├── .gitignore
├── .gitattributes
├── ReadmeFiles
├── MeanUpscaling.png
├── ModeUpscaling.png
├── Realizations.png
└── MeanModeUpscaling.png
├── Strata
├── removeErodedStrata.m
├── erodeStrata.m
├── upscaleStrataRandom.m
├── upscaleStrata.m
├── upscaleStrataUniform.m
├── finalizeStrata.m
├── upscaleStrataMode.m
├── analyzeStrataThickness.m
├── interpDepositionalRates.m
├── upscaleStrataMean.m
├── mergeStrata.m
├── upscaleStrataRandomMode.m
├── upscaleStrataUniformMode.m
├── upscaleStrataRandomMean.m
├── upscaleStrataUniformMean.m
├── uniformThicknessStrata.m
├── simulateStrata.m
└── plotStrata.m
├── Markov Chain
├── isMarkovMatrix.m
├── interpMarkovMatrix.m
├── sampleMarkovChain.m
├── graphMarkovMatrix.m
└── estimateMarkovMatrix.m
├── LICENSE
├── Sea Level Curves
├── haqSeaLevel.m
├── Haq87_HighResolution_Filtered.dat
├── License.txt
├── Haq et al., 1987.csv
├── Haq87_HighResolution.dat
└── Haq87_Longterm_Normalized.dat
├── README.md
└── main.m
/.gitignore:
--------------------------------------------------------------------------------
1 | *.asv
--------------------------------------------------------------------------------
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
--------------------------------------------------------------------------------
/ReadmeFiles/MeanUpscaling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/MeanUpscaling.png
--------------------------------------------------------------------------------
/ReadmeFiles/ModeUpscaling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/ModeUpscaling.png
--------------------------------------------------------------------------------
/ReadmeFiles/Realizations.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/Realizations.png
--------------------------------------------------------------------------------
/ReadmeFiles/MeanModeUpscaling.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MosGeo/Strata/HEAD/ReadmeFiles/MeanModeUpscaling.png
--------------------------------------------------------------------------------
/Strata/removeErodedStrata.m:
--------------------------------------------------------------------------------
1 | function strata = removeErodedStrata(strata)
2 | %% REMOVEERODEDSTRATA Remove eroded layers
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Main
10 |
11 | erodedlayersInd = strata.thickness <=0;
12 | strata(erodedlayersInd,:)=[];
13 |
14 | end
--------------------------------------------------------------------------------
/Markov Chain/isMarkovMatrix.m:
--------------------------------------------------------------------------------
1 | function result = isMarkovMatrix(markovMatrix)
2 | %% ISMARKOVMATRIX Check if matrix is a valid Markov transition matrix
3 | %
4 | % markovMatrix: Markov chain transition matrix
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Main
10 |
11 | % Intialize input
12 | result = true;
13 |
14 | % Check if the matrix is valid
15 | if ~ismatrix(markovMatrix); result = false; end
16 | if size(markovMatrix,1) ~= size(markovMatrix,2); result = false; end
17 | if any(sum(markovMatrix,2)-1>=.001); result = false; end
18 |
19 | end
--------------------------------------------------------------------------------
/Strata/erodeStrata.m:
--------------------------------------------------------------------------------
1 | function strata = erodeStrata(strata)
2 | %% ERODESTRATA Calculates the erosion done by the erosion events
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Main
10 |
11 | thickness = strata.thickness;
12 |
13 | erosionLayers = find([0; thickness(2:end)]<0);
14 | while(any(erosionLayers))
15 |
16 | erosionInd = erosionLayers;
17 | erodedInd = erosionInd-1;
18 | erosionAmmount = thickness(erosionInd);
19 |
20 | thickness(erodedInd) = thickness(erodedInd)+ erosionAmmount;
21 | thickness(erosionInd) = thickness(erosionInd) - erosionAmmount;
22 |
23 | erosionLayers = find([0; thickness(2:end)]<0);
24 | end
25 |
26 | strata.thickness = thickness;
27 |
28 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrataRandom.m:
--------------------------------------------------------------------------------
1 | function strata = upscaleStrataRandom(strata, nIntervals, effectiveLithoType, isAutoUniform)
2 | %% UPSCALESTRATA Upscale classificaiton
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('nIntervals', 'var'); nIntervals = 1; end
13 | if ~exist('effectiveLithoType', 'var'); effectiveLithoType = 'Mode'; end
14 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
15 |
16 | % Assertions
17 | assert(exist('strata', 'var')==true, 'strata must be provided');
