├── .gitignore ├── .gitattributes ├── ReadmeFiles ├── MeanUpscaling.png ├── ModeUpscaling.png ├── Realizations.png └── MeanModeUpscaling.png ├── Strata ├── removeErodedStrata.m ├── erodeStrata.m ├── upscaleStrataRandom.m ├── upscaleStrata.m ├── upscaleStrataUniform.m ├── finalizeStrata.m ├── upscaleStrataMode.m ├── analyzeStrataThickness.m ├── interpDepositionalRates.m ├── upscaleStrataMean.m ├── mergeStrata.m ├── upscaleStrataRandomMode.m ├── upscaleStrataUniformMode.m ├── upscaleStrataRandomMean.m ├── upscaleStrataUniformMean.m ├── uniformThicknessStrata.m ├── simulateStrata.m └── plotStrata.m ├── Markov Chain ├── isMarkovMatrix.m ├── interpMarkovMatrix.m ├── sampleMarkovChain.m ├── graphMarkovMatrix.m └── estimateMarkovMatrix.m ├── LICENSE ├── Sea Level Curves ├── haqSeaLevel.m ├── Haq87_HighResolution_Filtered.dat ├── License.txt ├── Haq et al., 1987.csv ├── Haq87_HighResolution.dat └── Haq87_Longterm_Normalized.dat ├── README.md └── main.m /.gitignore: -------------------------------------------------------------------------------- 1 | *.asv -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | # Auto detect text files and perform LF normalization 2 | * text=auto 3 | -------------------------------------------------------------------------------- /ReadmeFiles/MeanUpscaling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/MeanUpscaling.png -------------------------------------------------------------------------------- /ReadmeFiles/ModeUpscaling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/ModeUpscaling.png -------------------------------------------------------------------------------- /ReadmeFiles/Realizations.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/Realizations.png -------------------------------------------------------------------------------- /ReadmeFiles/MeanModeUpscaling.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/MeanModeUpscaling.png -------------------------------------------------------------------------------- /Strata/removeErodedStrata.m: -------------------------------------------------------------------------------- 1 | function strata = removeErodedStrata(strata) 2 | %% REMOVEERODEDSTRATA Remove eroded layers 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Main 10 | 11 | erodedlayersInd = strata.thickness <=0; 12 | strata(erodedlayersInd,:)=[]; 13 | 14 | end -------------------------------------------------------------------------------- /Markov Chain/isMarkovMatrix.m: -------------------------------------------------------------------------------- 1 | function result = isMarkovMatrix(markovMatrix) 2 | %% ISMARKOVMATRIX Check if matrix is a valid Markov transition matrix 3 | % 4 | % markovMatrix: Markov chain transition matrix 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Main 10 | 11 | % Intialize input 12 | result = true; 13 | 14 | % Check if the matrix is valid 15 | if ~ismatrix(markovMatrix); result = false; end 16 | if size(markovMatrix,1) ~= size(markovMatrix,2); result = false; end 17 | if any(sum(markovMatrix,2)-1>=.001); result = false; end 18 | 19 | end -------------------------------------------------------------------------------- /Strata/erodeStrata.m: -------------------------------------------------------------------------------- 1 | function strata = erodeStrata(strata) 2 | %% ERODESTRATA Calculates the erosion done by the erosion events 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Main 10 | 11 | thickness = strata.thickness; 12 | 13 | erosionLayers = find([0; thickness(2:end)]<0); 14 | while(any(erosionLayers)) 15 | 16 | erosionInd = erosionLayers; 17 | erodedInd = erosionInd-1; 18 | erosionAmmount = thickness(erosionInd); 19 | 20 | thickness(erodedInd) = thickness(erodedInd)+ erosionAmmount; 21 | thickness(erosionInd) = thickness(erosionInd) - erosionAmmount; 22 | 23 | erosionLayers = find([0; thickness(2:end)]<0); 24 | end 25 | 26 | strata.thickness = thickness; 27 | 28 | end -------------------------------------------------------------------------------- /Strata/upscaleStrataRandom.m: -------------------------------------------------------------------------------- 1 | function strata = upscaleStrataRandom(strata, nIntervals, effectiveLithoType, isAutoUniform) 2 | %% UPSCALESTRATA Upscale classificaiton 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('nIntervals', 'var'); nIntervals = 1; end 13 | if ~exist('effectiveLithoType', 'var'); effectiveLithoType = 'Mode'; end 14 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 15 | 16 | % Assertions 17 | assert(exist('strata', 'var')==true, 'strata must be provided'); 18 | assert(ischar(effectiveLithoType) && ismember(lower(effectiveLithoType), {'mode', 'mean'}), 'type must be mode or mean'); 19 | 20 | %% Main 21 | 22 | % Simple moving mean/mode upscaling 23 | switch(lower(effectiveLithoType)) 24 | case 'mode' 25 | strata = upscaleStrataRandomMode(strata, nIntervals, isAutoUniform); 26 | case 'mean' 27 | strata = upscaleStrataRandomMean(strata, nIntervals, isAutoUniform); 28 | end 29 | 30 | end -------------------------------------------------------------------------------- /Strata/upscaleStrata.m: -------------------------------------------------------------------------------- 1 | function strata = upscaleStrata(strata, scale, effectiveLithoType, isAutoUniform) 2 | %% UPSCALESTRATA Upscale classificaiton 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('scale', 'var'); scale = 1; end 13 | if ~exist('effectiveLithoType', 'var'); effectiveLithoType = 'Mode'; end 14 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 15 | 16 | % Assertions 17 | assert(exist('strata', 'var')==true, 'strata must be provided'); 18 | assert(ischar(effectiveLithoType) && ismember(lower(effectiveLithoType), {'mode', 'mean'}), 'type must be mode or mean'); 19 | 20 | %% Main 21 | 22 | % Simple moving mean/mode upscaling 23 | smoothingInterval = 2*scale +1; 24 | switch(lower(effectiveLithoType)) 25 | case 'mode' 26 | strata = upscaleStrataMode(strata, smoothingInterval, isAutoUniform); 27 | case 'mean' 28 | strata = upscaleStrataMean(strata, smoothingInterval, isAutoUniform); 29 | end 30 | 31 | end -------------------------------------------------------------------------------- /Strata/upscaleStrataUniform.m: -------------------------------------------------------------------------------- 1 | function strata = upscaleStrataUniform(strata, scale, effectiveLithoType, isAutoUniform) 2 | %% UPSCALESTRATA Upscale classificaiton 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('scale', 'var'); scale = 1; end 13 | if ~exist('effectiveLithoType', 'var'); effectiveLithoType = 'Mode'; end 14 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 15 | 16 | % Assertions 17 | assert(exist('strata', 'var')==true, 'strata must be provided'); 18 | assert(ischar(effectiveLithoType) && ismember(lower(effectiveLithoType), {'mode', 'mean'}), 'type must be mode or mean'); 19 | 20 | %% Main 21 | 22 | % Simple moving mean/mode upscaling 23 | smoothingInterval = 2*scale +1; 24 | switch(lower(effectiveLithoType)) 25 | case 'mode' 26 | strata = upscaleStrataUniformMode(strata, smoothingInterval, isAutoUniform); 27 | case 'mean' 28 | strata = upscaleStrataUniformMean(strata, smoothingInterval, isAutoUniform); 29 | end 30 | 31 | end -------------------------------------------------------------------------------- /Strata/finalizeStrata.m: -------------------------------------------------------------------------------- 1 | function strata = finalizeStrata(strata, isMerge, isErode, isRemoveErosionLayers) 2 | %% FINALIZESTRATA Finalize the stratigraphic section 3 | % 4 | % Mustafa Al Ibrahim @ 2018 5 | % Mustafa.Geoscientist@outlook.com 6 | 7 | %% Preprocessing 8 | 9 | % Defaults 10 | if ~exist('isMerge', 'var'); isMerge = true; end 11 | if ~exist('isErode', 'var'); isErode = true; end 12 | if ~exist('isRemoveErosionLayers', 'var'); isRemoveErosionLayers = false; end 13 | 14 | % Assertions 15 | assert(isa(isMerge, 'logical') && isscalar(isMerge), 'isMerge must be a logical scalar'); 16 | assert(isa(isErode, 'logical') && isscalar(isErode), 'isErode must be a logical scalar'); 17 | assert(isa(isRemoveErosionLayers, 'logical') && isscalar(isRemoveErosionLayers), 'isMerge must be a logical scalar'); 18 | 19 | %% Main 20 | 21 | % Perform erosion 22 | if isErode == true 23 | strata = erodeStrata(strata); 24 | end 25 | 26 | % Remove erosion layers 27 | if isRemoveErosionLayers==true 28 | strata = removeErodedStrata(strata); 29 | end 30 | 31 | % Merge layers 32 | if isMerge == true 33 | strata = mergeStrata(strata); 34 | end 35 | 36 | 37 | end 38 | 39 | 40 | 41 | 42 | 43 | -------------------------------------------------------------------------------- /Strata/upscaleStrataMode.m: -------------------------------------------------------------------------------- 1 | function [strata] = upscaleStrataMode(strata, smoothingInterval, isAutoUniform) 2 | %% UPSCALESTRATA Upscale classificaiton 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('smoothingInterval', 'var'); smoothingInterval = 1; end 13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 14 | 15 | % Assertions 16 | assert(exist('strata', 'var')==true, 'strata must be provided'); 17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform'); 18 | 19 | %% Main 20 | 21 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform 22 | strata = uniformThicknessStrata(strata); 23 | end 24 | 25 | classification = strata.lithology; 26 | 27 | padSize = (smoothingInterval - 1) / 2; 28 | 29 | B = padarray(classification,padSize,'replicate'); 30 | for j = 1+padSize:padSize+numel(classification) 31 | classification(j-padSize) = mode(B(j-padSize: j+padSize)); 32 | end 33 | 34 | strata.lithology = classification; 35 | 36 | end -------------------------------------------------------------------------------- /Markov Chain/interpMarkovMatrix.m: -------------------------------------------------------------------------------- 1 | function interploatedMarkovMatrix = interpMarkovMatrix(markovMatrices, newPosition, matricesPosition) 2 | %% ISMARKOVMATRIX Check if matrix is a valid Markov transition matrix 3 | % 4 | % markovMatrix: Markov chain transition matrix 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Parameters 12 | if iscell(markovMatrices); markovMatrices = cell2mat(permute(markovMatrices,[1 3 2])); end 13 | nMatrices = size(markovMatrices,3); 14 | nStates = size(markovMatrices(:,:,1),1); 15 | 16 | % Defaults 17 | if ~exist('matricesPosition', 'var'); matricesPosition = (0:(nMatrices-1))/(nMatrices-1); end 18 | 19 | % Assertions 20 | 21 | 22 | %% Main 23 | 24 | % Special case, no need for interpolation 25 | if nMatrices == 1 26 | interploatedMarkovMatrix = markovMatrices; 27 | return 28 | end 29 | 30 | % Permute to get interpolated dimension first: 31 | markovMatrices = permute(markovMatrices,[3 1 2]); 32 | 33 | % Interpolate and recover shape 34 | interploatedMarkovMatrix = interp1(matricesPosition, markovMatrices, newPosition); 35 | interploatedMarkovMatrix = reshape(interploatedMarkovMatrix, nStates,nStates,1); 36 | 37 | end -------------------------------------------------------------------------------- /Strata/analyzeStrataThickness.m: -------------------------------------------------------------------------------- 1 | function [topDepth, baseDepth, totalThickness] = analyzeStrataThickness(strata, isKeepErosion, oldLayerPosition) 2 | %% ANALYZESTRATATHICKNESS Calculates the analyze 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % isPlotErostion: Plot erosional surfaces in the stratigraphic section 6 | % 7 | % Mustafa Al Ibrahim @ 2018 8 | % Mustafa.Geoscientist@outlook.com 9 | 10 | 11 | %% Preprocessing 12 | if ~exist('isKeepErosion' ,'var'); isKeepErosion = false; end 13 | if ~exist('oldLayerPosition' ,'var'); oldLayerPosition = 'top'; end 14 | 15 | %% Main 16 | 17 | thickness = strata.thickness; 18 | if isKeepErosion; thickness = abs(thickness); end 19 | 20 | if strcmp(oldLayerPosition, 'top') 21 | totalThickness = cumsum(thickness); 22 | topDepth = max(totalThickness)-totalThickness; 23 | baseDepth = [max(totalThickness); topDepth(1:end-1)]; 24 | elseif strcmp(oldLayerPosition, 'bottom') 25 | thickness = flipud(thickness); 26 | totalThickness = cumsum(thickness); 27 | topDepth = flipud(max(totalThickness)-totalThickness); 28 | baseDepth = flipud([max(totalThickness); topDepth(1:end-1)]); 29 | totalThickness = flipud(totalThickness); 30 | end 31 | 32 | end -------------------------------------------------------------------------------- /Strata/interpDepositionalRates.m: -------------------------------------------------------------------------------- 1 | function interploatedDepositionRates = interpDepositionalRates(depositionalRates, newPosition, matricesPosition) 2 | %% ISMARKOVMATRIX Check if matrix is a valid Markov transition matrix 3 | % 4 | % depositionalRates: Depositional rates (cell array) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Parameters 12 | if iscell(depositionalRates); depositionalRates = cell2mat(permute(depositionalRates,[1 3 2])); end 13 | nVectors = size(depositionalRates,3); 14 | nStates = numel(depositionalRates(:,:,1)); 15 | 16 | 17 | % Defaults 18 | if ~exist('matricesPosition', 'var'); matricesPosition = (0:(nVectors-1))/(nVectors-1); end 19 | 20 | % Assertions 21 | 22 | 23 | %% Main 24 | 25 | % Special case, no need for interpolation 26 | if nVectors == 1 27 | interploatedDepositionRates = depositionalRates; 28 | return 29 | end 30 | 31 | % Permute to get interpolated dimension first: 32 | depositionalRates = permute(depositionalRates,[3 1 2]); 33 | 34 | % Interpolate and recover shape 35 | interploatedDepositionRates = interp1(matricesPosition, depositionalRates, newPosition); 36 | interploatedDepositionRates = reshape(interploatedDepositionRates, 1,nStates,1); 37 | 38 | 39 | end -------------------------------------------------------------------------------- /Markov Chain/sampleMarkovChain.m: -------------------------------------------------------------------------------- 1 | function [newState, binaryNewState] = sampleMarkovChain(previousState, markovMatrix, nStep) 2 | %% SAMPLEMARKOVCHAIN Sample using a transition (Markov) matrix 3 | % 4 | % previousState: Previous state (can be a number or binary) 5 | % markovMatrix: Markov chain transition matrix 6 | % 7 | % Mustafa Al Ibrahim @ 2018 8 | % Mustafa.Geoscientist@outlook.com 9 | 10 | %% Preprocessing 11 | 12 | % Defaults 13 | if ~exist('nStep', 'var'); nStep = 1; end 14 | 15 | % Assertions 16 | assert(isMarkovMatrix(markovMatrix), 'markovMatrix must be valid'); 17 | assert(all(size(previousState) == [1, size(markovMatrix,1)]) || (isscalar(previousState) && previousState<=size(markovMatrix,1)), 'previousState is not valid'); 18 | 19 | % Parameters 20 | nStates = size(markovMatrix,1); 21 | if isscalar(previousState) 22 | binaryPreviousState = zeros(1,nStates); 23 | binaryPreviousState(previousState) = 1; 24 | else 25 | binaryPreviousState = previousState; 26 | end 27 | 28 | %% Main 29 | 30 | % Sample from transition matrix 31 | binaryPreviousState = binaryPreviousState * (markovMatrix^nStep); 32 | cdfVector = cumsum(binaryPreviousState); 33 | rndValue = rand(); 34 | newState = find(rndValue <= cdfVector,1); 35 | 36 | % Convert to binary if needed 37 | binaryNewState = zeros(1,nStates); 38 | binaryNewState(newState) = 1; 39 | 40 | 41 | end -------------------------------------------------------------------------------- /Strata/upscaleStrataMean.m: -------------------------------------------------------------------------------- 1 | function [strata] = upscaleStrataMean(strata, smoothingInterval, isAutoUniform) 2 | %% UPSCALESTRATA Upscale classificaiton 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2018 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('smoothingInterval', 'var'); smoothingInterval = 1; end 13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 14 | 15 | % Assertions 16 | assert(exist('strata', 'var')==true, 'strata must be provided'); 17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform'); 18 | 19 | %% Main 20 | 21 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform 22 | strata = uniformThicknessStrata(strata); 23 | end 24 | 25 | classification = strata.lithology; 26 | nClasses = max(classification); 27 | 28 | padSize = (smoothingInterval - 1) / 2; 29 | B = padarray(classification,padSize,'replicate'); 30 | 31 | meanMatrix = zeros(numel(classification), nClasses); 32 | for j = 1+padSize:padSize+numel(classification) 33 | currentClasses = B(j-padSize: j+padSize); 34 | meanMatrix(j-padSize,:) = histcounts(currentClasses, 1-.5:1:nClasses+.5)/smoothingInterval; 35 | end 36 | 37 | strata.lithology = meanMatrix; 38 | 39 | end -------------------------------------------------------------------------------- /Strata/mergeStrata.m: -------------------------------------------------------------------------------- 1 | function strata = mergeStrata(strata) 2 | %% MERGESTRATA Merges consecutive strata into one interval 3 | % 4 | % Mustafa Al Ibrahim @ 2018 5 | % Mustafa.Geoscientist@outlook.com 6 | 7 | %% Preprocessing 8 | 9 | % Assertions 10 | assert(exist('strata', 'var')== true, 'strata must be provided'); 11 | 12 | %% Main 13 | 14 | % Make sure lithology is a vector 15 | if (~isvector(strata.lithology)); return; end 16 | 17 | % Parameters 18 | lithology = strata.lithology; 19 | thickness = strata.thickness; 20 | startTime = strata.startTime; 21 | endTime = strata.endTime; 22 | midSeaLevel = strata.midSeaLevel; 23 | 24 | % Merge deposits 25 | startInd = find(diff([nan; lithology]) ~= 0); 26 | endInd = find(diff([lithology; nan]) ~= 0); 27 | 28 | lithologyMerged = lithology(startInd); 29 | funSum = @(sInd, eInd) sum(thickness(sInd:eInd)); 30 | thicknessMerged = arrayfun(funSum, startInd, endInd); 31 | 32 | startTimeMerged = startTime(startInd); 33 | endTimeMerged = endTime(endInd); 34 | 35 | funMean = @(sInd, eInd) sum(midSeaLevel(sInd:eInd).*thickness(sInd:eInd)/sum(thickness(sInd:eInd))) ; 36 | midSeaLevelMerged = arrayfun(funMean, startInd, endInd); 37 | 38 | % Build the new table 39 | strata = table(startTimeMerged, endTimeMerged, thicknessMerged, lithologyMerged, midSeaLevelMerged); 40 | strata.Properties.VariableNames = {'startTime', 'endTime', 'thickness', 'lithology', 'midSeaLevel'}; 41 | 42 | end -------------------------------------------------------------------------------- /Markov Chain/graphMarkovMatrix.m: -------------------------------------------------------------------------------- 1 | function [p1, p2] = graphMarkovMatrix(markovMatrix, stateNames) 2 | %% GRAPHMARKOVMATRIX Graph a Markov transitional matrix. 3 | % 4 | % Mustafa Al Ibrahim @ 2018 5 | % Mustafa.Geoscientist@outlook.com 6 | 7 | %% Preprocessing 8 | 9 | % Assertions 10 | assert(exist('markovMatrix', 'var')==true, 'markovMatrix must be provided'); 11 | assert(isMarkovMatrix(markovMatrix), 'markovMatrix is not a valid transition matrix'); 12 | 13 | % Parameters 14 | nStates = size(markovMatrix,1); 15 | 16 | % Defaults 17 | if ~exist('stateNames', 'var'); stateNames = cellfun(@num2str, num2cell(1:nStates), 'UniformOutput', false); end 18 | 19 | %% Main 20 | 21 | % Create column of edges and weights 22 | [y, x] = meshgrid(1:nStates, 1:nStates); 23 | edge1 = x(:); 24 | edge2 = y(:); 25 | weights = markovMatrix(:); 26 | 27 | % Create digraph 28 | G = digraph(edge1,edge2, weights); 29 | 30 | % Plotting 31 | figure('Color' , 'White', 'Units','inches', 'Position',[0 0 7 3],'PaperPositionMode','auto'); 32 | 33 | subplot(1,2,1) 34 | p1 = heatmap(markovMatrix); 35 | p1.XDisplayLabels=stateNames; 36 | p1.YDisplayLabels=stateNames; 37 | p1.XLabel = 'To'; 38 | p1.YLabel = 'From'; 39 | p1.ColorbarVisible = 'off'; 40 | p1.Position 41 | set(gca,'FontSize',12,'FontName','Times') 42 | 43 | subplot(1,2,2) 44 | p2 = plot(G,'EdgeLabel',G.Edges.Weight,'LineWidth',2); 45 | p2.Marker = 's'; 46 | p2.MarkerSize = p2.MarkerSize*2; 47 | p2.NodeColor = [0 0 0]; 48 | p2.NodeLabel = stateNames; 49 | p2.ArrowSize = p2.ArrowSize*2; 50 | set(gca,'Visible','off') 51 | axis equal 52 | axis tight 53 | 54 | end -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | BSD 3-Clause License 2 | 3 | Copyright (c) 2018, Mustafa Al Ibrahim 4 | All rights reserved. 5 | 6 | Redistribution and use in source and binary forms, with or without 7 | modification, are permitted provided that the following conditions are met: 8 | 9 | * Redistributions of source code must retain the above copyright notice, this 10 | list of conditions and the following disclaimer. 11 | 12 | * Redistributions in binary form must reproduce the above copyright notice, 13 | this list of conditions and the following disclaimer in the documentation 14 | and/or other materials provided with the distribution. 15 | 16 | * Neither the name of the copyright holder nor the names of its 17 | contributors may be used to endorse or promote products derived from 18 | this software without specific prior written permission. 19 | 20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 23 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 24 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 26 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 27 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 28 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -------------------------------------------------------------------------------- /Strata/upscaleStrataRandomMode.m: -------------------------------------------------------------------------------- 1 | function [strata] = upscaleStrataRandomMode(strata, nIntervals, isAutoUniform) 2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2019 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('nIntervals', 'var'); nIntervals = 2; end 13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 14 | 15 | % Assertions 16 | assert(exist('strata', 'var')==true, 'strata must be provided'); 17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform'); 18 | assert(isscalar(nIntervals) && isnumeric(nIntervals) && nIntervals>=1, 'nIntervals >=1'); 19 | 20 | %% Main 21 | 22 | % Make uniform 23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform 24 | strata = uniformThicknessStrata(strata); 25 | end 26 | 27 | % Special case, no need for upscaling 28 | nPoints = size(strata,1); 29 | if nPoints == 1; return; end 30 | 31 | % Sample cutoff locations 32 | cutoffs = sort(round((nPoints-1-2).*rand(nIntervals-1,1) + 2)); 33 | cutoffsStart = [1; cutoffs]; 34 | cutoffsEnd = [cutoffs-1; nPoints]; 35 | cutoffs = [cutoffsStart, cutoffsEnd]; 36 | 37 | % Upscale 38 | classification = strata.lithology; 39 | 40 | for i =1:nIntervals 41 | currentInterval = cutoffs(i,1):cutoffs(i,2); 42 | currentClasses = classification(currentInterval); 43 | classification(currentInterval,:) = mode(currentClasses); 44 | end 45 | 46 | strata.lithology = classification; 47 | 48 | end -------------------------------------------------------------------------------- /Strata/upscaleStrataUniformMode.m: -------------------------------------------------------------------------------- 1 | function [strata] = upscaleStrataUniformMode(strata, intervalThickness, isAutoUniform) 2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2019 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('intervalThickness', 'var'); intervalThickness = 2; end 13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 14 | 15 | % Assertions 16 | assert(exist('strata', 'var')==true, 'strata must be provided'); 17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform'); 18 | assert(isscalar(intervalThickness) && isnumeric(intervalThickness) && intervalThickness>=1, 'nIntervals >=1'); 19 | 20 | %% Main 21 | 22 | % Make uniform 23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform 24 | strata = uniformThicknessStrata(strata); 25 | end 26 | 27 | % Special case, no need for upscaling 28 | nPoints = size(strata,1); 29 | if nPoints == 1 || intervalThickness==1; return; end 30 | 31 | % Sample cutoff locations 32 | cutoffs = ((1+intervalThickness):intervalThickness:(nPoints-1))'; 33 | cutoffsStart = [1; cutoffs]; 34 | cutoffsEnd = [cutoffs-1; nPoints]; 35 | cutoffs = [cutoffsStart, cutoffsEnd]; 36 | 37 | % Upscale 38 | classification = strata.lithology; 39 | 40 | for i =1:size(cutoffs,1) 41 | currentInterval = cutoffs(i,1):cutoffs(i,2); 42 | currentClasses = classification(currentInterval); 43 | classification(currentInterval,:) = mode(currentClasses); 44 | end 45 | 46 | strata.lithology = classification; 47 | 48 | end -------------------------------------------------------------------------------- /Sea Level Curves/haqSeaLevel.m: -------------------------------------------------------------------------------- 1 | function [age, height] = haqSeaLevel(minAge, maxAge, dt, isPlot) 2 | %% HAQSEALEVEL Haq see level curve 3 | % 4 | % 5 | % Mustafa Al Ibrahim @ 2018 6 | % Mustafa.Geoscientist@outlook.com 7 | 8 | %% Preprocessing 9 | 10 | % Defaults 11 | if ~exist('minAge', 'var'); minAge = -inf; end 12 | if ~exist('maxAge', 'var'); maxAge = inf; end 13 | if ~exist('dt', 'var'); dt = nan; end 14 | if ~exist('isPlot', 'var'); isPlot = false; end 15 | 16 | % Assertions 17 | assert(isscalar(minAge) && isnumeric(minAge), 'minAge must be scalar numeric'); 18 | assert(isscalar(minAge) && isnumeric(minAge), 'minAge must be scalar numeric'); 19 | assert(isscalar(dt) && isnumeric(dt), 'dt must be scalar numeric'); 20 | assert(isscalar(isPlot) && isa(isPlot, 'logical'), 'isPlot must be scalar logical'); 21 | 22 | %% Main 23 | 24 | % Data 25 | fileNames = {'Haq87_Longterm.dat', 'Haq87_Longterm_Normalized.dat', ... 26 | 'Haq87_HighResolution.dat', 'Haq87_HighResolution_Filtered.dat'}; 27 | 28 | i = 2; 29 | % Import data 30 | rawData = importdata(fileNames{i}); 31 | age = rawData(:,1); 32 | height = rawData(:,2); 33 | 34 | % Filter data 35 | indexToKeep = age>=minAge & age<=maxAge; 36 | age = age(indexToKeep); 37 | height = height(indexToKeep); 38 | 39 | % Resample if needed 40 | if exist('dt', 'var') && ~isnan(dt) 41 | ageResampled = min(age):dt:max(age); 42 | heightResampled = interp1(age,height, ageResampled); 43 | age = ageResampled; 44 | height = heightResampled; 45 | end 46 | 47 | % Plotting 48 | if isPlot 49 | figure('Color', 'White') 50 | plot(height, age, 'LineWidth', 2) 51 | set(gca, 'yDir', 'reverse') 52 | ylim([min(age), max(age)]) 53 | xlabel('Age') 54 | ylabel('Height') 55 | end 56 | 57 | end -------------------------------------------------------------------------------- /Strata/upscaleStrataRandomMean.m: -------------------------------------------------------------------------------- 1 | function [strata] = upscaleStrataRandomMean(strata, nIntervals, isAutoUniform) 2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2019 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('nIntervals', 'var'); nIntervals = 2; end 13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 14 | 15 | % Assertions 16 | assert(exist('strata', 'var')==true, 'strata must be provided'); 17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform'); 18 | assert(isscalar(nIntervals) && isnumeric(nIntervals) && nIntervals>=1, 'nIntervals >=1'); 19 | 20 | %% Main 21 | 22 | % Make uniform 23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform 24 | strata = uniformThicknessStrata(strata); 25 | end 26 | 27 | % Special case, no need for upscaling 28 | nPoints = size(strata,1); 29 | if nPoints == 1; return; end 30 | 31 | % Sample cutoff locations 32 | cutoffs = sort(round((nPoints-1-2).