 | tags$ul( 145 | tags$li(tags$b("Analysis: "),"perform your own analysis"), 146 | tags$li(tags$b("Demo: "),"familiarise yourself with LFQ-Analyst by browsing through pre-analysed results"), 147 | tags$li(tags$b("User Guide: "), "download an in-depth manual") 148 | ), 149 | width = 12, 150 | solidHeader = TRUE, 151 | collapsed = TRUE, 152 | # collapsible = TRUE, 153 | status = "success" 154 | )#box 2 closed 155 | ) #fluidrow close 156 | ), # home tab close 157 | tabItem(tabName = "analysis", 158 | div(id="quickstart_info", 159 | fluidPage( 160 | box( 161 | title = "Getting Started", 162 | h3(tags$b(span("Quick Start", style="text-decoration:underline"))), 163 | tags$ul( 164 | tags$li("Upload your ", tags$b("proteinGroups.txt "), "generated by MaxQuant."), 165 | tags$li("Upload your ", tags$b(" experimental design "),"table. "), 166 | 167 | tags$li(tags$b("Optional: "),"Adjust the p-value cut-off, the log2 fold change cut-off, 168 | the imputation type, FDR correction method and/or number of clusters in heatmap 169 | in the", tags$b("Advanced Options")), 170 | tags$li("Press ", tags$b("'Start Analysis' ")), 171 | tags$li(tags$b("Hint: "), " Use the ", tags$b("User Guide ")," tab for a detailed explanation of inputs, 172 | advanced options and outputs"), 173 | tags$li(tags$b("Note: "), " The experimental design file is not the" , tags$b("'mqpar.xml' "),"file 174 | from MaxQuant. Use the example file template provided.") 175 | ), 176 | br(), 177 | HTML('
'), 178 | width = 12, 179 | solidHeader = TRUE, 180 | status = "danger" 181 | ) 182 | ) 183 | ), # QUICKSTART INFO CLOSE 184 | shinyjs::hidden(div(id="downloadbox", 185 | fluidRow( 186 | box( 187 | column(6,uiOutput("downloadTable"),offset = 1), 188 | column(4,uiOutput("downloadButton")), # make the button on same line 189 | width = 4), 190 | 191 | infoBoxOutput("significantBox",width = 4), 192 | box( 193 | column(5,uiOutput("downloadreport")), # offset for dist between buttons 194 | #tags$br(), 195 | #column(5,uiOutput('downloadPlots')), 196 | width = 4 197 | ) 198 | ))), #close div and first row 199 | 200 | # align save button 201 | tags$style(type='text/css', "#downloadButton { width:100%; margin-top: 25px;}"), 202 | tags$style(type='text/css', "#downloadreport { width:100%; vertical-align- middle; margin-top: 25px; 203 | margin-bottom: 25px;}"), 204 | #tags$style(type='text/css', "#downloadPlots { width:100%; margin-top: 25px;}"), 205 | 206 | tags$br(), # Blank lines 207 | tags$br(), 208 | 209 | ## Data table and result plots box 210 | fluidRow( 211 | shinyjs::hidden(div(id="results_tab", 212 | box( 213 | title = "LFQ Results Table", 214 | DT::dataTableOutput("contents"), 215 | # actionButton("clear", "Deselect Rows"), 216 | actionButton("original", "Refresh Table"), 217 | width = 6, 218 | status = "success", 219 | #color="" 220 | solidHeader = TRUE 221 | ), 222 | # column( 223 | box( 224 | width= 6, 225 | collapsible = TRUE, 226 | #status="primary", 227 | #solidHeader=TRUE, 228 | tabBox( 229 | title = "Result Plots", 230 | width = 12, 231 | tabPanel(title = "Volcano plot", 232 | fluidRow( 233 | box(uiOutput("volcano_cntrst"), width = 5), 234 | box(numericInput("fontsize", 235 | "Font size", 236 | min = 0, max = 8, value = 4), 237 | width = 3), 238 | box(checkboxInput("check_names", 239 | "Display names", 240 | value = FALSE), 241 | checkboxInput("p_adj", 242 | "Adjusted p values", 243 | value = FALSE), 244 | width = 4), 245 | tags$p("Select protein from LFQ Results Table to highlight on the plot OR 246 | drag the mouse on plot to show expression of proteins in Table") 247 | #Add text line 248 | # tags$p("OR"), 249 | # tags$p("Drag the mouse on plot to show expression of proteins in Table") 250 | ), 251 | 252 | fluidRow( 253 | plotOutput("volcano", height = 600, 254 | # hover = "protein_hover"), 255 | #), 256 | # click = "protein_click"), 257 | brush = "protein_brush", 258 | click = "protein_click"), 259 | downloadButton('downloadVolcano', 'Save Highlighted Plot'), 260 | actionButton("resetPlot", "Clear Selection") 261 | #)), 262 | )), 263 | tabPanel(title= "Heatmap", 264 | fluidRow( 265 | plotOutput("heatmap", height = 600) 266 | ), 267 | fluidRow( 268 | box(numericInput("cluster_number", 269 | "Cluster to download", 270 | min=1, max=6, value = 1), width = 6), 271 | box(downloadButton('downloadCluster',"Save Cluster"), 272 | downloadButton('download_hm_svg', "Save svg"), 273 | width = 5), 274 | # align save button 275 | tags$style(type='text/css', "#downloadCluster {margin-top: 25px;}"), 276 | tags$style(type='text/css', "#download_hm_svg {margin-top: 25px;}") 277 | ) 278 | ), 279 | tabPanel(title = "Protein Plot", 280 | fluidRow( 281 | box(radioButtons("type", 282 | "Plot type", 283 | choices = c("Box Plot"= "boxplot", 284 | "Violin Plot"="violin", 285 | "Interaction Plot"= "interaction", 286 | "Intensity Plot"="dot" 287 | ), 288 | selected = "boxplot", 289 | inline = TRUE), 290 | width = 12 291 | ), 292 | tags$p("Select one or more rows from LFQ Results Table to plot individual 293 | protein intesities across conditions and replicates") 294 | ), 295 | fluidRow( 296 | plotOutput("protein_plot"), 297 | downloadButton('downloadProtein', 'Download Plot') 298 | ) 299 | ) 300 | # verbatimTextOutput("protein_info")) 301 | ) 302 | ) # box or column end 303 | ))), 304 | 305 | ## QC Box 306 | fluidRow( 307 | shinyjs::hidden(div(id="qc_tab", 308 | column( 309 | width=6, 310 | tabBox(title = "QC Plots", width = 12, 311 | tabPanel(title = "PCA Plot", 312 | plotOutput("pca_plot", height=600), 313 | downloadButton('download_pca_svg', "Save svg") 314 | ), 315 | tabPanel(title="Sample Correlation", 316 | plotOutput("sample_corr", height = 600), 317 | downloadButton('download_corr_svg', "Save svg") 318 | ), 319 | tabPanel(title= "Sample CVs", 320 | plotOutput("sample_cvs", height = 600), 321 | downloadButton('download_cvs_svg', "Save svg") 322 | ), 323 | tabPanel(title = "Protein Numbers", 324 | plotOutput("numbers", height = 600), 325 | downloadButton('download_num_svg', "Save svg") 326 | ), 327 | 