18 | assert(ischar(effectiveLithoType) && ismember(lower(effectiveLithoType), {'mode', 'mean'}), 'type must be mode or mean');
19 |
20 | %% Main
21 |
22 | % Simple moving mean/mode upscaling
23 | switch(lower(effectiveLithoType))
24 | case 'mode'
25 | strata = upscaleStrataRandomMode(strata, nIntervals, isAutoUniform);
26 | case 'mean'
27 | strata = upscaleStrataRandomMean(strata, nIntervals, isAutoUniform);
28 | end
29 |
30 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrata.m:
--------------------------------------------------------------------------------
1 | function strata = upscaleStrata(strata, scale, effectiveLithoType, isAutoUniform)
2 | %% UPSCALESTRATA Upscale classificaiton
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('scale', 'var'); scale = 1; end
13 | if ~exist('effectiveLithoType', 'var'); effectiveLithoType = 'Mode'; end
14 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
15 |
16 | % Assertions
17 | assert(exist('strata', 'var')==true, 'strata must be provided');
18 | assert(ischar(effectiveLithoType) && ismember(lower(effectiveLithoType), {'mode', 'mean'}), 'type must be mode or mean');
19 |
20 | %% Main
21 |
22 | % Simple moving mean/mode upscaling
23 | smoothingInterval = 2*scale +1;
24 | switch(lower(effectiveLithoType))
25 | case 'mode'
26 | strata = upscaleStrataMode(strata, smoothingInterval, isAutoUniform);
27 | case 'mean'
28 | strata = upscaleStrataMean(strata, smoothingInterval, isAutoUniform);
29 | end
30 |
31 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrataUniform.m:
--------------------------------------------------------------------------------
1 | function strata = upscaleStrataUniform(strata, scale, effectiveLithoType, isAutoUniform)
2 | %% UPSCALESTRATA Upscale classificaiton
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('scale', 'var'); scale = 1; end
13 | if ~exist('effectiveLithoType', 'var'); effectiveLithoType = 'Mode'; end
14 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
15 |
16 | % Assertions
17 | assert(exist('strata', 'var')==true, 'strata must be provided');
18 | assert(ischar(effectiveLithoType) && ismember(lower(effectiveLithoType), {'mode', 'mean'}), 'type must be mode or mean');
19 |
20 | %% Main
21 |
22 | % Simple moving mean/mode upscaling
23 | smoothingInterval = 2*scale +1;
24 | switch(lower(effectiveLithoType))
25 | case 'mode'
26 | strata = upscaleStrataUniformMode(strata, smoothingInterval, isAutoUniform);
27 | case 'mean'
28 | strata = upscaleStrataUniformMean(strata, smoothingInterval, isAutoUniform);
29 | end
30 |
31 | end
--------------------------------------------------------------------------------
/Strata/finalizeStrata.m:
--------------------------------------------------------------------------------
1 | function strata = finalizeStrata(strata, isMerge, isErode, isRemoveErosionLayers)
2 | %% FINALIZESTRATA Finalize the stratigraphic section
3 | %
4 | % Mustafa Al Ibrahim @ 2018
5 | % Mustafa.Geoscientist@outlook.com
6 |
7 | %% Preprocessing
8 |
9 | % Defaults
10 | if ~exist('isMerge', 'var'); isMerge = true; end
11 | if ~exist('isErode', 'var'); isErode = true; end
12 | if ~exist('isRemoveErosionLayers', 'var'); isRemoveErosionLayers = false; end
13 |
14 | % Assertions
15 | assert(isa(isMerge, 'logical') && isscalar(isMerge), 'isMerge must be a logical scalar');
16 | assert(isa(isErode, 'logical') && isscalar(isErode), 'isErode must be a logical scalar');
17 | assert(isa(isRemoveErosionLayers, 'logical') && isscalar(isRemoveErosionLayers), 'isMerge must be a logical scalar');
18 |
19 | %% Main
20 |
21 | % Perform erosion
22 | if isErode == true
23 | strata = erodeStrata(strata);
24 | end
25 |
26 | % Remove erosion layers
27 | if isRemoveErosionLayers==true
28 | strata = removeErodedStrata(strata);
29 | end
30 |
31 | % Merge layers
32 | if isMerge == true
33 | strata = mergeStrata(strata);
34 | end
35 |
36 |
37 | end
38 |
39 |
40 |
41 |
42 |
43 |
--------------------------------------------------------------------------------
/Strata/upscaleStrataMode.m:
--------------------------------------------------------------------------------
1 | function [strata] = upscaleStrataMode(strata, smoothingInterval, isAutoUniform)
2 | %% UPSCALESTRATA Upscale classificaiton
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('smoothingInterval', 'var'); smoothingInterval = 1; end
13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
14 |
15 | % Assertions
16 | assert(exist('strata', 'var')==true, 'strata must be provided');
17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform');
18 |
19 | %% Main
20 |
21 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform
22 | strata = uniformThicknessStrata(strata);
23 | end
24 |
25 | classification = strata.lithology;
26 |
27 | padSize = (smoothingInterval - 1) / 2;
28 |
29 | B = padarray(classification,padSize,'replicate');
30 | for j = 1+padSize:padSize+numel(classification)
31 | classification(j-padSize) = mode(B(j-padSize: j+padSize));
32 | end
33 |
34 | strata.lithology = classification;
35 |
36 | end
--------------------------------------------------------------------------------
/Markov Chain/interpMarkovMatrix.m:
--------------------------------------------------------------------------------
1 | function interploatedMarkovMatrix = interpMarkovMatrix(markovMatrices, newPosition, matricesPosition)
2 | %% ISMARKOVMATRIX Check if matrix is a valid Markov transition matrix
3 | %
4 | % markovMatrix: Markov chain transition matrix
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Parameters
12 | if iscell(markovMatrices); markovMatrices = cell2mat(permute(markovMatrices,[1 3 2])); end
13 | nMatrices = size(markovMatrices,3);
14 | nStates = size(markovMatrices(:,:,1),1);
15 |
16 | % Defaults
17 | if ~exist('matricesPosition', 'var'); matricesPosition = (0:(nMatrices-1))/(nMatrices-1); end
18 |
19 | % Assertions
20 |
21 |
22 | %% Main
23 |
24 | % Special case, no need for interpolation
25 | if nMatrices == 1
26 | interploatedMarkovMatrix = markovMatrices;
27 | return
28 | end
29 |
30 | % Permute to get interpolated dimension first:
31 | markovMatrices = permute(markovMatrices,[3 1 2]);
32 |
33 | % Interpolate and recover shape
34 | interploatedMarkovMatrix = interp1(matricesPosition, markovMatrices, newPosition);
35 | interploatedMarkovMatrix = reshape(interploatedMarkovMatrix, nStates,nStates,1);
36 |
37 | end
--------------------------------------------------------------------------------
/Strata/analyzeStrataThickness.m:
--------------------------------------------------------------------------------
1 | function [topDepth, baseDepth, totalThickness] = analyzeStrataThickness(strata, isKeepErosion, oldLayerPosition)
2 | %% ANALYZESTRATATHICKNESS Calculates the analyze
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | % isPlotErostion: Plot erosional surfaces in the stratigraphic section
6 | %
7 | % Mustafa Al Ibrahim @ 2018
8 | % Mustafa.Geoscientist@outlook.com
9 |
10 |
11 | %% Preprocessing
12 | if ~exist('isKeepErosion' ,'var'); isKeepErosion = false; end
13 | if ~exist('oldLayerPosition' ,'var'); oldLayerPosition = 'top'; end
14 |
15 | %% Main
16 |
17 | thickness = strata.thickness;
18 | if isKeepErosion; thickness = abs(thickness); end
19 |
20 | if strcmp(oldLayerPosition, 'top')
21 | totalThickness = cumsum(thickness);
22 | topDepth = max(totalThickness)-totalThickness;
23 | baseDepth = [max(totalThickness); topDepth(1:end-1)];
24 | elseif strcmp(oldLayerPosition, 'bottom')
25 | thickness = flipud(thickness);
26 | totalThickness = cumsum(thickness);
27 | topDepth = flipud(max(totalThickness)-totalThickness);
28 | baseDepth = flipud([max(totalThickness); topDepth(1:end-1)]);
29 | totalThickness = flipud(totalThickness);
30 | end
31 |
32 | end
--------------------------------------------------------------------------------
/Strata/interpDepositionalRates.m:
--------------------------------------------------------------------------------
1 | function interploatedDepositionRates = interpDepositionalRates(depositionalRates, newPosition, matricesPosition)
2 | %% ISMARKOVMATRIX Check if matrix is a valid Markov transition matrix
3 | %
4 | % depositionalRates: Depositional rates (cell array)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Parameters
12 | if iscell(depositionalRates); depositionalRates = cell2mat(permute(depositionalRates,[1 3 2])); end
13 | nVectors = size(depositionalRates,3);
14 | nStates = numel(depositionalRates(:,:,1));
15 |
16 |
17 | % Defaults
18 | if ~exist('matricesPosition', 'var'); matricesPosition = (0:(nVectors-1))/(nVectors-1); end
19 |
20 | % Assertions
21 |
22 |
23 | %% Main
24 |
25 | % Special case, no need for interpolation
26 | if nVectors == 1
27 | interploatedDepositionRates = depositionalRates;
28 | return
29 | end
30 |
31 | % Permute to get interpolated dimension first:
32 | depositionalRates = permute(depositionalRates,[3 1 2]);
33 |
34 | % Interpolate and recover shape
35 | interploatedDepositionRates = interp1(matricesPosition, depositionalRates, newPosition);
36 | interploatedDepositionRates = reshape(interploatedDepositionRates, 1,nStates,1);
37 |
38 |
39 | end
--------------------------------------------------------------------------------
/Markov Chain/sampleMarkovChain.m:
--------------------------------------------------------------------------------
1 | function [newState, binaryNewState] = sampleMarkovChain(previousState, markovMatrix, nStep)
2 | %% SAMPLEMARKOVCHAIN Sample using a transition (Markov) matrix
3 | %
4 | % previousState: Previous state (can be a number or binary)
5 | % markovMatrix: Markov chain transition matrix
6 | %
7 | % Mustafa Al Ibrahim @ 2018
8 | % Mustafa.Geoscientist@outlook.com
9 |
10 | %% Preprocessing
11 |
12 | % Defaults
13 | if ~exist('nStep', 'var'); nStep = 1; end
14 |
15 | % Assertions
16 | assert(isMarkovMatrix(markovMatrix), 'markovMatrix must be valid');
17 | assert(all(size(previousState) == [1, size(markovMatrix,1)]) || (isscalar(previousState) && previousState<=size(markovMatrix,1)), 'previousState is not valid');
18 |
19 | % Parameters
20 | nStates = size(markovMatrix,1);
21 | if isscalar(previousState)
22 | binaryPreviousState = zeros(1,nStates);
23 | binaryPreviousState(previousState) = 1;
24 | else
25 | binaryPreviousState = previousState;
26 | end
27 |
28 | %% Main
29 |
30 | % Sample from transition matrix
31 | binaryPreviousState = binaryPreviousState * (markovMatrix^nStep);
32 | cdfVector = cumsum(binaryPreviousState);
33 | rndValue = rand();
34 | newState = find(rndValue <= cdfVector,1);
35 |
36 | % Convert to binary if needed
37 | binaryNewState = zeros(1,nStates);
38 | binaryNewState(newState) = 1;
39 |
40 |
41 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrataMean.m:
--------------------------------------------------------------------------------
1 | function [strata] = upscaleStrataMean(strata, smoothingInterval, isAutoUniform)
2 | %% UPSCALESTRATA Upscale classificaiton
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2018
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('smoothingInterval', 'var'); smoothingInterval = 1; end
13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
14 |
15 | % Assertions
16 | assert(exist('strata', 'var')==true, 'strata must be provided');
17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform');
18 |
19 | %% Main
20 |
21 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform
22 | strata = uniformThicknessStrata(strata);
23 | end
24 |
25 | classification = strata.lithology;
26 | nClasses = max(classification);
27 |
28 | padSize = (smoothingInterval - 1) / 2;
29 | B = padarray(classification,padSize,'replicate');
30 |
31 | meanMatrix = zeros(numel(classification), nClasses);
32 | for j = 1+padSize:padSize+numel(classification)
33 | currentClasses = B(j-padSize: j+padSize);
34 | meanMatrix(j-padSize,:) = histcounts(currentClasses, 1-.5:1:nClasses+.5)/smoothingInterval;
35 | end
36 |
37 | strata.lithology = meanMatrix;
38 |
39 | end
--------------------------------------------------------------------------------
/Strata/mergeStrata.m:
--------------------------------------------------------------------------------
1 | function strata = mergeStrata(strata)
2 | %% MERGESTRATA Merges consecutive strata into one interval
3 | %
4 | % Mustafa Al Ibrahim @ 2018
5 | % Mustafa.Geoscientist@outlook.com
6 |
7 | %% Preprocessing
8 |
9 | % Assertions
10 | assert(exist('strata', 'var')== true, 'strata must be provided');
11 |
12 | %% Main
13 |
14 | % Make sure lithology is a vector
15 | if (~isvector(strata.lithology)); return; end
16 |
17 | % Parameters
18 | lithology = strata.lithology;
19 | thickness = strata.thickness;
20 | startTime = strata.startTime;
21 | endTime = strata.endTime;
22 | midSeaLevel = strata.midSeaLevel;
23 |
24 | % Merge deposits
25 | startInd = find(diff([nan; lithology]) ~= 0);
26 | endInd = find(diff([lithology; nan]) ~= 0);
27 |
28 | lithologyMerged = lithology(startInd);
29 | funSum = @(sInd, eInd) sum(thickness(sInd:eInd));
30 | thicknessMerged = arrayfun(funSum, startInd, endInd);
31 |
32 | startTimeMerged = startTime(startInd);
33 | endTimeMerged = endTime(endInd);
34 |
35 | funMean = @(sInd, eInd) sum(midSeaLevel(sInd:eInd).*thickness(sInd:eInd)/sum(thickness(sInd:eInd))) ;
36 | midSeaLevelMerged = arrayfun(funMean, startInd, endInd);
37 |
38 | % Build the new table
39 | strata = table(startTimeMerged, endTimeMerged, thicknessMerged, lithologyMerged, midSeaLevelMerged);
40 | strata.Properties.VariableNames = {'startTime', 'endTime', 'thickness', 'lithology', 'midSeaLevel'};
41 |
42 | end
--------------------------------------------------------------------------------
/Markov Chain/graphMarkovMatrix.m:
--------------------------------------------------------------------------------
1 | function [p1, p2] = graphMarkovMatrix(markovMatrix, stateNames)
2 | %% GRAPHMARKOVMATRIX Graph a Markov transitional matrix.