*rand(nIntervals-1,1) + 2)); 33 | cutoffsStart = [1; cutoffs]; 34 | cutoffsEnd = [cutoffs-1; nPoints]; 35 | cutoffs = [cutoffsStart, cutoffsEnd]; 36 | 37 | % Upscale 38 | classification = strata.lithology; 39 | nClasses = max(classification); 40 | 41 | meanMatrix = zeros(nPoints, nClasses); 42 | for i =1:nIntervals 43 | currentInterval = cutoffs(i,1):cutoffs(i,2); 44 | currentClasses = classification(currentInterval); 45 | meanMatrix(currentInterval,:) = repmat(histcounts(currentClasses, 1-.5:1:nClasses+.5)/numel(currentClasses), numel(currentClasses),1); 46 | end 47 | 48 | strata.lithology = meanMatrix; 49 | 50 | end -------------------------------------------------------------------------------- /Markov Chain/estimateMarkovMatrix.m: -------------------------------------------------------------------------------- 1 | function markovMatrix = estimateMarkovMatrix(states, direction) 2 | %% ESTIMATEMARKOVMATRIX Markov matrix estimation given a states vector 3 | % 4 | % states: State vector to be used for Markov matrix estimation 5 | % direction: Direction of examination, top2bottom or bottom2top 6 | % 7 | % Mustafa Al Ibrahim @ 2018 8 | % Mustafa.Geoscientist@outlook.com 9 | 10 | %% Preprocessing 11 | 12 | % Defaults 13 | if ~exist('direction', 'var'); direction = 'top2bottom'; end 14 | 15 | % Assertions 16 | assert(exist('states', 'var')==true && isvector(states), 'states must be a vector'); 17 | assert(ischar(direction), 'direction must be a string'); 18 | assert(ismember(direction, {'top2bottom', 'bottom2top'}), 'direction must be top2bottom or bottom2top'); 19 | 20 | %% Main 21 | 22 | % Make sure it is a column 23 | states = states(:); 24 | 25 | % Initialize the Markov transition matrix 26 | nClasses = max(states); 27 | markovMatrix = zeros(nClasses, nClasses); 28 | 29 | % Build the transition vectors 30 | if strcmp(direction, 'top2bottom') 31 | transition = [states(1:end-1) states(2:end)]; 32 | elseif strcmp(direction, 'bottom2top') 33 | transition = [states(2:end), states(1:end-1)]; 34 | end 35 | 36 | % Build all transition vectors 37 | classesVector = (1:nClasses)'; 38 | combinations = [combnk(classesVector,2); fliplr(combnk(classesVector,2));... 39 | classesVector classesVector]; 40 | 41 | % Calculate the number of transitions 42 | for i = 1:size(combinations,1) 43 | instances = ismember(transition, combinations(i,:),'rows'); 44 | markovMatrix(combinations(i,1), combinations(i,2)) = sum(instances); 45 | end 46 | 47 | % Normalize the matrix to obtain the Markov Matrix 48 | markovMatrix = markovMatrix ./ repmat(sum(markovMatrix,2),1,nClasses); 49 | 50 | end -------------------------------------------------------------------------------- /Strata/upscaleStrataUniformMean.m: -------------------------------------------------------------------------------- 1 | function [strata] = upscaleStrataUniformMean(strata, intervalThickness, isAutoUniform) 2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % 6 | % Mustafa Al Ibrahim @ 2019 7 | % Mustafa.Geoscientist@outlook.com 8 | 9 | %% Preprocessing 10 | 11 | % Defaults 12 | if ~exist('intervalThickness', 'var'); intervalThickness = 2; end 13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end 14 | 15 | % Assertions 16 | assert(exist('strata', 'var')==true, 'strata must be provided'); 17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform'); 18 | assert(isscalar(intervalThickness) && isnumeric(intervalThickness) && intervalThickness>=1, 'nIntervals >=1'); 19 | 20 | %% Main 21 | 22 | % Make uniform 23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform 24 | strata = uniformThicknessStrata(strata); 25 | end 26 | 27 | % Special case, no need for upscaling 28 | nPoints = size(strata,1); 29 | if nPoints == 1; return; end 30 | 31 | % Sample cutoff locations 32 | % Sample cutoff locations 33 | cutoffs = ((1+intervalThickness):intervalThickness:(nPoints-1))'; 34 | cutoffsStart = [1; cutoffs]; 35 | cutoffsEnd = [cutoffs-1; nPoints]; 36 | cutoffs = [cutoffsStart, cutoffsEnd]; 37 | 38 | % Upscale 39 | classification = strata.lithology; 40 | nClasses = max(classification); 41 | 42 | meanMatrix = zeros(nPoints, nClasses); 43 | for i =1:size(cutoffs,1) 44 | currentInterval = cutoffs(i,1):cutoffs(i,2); 45 | currentClasses = classification(currentInterval); 46 | meanMatrix(currentInterval,:) = repmat(histcounts(currentClasses, 1-.5:1:nClasses+.5)/numel(currentClasses), numel(currentClasses),1); 47 | end 48 | 49 | strata.lithology = meanMatrix; 50 | 51 | end -------------------------------------------------------------------------------- /Strata/uniformThicknessStrata.m: -------------------------------------------------------------------------------- 1 | function strataUniform = uniformThicknessStrata(strata, layerThickness) 2 | %% UNIFORMTHICKNESSSTRATA Resample the strata to uniform thickness 3 | % 4 | % Mustafa Al Ibrahim @ 2019 5 | % Mustafa.Geoscientist@outlook.com 6 | 7 | %% Preprocessing 8 | 9 | % Assertions 10 | assert(exist('strata', 'var')==true, 'strata must be provided'); 11 | 12 | % Defaults 13 | if ~exist('layerThickness', 'var'); layerThickness= min(strata.thickness); end 14 | 15 | % Assertions 16 | assert(layerThickness <= min(strata.thickness), 'layerThickness <= minimum strata thickness'); 17 | 18 | % Parameters 19 | isLithologyComp = ~isvector(strata.lithology); 20 | 21 | %% Main 22 | 23 | strataFlipped = flipud(strata); 24 | cumsumThickness = cumsum(strataFlipped.thickness); 25 | 26 | uniformCumsumThickness = (layerThickness:layerThickness:max(cumsumThickness))'; 27 | 28 | startTime = interp1(cumsumThickness, strataFlipped.startTime, uniformCumsumThickness); 29 | endTime = interp1(cumsumThickness, strataFlipped.endTime, uniformCumsumThickness); 30 | midSeaLevel = interp1(cumsumThickness, strataFlipped.midSeaLevel, uniformCumsumThickness); 31 | thickness = ones(size(uniformCumsumThickness))*layerThickness; 32 | 33 | if ~isLithologyComp 34 | lithology = interp1(cumsumThickness, strataFlipped.lithology, uniformCumsumThickness, 'nearest'); 35 | else 36 | 37 | nonUniformLithology = strataFlipped.lithology; 38 | nLitho = size(nonUniformLithology,2); 39 | nPoints = numel(uniformCumsumThickness); 40 | nonUniformLithology = permute(nonUniformLithology,[1, 3, 2]); 41 | interploatedMarkovMatrix = interp1(cumsumThickness, nonUniformLithology, uniformCumsumThickness); 42 | lithology = reshape(interploatedMarkovMatrix, [nPoints, nLitho]); 43 | 44 | end 45 | 46 | strataUniform = flipud(table(startTime, endTime, thickness, lithology, midSeaLevel)); 47 | 48 | end -------------------------------------------------------------------------------- /Sea Level Curves/Haq87_HighResolution_Filtered.dat: -------------------------------------------------------------------------------- 1 | 0 0 2 | 6 10.0115 3 | 8 2.5715 4 | 10 9.62256 5 | 12 42.8517 6 | 14 85.7349 7 | 16 106.514 8 | 18 105.872 9 | 20 103.021 10 | 22 91.2033 11 | 24 76.4691 12 | 26 60.7731 13 | 28 64.5484 14 | 30 104.437 15 | 32 137.78 16 | 34 143.201 17 | 36 141.254 18 | 38 153.367 19 | 40 165.045 20 | 42 174.378 21 | 44 187.991 22 | 46 188.024 23 | 48 177.861 24 | 50 182.125 25 | 52 191.452 26 | 54 184.751 27 | 56 165.002 28 | 58 154.225 29 | 60 169.282 30 | 62 192.65 31 | 64 198.092 32 | 66 196.721 33 | 68 198.787 34 | 70 208.102 35 | 72 213.603 36 | 74 219.246 37 | 76 226.269 38 | 78 231.682 39 | 80 229.481 40 | 82 221.229 41 | 84 217.478 42 | 86 217.996 43 | 88 217.731 44 | 90 222.078 45 | 92 230.509 46 | 94 230.722 47 | 96 226.15 48 | 98 227.106 49 | 100 223.24 50 | 102 210.222 51 | 104 197.602 52 | 106 188.101 53 | 108 176.184 54 | 110 161.915 55 | 112 150.416 56 | 114 147.013 57 | 116 148.872 58 | 118 148.957 59 | 120 152.417 60 | 122 162.467 61 | 124 170.689 62 | 126 168.048 63 | 128 155.097 64 | 130 132.621 65 | 132 105.991 66 | 134 85.1993 67 | 136 74.3239 68 | 138 79.7775 69 | 140 110.202 70 | 142 132.08 71 | 144 127.961 72 | 146 118.53 73 | 148 122.036 74 | 150 137.441 75 | 152 140.659 76 | 154 134.641 77 | 156 121.036 78 | 158 108.629 79 | 160 94.3717 80 | 162 72.7912 81 | 164 57.6993 82 | 166 62.2963 83 | 168 75.6515 84 | 170 86.45 85 | 172 83.8703 86 | 174 76.7236 87 | 176 61.1647 88 | 178 48.2457 89 | 180 43.4783 90 | 182 51.6999 91 | 184 62.4653 92 | 186 55.1323 93 | 188 40.0184 94 | 190 35.5979 95 | 192 38.1513 96 | 194 35.9818 97 | 196 26.6791 98 | 198 13.3872 99 | 200 -4.42455 100 | 202 -14.5725 101 | 204 -14.5694 102 | 206 -8.70946 103 | 208 1.44603 104 | 210 17.4707 105 | 212 39.7335 106 | 214 57.7235 107 | 216 66.1234 108 | 218 64.9418 109 | 220 58.0391 110 | 222 52.7517 111 | 224 49.2901 112 | 226 38.9242 113 | 228 27.6545 114 | 230 26.5999 115 | 232 30.7921 116 | 234 21.871 117 | 236 14.1971 118 | 238 14.4508 119 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Strata - A Markov chain based stratigraphic simulator within a sequence stratigraphic framework 2 | 3 | Cyclostratigraphy in the rock is prevelant. We often rely on it to make predictions. The puropse of this code is to simulate a 1D stratigrahic section that closely resembles what is observed in reality. I've decided to do this by incorporating a sequence stratigraphic framework into the model. This means that the simulation incorporates external forcing such as chaning in the sea level and the amount sediment sourcing. In addition erosion can also be incorporated as a Markov state with negative depostion. 4 | 5 |
6 | Realizations 7 |
8 | 9 | ## How to use 10 | See the example Matlab script folder for possible usage. Basically 1) define the transition matrices and depositional rates at different sea levels, 2) define sea level curve, 3) Run. Possible usage into projects include: 11 | - Study the effect of changing cyclostratigraphic pattern on different outputs such as the seismic signal. 12 | - Study the effect of upscaling on different outputs. 13 | - Create a training dataset for machine learning. 14 | 15 | An example of usage is below. Note that most of the code is setting up the input parameters. 16 | 17 | ``` 18 | % Parameters 19 | age = (0:200)'; 20 | seaLevelAge = 0:.01:200; 21 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5); 22 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow 23 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep 24 | depositionalRates = [1, 1, 1]; 25 | 26 | % Simulate and plot stratigraphy 27 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates); 28 | plotStrata(strata); 29 | ``` 30 | 31 | ## Upscaling 32 | Upscaling functions are included. Mean and Mode moving window upscaling are implemented. See the example file on how for further details. General usage: 33 | 34 | ``` 35 | smoothingInterval = 3; 36 | strata = upscaleStrata(strata, smoothingInterval, 'mode'); 37 | strata = upscaleStrata(strata, smoothingInterval, 'mean'); 38 | ``` 39 | 40 |
41 | MeanMode 42 |
43 | 44 | 45 | ## Referencing 46 | Al Ibrahim, M. A., Strata: A Markov chain based stratigraphic simulator within a sequence stratigraphic framework: Website, https://github.com/MosGeo/Strata/. 47 | -------------------------------------------------------------------------------- /Strata/simulateStrata.m: -------------------------------------------------------------------------------- 1 | function [strata] = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates, matricesPosition) 2 | %% simulateStrata Simulate interval using Markov chains with sequence stratigraphic framework 3 | % 4 | % Mustafa Al Ibrahim @ 2018 5 | % Mustafa.Geoscientist@outlook.com 6 | 7 | %% Preprocessing 8 | 9 | % Assertions 10 | assert(exist('age', 'var')==true && iscolumn(age) && isnumeric(age), 'age is not valid'); 11 | assert(exist('markovMatrices', 'var')==true,'markovMatrices must be provided'); 12 | 13 | % Preprocessing 14 | if isscalar(age); age = (1:age)'; end 15 | if ~iscell(markovMatrices); markovMatrices = {markovMatrices}; end 16 | nLithologies = size(markovMatrices{1},1); 17 | nTimeIntervals = numel(age)-1; 18 | nMatrices = numel(markovMatrices); 19 | 20 | % Defaults 21 | if ~exist('seaLevelAge', 'var'); seaLevelAge = age; end 22 | if ~exist('seaLevelHeight', 'var'); seaLevelHeight = ones(numel(age),1); end 23 | if ~exist('depositionalRates', 'var'); depositionalRates = ones(nLithologies,1); end 24 | if ~exist('matricesPosition', 'var'); matricesPosition = (0:(nMatrices-1))/(nMatrices-1); end 25 | 26 | % Assertions 27 | assert(isvector(seaLevelHeight) && isvector(seaLevelAge), 'seaLevelAge, seaLevelHeight, must be vectors') 28 | 29 | %% Main 30 | 31 | % Deposition rates 32 | 33 | % Make sure things are columns 34 | seaLevelHeight = seaLevelHeight(:); 35 | seaLevelAge = seaLevelAge(:); 36 | age = age(:); 37 | 38 | % Sea level 39 | [age] = sort(age,'descend'); 40 | seaLevel = interp1(seaLevelAge, seaLevelHeight, age); 41 | 42 | % Initialize the lithology 43 | initialLithology = round(rand()*(nLithologies-1) + 1); 44 | binaryLithology = zeros(1,nLithologies); 45 | binaryLithology(initialLithology) = 1; 46 | 47 | % Calculate time 48 | intervalTime = -diff(age); 49 | startTime = age(1:end-1); 50 | endTime = age(2:end); 51 | 52 | % Calculate sea level 53 | midDepositionTime = (startTime + endTime)/2; 54 | midSeaLevel = interp1(age, seaLevel,midDepositionTime); 55 | normalizedSeaLevel = (midSeaLevel - min(seaLevel))/( max(seaLevel)- min(seaLevel)); 56 | 57 | % Simulate deposition 58 | lithology = zeros(nTimeIntervals,1); 59 | thickness = zeros(nTimeIntervals,1); 60 | for i = 1:nTimeIntervals 61 | currentTransitionMatrix = interpMarkovMatrix(markovMatrices, normalizedSeaLevel(i), matricesPosition); 62 | currentDepositionRate = interpDepositionalRates(depositionalRates, normalizedSeaLevel(i), matricesPosition); 63 | [lithology(i), binaryLithology] = sampleMarkovChain(binaryLithology, currentTransitionMatrix); 64 | thickness(i) = currentDepositionRate(lithology(i)) * intervalTime(i); 65 | end 66 | 67 | % Organize output 68 | strata = table(startTime, endTime, thickness, lithology, midSeaLevel); 69 | 70 | end 71 | 72 | 73 | -------------------------------------------------------------------------------- /Strata/plotStrata.m: -------------------------------------------------------------------------------- 1 | function axisHandle = plotStrata(strata, isPlotErosion, isFinalizeStrata, nClasses) 2 | %% PLOTSTRATA Plot a stratigraphic section 3 | % 4 | % strata: Strataigraphic table (includes lithology, thickness) 5 | % isPlotErostion: Plot erosional surfaces in the stratigraphic section 6 | % 7 | % Mustafa Al Ibrahim @ 2018 8 | % Mustafa.Geoscientist@outlook.com 9 | 10 | %% Preprocessing 11 | 12 | % Defaults 13 | if ~exist('isPlotErosion', 'var'); isPlotErosion = true; end 14 | if ~exist('isFinalizeStrata', 'var'); isFinalizeStrata = true; end 15 | 16 | % Assertions 17 | assert(exist('strata', 'var')==true, 'strata must be provided'); 18 | assert(isa(isPlotErosion, 'logical') && isscalar(isPlotErosion), 'isPlotErosion must be logical scalar'); 19 | 20 | % Parameters 21 | isLithologyComp = ~isvector(strata.lithology); 22 | 23 | % Defaults 2 24 | if ~exist('nClasses', 'var') && ~isLithologyComp; nClasses = numel(unique(strata.lithology)); end 25 | if ~exist('nClasses', 'var') && isLithologyComp; nClasses = numel(strata.lithology(1,:)); end 26 | 27 | 28 | %% Main 29 | 30 | % Finalize strata if requested 31 | if isFinalizeStrata 32 | strata = finalizeStrata(strata); 33 | end 34 | 35 | % Initial needed parameters 36 | colors = gray(nClasses); 37 | [topDepth, baseDepth] = analyzeStrataThickness(strata, ~isPlotErosion); 38 | 39 | % Plot deposits 40 | nDeposits = sum(strata.thickness>0); 41 | indDeposits = find(strata.thickness>0); 42 | 43 | for iDeposit = 1:nDeposits 44 | i = indDeposits(iDeposit); 45 | startYPosition = topDepth(i); 46 | thickness = baseDepth(i)- topDepth(i); 47 | 48 | if ~isLithologyComp 49 | value = strata.lithology(i); 50 | endXPosition = baseDepth(1)/5*(value)^.5; 51 | rectangle('Position',[0 startYPosition endXPosition thickness], 'FaceColor', colors(value,:)); 52 | else 53 | values = strata.lithology(i,:); 54 | maxPosition = baseDepth(1)/5*(nClasses)^.5; 55 | width = values*maxPosition; 56 | startXPositions = [0, cumsum(width)]; 57 | for i = 1:nClasses 58 | if width(i) > 0 59 | rectangle('Position',[startXPositions(i) startYPosition width(i) thickness], 'FaceColor', colors(i,:)); 60 | end 61 | end 62 | 63 | end 64 | hold on; 65 | 66 | end 67 | 68 | % Plot erosion 69 | if isPlotErosion == true 70 | nErosions = sum(strata.thickness<=0); 71 | indErosions = find(strata.thickness<=0); 72 | 73 | for iErosion = 1:nErosions 74 | i = indErosions(iErosion); 75 | startYPosition = topDepth(i); 76 | 77 | value = 0; 78 | if i>1 && strata.thickness(i-1)>0 79 | value = strata.lithology(i-1); 80 | elseif i==1 81 | value = nClasses; 82 | end 83 | 84 | if isLithologyComp; value = nClasses; end 85 | endXPosition = baseDepth(1)/5*(value)^.5; 86 | 87 | x = 0:.01:endXPosition; 88 | y = startYPosition + sin(x*10)*baseDepth(end)/8; 89 | plot(x,y,'r', 'LineWidth',2) 90 | end 91 | end 92 | 93 | 94 | % Finalize plot 95 | axis tight; 96 | %axis equal; 97 | set(gca,'XTickLabel', []); 98 | set(gca,'yDir', 'reverse') 99 | ylabel('Depth'); 100 | xlabel('Lithology'); 101 | set(gca, 'FontUnits','points', 'FontWeight','normal', 'FontSize',12, 'FontName','Times') 102 | 103 | 104 | end -------------------------------------------------------------------------------- /main.m: -------------------------------------------------------------------------------- 1 | %% Multiple realization example 2 | clear 3 | clc 4 | 5 | % Define sea level curve 6 | rng(84282) 7 | maxAge= 200; 8 | age = (0:2:maxAge)'; 9 | seaLevelAge = 0:.01:maxAge; 10 | seaLevelHeight = sin(seaLevelAge/20) ;%+ .25*sin(seaLevelAge/5); 11 | 12 | % Define transitional matrices 13 | % markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow 14 | % markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep 15 | % depositionalRates = [1, 1, 1]; 16 | 17 | markovMatrices{1} = [.1 .4 .5 0; .1 .5 .4 0; 0 .3 .6 .1; 0 0 .9 .1]; % Shallow 18 | markovMatrices{2} = [.8 .2 .0 0; .6 .3 .1 0; .5 .2 .3 0; 0 0 .9 .1]; % Deep 19 | depositionalRates{1} = [1, 1, 1, -.1]; 20 | depositionalRates{2} = [3, 4, 2, -.1]; 21 | 22 | % Simulate 23 | nScales = 6 24 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto'); 25 | for i = 1:nScales 26 | 27 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates); 28 | subplot(1,nScales+1,i+1) 29 | plotStrata(strata, true, true, size(markovMatrices{1},1)-1); 30 | title(['Realization: ', num2str(i)]) 31 | set(gca,'YTicklabel', []) 32 | ylabel('') 33 | 34 | end 35 | 36 | subplot(1,nScales+1,1) 37 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2) 38 | set(gca, 'yDir', 'reverse') 39 | % xlabel(['Normalized relative', char(10), 'sea level'], 'Interpreter', 'latex'); ylabel('Depth') 40 | xlabel(['Sea level'], 'Interpreter', 'latex'); ylabel('Depth') 41 | axis tight 42 | set(gca, 'FontUnits','points', 'FontWeight','normal', 'FontSize',12, 'FontName','Times') 43 | 44 | 45 | %% Upscaling example (Mode) 46 | 47 | rng(842) 48 | % Parameters 49 | maxAge= 200; 50 | age = (0:maxAge)'; 51 | seaLevelAge = 0:.01:maxAge; 52 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5); 53 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow 54 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep 55 | depositionalRates = [1, 1, 1]; 56 | 57 | % Simulate 58 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates); 59 | smoothingIntervals = [1 3 5 7 9 11 13 15]; 60 | nScales = numel(smoothingIntervals); 61 | 62 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto'); 63 | for i = 1:nScales 64 | 65 | smoothingInterval = smoothingIntervals(i); 66 | strata = upscaleStrata(strata, smoothingInterval, 'mode'); 67 | 68 | subplot(1,nScales+1,i+1) 69 | plotStrata(strata, true, true, size(markovMatrices{1},1)); 70 | title(['Scale: ', num2str(smoothingInterval)]) 71 | set(gca,'YTicklabel', []) 72 | ylabel('') 73 | 74 | end 75 | 76 | subplot(1,nScales+1,1) 77 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2) 78 | set(gca, 'yDir', 'reverse') 79 | xlabel('Sea-level'); ylabel('Depth') 80 | axis tight 81 | 82 | %% Upscaling example (Mean) 83 | rng(842) 84 | 85 | % Parameters 86 | maxAge= 200; 87 | age = (0:maxAge)'; 88 | seaLevelAge = 0:.01:maxAge; 89 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5); 90 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow 91 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep 92 | depositionalRates = [1, 1, 1]; 93 | 94 | % Simulate 95 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates); 96 | smoothingIntervals = [1 3 5 7 9 11 13 17 25]; 97 | 98 | nScales = numel(smoothingIntervals); 99 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto'); 100 | 101 | for i = 1:nScales 102 | 103 | smoothingInterval = smoothingIntervals(i); 104 | strataUpscaled = upscaleStrata(strata, smoothingInterval, 'mean'); 105 | 106 | subplot(1,nScales+1,i+1) 107 | plotStrata(strataUpscaled, true, true, size(markovMatrices{1},1)); 108 | title(['Scale: ', num2str(smoothingInterval)]) 109 | set(gca,'YTicklabel', []) 110 | ylabel('') 111 | end 112 | 113 | subplot(1,nScales+1,1) 114 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2) 115 | set(gca, 'yDir', 'reverse') 116 | xlabel('Sea-level'); ylabel('Depth') 117 | axis tight 118 | 119 | %% Upscaling example uniform (Mode) 120 | 121 | rng(842) 122 | 123 | % Parameters 124 | maxAge= 200; 125 | age = (0:maxAge)'; 126 | seaLevelAge = 0:.01:maxAge; 127 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5); 128 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow 129 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep 130 | depositionalRates = [1, 1, 1]; 131 | 132 | % Simulate 133 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates); 134 | smoothingIntervals = [1 3 5 7 9 11 13 17 25]; 135 | 136 | nScales = numel(smoothingIntervals); 137 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto'); 138 | 139 | for i = 1:nScales 140 | 141 | smoothingInterval = smoothingIntervals(i); 142 | strataUpscaled = upscaleStrataUniform(strata, smoothingInterval, 'mean'); 143 | 144 | subplot(1,nScales+1,i+1) 145 | plotStrata(strataUpscaled, true, true, size(markovMatrices{1},1)); 146 | title(['Scale: ', num2str(smoothingInterval)]) 147 | set(gca,'YTicklabel', []) 148 | ylabel('') 149 | end 150 | 151 | subplot(1,nScales+1,1) 152 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2) 153 | set(gca, 'yDir', 'reverse') 154 | xlabel('Sea-level'); ylabel('Depth') 155 | axis tight 156 | 157 | 158 | -------------------------------------------------------------------------------- /Sea Level Curves/License.txt: -------------------------------------------------------------------------------- 1 | Data files taken from pyBadlands source files digitezed by Sabin Zahirovic, 13 June 2014 2 | 3 | 4 | GNU GENERAL PUBLIC LICENSE 5 | Version 3, 29 June 2007 6 | 7 | Copyright (C) 2007 Free Software Foundation, Inc. 8 | Everyone is permitted to copy and distribute verbatim copies 9 | of this license document, but changing it is not allowed. 10 | 11 | Preamble 12 | 13 | The GNU General Public License is a free, copyleft license for 14 | software and other kinds of works. 15 | 16 | The licenses for most software and other practical works are designed 17 | to take away your freedom to share and change the works. By contrast, 18 | the GNU General Public License is intended to guarantee your freedom to 19 | share and change all versions of a program--to make sure it remains free 20 | software for all its users. We, the Free Software Foundation, use the 21 | GNU General Public License for most of our software; it applies also to 22 | any other work released this way by its authors. You can apply it to 23 | your programs, too. 24 | 25 | When we speak of free software, we are referring to freedom, not 26 | price. Our General Public Licenses are designed to make sure that you 27 | have the freedom to distribute copies of free software (and charge for 28 | them if you wish), that you receive source code or can get it if you 29 | want it, that you can change the software or use pieces of it in new 30 | free programs, and that you know you can do these things. 31 | 32 | To protect your rights, we need to prevent others from denying you 33 | these rights or asking you to surrender the rights. Therefore, you have 34 | certain responsibilities if you distribute copies of the software, or if 35 | you modify it: responsibilities to respect the freedom of others. 36 | 37 | For example, if you distribute copies of such a program, whether 38 | gratis or for a fee, you must pass on to the recipients the same 39 | freedoms that you received. You must make sure that they, too, receive 40 | or can get the source code. And you must show them these terms so they 41 | know their rights. 42 | 43 | Developers that use the GNU GPL protect your rights with two steps: 44 | (1) assert copyright on the software, and (2) offer you this License 45 | giving you legal permission to copy, distribute and/or modify it. 46 | 47 | For the developers' and authors' protection, the GPL clearly explains 48 | that there is no warranty for this free software. For both users' and 49 | authors' sake, the GPL requires that modified versions be marked as 50 | changed, so that their problems will not be attributed erroneously to 51 | authors of previous versions. 52 | 53 | Some devices are designed to deny users access to install or run 54 | modified versions of the software inside them, although the manufacturer 55 | can do so. This is fundamentally incompatible with the aim of 56 | protecting users' freedom to change the software. The systematic 57 | pattern of such abuse occurs in the area of products for individuals to 58 | use, which is precisely where it is most unacceptable. Therefore, we 59 | have designed this version of the GPL to prohibit the practice for those 60 | products. If such problems arise substantially in other domains, we 61 | stand ready to extend this provision to those domains in future versions 62 | of the GPL, as needed to protect the freedom of users. 63 | 64 | Finally, every program is threatened constantly by software patents. 65 | States should not allow patents to restrict development and use of 66 | software on general-purpose computers, but in those that do, we wish to 67 | avoid the special danger that patents applied to a free program could 68 | make it effectively proprietary. To prevent this, the GPL assures that 69 | patents cannot be used to render the program non-free. 70 | 71 | The precise terms and conditions for copying, distribution and 72 | modification follow. 73 | 74 | TERMS AND CONDITIONS 75 | 76 | 0. Definitions. 77 | 78 | "This License" refers to version 3 of the GNU General Public License. 79 | 80 | "Copyright" also means copyright-like laws that apply to other kinds of 81 | works, such as semiconductor masks. 82 | 83 | "The Program" refers to any copyrightable work licensed under this 84 | License. Each licensee is addressed as "you". "Licensees" and 85 | "recipients" may be individuals or organizations. 86 | 87 | To "modify" a work means to copy from or adapt all or part of the work 88 | in a fashion requiring copyright permission, other than the making of an 89 | exact copy. The resulting work is called a "modified version" of the 90 | earlier work or a work "based on" the earlier work. 91 | 92 | A "covered work" means either the unmodified Program or a work based 93 | on the Program. 94 | 95 | To "propagate" a work means to do anything with it that, without 96 | permission, would make you directly or secondarily liable for 97 | infringement under applicable copyright law, except executing it on a 98 | computer or modifying a private copy. Propagation includes copying, 99 | distribution (with or without modification), making available to the 100 | public, and in some countries other activities as well. 101 | 102 | To "convey" a work means any kind of propagation that enables other 103 | parties to make or receive copies. Mere interaction with a user through 104 | a computer network, with no transfer of a copy, is not conveying. 105 | 106 | An interactive user interface displays "Appropriate Legal Notices" 107 | to the extent that it includes a convenient and prominently visible 108 | feature that (1) displays an appropriate copyright notice, and (2) 109 | tells the user that there is no warranty for the work (except to the 110 | extent that warranties are provided), that licensees may convey the 111 | work under this License, and how to view a copy of this License. If 112 | the interface presents a list of user commands or options, such as a 113 | menu, a prominent item in the list meets this criterion. 114 | 115 | 1. Source Code. 116 | 117 | The "source code" for a work means the preferred form of the work 118 | for making modifications to it. "Object code" means any non-source 119 | form of a work. 120 | 121 | A "Standard Interface" means an interface that either is an official 122 | standard defined by a recognized standards body, or, in the case of 123 | interfaces specified for a particular programming language, one that 124 | is widely used among developers working in that language. 