328 | tabPanel(title = "Sample coverage", 329 | plotOutput("coverage", height = 600), 330 | downloadButton('download_cov_svg', "Save svg") 331 | ), 332 | tabPanel(title = "Normalization", 333 | plotOutput("norm", height = 600), 334 | downloadButton('download_norm_svg', "Save svg") 335 | ), 336 | # tabPanel(title = "Missing values - Quant", 337 | # plotOutput("detect", height = 600) 338 | # ), 339 | tabPanel(title = "Missing values - Heatmap", 340 | plotOutput("missval", height = 600), 341 | downloadButton('download_missval_svg', "Save svg") 342 | ), 343 | tabPanel(title = "Imputation", 344 | plotOutput("imputation", height = 600), 345 | downloadButton('download_imp_svg', "Save svg") 346 | )#, 347 | # tabPanel(title = "p-value Histogram", 348 | # plotOutput("p_hist", height = 600) 349 | # ) 350 | ) # Tab box close 351 | ), 352 | column( 353 | width=6, 354 | tabBox(title = "Enrichment", width = 12, 355 | tabPanel(title="Gene Ontology", 356 | fluidRow( 357 | column(6, 358 | uiOutput("contrast")), 359 | column(6, 360 | selectInput("go_database", "GO database:", 361 | c("Molecular Function"="GO_Molecular_Function_2021", 362 | "Cellular Component"="GO_Cellular_Component_2021", 363 | "Biological Process"="GO_Biological_Process_2021")) 364 | ), 365 | column(12,actionButton("go_analysis", "Run Enrichment")), 366 | column(12, 367 | box(width = 12,uiOutput("spinner_go"),height = 400) 368 | ), 369 | column(12,downloadButton('downloadGO', 'Download Table')) 370 | ) 371 | ), 372 | tabPanel(title= "Pathway enrichment", 373 | fluidRow( 374 | column(6, 375 | uiOutput("contrast_1")), 376 | column(6, 377 | selectInput("pathway_database", "Pathway database:", 378 | c("KEGG"="KEGG_2021_Human", 379 | "Reactome"="Reactome_2022")) 380 | ), 381 | column(12,actionButton("pathway_analysis", "Run Enrichment")), 382 | column(12, 383 | box(width = 12,uiOutput("spinner_pa"),height = 400) 384 | ), 385 | column(12,downloadButton('downloadPA', 'Download Table')) 386 | ) 387 | ) 388 | 389 | ) # Tab box close 390 | ) 391 | ))) # fluidrow qc close 392 | 393 | 394 | #bookmarkButton() 395 | ), #analysis tab close 396 | 397 | tabItem(tabName = "info", 398 | fluidRow( 399 | box( 400 | title = "User Guide", 401 | h3("LFQ-Analyst: Manual"), 402 | # div(p(HTML(paste0('A detail online user manual can be accessed ', 403 | # a(href = 'https://monashbioinformaticsplatform.github.io/LFQ-Analyst/', 404 | # target='_blank', 'here'))))), 405 | div(p(HTML(paste0("A detailed user manual can be accessed", 406 | a(href = './LFQ-Analyst_manual.pdf', 407 | target='_blank', tags$b("here.")))))), 408 | h4("Contact Us"), 409 | p("For any feedback or question regarding LFQ-Analyst, please contact the 410 | Monash Proteomics and Metabolomics Platform:"), 411 | tags$ul( 412 | # tags$li("Anup Shah: anup.shah(at)monash.edu"), 413 | tags$li("Ralf Schittenhelm: ralf.schittenhelm(at)monash.edu"), 414 | tags$li("Haijian Zhang: hailey.zhang1(at)monash.edu") 415 | ), 416 | 417 | h4("How to Cite LFQ-Analyst?"), 418 | 419 | div(p(HTML(paste0("Please Cite: Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. 420 | LFQ-Analyst: An easy-to-use interactive web-platform to analyze and 421 | visualize proteomics data preprocessed with MaxQuant. DOI:", 422 | a(href = 'https://pubs.acs.org/doi/10.1021/acs.jproteome.9b00496', 423 | target='_blank', tags$b("10.1021/acs.jproteome.9b00496")))))), 424 | 425 | 426 | h4("News and Updates"), 427 | 428 | tags$ul( 429 | tags$li("27-12-2021: LFQ-Analyst being accessed by more than 5000 users worldwide"), 430 | tags$li("30-09-2021: LFQ-Analyst being accessed by more than 4000 users worldwide"), 431 | tags$li("03-05-2021: LFQ-Analyst being accessed by more than 3000 users worldwide"), 432 | tags$li("24-02-2021: Correlation plot now use all protein expression data"), 433 | tags$li("25-11-2020: LFQ-Analyst being accessed by more than 2000 users worldwide"), 434 | tags$li("07-04-2020: LFQ-Analyst being accessed by more than 1000 users worldwide"), 435 | tags$li("03-01-2020: LFQ-Analyst manuscript published in volume 19 of JPR"), 436 | tags$li("28-10-2019: LFQ-Analyst paper published online in Journal of Proteome Research (JPR)"), 437 | tags$li("02-10-2019: Svg figures download feature added"), 438 | tags$li("09-09-2019: Paired test support added"), 439 | tags$li("09-09-2019: Option to include single peptide observations in the analysis"), 440 | tags$li("19-02-2019: LFQ-Analyst made public") 441 | ), 442 | width = 12, 443 | solidHeader = TRUE, 444 | status = "primary" 445 | ) #includeMarkdown("www/Info.md") 446 | ) 447 | ),# info tab close 448 | 449 | tabItem(tabName = "demo", 450 | div(id="downloadbox_dm", 451 | fluidRow( 452 | box( 453 | column(6,uiOutput("downloadTable_dm"),offset = 1), 454 | column(4,uiOutput("downloadButton_dm")), # make the button on same line 455 | width = 4), 456 | 457 | infoBoxOutput("significantBox_dm",width = 4), 458 | box( 459 | column(5,uiOutput("downloadreport_dm")), # offset for dist between buttons 460 | #tags$br(), 461 | # column(5,uiOutput('downloadPlots_dm')), 462 | width = 4 463 | ) 464 | )), #close div and first row 465 | 466 | # align save button 467 | tags$style(type='text/css', "#downloadButton_dm { width:100%; margin-top: 25px;}"), 468 | tags$style(type='text/css', "#downloadreport_dm { width:100%; margin-top: 25px; margin-bottom: 25px;}"), 469 | # tags$style(type='text/css', "#downloadPlots_dm { width:100%; margin-top: 25px;}"), 470 | 471 | tags$br(), # Blank lines 472 | tags$br(), 473 | 474 | ## Data table and result plots box 475 | fluidRow( 476 | div(id="results_tab_dm", 477 | box( 478 | title = "LFQ Results Table", 479 | DT::dataTableOutput("contents_dm"), 480 | # actionButton("clear", "Deselect Rows"), 481 | actionButton("original_dm", "Refresh Table"), 482 | width = 6, 483 | status = "success", 484 | #color="" 485 | solidHeader = TRUE 486 | ), 487 | # column( 488 | box( 489 | width= 6, 490 | collapsible = TRUE, 491 | #status="primary", 492 | #solidHeader=TRUE, 493 | tabBox( 494 | title = "Result Plots", 495 | width = 12, 496 | tabPanel(title = "Volcano plot", 497 | fluidRow( 498 | box(uiOutput("volcano_cntrst_dm"), width = 5), 499 | box(numericInput("fontsize_dm", 500 | "Font size", 501 | min = 0, max = 8, value = 4), 502 | width = 3), 503 | box(checkboxInput("check_names_dm", 504 | "Display names", 505 | value = FALSE), 506 | checkboxInput("p_adj_dm", 507 | "Adjusted p values", 508 | value = FALSE), 509 | width = 4), 510 | tags$p("Select protein from LFQ Results Table to highlight on the plot OR 511 | drag the mouse on plot to show expression of proteins in Table") 512 | #Add text line 513 | # tags$p("OR"), 514 | # tags$p("Drag the mouse on plot to show expression of proteins in Table") 515 | ), 516 | 517 | fluidRow( 518 | plotOutput("volcano_dm", height = 600, 519 | # hover = "protein_hover"), 520 | #), 521 | # click = "protein_click"), 522 | brush = "protein_brush_dm", 523 | click = "protein_click_dm"), 524 | downloadButton('downloadVolcano_dm', 'Save Highlighted Plot'), 525 | actionButton("resetPlot_dm", "Clear Selection") 526 | #)), 527 | )), 528 | tabPanel(title= "Heatmap", 529 | fluidRow( 530 | plotOutput("heatmap_dm", height = 600) 531 | ), 532 | fluidRow( 533 | box(numericInput("cluster_number_dm", 534 | "Cluster to download", 535 | min=1, max=6, value = 1), width = 6), 536 | box(downloadButton('downloadCluster_dm',"Save Cluster"),width = 3), 537 | # align save button 538 | tags$style(type='text/css', "#downloadCluster_dm {margin-top: 25px;}"), 539 | ) 540 | ), 541 | tabPanel(title = "Protein Plot", 542 | fluidRow( 543 | box(radioButtons("type_dm", 544 | "Plot type", 545 | choices = c("Box Plot"= "boxplot", 546 | "Violin Plot"="violin", 547 | "Interaction Plot"= "interaction", 548 | "Intensity Plot"="dot" 549 | ), 550 | selected = "boxplot", 551 | inline = TRUE), 552 | width = 12 553 | ), 554 | tags$p("Select one or more rows from LFQ Results Table to plot individual 555 | protein intesities across conditions and replicates") 556 | ), 557 | fluidRow( 558 | plotOutput("protein_plot_dm"), 559 | downloadButton('downloadProtein_dm', 'Download Plot') 560 | ) 561 | ) 562 | # verbatimTextOutput("protein_info")) 563 | ) 564 | ) # box or column end 565 | )), 566 | 567 | ## QC Box 568 | fluidRow( 569 | div(id="qc_tab_dm", 570 | column( 571 | width=6, 572 | tabBox(title = "QC Plots", width = 12, 573 | tabPanel(title = "PCA Plot", 574 | plotOutput("pca_plot_dm"), height=600), 575 | tabPanel(title="Sample Correlation", 576 | plotOutput("sample_corr_dm", height = 600) 577 | ), 578 | tabPanel(title= "Sample CVs", 579 | plotOutput("sample_cvs_dm", height = 600) 580 | ), 581 | tabPanel(title = "Protein Numbers", 582 | plotOutput("numbers_dm", height = 600) 583 | ), 584 | 585 | tabPanel(title = "Sample coverage", 586 | plotOutput("coverage_dm", height = 600) 587 | ), 588 | tabPanel(title = "Normalization", 589 | plotOutput("norm_dm", height = 600) 590 | ), 591 | # tabPanel(title = "Missing values - Quant", 592 | # plotOutput("detect_dm", height = 600) 593 | # ), 594 | tabPanel(title = "Missing values - Heatmap", 595 | plotOutput("missval_dm", height = 600) 596 | ), 597 | tabPanel(title = "Imputation", 598 | plotOutput("imputation_dm", height = 600) 599 | )#, 600 | # tabPanel(title = "p-value Histogram", 601 | # plotOutput("p_hist_dm", height = 600) 602 | # ) 603 | ) # Tab box close 604 | ), 605 | column( 606 | width=6, 607 | tabBox(title = "Enrichment", width = 12, 608 | tabPanel(title="Gene Ontology", 609 | fluidRow( 610 | column(6, 611 | uiOutput("contrast_dm") 612 | ), 613 | column(6, 614 | selectInput("go_database_dm", "GO database:", 615 | c("Molecular Function"="GO_Molecular_Function_2021", 616 | "Cellular Component"="GO_Cellular_Component_2021", 617 | "Biological Process"="GO_Biological_Process_2021")) 618 | ), 619 | column(12,actionButton("go_analysis_dm", "Run Enrichment")), 620 | column(12, 621 | box(width = 12,uiOutput("spinner_go_dm"),height = 400) 622 | ), 623 | column(12,downloadButton('downloadGO_dm', 'Download Table')) 624 | ) 625 | 626 | ), 627 | tabPanel(title= "Pathway enrichment", 628 | fluidRow( 629 | column(6, 630 | uiOutput("contrast_dm_1") 631 | ), 632 | column(6, 633 | selectInput("pathway_database_dm", "Pathway database:", 634 | c("KEGG"="KEGG_2021_Human", 635 | "Reactome"="Reactome_2022")) 636 | ), 637 | column(12,actionButton("pathway_analysis_dm", "Run Enrichment")), 638 | column(12, 639 | box(width = 12,uiOutput("spinner_pa_dm"),height = 400) 640 | ), 641 | column(12,downloadButton('downloadPA_dm', 'Download Table')) 642 | ) 643 | ) #### Tab demo closed 644 | 645 | ) # Tab box close 646 | ) 647 | )) # fluidrow qc close 648 | # tabItems( 649 | ) # Tab items close 650 | 651 | #)# info tab lose 652 | # )#tabitems close 653 | ), 654 | tags$footer( 655 | tags$p("Supported by: Monash Proteomics and Metabolomics Platform & Monash Bioinformatics Platform, 656 | Monash University"), 657 | align = "right"), # Dasbboardbody close 658 | shiny.info::version(position = "bottom right") 659 | 660 | ) #Dashboard page close 661 | ) 662 | )#Shiny U Close 663 | } 664 | -------------------------------------------------------------------------------- /www/CV_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/CV_plot.png -------------------------------------------------------------------------------- /www/Info.Rmd: -------------------------------------------------------------------------------- 1 | --- 2 | title: "LFQ Analysis" 3 | output: md_document 4 | keep_md: true 5 | #runtime: shiny 6 | # rmdformats::material: 7 | # highlight: kate 8 | # output: 9 | # theme: cayman 10 | # prettydoc::html_pretty: 11 | # highlight: github 12 | # keep_md: true 13 | # editor_options: 14 | # chunk_output_type: inline 15 | --- 16 | 17 | ```{r knitr_init, echo=FALSE, cache=FALSE} 18 | library(knitr) 19 | library(rmdformats) 20 | 21 | ## Global options 22 | options(max.print="50") 23 | opts_chunk$set(echo=FALSE, 24 | cache=TRUE, 25 | prompt=FALSE, 26 | tidy=TRUE, 27 | comment=NA, 28 | message=FALSE, 29 | warning=FALSE) 30 | opts_knit$set(width=50) 31 | ``` 32 | 33 | # Differential experssion analysis label free proteomics data 34 | 35 | ## Introduction 36 | This tool is developed to automate downstream statistical analysis of quantitative proteomics (label-free) datasets generated by MaxQuant. 