3 | %
4 | % Mustafa Al Ibrahim @ 2018
5 | % Mustafa.Geoscientist@outlook.com
6 |
7 | %% Preprocessing
8 |
9 | % Assertions
10 | assert(exist('markovMatrix', 'var')==true, 'markovMatrix must be provided');
11 | assert(isMarkovMatrix(markovMatrix), 'markovMatrix is not a valid transition matrix');
12 |
13 | % Parameters
14 | nStates = size(markovMatrix,1);
15 |
16 | % Defaults
17 | if ~exist('stateNames', 'var'); stateNames = cellfun(@num2str, num2cell(1:nStates), 'UniformOutput', false); end
18 |
19 | %% Main
20 |
21 | % Create column of edges and weights
22 | [y, x] = meshgrid(1:nStates, 1:nStates);
23 | edge1 = x(:);
24 | edge2 = y(:);
25 | weights = markovMatrix(:);
26 |
27 | % Create digraph
28 | G = digraph(edge1,edge2, weights);
29 |
30 | % Plotting
31 | figure('Color' , 'White', 'Units','inches', 'Position',[0 0 7 3],'PaperPositionMode','auto');
32 |
33 | subplot(1,2,1)
34 | p1 = heatmap(markovMatrix);
35 | p1.XDisplayLabels=stateNames;
36 | p1.YDisplayLabels=stateNames;
37 | p1.XLabel = 'To';
38 | p1.YLabel = 'From';
39 | p1.ColorbarVisible = 'off';
40 | p1.Position
41 | set(gca,'FontSize',12,'FontName','Times')
42 |
43 | subplot(1,2,2)
44 | p2 = plot(G,'EdgeLabel',G.Edges.Weight,'LineWidth',2);
45 | p2.Marker = 's';
46 | p2.MarkerSize = p2.MarkerSize*2;
47 | p2.NodeColor = [0 0 0];
48 | p2.NodeLabel = stateNames;
49 | p2.ArrowSize = p2.ArrowSize*2;
50 | set(gca,'Visible','off')
51 | axis equal
52 | axis tight
53 |
54 | end
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | BSD 3-Clause License
2 |
3 | Copyright (c) 2018, Mustafa Al Ibrahim
4 | All rights reserved.
5 |
6 | Redistribution and use in source and binary forms, with or without
7 | modification, are permitted provided that the following conditions are met:
8 |
9 | * Redistributions of source code must retain the above copyright notice, this
10 | list of conditions and the following disclaimer.
11 |
12 | * Redistributions in binary form must reproduce the above copyright notice,
13 | this list of conditions and the following disclaimer in the documentation
14 | and/or other materials provided with the distribution.
15 |
16 | * Neither the name of the copyright holder nor the names of its
17 | contributors may be used to endorse or promote products derived from
18 | this software without specific prior written permission.
19 |
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------------------------------------
/Strata/upscaleStrataRandomMode.m:
--------------------------------------------------------------------------------
1 | function [strata] = upscaleStrataRandomMode(strata, nIntervals, isAutoUniform)
2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2019
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('nIntervals', 'var'); nIntervals = 2; end
13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
14 |
15 | % Assertions
16 | assert(exist('strata', 'var')==true, 'strata must be provided');
17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform');
18 | assert(isscalar(nIntervals) && isnumeric(nIntervals) && nIntervals>=1, 'nIntervals >=1');
19 |
20 | %% Main
21 |
22 | % Make uniform
23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform
24 | strata = uniformThicknessStrata(strata);
25 | end
26 |
27 | % Special case, no need for upscaling
28 | nPoints = size(strata,1);
29 | if nPoints == 1; return; end
30 |
31 | % Sample cutoff locations
32 | cutoffs = sort(round((nPoints-1-2).*rand(nIntervals-1,1) + 2));
33 | cutoffsStart = [1; cutoffs];
34 | cutoffsEnd = [cutoffs-1; nPoints];
35 | cutoffs = [cutoffsStart, cutoffsEnd];
36 |
37 | % Upscale
38 | classification = strata.lithology;
39 |
40 | for i =1:nIntervals
41 | currentInterval = cutoffs(i,1):cutoffs(i,2);
42 | currentClasses = classification(currentInterval);
43 | classification(currentInterval,:) = mode(currentClasses);
44 | end
45 |
46 | strata.lithology = classification;
47 |
48 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrataUniformMode.m:
--------------------------------------------------------------------------------