125 | 126 | The "System Libraries" of an executable work include anything, other 127 | than the work as a whole, that (a) is included in the normal form of 128 | packaging a Major Component, but which is not part of that Major 129 | Component, and (b) serves only to enable use of the work with that 130 | Major Component, or to implement a Standard Interface for which an 131 | implementation is available to the public in source code form. A 132 | "Major Component", in this context, means a major essential component 133 | (kernel, window system, and so on) of the specific operating system 134 | (if any) on which the executable work runs, or a compiler used to 135 | produce the work, or an object code interpreter used to run it. 136 | 137 | The "Corresponding Source" for a work in object code form means all 138 | the source code needed to generate, install, and (for an executable 139 | work) run the object code and to modify the work, including scripts to 140 | control those activities. However, it does not include the work's 141 | System Libraries, or general-purpose tools or generally available free 142 | programs which are used unmodified in performing those activities but 143 | which are not part of the work. For example, Corresponding Source 144 | includes interface definition files associated with source files for 145 | the work, and the source code for shared libraries and dynamically 146 | linked subprograms that the work is specifically designed to require, 147 | such as by intimate data communication or control flow between those 148 | subprograms and other parts of the work. 149 | 150 | The Corresponding Source need not include anything that users 151 | can regenerate automatically from other parts of the Corresponding 152 | Source. 153 | 154 | The Corresponding Source for a work in source code form is that 155 | same work. 156 | 157 | 2. Basic Permissions. 158 | 159 | All rights granted under this License are granted for the term of 160 | copyright on the Program, and are irrevocable provided the stated 161 | conditions are met. This License explicitly affirms your unlimited 162 | permission to run the unmodified Program. The output from running a 163 | covered work is covered by this License only if the output, given its 164 | content, constitutes a covered work. This License acknowledges your 165 | rights of fair use or other equivalent, as provided by copyright law. 166 | 167 | You may make, run and propagate covered works that you do not 168 | convey, without conditions so long as your license otherwise remains 169 | in force. You may convey covered works to others for the sole purpose 170 | of having them make modifications exclusively for you, or provide you 171 | with facilities for running those works, provided that you comply with 172 | the terms of this License in conveying all material for which you do 173 | not control copyright. Those thus making or running the covered works 174 | for you must do so exclusively on your behalf, under your direction 175 | and control, on terms that prohibit them from making any copies of 176 | your copyrighted material outside their relationship with you. 177 | 178 | Conveying under any other circumstances is permitted solely under 179 | the conditions stated below. Sublicensing is not allowed; section 10 180 | makes it unnecessary. 181 | 182 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 183 | 184 | No covered work shall be deemed part of an effective technological 185 | measure under any applicable law fulfilling obligations under article 186 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 187 | similar laws prohibiting or restricting circumvention of such 188 | measures. 189 | 190 | When you convey a covered work, you waive any legal power to forbid 191 | circumvention of technological measures to the extent such circumvention 192 | is effected by exercising rights under this License with respect to 193 | the covered work, and you disclaim any intention to limit operation or 194 | modification of the work as a means of enforcing, against the work's 195 | users, your or third parties' legal rights to forbid circumvention of 196 | technological measures. 197 | 198 | 4. Conveying Verbatim Copies. 199 | 200 | You may convey verbatim copies of the Program's source code as you 201 | receive it, in any medium, provided that you conspicuously and 202 | appropriately publish on each copy an appropriate copyright notice; 203 | keep intact all notices stating that this License and any 204 | non-permissive terms added in accord with section 7 apply to the code; 205 | keep intact all notices of the absence of any warranty; and give all 206 | recipients a copy of this License along with the Program. 207 | 208 | You may charge any price or no price for each copy that you convey, 209 | and you may offer support or warranty protection for a fee. 210 | 211 | 5. Conveying Modified Source Versions. 212 | 213 | You may convey a work based on the Program, or the modifications to 214 | produce it from the Program, in the form of source code under the 215 | terms of section 4, provided that you also meet all of these conditions: 216 | 217 | a) The work must carry prominent notices stating that you modified 218 | it, and giving a relevant date. 219 | 220 | b) The work must carry prominent notices stating that it is 221 | released under this License and any conditions added under section 222 | 7. This requirement modifies the requirement in section 4 to 223 | "keep intact all notices". 224 | 225 | c) You must license the entire work, as a whole, under this 226 | License to anyone who comes into possession of a copy. This 227 | License will therefore apply, along with any applicable section 7 228 | additional terms, to the whole of the work, and all its parts, 229 | regardless of how they are packaged. This License gives no 230 | permission to license the work in any other way, but it does not 231 | invalidate such permission if you have separately received it. 232 | 233 | d) If the work has interactive user interfaces, each must display 234 | Appropriate Legal Notices; however, if the Program has interactive 235 | interfaces that do not display Appropriate Legal Notices, your 236 | work need not make them do so. 237 | 238 | A compilation of a covered work with other separate and independent 239 | works, which are not by their nature extensions of the covered work, 240 | and which are not combined with it such as to form a larger program, 241 | in or on a volume of a storage or distribution medium, is called an 242 | "aggregate" if the compilation and its resulting copyright are not 243 | used to limit the access or legal rights of the compilation's users 244 | beyond what the individual works permit. Inclusion of a covered work 245 | in an aggregate does not cause this License to apply to the other 246 | parts of the aggregate. 247 | 248 | 6. Conveying Non-Source Forms. 249 | 250 | You may convey a covered work in object code form under the terms 251 | of sections 4 and 5, provided that you also convey the 252 | machine-readable Corresponding Source under the terms of this License, 253 | in one of these ways: 254 | 255 | a) Convey the object code in, or embodied in, a physical product 256 | (including a physical distribution medium), accompanied by the 257 | Corresponding Source fixed on a durable physical medium 258 | customarily used for software interchange. 259 | 260 | b) Convey the object code in, or embodied in, a physical product 261 | (including a physical distribution medium), accompanied by a 262 | written offer, valid for at least three years and valid for as 263 | long as you offer spare parts or customer support for that product 264 | model, to give anyone who possesses the object code either (1) a 265 | copy of the Corresponding Source for all the software in the 266 | product that is covered by this License, on a durable physical 267 | medium customarily used for software interchange, for a price no 268 | more than your reasonable cost of physically performing this 269 | conveying of source, or (2) access to copy the 270 | Corresponding Source from a network server at no charge. 271 | 272 | c) Convey individual copies of the object code with a copy of the 273 | written offer to provide the Corresponding Source. This 274 | alternative is allowed only occasionally and noncommercially, and 275 | only if you received the object code with such an offer, in accord 276 | with subsection 6b. 277 | 278 | d) Convey the object code by offering access from a designated 279 | place (gratis or for a charge), and offer equivalent access to the 280 | Corresponding Source in the same way through the same place at no 281 | further charge. You need not require recipients to copy the 282 | Corresponding Source along with the object code. If the place to 283 | copy the object code is a network server, the Corresponding Source 284 | may be on a different server (operated by you or a third party) 285 | that supports equivalent copying facilities, provided you maintain 286 | clear directions next to the object code saying where to find the 287 | Corresponding Source. Regardless of what server hosts the 288 | Corresponding Source, you remain obligated to ensure that it is 289 | available for as long as needed to satisfy these requirements. 290 | 291 | e) Convey the object code using peer-to-peer transmission, provided 292 | you inform other peers where the object code and Corresponding 293 | Source of the work are being offered to the general public at no 294 | charge under subsection 6d. 295 | 296 | A separable portion of the object code, whose source code is excluded 297 | from the Corresponding Source as a System Library, need not be 298 | included in conveying the object code work. 299 | 300 | A "User Product" is either (1) a "consumer product", which means any 301 | tangible personal property which is normally used for personal, family, 302 | or household purposes, or (2) anything designed or sold for incorporation 303 | into a dwelling. In determining whether a product is a consumer product, 304 | doubtful cases shall be resolved in favor of coverage. For a particular 305 | product received by a particular user, "normally used" refers to a 306 | typical or common use of that class of product, regardless of the status 307 | of the particular user or of the way in which the particular user 308 | actually uses, or expects or is expected to use, the product. A product 309 | is a consumer product regardless of whether the product has substantial 310 | commercial, industrial or non-consumer uses, unless such uses represent 311 | the only significant mode of use of the product. 312 | 313 | "Installation Information" for a User Product means any methods, 314 | procedures, authorization keys, or other information required to install 315 | and execute modified versions of a covered work in that User Product from 316 | a modified version of its Corresponding Source. The information must 317 | suffice to ensure that the continued functioning of the modified object 318 | code is in no case prevented or interfered with solely because 319 | modification has been made. 320 | 321 | If you convey an object code work under this section in, or with, or 322 | specifically for use in, a User Product, and the conveying occurs as 323 | part of a transaction in which the right of possession and use of the 324 | User Product is transferred to the recipient in perpetuity or for a 325 | fixed term (regardless of how the transaction is characterized), the 326 | Corresponding Source conveyed under this section must be accompanied 327 | by the Installation Information. But this requirement does not apply 328 | if neither you nor any third party retains the ability to install 329 | modified object code on the User Product (for example, the work has 330 | been installed in ROM). 331 | 332 | The requirement to provide Installation Information does not include a 333 | requirement to continue to provide support service, warranty, or updates 334 | for a work that has been modified or installed by the recipient, or for 335 | the User Product in which it has been modified or installed. Access to a 336 | network may be denied when the modification itself materially and 337 | adversely affects the operation of the network or violates the rules and 338 | protocols for communication across the network. 339 | 340 | Corresponding Source conveyed, and Installation Information provided, 341 | in accord with this section must be in a format that is publicly 342 | documented (and with an implementation available to the public in 343 | source code form), and must require no special password or key for 344 | unpacking, reading or copying. 345 | 346 | 7. Additional Terms. 347 | 348 | "Additional permissions" are terms that supplement the terms of this 349 | License by making exceptions from one or more of its conditions. 350 | Additional permissions that are applicable to the entire Program shall 351 | be treated as though they were included in this License, to the extent 352 | that they are valid under applicable law. If additional permissions 353 | apply only to part of the Program, that part may be used separately 354 | under those permissions, but the entire Program remains governed by 355 | this License without regard to the additional permissions. 356 | 357 | When you convey a copy of a covered work, you may at your option 358 | remove any additional permissions from that copy, or from any part of 359 | it. (Additional permissions may be written to require their own 360 | removal in certain cases when you modify the work.) You may place 361 | additional permissions on material, added by you to a covered work, 362 | for which you have or can give appropriate copyright permission. 363 | 364 | Notwithstanding any other provision of this License, for material you 365 | add to a covered work, you may (if authorized by the copyright holders of 366 | that material) supplement the terms of this License with terms: 367 | 368 | a) Disclaiming warranty or limiting liability differently from the 369 | terms of sections 15 and 16 of this License; or 370 | 371 | b) Requiring preservation of specified reasonable legal notices or 372 | author attributions in that material or in the Appropriate Legal 373 | Notices displayed by works containing it; or 374 | 375 | c) Prohibiting misrepresentation of the origin of that material, or 376 | requiring that modified versions of such material be marked in 377 | reasonable ways as different from the original version; or 378 | 379 | d) Limiting the use for publicity purposes of names of licensors or 380 | authors of the material; or 381 | 382 | e) Declining to grant rights under trademark law for use of some 383 | trade names, trademarks, or service marks; or 384 | 385 | f) Requiring indemnification of licensors and authors of that 386 | material by anyone who conveys the material (or modified versions of 387 | it) with contractual assumptions of liability to the recipient, for 388 | any liability that these contractual assumptions directly impose on 389 | those licensors and authors. 390 | 391 | All other non-permissive additional terms are considered "further 392 | restrictions" within the meaning of section 10. If the Program as you 393 | received it, or any part of it, contains a notice stating that it is 394 | governed by this License along with a term that is a further 395 | restriction, you may remove that term. If a license document contains 396 | a further restriction but permits relicensing or conveying under this 397 | License, you may add to a covered work material governed by the terms 398 | of that license document, provided that the further restriction does 399 | not survive such relicensing or conveying. 400 | 401 | If you add terms to a covered work in accord with this section, you 402 | must place, in the relevant source files, a statement of the 403 | additional terms that apply to those files, or a notice indicating 404 | where to find the applicable terms. 405 | 406 | Additional terms, permissive or non-permissive, may be stated in the 407 | form of a separately written license, or stated as exceptions; 408 | the above requirements apply either way. 409 | 410 | 8. Termination. 411 | 412 | You may not propagate or modify a covered work except as expressly 413 | provided under this License. Any attempt otherwise to propagate or 414 | modify it is void, and will automatically terminate your rights under 415 | this License (including any patent licenses granted under the third 416 | paragraph of section 11). 417 | 418 | However, if you cease all violation of this License, then your 419 | license from a particular copyright holder is reinstated (a) 420 | provisionally, unless and until the copyright holder explicitly and 421 | finally terminates your license, and (b) permanently, if the copyright 422 | holder fails to notify you of the violation by some reasonable means 423 | prior to 60 days after the cessation. 424 | 425 | Moreover, your license from a particular copyright holder is 426 | reinstated permanently if the copyright holder notifies you of the 427 | violation by some reasonable means, this is the first time you have 428 | received notice of violation of this License (for any work) from that 429 | copyright holder, and you cure the violation prior to 30 days after 430 | your receipt of the notice. 431 | 432 | Termination of your rights under this section does not terminate the 433 | licenses of parties who have received copies or rights from you under 434 | this License. If your rights have been terminated and not permanently 435 | reinstated, you do not qualify to receive new licenses for the same 436 | material under section 10. 437 | 438 | 9. Acceptance Not Required for Having Copies. 439 | 440 | You are not required to accept this License in order to receive or 441 | run a copy of the Program. Ancillary propagation of a covered work 442 | occurring solely as a consequence of using peer-to-peer transmission 443 | to receive a copy likewise does not require acceptance. However, 444 | nothing other than this License grants you permission to propagate or 445 | modify any covered work. These actions infringe copyright if you do 446 | not accept this License. Therefore, by modifying or propagating a 447 | covered work, you indicate your acceptance of this License to do so. 448 | 449 | 10. Automatic Licensing of Downstream Recipients. 450 | 451 | Each time you convey a covered work, the recipient automatically 452 | receives a license from the original licensors, to run, modify and 453 | propagate that work, subject to this License. You are not responsible 454 | for enforcing compliance by third parties with this License. 455 | 456 | An "entity transaction" is a transaction transferring control of an 457 | organization, or substantially all assets of one, or subdividing an 458 | organization, or merging organizations. If propagation of a covered 459 | work results from an entity transaction, each party to that 460 | transaction who receives a copy of the work also receives whatever 461 | licenses to the work the party's predecessor in interest had or could 462 | give under the previous paragraph, plus a right to possession of the 463 | Corresponding Source of the work from the predecessor in interest, if 464 | the predecessor has it or can get it with reasonable efforts. 465 | 466 | You may not impose any further restrictions on the exercise of the 467 | rights granted or affirmed under this License. For example, you may 468 | not impose a license fee, royalty, or other charge for exercise of 469 | rights granted under this License, and you may not initiate litigation 470 | (including a cross-claim or counterclaim in a lawsuit) alleging that 471 | any patent claim is infringed by making, using, selling, offering for 472 | sale, or importing the Program or any portion of it. 473 | 474 | 11. Patents. 475 | 476 | A "contributor" is a copyright holder who authorizes use under this 477 | License of the Program or a work on which the Program is based. The 478 | work thus licensed is called the contributor's "contributor version". 479 | 480 | A contributor's "essential patent claims" are all patent claims 481 | owned or controlled by the contributor, whether already acquired or 482 | hereafter acquired, that would be infringed by some manner, permitted 483 | by this License, of making, using, or selling its contributor version, 484 | but do not include claims that would be infringed only as a 485 | consequence of further modification of the contributor version. For 486 | purposes of this definition, "control" includes the right to grant 487 | patent sublicenses in a manner consistent with the requirements of 488 | this License. 489 | 490 | Each contributor grants you a non-exclusive, worldwide, royalty-free 491 | patent license under the contributor's essential patent claims, to 492 | make, use, sell, offer for sale, import and otherwise run, modify and 493 | propagate the contents of its contributor version. 494 | 495 | In the following three paragraphs, a "patent license" is any express 496 | agreement or commitment, however denominated, not to enforce a patent 497 | (such as an express permission to practice a patent or covenant not to 498 | sue for patent infringement). To "grant" such a patent license to a 499 | party means to make such an agreement or commitment not to enforce a 500 | patent against the party. 501 | 502 | If you convey a covered work, knowingly relying on a patent license, 503 | and the Corresponding Source of the work is not available for anyone 504 | to copy, free of charge and under the terms of this License, through a 505 | publicly available network server or other readily accessible means, 506 | then you must either (1) cause the Corresponding Source to be so 507 | available, or (2) arrange to deprive yourself of the benefit of the 508 | patent license for this particular work, or (3) arrange, in a manner 509 | consistent with the requirements of this License, to extend the patent 510 | license to downstream recipients. "Knowingly relying" means you have 511 | actual knowledge that, but for the patent license, your conveying the 512 | covered work in a country, or your recipient's use of the covered work 513 | in a country, would infringe one or more identifiable patents in that 514 | country that you have reason to believe are valid. 515 | 516 | If, pursuant to or in connection with a single transaction or 517 | arrangement, you convey, or propagate by procuring conveyance of, a 518 | covered work, and grant a patent license to some of the parties 519 | receiving the covered work authorizing them to use, propagate, modify 520 | or convey a specific copy of the covered work, then the patent license 521 | you grant is automatically extended to all recipients of the covered 522 | work and works based on it. 523 | 524 | A patent license is "discriminatory" if it does not include within 525 | the scope of its coverage, prohibits the exercise of, or is 526 | conditioned on the non-exercise of one or more of the rights that are 527 | specifically granted under this License. You may not convey a covered 528 | work if you are a party to an arrangement with a third party that is 529 | in the business of distributing software, under which you make payment 530 | to the third party based on the extent of your activity of conveying 531 | the work, and under which the third party grants, to any of the 532 | parties who would receive the covered work from you, a discriminatory 533 | patent license (a) in connection with copies of the covered work 534 | conveyed by you (or copies made from those copies), or (b) primarily 535 | for and in connection with specific products or compilations that 536 | contain the covered work, unless you entered into that arrangement, 537 | or that patent license was granted, prior to 28 March 2007. 538 | 539 | Nothing in this License shall be construed as excluding or limiting 540 | any implied license or other defenses to infringement that may 541 | otherwise be available to you under applicable patent law. 542 | 543 | 12. No Surrender of Others' Freedom. 544 | 545 | If conditions are imposed on you (whether by court order, agreement or 546 | otherwise) that contradict the conditions of this License, they do not 547 | excuse you from the conditions of this License. If you cannot convey a 548 | covered work so as to satisfy simultaneously your obligations under this 549 | License and any other pertinent obligations, then as a consequence you may 550 | not convey it at all. For example, if you agree to terms that obligate you 551 | to collect a royalty for further conveying from those to whom you convey 552 | the Program, the only way you could satisfy both those terms and this 553 | License would be to refrain entirely from conveying the Program. 554 | 555 | 13. Use with the GNU Affero General Public License. 556 | 557 | Notwithstanding any other provision of this License, you have 558 | permission to link or combine any covered work with a work licensed 559 | under version 3 of the GNU Affero General Public License into a single 560 | combined work, and to convey the resulting work. The terms of this 561 | License will continue to apply to the part which is the covered work, 562 | but the special requirements of the GNU Affero General Public License, 563 | section 13, concerning interaction through a network will apply to the 564 | combination as such. 565 | 566 | 14. Revised Versions of this License. 567 | 568 | The Free Software Foundation may publish revised and/or new versions of 569 | the GNU General Public License from time to time. Such new versions will 570 | be similar in spirit to the present version, but may differ in detail to 571 | address new problems or concerns. 572 | 573 | Each version is given a distinguishing version number. If the 574 | Program specifies that a certain numbered version of the GNU General 575 | Public License "or any later version" applies to it, you have the 576 | option of following the terms and conditions either of that numbered 577 | version or of any later version published by the Free Software 578 | Foundation. If the Program does not specify a version number of the 579 | GNU General Public License, you may choose any version ever published 580 | by the Free Software Foundation. 581 | 582 | If the Program specifies that a proxy can decide which future 583 | versions of the GNU General Public License can be used, that proxy's 584 | public statement of acceptance of a version permanently authorizes you 585 | to choose that version for the Program. 586 | 587 | Later license versions may give you additional or different 588 | permissions. However, no additional obligations are imposed on any 589 | author or copyright holder as a result of your choosing to follow a 590 | later version. 591 | 592 | 15. Disclaimer of Warranty. 593 | 594 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 595 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 596 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 597 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 598 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 599 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 600 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 601 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 602 | 603 | 16. Limitation of Liability. 604 | 605 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 606 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 607 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 608 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 609 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 610 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 611 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 612 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 613 | SUCH DAMAGES. 614 | 615 | 17. Interpretation of Sections 15 and 16. 