37 | 38 | ## Input 39 | - MaxQuant **proteinGroups.txt** file that **Must** contain *Gene name* and _Protein IDs_ column. 40 | - An **experiment design table**: A tab separated file **only** containing **three** columns namely: "_label_", "_condition_", "_replicate_". The column names are **case sensitive** 41 | 42 | 43 | ```{r exp_design, echo=FALSE, results='asis'} 44 | exp_design<-read.delim("../data/exp_design_p10_0144.txt", 45 | sep = "\t") 46 | kable(exp_design[1:8,]) 47 | ``` 48 | 49 | |label |condition | replicate| 50 | |:--------|:------------|---------:| 51 | |H1 |CD34High | 1| 52 | |H2 |CD34High | 2| 53 | |H3 |CD34High | 3| 54 | |H4 |CD34High | 4| 55 | |L1 |CD34Low | 1| 56 | |L2 |CD34Low | 2| 57 | |L3 |CD34Low | 3| 58 | |L4 |CD34Low | 4| 59 | 60 | 61 | 62 | **Note:** The label column must match the lables present in **LFQ Intensity** columns of **proteinGroups.txt** file. For example, include **"H1"** in lable column if **"LFQ Intensity H1"** column present in your proteinGroups file. 63 | 64 | ## Advanced Options 65 | 66 | #### Significant protein filtering criteria 67 | - Adjusted p-value cutoff: default is **0.05** 68 | - Log fold change cutoff: default is **1** 69 | 70 | #### Missing value imputation options 71 | - **Perseus-type:** This method is based on popular missing value imputation procedure implemented in _Perseus_ software by MaxQuant team. The missing values are replaced by random numbers drawn from a normal distribution of _1.8_ standard devation down shift and with a width of _0.3_ of each sample. 72 | - **bpca:** Bayesian missing value imputation 73 | - **knn:** Missing values replace by nearest neighbour averaging technique 74 | - **QRILC:** A missing data imputation method that performs the imputation of left-censored missing data using random draws from a truncated distribution with parameters estimated using quantile regression. 75 | - **MinDet:** Performs the imputation of left-censored missing data using a deterministic minimal value approach. Considering a expression data with n samples and p features, for each sample, the missing entries are replaced with a minimal value observed in that sample. The minimal value observed is estimated as being the q-th quantile (default q = 0.01) of the observed values in that sample. 76 | - **MinProb:** Performs the imputation of left-censored missing data by random draws from a Gaussian distribution centred to a minimal value. Considering an expression data matrix with n samples and p features, for each sample, the mean value of the Gaussian distribution is set to a minimal observed value in that sample. The minimal value observed is estimated as being the q-th quantile (default q = 0.01) of the observed values in that sample. The standard deviation is estimated as the median of the feature standard deviations. Note that when estimating the standard deviation of the Gaussian distribution, only the peptides/proteins which present more than 50% recorded values are considered. 77 | - **min:** Replaces the missing values by the smallest non-missing value in the data. 78 | - **zero:** Replaces the missing values by **0**. 79 | 80 | #### False Discovery Rate (FDR) correction option 81 | - Benjamin Hocheberg (BH) method 82 | - t-statistics correction: Implemented in [fdrtools](http://strimmerlab.org/software/fdrtool/) 83 | 84 | 85 | #### Data pre-filtering criteria 86 | Following data-cleaning criteria is applied before performing differential experssion analysis. 87 | 88 | - Remove potential contaminants 89 | - Remove reverse sequences 90 | - Remove proteins identified only by sites 91 | - Remove proteins identified/quantified by a single Razor or unique peptide 92 | - Remove observation with high proportion of missing values (intensity values must be present 93 | at least 2 out of three replicates) 94 | 95 | #### Differential expression analysis 96 | Protein-wise linear models combined with empirical Bayes statistics are used for the differential expression analysis. We use a _bioconductor_ package _limma_ to carry out the analysis using automatically generates the contrasts from experiment design table provided by the user allowing the generation of results for all possible comparisons. It also take into account user defined cutoffs to filter significantly different proteins. 97 | 98 | ## Output 99 | 100 | #### Result table 101 | - **LFQ Results Table:** Includes names (Gene names), Protein Ids, Log fold changes/ ratios (each pairwise comparisons), Adjusted _p-values_ (applying FDR corrections), _p-values_, boolean values for significance, average protein intensity (log transformed) in each sample. 102 | 103 | #### Result Plots 104 | 1. **PCA plot**: A Principal Componant Analysis(PCA) is a technique used to emphasize variation and bring out strong patterns in a dataset. In brief, the more similar 2 samples are, the closer they cluster together. Of course, this means that biological replicates (and in particular technical replicates) should cluster tightly together. For further information, here are a few links, which explains the principals of PCAs: [Info](ttp://ordination.okstate.edu/PCA.htm) and [Basic introduction](http://setosa.io/ev/principal-component-analysis/) 105 | 106 | ![PCA_plot](PCA_plot.png) 107 | 108 | 109 | 2. **Heatmap**: The heatmap representation gives an overview of all significant/differentially expressed proteins (rows) in all samples (columns). This visualization allows the identfication of general trends such as if one sample or replicate is highly different compared to the others and might be considerd as an outlier. Additionally, the hierarchical clustering of samples (columns) indicates how related the different samples are and hierarchicalclustering of proteins (rows) identifies similarly behaving proteins. This analysis divides differencially expressed proteins into _six_ clusters/groups. User also have option to download protein information from individual cluster. 