1 | function [strata] = upscaleStrataUniformMode(strata, intervalThickness, isAutoUniform)
2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2019
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('intervalThickness', 'var'); intervalThickness = 2; end
13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
14 |
15 | % Assertions
16 | assert(exist('strata', 'var')==true, 'strata must be provided');
17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform');
18 | assert(isscalar(intervalThickness) && isnumeric(intervalThickness) && intervalThickness>=1, 'nIntervals >=1');
19 |
20 | %% Main
21 |
22 | % Make uniform
23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform
24 | strata = uniformThicknessStrata(strata);
25 | end
26 |
27 | % Special case, no need for upscaling
28 | nPoints = size(strata,1);
29 | if nPoints == 1 || intervalThickness==1; return; end
30 |
31 | % Sample cutoff locations
32 | cutoffs = ((1+intervalThickness):intervalThickness:(nPoints-1))';
33 | cutoffsStart = [1; cutoffs];
34 | cutoffsEnd = [cutoffs-1; nPoints];
35 | cutoffs = [cutoffsStart, cutoffsEnd];
36 |
37 | % Upscale
38 | classification = strata.lithology;
39 |
40 | for i =1:size(cutoffs,1)
41 | currentInterval = cutoffs(i,1):cutoffs(i,2);
42 | currentClasses = classification(currentInterval);
43 | classification(currentInterval,:) = mode(currentClasses);
44 | end
45 |
46 | strata.lithology = classification;
47 |
48 | end
--------------------------------------------------------------------------------
/Sea Level Curves/haqSeaLevel.m:
--------------------------------------------------------------------------------
1 | function [age, height] = haqSeaLevel(minAge, maxAge, dt, isPlot)
2 | %% HAQSEALEVEL Haq see level curve
3 | %
4 | %
5 | % Mustafa Al Ibrahim @ 2018
6 | % Mustafa.Geoscientist@outlook.com
7 |
8 | %% Preprocessing
9 |
10 | % Defaults
11 | if ~exist('minAge', 'var'); minAge = -inf; end
12 | if ~exist('maxAge', 'var'); maxAge = inf; end
13 | if ~exist('dt', 'var'); dt = nan; end
14 | if ~exist('isPlot', 'var'); isPlot = false; end
15 |
16 | % Assertions
17 | assert(isscalar(minAge) && isnumeric(minAge), 'minAge must be scalar numeric');
18 | assert(isscalar(minAge) && isnumeric(minAge), 'minAge must be scalar numeric');
19 | assert(isscalar(dt) && isnumeric(dt), 'dt must be scalar numeric');
20 | assert(isscalar(isPlot) && isa(isPlot, 'logical'), 'isPlot must be scalar logical');
21 |
22 | %% Main
23 |
24 | % Data
25 | fileNames = {'Haq87_Longterm.dat', 'Haq87_Longterm_Normalized.dat', ...
26 | 'Haq87_HighResolution.dat', 'Haq87_HighResolution_Filtered.dat'};
27 |
28 | i = 2;
29 | % Import data
30 | rawData = importdata(fileNames{i});
31 | age = rawData(:,1);
32 | height = rawData(:,2);
33 |
34 | % Filter data
35 | indexToKeep = age>=minAge & age<=maxAge;
36 | age = age(indexToKeep);
37 | height = height(indexToKeep);
38 |
39 | % Resample if needed
40 | if exist('dt', 'var') && ~isnan(dt)
41 | ageResampled = min(age):dt:max(age);
42 | heightResampled = interp1(age,height, ageResampled);
43 | age = ageResampled;
44 | height = heightResampled;
45 | end
46 |
47 | % Plotting
48 | if isPlot
49 | figure('Color', 'White')
50 | plot(height, age, 'LineWidth', 2)
51 | set(gca, 'yDir', 'reverse')
52 | ylim([min(age), max(age)])
53 | xlabel('Age')
54 | ylabel('Height')
55 | end
56 |
57 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrataRandomMean.m:
--------------------------------------------------------------------------------
1 | function [strata] = upscaleStrataRandomMean(strata, nIntervals, isAutoUniform)
2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2019
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('nIntervals', 'var'); nIntervals = 2; end
13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
14 |
15 | % Assertions
16 | assert(exist('strata', 'var')==true, 'strata must be provided');
17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform');
18 | assert(isscalar(nIntervals) && isnumeric(nIntervals) && nIntervals>=1, 'nIntervals >=1');
19 |
20 | %% Main
21 |
22 | % Make uniform
23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform
24 | strata = uniformThicknessStrata(strata);
25 | end
26 |
27 | % Special case, no need for upscaling
28 | nPoints = size(strata,1);
29 | if nPoints == 1; return; end
30 |
31 | % Sample cutoff locations
32 | cutoffs = sort(round((nPoints-1-2).*rand(nIntervals-1,1) + 2));
33 | cutoffsStart = [1; cutoffs];
34 | cutoffsEnd = [cutoffs-1; nPoints];
35 | cutoffs = [cutoffsStart, cutoffsEnd];
36 |
37 | % Upscale
38 | classification = strata.lithology;
39 | nClasses = max(classification);
40 |
41 | meanMatrix = zeros(nPoints, nClasses);
42 | for i =1:nIntervals
43 | currentInterval = cutoffs(i,1):cutoffs(i,2);
44 | currentClasses = classification(currentInterval);
45 | meanMatrix(currentInterval,:) = repmat(histcounts(currentClasses, 1-.5:1:nClasses+.5)/numel(currentClasses), numel(currentClasses),1);
46 | end
47 |
48 | strata.lithology = meanMatrix;
49 |
50 | end
--------------------------------------------------------------------------------
/Markov Chain/estimateMarkovMatrix.m:
--------------------------------------------------------------------------------
1 | function markovMatrix = estimateMarkovMatrix(states, direction)
2 | %% ESTIMATEMARKOVMATRIX Markov matrix estimation given a states vector
3 | %
4 | % states: State vector to be used for Markov matrix estimation
5 | % direction: Direction of examination, top2bottom or bottom2top
6 | %
7 | % Mustafa Al Ibrahim @ 2018
8 | % Mustafa.Geoscientist@outlook.com
9 |
10 | %% Preprocessing
11 |
12 | % Defaults
13 | if ~exist('direction', 'var'); direction = 'top2bottom'; end
14 |
15 | % Assertions
16 | assert(exist('states', 'var')==true && isvector(states), 'states must be a vector');
17 | assert(ischar(direction), 'direction must be a string');
18 | assert(ismember(direction, {'top2bottom', 'bottom2top'}), 'direction must be top2bottom or bottom2top');
19 |
20 | %% Main
21 |
22 | % Make sure it is a column
23 | states = states(:);
24 |
25 | % Initialize the Markov transition matrix
26 | nClasses = max(states);
27 | markovMatrix = zeros(nClasses, nClasses);
28 |
29 | % Build the transition vectors
30 | if strcmp(direction, 'top2bottom')
31 | transition = [states(1:end-1) states(2:end)];
32 | elseif strcmp(direction, 'bottom2top')
33 | transition = [states(2:end), states(1:end-1)];
34 | end
35 |
36 | % Build all transition vectors
37 | classesVector = (1:nClasses)';
38 | combinations = [combnk(classesVector,2); fliplr(combnk(classesVector,2));...
39 | classesVector classesVector];
40 |
41 | % Calculate the number of transitions
42 | for i = 1:size(combinations,1)
43 | instances = ismember(transition, combinations(i,:),'rows');
44 | markovMatrix(combinations(i,1), combinations(i,2)) = sum(instances);
45 | end
46 |
47 | % Normalize the matrix to obtain the Markov Matrix
48 | markovMatrix = markovMatrix ./ repmat(sum(markovMatrix,2),1,nClasses);
49 |
50 | end
--------------------------------------------------------------------------------
/Strata/upscaleStrataUniformMean.m:
--------------------------------------------------------------------------------
1 | function [strata] = upscaleStrataUniformMean(strata, intervalThickness, isAutoUniform)
2 | %% UPSCALESTRATARANDOMMEAN Upscale classificaiton on random intervals
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | %
6 | % Mustafa Al Ibrahim @ 2019
7 | % Mustafa.Geoscientist@outlook.com
8 |
9 | %% Preprocessing
10 |
11 | % Defaults
12 | if ~exist('intervalThickness', 'var'); intervalThickness = 2; end
13 | if ~exist('isAutoUniform', 'var'); isAutoUniform = false; end
14 |
15 | % Assertions
16 | assert(exist('strata', 'var')==true, 'strata must be provided');
17 | assert(numel(unique(strata.thickness))==1 || isAutoUniform, 'strata thickness is variable, make uniform or enable isAutoUniform');
18 | assert(isscalar(intervalThickness) && isnumeric(intervalThickness) && intervalThickness>=1, 'nIntervals >=1');
19 |
20 | %% Main
21 |
22 | % Make uniform
23 | if ~(numel(unique(strata.thickness))==1) && isAutoUniform
24 | strata = uniformThicknessStrata(strata);
25 | end
26 |
27 | % Special case, no need for upscaling