616 | 617 | If the disclaimer of warranty and limitation of liability provided 618 | above cannot be given local legal effect according to their terms, 619 | reviewing courts shall apply local law that most closely approximates 620 | an absolute waiver of all civil liability in connection with the 621 | Program, unless a warranty or assumption of liability accompanies a 622 | copy of the Program in return for a fee. 623 | 624 | END OF TERMS AND CONDITIONS 625 | 626 | How to Apply These Terms to Your New Programs 627 | 628 | If you develop a new program, and you want it to be of the greatest 629 | possible use to the public, the best way to achieve this is to make it 630 | free software which everyone can redistribute and change under these terms. 631 | 632 | To do so, attach the following notices to the program. It is safest 633 | to attach them to the start of each source file to most effectively 634 | state the exclusion of warranty; and each file should have at least 635 | the "copyright" line and a pointer to where the full notice is found. 636 | 637 | {one line to give the program's name and a brief idea of what it does.} 638 | Copyright (C) {year} {name of author} 639 | 640 | This program is free software: you can redistribute it and/or modify 641 | it under the terms of the GNU General Public License as published by 642 | the Free Software Foundation, either version 3 of the License, or 643 | (at your option) any later version. 644 | 645 | This program is distributed in the hope that it will be useful, 646 | but WITHOUT ANY WARRANTY; without even the implied warranty of 647 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 648 | GNU General Public License for more details. 649 | 650 | You should have received a copy of the GNU General Public License 651 | along with this program. If not, see . 652 | 653 | Also add information on how to contact you by electronic and paper mail. 654 | 655 | If the program does terminal interaction, make it output a short 656 | notice like this when it starts in an interactive mode: 657 | 658 | {project} Copyright (C) {year} {fullname} 659 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 660 | This is free software, and you are welcome to redistribute it 661 | under certain conditions; type `show c' for details. 662 | 663 | The hypothetical commands `show w' and `show c' should show the appropriate 664 | parts of the General Public License. Of course, your program's commands 665 | might be different; for a GUI interface, you would use an "about box". 666 | 667 | You should also get your employer (if you work as a programmer) or school, 668 | if any, to sign a "copyright disclaimer" for the program, if necessary. 669 | For more information on this, and how to apply and follow the GNU GPL, see 670 | . 671 | 672 | The GNU General Public License does not permit incorporating your program 673 | into proprietary programs. If your program is a subroutine library, you 674 | may consider it more useful to permit linking proprietary applications with 675 | the library. If this is what you want to do, use the GNU Lesser General 676 | Public License instead of this License. But first, please read 677 | . 678 | -------------------------------------------------------------------------------- /Sea Level Curves/Haq et al., 1987.csv: -------------------------------------------------------------------------------- 1 | Age (Ma),SL (compared to present) 2 | 0.15,1.26 3 | 0.26,-79.63 4 | 0.97,-78.92 5 | 1.08,1.39 6 | 1.19,11.33 7 | 1.29,18.02 8 | 1.43,19.51 9 | 1.59,13.09 10 | 1.66,-0.89 11 | 1.73,-73.65 12 | 1.75,-77.67 13 | 1.94,-79.54 14 | 2.04,-75.45 15 | 2,-2.69 16 | 2.07,6.17 17 | 2.24,16.42 18 | 2.39,7.73 19 | 2.42,-3.54 20 | 2.46,-64.17 21 | 2.54,-71.55 22 | 2.61,-67.02 23 | 2.71,-60.11 24 | 2.77,-24.61 25 | 2.84,10.99 26 | 2.86,15.86 27 | 2.98,16.48 28 | 3.08,11.37 29 | 3.16,-62.69 30 | 3.14,-68.1 31 | 3.16,-72.97 32 | 3.27,-75.06 33 | 3.38,-69.66 34 | 3.43,-62.53 35 | 3.54,28.06 36 | 3.59,41.15 37 | 3.64,51.32 38 | 3.75,54.76 39 | 3.82,55.07 40 | 3.92,46.17 41 | 3.99,31 42 | 4.1,-20.33 43 | 4.11,-25.97 44 | 4.19,-27.83 45 | 4.27,-21.99 46 | 4.34,-14.32 47 | 4.36,1.59 48 | 4.34,61.46 49 | 4.4,67.62 50 | 4.44,69.67 51 | 4.51,68.14 52 | 4.63,70.39 53 | 4.78,79.67 54 | 4.92,85.05 55 | 5.23,88.24 56 | 5.47,87.75 57 | 5.65,83.82 58 | 5.71,71.9 59 | 5.83,-32.27 60 | 5.86,-38.13 61 | 5.97,-42.81 62 | 6.12,-36.23 63 | 6.15,-28.23 64 | 6.18,28.5 65 | 6.34,34.31 66 | 6.44,35.37 67 | 6.58,29.71 68 | 6.59,20.72 69 | 6.63,-18.48 70 | 6.73,-23.48 71 | 6.91,-26.22 72 | 7.01,-23.1 73 | 7.08,-18.13 74 | 7.11,-2.98 75 | 7.31,5.11 76 | 7.56,11.02 77 | 7.89,11.3 78 | 8.24,7.56 79 | 8.45,-2 80 | 8.66,-16.32 81 | 8.85,-21.87 82 | 9.08,-24.18 83 | 9.61,-24.48 84 | 9.78,-19.1 85 | 9.97,-7.99 86 | 10.07,-2.4 87 | 10.22,-0.31 88 | 10.36,-0.8 89 | 10.46,-3.88 90 | 10.52,-12.78 91 | 10.76,-69.08 92 | 10.79,-75.59 93 | 10.86,-79.08 94 | 10.97,-75.56 95 | 10.99,-67.45 96 | 11.01,25.76 97 | 11.05,39.7 98 | 11.15,49.72 99 | 11.27,52.9 100 | 11.4,53.39 101 | 11.53,52.24 102 | 11.65,46.98 103 | 11.7,41.76 104 | 11.81,39.65 105 | 11.89,48.16 106 | 11.93,82.68 107 | 12.03,91.11 108 | 12.31,96.25 109 | 12.61,94.67 110 | 12.8,89.76 111 | 12.94,84.86 112 | 13.12,84.39 113 | 13.23,90.11 114 | 13.29,118.79 115 | 13.44,127.42 116 | 13.72,136.57 117 | 14.12,142.98 118 | 14.52,141.38 119 | 14.8,137.11 120 | 14.89,57.08 121 | 15.02,52.51 122 | 15.08,58.24 123 | 15.11,101.21 124 | 15.25,133.87 125 | 15.31,140.14 126 | 15.52,143.23 127 | 15.77,138.83 128 | 15.83,131.13 129 | 15.92,45.69 130 | 15.98,41.24 131 | 16.09,41.64 132 | 16.13,50.62 133 | 16.18,89.36 134 | 16.22,106.79 135 | 16.24,122.48 136 | 16.32,131.01 137 | 16.43,135.75 138 | 16.6,138.3 139 | 16.77,137.18 140 | 16.87,133.26 141 | 16.94,122.31 142 | 17.01,116.88 143 | 17.13,115.33 144 | 17.4,118.73 145 | 17.74,120.7 146 | 18.07,118.46 147 | 18.61,106.63 148 | 19.27,87.1 149 | 19.83,67.69 150 | 20.01,64.18 151 | 20.14,66.96 152 | 20.25,74.3 153 | 20.33,110.65 154 | 20.41,117.23 155 | 20.6,120.64 156 | 20.77,116.37 157 | 20.82,109.11 158 | 20.95,102.57 159 | 21.1,110.65 160 | 21.29,118.39 161 | 21.69,128.24 162 | 22.06,133.22 163 | 22.44,134.09 164 | 22.88,129.1 165 | 23.18,121.33 166 | 23.35,104.17 167 | 23.44,45.04 168 | 23.5,35.06 169 | 23.65,33.28 170 | 23.76,39.53 171 | 23.85,71.45 172 | 23.86,80.86 173 | 24.05,85.26 174 | 24.25,84.25 175 | 24.38,75.68 176 | 24.45,61.37 177 | 24.45,53.36 178 | 24.68,47.36 179 | 24.89,54.24 180 | 25.06,69.37 181 | 25.24,77.24 182 | 25.52,80.86 183 | 25.8,80.81 184 | 26.04,76.43 185 | 26.26,66.96 186 | 26.55,36.7 187 | 26.64,31.49 188 | 26.84,30.26 189 | 26.99,34.01 190 | 27.14,58.13 191 | 27.68,62.07 192 | 28.29,56.48 193 | 28.8,37.69 194 | 28.93,20.46 195 | 28.99,10.06 196 | 29.23,3.1 197 | 29.5,1.01 198 | 29.93,11.14 199 | 29.93,35.06 200 | 30.16,131.72 201 | 30.11,148.02 202 | 30.37,167.15 203 | 30.59,177.32 204 | 30.84,178.81 205 | 31.02,175.68 206 | 31.22,173.42 207 | 31.36,178.86 208 | 31.8,192.24 209 | 32.14,196.27 210 | 32.46,196.3 211 | 32.77,192.65 212 | 33.08,179.26 213 | 33.12,160.95 214 | 33.29,111.11 215 | 33.37,102.64 216 | 33.57,103.46 217 | 33.67,113.39 218 | 33.72,137.74 219 | 33.77,147.46 220 | 33.88,151.31 221 | 34.04,149.51 222 | 34.08,142.24 223 | 34.1,135.95 224 | 34.19,131.7 225 | 34.28,132.74 226 | 34.36,138.89 227 | 34.72,142.74 228 | 35.02,136.63 229 | 35.08,129.8 230 | 35.45,124.88 231 | 35.91,129.57 232 | 36.23,133.3 233 | 36.57,128.25 234 | 36.67,120.01 235 | 36.8,102.01 236 | 37.23,94.57 237 | 37.37,158.74 238 | 37.57,170.61 239 | 37.68,175.03 240 | 37.99,175.95 241 | 38.4,171.98 242 | 38.74,173.32 243 | 38.96,177.51 244 | 39.04,187.13 245 | 39.34,192.38 246 | 39.65,192.01 247 | 39.85,180.72 248 | 40.1,151.99 249 | 40.29,144.05 250 | 40.68,139.66 251 | 41.01,139.72 252 | 41.36,146.48 253 | 41.64,168.52 254 | 41.75,174.78 255 | 42.08,177.97 256 | 42.42,174.66 257 | 42.65,172.24 258 | 42.92,174.03 259 | 43.22,186.86 260 | 43.54,200.55 261 | 43.95,208.48 262 | 44.55,210.85 263 | 44.98,205.57 264 | 45.14,200.23 265 | 45.32,194.35 266 | 45.54,191.82 267 | 45.95,196.49 268 | 46.44,207.65 269 | 46.71,213.01 270 | 47.18,214.2 271 | 47.39,211.13 272 | 47.57,204.05 273 | 47.62,169.18 274 | 47.81,161.56 275 | 48.07,160.53 276 | 48.28,168.93 277 | 48.33,183.1 278 | 48.56,186.1 279 | 48.75,185.43 280 | 48.86,178.8 281 | 49.16,80.03 282 | 49.3,71.68 283 | 49.54,83.33 284 | 49.56,92.31 285 | 49.76,187.11 286 | 49.83,195.54 287 | 49.89,198.87 288 | 50.02,200.13 289 | 50.12,195.33 290 | 50.33,202.11 291 | 50.41,206.32 292 | 50.62,202.92 293 | 50.81,207.33 294 | 51.05,210.98 295 | 51.35,212.14 296 | 51.52,204.86 297 | 51.57,184.07 298 | 51.78,176.68 299 | 52.04,180.11 300 | 52.27,208.97 301 | 52.31,215.02 302 | 52.4,217.16 303 | 52.48,212.7 304 | 52.52,207.06 305 | 52.6,206.28 306 | 52.67,211.57 307 | 52.92,220.15 308 | 53.03,217.62 309 | 53.15,212.17 310 | 53.24,209 311 | 53.47,211.99 312 | 54.04,214.08 313 | 54.43,209.92 314 | 54.66,160.52 315 | 54.86,154.33 316 | 55.11,157.65 317 | 55.26,197.25 318 | 55.41,187.37 319 | 55.43,164.85 320 | 55.56,134.08 321 | 55.64,130.82 322 | 55.7,138.71 323 | 55.7,172.7 324 | 55.83,177.64 325 | 55.89,170.81 326 | 55.89,71.96 327 | 55.9,72.6 328 | 55.97,173.79 329 | 56.19,184.45 330 | 56.48,191.64 331 | 56.79,193.4 332 | 57.15,192.99 333 | 57.3,190.14 334 | 57.65,177.17 335 | 58.66,70.62 336 | 58.71,61.08 337 | 58.92,56.16 338 | 59.15,65.3 339 | 59.22,148.21 340 | 59.27,173.51 341 | 59.34,178.66 342 | 59.41,179.26 343 | 59.47,172.84 344 | 59.54,154.17 345 | 59.62,149.25 346 | 59.69,151.05 347 | 59.75,166.83 348 | 59.86,180.65 349 | 60.11,192.15 350 | 60.41,198.65 351 | 60.77,197.88 352 | 61.12,194.08 353 | 61.41,191.38 354 | 61.69,193.45 355 | 62.03,201.02 356 | 62.5,198.53 357 | 62.57,199.34 358 | 62.64,200.7 359 | 62.71,202.6 360 | 62.79,203.41 361 | 62.86,204.5 362 | 62.93,205.1 363 | 63,205.1 364 | 63.07,207 365 | 63.14,207 366 | 63.21,207 367 | 63.29,207 368 | 63.36,207 369 | 63.43,207 370 | 63.5,207 371 | 63.57,207 372 | 63.64,207 373 | 63.71,207 374 | 63.79,207 375 | 63.86,207 376 | 63.93,207 377 | 64,207 378 | 64.07,207 379 | 64.14,207 380 | 64.21,207 381 | 64.29,207 382 | 64.36,207 383 | 64.43,207.1 384 | 64.5,207.1 385 | 64.57,207.1 386 | 64.64,207.1 387 | 64.71,205.2 388 | 64.79,201.4 389 | 64.86,197.6 390 | 64.93,193.8 391 | 65,190 392 | 65.1,187.47 393 | 65.2,186.2 394 | 65.3,186.3 395 | 65.4,188.2 396 | 65.5,188.2 397 | 65.55,190.1 398 | 65.6,192 399 | 65.65,194.85 400 | 65.7,195.8 401 | 65.75,195.8 402 | 65.8,192 403 | 65.85,154.03 404 | 65.9,121.9 405 | 65.95,120 406 | 66,154.1 407 | 66.18,188.2 408 | 66.35,195.8 409 | 66.53,199.6 410 | 66.71,203.4 411 | 66.88,205.3 412 | 67.06,207.2 413 | 67.24,209.1 414 | 67.41,211 415 | 67.59,212.9 416 | 67.77,214.8 417 | 67.94,214.8 418 | 68.12,214.8 419 | 68.3,214.8 420 | 68.47,214.8 421 | 68.65,214.8 422 | 68.83,214.8 423 | 69,212.9 424 | 69.18,211 425 | 69.36,211 426 | 69.53,209.1 427 | 69.71,207.3 428 | 69.89,203.5 429 | 70.06,200.33 430 | 70.24,196.38 431 | 70.42,189.57 432 | 70.59,177.57 433 | 70.77,169.4 434 | 70.95,169.4 435 | 71.12,180.8 436 | 71.3,191.15 437 | 71.39,198.75 438 | 71.48,205.4 439 | 71.57,209.2 440 | 71.66,213 441 | 71.75,214.9 442 | 71.84,218.7 443 | 71.93,220.6 444 | 72.02,222.5 445 | 72.11,224.4 446 | 72.2,226.3 447 | 72.29,226.3 448 | 72.38,226.3 449 | 72.47,228.2 450 | 72.56,228.2 451 | 72.65,228.2 452 | 72.74,229.71 453 | 72.83,229.78 454 | 72.92,229.8 455 | 73.01,229.8 456 | 73.1,229.8 457 | 73.19,229.8 458 | 73.28,229.8 459 | 73.37,229.53 460 | 73.46,227.93 461 | 73.55,227.99 462 | 73.64,225.56 463 | 73.73,222.84 464 | 73.82,222.26 465 | 73.91,222.21 466 | 74,220.3 467 | 74.1,216.4 468 | 74.19,214.03 469 | 74.29,209.75 470 | 74.38,203.48 471 | 74.48,196.16 472 | 74.57,191.5 473 | 74.67,189.6 474 | 74.76,189.6 475 | 74.86,189.6 476 | 74.95,191.5 477 | 75.05,198.2 478 | 75.14,206.8 479 | 75.24,211.6 480 | 75.33,218.3 481 | 75.43,222.1 482 | 75.52,225.9 483 | 75.62,229.8 484 | 75.71,233.6 485 | 75.81,236.45 486 | 75.9,237.4 487 | 76,237.4 488 | 76.09,237.4 489 | 76.19,237.4 490 | 76.28,236.64 491 | 76.38,234.36 492 | 76.47,233.1 493 | 76.57,231.6 494 | 76.66,229.7 495 | 76.76,229.7 496 | 76.85,229.7 497 | 76.95,231.6 498 | 77.04,231.6 499 | 77.14,231.6 500 | 77.23,233.5 501 | 77.33,234.45 502 | 77.42,237.4 503 | 77.52,241.2 504 | 77.61,243.1 505 | 77.71,245 506 | 77.8,245 507 | 77.9,245 508 | 77.99,245 509 | 78.09,245 510 | 78.18,243.1 511 | 78.28,241.1 512 | 78.37,239.2 513 | 78.47,237.3 514 | 78.56,237.3 515 | 78.66,237.3 516 | 78.75,239.2 517 | 78.85,239.2 518 | 78.94,241.1 519 | 79.04,243 520 | 79.13,244.9 521 | 79.23,243 522 | 79.32,241.1 523 | 79.42,236.83 524 | 79.51,223.9 525 | 79.61,193.2 526 | 79.7,186.23 527 | 79.8,202.8 528 | 79.89,217.15 529 | 79.99,221.9 530 | 80.08,225.8 531 | 80.18,227.7 532 | 80.27,231.5 533 | 80.37,233.4 534 | 80.46,233.4 535 | 80.56,235.3 536 | 80.65,235.93 537 | 80.75,237.2 538 | 80.84,237.2 539 | 80.94,237.2 540 | 81.03,237.2 541 | 81.13,235.3 542 | 81.22,235.3 543 | 81.32,235.3 544 | 81.41,233.4 545 | 81.51,233.4 546 | 81.6,233.4 547 | 81.7,231.4 548 | 81.79,229.03 549 | 81.89,225.7 550 | 81.98,219.52 551 | 82.08,215.34 552 | 82.17,212.3 553 | 82.27,210.4 554 | 82.36,210.4 555 | 82.46,210.3 556 | 82.55,212.3 557 | 82.65,213.25 558 | 82.74,216.1 559 | 82.84,217.05 560 | 82.93,219.9 561 | 83.03,221.8 562 | 83.12,223.7 563 | 83.22,225.6 564 | 83.31,224.08 565 | 83.41,222.56 566 | 83.5,220.28 567 | 83.56,216 568 | 83.62,211.82 569 | 83.67,207.64 570 | 83.73,202.22 571 | 83.79,189.7 572 | 83.85,184.64 573 | 83.9,181.6 574 | 83.96,181.6 575 | 84.02,185.4 576 | 84.08,194.33 577 | 84.13,204.5 578 | 84.19,212.2 579 | 84.25,217.9 580 | 84.31,221.7 581 | 84.36,223.6 582 | 84.42,223.6 583 | 84.48,223.6 584 | 84.54,223.6 585 | 84.59,225.35 586 | 84.65,225.7 587 | 84.71,224.41 588 | 84.77,221.73 589 | 84.82,220.1 590 | 84.88,220.1 591 | 84.94,218.2 592 | 85,218.2 593 | 85.05,216.3 594 | 85.11,216.3 595 | 85.17,216.3 596 | 85.23,216.32 597 | 85.28,216.39 598 | 85.34,217.62 599 | 85.4,218.98 600 | 85.46,220.47 601 | 85.51,223.19 602 | 85.57,225.95 603 | 85.63,227.86 604 | 85.69,229.7 605 | 85.74,229.7 606 | 85.8,229.8 607 | 86.12,227.9 608 | 86.44,224.1 609 | 86.76,222.2 610 | 87.08,224.1 611 | 87.4,226 612 | 87.72,231.7 613 | 88.04,235.6 614 | 88.36,237.5 615 | 88.68,237.5 616 | 89,237.5 617 | 89.15,234.97 618 | 89.3,229.9 619 | 89.45,214.7 620 | 89.6,176.5 621 | 89.75,135.5 622 | 89.9,128.8 623 | 90.05,130.7 624 | 90.2,163.2 625 | 90.35,209 626 | 90.5,241.5 627 | 90.65,238.97 628 | 90.8,224.3 629 | 90.95,220.5 630 | 91.1,251.1 631 | 91.25,254.9 632 | 91.4,254.9 633 | 91.55,247.3 634 | 91.7,243.5 635 | 91.85,243.5 636 | 92,249.3 637 | 92.15,256.9 638 | 92.3,256.9 639 | 92.45,257 640 | 92.6,257 641 | 92.75,257.99 642 | 92.9,255.27 643 | 93.05,252.01 644 | 93.2,246.93 645 | 93.35,241.7 646 | 93.5,238.99 647 | 93.64,234.64 648 | 93.77,229.76 649 | 93.91,227.04 650 | 94.04,224.34 651 | 94.18,222.8 652 | 94.31,222.8 653 | 94.45,220.9 654 | 94.58,220.9 655 | 94.72,218.3 656 | 94.85,218.3 657 | 94.99,219.25 658 | 95.12,221.8 659 | 95.26,222.2 660 | 95.39,224.1 661 | 95.53,224.18 662 | 95.66,226.1 663 | 95.8,226.1 664 | 95.93,226.16 665 | 96.07,224.3 666 | 96.2,217.87 667 | 96.34,200.7 668 | 96.47,184.1 669 | 96.61,178.4 670 | 96.74,178.5 671 | 96.88,199.5 672 | 97.01,230.2 673 | 97.15,237.52 674 | 97.28,241.7 675 | 97.42,243.7 676 | 97.55,245.6 677 | 97.69,245.6 678 | 97.82,245.7 679 | 97.96,243.8 680 | 98.09,241.9 681 | 98.23,240 682 | 98.36,236.2 683 | 98.5,234.3 684 | 98.63,234.3 685 | 98.77,232.44 686 | 98.9,232.5 687 | 99.01,232.5 688 | 99.12,234.9 689 | 99.23,223.1 690 | 99.34,229.53 691 | 99.45,235.93 692 | 99.57,240.4 693 | 99.68,242.3 694 | 99.79,244.2 695 | 99.9,244.2 696 | 100.01,244.2 697 | 100.12,242.3 698 | 100.23,240.4 699 | 100.34,234.7 700 | 100.45,225.1 701 | 100.56,210.75 702 | 100.67,192.6 703 | 100.78,184.9 704 | 100.9,186.23 705 | 101.01,204.73 706 | 101.12,219.4 707 | 101.23,230.9 708 | 101.34,229 709 | 101.45,227.1 710 | 101.56,221.4 711 | 101.67,212.75 712 | 101.78,208 713 | 101.89,204.1 714 | 102,204.2 715 | 102.11,206.1 716 | 102.23,210.53 717 | 102.34,213.7 718 | 102.45,215.7 719 | 102.56,217.6 720 | 102.67,215.7 721 | 102.78,213.8 722 | 102.89,208 723 | 103,195.6 724 | 103.11,190.8 725 | 103.22,187 726 | 103.33,185.1 727 | 103.44,185.1 728 | 103.56,185.1 729 | 103.67,187 730 | 103.78,190.87 731 | 103.89,194.7 732 | 104,197.55 733 | 104.11,198.5 734 | 104.22,198.5 735 | 104.33,198.5 736 | 104.44,196.6 737 | 104.55,193.75 738 | 104.66,190.43 739 | 104.77,190 740 | 104.89,190 741 | 105,190 742 | 105.11,189 743 | 105.22,189 744 | 105.33,188 745 | 105.44,188 746 | 105.55,187.47 747 | 105.66,186.2 748 | 105.77,184.93 749 | 105.88,184.4 750 | 105.99,184.4 751 | 106.1,184.4 752 | 106.22,187.35 753 | 106.33,189.25 754 | 106.44,192.17 755 | 106.55,196 756 | 106.66,197.95 757 | 106.77,198 758 | 106.88,198 759 | 106.99,198 760 | 107.1,196.73 761 | 107.21,195.57 762 | 107.32,193.67 763 | 107.43,191.45 764 | 107.55,188.6 765 | 107.66,185.75 766 | 107.77,184.17 767 | 107.88,181 768 | 107.99,179.1 769 | 108.1,177.2 770 | 108.21,175.35 771 | 108.32,174.13 772 | 108.43,172.23 773 | 108.54,170.97 774 | 108.65,169.07 775 | 108.76,161.5 776 | 108.88,159.6 777 | 108.99,159.15 778 | 109.1,158.7 779 | 109.21,158.25 780 | 109.32,157.8 781 | 109.43,157.8 782 | 109.54,157.8 783 | 109.65,157.8 784 | 109.76,157.8 785 | 109.87,159.7 786 | 109.98,159.75 787 | 110.09,159.8 788 | 110.21,159.8 789 | 110.32,162.9 790 | 110.43,162.9 791 | 110.54,161.95 792 | 110.65,161 793 | 110.76,160.53 794 | 110.87,159.1 795 | 110.98,158.63 796 | 111.09,155.3 797 | 111.2,151.98 798 | 111.31,144.22 799 | 111.42,130.6 800 | 111.54,120.1 801 | 111.65,121.1 802 | 111.76,133.93 803 | 111.87,147.7 804 | 111.98,153.88 805 | 112.09,157.83 806 | 112.2,159.1 807 | 112.38,157.68 808 | 112.55,155.78 809 | 112.73,152.45 810 | 112.9,148.46 811 | 113.08,143.9 812 | 113.26,141.05 813 | 113.43,138.2 814 | 113.61,136.3 815 | 113.78,136.3 816 | 113.96,134.88 817 | 114.14,134.4 818 | 114.31,135.67 819 | 114.49,136.3 820 | 114.66,136.93 821 | 114.84,138.2 822 | 115.02,140.73 823 | 115.19,143.9 824 | 115.37,147.7 825 | 115.54,150.87 826 | 115.72,154.35 827 | 115.9,157.2 828 | 116.07,159.1 829 | 116.25,160.53 830 | 116.42,161 831 | 116.6,162.27 832 | 116.78,162.9 833 | 116.95,162.9 834 | 117.13,162.9 835 | 117.3,162.9 836 | 117.48,162.9 837 | 117.66,162.9 838 | 117.83,162.43 839 | 118.01,161 840 | 118.18,159.58 841 | 118.36,156.06 842 | 118.54,145.53 843 | 118.71,127.1 844 | 118.89,108.33 845 | 119.06,97.07 846 | 119.24,94.88 847 | 119.42,103.9 848 | 119.59,122.97 849 | 119.77,145.33 850 | 119.94,157.2 851 | 120.12,163.38 852 | 120.3,164.8 853 | 120.47,166.7 854 | 120.65,165.75 855 | 120.82,163.85 856 | 121,161.95 857 | 121.17,160.05 858 | 121.34,158.8 859 | 121.51,162 860 | 121.69,164.5 861 | 121.86,170.2 862 | 122.03,171.15 863 | 122.2,172.1 864 | 122.37,174.1 865 | 122.54,174.1 866 | 122.71,174.1 867 | 122.89,174.1 868 | 123.06,171.25 869 | 123.23,168.4 870 | 123.4,167.93 871 | 123.57,167.45 872 | 123.74,164.7 873 | 123.91,164.7 874 | 124.09,165.65 875 | 124.26,166.6 876 | 124.43,170 877 | 124.6,176.1 878 | 124.77,181.9 879 | 124.94,181.43 880 | 125.11,180.95 881 | 125.29,178.1 882 | 125.46,174.3 883 | 125.63,171.45 884 | 125.8,168.6 885 | 125.97,168.6 886 | 126.14,170.55 887 | 126.31,172.5 888 | 126.49,174.4 889 | 126.66,177.25 890 | 126.83,180.1 891 | 127,180.1 892 | 127.11,177.25 893 | 127.22,174.4 894 | 127.33,170.6 895 | 127.44,163 896 | 127.56,162.1 897 | 127.67,161.2 898 | 127.78,163.1 899 | 127.89,166.9 900 | 128,167.85 901 | 128.11,168.8 902 | 128.22,170.7 903 | 128.33,168.9 904 | 128.44,165.1 905 | 128.56,161.3 906 | 128.67,153.7 907 | 128.78,146.1 908 | 128.89,138.5 909 | 129,135.65 910 | 129.11,132.8 911 | 129.22,134.7 912 | 129.33,136.6 913 | 129.44,138.5 914 | 129.56,142.3 915 | 129.67,143.3 916 | 129.78,144.3 917 | 129.89,144.3 918 | 130,141.45 919 | 130.11,136.7 920 | 130.22,127.2 921 | 130.33,128 922 | 130.44,129.1 923 | 130.56,132.9 924 | 130.67,132.95 925 | 130.78,133 926 | 130.89,131.4 927 | 131,127.9 928 | 131.11,122.2 929 | 131.22,116.5 930 | 131.33,112.7 931 | 131.44,112.7 932 | 131.56,114.6 933 | 131.67,115.55 934 | 131.78,116.5 935 | 131.89,116.5 936 | 132,114.6 937 | 132.07,111.75 938 | 132.14,108.9 939 | 132.21,107 940 | 132.29,104.15 941 | 132.36,101.3 942 | 132.43,98.44 943 | 132.5,95.58 944 | 132.57,95.58 945 | 132.64,94.4 946 | 132.71,94.4 947 | 132.79,94.4 948 | 132.86,95.04 949 | 132.93,96.31 950 | 133,97.45 951 | 133.07,98.53 952 | 133.14,100.1 953 | 133.21,100.42 954 | 133.29,102 955 | 133.36,102 956 | 133.43,102 957 | 133.5,102 958 | 133.57,102 959 | 133.64,100.86 960 | 133.71,100.1 961 | 133.79,100.1 962 | 133.86,98.21 963 | 133.93,96.69 964 | 134,96.31 965 | 134.07,94.4 966 | 134.14,92.98 967 | 134.21,90.6 968 | 134.29,88.69 969 | 134.36,87.27 970 | 134.43,83.74 971 | 134.5,80.61 972 | 134.57,77.75 973 | 134.64,74.61 974 | 134.71,70.93 975 | 134.79,67.28 976 | 134.86,62.05 977 | 134.93,56.34 978 | 135,48.72 979 | 135.07,37.3 980 | 135.14,16.36 981 | 135.21,0.19 982 | 135.29,-8.85 983 | 135.36,-10.28 984 | 135.43,-10.28 985 | 135.5,-10.28 986 | 135.57,21.7 987 | 135.64,55.7 988 | 135.71,86.16 989 | 135.79,91.87 990 | 135.86,95.36 991 | 135.93,98.59 992 | 136,100.73 993 | 136.07,102.95 994 | 136.14,103.9 995 | 136.21,105.17 996 | 136.29,105.8 997 | 136.36,106.18 998 | 136.43,107.7 999 | 136.5,107.32 1000 | 136.57,105.33 1001 | 136.64,100.1 1002 | 136.71,92.5 1003 | 136.79,79.18 1004 | 136.86,62.05 1005 | 136.93,46.82 1006 | 137,35.4 1007 | 137.24,30.64 1008 | 137.48,29.69 1009 | 137.72,29.69 1010 | 137.96,32.35 1011 | 138.2,60.46 1012 | 138.44,88.05 1013 | 138.68,114.35 1014 | 138.92,118.72 1015 | 139.16,119.1 1016 | 139.4,119.1 1017 | 139.64,122.05 1018 | 139.88,124.27 1019 | 140.12,126.48 1020 | 140.36,128.32 1021 | 140.6,130.28 1022 | 140.84,131.87 1023 | 141.08,134.4 1024 | 141.32,136.3 1025 | 141.56,137.82 1026 | 141.8,139.15 1027 | 142.04,141.05 1028 | 142.28,142 1029 | 142.52,142 1030 | 142.76,143.58 1031 | 143,143.9 1032 | 143.24,143.9 1033 | 143.48,143.9 1034 | 143.72,143.9 1035 | 143.96,143.14 1036 | 144.2,140.58 1037 | 144.33,136.93 1038 | 144.46,126.18 1039 | 144.59,120.38 1040 | 144.72,117.24 1041 | 144.85,116.77 1042 | 144.98,118.1 1043 | 145.11,119.43 1044 | 145.24,122.93 1045 | 145.37,125.37 1046 | 145.5,128 1047 | 145.63,128.08 1048 | 145.76,128.1 1049 | 145.89,128.17 1050 | 146.02,127.88 1051 | 146.15,125.16 1052 | 146.28,121.93 1053 | 146.41,116.63 1054 | 146.54,110.35 1055 | 146.67,104.58 1056 | 146.8,98.78 1057 | 146.93,95.41 1058 | 147.06,93.51 1059 | 147.19,91.61 1060 | 147.32,91.65 1061 | 147.45,93.09 1062 | 147.58,94.34 1063 | 147.71,97.91 1064 | 147.84,103.53 1065 | 147.97,112.47 1066 | 148.1,124.4 1067 | 148.23,133.44 1068 | 148.36,136.8 1069 | 148.49,136.87 1070 | 148.62,134.97 1071 | 148.75,125.75 1072 | 148.88,109.73 1073 | 149.01,91.6 1074 | 149.14,86.45 1075 | 149.27,86.5 1076 | 149.4,89.79 1077 | 149.53,104.67 1078 | 149.66,127.2 1079 | 149.79,143.7 1080 | 149.92,147.1 1081 | 150.05,147.14 1082 | 150.18,145.25 1083 | 150.31,139.47 1084 | 150.44,124.9 1085 | 150.57,101.89 1086 | 150.7,81.55 1087 | 150.73,79.26 1088 | 150.77,102.4 1089 | 150.8,136.47 1090 | 150.84,154.37 1091 | 150.87,159.59 1092 | 150.9,162.27 1093 | 150.94,164.11 1094 | 150.97,165.3 1095 | 151.01,165.3 1096 | 151.04,165.38 1097 | 151.07,165.4 1098 | 151.11,165.06 1099 | 151.14,163.22 1100 | 151.18,159.7 1101 | 151.21,153.23 1102 | 151.24,142.75 1103 | 151.28,131.27 1104 | 151.31,122.38 1105 | 151.35,115.63 1106 | 151.38,113.9 1107 | 151.41,113.3 1108 | 151.45,115.3 1109 | 151.48,130.27 1110 | 151.52,156.56 1111 | 151.55,172.66 1112 | 151.58,171.6 1113 | 151.62,168.58 1114 | 151.65,162.78 1115 | 151.69,157.45 1116 | 151.72,154.92 1117 | 151.75,154.95 1118 | 151.79,156.61 1119 | 151.82,158.95 1120 | 151.86,164.24 1121 | 151.89,166.5 1122 | 151.92,167.5 1123 | 151.96,167.5 1124 | 151.99,167.03 1125 | 152.03,166.55 1126 | 152.06,166.08 1127 | 152.09,165.6 1128 | 152.13,163.6 1129 | 152.16,163.6 1130 | 152.2,160.75 1131 | 152.23,159.8 1132 | 152.26,158.85 1133 | 152.3,156 1134 | 152.33,154.1 1135 | 152.37,154.1 1136 | 152.4,152.2 1137 | 152.43,149.35 1138 | 152.47,146.5 1139 | 152.5,144.6 1140 | 152.54,144.6 1141 | 152.57,142.7 1142 | 152.6,142.7 1143 | 152.64,140.8 1144 | 152.67,140.8 1145 | 152.71,140.8 1146 | 152.74,140.8 1147 | 152.77,142.7 1148 | 152.81,142.7 1149 | 152.84,142.7 1150 | 152.88,146.5 1151 | 152.91,147.45 1152 | 152.94,148.4 1153 | 152.98,148.4 1154 | 153.01,148.4 1155 | 153.05,148.4 1156 | 153.08,148.4 1157 | 153.11,145.55 1158 | 153.15,142.7 1159 | 153.18,137.95 1160 | 153.22,135.1 1161 | 153.25,132.25 1162 | 153.28,131.78 1163 | 153.32,131.3 1164 | 153.35,131.3 1165 | 153.39,132.25 1166 | 153.42,133.2 1167 | 153.45,135.1 1168 | 153.49,137.95 1169 | 153.52,140.8 1170 | 153.56,139.38 1171 | 153.59,137.95 1172 | 153.62,136.98 1173 | 153.66,136 1174 | 153.69,133.1 1175 | 153.73,131.2 1176 | 153.76,126.45 1177 | 153.79,123.6 1178 | 153.83,118.85 1179 | 153.86,116 1180 | 153.9,112.2 1181 | 153.93,112.2 1182 | 153.96,111.73 1183 | 154,111.25 1184 | 154.03,110.78 1185 | 154.07,110.3 1186 | 154.1,110.3 1187 | 154.19,111.25 1188 | 154.28,112.2 1189 | 154.37,114.1 1190 | 154.45,116 1191 | 154.54,117.9 1192 | 154.63,119.8 1193 | 154.72,119.8 1194 | 154.81,120.75 1195 | 154.9,121.7 1196 | 154.98,121.7 1197 | 155.07,121.7 1198 | 155.16,121.7 1199 | 155.25,121.7 1200 | 155.34,119.8 1201 | 155.43,119.8 1202 | 155.51,116.95 1203 | 155.6,114.1 1204 | 155.69,113.63 1205 | 155.78,113.15 1206 | 155.87,112.68 1207 | 155.96,112.2 1208 | 156.04,114.1 1209 | 156.13,116 1210 | 156.22,117.9 1211 | 156.31,117.9 1212 | 156.4,119.8 1213 | 156.49,119.8 1214 | 156.57,119.8 1215 | 156.66,119.8 1216 | 156.75,119.33 1217 | 156.84,118.85 1218 | 156.93,114.1 1219 | 157.02,112.2 1220 | 157.1,112.1 1221 | 157.19,114 1222 | 157.28,115.9 1223 | 157.37,117.8 1224 | 157.46,117.8 1225 | 157.55,115.9 1226 | 157.63,112.1 1227 | 157.72,104.5 1228 | 157.81,104.03 1229 | 157.9,103.55 1230 | 157.99,103.08 1231 | 158.08,102.6 1232 | 158.16,102.6 1233 | 158.25,103.55 1234 | 158.34,104.5 1235 | 158.43,104.5 1236 | 158.52,104.5 1237 | 158.61,104.5 1238 | 158.69,104.5 1239 | 158.78,106.4 1240 | 158.87,106.4 1241 | 158.96,106.4 1242 | 159.05,106.4 1243 | 159.14,108.3 1244 | 159.22,108.3 1245 | 159.31,108.3 1246 | 159.4,106.4 1247 | 159.5,106.4 1248 | 159.6,106.4 1249 | 159.7,106.4 1250 | 159.8,106.4 1251 | 159.9,104.5 1252 | 160,104.5 1253 | 160.1,104.5 1254 | 160.2,102.6 1255 | 160.3,102.6 1256 | 160.4,100.7 1257 | 160.5,98.77 1258 | 160.6,96.87 1259 | 160.7,96.87 1260 | 160.8,94.01 1261 | 160.9,91.16 1262 | 161,89.26 1263 | 161.1,86.41 1264 | 161.2,83.55 1265 | 161.3,79.75 1266 | 161.4,75.94 1267 | 161.5,71.19 1268 | 161.6,68.34 1269 | 161.7,66.44 1270 | 161.8,62.63 1271 | 161.9,61.21 1272 | 162,59.78 1273 | 162.1,59.3 1274 | 162.2,58.82 1275 | 162.3,56.92 1276 | 162.4,56.92 1277 | 162.5,56.92 1278 | 162.6,57.87 1279 | 162.7,58.81 1280 | 162.8,58.81 1281 | 162.9,60.71 1282 | 163,62.61 1283 | 163.1,64.51 1284 | 163.2,68.31 1285 | 163.3,68.31 1286 | 163.4,68.3 1287 | 163.5,70.2 1288 | 163.6,69.73 1289 | 163.7,69.25 1290 | 163.8,68.3 1291 | 163.9,67.34 1292 | 164,64.49 1293 | 164.1,62.59 1294 | 164.2,59.73 1295 | 164.3,54.98 1296 | 164.4,52.13 1297 | 164.46,49.27 1298 | 164.52,47.37 1299 | 164.58,42.62 1300 | 164.64,39.76 1301 | 164.7,35.01 1302 | 164.76,32.16 1303 | 164.82,30.26 1304 | 164.88,30.25 1305 | 164.94,28.35 1306 | 165,28.35 1307 | 165.06,30.25 1308 | 165.12,32.15 1309 | 165.18,35.95 1310 | 165.24,39.75 1311 | 165.3,43.55 1312 | 165.36,51.15 1313 | 165.42,54.94 1314 | 165.48,55.89 1315 | 165.54,56.84 1316 | 165.6,56.84 1317 | 165.66,54.94 1318 | 165.72,53.04 1319 | 165.78,53.03 1320 | 165.84,53.03 1321 | 165.9,54.93 1322 | 165.96,56.83 1323 | 166.02,56.83 1324 | 166.08,56.83 1325 | 166.14,56.82 1326 | 166.2,56.82 1327 | 166.26,54.92 1328 | 166.32,54.91 1329 | 166.38,53.01 1330 | 166.44,51.11 1331 | 166.5,51.11 1332 | 166.56,51.11 1333 | 166.62,51.11 1334 | 166.68,51.1 1335 | 166.74,51.1 1336 | 166.8,51.1 1337 | 166.86,51.1 1338 | 166.92,54.9 1339 | 166.98,54.9 1340 | 167.04,54.89 1341 | 167.1,60.59 