110 | 111 | ![heatmap](heatmap.png) 112 | 113 | 3. **Volcano plot**: A volcano plot is generated for each pairwise comparison. It is a graphical visualization by plotting the “Fold Change (Log2)” on the x-axis versus the –log10 of the “ _p-value_” on the y-axis. Interesting candidate proteins are located in the left and right upper quadrant. User can toggle the display name checkbox to highlight names of differencially expressed proteins or use 'adjusted _p-value_' as y-axis. Importantly, user can highlight protein or their interest (colored moroon) by selecting the row from "**LFQ Results Table**". This highlighted plot can be downloaded using " _Save Highlited Plot_" button. 114 | 115 | ![volcano_plot](volcano_plot.png) 116 | 117 | #### QC plots 118 | 1. **Sample Correlation Plot**: A correlation matrix is plotted as a heatmap to visualize the Pearson correlation coefficients between the different samples. 119 | ![corr_plot](correlation_plot.png) 120 | 2. **Sample CVs Plots**: A plot representing distribution of protein level coefficient of variation for each condition. Each plot also contains a vertical line representing median CVs percentage withing that condition. 121 | ![cv_plot](CV_plot.png) 122 | 3. **Protein Numbers**: A bar-plot representing number of proteins identified and quantified in each sample. 123 | ![proteins](Protein_number.png) 124 | 4. **Sample coverage**: A plot highlighting overlap between identified proteins across all samples in the experiment. 125 | ![overlap](Protein_overlap.png) 126 | 5. **Normalization**: Two plots representing the effect of variant stabilising normalisation (vsn) method on protein intensity distribution in each sample. **Note**: As MaxQuant protein intensity is already been normalised using MaxLFQ algorithm, further normalisation is not done during data analysis. This plot is just for visualisation puporse. 127 | 6. **Missing values- Quant**: To check whether missing values are biased to lower intense proteins, the densities and cumulative fractions are plotted for proteins with and without missing values. 128 | ![missing_quant](missing_quant.png) 129 | 7. **Missing values- Heatmap**: To explore the pattern of missing values in the data, a heatmap is plotted indicating whether values are missing (0) or not (1). Only proteins with at least one missing value are visualized. 130 | ![missing_heatmap](missing_heatmap.png) 131 | 8. **Imputation**: A desity plot of protein intensity (log2) distrubution for each condition after and before missing value imputation being performed. 132 | ![imputation](imputation.png) 133 | 9. **_p-value_ Histogram**: A histogram of p-value distribution for all the proteins across all pairwise comparison. 134 | ![histo_p](pvalue_hist.png) 135 | 136 | 137 | 138 | #### Download options 139 | 140 | - **Download tables** (csv format) 141 | 1. Results: Same as _LFQ Results Table_ 142 | 2. Unimputed data matrix: Original protein intensities before imputation in each sample. 143 | 3. Imputed data matrix: Protein intensities after performing selected imputaion method 144 | 4. Full results: Combined table of all above data outputs i.e. with and without imputation information along with fold change and p-values. 145 | 146 | - **Download Report** (word format) 147 | A summary report document including some statistics and plots. 148 | 149 | - **Download Plots** (PDF format) 150 | A PDF document containing all the plots generated during the analysis. 151 | 152 | -------------------------------------------------------------------------------- /www/Info.md: -------------------------------------------------------------------------------- 1 | Differential experssion analysis label free proteomics data 2 | =========================================================== 3 | 4 | # Introduction 5 | ------------ 6 | 7 | This tool is developed to automate downstream statistical analysis of 8 | quantitative proteomics (label-free) datasets generated by MaxQuant. 9 | 10 | # Input 11 | ----- 12 | 13 | - MaxQuant **proteinGroups.txt** file that **Must** contain *Gene 14 | name* and *Protein IDs* column. 15 | - An **experiment design table**: A tab separated file **only** 16 | containing **three** columns namely: "*label*", "*condition*", 17 | "*replicate*". The column names are **case sensitive** 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
labelconditionreplicate
H1CD34High1
H2CD34High2
H3CD34High3
H4CD34High4
L1CD34Low1
L2CD34Low2
L3CD34Low3
L4CD34Low4
70 | 71 | **Note:** The label column must match the lables present in **LFQ 72 | Intensity** columns of **proteinGroups.txt** file. For example, include 73 | **"H1"** in lable column if **"LFQ Intensity H1"** column present in 74 | your proteinGroups file. 75 | 76 | ## Advanced Options 77 | ---------------- 78 | 79 | #### Significant protein filtering criteria 80 | 81 | - Adjusted p-value cutoff: default is **0.05** 82 | - Log fold change cutoff: default is **1** 83 | 84 | #### Missing value imputation options 85 | 86 | - **Perseus-type:** This method is based on popular missing value 87 | imputation procedure implemented in *Perseus* software by MaxQuant 88 | team. The missing values are replaced by random numbers drawn from a 89 | normal distribution of *1.8* standard devation down shift and with a 90 | width of *0.3* of each sample. 91 | - **bpca:** Bayesian missing value imputation 92 | - **knn:** Missing values replace by nearest neighbour averaging 93 | technique 94 | - **QRILC:** A missing data imputation method that performs the 95 | imputation of left-censored missing data using random draws from a 96 | truncated distribution with parameters estimated using quantile 97 | regression. 98 | - **MinDet:** Performs the imputation of left-censored missing data 99 | using a deterministic minimal value approach. Considering a 100 | expression data with n samples and p features, for each sample, the 101 | missing entries are replaced with a minimal value observed in that 102 | sample. The minimal value observed is estimated as being the q-th 103 | quantile (default q = 0.01) of the observed values in that sample. 104 | - **MinProb:** Performs the imputation of left-censored missing data 105 | by random draws from a Gaussian distribution centred to a minimal 106 | value. Considering an expression data matrix with n samples and p 107 | features, for each sample, the mean value of the Gaussian 108 | distribution is set to a minimal observed value in that sample. The 109 | minimal value observed is estimated as being the q-th quantile 110 | (default q = 0.01) of the observed values in that sample. The 111 | standard deviation is estimated as the median of the feature 112 | standard deviations. Note that when estimating the standard 113 | deviation of the Gaussian distribution, only the peptides/proteins 114 | which present more than 50% recorded values are considered. 115 | - **min:** Replaces the missing values by the smallest non-missing 116 | value in the data. 117 | - **zero:** Replaces the missing values by **0**. 118 | 119 | #### False Discovery Rate (FDR) correction option 120 | 121 | - Benjamin Hocheberg (BH) method 122 | - t-statistics correction: Implemented in 123 | [fdrtools](http://strimmerlab.org/software/fdrtool/) 124 | 125 | #### Data pre-filtering criteria 126 | 127 | Following data-cleaning criteria is applied before performing 128 | differential experssion analysis. 129 | 130 | - Remove potential contaminants 131 | - Remove reverse sequences 132 | - Remove proteins identified only by sites 133 | - Remove proteins identified/quantified by a single Razor or unique 134 | peptide 135 | - Remove observation with high proportion of missing values (intensity 136 | values must be present at least 2 out of three replicates) 137 | 138 | #### Differential expression analysis 139 | 140 | Protein-wise linear models combined with empirical Bayes statistics are 141 | used for the differential expression analysis. We use a *bioconductor* 142 | package *limma* to carry out the analysis using automatically generates 143 | the contrasts from experiment design table provided by the user allowing 144 | the generation of results for all possible comparisons. It also take 145 | into account user defined cutoffs to filter significantly different 146 | proteins. 147 | 148 | Output 149 | ------ 150 | 151 | #### Result table 152 | 153 | - **LFQ Results Table:** Includes names (Gene names), Protein Ids, Log 154 | fold changes/ ratios (each pairwise comparisons), Adjusted 155 | *p-values* (applying FDR corrections), *p-values*, boolean values 156 | for significance, average protein intensity (log transformed) in 157 | each sample. 158 | 159 | #### Result Plots 160 | 161 | 1. **PCA plot**: A Principal Componant Analysis(PCA) is a technique 162 | used to emphasize variation and bring out strong patterns in a 163 | dataset. In brief, the more similar 2 samples are, the closer they 164 | cluster together. Of course, this means that biological replicates 165 | (and in particular technical replicates) should cluster tightly 166 | together. For further information, here are a few links, which 167 | explains the principals of PCAs: 168 | [Info](ttp://ordination.okstate.edu/PCA.htm) and [Basic 169 | introduction](http://setosa.io/ev/principal-component-analysis/) 170 | 171 | ![PCA\_plot](PCA_plot.png) 172 | 173 | 1. **Heatmap**: The heatmap representation gives an overview of all 174 | significant/differentially expressed proteins (rows) in all samples 175 | (columns). This visualization allows the identfication of general 176 | trends such as if one sample or replicate is highly different 177 | compared to the others and might be considerd as an outlier. 178 | Additionally, the hierarchical clustering of samples (columns) 179 | indicates how related the different samples are and 180 | hierarchicalclustering of proteins (rows) identifies similarly 181 | behaving proteins. This analysis divides differncially expressed 182 | proteins into *six* clusters/groups. User also have option to 183 | download protein information from individual cluster. 184 | 185 | ![heatmap](heatmap.png) 186 | 187 | 1. **Volcano plot**: A volcano plot is generated for each pairwise 188 | comparison. It is a graphical visualization by plotting the “Fold 189 | Change (Log2)” on the x-axis versus the –log10 of the “ *p-value*” 190 | on the y-axis. Interesting candidate proteins are located in the 191 | left and right upper quadrant. User can toggle the display name 192 | checkbox to highlight names of differencially expressed proteins or 193 | use 'adjusted *p-value*' as y-axis. Importantly, user can highlight 194 | protein or their interest (colored moroon) by selecting the row from 195 | "**LFQ Results Table**". This highlighted plot can be downloaded 196 | using " *Save Highlited Plot*" button. 197 | 198 | ![volcano\_plot](volcano_plot.png) 199 | 200 | #### QC plots 201 | 202 | 1. **Sample Correlation Plot**: A correlation matrix is plotted as a 203 | heatmap to visualize the Pearson correlation coefficients between 204 | the different samples. ![corr\_plot](correlation_plot.png) 205 | 2. **Sample CVs Plots**: A plot representing distribution of protein 206 | level coefficient of variation for each condition. Each plot also 207 | contains a vertical line representing median CVs percentage withing 208 | that condition. ![cv\_plot](CV_plot.png) 209 | 3. **Protein Numbers**: A bar-plot representing number of proteins 210 | identified and quantified in each sample. 211 | ![proteins](Protein_number.png) 212 | 4. **Sample coverage**: A plot highlighting overlap between identified 213 | proteins across all samples in the experiment. 214 | ![overlap](Protein_overlap.png) 215 | 5. **Normalization**: Two plots representing the effect of variant 216 | stabilising normalisation (vsn) method on protein intensity 217 | distribution in each sample. **Note**: As MaxQuant protein intensity 218 | is already been normalised using MaxLFQ algorithm, further 219 | normalisation is not done during data analysis. This plot is just 220 | for visualisation puporse. 