1342 | 167.16,64.39 1343 | 167.22,66.29 1344 | 167.28,68.19 1345 | 167.34,71.99 1346 | 167.4,74.84 1347 | 167.46,77.69 1348 | 167.52,79.59 1349 | 167.58,83.38 1350 | 167.64,85.28 1351 | 167.7,87.18 1352 | 167.76,90.98 1353 | 167.82,90.98 1354 | 167.88,90.98 1355 | 167.94,94.78 1356 | 168,94.78 1357 | 168.06,94.77 1358 | 168.12,96.67 1359 | 168.18,96.67 1360 | 168.24,97.62 1361 | 168.3,98.57 1362 | 168.36,98.56 1363 | 168.42,98.56 1364 | 168.48,98.56 1365 | 168.54,98.56 1366 | 168.6,98.56 1367 | 168.66,98.56 1368 | 168.72,98.55 1369 | 168.78,98.55 1370 | 168.84,96.65 1371 | 168.9,96.65 1372 | 168.96,96.17 1373 | 169.02,95.69 1374 | 169.08,95.22 1375 | 169.14,94.74 1376 | 169.2,94.74 1377 | 169.32,92.83 1378 | 169.44,92.83 1379 | 169.57,90.93 1380 | 169.69,90.93 1381 | 169.81,90.93 1382 | 169.93,90.92 1383 | 170.05,89.02 1384 | 170.17,90.92 1385 | 170.3,90.92 1386 | 170.42,90.92 1387 | 170.54,90.91 1388 | 170.66,92.81 1389 | 170.78,92.81 1390 | 170.9,92.81 1391 | 171.03,94.71 1392 | 171.15,92.8 1393 | 171.27,92.8 1394 | 171.39,90.9 1395 | 171.51,88.05 1396 | 171.63,87.57 1397 | 171.76,87.09 1398 | 171.88,84.24 1399 | 172,79.49 1400 | 172.12,79.48 1401 | 172.24,77.58 1402 | 172.36,74.73 1403 | 172.49,74.25 1404 | 172.61,73.77 1405 | 172.73,71.87 1406 | 172.85,71.87 1407 | 172.97,71.87 1408 | 173.09,69.96 1409 | 173.22,69.96 1410 | 173.34,69.96 1411 | 173.46,69.96 1412 | 173.58,69.96 1413 | 173.7,69.96 1414 | 173.82,69.95 1415 | 173.95,71.85 1416 | 174.07,71.85 1417 | 174.19,71.85 1418 | 174.31,75.65 1419 | 174.43,77.54 1420 | 174.55,78.49 1421 | 174.68,79.44 1422 | 174.8,81.34 1423 | 174.92,82.29 1424 | 175.04,83.24 1425 | 175.16,85.14 1426 | 175.28,85.13 1427 | 175.41,88.69 1428 | 175.53,90.58 1429 | 175.65,90.58 1430 | 175.77,90.57 1431 | 175.89,90.56 1432 | 176.01,90.55 1433 | 176.14,88.64 1434 | 176.26,88.64 1435 | 176.38,88.63 1436 | 176.5,88.62 1437 | 176.55,86.71 1438 | 176.59,86.7 1439 | 176.64,84.8 1440 | 176.68,84.79 1441 | 176.73,82.88 1442 | 176.77,80.97 1443 | 176.82,80.96 1444 | 176.86,78.1 1445 | 176.91,75.23 1446 | 176.95,73.33 1447 | 177,73.32 1448 | 177.04,71.41 1449 | 177.09,68.55 1450 | 177.13,65.68 1451 | 177.18,63.77 1452 | 177.22,60.92 1453 | 177.27,58.05 1454 | 177.31,58.04 1455 | 177.36,56.13 1456 | 177.4,54.22 1457 | 177.45,51.36 1458 | 177.49,48.5 1459 | 177.54,46.59 1460 | 177.58,46.58 1461 | 177.63,44.67 1462 | 177.67,41.81 1463 | 177.72,38.94 1464 | 177.76,38.93 1465 | 177.81,37.03 1466 | 177.85,35.12 1467 | 177.9,35.11 1468 | 177.94,33.2 1469 | 177.99,30.34 1470 | 178.03,29.38 1471 | 178.08,28.42 1472 | 178.12,25.56 1473 | 178.17,25.08 1474 | 178.21,24.6 1475 | 178.26,23.64 1476 | 178.3,22.68 1477 | 178.35,22.19 1478 | 178.39,21.71 1479 | 178.44,21.7 1480 | 178.48,21.22 1481 | 178.53,20.74 1482 | 178.57,20.25 1483 | 178.62,19.77 1484 | 178.66,19.76 1485 | 178.71,19.76 1486 | 178.75,19.75 1487 | 178.8,19.74 1488 | 178.84,20.69 1489 | 178.89,21.63 1490 | 178.93,21.62 1491 | 178.98,23.52 1492 | 179.02,24.47 1493 | 179.07,25.41 1494 | 179.11,29.21 1495 | 179.16,30.16 1496 | 179.2,31.1 1497 | 179.25,34.9 1498 | 179.29,40.6 1499 | 179.34,40.6 1500 | 179.38,40.59 1501 | 179.43,44.38 1502 | 179.47,45.33 1503 | 179.52,46.28 1504 | 179.56,46.27 1505 | 179.61,46.27 1506 | 179.65,46.26 1507 | 179.7,46.25 1508 | 179.74,46.24 1509 | 179.79,46.24 1510 | 179.83,46.23 1511 | 179.88,46.22 1512 | 179.92,44.31 1513 | 179.97,44.3 1514 | 180.01,44.3 1515 | 180.06,44.29 1516 | 180.1,44.28 1517 | 180.24,45.23 1518 | 180.37,46.17 1519 | 180.51,46.16 1520 | 180.64,47.11 1521 | 180.78,48.06 1522 | 180.91,51.85 1523 | 181.05,55.65 1524 | 181.19,56.6 1525 | 181.32,57.54 1526 | 181.46,61.34 1527 | 181.59,61.34 1528 | 181.73,61.33 1529 | 181.86,63.22 1530 | 182,63.21 1531 | 182.14,61.3 1532 | 182.27,61.3 1533 | 182.41,61.29 1534 | 182.54,61.28 1535 | 182.68,59.38 1536 | 182.81,63.17 1537 | 182.95,63.17 1538 | 183.09,63.16 1539 | 183.22,66.96 1540 | 183.36,66.95 1541 | 183.49,67.9 1542 | 183.63,68.84 1543 | 183.76,68.83 1544 | 183.9,68.35 1545 | 184.04,67.87 1546 | 184.17,67.38 1547 | 184.31,66.9 1548 | 184.44,63.09 1549 | 184.58,62.13 1550 | 184.71,61.17 1551 | 184.85,61.16 1552 | 184.99,64.96 1553 | 185.12,64.96 1554 | 185.26,64.95 1555 | 185.39,66.84 1556 | 185.53,67.79 1557 | 185.66,68.74 1558 | 185.8,68.73 1559 | 185.94,68.73 1560 | 186.07,68.72 1561 | 186.21,68.71 1562 | 186.34,68.7 1563 | 186.48,66.79 1564 | 186.61,64.88 1565 | 186.75,64.87 1566 | 186.89,61.06 1567 | 187.02,57.25 1568 | 187.16,53.43 1569 | 187.29,49.62 1570 | 187.43,43.9 1571 | 187.56,38.18 1572 | 187.7,33.42 1573 | 187.84,28.65 1574 | 187.97,24.84 1575 | 188.11,24.83 1576 | 188.24,22.92 1577 | 188.38,21.01 1578 | 188.51,21 1579 | 188.65,19.09 1580 | 188.79,19.08 1581 | 188.92,19.08 1582 | 189.06,19.07 1583 | 189.19,19.06 1584 | 189.33,20.96 1585 | 189.46,21.91 1586 | 189.6,22.85 1587 | 189.67,24.74 1588 | 189.74,25.69 1589 | 189.81,26.64 1590 | 189.89,28.53 1591 | 189.96,29.48 1592 | 190.03,30.42 1593 | 190.1,32.32 1594 | 190.17,36.11 1595 | 190.24,37.06 1596 | 190.31,38.01 1597 | 190.38,38 1598 | 190.46,36.09 1599 | 190.53,36.08 1600 | 190.6,34.17 1601 | 190.67,34.17 1602 | 190.74,34.16 1603 | 190.81,34.15 1604 | 190.88,37.95 1605 | 190.95,37.95 1606 | 191.03,37.94 1607 | 191.1,41.73 1608 | 191.17,41.25 1609 | 191.24,40.77 1610 | 191.31,36 1611 | 191.38,28.39 1612 | 191.45,28.38 1613 | 191.52,30.28 1614 | 191.6,32.17 1615 | 191.67,37.87 1616 | 191.74,41.67 1617 | 191.81,43.57 1618 | 191.88,45.47 1619 | 191.95,45.46 1620 | 192.02,46.41 1621 | 192.09,47.35 1622 | 192.17,47.34 1623 | 192.24,45.43 1624 | 192.31,45.42 1625 | 192.38,45.42 1626 | 192.45,45.41 1627 | 192.52,45.4 1628 | 192.59,43.49 1629 | 192.66,43.48 1630 | 192.74,43.48 1631 | 192.81,43.47 1632 | 192.88,43.46 1633 | 192.95,43.45 1634 | 193.02,44.4 1635 | 193.09,45.35 1636 | 193.16,49.14 1637 | 193.23,49.14 1638 | 193.31,49.13 1639 | 193.38,51.03 1640 | 193.45,51.03 1641 | 193.52,51.02 1642 | 193.59,51.01 1643 | 193.66,51 1644 | 193.73,49.09 1645 | 193.8,48.61 1646 | 193.88,48.13 1647 | 193.95,45.26 1648 | 194.02,45.25 1649 | 194.09,43.34 1650 | 194.16,41.43 1651 | 194.23,38.58 1652 | 194.3,37.62 1653 | 194.37,36.66 1654 | 194.45,33.79 1655 | 194.52,31.88 1656 | 194.59,31.87 1657 | 194.66,29.96 1658 | 194.73,27.1 1659 | 194.8,26.14 1660 | 194.87,25.19 1661 | 194.94,22.32 1662 | 195.02,21.84 1663 | 195.09,21.36 1664 | 195.16,18.49 1665 | 195.23,18.48 1666 | 195.3,18.48 1667 | 195.39,18.47 1668 | 195.49,18.46 1669 | 195.58,16.55 1670 | 195.68,18.45 1671 | 195.77,18.45 1672 | 195.87,18.44 1673 | 195.96,18.43 1674 | 196.05,19.38 1675 | 196.15,20.32 1676 | 196.24,22.21 1677 | 196.34,22.21 1678 | 196.43,22.2 1679 | 196.53,24.1 1680 | 196.62,25.99 1681 | 196.71,26.94 1682 | 196.81,27.88 1683 | 196.9,29.78 1684 | 197,29.78 1685 | 197.09,29.77 1686 | 197.19,31.66 1687 | 197.28,29.75 1688 | 197.37,29.74 1689 | 197.47,28.78 1690 | 197.56,27.83 1691 | 197.66,26.39 1692 | 197.75,24.96 1693 | 197.85,22.09 1694 | 197.94,20.19 1695 | 198.03,17.33 1696 | 198.13,14.46 1697 | 198.22,9.7 1698 | 198.32,6.83 1699 | 198.41,4.92 1700 | 198.51,2.06 1701 | 198.6,1.1 1702 | 198.69,0.14 1703 | 198.79,-0.34 1704 | 198.88,-0.82 1705 | 198.98,-0.83 1706 | 199.07,-0.84 1707 | 199.17,-0.84 1708 | 199.26,1.05 1709 | 199.35,2 1710 | 199.45,2.95 1711 | 199.54,4.84 1712 | 199.64,6.73 1713 | 199.73,6.73 1714 | 199.83,6.72 1715 | 199.92,6.71 1716 | 200.01,6.71 1717 | 200.11,6.7 1718 | 200.2,6.69 1719 | 200.3,6.68 1720 | 200.39,4.77 1721 | 200.49,4.29 1722 | 200.58,3.81 1723 | 200.67,0.95 1724 | 200.77,-0.96 1725 | 200.86,-0.97 1726 | 200.96,-2.88 1727 | 201.05,-5.74 1728 | 201.15,-10.51 1729 | 201.24,-13.38 1730 | 201.33,-16.23 1731 | 201.43,-18.14 1732 | 201.52,-23.86 1733 | 201.62,-25.3 1734 | 201.71,-26.74 1735 | 201.81,-29.59 1736 | 201.9,-31.5 1737 | 201.94,-33.41 1738 | 201.98,-33.42 1739 | 202.03,-35.33 1740 | 202.07,-35.34 1741 | 202.11,-35.35 1742 | 202.15,-35.36 1743 | 202.2,-35.36 1744 | 202.24,-35.37 1745 | 202.28,-34.43 1746 | 202.32,-33.48 1747 | 202.36,-33.49 1748 | 202.41,-31.59 1749 | 202.45,-29.69 1750 | 202.49,-29.7 1751 | 202.53,-25.9 1752 | 202.58,-25.91 1753 | 202.62,-25.91 1754 | 202.66,-22.12 1755 | 202.7,-22.13 1756 | 202.74,-22.13 1757 | 202.79,-20.23 1758 | 202.83,-19.29 1759 | 202.87,-18.34 1760 | 202.91,-16.45 1761 | 202.96,-14.55 1762 | 203,-14.56 1763 | 203.04,-14.56 1764 | 203.08,-12.67 1765 | 203.12,-12.68 1766 | 203.17,-12.68 1767 | 203.21,-10.78 1768 | 203.25,-10.8 1769 | 203.29,-9.85 1770 | 203.34,-8.9 1771 | 203.38,-7.01 1772 | 203.42,-7.01 1773 | 203.46,-7.02 1774 | 203.5,-7.03 1775 | 203.55,-7.03 1776 | 203.59,-7.04 1777 | 203.63,-7.05 1778 | 203.67,-7.06 1779 | 203.72,-6.11 1780 | 203.76,-5.17 1781 | 203.8,-7.07 1782 | 203.84,-7.08 1783 | 203.88,-7.09 1784 | 203.93,-9 1785 | 203.97,-9.01 1786 | 204.01,-9.01 1787 | 204.05,-9.02 1788 | 204.1,-10.93 1789 | 204.14,-10.94 1790 | 204.18,-12.85 1791 | 204.22,-12.86 1792 | 204.26,-14.77 1793 | 204.31,-14.78 1794 | 204.35,-16.69 1795 | 204.39,-16.7 1796 | 204.43,-18.6 1797 | 204.48,-18.61 1798 | 204.52,-18.61 1799 | 204.56,-18.62 1800 | 204.6,-18.63 1801 | 204.64,-18.64 1802 | 204.69,-18.64 1803 | 204.73,-18.65 1804 | 204.77,-18.66 1805 | 204.81,-18.66 1806 | 204.86,-18.67 1807 | 204.9,-18.68 1808 | 204.94,-18.68 1809 | 204.98,-18.69 1810 | 205.02,-18.7 1811 | 205.07,-18.71 1812 | 205.11,-18.71 1813 | 205.15,-18.72 1814 | 205.19,-17.78 1815 | 205.24,-16.83 1816 | 205.28,-16.84 1817 | 205.32,-16.85 1818 | 205.36,-16.85 1819 | 205.4,-14.96 1820 | 205.45,-14.97 1821 | 205.49,-14.02 1822 | 205.53,-13.07 1823 | 205.57,-13.08 1824 | 205.62,-13.09 1825 | 205.66,-13.09 1826 | 205.7,-11.2 1827 | 205.77,-9.31 1828 | 205.83,-9.31 1829 | 205.9,-9.32 1830 | 205.96,-7.42 1831 | 206.03,-7.43 1832 | 206.09,-7.43 1833 | 206.16,-5.54 1834 | 206.22,-4.59 1835 | 206.29,-3.65 1836 | 206.35,-1.75 1837 | 206.42,-1.76 1838 | 206.48,-0.82 1839 | 206.55,0.13 1840 | 206.61,2.02 1841 | 206.68,2.02 1842 | 206.74,2.01 1843 | 206.81,3.91 1844 | 206.87,3.9 1845 | 206.94,3.9 1846 | 207,3.89 1847 | 207.07,1.98 1848 | 207.13,1.97 1849 | 207.2,1.96 1850 | 207.26,0.05 1851 | 207.33,-1.86 1852 | 207.39,-1.87 1853 | 207.46,-3.78 1854 | 207.52,-3.79 1855 | 207.59,-5.7 1856 | 207.65,-5.7 1857 | 207.72,-5.71 1858 | 207.78,-5.72 1859 | 207.85,-5.73 1860 | 207.91,-5.73 1861 | 207.98,-5.74 1862 | 208.04,-5.75 1863 | 208.11,-5.75 1864 | 208.17,-5.76 1865 | 208.24,-3.86 1866 | 208.3,-2.92 1867 | 208.37,-1.97 1868 | 208.43,-1.98 1869 | 208.5,1.82 1870 | 208.56,2.76 1871 | 208.63,3.71 1872 | 208.69,5.6 1873 | 208.76,6.55 1874 | 208.82,7.5 1875 | 208.89,9.39 1876 | 208.95,13.19 1877 | 209.02,13.19 1878 | 209.08,13.18 1879 | 209.15,16.97 1880 | 209.21,16.97 1881 | 209.28,16.96 1882 | 209.34,20.76 1883 | 209.41,21.71 1884 | 209.47,22.65 1885 | 209.54,24.55 1886 | 209.6,26.44 1887 | 209.76,27.39 1888 | 209.92,28.34 1889 | 210.08,30.23 1890 | 210.23,31.18 1891 | 210.39,32.12 1892 | 210.55,34.02 1893 | 210.71,34.97 1894 | 210.87,35.91 1895 | 211.03,37.8 1896 | 211.19,39.7 1897 | 211.34,40.65 1898 | 211.5,41.59 1899 | 211.66,43.48 1900 | 211.82,44.43 1901 | 211.98,45.38 1902 | 212.14,47.27 1903 | 212.3,49.16 1904 | 212.45,50.11 1905 | 212.61,51.06 1906 | 212.77,51.05 1907 | 212.93,52 1908 | 213.09,52.94 1909 | 213.25,54.83 1910 | 213.41,55.78 1911 | 213.56,56.73 1912 | 213.72,58.62 1913 | 213.88,60.51 1914 | 214.04,60.51 1915 | 214.2,60.5 1916 | 214.36,62.4 1917 | 214.52,62.4 1918 | 214.67,62.39 1919 | 214.83,64.28 1920 | 214.99,64.28 1921 | 215.15,64.27 1922 | 215.31,68.07 1923 | 215.47,68.06 1924 | 215.63,68.06 1925 | 215.78,68.05 1926 | 215.94,69.51 1927 | 216.1,69.08 1928 | 216.26,69.08 1929 | 216.42,69.09 1930 | 216.58,69.09 1931 | 216.74,70.99 1932 | 216.89,70.99 1933 | 217.05,71 1934 | 217.21,71 1935 | 217.37,71.01 1936 | 217.53,71.01 1937 | 217.69,71.02 1938 | 217.85,71.02 1939 | 218,71.03 1940 | 218.16,71.03 1941 | 218.32,71.04 1942 | 218.48,71.04 1943 | 218.64,71.05 1944 | 218.8,71.05 1945 | 218.96,71.05 1946 | 219.11,71.06 1947 | 219.27,70.12 1948 | 219.43,69.17 1949 | 219.59,67.29 1950 | 219.75,65.4 1951 | 219.91,64.46 1952 | 220.07,63.51 1953 | 220.22,61.63 1954 | 220.38,59.74 1955 | 220.54,57.85 1956 | 220.7,54.07 1957 | 220.78,46.51 1958 | 220.87,38.94 1959 | 220.95,31.37 1960 | 221.04,31.37 1961 | 221.12,25.7 1962 | 221.2,23.82 1963 | 221.29,23.82 1964 | 221.37,23.82 1965 | 221.45,26.67 1966 | 221.54,31.4 1967 | 221.62,40.88 1968 | 221.71,52.23 1969 | 221.79,59.81 1970 | 221.87,63.6 1971 | 221.96,65.49 1972 | 222.04,68.34 1973 | 222.12,69.29 1974 | 222.21,71.19 1975 | 222.29,71.19 1976 | 222.38,71.2 1977 | 222.46,73.09 1978 | 222.54,71.21 1979 | 222.63,71.21 1980 | 222.71,70.27 1981 | 222.79,69.33 1982 | 222.88,67.44 1983 | 222.96,66.5 1984 | 223.05,65.55 1985 | 223.13,63.67 1986 | 223.21,61.78 1987 | 223.3,61.78 1988 | 223.38,58.95 1989 | 223.46,56.11 1990 | 223.55,52.33 1991 | 223.63,46.66 1992 | 223.72,44.77 1993 | 223.8,42.88 1994 | 223.88,35.32 1995 | 223.97,35.32 1996 | 224.05,31.54 1997 | 224.13,29.66 1998 | 224.22,27.77 1999 | 224.3,25.88 2000 | 224.39,25.88 2001 | 224.47,25.89 2002 | 224.55,25.89 2003 | 224.64,26.85 2004 | 224.72,31.58 2005 | 224.8,35.37 2006 | 224.89,42 2007 | 224.97,48.63 2008 | 225.06,54.31 2009 | 225.14,58.1 2010 | 225.22,60 2011 | 225.31,61.9 2012 | 225.39,63.79 2013 | 225.47,63.8 2014 | 225.56,63.8 2015 | 225.64,63.81 2016 | 225.73,63.81 2017 | 225.81,63.81 2018 | 225.89,63.82 2019 | 225.98,61.93 2020 | 226.06,61.93 2021 | 226.14,60.05 2022 | 226.23,58.16 2023 | 226.31,56.27 2024 | 226.4,54.38 2025 | 226.48,52.5 2026 | 226.56,52.5 2027 | 226.65,49.67 2028 | 226.73,46.83 2029 | 226.81,44.94 2030 | 226.9,37.38 2031 | 226.98,36.44 2032 | 227.07,35.49 2033 | 227.15,22.25 2034 | 227.23,22.25 2035 | 227.32,1.44 2036 | 227.4,1.45 2037 | 227.54,-23.15 2038 | 227.68,-23.15 2039 | 227.81,-26.93 2040 | 227.95,-30.71 2041 | 228.09,-32.6 2042 | 228.23,-32.6 2043 | 228.37,-30.7 2044 | 228.5,-28.8 2045 | 228.64,-17.44 2046 | 228.78,3.38 2047 | 228.92,15.69 2048 | 229.06,28 2049 | 229.19,32.74 2050 | 229.33,35.58 2051 | 229.47,37.47 2052 | 229.61,39.37 2053 | 229.75,41.27 2054 | 229.88,42.22 2055 | 230.02,43.17 2056 | 230.16,43.17 2057 | 230.3,43.18 2058 | 230.44,43.18 2059 | 230.57,43.19 2060 | 230.71,43.19 2061 | 230.85,43.2 2062 | 230.99,41.31 2063 | 231.13,41.31 2064 | 231.26,41.32 2065 | 231.4,41.32 2066 | 231.54,41.33 2067 | 231.68,39.44 2068 | 231.82,39.45 2069 | 231.95,39.45 2070 | 232.09,39.45 2071 | 232.23,39.46 2072 | 232.37,38.52 2073 | 232.51,37.58 2074 | 232.64,37.58 2075 | 232.78,35.69 2076 | 232.92,35.7 2077 | 233.06,33.81 2078 | 233.2,31.92 2079 | 233.33,31.92 2080 | 233.47,26.25 2081 | 233.61,24.37 2082 | 233.75,22.48 2083 | 233.89,20.59 2084 | 234.02,16.81 2085 | 234.16,12.08 2086 | 234.3,7.35 2087 | 234.49,4.52 2088 | 234.67,1.68 2089 | 234.86,-2.1 2090 | 235.04,-3.04 2091 | 235.23,-3.98 2092 | 235.41,-3.98 2093 | 235.6,-3.97 2094 | 235.78,-3.97 2095 | 235.97,-3.96 2096 | 236.15,-1.12 2097 | 236.34,3.62 2098 | 236.52,10.25 2099 | 236.71,18.77 2100 | 236.89,24.46 2101 | 237.08,28.24 2102 | 237.26,30.14 2103 | 237.45,30.15 2104 | 237.63,30.15 2105 | 237.82,30.16 2106 | 238,29.21 2107 | 238.19,28.27 2108 | 238.37,28.27 2109 | 238.56,20.71 2110 | 238.74,20.71 2111 | 238.93,7.47 2112 | 239.11,4.63 2113 | 239.3,1.8 2114 | 239.48,-3.87 2115 | 239.67,-3.87 2116 | 239.85,-3.86 2117 | 240.04,0.87 2118 | 240.22,7.5 2119 | 240.41,15.08 2120 | 240.59,23.6 2121 | 240.78,26.44 2122 | 240.96,26.45 2123 | 241.15,24.56 2124 | 241.33,22.67 2125 | 241.52,20.78 2126 | 241.7,17 2127 | 241.73,15.12 2128 | 241.76,15.12 2129 | 241.79,15.12 2130 | 241.82,17.02 2131 | 241.86,18.92 2132 | 241.89,20.82 2133 | 241.92,22.71 2134 | 241.95,23.67 2135 | 241.98,23.2 2136 | 242.01,22.73 2137 | 242.04,20.84 2138 | 242.07,18.01 2139 | 242.1,15.17 2140 | 242.13,13.28 2141 | 242.17,12.34 2142 | 242.2,11.4 2143 | 242.23,11.4 2144 | 242.26,11.41 2145 | 242.29,11.41 2146 | 242.32,11.41 2147 | 242.35,12.37 2148 | 242.38,13.32 2149 | 242.41,16.16 2150 | 242.44,19.01 2151 | 242.48,19.96 2152 | 242.51,20.91 2153 | 242.54,19.97 2154 | 242.57,19.02 2155 | 242.6,19.03 2156 | 242.63,13.36 2157 | 242.66,12.42 2158 | 242.69,11.47 2159 | 242.72,2.01 2160 | 242.75,2.02 2161 | 242.79,-1.76 2162 | 242.82,-2.71 2163 | 242.85,-3.65 2164 | 242.88,-5.53 2165 | 242.91,-5.53 2166 | 242.94,-5.53 2167 | 242.97,-5.52 2168 | 243,-5.52 2169 | 243.03,-5.51 2170 | 243.06,-5.51 2171 | 243.1,-5.5 2172 | 243.13,-5.5 2173 | 243.16,-3.6 2174 | 243.19,-1.7 2175 | 243.22,-1.7 2176 | 243.25,0.2 2177 | 243.28,2.1 2178 | 243.31,3.99 2179 | 243.34,4 2180 | 243.37,5.9 2181 | 243.41,5.9 2182 | 243.44,5.9 2183 | 243.47,5.91 2184 | 243.5,5.91 2185 | 243.53,5.92 2186 | 243.56,4.98 2187 | 243.59,4.03 2188 | 243.62,4.04 2189 | 243.65,3.1 2190 | 243.68,2.15 2191 | 243.72,0.27 2192 | 243.75,0.27 2193 | 243.78,0.27 2194 | 243.81,-1.61 2195 | 243.84,-3.5 2196 | 243.87,-3.49 2197 | 243.9,-5.38 2198 | 243.93,-5.38 2199 | 243.96,-6.32 2200 | 243.99,-7.26 2201 | 244.03,-9.15 2202 | 244.06,-11.04 2203 | 244.09,-11.98 2204 | 244.12,-12.92 2205 | 244.15,-14.81 2206 | 244.18,-15.75 2207 | 244.21,-16.69 2208 | 244.24,-18.58 2209 | 244.27,-19.53 2210 | 244.3,-20.47 2211 | 244.34,-24.24 2212 | 244.37,-26.13 2213 | 244.4,-27.08 2214 | 244.43,-28.02 2215 | 244.46,-29.9 2216 | 244.49,-31.79 2217 | 244.52,-33.68 2218 | 244.55,-35.57 2219 | 244.58,-37.45 2220 | 244.61,-37.45 2221 | 244.65,-40.29 2222 | 244.68,-43.12 2223 | 244.71,-45.01 2224 | 244.74,-48.79 2225 | 244.77,-49.73 2226 | 244.8,-50.67 2227 | -------------------------------------------------------------------------------- /Sea Level Curves/Haq87_HighResolution.dat: -------------------------------------------------------------------------------- 1 | 0 0 2 | 0.15 1.26 3 | 0.26 -79.63 4 | 0.97 -78.92 5 | 1.08 1.39 6 | 1.19 11.33 7 | 1.29 18.02 8 | 1.43 19.51 9 | 1.59 13.09 10 | 1.66 -0.89 11 | 1.73 -73.65 12 | 1.75 -77.67 13 | 1.94 -79.54 14 | 2.00 -2.69 15 | 2.04 -75.45 16 | 2.07 6.17 17 | 2.24 16.42 18 | 2.39 7.73 19 | 2.42 -3.54 20 | 2.46 -64.17 21 | 2.54 -71.55 22 | 2.61 -67.02 23 | 2.71 -60.11 24 | 2.77 -24.61 25 | 2.84 10.99 26 | 2.86 15.86 27 | 2.98 16.48 28 | 3.08 11.37 29 | 3.14 -68.10 30 | 3.16 -62.69 31 | 3.16 -72.97 32 | 3.27 -75.06 33 | 3.38 -69.66 34 | 3.43 -62.53 35 | 3.54 28.06 36 | 3.59 41.15 37 | 3.64 51.32 38 | 3.75 54.76 39 | 3.82 55.07 40 | 3.92 46.17 41 | 3.99 31.00 42 | 4.10 -20.33 43 | 4.11 -25.97 44 | 4.19 -27.83 45 | 4.27 -21.99 46 | 4.34 -14.32 47 | 4.34 61.46 48 | 4.36 1.59 49 | 4.40 67.62 50 | 4.44 69.67 51 | 4.51 68.14 52 | 4.63 70.39 53 | 4.78 79.67 54 | 4.92 85.05 55 | 5.23 88.24 56 | 5.47 87.75 57 | 5.65 83.82 58 | 5.71 71.90 59 | 5.83 -32.27 60 | 5.86 -38.13 61 | 5.97 -42.81 62 | 6.12 -36.23 63 | 6.15 -28.23 64 | 6.18 28.50 65 | 6.34 34.31 66 | 6.44 35.37 67 | 6.58 29.71 68 | 6.59 20.72 69 | 6.63 -18.48 70 | 6.73 -23.48 71 | 6.91 -26.22 72 | 7.01 -23.10 73 | 7.08 -18.13 74 | 7.11 -2.98 75 | 7.31 5.11 76 | 7.56 11.02 77 | 7.89 11.30 78 | 8.24 7.56 79 | 8.45 -2.00 80 | 8.66 -16.32 81 | 8.85 -21.87 82 | 9.08 -24.18 83 | 9.61 -24.48 84 | 9.78 -19.10 85 | 9.97 -7.99 86 | 10.07 -2.40 87 | 10.22 -0.31 88 | 10.36 -0.80 89 | 10.46 -3.88 90 | 10.52 -12.78 91 | 10.76 -69.08 92 | 10.79 -75.59 93 | 10.86 -79.08 94 | 10.97 -75.56 95 | 10.99 -67.45 96 | 11.01 25.76 97 | 11.05 39.70 98 | 11.15 49.72 99 | 11.27 52.90 100 | 11.40 53.39 101 | 11.53 52.24 102 | 11.65 46.98 103 | 11.70 41.76 104 | 11.81 39.65 105 | 11.89 48.16 106 | 11.93 82.68 107 | 12.03 91.11 108 | 12.31 96.25 109 | 12.61 94.67 110 | 12.80 89.76 111 | 12.94 84.86 112 | 13.12 84.39 113 | 13.23 90.11 114 | 13.29 118.79 115 | 13.44 127.42 116 | 13.72 136.57 117 | 14.12 142.98 118 | 14.52 141.38 119 | 14.80 137.11 120 | 14.89 57.08 121 | 15.02 52.51 122 | 15.08 58.24 123 | 15.11 101.21 124 | 15.25 133.87 125 | 15.31 140.14 126 | 15.52 143.23 127 | 15.77 138.83 128 | 15.83 131.13 129 | 15.92 45.69 130 | 15.98 41.24 131 | 16.09 41.64 132 | 16.13 50.62 133 | 16.18 89.36 134 | 16.22 106.79 135 | 16.24 122.48 136 | 16.32 131.01 137 | 16.43 135.75 138 | 16.60 138.30 139 | 16.77 137.18 140 | 16.87 133.26 141 | 16.94 122.31 142 | 17.01 116.88 143 | 17.13 115.33 144 | 17.40 118.73 145 | 17.74 120.70 146 | 18.07 118.46 147 | 18.61 106.63 148 | 19.27 87.10 149 | 19.83 67.69 150 | 20.01 64.18 151 | 20.14 66.96 152 | 20.25 74.30 153 | 20.33 110.65 154 | 20.41 117.23 155 | 20.60 120.64 156 | 20.77 116.37 157 | 20.82 109.11 158 | 20.95 102.57 159 | 21.10 110.65 160 | 21.29 118.39 161 | 21.69 128.24 162 | 22.06 133.22 163 | 22.44 134.09 164 | 22.88 129.10 165 | 23.18 121.33 166 | 23.35 104.17 167 | 23.44 45.04 168 | 23.50 35.06 169 | 23.65 33.28 170 | 23.76 39.53 171 | 23.85 71.45 172 | 23.86 80.86 173 | 24.05 85.26 174 | 24.25 84.25 175 | 24.38 75.68 176 | 24.45 61.37 177 | 24.45 53.36 178 | 24.68 47.36 179 | 24.89 54.24 180 | 25.06 69.37 181 | 25.24 77.24 182 | 25.52 80.86 183 | 25.80 80.81 184 | 26.04 76.43 185 | 26.26 66.96 186 | 26.55 36.70 187 | 26.64 31.49 188 | 26.84 30.26 189 | 26.99 34.01 190 | 27.14 58.13 191 | 27.68 62.07 192 | 28.29 56.48 193 | 28.80 37.69 194 | 28.93 20.46 195 | 28.99 10.06 196 | 29.23 3.10 197 | 29.50 1.01 198 | 29.93 11.14 199 | 29.93 35.06 200 | 30.11 148.02 201 | 30.16 131.72 202 | 30.37 167.15 203 | 30.59 177.32 204 | 30.84 178.81 205 | 31.02 175.68 206 | 31.22 173.42 207 | 31.36 178.86 208 | 31.80 192.24 209 | 32.14 196.27 210 | 32.46 196.30 211 | 32.77 192.65 212 | 33.08 179.26 213 | 33.12 160.95 214 | 33.29 111.11 215 | 33.37 102.64 216 | 33.57 103.46 217 | 33.67 113.39 218 | 33.72 137.74 219 | 33.77 147.46 220 | 33.88 151.31 221 | 34.04 149.51 222 | 34.08 142.24 223 | 34.10 135.95 224 | 34.19 131.70 225 | 34.28 132.74 226 | 34.36 138.89 227 | 34.72 142.74 228 | 35.02 136.63 229 | 35.08 129.80 230 | 35.45 124.88 231 | 35.91 129.57 232 | 36.23 133.30 233 | 36.57 128.25 234 | 36.67 120.01 235 | 36.80 102.01 236 | 37.23 94.57 237 | 37.37 158.74 238 | 37.57 170.61 239 | 37.68 175.03 240 | 37.99 175.95 241 | 38.40 171.98 242 | 38.74 173.32 243 | 38.96 177.51 244 | 39.04 187.13 245 | 39.34 192.38 246 | 39.65 192.01 247 | 39.85 180.72 248 | 40.10 151.99 249 | 40.29 144.05 250 | 40.68 139.66 251 | 41.01 139.72 252 | 41.36 146.48 253 | 41.64 168.52 254 | 41.75 174.78 255 | 42.08 177.97 256 | 42.42 174.66 257 | 42.65 172.24 258 | 42.92 174.03 259 | 43.22 186.86 260 | 43.54 200.55 261 | 43.95 208.48 262 | 44.55 210.85 263 | 44.98 205.57 264 | 45.14 200.23 265 | 45.32 194.35 266 | 45.54 191.82 267 | 45.95 196.49 268 | 46.44 207.65 269 | 46.71 213.01 270 | 47.18 214.20 271 | 47.39 211.13 272 | 47.57 204.05 273 | 47.62 169.18 274 | 47.81 161.56 275 | 48.07 160.53 276 | 48.28 168.93 277 | 48.33 183.10 278 | 48.56 186.10 279 | 48.75 185.43 280 | 48.86 178.80 281 | 49.16 80.03 282 | 49.30 71.68 283 | 49.54 83.33 284 | 49.56 92.31 285 | 49.76 187.11 286 | 49.83 195.54 287 | 49.89 198.87 288 | 50.02 200.13 289 | 50.12 195.33 290 | 50.33 202.11 291 | 50.41 206.32 292 | 50.62 202.92 293 | 50.81 207.33 294 | 51.05 210.98 295 | 51.35 212.14 296 | 51.52 204.86 297 | 51.57 184.07 298 | 51.78 176.68 299 | 52.04 180.11 300 | 52.27 208.97 301 | 52.31 215.02 302 | 52.40 217.16 303 | 52.48 212.70 304 | 52.52 207.06 305 | 52.60 206.28 306 | 52.67 211.57 307 | 52.92 220.15 308 | 53.03 217.62 309 | 53.15 212.17 310 | 53.24 209.00 311 | 53.47 211.99 312 | 54.04 214.08 313 | 54.43 209.92 314 | 54.66 160.52 315 | 54.86 154.33 316 | 55.11 157.65 317 | 55.26 197.25 318 | 55.41 187.37 319 | 55.43 164.85 320 | 55.56 134.08 321 | 55.64 130.82 322 | 55.70 138.71 323 | 55.70 172.70 324 | 55.83 177.64 325 | 55.89 170.81 326 | 55.89 71.96 327 | 55.90 72.60 328 | 55.97 173.79 329 | 56.19 184.45 330 | 56.48 191.64 331 | 56.79 193.40 332 | 57.15 192.99 333 | 57.30 190.14 334 | 57.65 177.17 335 | 58.66 70.62 336 | 58.71 61.08 337 | 58.92 56.16 338 | 59.15 65.30 339 | 59.22 148.21 340 | 59.27 173.51 341 | 59.34 178.66 342 | 59.41 179.26 343 | 59.47 172.84 344 | 59.54 154.17 345 | 59.62 149.25 346 | 59.69 151.05 347 | 59.75 166.83 348 | 59.86 180.65 349 | 60.11 192.15 350 | 60.41 198.65 351 | 60.77 197.88 352 | 61.12 194.08 353 | 61.41 191.38 354 | 61.69 193.45 355 | 62.03 201.02 356 | 62.50 198.53 357 | 62.57 199.34 358 | 62.64 200.70 359 | 62.71 202.60 360 | 62.79 203.41 361 | 62.86 204.50 362 | 62.93 205.10 363 | 63.00 205.10 364 | 63.07 207.00 365 | 63.14 207.00 366 | 63.21 207.00 367 | 63.29 207.00 368 | 63.36 207.00 369 | 63.43 207.00 370 | 63.50 207.00 371 | 63.57 207.00 372 | 63.64 207.00 373 | 63.71 207.00 374 | 63.79 207.00 375 | 63.86 207.00 376 | 63.93 207.00 377 | 64.00 207.00 378 | 64.07 207.00 379 | 64.14 207.00 380 | 64.21 207.00 381 | 64.29 207.00 382 | 64.36 207.00 383 | 64.43 207.10 384 | 64.50 207.10 385 | 64.57 207.10 386 | 64.64 207.10 387 | 64.71 205.20 388 | 64.79 201.40 389 | 64.86 197.60 390 | 64.93 193.80 391 | 65.00 190.00 392 | 65.10 187.47 393 | 65.20 186.20 394 | 65.30 186.30 395 | 65.40 188.20 396 | 65.50 188.20 397 | 65.55 190.10 398 | 65.60 192.00 399 | 65.65 194.85 400 | 65.70 195.80 401 | 65.75 195.80 402 | 65.80 192.00 403 | 65.85 154.03 404 | 65.90 121.90 405 | 65.95 120.00 406 | 66.00 154.10 407 | 66.18 188.20 408 | 66.35 195.80 409 | 66.53 199.60 410 | 66.71 203.40 411 | 66.88 205.30 412 | 67.06 207.20 413 | 67.24 209.10 414 | 67.41 211.00 415 | 67.59 212.90 416 | 67.77 214.80 417 | 67.94 214.80 418 | 68.12 214.80 419 | 68.30 214.80 420 | 68.47 214.80 421 | 68.65 214.80 422 | 68.83 214.80 423 | 69.00 212.90 424 | 69.18 211.00 425 | 69.36 211.00 426 | 69.53 209.10 427 | 69.71 207.30 428 | 69.89 203.50 429 | 70.06 200.33 430 | 70.24 196.38 431 | 70.42 189.57 432 | 70.59 177.57 433 | 70.77 169.40 434 | 70.95 169.40 435 | 71.12 180.80 436 | 71.30 191.15 437 | 71.39 198.75 438 | 71.48 205.40 439 | 71.57 209.20 440 | 71.66 213.00 441 | 71.75 214.90 442 | 71.84 218.70 443 | 71.93 220.60 444 | 72.02 222.50 445 | 72.11 224.40 446 | 72.20 226.30 447 | 72.29 226.30 448 | 72.38 226.30 449 | 72.47 228.20 450 | 72.56 228.20 451 | 72.65 228.20 452 | 72.74 229.71 453 | 72.83 229.78 454 | 72.92 229.80 455 | 73.01 229.80 456 | 73.10 229.80 457 | 73.19 229.80 458 | 73.28 229.80 459 | 73.37 229.53 460 | 73.46 227.93 461 | 73.55 227.99 462 | 73.64 225.56 463 | 73.73 222.84 464 | 73.82 222.26 465 | 73.91 222.21 466 | 74.00 220.30 467 | 74.10 216.40 468 | 74.19 214.03 469 | 74.29 209.75 470 | 74.38 203.48 471 | 74.48 196.16 472 | 74.57 191.50 473 | 74.67 189.60 474 | 74.76 189.60 475 | 74.86 189.60 476 | 74.95 191.50 477 | 75.05 198.20 478 | 75.14 206.80 479 | 75.24 211.60 480 | 75.33 218.30 481 | 75.43 222.10 482 | 75.52 225.90 483 | 75.62 229.80 484 | 75.71 233.60 485 | 75.81 236.45 486 | 75.90 237.40 487 | 76.00 237.40 488 | 76.09 237.40 489 | 76.19 237.40 490 | 76.28 236.64 491 | 76.38 234.36 492 | 76.47 233.10 493 | 76.57 231.60 494 | 76.66 229.70 495 | 76.76 229.70 496 | 76.85 229.70 497 | 76.95 231.60 498 | 77.04 231.60 499 | 77.14 231.60 500 | 77.23 233.50 501 | 77.33 234.45 502 | 77.42 237.40 503 | 77.52 241.20 504 | 77.61 243.10 505 | 77.71 245.00 506 | 77.80 245.00 507 | 77.90 245.00 508 | 77.99 245.00 509 | 78.09 245.00 510 | 78.18 243.10 511 | 78.28 241.10 512 | 78.37 239.20 513 | 78.47 237.30 514 | 78.56 237.30 515 | 78.66 237.30 516 | 78.75 239.20 517 | 78.85 239.20 518 | 78.94 241.10 519 | 79.04 243.00 520 | 79.13 244.90 521 | 79.23 243.00 522 | 79.32 241.10 523 | 79.42 236.83 524 | 79.51 223.90 525 | 79.61 193.20 526 | 79.70 186.23 527 | 79.80 202.80 528 | 79.89 217.15 529 | 79.99 221.90 530 | 80.08 225.80 531 | 80.18 227.70 532 | 80.27 231.50 533 | 80.37 233.40 534 | 80.46 233.40 535 | 80.56 235.30 536 | 80.65 235.93 537 | 80.75 237.20 538 | 80.84 237.20 539 | 80.94 237.20 540 | 81.03 237.20 541 | 81.13 235.30 542 | 81.22 235.30 543 | 81.32 235.30 544 | 81.41 233.40 545 | 81.51 233.40 546 | 81.60 233.40 547 | 81.70 231.40 548 | 81.79 229.03 549 | 81.89 225.70 550 | 81.98 219.52 551 | 82.08 215.34 552 | 82.17 212.30 553 | 82.27 210.40 554 | 82.36 210.40 555 | 82.46 210.30 556 | 82.55 212.30 557 | 82.65 213.25 558 | 82.74 216.10 559 | 82.84 217.05 560 | 82.93 219.90 561 | 83.03 221.80 562 | 83.12 223.70 563 | 83.22 225.60 564 | 83.31 224.08 565 | 83.41 222.56 566 | 83.50 220.28 567 | 83.56 216.00 568 | 83.62 211.82 569 | 83.67 207.64 570 | 83.73 202.22 571 | 83.79 189.70 572 | 83.85 184.64 573 | 83.90 181.60 574 | 83.96 181.60 575 | 84.02 185.40 