221 | 6. **Missing values- Quant**: To check whether missing values are 222 | biased to lower intense proteins, the densities and cumulative 223 | fractions are plotted for proteins with and without missing values. 224 | ![missing\_quant](missing_quant.png) 225 | 7. **Missing values- Heatmap**: To explore the pattern of missing 226 | values in the data, a heatmap is plotted indicating whether values 227 | are missing (0) or not (1). Only proteins with at least one missing 228 | value are visualized. ![missing\_heatmap](missing_heatmap.png) 229 | 8. **Imputation**: A desity plot of protein intensity (log2) 230 | distrubution for each condition after and before missing value 231 | imputation being performed. ![imputation](imputation.png) 232 | 9. ***p-value* Histogram**: A histogram of p-value distribution for all 233 | the proteins across all pairwise comparison. 234 | ![histo\_p](pvalue_hist.png) 235 | 236 | ## Download options 237 | 238 | - **Download tables** (csv format) 239 | 240 | 1. Results: Same as *LFQ Results Table* 241 | 2. Unimputed data matrix: Original protein intensities before 242 | imputation in each sample. 243 | 3. Imputed data matrix: Protein intensities after performing selected 244 | imputaion method 245 | 4. Full results: Combined table of all above data outputs i.e. with and 246 | without imputation information along with fold change and p-values. 247 | 248 | - **Download Report** (word format) A summary report document 249 | including some statistics and plots. 250 | 251 | - **Download Plots** (PDF format) A PDF document containing all the 252 | plots generated during the analysis. 253 | -------------------------------------------------------------------------------- /www/Info_cache/html/__packages: -------------------------------------------------------------------------------- 1 | base 2 | methods 3 | datasets 4 | utils 5 | grDevices 6 | graphics 7 | stats 8 | knitr 9 | rmdformats 10 | -------------------------------------------------------------------------------- /www/Info_cache/html/exp_design_b71c6ebe27cac9dec05c8ffe7432463e.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Info_cache/html/exp_design_b71c6ebe27cac9dec05c8ffe7432463e.RData -------------------------------------------------------------------------------- /www/Info_cache/html/exp_design_b71c6ebe27cac9dec05c8ffe7432463e.rdb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Info_cache/html/exp_design_b71c6ebe27cac9dec05c8ffe7432463e.rdb -------------------------------------------------------------------------------- /www/Info_cache/html/exp_design_b71c6ebe27cac9dec05c8ffe7432463e.rdx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Info_cache/html/exp_design_b71c6ebe27cac9dec05c8ffe7432463e.rdx -------------------------------------------------------------------------------- /www/Info_cache/markdown_strict/__packages: -------------------------------------------------------------------------------- 1 | base 2 | methods 3 | datasets 4 | utils 5 | grDevices 6 | graphics 7 | stats 8 | knitr 9 | rmdformats 10 | -------------------------------------------------------------------------------- /www/Info_cache/markdown_strict/exp_design_ba255ed02e26d1f4a5a14728288efd24.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Info_cache/markdown_strict/exp_design_ba255ed02e26d1f4a5a14728288efd24.RData -------------------------------------------------------------------------------- /www/Info_cache/markdown_strict/exp_design_ba255ed02e26d1f4a5a14728288efd24.rdb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Info_cache/markdown_strict/exp_design_ba255ed02e26d1f4a5a14728288efd24.rdb -------------------------------------------------------------------------------- /www/Info_cache/markdown_strict/exp_design_ba255ed02e26d1f4a5a14728288efd24.rdx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Info_cache/markdown_strict/exp_design_ba255ed02e26d1f4a5a14728288efd24.rdx -------------------------------------------------------------------------------- /www/LFQ-Analyst_manual.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/LFQ-Analyst_manual.pdf -------------------------------------------------------------------------------- /www/LFQ-Analyst_report.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/LFQ-Analyst_report.pdf -------------------------------------------------------------------------------- /www/LFQ_analyst.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/LFQ_analyst.png -------------------------------------------------------------------------------- /www/PCA_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/PCA_plot.png -------------------------------------------------------------------------------- /www/Protein_number.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Protein_number.png -------------------------------------------------------------------------------- /www/Protein_overlap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/Protein_overlap.png -------------------------------------------------------------------------------- /www/correlation_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/correlation_plot.png -------------------------------------------------------------------------------- /www/css/custom.css: -------------------------------------------------------------------------------- 1 | /*.main-header .logo { 2 | font-family: "Georgia", Times, "Times New Roman", serif; 3 | font-weight: bold; 4 | font-size: 24px; 5 | } 6 | */ 7 | 8 | /* navbar (rest of the header) */ 9 | .skin-blue .main-header .logo { 10 | background-color: #4054b3; 11 | } 12 | 13 | .skin-blue .main-header .logo:hover { 14 | background-color: #4054b3; 15 | } 16 | 17 | .skin-blue .main-header .navbar { 18 | background-color: #4054b3; 19 | } 20 | 21 | 22 | .box.box-solid.box-primary>.box-header { 23 | color:#fff; 24 | background:#D32D41 25 | } 26 | 27 | .box.box-solid.box-primary{ 28 | border-bottom-color:#D32D41; 29 | border-left-color:#D32D41; 30 | border-right-color:#D32D41; 31 | border-top-color:#D32D41; 32 | } 33 | 34 | .box.box-solid.box-danger>.box-header { 35 | color:#fff; 36 | background:#6AB187 37 | } 38 | 39 | .box.box-solid.box-danger{ 40 | border-bottom-color:#6AB187; 41 | border-left-color:#6AB187; 42 | border-right-color:#6AB187; 43 | border-top-color:#6AB187; 44 | } 45 | 46 | .responsive { 47 | max-width: 100%; 48 | height: auto; 49 | } 50 | 51 | .footer { 52 | position:absolute; 53 | bottom:10; 54 | width:80%; 55 | height:20px; /* Height of the footer */ 56 | color: white; 57 | background-color: #4054b3; 58 | z-index: 1000; 59 | } 60 | 61 | -------------------------------------------------------------------------------- /www/data/experimental_design_example.txt: -------------------------------------------------------------------------------- 1 | label condition replicate 2 | Total_309B Benign 1 3 | Total_309M Malignant 1 4 | Total_445B Benign 2 5 | Total_445M Malignant 2 6 | Total_555B Benign 3 7 | Total_555M Malignant 3 8 | Total_588B Benign 4 9 | Total_588M Malignant 4 10 | Total_636B Benign 5 11 | Total_636M Malignant 5 12 | Total_667B Benign 6 13 | Total_667M Malignant 6 14 | Total_741B Benign 7 15 | Total_741M Malignant 7 16 | Total_764B Benign 8 17 | Total_764M Malignant 8 18 | Total_876B Benign 9 19 | Total_876M Malignant 9 20 | Total_883B Benign 10 21 | Total_883M Malignant 10 22 | -------------------------------------------------------------------------------- /www/data/experimental_design_example_feb19.txt: -------------------------------------------------------------------------------- 1 | label condition replicate 2 | H2 CD34High 1 3 | H3 CD34High 2 4 | H4 CD34High 3 5 | H5 CD34High 4 6 | L2 CD34Low 1 7 | L3 CD34Low 2 8 | L4 CD34Low 3 9 | L5 CD34Low 4 10 | N2 CD34Neg 1 11 | N3 CD34Neg 2 12 | N4 CD34Neg 3 13 | N5 CD34Neg 4 -------------------------------------------------------------------------------- /www/google-analytics.js: -------------------------------------------------------------------------------- 1 | 2 | window.dataLayer = window.dataLayer || []; 3 | function gtag(){dataLayer.push(arguments);} 4 | gtag('js', new Date()); 5 | 6 | gtag('config', 'UA-66833365-2'); 7 | 8 | 9 | 10 | -------------------------------------------------------------------------------- /www/google_analytics.js: -------------------------------------------------------------------------------- 1 | // Initial Tracking Code 2 | (function(i,s,o,g,r,a,m){ 3 | i['GoogleAnalyticsObject']=r; 4 | i[r]=i[r] || 5 | function(){ 6 | (i[r].q=i[r].q||[]).push(arguments); 7 | },i[r].l=1*new Date(); 8 | a=s.createElement(o), 9 | m=s.getElementsByTagName(o)[0]; 10 | a.async=1; 11 | a.src=g; 12 | m.parentNode.insertBefore(a,m); 13 | })(window,document,'script', 14 | 'https://www.google-analytics.com/analytics.js','ga'); 15 | 16 | ga('create', 'UA-66833365-2', 'auto'); 17 | ga('send', 'pageview'); 18 | 19 | // Event Tracking Code 20 | $(document).on('shiny:inputchanged', function(event) { 21 | if(event.name == 'bins' || event.name == 'col'){ 22 | ga('send', 'event', 'input', 23 | 'updates', event.name, event.value); 24 | } 25 | }); 26 | 27 | // User Tracking Code 28 | $(document).one('shiny:idle', function() { 29 | ga('set','userId', Shiny.user); 30 | }); 31 | -------------------------------------------------------------------------------- /www/heatmap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/heatmap.png -------------------------------------------------------------------------------- /www/imputation.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/imputation.png -------------------------------------------------------------------------------- /www/js/google_analytics.js: -------------------------------------------------------------------------------- 1 | // Initial Tracking Code 2 | (function(i,s,o,g,r,a,m){ 3 | i['GoogleAnalyticsObject']=r; 4 | i[r]=i[r] || 5 | function(){ 6 | (i[r].q=i[r].q||[]).push(arguments); 7 | },i[r].l=1*new Date(); 8 | a=s.createElement(o), 9 | m=s.getElementsByTagName(o)[0]; 10 | a.async=1; 11 | a.src=g; 12 | m.parentNode.insertBefore(a,m); 13 | })(window,document,'script', 14 | 'https://www.google-analytics.com/analytics.js','ga'); 15 | 16 | ga('create', 'UA-66833365-2', 'auto'); 17 | ga('send', 'pageview'); 18 | 19 | // Event Tracking Code 20 | $(document).on('shiny:inputchanged', function(event) { 21 | if(event.name == 'bins' || event.name == 'col'){ 22 | ga('send', 'event', 'input', 23 | 'updates', event.name, event.value); 24 | } 25 | }); 26 | 27 | // User Tracking Code 28 | $(document).one('shiny:idle', function() { 29 | ga('set','userId', Shiny.user); 30 | }); 31 | -------------------------------------------------------------------------------- /www/mbpf_logo.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/mbpf_logo.jpg -------------------------------------------------------------------------------- /www/mbpf_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/mbpf_logo.png -------------------------------------------------------------------------------- /www/missing_heatmap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/missing_heatmap.png -------------------------------------------------------------------------------- /www/missing_quant.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/missing_quant.png -------------------------------------------------------------------------------- /www/monash_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/monash_logo.png -------------------------------------------------------------------------------- /www/pvalue_hist.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/pvalue_hist.png -------------------------------------------------------------------------------- /www/volcano_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MonashBioinformaticsPlatform/LFQ-Analyst/65a12a303483fddbd3f80e6a4fe537e3ca960823/www/volcano_plot.png --------------------------------------------------------------------------------