576 | 84.08 194.33 577 | 84.13 204.50 578 | 84.19 212.20 579 | 84.25 217.90 580 | 84.31 221.70 581 | 84.36 223.60 582 | 84.42 223.60 583 | 84.48 223.60 584 | 84.54 223.60 585 | 84.59 225.35 586 | 84.65 225.70 587 | 84.71 224.41 588 | 84.77 221.73 589 | 84.82 220.10 590 | 84.88 220.10 591 | 84.94 218.20 592 | 85.00 218.20 593 | 85.05 216.30 594 | 85.11 216.30 595 | 85.17 216.30 596 | 85.23 216.32 597 | 85.28 216.39 598 | 85.34 217.62 599 | 85.40 218.98 600 | 85.46 220.47 601 | 85.51 223.19 602 | 85.57 225.95 603 | 85.63 227.86 604 | 85.69 229.70 605 | 85.74 229.70 606 | 85.80 229.80 607 | 86.12 227.90 608 | 86.44 224.10 609 | 86.76 222.20 610 | 87.08 224.10 611 | 87.40 226.00 612 | 87.72 231.70 613 | 88.04 235.60 614 | 88.36 237.50 615 | 88.68 237.50 616 | 89.00 237.50 617 | 89.15 234.97 618 | 89.30 229.90 619 | 89.45 214.70 620 | 89.60 176.50 621 | 89.75 135.50 622 | 89.90 128.80 623 | 90.05 130.70 624 | 90.20 163.20 625 | 90.35 209.00 626 | 90.50 241.50 627 | 90.65 238.97 628 | 90.80 224.30 629 | 90.95 220.50 630 | 91.10 251.10 631 | 91.25 254.90 632 | 91.40 254.90 633 | 91.55 247.30 634 | 91.70 243.50 635 | 91.85 243.50 636 | 92.00 249.30 637 | 92.15 256.90 638 | 92.30 256.90 639 | 92.45 257.00 640 | 92.60 257.00 641 | 92.75 257.99 642 | 92.90 255.27 643 | 93.05 252.01 644 | 93.20 246.93 645 | 93.35 241.70 646 | 93.50 238.99 647 | 93.64 234.64 648 | 93.77 229.76 649 | 93.91 227.04 650 | 94.04 224.34 651 | 94.18 222.80 652 | 94.31 222.80 653 | 94.45 220.90 654 | 94.58 220.90 655 | 94.72 218.30 656 | 94.85 218.30 657 | 94.99 219.25 658 | 95.12 221.80 659 | 95.26 222.20 660 | 95.39 224.10 661 | 95.53 224.18 662 | 95.66 226.10 663 | 95.80 226.10 664 | 95.93 226.16 665 | 96.07 224.30 666 | 96.20 217.87 667 | 96.34 200.70 668 | 96.47 184.10 669 | 96.61 178.40 670 | 96.74 178.50 671 | 96.88 199.50 672 | 97.01 230.20 673 | 97.15 237.52 674 | 97.28 241.70 675 | 97.42 243.70 676 | 97.55 245.60 677 | 97.69 245.60 678 | 97.82 245.70 679 | 97.96 243.80 680 | 98.09 241.90 681 | 98.23 240.00 682 | 98.36 236.20 683 | 98.50 234.30 684 | 98.63 234.30 685 | 98.77 232.44 686 | 98.90 232.50 687 | 99.01 232.50 688 | 99.12 234.90 689 | 99.23 223.10 690 | 99.34 229.53 691 | 99.45 235.93 692 | 99.57 240.40 693 | 99.68 242.30 694 | 99.79 244.20 695 | 99.90 244.20 696 | 100.01 244.20 697 | 100.12 242.30 698 | 100.23 240.40 699 | 100.34 234.70 700 | 100.45 225.10 701 | 100.56 210.75 702 | 100.67 192.60 703 | 100.78 184.90 704 | 100.90 186.23 705 | 101.01 204.73 706 | 101.12 219.40 707 | 101.23 230.90 708 | 101.34 229.00 709 | 101.45 227.10 710 | 101.56 221.40 711 | 101.67 212.75 712 | 101.78 208.00 713 | 101.89 204.10 714 | 102.00 204.20 715 | 102.11 206.10 716 | 102.23 210.53 717 | 102.34 213.70 718 | 102.45 215.70 719 | 102.56 217.60 720 | 102.67 215.70 721 | 102.78 213.80 722 | 102.89 208.00 723 | 103.00 195.60 724 | 103.11 190.80 725 | 103.22 187.00 726 | 103.33 185.10 727 | 103.44 185.10 728 | 103.56 185.10 729 | 103.67 187.00 730 | 103.78 190.87 731 | 103.89 194.70 732 | 104.00 197.55 733 | 104.11 198.50 734 | 104.22 198.50 735 | 104.33 198.50 736 | 104.44 196.60 737 | 104.55 193.75 738 | 104.66 190.43 739 | 104.77 190.00 740 | 104.89 190.00 741 | 105.00 190.00 742 | 105.11 189.00 743 | 105.22 189.00 744 | 105.33 188.00 745 | 105.44 188.00 746 | 105.55 187.47 747 | 105.66 186.20 748 | 105.77 184.93 749 | 105.88 184.40 750 | 105.99 184.40 751 | 106.10 184.40 752 | 106.22 187.35 753 | 106.33 189.25 754 | 106.44 192.17 755 | 106.55 196.00 756 | 106.66 197.95 757 | 106.77 198.00 758 | 106.88 198.00 759 | 106.99 198.00 760 | 107.10 196.73 761 | 107.21 195.57 762 | 107.32 193.67 763 | 107.43 191.45 764 | 107.55 188.60 765 | 107.66 185.75 766 | 107.77 184.17 767 | 107.88 181.00 768 | 107.99 179.10 769 | 108.10 177.20 770 | 108.21 175.35 771 | 108.32 174.13 772 | 108.43 172.23 773 | 108.54 170.97 774 | 108.65 169.07 775 | 108.76 161.50 776 | 108.88 159.60 777 | 108.99 159.15 778 | 109.10 158.70 779 | 109.21 158.25 780 | 109.32 157.80 781 | 109.43 157.80 782 | 109.54 157.80 783 | 109.65 157.80 784 | 109.76 157.80 785 | 109.87 159.70 786 | 109.98 159.75 787 | 110.09 159.80 788 | 110.21 159.80 789 | 110.32 162.90 790 | 110.43 162.90 791 | 110.54 161.95 792 | 110.65 161.00 793 | 110.76 160.53 794 | 110.87 159.10 795 | 110.98 158.63 796 | 111.09 155.30 797 | 111.20 151.98 798 | 111.31 144.22 799 | 111.42 130.60 800 | 111.54 120.10 801 | 111.65 121.10 802 | 111.76 133.93 803 | 111.87 147.70 804 | 111.98 153.88 805 | 112.09 157.83 806 | 112.20 159.10 807 | 112.38 157.68 808 | 112.55 155.78 809 | 112.73 152.45 810 | 112.90 148.46 811 | 113.08 143.90 812 | 113.26 141.05 813 | 113.43 138.20 814 | 113.61 136.30 815 | 113.78 136.30 816 | 113.96 134.88 817 | 114.14 134.40 818 | 114.31 135.67 819 | 114.49 136.30 820 | 114.66 136.93 821 | 114.84 138.20 822 | 115.02 140.73 823 | 115.19 143.90 824 | 115.37 147.70 825 | 115.54 150.87 826 | 115.72 154.35 827 | 115.90 157.20 828 | 116.07 159.10 829 | 116.25 160.53 830 | 116.42 161.00 831 | 116.60 162.27 832 | 116.78 162.90 833 | 116.95 162.90 834 | 117.13 162.90 835 | 117.30 162.90 836 | 117.48 162.90 837 | 117.66 162.90 838 | 117.83 162.43 839 | 118.01 161.00 840 | 118.18 159.58 841 | 118.36 156.06 842 | 118.54 145.53 843 | 118.71 127.10 844 | 118.89 108.33 845 | 119.06 97.07 846 | 119.24 94.88 847 | 119.42 103.90 848 | 119.59 122.97 849 | 119.77 145.33 850 | 119.94 157.20 851 | 120.12 163.38 852 | 120.30 164.80 853 | 120.47 166.70 854 | 120.65 165.75 855 | 120.82 163.85 856 | 121.00 161.95 857 | 121.17 160.05 858 | 121.34 158.80 859 | 121.51 162.00 860 | 121.69 164.50 861 | 121.86 170.20 862 | 122.03 171.15 863 | 122.20 172.10 864 | 122.37 174.10 865 | 122.54 174.10 866 | 122.71 174.10 867 | 122.89 174.10 868 | 123.06 171.25 869 | 123.23 168.40 870 | 123.40 167.93 871 | 123.57 167.45 872 | 123.74 164.70 873 | 123.91 164.70 874 | 124.09 165.65 875 | 124.26 166.60 876 | 124.43 170.00 877 | 124.60 176.10 878 | 124.77 181.90 879 | 124.94 181.43 880 | 125.11 180.95 881 | 125.29 178.10 882 | 125.46 174.30 883 | 125.63 171.45 884 | 125.80 168.60 885 | 125.97 168.60 886 | 126.14 170.55 887 | 126.31 172.50 888 | 126.49 174.40 889 | 126.66 177.25 890 | 126.83 180.10 891 | 127.00 180.10 892 | 127.11 177.25 893 | 127.22 174.40 894 | 127.33 170.60 895 | 127.44 163.00 896 | 127.56 162.10 897 | 127.67 161.20 898 | 127.78 163.10 899 | 127.89 166.90 900 | 128.00 167.85 901 | 128.11 168.80 902 | 128.22 170.70 903 | 128.33 168.90 904 | 128.44 165.10 905 | 128.56 161.30 906 | 128.67 153.70 907 | 128.78 146.10 908 | 128.89 138.50 909 | 129.00 135.65 910 | 129.11 132.80 911 | 129.22 134.70 912 | 129.33 136.60 913 | 129.44 138.50 914 | 129.56 142.30 915 | 129.67 143.30 916 | 129.78 144.30 917 | 129.89 144.30 918 | 130.00 141.45 919 | 130.11 136.70 920 | 130.22 127.20 921 | 130.33 128.00 922 | 130.44 129.10 923 | 130.56 132.90 924 | 130.67 132.95 925 | 130.78 133.00 926 | 130.89 131.40 927 | 131.00 127.90 928 | 131.11 122.20 929 | 131.22 116.50 930 | 131.33 112.70 931 | 131.44 112.70 932 | 131.56 114.60 933 | 131.67 115.55 934 | 131.78 116.50 935 | 131.89 116.50 936 | 132.00 114.60 937 | 132.07 111.75 938 | 132.14 108.90 939 | 132.21 107.00 940 | 132.29 104.15 941 | 132.36 101.30 942 | 132.43 98.44 943 | 132.50 95.58 944 | 132.57 95.58 945 | 132.64 94.40 946 | 132.71 94.40 947 | 132.79 94.40 948 | 132.86 95.04 949 | 132.93 96.31 950 | 133.00 97.45 951 | 133.07 98.53 952 | 133.14 100.10 953 | 133.21 100.42 954 | 133.29 102.00 955 | 133.36 102.00 956 | 133.43 102.00 957 | 133.50 102.00 958 | 133.57 102.00 959 | 133.64 100.86 960 | 133.71 100.10 961 | 133.79 100.10 962 | 133.86 98.21 963 | 133.93 96.69 964 | 134.00 96.31 965 | 134.07 94.40 966 | 134.14 92.98 967 | 134.21 90.60 968 | 134.29 88.69 969 | 134.36 87.27 970 | 134.43 83.74 971 | 134.50 80.61 972 | 134.57 77.75 973 | 134.64 74.61 974 | 134.71 70.93 975 | 134.79 67.28 976 | 134.86 62.05 977 | 134.93 56.34 978 | 135.00 48.72 979 | 135.07 37.30 980 | 135.14 16.36 981 | 135.21 0.19 982 | 135.29 -8.85 983 | 135.36 -10.28 984 | 135.43 -10.28 985 | 135.50 -10.28 986 | 135.57 21.70 987 | 135.64 55.70 988 | 135.71 86.16 989 | 135.79 91.87 990 | 135.86 95.36 991 | 135.93 98.59 992 | 136.00 100.73 993 | 136.07 102.95 994 | 136.14 103.90 995 | 136.21 105.17 996 | 136.29 105.80 997 | 136.36 106.18 998 | 136.43 107.70 999 | 136.50 107.32 1000 | 136.57 105.33 1001 | 136.64 100.10 1002 | 136.71 92.50 1003 | 136.79 79.18 1004 | 136.86 62.05 1005 | 136.93 46.82 1006 | 137.00 35.40 1007 | 137.24 30.64 1008 | 137.48 29.69 1009 | 137.72 29.69 1010 | 137.96 32.35 1011 | 138.20 60.46 1012 | 138.44 88.05 1013 | 138.68 114.35 1014 | 138.92 118.72 1015 | 139.16 119.10 1016 | 139.40 119.10 1017 | 139.64 122.05 1018 | 139.88 124.27 1019 | 140.12 126.48 1020 | 140.36 128.32 1021 | 140.60 130.28 1022 | 140.84 131.87 1023 | 141.08 134.40 1024 | 141.32 136.30 1025 | 141.56 137.82 1026 | 141.80 139.15 1027 | 142.04 141.05 1028 | 142.28 142.00 1029 | 142.52 142.00 1030 | 142.76 143.58 1031 | 143.00 143.90 1032 | 143.24 143.90 1033 | 143.48 143.90 1034 | 143.72 143.90 1035 | 143.96 143.14 1036 | 144.20 140.58 1037 | 144.33 136.93 1038 | 144.46 126.18 1039 | 144.59 120.38 1040 | 144.72 117.24 1041 | 144.85 116.77 1042 | 144.98 118.10 1043 | 145.11 119.43 1044 | 145.24 122.93 1045 | 145.37 125.37 1046 | 145.50 128.00 1047 | 145.63 128.08 1048 | 145.76 128.10 1049 | 145.89 128.17 1050 | 146.02 127.88 1051 | 146.15 125.16 1052 | 146.28 121.93 1053 | 146.41 116.63 1054 | 146.54 110.35 1055 | 146.67 104.58 1056 | 146.80 98.78 1057 | 146.93 95.41 1058 | 147.06 93.51 1059 | 147.19 91.61 1060 | 147.32 91.65 1061 | 147.45 93.09 1062 | 147.58 94.34 1063 | 147.71 97.91 1064 | 147.84 103.53 1065 | 147.97 112.47 1066 | 148.10 124.40 1067 | 148.23 133.44 1068 | 148.36 136.80 1069 | 148.49 136.87 1070 | 148.62 134.97 1071 | 148.75 125.75 1072 | 148.88 109.73 1073 | 149.01 91.60 1074 | 149.14 86.45 1075 | 149.27 86.50 1076 | 149.40 89.79 1077 | 149.53 104.67 1078 | 149.66 127.20 1079 | 149.79 143.70 1080 | 149.92 147.10 1081 | 150.05 147.14 1082 | 150.18 145.25 1083 | 150.31 139.47 1084 | 150.44 124.90 1085 | 150.57 101.89 1086 | 150.70 81.55 1087 | 150.73 79.26 1088 | 150.77 102.40 1089 | 150.80 136.47 1090 | 150.84 154.37 1091 | 150.87 159.59 1092 | 150.90 162.27 1093 | 150.94 164.11 1094 | 150.97 165.30 1095 | 151.01 165.30 1096 | 151.04 165.38 1097 | 151.07 165.40 1098 | 151.11 165.06 1099 | 151.14 163.22 1100 | 151.18 159.70 1101 | 151.21 153.23 1102 | 151.24 142.75 1103 | 151.28 131.27 1104 | 151.31 122.38 1105 | 151.35 115.63 1106 | 151.38 113.90 1107 | 151.41 113.30 1108 | 151.45 115.30 1109 | 151.48 130.27 1110 | 151.52 156.56 1111 | 151.55 172.66 1112 | 151.58 171.60 1113 | 151.62 168.58 1114 | 151.65 162.78 1115 | 151.69 157.45 1116 | 151.72 154.92 1117 | 151.75 154.95 1118 | 151.79 156.61 1119 | 151.82 158.95 1120 | 151.86 164.24 1121 | 151.89 166.50 1122 | 151.92 167.50 1123 | 151.96 167.50 1124 | 151.99 167.03 1125 | 152.03 166.55 1126 | 152.06 166.08 1127 | 152.09 165.60 1128 | 152.13 163.60 1129 | 152.16 163.60 1130 | 152.20 160.75 1131 | 152.23 159.80 1132 | 152.26 158.85 1133 | 152.30 156.00 1134 | 152.33 154.10 1135 | 152.37 154.10 1136 | 152.40 152.20 1137 | 152.43 149.35 1138 | 152.47 146.50 1139 | 152.50 144.60 1140 | 152.54 144.60 1141 | 152.57 142.70 1142 | 152.60 142.70 1143 | 152.64 140.80 1144 | 152.67 140.80 1145 | 152.71 140.80 1146 | 152.74 140.80 1147 | 152.77 142.70 1148 | 152.81 142.70 1149 | 152.84 142.70 1150 | 152.88 146.50 1151 | 152.91 147.45 1152 | 152.94 148.40 1153 | 152.98 148.40 1154 | 153.01 148.40 1155 | 153.05 148.40 1156 | 153.08 148.40 1157 | 153.11 145.55 1158 | 153.15 142.70 1159 | 153.18 137.95 1160 | 153.22 135.10 1161 | 153.25 132.25 1162 | 153.28 131.78 1163 | 153.32 131.30 1164 | 153.35 131.30 1165 | 153.39 132.25 1166 | 153.42 133.20 1167 | 153.45 135.10 1168 | 153.49 137.95 1169 | 153.52 140.80 1170 | 153.56 139.38 1171 | 153.59 137.95 1172 | 153.62 136.98 1173 | 153.66 136.00 1174 | 153.69 133.10 1175 | 153.73 131.20 1176 | 153.76 126.45 1177 | 153.79 123.60 1178 | 153.83 118.85 1179 | 153.86 116.00 1180 | 153.90 112.20 1181 | 153.93 112.20 1182 | 153.96 111.73 1183 | 154.00 111.25 1184 | 154.03 110.78 1185 | 154.07 110.30 1186 | 154.10 110.30 1187 | 154.19 111.25 1188 | 154.28 112.20 1189 | 154.37 114.10 1190 | 154.45 116.00 1191 | 154.54 117.90 1192 | 154.63 119.80 1193 | 154.72 119.80 1194 | 154.81 120.75 1195 | 154.90 121.70 1196 | 154.98 121.70 1197 | 155.07 121.70 1198 | 155.16 121.70 1199 | 155.25 121.70 1200 | 155.34 119.80 1201 | 155.43 119.80 1202 | 155.51 116.95 1203 | 155.60 114.10 1204 | 155.69 113.63 1205 | 155.78 113.15 1206 | 155.87 112.68 1207 | 155.96 112.20 1208 | 156.04 114.10 1209 | 156.13 116.00 1210 | 156.22 117.90 1211 | 156.31 117.90 1212 | 156.40 119.80 1213 | 156.49 119.80 1214 | 156.57 119.80 1215 | 156.66 119.80 1216 | 156.75 119.33 1217 | 156.84 118.85 1218 | 156.93 114.10 1219 | 157.02 112.20 1220 | 157.10 112.10 1221 | 157.19 114.00 1222 | 157.28 115.90 1223 | 157.37 117.80 1224 | 157.46 117.80 1225 | 157.55 115.90 1226 | 157.63 112.10 1227 | 157.72 104.50 1228 | 157.81 104.03 1229 | 157.90 103.55 1230 | 157.99 103.08 1231 | 158.08 102.60 1232 | 158.16 102.60 1233 | 158.25 103.55 1234 | 158.34 104.50 1235 | 158.43 104.50 1236 | 158.52 104.50 1237 | 158.61 104.50 1238 | 158.69 104.50 1239 | 158.78 106.40 1240 | 158.87 106.40 1241 | 158.96 106.40 1242 | 159.05 106.40 1243 | 159.14 108.30 1244 | 159.22 108.30 1245 | 159.31 108.30 1246 | 159.40 106.40 1247 | 159.50 106.40 1248 | 159.60 106.40 1249 | 159.70 106.40 1250 | 159.80 106.40 1251 | 159.90 104.50 1252 | 160.00 104.50 1253 | 160.10 104.50 1254 | 160.20 102.60 1255 | 160.30 102.60 1256 | 160.40 100.70 1257 | 160.50 98.77 1258 | 160.60 96.87 1259 | 160.70 96.87 1260 | 160.80 94.01 1261 | 160.90 91.16 1262 | 161.00 89.26 1263 | 161.10 86.41 1264 | 161.20 83.55 1265 | 161.30 79.75 1266 | 161.40 75.94 1267 | 161.50 71.19 1268 | 161.60 68.34 1269 | 161.70 66.44 1270 | 161.80 62.63 1271 | 161.90 61.21 1272 | 162.00 59.78 1273 | 162.10 59.30 1274 | 162.20 58.82 1275 | 162.30 56.92 1276 | 162.40 56.92 1277 | 162.50 56.92 1278 | 162.60 57.87 1279 | 162.70 58.81 1280 | 162.80 58.81 1281 | 162.90 60.71 1282 | 163.00 62.61 1283 | 163.10 64.51 1284 | 163.20 68.31 1285 | 163.30 68.31 1286 | 163.40 68.30 1287 | 163.50 70.20 1288 | 163.60 69.73 1289 | 163.70 69.25 1290 | 163.80 68.30 1291 | 163.90 67.34 1292 | 164.00 64.49 1293 | 164.10 62.59 1294 | 164.20 59.73 1295 | 164.30 54.98 1296 | 164.40 52.13 1297 | 164.46 49.27 1298 | 164.52 47.37 1299 | 164.58 42.62 1300 | 164.64 39.76 1301 | 164.70 35.01 1302 | 164.76 32.16 1303 | 164.82 30.26 1304 | 164.88 30.25 1305 | 164.94 28.35 1306 | 165.00 28.35 1307 | 165.06 30.25 1308 | 165.12 32.15 1309 | 165.18 35.95 1310 | 165.24 39.75 1311 | 165.30 43.55 1312 | 165.36 51.15 1313 | 165.42 54.94 1314 | 165.48 55.89 1315 | 165.54 56.84 1316 | 165.60 56.84 1317 | 165.66 54.94 1318 | 165.72 53.04 1319 | 165.78 53.03 1320 | 165.84 53.03 1321 | 165.90 54.93 1322 | 165.96 56.83 1323 | 166.02 56.83 1324 | 166.08 56.83 1325 | 166.14 56.82 1326 | 166.20 56.82 1327 | 166.26 54.92 1328 | 166.32 54.91 1329 | 166.38 53.01 1330 | 166.44 51.11 1331 | 166.50 51.11 1332 | 166.56 51.11 1333 | 166.62 51.11 1334 | 166.68 51.10 1335 | 166.74 51.10 1336 | 166.80 51.10 1337 | 166.86 51.10 1338 | 166.92 54.90 1339 | 166.98 54.90 1340 | 167.04 54.89 1341 | 167.10 60.59 1342 | 167.16 64.39 1343 | 167.22 66.29 1344 | 167.28 68.19 1345 | 167.34 71.99 1346 | 167.40 74.84 1347 | 167.46 77.69 1348 | 167.52 79.59 1349 | 167.58 83.38 1350 | 167.64 85.28 1351 | 167.70 87.18 1352 | 167.76 90.98 1353 | 167.82 90.98 1354 | 167.88 90.98 1355 | 167.94 94.78 1356 | 168.00 94.78 1357 | 168.06 94.77 1358 | 168.12 96.67 1359 | 168.18 96.67 1360 | 168.24 97.62 1361 | 168.30 98.57 1362 | 168.36 98.56 1363 | 168.42 98.56 1364 | 168.48 98.56 1365 | 168.54 98.56 1366 | 168.60 98.56 1367 | 168.66 98.56 1368 | 168.72 98.55 1369 | 168.78 98.55 1370 | 168.84 96.65 1371 | 168.90 96.65 1372 | 168.96 96.17 1373 | 169.02 95.69 1374 | 169.08 95.22 1375 | 169.14 94.74 1376 | 169.20 94.74 1377 | 169.32 92.83 1378 | 169.44 92.83 1379 | 169.57 90.93 1380 | 169.69 90.93 1381 | 169.81 90.93 1382 | 169.93 90.92 1383 | 170.05 89.02 1384 | 170.17 90.92 1385 | 170.30 90.92 1386 | 170.42 90.92 1387 | 170.54 90.91 1388 | 170.66 92.81 1389 | 170.78 92.81 1390 | 170.90 92.81 1391 | 171.03 94.71 1392 | 171.15 92.80 1393 | 171.27 92.80 1394 | 171.39 90.90 1395 | 171.51 88.05 1396 | 171.63 87.57 1397 | 171.76 87.09 1398 | 171.88 84.24 1399 | 172.00 79.49 1400 | 172.12 79.48 1401 | 172.24 77.58 1402 | 172.36 74.73 1403 | 172.49 74.25 1404 | 172.61 73.77 1405 | 172.73 71.87 1406 | 172.85 71.87 1407 | 172.97 71.87 1408 | 173.09 69.96 1409 | 173.22 69.96 1410 | 173.34 69.96 1411 | 173.46 69.96 1412 | 173.58 69.96 1413 | 173.70 69.96 1414 | 173.82 69.95 1415 | 173.95 71.85 1416 | 174.07 71.85 1417 | 174.19 71.85 1418 | 174.31 75.65 1419 | 174.43 77.54 1420 | 174.55 78.49 1421 | 174.68 79.44 1422 | 174.80 81.34 1423 | 174.92 82.29 1424 | 175.04 83.24 1425 | 175.16 85.14 1426 | 175.28 85.13 1427 | 175.41 88.69 1428 | 175.53 90.58 1429 | 175.65 90.58 1430 | 175.77 90.57 1431 | 175.89 90.56 1432 | 176.01 90.55 1433 | 176.14 88.64 1434 | 176.26 88.64 1435 | 176.38 88.63 1436 | 176.50 88.62 1437 | 176.55 86.71 1438 | 176.59 86.70 1439 | 176.64 84.80 1440 | 176.68 84.79 1441 | 176.73 82.88 1442 | 176.77 80.97 1443 | 176.82 80.96 1444 | 176.86 78.10 1445 | 176.91 75.23 1446 | 176.95 73.33 1447 | 177.00 73.32 1448 | 177.04 71.41 1449 | 177.09 68.55 1450 | 177.13 65.68 1451 | 177.18 63.77 1452 | 177.22 60.92 1453 | 177.27 58.05 1454 | 177.31 58.04 1455 | 177.36 56.13 1456 | 177.40 54.22 1457 | 177.45 51.36 1458 | 177.49 48.50 1459 | 177.54 46.59 1460 | 177.58 46.58 1461 | 177.63 44.67 1462 | 177.67 41.81 1463 | 177.72 38.94 1464 | 177.76 38.93 1465 | 177.81 37.03 1466 | 177.85 35.12 1467 | 177.90 35.11 1468 | 177.94 33.20 1469 | 177.99 30.34 1470 | 178.03 29.38 1471 | 178.08 28.42 1472 | 178.12 25.56 1473 | 178.17 25.08 1474 | 178.21 24.60 1475 | 178.26 23.64 1476 | 178.30 22.68 1477 | 178.35 22.19 1478 | 178.39 21.71 1479 | 178.44 21.70 1480 | 178.48 21.22 1481 | 178.53 20.74 1482 | 178.57 20.25 1483 | 178.62 19.77 1484 | 178.66 19.76 1485 | 178.71 19.76 1486 | 178.75 19.75 1487 | 178.80 19.74 1488 | 178.84 20.69 1489 | 178.89 21.63 1490 | 178.93 21.62 1491 | 178.98 23.52 1492 | 179.02 24.47 1493 | 179.07 25.41 1494 | 179.11 29.21 1495 | 179.16 30.16 1496 | 179.20 31.10 1497 | 179.25 34.90 1498 | 179.29 40.60 1499 | 179.34 40.60 1500 | 179.38 40.59 1501 | 179.43 44.38 1502 | 179.47 45.33 1503 | 179.52 46.28 1504 | 179.56 46.27 1505 | 179.61 46.27 1506 | 179.65 46.26 1507 | 179.70 46.25 1508 | 179.74 46.24 1509 | 179.79 46.24 1510 | 179.83 46.23 1511 | 179.88 46.22 1512 | 179.92 44.31 1513 | 179.97 44.30 1514 | 180.01 44.30 1515 | 180.06 44.29 1516 | 180.10 44.28 1517 | 180.24 45.23 1518 | 180.37 46.17 1519 | 180.51 46.16 1520 | 180.64 47.11 1521 | 180.78 48.06 1522 | 180.91 51.85 1523 | 181.05 55.65 1524 | 181.19 56.60 1525 | 181.32 57.54 1526 | 181.46 61.34 1527 | 181.59 61.34 1528 | 181.73 61.33 1529 | 181.86 63.22 1530 | 182.00 63.21 1531 | 182.14 61.30 1532 | 182.27 61.30 1533 | 182.41 61.29 1534 | 182.54 61.28 1535 | 182.68 59.38 1536 | 182.81 63.17 1537 | 182.95 63.17 1538 | 183.09 63.16 1539 | 183.22 66.96 1540 | 183.36 66.95 1541 | 183.49 67.90 1542 | 183.63 68.84 1543 | 183.76 68.83 1544 | 183.90 68.35 1545 | 184.04 67.87 1546 | 184.17 67.38 1547 | 184.31 66.90 1548 | 184.44 63.09 1549 | 184.58 62.13 1550 | 184.71 61.17 1551 | 184.85 61.16 1552 | 184.99 64.96 1553 | 185.12 64.96 1554 | 185.26 64.95 1555 | 185.39 66.84 1556 | 185.53 67.79 1557 | 185.66 68.74 1558 | 185.80 68.73 1559 | 185.94 68.73 1560 | 186.07 68.72 1561 | 186.21 68.71 1562 | 186.34 68.70 1563 | 186.48 66.79 1564 | 186.61 64.88 1565 | 186.75 64.87 1566 | 186.89 61.06 1567 | 187.02 57.25 1568 | 187.16 53.43 1569 | 187.29 49.62 1570 | 187.43 43.90 1571 | 187.56 38.18 1572 | 187.70 33.42 1573 | 187.84 28.65 1574 | 187.97 24.84 1575 | 188.11 24.83 1576 | 188.24 22.92 1577 | 188.38 21.01 1578 | 188.51 21.00 1579 | 188.65 19.09 1580 | 188.79 19.08 1581 | 188.92 19.08 1582 | 189.06 19.07 1583 | 189.19 19.06 1584 | 189.33 20.96 1585 | 189.46 21.91 1586 | 189.60 22.85 1587 | 189.67 24.74 1588 | 189.74 25.69 1589 | 189.81 26.64 1590 | 189.89 28.53 1591 | 189.96 29.48 1592 | 190.03 30.42 1593 | 190.10 32.32 1594 | 190.17 36.11 1595 | 190.24 37.06 1596 | 190.31 38.01 1597 | 190.38 38.00 1598 | 190.46 36.09 1599 | 190.53 36.08 1600 | 190.60 34.17 1601 | 190.67 34.17 1602 | 190.74 34.16 1603 | 190.81 34.15 1604 | 190.88 37.95 1605 | 190.95 37.95 1606 | 191.03 37.94 1607 | 191.10 41.73 1608 | 191.17 41.25 1609 | 191.24 40.77 1610 | 191.31 36.00 1611 | 191.38 28.39 1612 | 191.45 28.38 1613 | 191.52 30.28 1614 | 191.60 32.17 1615 | 191.67 37.87 1616 | 191.74 41.67 1617 | 191.81 43.57 1618 | 191.88 45.47 1619 | 191.95 45.46 1620 | 192.02 46.41 1621 | 192.09 47.35 1622 | 192.17 47.34 1623 | 192.24 45.43 1624 | 192.31 45.42 1625 | 192.38 45.42 1626 | 192.45 45.41 1627 | 192.52 45.40 1628 | 192.59 43.49 1629 | 192.66 43.48 1630 | 192.74 43.48 1631 | 192.81 43.47 1632 | 192.88 43.46 1633 | 192.95 43.45 1634 | 193.02 44.40 1635 | 193.09 45.35 1636 | 193.16 49.14 1637 | 193.23 49.14 1638 | 193.31 49.13 1639 | 193.38 51.03 1640 | 193.45 51.03 1641 | 193.52 51.02 1642 | 193.59 51.01 1643 | 193.66 51.00 1644 | 193.73 49.09 1645 | 193.80 48.61 1646 | 193.88 48.13 1647 | 193.95 45.26 1648 | 194.02 45.25 1649 | 194.09 43.34 1650 | 194.16 41.43 1651 | 194.23 38.58 1652 | 194.30 37.62 1653 | 194.37 36.66 1654 | 194.45 33.79 1655 | 194.52 31.88 1656 | 194.59 31.87 1657 | 194.66 29.96 1658 | 194.73 27.10 1659 | 194.80 26.14 1660 | 194.87 25.19 1661 | 194.94 22.32 1662 | 195.02 21.84 1663 | 195.09 21.36 1664 | 195.16 18.49 1665 | 195.23 18.48 1666 | 195.30 18.48 1667 | 195.39 18.47 1668 | 195.49 18.46 1669 | 195.58 16.55 1670 | 195.68 18.45 1671 | 195.77 18.45 1672 | 195.87 18.44 1673 | 195.96 18.43 1674 | 196.05 19.38 1675 | 196.15 20.32 1676 | 196.24 22.21 1677 | 196.34 22.21 1678 | 196.43 22.20 1679 | 196.53 24.10 1680 | 196.62 25.99 1681 | 196.71 26.94 1682 | 196.81 27.88 1683 | 196.90 29.78 1684 | 197.00 29.78 1685 | 197.09 29.77 1686 | 197.19 31.66 1687 | 197.28 29.75 1688 | 197.37 29.74 1689 | 197.47 28.78 1690 | 197.56 27.83 1691 | 197.66 26.39 1692 | 197.75 24.96 1693 | 197.85 22.09 1694 | 197.94 20.19 1695 | 198.03 17.33 1696 | 198.13 14.46 1697 | 198.22 9.70 1698 | 198.32 6.83 1699 | 198.41 4.92 1700 | 198.51 2.06 1701 | 198.60 1.10 1702 | 198.69 0.14 1703 | 198.79 -0.34 1704 | 198.88 -0.82 1705 | 198.98 -0.83 1706 | 199.07 -0.84 1707 | 199.17 -0.84 1708 | 199.26 1.05 1709 | 199.35 2.00 1710 | 199.45 2.95 1711 | 199.54 4.84 1712 | 199.64 6.73 1713 | 199.73 6.73 1714 | 199.83 6.72 1715 | 199.92 6.71 1716 | 200.01 6.71 1717 | 200.11 6.70 1718 | 200.20 6.69 1719 | 200.30 6.68 1720 | 200.39 4.77 1721 | 200.49 4.29 1722 | 200.58 3.81 1723 | 200.67 0.95 1724 | 200.77 -0.96 1725 | 200.86 -0.97 1726 | 200.96 -2.88 1727 | 201.05 -5.74 1728 | 201.15 -10.51 1729 | 201.24 -13.38 1730 | 201.33 -16.23 1731 | 201.43 -18.14 1732 | 201.52 -23.86 1733 | 201.62 -25.30 1734 | 201.71 -26.74 1735 | 201.81 -29.59 1736 | 201.90 -31.50 1737 | 201.94 -33.41 1738 | 201.98 -33.42 1739 | 202.03 -35.33 1740 | 202.07 -35.34 1741 | 202.11 -35.35 1742 | 202.15 -35.36 1743 | 202.20 -35.36 1744 | 202.24 -35.37 1745 | 202.28 -34.43 1746 | 202.32 -33.48 1747 | 202.36 -33.49 1748 | 202.41 -31.59 1749 | 202.45 -29.69 1750 | 202.49 -29.70 1751 | 202.53 -25.90 1752 | 202.58 -25.91 1753 | 202.62 -25.91 1754 | 202.66 -22.12 1755 | 202.70 -22.13 1756 | 202.74 -22.13 1757 | 202.79 -20.23 1758 | 202.83 -19.29 1759 | 202.87 -18.34 1760 | 202.91 -16.45 1761 | 202.96 -14.55 1762 | 203.00 -14.56 1763 | 203.04 -14.56 1764 | 203.08 -12.67 1765 | 203.12 -12.68 1766 | 203.17 -12.68 1767 | 203.21 -10.78 1768 | 203.25 -10.80 1769 | 203.29 -9.85 1770 | 203.34 -8.90 1771 | 203.38 -7.01 1772 | 203.42 -7.01 1773 | 203.46 -7.02 1774 | 203.50 -7.03 1775 | 203.55 -7.03 1776 | 203.59 -7.04 1777 | 203.63 -7.05 1778 | 203.67 -7.06 1779 | 203.72 -6.11 1780 | 203.76 -5.17 1781 | 203.80 -7.07 1782 | 203.84 -7.08 1783 | 203.88 -7.09 1784 | 203.93 -9.00 1785 | 203.97 -9.01 1786 | 204.01 -9.01 1787 | 204.05 -9.02 1788 | 204.10 -10.93 1789 | 204.14 -10.94 1790 | 204.18 -12.85 1791 | 204.22 -12.86 1792 | 204.26 -14.77 1793 | 204.31 -14.78 1794 | 204.35 -16.69 1795 | 204.39 -16.70 1796 | 204.43 -18.60 1797 | 204.48 -18.61 1798 | 204.52 -18.61 1799 | 204.56 -18.62 1800 | 204.60 -18.63 1801 | 204.64 -18.64 1802 | 204.69 -18.64 1803 | 204.73 -18.65 1804 | 204.77 -18.66 1805 | 204.81 -18.66 1806 | 204.86 -18.67 1807 | 204.90 -18.68 1808 | 204.94 -18.68 1809 | 204.98 -18.69 1810 | 205.02 -18.70 1811 | 205.07 -18.71 1812 | 205.11 -18.71 1813 | 205.15 -18.72 1814 | 205.19 -17.78 1815 | 205.24 -16.83 1816 | 205.28 -16.84 1817 | 205.32 -16.85 1818 | 205.36 -16.85 1819 | 205.40 -14.96 1820 | 205.45 -14.97 1821 | 205.49 -14.02 1822 | 205.53 -13.07 1823 | 205.57 -13.08 1824 | 205.62 -13.09 1825 | 205.66 -13.09 1826 | 205.70 -11.20 1827 | 205.77 -9.31 1828 | 205.83 -9.31 1829 | 205.90 -9.32 1830 | 205.96 -7.42 1831 | 206.03 -7.43 1832 | 206.09 -7.43 1833 | 206.16 -5.54 1834 | 206.22 -4.59 1835 | 206.29 -3.65 1836 | 206.35 -1.75 1837 | 206.42 -1.76 1838 | 206.48 -0.82 1839 | 206.55 0.13 1840 | 206.61 2.02 1841 | 206.68 2.02 1842 | 206.74 2.01 1843 | 206.81 3.91 1844 | 206.87 3.90 1845 | 206.94 3.90 1846 | 207.00 3.89 1847 | 207.07 1.98 1848 | 207.13 1.97 1849 | 207.20 1.96 1850 | 207.26 0.05 1851 | 207.33 -1.86 1852 | 207.39 -1.87 1853 | 207.46 -3.78 1854 | 207.52 -3.79 1855 | 207.59 -5.70 1856 | 207.65 -5.70 1857 | 207.72 -5.71 1858 | 207.78 -5.72 1859 | 207.85 -5.73 1860 | 207.91 -5.73 1861 | 207.98 -5.74 1862 | 208.04 -5.75 1863 | 208.11 -5.75 1864 | 208.17 -5.76 1865 | 208.24 -3.86 1866 | 208.30 -2.92 1867 | 208.37 -1.97 1868 | 208.43 -1.98 1869 | 208.50 1.82 1870 | 208.56 2.76 1871 | 208.63 3.71 1872 | 208.69 5.60 1873 | 208.76 6.55 1874 | 208.82 7.50 1875 | 208.89 9.39 1876 | 208.95 13.19 1877 | 209.02 13.19 1878 | 209.08 13.18 1879 | 209.15 16.97 1880 | 209.21 16.97 1881 | 209.28 16.96 1882 | 209.34 20.76 1883 | 209.41 21.71 1884 | 209.47 22.65 1885 | 209.54 24.55 1886 | 209.60 26.44 1887 | 209.76 27.39 1888 | 209.92 28.34 1889 | 210.08 30.23 1890 | 210.23 31.18 1891 | 210.39 32.12 1892 | 210.55 34.02 1893 | 210.71 34.97 1894 | 210.87 35.91 1895 | 211.03 37.80 1896 | 211.19 39.70 1897 | 211.34 40.65 1898 | 211.50 41.59 1899 | 211.66 43.48 1900 | 211.82 44.43 1901 | 211.98 45.38 1902 | 212.14 47.27 1903 | 212.30 49.16 1904 | 212.45 50.11 1905 | 212.61 51.06 1906 | 212.77 51.05 1907 | 212.93 52.00 1908 | 213.09 52.94 1909 | 213.25 54.83 1910 | 213.41 55.78 1911 | 213.56 56.73 1912 | 213.72 58.62 1913 | 213.88 60.51 1914 | 214.04 60.51 1915 | 214.20 60.50 1916 | 214.36 62.40 1917 | 214.52 62.40 1918 | 214.67 62.39 1919 | 214.83 64.28 1920 | 214.99 64.28 1921 | 215.15 64.27 1922 | 215.31 68.07 1923 | 215.47 68.06 1924 | 215.63 68.06 1925 | 215.78 68.05 1926 | 215.94 69.51 1927 | 216.10 69.08 1928 | 216.26 69.08 1929 | 216.42 69.09 1930 | 216.58 69.09 1931 | 216.74 70.99 1932 | 216.89 70.99 1933 | 217.05 71.00 1934 | 217.21 71.00 1935 | 217.37 71.01 1936 | 217.53 71.01 1937 | 217.69 71.02 1938 | 217.85 71.02 1939 | 218.00 71.03 1940 | 218.16 71.03 1941 | 218.32 71.04 1942 | 218.48 71.04 1943 | 218.64 71.05 1944 | 218.80 71.05 1945 | 218.96 71.05 1946 | 219.11 71.06 1947 | 219.27 70.12 1948 | 219.43 69.17 1949 | 219.59 67.29 1950 | 219.75 65.40 1951 | 219.91 64.46 1952 | 220.07 63.51 1953 | 220.22 61.63 1954 | 220.38 59.74 1955 | 220.54 57.85 1956 | 220.70 54.07 1957 | 220.78 46.51 1958 | 220.87 38.94 1959 | 220.95 31.37 1960 | 221.04 31.37 1961 | 221.12 25.70 1962 | 221.20 23.82 1963 | 221.29 23.82 1964 | 221.37 23.82 1965 | 221.45 26.67 1966 | 221.54 31.40 1967 | 221.62 40.88 1968 | 221.71 52.23 1969 | 221.79 59.81 1970 | 221.87 63.60 1971 | 221.96 65.49 1972 | 222.04 68.34 1973 | 222.12 69.29 1974 | 222.21 71.19 1975 | 222.29 71.19 1976 | 222.38 71.20 1977 | 222.46 73.09 1978 | 222.54 71.21 1979 | 222.63 71.21 1980 | 222.71 70.27 1981 | 222.79 69.33 1982 | 222.88 67.44 1983 | 222.96 66.50 1984 | 223.05 65.55 1985 | 223.13 63.67 1986 | 223.21 61.78 1987 | 223.30 61.78 1988 | 223.38 58.95 1989 | 223.46 56.11 1990 | 223.55 52.33 1991 | 223.63 46.66 1992 | 223.72 44.77 1993 | 223.80 42.88 1994 | 223.88 35.32 1995 | 223.97 35.32 1996 | 224.05 31.54 1997 | 224.13 29.66 1998 | 224.22 27.77 1999 | 224.30 25.88 2000 | 224.39 25.88 2001 | 224.47 25.89 2002 | 224.55 25.89 2003 | 224.64 26.85 2004 | 224.72 31.58 2005 | 224.80 35.37 2006 | 224.89 42.00 2007 | 224.97 48.63 2008 | 225.06 54.31 2009 | 225.14 58.10 2010 | 225.22 60.00 2011 | 225.31 61.90 2012 | 225.39 63.79 2013 | 225.47 63.80 2014 | 225.56 63.80 2015 | 225.64 63.81 2016 | 225.73 63.81 2017 | 225.81 63.81 2018 | 225.89 63.82 2019 | 225.98 61.93 2020 | 226.06 61.93 2021 | 226.14 60.05 2022 | 226.23 58.16 2023 | 226.31 56.27 2024 | 226.40 54.38 2025 | 226.48 52.50 2026 | 226.56 52.50 2027 | 226.65 49.67 2028 | 226.73 46.83 2029 | 226.81 44.94 2030 | 226.90 37.38 2031 | 226.98 36.44 2032 | 227.07 35.49 2033 | 227.15 22.25 2034 | 227.23 22.25 2035 | 227.32 1.44 2036 | 227.40 1.45 2037 | 227.54 -23.15 2038 | 227.68 -23.15 2039 | 227.81 -26.93 2040 | 227.95 -30.71 2041 | 228.09 -32.60 2042 | 228.23 -32.60 2043 | 228.37 -30.70 2044 | 228.50 -28.80 2045 | 228.64 -17.44 2046 | 228.78 3.38 2047 | 228.92 15.69 2048 | 229.06 28.00 2049 | 229.19 32.74 2050 | 229.33 35.58 2051 | 229.47 37.47 2052 | 229.61 39.37 2053 | 229.75 41.27 2054 | 229.88 42.22 2055 | 230.02 43.17 2056 | 230.16 43.17 2057 | 230.30 43.18 2058 | 230.44 43.18 2059 | 230.57 43.19 2060 | 230.71 43.19 2061 | 230.85 43.20 2062 | 230.99 41.31 2063 | 231.13 41.31 2064 | 231.26 41.32 2065 | 231.40 41.32 2066 | 231.54 41.33 2067 | 231.68 39.44 2068 | 231.82 39.45 2069 | 231.95 39.45 2070 | 232.09 39.45 2071 | 232.23 39.46 2072 | 232.37 38.52 2073 | 232.51 37.58 2074 | 232.64 37.58 2075 | 232.78 35.69 2076 | 232.92 35.70 2077 | 233.06 33.81 2078 | 233.20 31.92 2079 | 233.33 31.92 2080 | 233.47 26.25 2081 | 233.61 24.37 2082 | 233.75 22.48 2083 | 233.89 20.59 2084 | 234.02 16.81 2085 | 234.16 12.08 2086 | 234.30 7.35 2087 | 234.49 4.52 2088 | 234.67 1.68 2089 | 234.86 -2.10 2090 | 235.04 -3.04 2091 | 235.23 -3.98 2092 | 235.41 -3.98 2093 | 235.60 -3.97 2094 | 235.78 -3.97 2095 | 235.97 -3.96 2096 | 236.15 -1.12 2097 | 236.34 3.62 2098 | 236.52 10.25 2099 | 236.71 18.77 2100 | 236.89 24.46 2101 | 237.08 28.24 2102 | 237.26 30.14 2103 | 237.45 30.15 2104 | 237.63 30.15 2105 | 237.82 30.16 2106 | 238.00 29.21 2107 | 238.19 28.27 2108 | 238.37 28.27 2109 | 238.56 20.71 2110 | 238.74 20.71 2111 | 238.93 7.47 2112 | 239.11 4.63 2113 | 239.30 1.80 2114 | 239.48 -3.87 2115 | 239.67 -3.87 2116 | 239.85 -3.86 2117 | 240.04 0.87 2118 | 240.22 7.50 2119 | 240.41 15.08 2120 | 240.59 23.60 2121 | 240.78 26.44 2122 | 240.96 26.45 2123 | 241.15 24.56 2124 | 241.33 22.67 2125 | 241.52 20.78 2126 | 241.70 17.00 2127 | 241.73 15.12 2128 | 241.76 15.12 2129 | 241.79 15.12 2130 | 241.82 17.02 2131 | 241.86 18.92 2132 | 241.89 20.82 2133 | 241.92 22.71 2134 | 241.95 23.67 2135 | 241.98 23.20 2136 | 242.01 22.73 2137 | 242.04 20.84 2138 | 242.07 18.01 2139 | 242.10 15.17 2140 | 242.13 13.28 2141 | 242.17 12.34 2142 | 242.20 11.40 2143 | 242.23 11.40 2144 | 242.26 11.41 2145 | 242.29 11.41 2146 | 242.32 11.41 2147 | 242.35 12.37 2148 | 242.38 13.32 2149 | 242.41 16.16 2150 | 242.44 19.01 2151 | 242.48 19.96 2152 | 242.51 20.91 2153 | 242.54 19.97 2154 | 242.57 19.02 2155 | 242.60 19.03 2156 | 242.63 13.36 2157 | 242.66 12.42 2158 | 242.69 11.47 2159 | 242.72 2.01 2160 | 242.75 2.02 2161 | 242.79 -1.76 2162 | 242.82 -2.71 2163 | 242.85 -3.65 2164 | 242.88 -5.53 2165 | 242.91 -5.53 2166 | 242.94 -5.53 2167 | 242.97 -5.52 2168 | 243.00 -5.52 2169 | 243.03 -5.51 2170 | 243.06 -5.51 2171 | 243.10 -5.50 2172 | 243.13 -5.50 2173 | 243.16 -3.60 2174 | 243.19 -1.70 2175 | 243.22 -1.70 2176 | 243.25 0.20 2177 | 243.28 2.10 2178 | 243.31 3.99 2179 | 243.34 4.00 2180 | 243.37 5.90 2181 | 243.41 5.90 2182 | 243.44 5.90 2183 | 243.47 5.91 2184 | 243.50 5.91 2185 | 243.53 5.92 2186 | 243.56 4.98 2187 | 243.59 4.03 2188 | 243.62 4.04 2189 | 243.65 3.10 2190 | 243.68 2.15 2191 | 243.72 0.27 2192 | 243.75 0.27 2193 | 243.78 0.27 2194 | 243.81 -1.61 2195 | 243.84 -3.50 2196 | 243.87 -3.49 2197 | 243.90 -5.38 2198 | 243.93 -5.38 2199 | 243.96 -6.32 2200 | 243.99 -7.26 2201 | 244.03 -9.15 2202 | 244.06 -11.04 2203 | 244.09 -11.98 2204 | 244.12 -12.92 2205 | 244.15 -14.81 2206 | 244.18 -15.75 2207 | 244.21 -16.69 2208 | 244.24 -18.58 2209 | 244.27 -19.53 2210 | 244.30 -20.47 2211 | 244.34 -24.24 2212 | 244.37 -26.13 2213 | 244.40 -27.08 2214 | 244.43 -28.02 2215 | 244.46 -29.90 2216 | 244.49 -31.79 2217 | 244.52 -33.68 2218 | 244.55 -35.57 2219 | 244.58 -37.45 2220 | 244.61 -37.45 2221 | 244.65 -40.29 2222 | 244.68 -43.12 2223 | 244.71 -45.01 2224 | 244.74 -48.79 2225 | 244.77 -49.73 2226 | 244.80 -50.67 2227 | -------------------------------------------------------------------------------- /Sea Level Curves/Haq87_Longterm_Normalized.dat: -------------------------------------------------------------------------------- 1 | 0 0 2 | 0.1 0.649747 3 | 0.2 1.29992 4 | 0.3 1.95207 5 | 0.4 2.6047 6 | 0.5 3.25942 7 | 0.6 3.91466 8 | 0.7 4.57213 9 | 0.8 5.23018 10 | 0.9 5.89059 11 | 1 6.55164 12 | 1.1 7.2152 13 | 1.2 7.87948 14 | 1.3 8.54641 15 | 1.4 9.21414 16 | 1.5 9.8847 17 | 1.6 10.5561 18 | 1.7 11.2306 19 | 1.8 11.906 20 | 1.9 12.5846 21 | 2 13.2644 22 | 2.1 13.9475 23 | 2.2 14.6318 24 | 2.3 15.3197 25 | 2.4 16.0089 26 | 2.5 16.7015 27 | 2.6 17.3953 28 | 2.7 18.0921 29 | 2.8 18.7901 30 | 2.9 19.4906 31 | 3 20.1922 32 | 3.1 20.896 33 | 3.2 21.6008 34 | 3.3 22.3074 35 | 3.4 23.0149 36 | 3.5 23.7239 37 | 3.6 24.4335 38 | 3.7 25.1444 39 | 3.8 25.8559 40 | 3.9 26.5683 41 | 4 27.281 42 | 4.1 27.9944 43 | 4.2 28.708 44 | 4.3 29.422 45 | 4.4 30.136 46 | 4.5 30.8501 47 | 4.6 31.5641 48 | 4.7 32.2779 49 | 4.8 32.9914 50 | 4.9 33.7045 51 | 5 34.417 52 | 5.1 35.1289 53 | 5.2 35.84 54 | 5.3 36.5504 55 | 5.4 37.2596 56 | 5.5 37.9679 57 | 5.6 38.6748 58 | 5.7 39.3806 59 | 5.8 40.0849 60 | 5.9 40.788 61 | 6 41.4896 62 | 6.1 42.19 63 | 6.2 42.8888 64 | 6.3 43.5864 65 | 6.4 44.2823 66 | 6.5 44.977 67 | 6.6 45.67 68 | 6.7 46.3617 69 | 6.8 47.0517 70 | 6.9 47.7404 71 | 7 48.4271 72 | 7.1 49.1127 73 | 7.2 49.7963 74 | 7.3 50.4786 75 | 7.4 51.1588 76 | 7.5 51.8378 77 | 7.6 52.5145 78 | 7.7 53.1901 79 | 7.8 53.8632 80 | 7.9 54.5352 81 | 8 55.2047 82 | 8.1 55.8729 83 | 8.2 56.5386 84 | 8.3 57.203 85 | 8.4 57.8646 86 | 8.5 58.525 87 | 8.6 59.1826 88 | 8.7 59.8388 89 | 8.8 60.4921 90 | 8.9 61.1441 91 | 9 61.7929 92 | 9.1 62.4404 93 | 9.2 63.0845 94 | 9.3 63.7274 95 | 9.4 64.3666 96 | 9.5 65.0044 97 | 9.6 65.6381 98 | 9.7 66.2702 99 | 9.8 66.8975 100 | 9.9 67.523 101 | 10 68.1431 102 | 10.1 68.7613 103 | 10.2 69.3733 104 | 10.3 69.9831 105 | 10.4 70.5862 106 | 10.5 71.1868 107 | 10.6 71.78 108 | 10.7 72.3704 109 | 10.8 72.9526 110 | 10.9 73.5317 111 | 11 74.1019 112 | 11.1 74.6686 113 | 11.2 75.2256 114 | 11.3 75.7787 115 | 11.4 76.3214 116 | 11.5 76.8597 117 | 11.6 77.3869 118 | 11.7 77.9093 119 | 11.8 78.42 120 | 11.9 78.9253 121 | 12 79.4184 122 | 12.1 79.9055 123 | 12.2 80.3799 124 | 12.3 80.8475 125 | 12.4 81.3021 126 | 12.5 81.749 127 | 12.6 82.1824 128 | 12.7 82.6071 129 | 12.8 83.0181 130 | 12.9 83.4191 131 | 13 83.8061 132 | 13.1 84.1818 133 | 13.2 84.5434 134 | 13.3 84.8921 135 | 13.4 85.2267 136 | 13.5 85.5465 137 | 13.6 85.8523 138 | 13.7 86.1414 139 | 13.8 86.4166 140 | 13.9 86.6728 141 | 14 86.9157 142 | 14.1 87.1374 143 | 14.2 87.3478 144 | 14.3 87.5365 145 | 14.4 87.7159 146 | 14.5 87.8736 147 | 14.6 88.0239 148 | 14.7 88.1526 149 | 14.8 88.2754 150 | 14.9 88.3769 151 | 15 88.474 152 | 15.1 88.5498 153 | 15.2 88.6226 154 | 15.3 88.6743 155 | 15.4 88.7242 156 | 15.5 88.7531 157 | 15.6 88.7814 158 | 15.7 88.7888 159 | 15.8 88.7962 160 | 15.9 88.7837 161 | 16 88.7707 162 | 16.1 88.7398 163 | 16.2 88.7075 164 | 16.3 88.659 165 | 16.4 88.6084 166 | 16.5 88.5432 167 | 16.6 88.4752 168 | 16.7 88.3943 169 | 16.8 88.31 170 | 16.9 88.2147 171 | 17 88.1157 172 | 17.1 88.0074 173 | 17.2 87.8952 174 | 17.3 87.7752 175 | 17.4 87.6511 176 | 17.5 87.5207 177 | 17.6 87.3862 178 | 17.7 87.2465 179 | 17.8 87.1029 180 | 17.9 86.9552 181 | 18 86.8037 182 | 18.1 86.649 183 | 18.2 86.4909 184 | 18.3 86.3305 185 | 18.4 86.167 186 | 18.5 86.0019 187 | 18.6 85.8342 188 | 18.7 85.6654 189 | 18.8 85.4946 190 | 18.9 85.3233 191 | 19 85.1506 192 | 19.1 84.9776 193 | 19.2 84.8037 194 | 19.3 84.6296 195 | 19.4 84.4547 196 | 19.5 84.2797 197 | 19.6 84.104 198 | 19.7 83.9281 199 | 19.8 83.7518 200 | 19.9 83.5753 201 | 20 83.3984 202 | 20.1 83.2215 203 | 20.2 83.0442 204 | 20.3 82.867 205 | 20.4 82.6895 206 | 20.5 82.512 207 | 20.6 82.3345 208 | 20.7 82.157 209 | 20.8 81.9796 210 | 20.9 81.8022 211 | 21 81.625 212 | 21.1 81.4479 213 | 21.2 81.2711 214 | 21.3 81.0944 215 | 21.4 80.9181 216 | 21.5 80.742 217 | 21.6 80.5664 218 | 21.7 80.3911 219 | 21.8 80.2163 220 | 21.9 80.0418 221 | 22 79.868 222 | 22.1 79.6946 223 | 22.2 79.5219 224 | 22.3 79.3497 225 | 22.4 79.1783 226 | 22.5 79.0075 227 | 22.6 78.8375 228 | 22.7 78.6683 229 | 22.8 78.4999 230 | 22.9 78.3323 231 | 23 78.1656 232 | 23.1 78 233 | 23.2 77.8352 234 | 23.3 77.6716 235 | 23.4 77.5088 236 | 23.5 77.3475 237 | 23.6 77.1869 238 | 23.7 77.0281 239 | 23.8 76.8708 240 | 23.9 76.7174 241 | 24 76.5667 242 | 24.1 76.4245 243 | 24.2 76.2855 244 | 24.3 76.1603 245 | 24.4 76.0385 246 | 24.5 75.9365 247 | 24.6 75.8374 248 | 24.7 75.7649 249 | 24.8 75.6942 250 | 24.9 75.6578 251 | 25 75.6215 252 | 25.1 75.628 253 | 25.2 75.6346 254 | 25.3 75.6893 255 | 25.4 75.7463 256 | 25.5 75.8542 257 | 25.6 75.9675 258 | 25.7 76.1306 259 | 25.8 76.3021 260 | 25.9 76.522 261 | 26 76.7536 262 | 26.1 77.0325 263 | 26.2 77.3266 264 | 26.3 77.6676 265 | 26.4 78.0275 266 | 26.5 78.4345 267 | 26.6 78.8641 268 | 26.7 79.3418 269 | 26.8 79.8458 270 | 26.9 80.4002 271 | 27 80.9843 272 | 27.1 81.6226 273 | 27.2 82.2934 274 | 27.3 83.024 275 | 27.4 83.7887 276 | 27.5 84.6139 277 | 27.6 85.4694 278 | 27.7 86.381 279 | 27.8 87.3155 280 | 27.9 88.3014 281 | 28 89.3026 282 | 28.1 90.3498 283 | 28.2 91.4056 284 | 28.3 92.5006 285 | 28.4 93.5992 286 | 28.5 94.7274 287 | 28.6 95.8576 288 | 28.7 97.0036 289 | 28.8 98.1509 290 | 28.9 99.3026 291 | 29 100.452 292 | 29.1 101.597 293 | 29.2 102.735 294 | 29.3 103.861 295 | 29.4 104.975 296 | 29.5 106.077 297 | 29.6 107.168 298 | 29.7 108.251 299 | 29.8 109.325 300 | 29.9 110.394 301 | 30 111.457 302 | 30.1 112.518 303 | 30.2 113.577 304 | 30.3 114.634 305 | 30.4 115.693 306 | 30.5 116.753 307 | 30.6 117.817 308 | 30.7 118.881 309 | 30.8 119.946 310 | 30.9 121.01 311 | 31 122.069 312 | 31.1 123.125 313 | 31.2 124.172 314 | 31.3 125.213 315 | 31.4 126.241 316 | 31.5 127.259 317 | 31.6 128.263 318 | 31.7 129.251 319 | 31.8 130.224 320 | 31.9 131.175 321 | 32 132.11 322 | 32.1 133.018 323 | 32.2 133.908 324 | 32.3 134.766 325 | 32.4 135.605 326 | 32.5 136.405 327 | 32.6 137.188 328 | 32.7 137.924 329 | 32.8 138.643 330 | 32.9 139.31 331 | 33 139.958 332 | 33.1 140.549 333 | 33.2 141.121 334 | 33.3 141.63 335 | 33.4 142.118 336 | 33.5 142.537 337 | 33.6 142.931 338 | 33.7 143.244 339 | 33.8 143.521 340 | 33.9 143.711 341 | 34 143.856 342 | 34.1 143.928 343 | 34.2 143.957 344 | 34.3 143.928 345 | 34.4 143.857 346 | 34.5 143.741 347 | 34.6 143.585 348 | 34.7 143.396 349 | 34.8 143.171 350 | 34.9 142.921 351 | 35 142.639 352 | 35.1 142.34 353 | 35.2 142.014 354 | 35.3 141.678 355 | 35.4 141.32 356 | 35.5 140.956 357 | 35.6 140.576 358 | 35.7 140.193 359 | 35.8 139.799 360 | 35.9 139.404 361 | 36 139.005 362 | 36.1 138.606 363 | 36.2 138.208 364 | 36.3 137.812 365 | 36.4 137.424 366 | 36.5 137.039 367 | 36.6 136.669 368 | 36.7 136.303 369 | 36.8 135.958 370 | 36.9 135.618 371 | 37 135.308 372 | 37.1 135.001 373 | 37.2 134.727 374 | 37.3 134.456 375 | 37.4 134.219 376 | 37.5 133.982 377 | 37.6 133.781 378 | 37.7 133.579 379 | 37.8 133.412 380 | 37.9 133.247 381 | 38 133.113 382 | 38.1 132.983 383 | 38.2 132.884 384 | 38.3 132.789 385 | 38.4 132.724 386 | 38.5 132.666 387 | 38.6 132.636 388 | 38.7 132.614 389 | 38.8 132.621 390 | 38.9 132.637 391 | 39 132.681 392 | 39.1 132.737 393 | 39.2 132.818 394 | 39.3 132.913 395 | 39.4 133.03 396 | 39.5 133.163 397 | 39.6 133.315 398 | 39.7 133.483 399 | 39.8 133.668 400 | 39.9 133.869 401 | 40 134.086 402 | 40.1 134.32 403 | 40.2 134.567 404 | 40.3 134.832 405 | 40.4 135.107 406 | 40.5 135.402 407 | 40.6 135.705 408 | 40.7 136.027 409 | 40.8 136.358 410 | 40.9 136.707 411 | 41 137.063 412 | 41.1 137.437 413 | 41.2 137.818 414 | 41.3 138.217 415 | 41.4 138.622 416 | 41.5 139.045 417 | 41.6 139.472 418 | 41.7 139.918 419 | 41.8 140.368 420 | 41.9 140.836 421 | 42 141.306 422 | 42.1 141.796 423 | 42.2 142.287 424 | 42.3 142.796 425 | 42.4 143.306 426 | 42.5 143.83 427 | 42.6 144.355 428 | 42.7 144.889 429 | 42.8 145.424 430 | 42.9 145.964 431 | 43 146.504 432 | 43.1 147.044 433 | 43.2 147.585 434 | 43.3 148.122 435 | 43.4 148.658 436 | 43.5 149.187 437 | 43.6 149.715 438 | 43.7 150.231 439 | 43.8 150.746 440 | 43.9 151.244 441 | 44 151.741 442 | 44.1 152.217 443 | 44.2 152.692 444 | 44.3 153.14 445 | 44.4 153.588 446 | 44.5 154.003 447 | 44.6 154.418 448 | 44.7 154.796 449 | 44.8 155.171 450 | 44.9 155.505 451 | 45 155.835 452 | 45.1 156.12 453 | 45.2 156.4 454 | 45.3 156.64 455 | 45.4 156.873 456 | 45.5 157.075 457 | 45.6 157.27 458 | 45.7 157.441 459 | 45.8 157.604 460 | 45.9 157.751 461 | 46 157.892 462 | 46.1 158.021 463 | 46.2 158.145 464 | 46.3 158.263 465 | 46.4 158.378 466 | 46.5 158.491 467 | 46.6 158.603 468 | 46.7 158.718 469 | 46.8 158.835 470 | 46.9 158.958 471 | 47 159.087 472 | 47.1 159.224 473 | 47.2 159.372 474 | 47.3 159.53 475 | 47.4 159.703 476 | 47.5 159.886 477 | 47.6 160.087 478 | 47.7 160.296 479 | 47.8 160.52 480 | 47.9 160.751 481 | 48 160.995 482 | 48.1 161.244 483 | 48.2 161.504 484 | 48.3 161.766 485 | 48.4 162.038 486 | 48.5 162.312 487 | 48.6 162.591 488 | 48.7 162.872 489 | 48.8 163.156 490 | 48.9 163.44 491 | 49 163.724 492 | 49.1 164.008 493 | 49.2 164.289 494 | 49.3 164.57 495 | 49.4 164.844 496 | 49.5 165.117 497 | 49.6 165.38 498 | 49.7 165.643 499 | 49.8 165.893 500 | 49.9 166.142 501 | 50 166.376 502 | 50.1 166.608 503 | 50.2 166.823 504 | 50.3 167.035 505 | 50.4 167.227 506 | 50.5 167.416 507 | 50.6 167.583 508 | 50.7 167.745 509 | 50.8 167.884 510 | 50.9 168.015 511 | 51 168.123 512 | 51.1 168.22 513 | 51.2 168.293 514 | 51.3 168.352 515 | 51.4 168.386 516 | 51.5 168.403 517 | 51.6 168.395 518 | 51.7 168.366 519 | 51.8 168.312 520 | 51.9 168.232 521 | 52 168.127 522 | 52.1 167.992 523 | 52.2 167.832 524 | 52.3 167.635 525 | 52.4 167.412 526 | 52.5 167.144 527 | 52.6 166.848 528 | 52.7 166.495 529 | 52.8 166.111 530 | 52.9 165.657 531 | 53 165.174 532 | 53.1 164.613 533 | 53.2 164.022 534 | 53.3 163.345 535 | 53.4 162.634 536 | 53.5 161.829 537 | 53.6 160.98 538 | 53.7 160.028 539 | 53.8 159.02 540 | 53.9 157.914 541 | 54 156.757 542 | 54.1 155.54 543 | 54.2 154.29 544 | 54.3 153.016 545 | 54.4 151.741 546 | 54.5 150.466 547 | 54.6 149.236 548 | 54.7 148.015 549 | 54.8 146.897 550 | 54.9 145.794 551 | 55 144.835 552 | 55.1 143.895 553 | 55.2 143.083 554 | 55.3 142.293 555 | 55.4 141.606 556 | 55.5 140.937 557 | 55.6 140.355 558 | 55.7 139.788 559 | 55.8 139.293 560 | 55.9 138.809 561 | 56 138.387 562 | 56.1 137.972 563 | 56.2 137.61 564 | 56.3 137.252 565 | 56.4 136.939 566 | 56.5 136.628 567 | 56.6 136.359 568 | 56.7 136.091 569 | 56.8 135.865 570 | 56.9 135.641 571 | 57 135.457 572 | 57.1 135.277 573 | 57.2 135.136 574 | 57.3 135 575 | 57.4 134.904 576 | 57.5 134.814 577 | 57.6 134.763 578 | 57.7 134.722 579 | 57.8 134.719 580 | 57.9 134.728 581 | 58 134.772 582 | 58.1 134.83 583 | 58.2 134.916 584 | 58.3 135.016 585 | 58.4 135.14 586 | 58.5 135.277 587 | 58.6 135.434 588 | 58.7 135.604 589 | 58.8 135.79 590 | 58.9 135.988 591 | 59 136.198 592 | 59.1 136.42 593 | 59.2 136.651 594 | 59.3 136.893 595 | 59.4 137.141 596 | 59.5 137.398 597 | 59.6 137.66 598 | 59.7 137.929 599 | 59.8 138.201 600 | 59.9 138.478 601 | 60 138.757 602 | 60.1 139.039 603 | 60.2 139.322 604 | 60.3 139.606 605 | 60.4 139.889 606 | 60.5 140.171 607 | 60.6 140.453 608 | 60.7 140.729 609 | 60.8 141.005 610 | 60.9 141.273 611 | 61 141.54 612 | 61.1 141.796 613 | 61.2 142.051 614 | 61.3 142.294 615 | 61.4 142.537 616 | 61.5 142.768 617 | 61.6 142.998 618 | 61.7 143.218 619 | 61.8 143.438 620 | 61.9 143.649 621 | 62 143.859 622 | 62.1 144.062 623 | 62.2 144.263 624 | 62.3 144.458 625 | 62.4 144.652 626 | 62.5 144.84 627 | 62.6 145.027 628 | 62.7 145.209 629 | 62.8 145.39 630 | 62.9 145.567 631 | 63 145.743 632 | 63.1 145.916 633 | 63.2 146.087 634 | 63.3 146.256 635 | 63.4 146.423 636 | 63.5 146.587 637 | 63.6 146.75 638 | 63.7 146.91 639 | 63.8 147.068 640 | 63.9 147.224 641 | 64 147.378 642 | 64.1 147.529 643 | 64.2 147.678 644 | 64.3 147.825 645 | 64.4 147.969 646 | 64.5 148.111 647 | 64.6 148.25 648 | 64.7 148.387 649 | 64.8 148.522 650 | 64.9 148.654 651 | 65 148.783 652 | 65.1 148.91 653 | 65.2 149.034 654 | 65.3 149.156 655 | 65.4 149.274 656 | 65.5 149.391 657 | 65.6 149.503 658 | 65.7 149.614 659 | 65.8 149.72 660 | 65.9 149.825 661 | 66 149.925 662 | 66.1 150.597 663 | 66.2 150.724 664 | 66.3 150.857 665 | 66.4 150.999 666 | 66.5 151.146 667 | 66.6 151.3 668 | 66.7 151.462 669 | 66.8 151.629 670 | 66.9 151.803 671 | 67 151.985 672 | 67.1 152.173 673 | 67.2 152.367 674 | 67.3 152.571 675 | 67.4 152.781 676 | 67.5 152.996 677 | 67.6 153.22 678 | 67.7 153.451 679 | 67.8 153.686 680 | 67.9 153.932 681 | 68 154.183 682 | 68.1 154.439 683 | 68.2 154.705 684 | 68.3 154.977 685 | 68.4 155.255 686 | 68.5 155.541 687 | 68.6 155.835 688 | 68.7 156.135 689 | 68.8 156.442 690 | 68.9 156.759 691 | 69 157.081 692 | 69.1 157.411 693 | 69.2 157.751 694 | 69.3 158.097 695 | 69.4 158.451 696 | 69.5 158.815 697 | 69.6 159.185 698 | 69.7 159.56 699 | 69.8 159.945 700 | 69.9 160.333 701 | 70 160.727 702 | 70.1 161.127 703 | 70.2 161.53 704 | 70.3 161.936 705 | 70.4 162.347 706 | 70.5 162.761 707 | 70.6 163.176 708 | 70.7 163.594 709 | 70.8 164.014 710 | 70.9 164.434 711 | 71 164.854 712 | 71.1 165.275 713 | 71.2 165.696 714 | 71.3 166.115 715 | 71.4 166.533 716 | 71.5 166.95 717 | 71.6 167.364 718 | 71.7 167.775 719 | 71.8 168.183 720 | 71.9 168.588 721 | 72 168.987 722 | 72.1 169.382 723 | 72.2 169.774 724 | 72.3 170.16 725 | 72.4 170.542 726 | 72.5 170.921 727 | 72.6 171.296 728 | 72.7 171.668 729 | 72.8 172.038 730 | 72.9 172.405 731 | 73 172.77 732 | 73.1 173.133 733 | 73.2 173.495 734 | 73.3 173.856 735 | 73.4 174.216 736 | 73.5 174.576 737 | 73.6 174.936 738 | 73.7 175.296 739 | 73.8 175.657 740 | 73.9 176.018 741 | 74 176.381 742 | 74.1 176.745 743 | 74.2 177.112 744 | 74.3 177.481 745 | 74.4 177.851 746 | 74.5 178.226 747 | 74.6 178.603 748 | 74.7 178.983 749 | 74.8 179.369 750 | 74.9 179.758 751 | 75 180.151 752 | 75.1 180.55 753 | 75.2 180.953 754 | 75.3 181.358 755 | 75.4 181.767 756 | 75.5 182.177 757 | 75.6 182.588 758 | 75.7 182.998 759 | 75.8 183.407 760 | 75.9 183.814 761 | 76 184.219 762 | 76.1 184.618 763 | 76.2 185.014 764 | 76.3 185.405 765 | 76.4 185.786 766 | 76.5 186.161 767 | 76.6 186.529 768 | 76.7 186.885 769 | 76.8 187.231 770 | 76.9 187.568 771 | 77 187.89 772 | 77.1 188.198 773 | 77.2 188.496 774 | 77.3 188.775 775 | 77.4 189.037 776 | 77.5 189.285 777 | 77.6 189.514 778 | 77.7 189.72 779 | 77.8 189.911 780 | 77.9 190.079 781 | 78 190.221 782 | 78.1 190.344 783 | 78.2 190.445 784 | 78.3 190.518 785 | 78.4 190.576 786 | 78.5 190.616 787 | 78.6 190.632 788 | 78.7 190.634 789 | 78.8 190.621 790 | 78.9 190.582 791 | 79 190.527 792 | 79.1 190.456 793 | 79.2 190.353 794 | 79.3 190.232 795 | 79.4 190.092 796 | 79.5 189.916 797 | 79.6 189.716 798 | 79.7 189.493 799 | 79.8 189.228 800 | 79.9 188.933 801 | 80 188.614 802 | 80.1 188.253 803 | 80.2 187.86 804 | 80.3 187.442 805 | 80.4 186.986 806 | 80.5 186.492 807 | 80.6 185.971 808 | 80.7 185.413 809 | 80.8 184.81 810 | 80.9 184.175 811 | 81 183.506 812 | 81.1 182.79 813 | 81.2 182.053 814 | 81.3 181.299 815 | 81.4 180.528 816 | 81.5 179.757 817 | 81.6 178.988 818 | 81.7 178.23 819 | 81.8 177.496 820 | 81.9 176.786 821 | 82 176.106 822 | 82.1 175.484 823 | 82.2 174.904 824 | 82.3 174.365 825 | 82.4 173.895 826 | 82.5 173.461 827 | 82.6 173.06 828 | 82.7 172.708 829 | 82.8 172.387 830 | 82.9 172.091 831 | 83 171.829 832 | 83.1 171.593 833 | 83.2 171.373 834 | 83.3 171.177 835 | 83.4 170.999 836 | 83.5 170.832 837 | 83.6 170.679 838 | 83.7 170.536 839 | 83.8 170.4 840 | 83.9 170.27 841 | 84 170.147 842 | 84.1 170.03 843 | 84.2 169.919 844 | 84.3 169.818 845 | 84.4 169.723 846 | 84.5 169.635 847 | 84.6 169.558 848 | 84.7 169.488 849 | 84.8 169.426 850 | 84.9 169.378 851 | 85 169.337 852 | 85.1 169.305 853 | 85.2 169.289 854 | 85.3 169.281 855 | 85.4 169.283 856 | 85.5 169.303 857 | 85.6 169.334 858 | 85.7 169.376 859 | 85.8 169.436 860 | 85.9 169.51 861 | 86 169.596 862 | 86.1 169.703 863 | 86.2 169.825 864 | 86.3 169.96 865 | 86.4 170.117 866 | 86.5 170.292 867 | 86.6 170.481 868 | 86.7 170.693 869 | 86.8 170.926 870 | 86.9 171.175 871 | 87 171.448 872 | 87.1 171.747 873 | 87.2 172.063 874 | 87.3 172.405 875 | 87.4 172.776 876 | 87.5 173.169 877 | 87.6 173.586 878 | 87.7 174.042 879 | 87.8 174.52 880 | 87.9 175.024 881 | 88 175.574 882 | 88.1 176.15 883 | 88.2 176.753 884 | 88.3 177.399 885 | 88.4 178.073 886 | 88.5 178.773 887 | 88.6 179.509 888 | 88.7 180.278 889 | 88.8 181.072 890 | 88.9 181.894 891 | 89 182.756 892 | 89.1 183.642 893 | 89.2 184.553 894 | 89.3 185.502 895 | 89.4 186.481 896 | 89.5 187.485 897 | 89.6 188.521 898 | 89.7 189.595 899 | 89.8 190.696 900 | 89.9 191.82 901 | 90 192.966 902 | 90.1 194.111 903 | 90.2 195.246 904 | 90.3 196.366 905 | 90.4 197.438 906 | 90.5 198.464 907 | 90.6 199.441 908 | 90.7 200.345 909 | 90.8 201.151 910 | 90.9 201.882 911 | 91 202.529 912 | 91.1 203.034 913 | 91.2 203.453 914 | 91.3 203.782 915 | 91.4 203.926 916 | 91.5 203.958 917 | 91.6 203.875 918 | 91.7 203.539 919 | 91.8 203.061 920 | 91.9 202.448 921 | 92 201.679 922 | 92.1 200.847 923 | 92.2 199.985 924 | 92.3 199.116 925 | 92.4 198.283 926 | 92.5 197.477 927 | 92.6 196.702 928 | 92.7 195.985 929 | 92.8 195.304 930 | 92.9 194.661 931 | 93 194.089 932 | 93.1 193.569 933 | 93.2 193.097 934 | 93.3 192.705 935 | 93.4 192.386 936 | 93.5 192.126 937 | 93.6 191.956 938 | 93.7 191.88 939 | 93.8 191.865 940 | 93.9 191.923 941 | 94 192.045 942 | 94.1 192.2 943 | 94.2 192.39 944 | 94.3 192.605 945 | 94.4 192.828 946 | 94.5 193.054 947 | 94.6 193.267 948 | 94.7 193.468 949 | 94.8 193.653 950 | 94.9 193.807 951 | 95 193.941 952 | 95.1 194.054 953 | 95.2 194.12 954 | 95.3 194.158 955 | 95.4 194.166 956 | 95.5 194.111 957 | 95.6 194.017 958 | 95.7 193.886 959 | 95.8 193.693 960 | 95.9 193.462 961 | 96 193.199 962 | 96.1 192.884 963 | 96.2 192.534 964 | 96.3 192.155 965 | 96.4 191.736 966 | 96.5 191.281 967 | 96.6 190.802 968 | 96.7 190.29 969 | 96.8 189.744 970 | 96.9 189.176 971 | 97 188.583 972 | 97.1 187.956 973 | 97.2 187.31 974 | 97.3 186.644 975 | 97.4 185.941 976 | 97.5 185.217 977 | 97.6 184.472 978 | 97.7 183.69 979 | 97.8 182.879 980 | 97.9 182.042 981 | 98 181.17 982 | 98.1 180.258 983 | 98.2 179.314 984 | 98.3 178.339 985 | 98.4 177.309 986 | 98.5 176.239 987 | 98.6 175.13 988 | 98.7 173.972 989 | 98.8 172.75 990 | 98.9 171.478 991 | 99 170.155 992 | 99.1 168.771 993 | 99.2 167.335 994 | 99.3 165.866 995 | 99.4 164.37 996 | 99.5 162.853 997 | 99.6 161.325 998 | 99.7 159.799 999 | 99.8 158.282 1000 | 99.9 156.779 1001 | 100 155.313 1002 | 100.1 153.884 1003 | 100.2 152.491 1004 | 100.3 151.135 1005 | 100.4 149.825 1006 | 100.5 148.549 1007 | 100.6 147.302 1008 | 100.7 146.083 1009 | 100.8 144.904 1010 | 100.9 143.748 1011 | 101 142.615 1012 | 101.1 141.507 1013 | 101.2 140.429 1014 | 101.3 139.369 1015 | 101.4 138.327 1016 | 101.5 137.312 1017 | 101.6 136.315 1018 | 101.7 135.334 1019 | 101.8 134.371 1020 | 101.9 133.43 1021 | 102 132.502 1022 | 102.1 131.587 1023 | 102.2 130.691 1024 | 102.3 129.807 1025 | 102.4 128.935 1026 | 102.5 128.076 1027 | 102.6 127.23 1028 | 102.7 126.394 1029 | 102.8 125.567 1030 | 102.9 124.753 1031 | 103 123.946 1032 | 103.1 123.147 1033 | 103.2 122.357 1034 | 103.3 121.576 1035 | 103.4 120.799 1036 | 103.5 120.03 1037 | 103.6 119.267 1038 | 103.7 118.509 1039 | 103.8 117.756 1040 | 103.9 117.008 1041 | 104 116.264 1042 | 104.1 115.523 1043 | 104.2 114.789 1044 | 104.3 114.06 1045 | 104.4 113.337 1046 | 104.5 112.62 1047 | 104.6 111.913 1048 | 104.7 111.213 1049 | 104.8 110.519 1050 | 104.9 109.84 1051 | 105 109.169 1052 | 105.1 108.507 1053 | 105.2 107.86 1054 | 105.3 107.225 1055 | 105.4 106.602 1056 | 105.5 105.993 1057 | 105.6 105.402 1058 | 105.7 104.823 1059 | 105.8 104.26 1060 | 105.9 103.719 1061 | 106 103.193 1062 | 106.1 102.682 1063 | 106.2 102.2 1064 | 106.3 101.733 1065 | 106.4 101.283 1066 | 106.5 100.862 1067 | 106.6 100.461 1068 | 106.7 100.079 1069 | 106.8 99.7271 1070 | 106.9 99.4004 1071 | 107 99.0941 1072 | 107.1 98.8206 1073 | 107.2 98.5778 1074 | 107.3 98.3582 1075 | 107.4 98.1735 1076 | 107.5 98.0264 1077 | 107.6 97.9058 1078 | 107.7 97.8221 1079 | 107.8 97.7783 1080 | 107.9 97.7587 1081 | 108 97.7685 1082 | 108.1 97.8122 1083 | 108.2 97.8748 1084 | 108.3 97.9594 1085 | 108.4 98.0718 1086 | 108.5 98.1989 1087 | 108.6 98.3419 1088 | 108.7 98.507 1089 | 108.8 98.6828 1090 | 108.9 98.8696 1091 | 109 99.073 1092 | 109.1 99.2838 1093 | 109.2 99.5021 1094 | 109.3 99.7331 1095 | 109.4 99.9709 1096 | 109.5 100.215 1097 | 109.6 100.47 1098 | 109.7 100.732 1099 | 109.8 100.999 1100 | 109.9 101.275 1101 | 110 101.557 1102 | 110.1 101.845 1103 | 110.2 102.139 1104 | 110.3 102.44 1105 | 110.4 102.744 1106 | 110.5 103.055 1107 | 110.6 103.371 1108 | 110.7 103.69 1109 | 110.8 104.014 1110 | 110.9 104.343 1111 | 111 104.675 1112 | 111.1 105.011 1113 | 111.2 105.35 1114 | 111.3 105.692 1115 | 111.4 106.036 1116 | 111.5 106.384 1117 | 111.6 106.734 1118 | 111.7 107.086 1119 | 111.8 107.44 1120 | 111.9 107.798 1121 | 112 108.158 1122 | 112.1 108.526 1123 | 112.2 108.899 1124 | 112.3 109.279 1125 | 112.4 109.668 1126 | 112.5 110.068 1127 | 112.6 110.477 1128 | 112.7 110.899 1129 | 112.8 111.336 1130 | 112.9 111.784 1131 | 113 112.248 1132 | 113.1 112.734 1133 | 113.2 113.234 1134 | 113.3 113.752 1135 | 113.4 114.298 1136 | 113.5 114.863 1137 | 113.6 115.447 1138 | 113.7 116.067 1139 | 113.8 116.71 1140 | 113.9 117.377 1141 | 114 118.081 1142 | 114.1 118.815 1143 | 114.2 119.568 1144 | 114.3 120.34 1145 | 114.4 121.12 1146 | 114.5 121.899 1147 | 114.6 122.672 1148 | 114.7 123.42 1149 | 114.8 124.146 1150 | 114.9 124.845 1151 | 115 125.49 1152 | 115.1 126.084 1153 | 115.2 126.632 1154 | 115.3 127.103 1155 | 115.4 127.49 1156 | 115.5 127.812 1157 | 115.6 128.04 1158 | 115.7 128.167 1159 | 115.8 128.231 1160 | 115.9 128.22 1161 | 116 128.118 1162 | 116.1 127.962 1163 | 116.2 127.742 1164 | 116.3 127.433 1165 | 116.4 127.07 1166 | 116.5 126.649 1167 | 116.6 126.131 1168 | 116.7 125.557 1169 | 116.8 124.926 1170 | 116.9 124.187 1171 | 117 123.38 1172 | 117.1 122.505 1173 | 117.2 121.524 1174 | 117.3 120.439 1175 | 117.4 119.264 1176 | 117.5 117.988 1177 | 117.6 116.556 1178 | 117.7 115.017 1179 | 117.8 113.382 1180 | 117.9 111.658 1181 | 118 109.851 1182 | 118.1 107.973 1183 | 118.2 106.057 1184 | 118.3 104.115 1185 | 118.4 102.164 1186 | 118.5 100.218 1187 | 118.6 98.3057 1188 | 118.7 96.4409 1189 | 118.8 94.6254 1190 | 118.9 92.8576 1191 | 119 91.1332 1192 | 119.1 89.459 1193 | 119.2 87.8182 1194 | 119.3 86.2061 1195 | 119.4 84.6198 1196 | 119.5 83.0596 1197 | 119.6 81.5219 1198 | 119.7 79.999 1199 | 119.8 78.4884 1200 | 119.9 76.9884 1201 | 120 75.4973 1202 | 120.1 74.009 1203 | 120.2 72.5216 1204 | 120.3 71.0333 1205 | 120.4 69.5403 1206 | 120.5 68.0494 1207 | 120.6 66.5658 1208 | 120.7 65.0939 1209 | 120.8 63.6472 1210 | 120.9 62.2321 1211 | 121 60.85 1212 | 121.1 59.505 1213 | 121.2 58.2181 1214 | 121.3 56.9925 1215 | 121.4 55.8189 1216 | 121.5 54.6963 1217 | 121.6 53.6419 1218 | 121.7 52.628 1219 | 121.8 51.6487 1220 | 121.9 50.7075 1221 | 122 49.8038 1222 | 122.1 48.9223 1223 | 122.2 48.0615 1224 | 122.3 47.2283 1225 | 122.4 46.4086 1226 | 122.5 45.6004 1227 | 122.6 44.8058 1228 | 122.7 44.0249 1229 | 122.8 43.256 1230 | 122.9 42.5027 1231 | 123 41.7744 1232 | 123.1 41.0641 1233 | 123.2 40.3723 1234 | 123.3 39.7186 1235 | 123.4 39.0895 1236 | 123.5 38.4852 1237 | 123.6 37.9244 1238 | 123.7 37.4001 1239 | 123.8 36.907 1240 | 123.9 36.462 1241 | 124 36.0673 1242 | 124.1 35.7105 1243 | 124.2 35.406 1244 | 124.3 35.1644 1245 | 124.4 34.9622 1246 | 124.5 34.8079 1247 | 124.6 34.7142 1248 | 124.7 34.6555 1249 | 124.8 34.6374 1250 | 124.9 34.6778 1251 | 125 34.7507 1252 | 125.1 34.8594 1253 | 125.2 35.0262 1254 | 125.3 35.2247 1255 | 125.4 35.4559 1256 | 125.5 35.7472 1257 | 125.6 36.0708 1258 | 125.7 36.4269 1259 | 125.8 36.8422 1260 | 125.9 37.2918 1261 | 126 37.774 1262 | 126.1 38.3104 1263 | 126.2 38.8862 1264 | 126.3 39.4958 1265 | 126.4 40.1553 1266 | 126.5 40.8631 1267 | 126.6 41.608 1268 | 126.7 42.3981 1269 | 126.8 43.251 1270 | 126.9 44.1466 1271 | 127 45.0858 1272 | 127.1 46.0894 1273 | 127.2 47.1368 1274 | 127.3 48.2215 1275 | 127.4 49.3463 1276 | 127.5 50.519 1277 | 127.6 51.7211 1278 | 127.7 52.9515 1279 | 127.8 54.214 1280 | 127.9 55.5062 1281 | 128 56.8187 1282 | 128.1 58.15 1283 | 128.2 59.5022 1284 | 128.3 60.8694 1285 | 128.4 62.2445 1286 | 128.5 63.6247 1287 | 128.6 65.0056 1288 | 128.7 66.3799 1289 | 128.8 67.7446 1290 | 128.9 69.0968 1291 | 129 70.4266 1292 | 129.1 71.7288 1293 | 129.2 73.0041 1294 | 129.3 74.2503 1295 | 129.4 75.4493 1296 | 129.5 76.6028 1297 | 129.6 77.7143 1298 | 129.7 78.7819 1299 | 129.8 79.7711 1300 | 129.9 80.7079 1301 | 130 81.592 1302 | 130.1 82.4023 1303 | 130.2 83.1334 1304 | 130.3 83.8043 1305 | 130.4 84.4043 1306 | 130.5 84.8962 1307 | 130.6 85.3201 1308 | 130.7 85.6695 1309 | 130.8 85.8767 1310 | 130.9 85.9905 1311 | 131 85.9894 1312 | 131.1 85.749 1313 | 131.2 85.3344 1314 | 131.3 84.7172 1315 | 131.4 83.6247 1316 | 131.5 82.2338 1317 | 131.6 81.5268 1318 | 131.7 80.0609 1319 | 131.8 78.5811 1320 | 131.9 77.1409 1321 | 132 75.7876 1322 | 132.1 74.588 1323 | 132.2 73.5603 1324 | 132.3 72.6569 1325 | 132.4 71.8698 1326 | 132.5 71.2217 1327 | 132.6 70.7193 1328 | 132.7 70.3265 1329 | 132.8 70.0419 1330 | 132.9 69.9207 1331 | 133 69.899 1332 | 133.1 69.9662 1333 | 133.2 70.1426 1334 | 133.3 70.4293 1335 | 133.4 70.793 1336 | 133.5 71.2337 1337 | 133.6 71.7945 1338 | 133.7 72.4345 1339 | 133.8 73.1483 1340 | 133.9 73.9399 1341 | 134 74.8186 1342 | 134.1 75.7494 1343 | 134.2 76.7278 1344 | 134.3 77.7506 1345 | 134.4 78.8172 1346 | 134.5 79.9055 1347 | 134.6 81.01 1348 | 134.7 82.1249 1349 | 134.8 83.2457 1350 | 134.9 84.3677 1351 | 135 85.4893 1352 | 135.1 86.6086 1353 | 135.2 87.7223 1354 | 135.3 88.8274 1355 | 135.4 89.9228 1356 | 135.5 91.0071 1357 | 135.6 92.0764 1358 | 135.7 93.1244 1359 | 135.8 94.1537 1360 | 135.9 95.1643 1361 | 136 96.1557 1362 | 136.1 97.1272 1363 | 136.2 98.0884 1364 | 136.3 99.0414 1365 | 136.4 99.9881 1366 | 136.5 100.931 1367 | 136.6 101.876 1368 | 136.7 102.824 1369 | 136.8 103.777 1370 | 136.9 104.744 1371 | 137 105.723 1372 | 137.1 106.717 1373 | 137.2 107.729 1374 | 137.3 108.758 1375 | 137.4 109.778 1376 | 137.5 110.778 1377 | 137.6 111.746 1378 | 137.7 112.639 1379 | 137.8 113.452 1380 | 137.9 114.18 1381 | 138 114.813 1382 | 138.1 115.279 1383 | 138.2 115.649 1384 | 138.3 115.934 1385 | 138.4 116.123 1386 | 138.5 116.224 1387 | 138.6 116.269 1388 | 138.7 116.261 1389 | 138.8 116.177 1390 | 138.9 116.049 1391 | 139 115.88 1392 | 139.1 115.658 1393 | 139.2 115.385 1394 | 139.3 115.075 1395 | 139.4 114.728 1396 | 139.5 114.324 1397 | 139.6 113.885 1398 | 139.7 113.41 1399 | 139.8 112.893 1400 | 139.9 112.329 1401 | 140 111.734 1402 | 140.1 111.112 1403 | 140.2 110.455 1404 | 140.3 109.774 1405 | 140.4 109.074 1406 | 140.5 108.359 1407 | 140.6 107.625 1408 | 140.7 106.882 1409 | 140.8 106.133 1410 | 140.9 105.379 1411 | 141 104.621 1412 | 141.1 103.863 1413 | 141.2 103.104 1414 | 141.3 102.345 1415 | 141.4 101.588 1416 | 141.5 100.834 1417 | 141.6 100.082 1418 | 141.7 99.3341 1419 | 141.8 98.5929 1420 | 141.9 97.8573 1421 | 142 97.1279 1422 | 142.1 96.408 1423 | 142.2 95.6983 1424 | 142.3 94.9967 1425 | 142.4 94.303 1426 | 142.5 93.6192 1427 | 142.6 92.9417 1428 | 142.7 92.2693 1429 | 142.8 91.6017 1430 | 142.9 90.9395 1431 | 143 90.2799 1432 | 143.1 89.6224 1433 | 143.2 88.9667 1434 | 143.3 88.3116 1435 | 143.4 87.6561 1436 | 143.5 86.9999 1437 | 143.6 86.3416 1438 | 143.7 85.6801 1439 | 143.8 85.0154 1440 | 143.9 84.347 1441 | 144 83.6728 1442 | 144.1 82.9954 1443 | 144.2 82.316 1444 | 144.3 81.6352 1445 | 144.4 80.9543 1446 | 144.5 80.2748 1447 | 144.6 79.5973 1448 | 144.7 78.923 1449 | 144.8 78.2546 1450 | 144.9 77.5916 1451 | 145 76.9345 1452 | 145.1 76.2868 1453 | 145.2 75.6498 1454 | 145.3 75.0223 1455 | 145.4 74.4049 1456 | 145.5 73.8045 1457 | 145.6 73.2184 1458 | 145.7 72.6455 1459 | 145.8 72.0876 1460 | 145.9 71.5514 1461 | 146 71.0304 1462 | 146.1 70.5248 1463 | 146.2 70.0403 1464 | 146.3 69.5777 1465 | 146.4 69.1327 1466 | 146.5 68.7056 1467 | 146.6 68.3086 1468 | 146.7 67.9326 1469 | 146.8 67.5772 1470 | 146.9 67.2482 1471 | 147 66.9512 1472 | 147.1 66.678 1473 | 147.2 66.429 1474 | 147.3 66.219 1475 | 147.4 66.0346 1476 | 147.5 65.8716 1477 | 147.6 65.7323 1478 | 147.7 65.6168 1479 | 147.8 65.515 1480 | 147.9 65.4259 1481 | 148 65.3523 1482 | 148.1 65.2864 1483 | 148.2 65.2261 1484 | 148.3 65.1706 1485 | 148.4 65.1163 1486 | 148.5 65.0607 1487 | 148.6 65.0026 1488 | 148.7 64.9365 1489 | 148.8 64.8615 1490 | 148.9 64.777 1491 | 149 64.6786 1492 | 149.1 64.5599 1493 | 149.2 64.4264 1494 | 149.3 64.2778 1495 | 149.4 64.1062 1496 | 149.5 63.9188 1497 | 149.6 63.717 1498 | 149.7 63.4979 1499 | 149.8 63.2585 1500 | 149.9 63.0049 1501 | 150 62.7372 1502 | 150.1 62.4474 1503 | 150.2 62.1415 1504 | 150.3 61.8209 1505 | 150.4 61.4826 1506 | 150.5 61.1219 1507 | 150.6 60.7456 1508 | 150.7 60.3535 1509 | 150.8 59.9375 1510 | 150.9 59.5023 1511 | 151 59.0503 1512 | 151.1 58.5791 1513 | 151.2 58.0811 1514 | 151.3 57.565 1515 | 151.4 57.0304 1516 | 151.5 56.4698 1517 | 151.6 55.8845 1518 | 151.7 55.2789 1519 | 151.8 54.6527 1520 | 151.9 53.9929 1521 | 152 53.3099 1522 | 152.1 52.6038 1523 | 152.2 51.8713 1524 | 152.3 51.1028 1525 | 152.4 50.3085 1526 | 152.5 49.4874 1527 | 152.6 48.6336 1528 | 152.7 47.7408 1529 | 152.8 46.8175 1530 | 152.9 45.8626 1531 | 153 44.8697 1532 | 153.1 43.8311 1533 | 153.2 42.7558 1534 | 153.3 41.6427 1535 | 153.4 40.4901 1536 | 153.5 39.2893 1537 | 153.6 38.06 1538 | 153.7 36.8059 1539 | 153.8 35.5307 1540 | 153.9 34.2367 1541 | 154 32.9315 1542 | 154.1 31.6222 1543 | 154.2 30.313 1544 | 154.3 29.0079 1545 | 154.4 27.716 1546 | 154.5 26.442 1547 | 154.6 25.1889 1548 | 154.7 23.9593 1549 | 154.8 22.7572 1550 | 154.9 21.5879 1551 | 155 20.4431 1552 | 155.1 19.3224 1553 | 155.2 18.2256 1554 | 155.3 17.1621 1555 | 155.4 16.1234 1556 | 155.5 15.1081 1557 | 155.6 14.1163 1558 | 155.7 13.1564 1559 | 155.8 12.223 1560 | 155.9 11.3132 1561 | 156 10.427 1562 | 156.1 9.57414 1563 | 156.2 8.74853 1564 | 156.3 7.94734 1565 | 156.4 7.17065 1566 | 156.5 6.43111 1567 | 156.6 5.71865 1568 | 156.7 5.03155 1569 | 156.8 4.37142 1570 | 156.9 3.74885 1571 | 157 3.15088 1572 | 157.1 2.57731 1573 | 157.2 2.03453 1574 | 157.3 1.5242 1575 | 157.4 1.03812 1576 | 157.5 0.576221 1577 | 157.6 0.151474 1578 | 157.7 -0.246034 1579 | 157.8 -0.618791 1580 | 157.9 -0.962213 1581 | 158 -1.26822 1582 | 158.1 -1.54833 1583 | 158.2 -1.8024 1584 | 158.3 -2.01648 1585 | 158.4 -2.19861 1586 | 158.5 -2.35279 1587 | 158.6 -2.47337 1588 | 158.7 -2.54767 1589 | 158.8 -2.58834 1590 | 158.9 -2.59421 1591 | 159 -2.54142 1592 | 159.1 -2.43974 1593 | 159.2 -2.29259 1594 | 159.3 -2.08728 1595 | 159.4 -1.80164 1596 | 159.5 -1.45622 1597 | 159.6 -1.04944 1598 | 159.7 -0.552087 1599 | 159.8 0.0151147 1600 | 159.9 0.643247 1601 | 160 1.33585 1602 | 160.1 2.12354 1603 | 160.2 2.97582 1604 | 160.3 3.89521 1605 | 160.4 4.88991 1606 | 160.5 5.98902 1607 | 160.6 7.16651 1608 | 160.7 8.4177 1609 | 160.8 9.73454 1610 | 160.9 11.11 1611 | 161 12.5138 1612 | 161.1 13.9256 1613 | 161.2 15.3304 1614 | 161.3 16.7133 1615 | 161.4 18.0429 1616 | 161.5 19.303 1617 | 161.6 20.4938 1618 | 161.7 21.6171 1619 | 161.8 22.6729 1620 | 161.9 23.6592 1621 | 162 24.6015 1622 | 162.1 25.5042 1623 | 162.2 26.3686 1624 | 162.3 27.1933 1625 | 162.4 27.9958 1626 | 162.5 28.7792 1627 | 162.6 29.5446 1628 | 162.7 30.2971 1629 | 162.8 31.0448 1630 | 162.9 31.7903 1631 | 163 32.5384 1632 | 163.1 33.2959 1633 | 163.2 34.0649 1634 | 163.3 34.8466 1635 | 163.4 35.6414 1636 | 163.5 36.4286 1637 | 163.6 37.1988 1638 | 163.7 37.9445 1639 | 163.8 38.6336 1640 | 163.9 39.2829 1641 | 164 39.8963 1642 | 164.1 40.4725 1643 | 164.2 41.002 1644 | 164.3 41.5028 1645 | 164.4 41.9761 1646 | 164.5 42.4148 1647 | 164.6 42.8231 1648 | 164.7 43.2092 1649 | 164.8 43.5738 1650 | 164.9 43.9063 1651 | 165 44.2207 1652 | 165.1 44.5178 1653 | 165.2 44.7938 1654 | 165.3 45.0496 1655 | 165.4 45.2916 1656 | 165.5 45.5202 1657 | 165.6 45.7276 1658 | 165.7 45.9212 1659 | 165.8 46.1009 1660 | 165.9 46.2621 1661 | 166 46.4024 1662 | 166.1 46.5267 1663 | 166.2 46.6345 1664 | 166.3 46.7131 1665 | 166.4 46.7717 1666 | 166.5 46.8104 1667 | 166.6 46.8221 1668 | 166.7 46.8064 1669 | 166.8 46.7711 1670 | 166.9 46.7167 1671 | 167 46.6316 1672 | 167.1 46.5282 1673 | 167.2 46.4071 1674 | 167.3 46.2628 1675 | 167.4 46.0954 1676 | 167.5 45.911 1677 | 167.6 45.7098 1678 | 167.7 45.4808 1679 | 167.8 45.2349 1680 | 167.9 44.9722 1681 | 168 44.6874 1682 | 168.1 44.3799 1683 | 168.2 44.0557 1684 | 168.3 43.7152 1685 | 168.4 43.3492 1686 | 168.5 42.967 1687 | 168.6 42.5694 1688 | 168.7 42.1532 1689 | 168.8 41.7161 1690 | 168.9 41.2642 1691 | 169 40.7976 1692 | 169.1 40.3096 1693 | 169.2 39.8049 1694 | 169.3 39.2856 1695 | 169.4 38.7507 1696 | 169.5 38.1933 1697 | 169.6 37.621 1698 | 169.7 37.0339 1699 | 169.8 36.4279 1700 | 169.9 35.8028 1701 | 170 35.164 1702 | 170.1 34.5116 1703 | 170.2 33.8411 1704 | 170.3 33.1563 1705 | 170.4 32.4596 1706 | 170.5 31.7513 1707 | 170.6 31.0262 1708 | 170.7 30.2902 1709 | 170.8 29.5441 1710 | 170.9 28.7873 1711 | 171 28.0165 1712 | 171.1 27.2367 1713 | 171.2 26.4482 1714 | 171.3 25.6498 1715 | 171.4 24.8401 1716 | 171.5 24.0227 1717 | 171.6 23.1975 1718 | 171.7 22.3633 1719 | 171.8 21.5185 1720 | 171.9 20.6655 1721 | 172 19.804 1722 | 172.1 18.9317 1723 | 172.2 18.0474 1724 | 172.3 17.1534 1725 | 172.4 16.2493 1726 | 172.5 15.332 1727 | 172.6 14.4007 1728 | 172.7 13.4575 1729 | 172.8 12.5019 1730 | 172.9 11.5308 1731 | 173 10.542 1732 | 173.1 9.53856 1733 | 173.2 8.52012 1734 | 173.3 7.48459 1735 | 173.4 6.43182 1736 | 173.5 5.36797 1737 | 173.6 4.29426 1738 | 173.7 3.2118 1739 | 173.8 2.12039 1740 | 173.9 1.02484 1741 | 174 -0.0736082 1742 | 174.1 -1.1737 1743 | 174.2 -2.27334 1744 | 174.3 -3.37018 1745 | 174.4 -4.46302 1746 | 174.5 -5.55066 1747 | 174.6 -6.62975 1748 | 174.7 -7.69651 1749 | 174.8 -8.7486 1750 | 174.9 -9.78279 1751 | 175 -10.7908 1752 | 175.1 -11.7614 1753 | 175.2 -12.698 1754 | 175.3 -13.5976 1755 | 175.4 -14.4486 1756 | 175.5 -15.2359 1757 | 175.6 -15.9704 1758 | 175.7 -16.6497 1759 | 175.8 -17.2508 1760 | 175.9 -17.771 1761 | 176 -18.2309 1762 | 176.1 -18.6328 1763 | 176.2 -18.95 1764 | 176.3 -19.2149 1765 | 176.4 -19.4321 1766 | 176.5 -19.5912 1767 | 176.6 -19.69 1768 | 176.7 -19.7474 1769 | 176.8 -19.7643 1770 | 176.9 -19.7165 1771 | 177 -19.6294 1772 | 177.1 -19.5046 1773 | 177.2 -19.3299 1774 | 177.3 -19.1073 1775 | 177.4 -18.8506 1776 | 177.5 -18.5606 1777 | 177.6 -18.2198 1778 | 177.7 -17.8502 1779 | 177.8 -17.4527 1780 | 177.9 -17.0215 1781 | 178 -16.5569 1782 | 178.1 -16.0691 1783 | 178.2 -15.5588 1784 | 178.3 -15.0172 1785 | 178.4 -14.4541 1786 | 178.5 -13.8724 1787 | 178.6 -13.2714 1788 | 178.7 -12.6454 1789 | 178.8 -12.0031 1790 | 178.9 -11.3446 1791 | 179 -10.6665 1792 | 179.1 -9.96724 1793 | 179.2 -9.25232 1794 | 179.3 -8.52172 1795 | 179.4 -7.77019 1796 | 179.5 -6.99979 1797 | 179.6 -6.21371 1798 | 179.7 -5.41189 1799 | 179.8 -4.58779 1800 | 179.9 -3.74561 1801 | 180 -2.88718 1802 | 180.1 -2.01228 1803 | 180.2 -1.11349 1804 | 180.3 -0.19604 1805 | 180.4 0.736743 1806 | 180.5 1.6824 1807 | 180.6 2.63023 1808 | 180.7 3.56471 1809 | 180.8 4.47871 1810 | 180.9 5.36548 1811 | 181 6.19628 1812 | 181.1 6.96842 1813 | 181.2 7.68278 1814 | 181.3 8.33655 1815 | 181.4 8.89692 1816 | 181.5 9.40125 1817 | 181.6 9.85088 1818 | 181.7 10.2332 1819 | 181.8 10.5422 1820 | 181.9 10.7987 1821 | 182 11.0027 1822 | 182.1 11.1209 1823 | 182.2 11.1806 1824 | 182.3 11.1846 1825 | 182.4 11.1151 1826 | 182.5 10.9701 1827 | 182.6 10.7732 1828 | 182.7 10.5255 1829 | 182.8 10.2011 1830 | 182.9 9.82917 1831 | 183 9.41244 1832 | 183.1 8.94157 1833 | 183.2 8.41083 1834 | 183.3 7.83718 1835 | 183.4 7.22017 1836 | 183.5 6.5403 1837 | 183.6 5.80617 1838 | 183.7 5.02313 1839 | 183.8 4.18892 1840 | 183.9 3.27372 1841 | 184 2.29348 1842 | 184.1 1.24628 1843 | 184.2 0.127129 1844 | 184.3 -1.08797 1845 | 184.4 -2.36802 1846 | 184.5 -3.69255 1847 | 184.6 -5.04887 1848 | 184.7 -6.42346 1849 | 184.8 -7.79417 1850 | 184.9 -9.14059 1851 | 185 -10.4495 1852 | 185.1 -11.7086 1853 | 185.2 -12.8973 1854 | 185.3 -13.9856 1855 | 185.4 -14.9988 1856 | 185.5 -15.9399 1857 | 185.6 -16.8057 1858 | 185.7 -17.5758 1859 | 185.8 -18.28 1860 | 185.9 -18.9188 1861 | 186 -19.4751 1862 | 186.1 -19.9407 1863 | 186.2 -20.3415 1864 | 186.3 -20.6792 1865 | 186.4 -20.9252 1866 | 186.5 -21.1116 1867 | 186.6 -21.2444 1868 | 186.7 -21.3117 1869 | 186.8 -21.3061 1870 | 186.9 -21.2492 1871 | 187 -21.1408 1872 | 187.1 -20.9543 1873 | 187.2 -20.7227 1874 | 187.3 -20.4521 1875 | 187.4 -20.1384 1876 | 187.5 -19.7857 1877 | 187.6 -19.4107 1878 | 187.7 -19.0159 1879 | 187.8 -18.6004 1880 | 187.9 -18.1774 1881 | 188 -17.7509 1882 | 188.1 -17.3246 1883 | 188.2 -16.9089 1884 | 188.3 -16.5054 1885 | 188.4 -16.1155 1886 | 188.5 -15.7454 1887 | 188.6 -15.3906 1888 | 188.7 -15.0475 1889 | 188.8 -14.716 1890 | 188.9 -14.3997 1891 | 189 -14.0919 1892 | 189.1 -13.792 1893 | 189.2 -13.5019 1894 | 189.3 -13.2195 1895 | 189.4 -12.9424 1896 | 189.5 -12.6704 1897 | 189.6 -12.4054 1898 | 189.7 -12.1453 1899 | 189.8 -11.8905 1900 | 189.9 -11.6436 1901 | 190 -11.406 1902 | 190.1 -11.1762 1903 | 190.2 -10.9543 1904 | 190.3 -10.7475 1905 | 190.4 -10.5511 1906 | 190.5 -10.3654 1907 | 190.6 -10.1946 1908 | 190.7 -10.0409 1909 | 190.8 -9.90073 1910 | 190.9 -9.77442 1911 | 191 -9.67327 1912 | 191.1 -9.58895 1913 | 191.2 -9.52172 1914 | 191.3 -9.4784 1915 | 191.4 -9.46098 1916 | 191.5 -9.46258 1917 | 191.6 -9.48309 1918 | 191.7 -9.53402 1919 | 191.8 -9.60267 1920 | 191.9 -9.68888 1921 | 192 -9.79832 1922 | 192.1 -9.93053 1923 | 192.2 -10.0798 1924 | 192.3 -10.2464 1925 | 192.4 -10.4414 1926 | 192.5 -10.6539 1927 | 192.6 -10.8841 1928 | 192.7 -11.138 1929 | 192.8 -11.4152 1930 | 192.9 -11.7097 1931 | 193 -12.0213 1932 | 193.1 -12.36 1933 | 193.2 -12.7153 1934 | 193.3 -13.0868 1935 | 193.4 -13.4784 1936 | 193.5 -13.8915 1937 | 193.6 -14.3202 1938 | 193.7 -14.7642 1939 | 193.8 -15.2315 1940 | 193.9 -15.7155 1941 | 194 -16.2146 1942 | 194.1 -16.7307 1943 | 194.2 -17.2692 1944 | 194.3 -17.8227 1945 | 194.4 -18.3913 1946 | 194.5 -18.9801 1947 | 194.6 -19.5884 1948 | 194.7 -20.212 1949 | 194.8 -20.8512 1950 | 194.9 -21.5132 1951 | 195 -22.1917 1952 | 195.1 -22.8853 1953 | 195.2 -23.5946 1954 | 195.3 -24.3263 1955 | 195.4 -25.0727 1956 | 195.5 -25.8338 1957 | 195.6 -26.6118 1958 | 195.7 -27.4104 1959 | 195.8 -28.2238 1960 | 195.9 -29.0521 1961 | 196 -29.8983 1962 | 196.1 -30.7646 1963 | 196.2 -31.6462 1964 | 196.3 -32.5433 1965 | 196.4 -33.4595 1966 | 196.5 -34.3965 1967 | 196.6 -35.3499 1968 | 196.7 -36.3192 1969 | 196.8 -37.3055 1970 | 196.9 -38.3047 1971 | 197 -39.3101 1972 | 197.1 -40.3191 1973 | 197.2 -41.329 1974 | 197.3 -42.3335 1975 | 197.4 -43.3299 1976 | 197.5 -44.3158 1977 | 197.6 -45.2878 1978 | 197.7 -46.2345 1979 | 197.8 -47.1591 1980 | 197.9 -48.0593 1981 | 198 -48.9314 1982 | 198.1 -49.7584 1983 | 198.2 -50.5544 1984 | 198.3 -51.3205 1985 | 198.4 -52.0542 1986 | 198.5 -52.7498 1987 | 198.6 -53.4197 1988 | 198.7 -54.0646 1989 | 198.8 -54.6779 1990 | 198.9 -55.2602 1991 | 199 -55.8188 1992 | 199.1 -56.3539 1993 | 199.2 -56.8541 1994 | 199.3 -57.3307 1995 | 199.4 -57.7867 1996 | 199.5 -58.2203 1997 | 199.6 -58.6268 1998 | 199.7 -59.0165 1999 | 199.8 -59.3899 2000 | 199.9 -59.7419 2001 | 200 -60.077 2002 | 200.1 -60.399 2003 | 200.2 -60.7078 2004 | 200.3 -60.9989 2005 | 200.4 -61.2799 2006 | 200.5 -61.5513 2007 | 200.6 -61.8106 2008 | 200.7 -62.0602 2009 | 200.8 -62.3029 2010 | 200.9 -62.5389 2011 | 201 -62.7662 2012 | 201.1 -62.9891 2013 | 201.2 -63.2081 2014 | 201.3 -63.4227 2015 | 201.4 -63.6345 2016 | 201.5 -63.8443 2017 | 201.6 -64.0523 2018 | 201.7 -64.2573 2019 | 201.8 -64.4603 2020 | 201.9 -64.6613 2021 | 202 -64.8593 2022 | 202.1 -65.0544 2023 | 202.2 -65.2472 2024 | 202.3 -65.4375 2025 | 202.4 -65.6236 2026 | 202.5 -65.807 2027 | 202.6 -65.9876 2028 | 202.7 -66.1643 2029 | 202.8 -66.337 2030 | 202.9 -66.5066 2031 | 203 -66.6728 2032 | 203.1 -66.8334 2033 | 203.2 -66.9904 2034 | 203.3 -67.1436 2035 | 203.4 -67.2917 2036 | 203.5 -67.4344 2037 | 203.6 -67.5729 2038 | 203.7 -67.7071 2039 | 203.8 -67.8338 2040 | 203.9 -67.9558 2041 | 204 -68.073 2042 | 204.1 -68.1835 2043 | 204.2 -68.2871 2044 | 204.3 -68.3854 2045 | 204.4 -68.4782 2046 | 204.5 -68.5614 2047 | 204.6 -68.6386 2048 | 204.7 -68.7096 2049 | 204.8 -68.772 2050 | 204.9 -68.8257 2051 | 205 -68.8723 2052 | 205.1 -68.9118 2053 | 205.2 -68.939 2054 | 205.3 -68.9583 2055 | 205.4 -68.9697 2056 | 205.5 -68.9697 2057 | 205.6 -68.9583 2058 | 205.7 -68.938 2059 | 205.8 -68.9081 2060 | 205.9 -68.8638 2061 | 206 -68.8111 2062 | 206.1 -68.7501 2063 | 206.2 -68.6783 2064 | 206.3 -68.5968 2065 | 206.4 -68.5081 2066 | 206.5 -68.4121 2067 | 206.6 -68.3053 2068 | 206.7 -68.1924 2069 | 206.8 -68.0732 2070 | 206.9 -67.946 2071 | 207 -67.8117 2072 | 207.1 -67.672 2073 | 207.2 -67.527 2074 | 207.3 -67.374 2075 | 207.4 -67.2166 2076 | 207.5 -67.0546 2077 | 207.6 -66.8867 2078 | 207.7 -66.7137 2079 | 207.8 -66.5369 2080 | 207.9 -66.3562 2081 | 208 -66.1697 2082 | 208.1 -65.9795 2083 | 208.2 -65.7858 2084 | 208.3 -65.5869 2085 | 208.4 -65.3833 2086 | 208.5 -65.1759 2087 | 208.6 -64.9645 2088 | 208.7 -64.7468 2089 | 208.8 -64.5251 2090 | 208.9 -64.2994 2091 | 209 -64.0681 2092 | 209.1 -63.8313 2093 | 209.2 -63.5902 2094 | 209.3 -63.3447 2095 | 209.4 -63.0917 2096 | 209.5 -62.8341 2097 | 209.6 -62.5718 2098 | 209.7 -62.303 2099 | 209.8 -62.0275 2100 | 209.9 -61.7468 2101 | 210 -65.3277 2102 | 210.1 -64.9724 2103 | 210.2 -64.6119 2104 | 210.3 -64.2465 2105 | 210.4 -63.8742 2106 | 210.5 -63.4998 2107 | 210.6 -63.1217 2108 | 210.7 -62.7418 2109 | 210.8 -62.3609 2110 | 210.9 -61.9798 2111 | 211 -61.5995 2112 | 211.1 -61.2204 2113 | 211.2 -60.8439 2114 | 211.3 -60.4672 2115 | 211.4 -60.0872 2116 | 211.5 -59.6982 2117 | 211.6 -59.303 2118 | 211.7 -58.8814 2119 | 211.8 -58.4446 2120 | 211.9 -57.9827 2121 | 212 -57.4808 2122 | 212.1 -56.9574 2123 | 212.2 -56.3874 2124 | 212.3 -55.7894 2125 | 212.4 -55.1695 2126 | 212.5 -54.5066 2127 | 212.6 -53.8274 2128 | 212.7 -53.1244 2129 | 212.8 -52.3942 2130 | 212.9 -51.6509 2131 | 213 -50.8857 2132 | 213.1 -50.105 2133 | 213.2 -49.3146 2134 | 213.3 -48.507 2135 | 213.4 -47.6922 2136 | 213.5 -46.8707 2137 | 213.6 -46.0405 2138 | 213.7 -45.2077 2139 | 213.8 -44.3718 2140 | 213.9 -43.5317 2141 | 214 -42.6891 2142 | 214.1 -41.842 2143 | 214.2 -40.9899 2144 | 214.3 -40.1344 2145 | 214.4 -39.2718 2146 | 214.5 -38.4036 2147 | 214.6 -37.5311 2148 | 214.7 -36.6481 2149 | 214.8 -35.7594 2150 | 214.9 -34.8644 2151 | 215 -33.9568 2152 | 215.1 -33.0427 2153 | 215.2 -32.1192 2154 | 215.3 -31.1821 2155 | 215.4 -30.237 2156 | 215.5 -29.279 2157 | 215.6 -28.3064 2158 | 215.7 -27.325 2159 | 215.8 -26.3295 2160 | 215.9 -25.3246 2161 | 216 -24.3138 2162 | 216.1 -23.2943 2163 | 216.2 -22.2712 2164 | 216.3 -21.2455 2165 | 216.4 -20.2178 2166 | 216.5 -19.191 2167 | 216.6 -18.165 2168 | 216.7 -17.1444 2169 | 216.8 -16.1283 2170 | 216.9 -15.1171 2171 | 217 -14.1186 2172 | 217.1 -13.1276 2173 | 217.2 -12.1463 2174 | 217.3 -11.1807 2175 | 217.4 -10.2236 2176 | 217.5 -9.27901 2177 | 217.6 -8.35024 2178 | 217.7 -7.43079 2179 | 217.8 -6.5274 2180 | 217.9 -5.63951 2181 | 218 -4.7618 2182 | 218.1 -3.90475 2183 | 218.2 -3.06229 2184 | 218.3 -2.23095 2185 | 218.4 -1.42623 2186 | 218.5 -0.634333 2187 | 218.6 0.141696 2188 | 218.7 0.890928 2189 | 218.8 1.62655 2190 | 218.9 2.33951 2191 | 219 3.02888 2192 | 219.1 3.70535 2193 | 219.2 4.35804 2194 | 219.3 4.99821 2195 | 219.4 5.62838 2196 | 219.5 6.24156 2197 | 219.6 6.84932 2198 | 219.7 7.44904 2199 | 219.8 8.04225 2200 | 219.9 8.63292 2201 | 220 9.22043 2202 | 220.1 9.80823 2203 | 220.2 10.3962 2204 | 220.3 10.9879 2205 | 220.4 11.5784 2206 | 220.5 12.1672 2207 | 220.6 12.7449 2208 | 220.7 13.3149 2209 | 220.8 13.8651 2210 | 220.9 14.3933 2211 | 221 14.9071 2212 | 221.1 15.3728 2213 | 221.2 15.8145 2214 | 221.3 16.2195 2215 | 221.4 16.5704 2216 | 221.5 16.8958 2217 | 221.6 17.1687 2218 | 221.7 17.411 2219 | 221.8 17.6281 2220 | 221.9 17.7999 2221 | 222 17.9552 2222 | 222.1 18.0804 2223 | 222.2 18.1807 2224 | 222.3 18.2674 2225 | 222.4 18.3232 2226 | 222.5 18.368 2227 | 222.6 18.3964 2228 | 222.7 18.407 2229 | 222.8 18.4093 2230 | 222.9 18.3922 2231 | 223 18.3635 2232 | 223.1 18.3232 2233 | 223.2 18.2615 2234 | 223.3 18.1906 2235 | 223.4 18.1002 2236 | 223.5 17.9933 2237 | 223.6 17.8759 2238 | 223.7 17.7302 2239 | 223.8 17.5733 2240 | 223.9 17.3968 2241 | 224 17.1967 2242 | 224.1 16.9842 2243 | 224.2 16.7409 2244 | 224.3 16.4799 2245 | 224.4 16.1998 2246 | 224.5 15.8858 2247 | 224.6 15.5571 2248 | 224.7 15.1998 2249 | 224.8 14.8239 2250 | 224.9 14.4368 2251 | 225 14.0294 2252 | 225.1 13.6172 2253 | 225.2 13.198 2254 | 225.3 12.7763 2255 | 225.4 12.355 2256 | 225.5 11.9384 2257 | 225.6 11.5298 2258 | 225.7 11.1276 2259 | 225.8 10.7474 2260 | 225.9 10.3792 2261 | 226 10.0324 2262 | 226.1 9.71491 2263 | 226.2 9.41307 2264 | 226.3 9.14835 2265 | 226.4 8.90073 2266 | 226.5 8.6716 2267 | 226.6 8.46817 2268 | 226.7 8.27475 2269 | 226.8 8.1002 2270 | 226.9 7.93741 2271 | 227 7.78226 2272 | 227.1 7.64115 2273 | 227.2 7.50363 2274 | 227.3 7.3722 2275 | 227.4 7.24403 2276 | 227.5 7.11707 2277 | 227.6 6.98982 2278 | 227.7 6.86015 2279 | 227.8 6.72771 2280 | 227.9 6.58685 2281 | 228 6.44119 2282 | 228.1 6.2834 2283 | 228.2 6.11365 2284 | 228.3 5.93513 2285 | 228.4 5.73134 2286 | 228.5 5.51551 2287 | 228.6 5.2774 2288 | 228.7 5.01122 2289 | 228.8 4.72924 2290 | 228.9 4.40361 2291 | 229 4.05527 2292 | 229.1 3.68067 2293 | 229.2 3.26821 2294 | 229.3 2.83944 2295 | 229.4 2.3801 2296 | 229.5 1.89799 2297 | 229.6 1.40174 2298 | 229.7 0.874176 2299 | 229.8 0.334543 2300 | 229.9 -0.221484 2301 | 230 -0.798071 2302 | 230.1 -1.38394 2303 | 230.2 -1.98649 2304 | 230.3 -2.60064 2305 | 230.4 -3.22214 2306 | 230.5 -3.85829 2307 | 230.6 -4.49966 2308 | 230.7 -5.14748 2309 | 230.8 -5.80183 2310 | 230.9 -6.45823 2311 | 231 -7.11723 2312 | 231.1 -7.77589 2313 | 231.2 -8.43396 2314 | 231.3 -9.08793 2315 | 231.4 -9.73752 2316 | 231.5 -10.3829 2317 | 231.6 -11.0165 2318 | 231.7 -11.6435 2319 | 231.8 -12.2593 2320 | 231.9 -12.8594 2321 | 232 -13.4502 2322 | 232.1 -14.0193 2323 | 232.2 -14.5721 2324 | 232.3 -15.1117 2325 | 232.4 -15.6231 2326 | 232.5 -16.1238 2327 | 232.6 -16.6074 2328 | 232.7 -17.0732 2329 | 232.8 -17.5301 2330 | 232.9 -17.9688 2331 | 233 -18.3977 2332 | 233.1 -18.8178 2333 | 233.2 -19.2231 2334 | 233.3 -19.6229 2335 | 233.4 -20.0131 2336 | 233.5 -20.3953 2337 | 233.6 -20.7733 2338 | 233.7 -21.1425 2339 | 233.8 -21.5084 2340 | 233.9 -21.8704 2341 | 234 -22.228 2342 | 234.1 -22.5841 2343 | 234.2 -22.9378 2344 | 234.3 -23.2899 2345 | 234.4 -23.641 2346 | 234.5 -23.9886 2347 | 234.6 -24.3345 2348 | 234.7 -24.6773 2349 | 234.8 -25.0158 2350 | 234.9 -25.3519 2351 | 235 -25.6818 2352 | 235.1 -26.0075 2353 | 235.2 -26.3292 2354 | 235.3 -26.6424 2355 | 235.4 -26.9515 2356 | 235.5 -27.2529 2357 | 235.6 -27.5462 2358 | 235.7 -27.8348 2359 | 235.8 -28.1103 2360 | 235.9 -28.3795 2361 | 236 -28.6399 2362 | 236.1 -28.8871 2363 | 236.2 -29.1281 2364 | 236.3 -29.3555 2365 | 236.4 -29.575 2366 | 236.5 -29.788 2367 | 236.6 -29.9897 2368 | 236.7 -30.1875 2369 | 236.8 -30.378 2370 | 236.9 -30.5629 2371 | 237 -30.7449 2372 | 237.1 -30.9208 2373 | 237.2 -31.0949 2374 | 237.3 -31.2663 2375 | 237.4 -31.4358 2376 | 237.5 -31.6046 2377 | 237.6 -31.7729 2378 | 237.7 -31.9418 2379 | 237.8 -32.1113 2380 | 237.9 -32.2835 2381 | 238 -32.4575 2382 | 238.1 -32.6349 2383 | 238.2 -32.8168 2384 | 238.3 -33.0013 2385 | 238.4 -33.1917 2386 | 238.5 -33.3838 2387 | 238.6 -33.5783 2388 | 238.7 -33.7742 2389 | 238.8 -33.9705 2390 | 238.9 -34.1664 2391 | 239 -34.3608 2392 | 239.1 -34.5541 2393 | 239.2 -34.7428 2394 | 239.3 -34.9292 2395 | 239.4 -35.1103 2396 | 239.5 -35.2853 2397 | 239.6 -35.4567 2398 | 239.7 -35.6165 2399 | 239.8 -35.7707 2400 | 239.9 -35.9164 2401 | 240 -36.0492 2402 | 240.1 -36.1754 2403 | 240.2 -36.2853 2404 | 240.3 -36.3854 2405 | 240.4 -36.4766 2406 | 240.5 -36.5558 2407 | 240.6 -36.6315 2408 | 240.7 -36.7016 2409 | 240.8 -36.7706 2410 | 240.9 -36.8388 2411 | 241 -36.9108 2412 | 241.1 -36.9864 2413 | 241.2 -37.068 2414 | 241.3 -37.161 2415 | 241.4 -37.2603 2416 | 241.5 -37.3785 2417 | 241.6 -37.51 2418 | 241.7 -37.6557 2419 | 241.8 -37.8301 2420 | 241.9 -38.0185 2421 | 242 -38.237 2422 | 242.1 -38.4785 2423 | 242.2 -38.7346 2424 | 242.3 -39.0239 2425 | 242.4 -39.3245 2426 | 242.5 -39.6436 2427 | 242.6 -39.982 2428 | 242.7 -40.3296 2429 | 242.8 -40.6962 2430 | 242.9 -41.0722 2431 | 243 -41.4571 2432 | 243.1 -41.8552 2433 | 243.2 -42.258 2434 | 243.3 -42.6689 2435 | 243.4 -43.0851 2436 | 243.5 -43.5042 2437 | 243.6 -43.9277 2438 | 243.7 -44.3523 2439 | 243.8 -44.7782 2440 | 243.9 -45.2072 2441 | 244 -45.6379 2442 | 244.1 -46.0728 2443 | 244.2 -46.5122 2444 | 244.3 -46.9544 2445 | 244.4 -47.4057 2446 | 244.5 -47.8613 2447 | 244.6 -48.3237 2448 | 244.7 -48.7963 2449 | 244.8 -49.2743 2450 | 244.9 -49.7648 2451 | 245 -50.265 2452 | 245.1 -50.7727 2453 | 245.2 -51.2992 2454 | 245.3 -51.8342 2455 | 245.4 -52.383 2456 | 245.5 -52.9503 2457 | 245.6 -53.5278 2458 | 245.7 -54.1274 2459 | 245.8 -54.7437 2460 | 245.9 -55.3721 2461 | 246 -56.0283 2462 | 246.1 -56.6952 2463 | 246.2 -57.3777 2464 | 246.3 -58.08 2465 | 246.4 -58.792 2466 | 246.5 -59.521 2467 | 246.6 -60.2638 2468 | 246.7 -61.0154 2469 | 246.8 -61.7845 2470 | 246.9 -62.5628 2471 | 247 -63.3497 2472 | 247.1 -64.1523 2473 | 247.2 -64.9615 2474 | 247.3 -65.7801 2475 | 247.4 -66.6102 2476 | 247.5 -67.4461 2477 | 247.6 -68.2917 2478 | 247.7 -69.1444 2479 | 247.8 -70.0012 2480 | 247.9 -70.8634 2481 | 248 -71.7268 2482 | 248.1 -72.591 2483 | 248.2 -73.4531 2484 | 248.3 -74.3123 2485 | 248.4 -75.168 2486 | 248.5 -76.0142 2487 | 248.6 -76.8544 2488 | 248.7 -77.6845 2489 | 248.8 -78.5 2490 | 248.9 -79.3063 2491 | 249 -80.0938 2492 | 249.1 -80.8637 2493 | 249.2 -81.6214 2494 | 249.3 -82.3488 2495 | 249.4 -83.0584 2496 | 249.5 -83.7492 2497 | 249.6 -84.4026 2498 | 249.7 -85.0375 2499 | 249.8 -85.6414 2500 | 249.9 -86.2111 2501 | 250 -86.7622 2502 | 250.1 -87.2744 2503 | 250.2 -87.7637 2504 | 250.3 -88.233 2505 | 250.4 -88.6639 2506 | 250.5 -89.0792 2507 | 250.6 -89.4671 2508 | 250.7 -89.8278 2509 | 250.8 -90.1738 2510 | 250.9 -90.485 2511 | 251 -90.7791 2512 | 251.1 -91.0532 2513 | 251.2 -91.2968 2514 | 251.3 -91.5268 2515 | 251.4 -91.7281 2516 | 251.5 -91.9086 2517 | 251.6 -92.0738 2518 | 251.7 -92.2049 2519 | 251.8 -92.3224 2520 | 251.9 -92.414 2521 | 252 -92.4765 2522 | 252.1 -92.523 2523 | 252.2 -92.5209 2524 | 252.3 -92.4952 2525 | 252.4 -92.4346 2526 | 252.5 -92.3218 2527 | 252.6 -92.1826 2528 | 252.7 -91.977 2529 | 252.8 -91.7254 2530 | 252.9 -91.4312 2531 | 253 -91.0459 2532 | 253.1 -90.6195 2533 | 253.2 -90.1174 2534 | 253.3 -89.5467 2535 | 253.4 -88.9362 2536 | 253.5 -88.2422 2537 | 253.6 -87.5048 2538 | 253.7 -86.7256 2539 | 253.8 -85.8723 2540 | 253.9 -84.9867 2541 | 254 -84.0551 2542 | 254.1 -83.0673 2543 | 254.2 -82.0494 2544 | 254.3 -80.9853 2545 | 254.4 -79.8763 2546 | 254.5 -78.739 2547 | 254.6 -77.5578 2548 | 254.7 -76.3348 2549 | 254.8 -75.0823 2550 | 254.9 -73.7853 2551 | 255 -72.442 2552 | 255.1 -71.0657 2553 | 255.2 -69.6459 2554 | 255.3 -68.1706 2555 | 255.4 -66.6575 2556 | 255.5 -65.1049 2557 | 255.6 -63.4814 2558 | 255.7 -61.8136 2559 | 255.8 -60.0999 2560 | 255.9 -58.3209 2561 | 256 -56.4744 2562 | --------------------------------------------------------------------------------