28 | nPoints = size(strata,1);
29 | if nPoints == 1; return; end
30 |
31 | % Sample cutoff locations
32 | % Sample cutoff locations
33 | cutoffs = ((1+intervalThickness):intervalThickness:(nPoints-1))';
34 | cutoffsStart = [1; cutoffs];
35 | cutoffsEnd = [cutoffs-1; nPoints];
36 | cutoffs = [cutoffsStart, cutoffsEnd];
37 |
38 | % Upscale
39 | classification = strata.lithology;
40 | nClasses = max(classification);
41 |
42 | meanMatrix = zeros(nPoints, nClasses);
43 | for i =1:size(cutoffs,1)
44 | currentInterval = cutoffs(i,1):cutoffs(i,2);
45 | currentClasses = classification(currentInterval);
46 | meanMatrix(currentInterval,:) = repmat(histcounts(currentClasses, 1-.5:1:nClasses+.5)/numel(currentClasses), numel(currentClasses),1);
47 | end
48 |
49 | strata.lithology = meanMatrix;
50 |
51 | end
--------------------------------------------------------------------------------
/Strata/uniformThicknessStrata.m:
--------------------------------------------------------------------------------
1 | function strataUniform = uniformThicknessStrata(strata, layerThickness)
2 | %% UNIFORMTHICKNESSSTRATA Resample the strata to uniform thickness
3 | %
4 | % Mustafa Al Ibrahim @ 2019
5 | % Mustafa.Geoscientist@outlook.com
6 |
7 | %% Preprocessing
8 |
9 | % Assertions
10 | assert(exist('strata', 'var')==true, 'strata must be provided');
11 |
12 | % Defaults
13 | if ~exist('layerThickness', 'var'); layerThickness= min(strata.thickness); end
14 |
15 | % Assertions
16 | assert(layerThickness <= min(strata.thickness), 'layerThickness <= minimum strata thickness');
17 |
18 | % Parameters
19 | isLithologyComp = ~isvector(strata.lithology);
20 |
21 | %% Main
22 |
23 | strataFlipped = flipud(strata);
24 | cumsumThickness = cumsum(strataFlipped.thickness);
25 |
26 | uniformCumsumThickness = (layerThickness:layerThickness:max(cumsumThickness))';
27 |
28 | startTime = interp1(cumsumThickness, strataFlipped.startTime, uniformCumsumThickness);
29 | endTime = interp1(cumsumThickness, strataFlipped.endTime, uniformCumsumThickness);
30 | midSeaLevel = interp1(cumsumThickness, strataFlipped.midSeaLevel, uniformCumsumThickness);
31 | thickness = ones(size(uniformCumsumThickness))*layerThickness;
32 |
33 | if ~isLithologyComp
34 | lithology = interp1(cumsumThickness, strataFlipped.lithology, uniformCumsumThickness, 'nearest');
35 | else
36 |
37 | nonUniformLithology = strataFlipped.lithology;
38 | nLitho = size(nonUniformLithology,2);
39 | nPoints = numel(uniformCumsumThickness);
40 | nonUniformLithology = permute(nonUniformLithology,[1, 3, 2]);
41 | interploatedMarkovMatrix = interp1(cumsumThickness, nonUniformLithology, uniformCumsumThickness);
42 | lithology = reshape(interploatedMarkovMatrix, [nPoints, nLitho]);
43 |
44 | end
45 |
46 | strataUniform = flipud(table(startTime, endTime, thickness, lithology, midSeaLevel));
47 |
48 | end
--------------------------------------------------------------------------------
/Sea Level Curves/Haq87_HighResolution_Filtered.dat:
--------------------------------------------------------------------------------
1 | 0 0
2 | 6 10.0115
3 | 8 2.5715
4 | 10 9.62256
5 | 12 42.8517
6 | 14 85.7349
7 | 16 106.514
8 | 18 105.872
9 | 20 103.021
10 | 22 91.2033
11 | 24 76.4691
12 | 26 60.7731
13 | 28 64.5484
14 | 30 104.437
15 | 32 137.78
16 | 34 143.201
17 | 36 141.254
18 | 38 153.367
19 | 40 165.045
20 | 42 174.378
21 | 44 187.991
22 | 46 188.024
23 | 48 177.861
24 | 50 182.125
25 | 52 191.452
26 | 54 184.751
27 | 56 165.002
28 | 58 154.225
29 | 60 169.282
30 | 62 192.65
31 | 64 198.092
32 | 66 196.721
33 | 68 198.787
34 | 70 208.102
35 | 72 213.603
36 | 74 219.246
37 | 76 226.269
38 | 78 231.682
39 | 80 229.481
40 | 82 221.229
41 | 84 217.478
42 | 86 217.996
43 | 88 217.731
44 | 90 222.078
45 | 92 230.509
46 | 94 230.722
47 | 96 226.15
48 | 98 227.106
49 | 100 223.24
50 | 102 210.222
51 | 104 197.602
52 | 106 188.101
53 | 108 176.184
54 | 110 161.915
55 | 112 150.416
56 | 114 147.013
57 | 116 148.872
58 | 118 148.957
59 | 120 152.417
60 | 122 162.467
61 | 124 170.689
62 | 126 168.048
63 | 128 155.097
64 | 130 132.621
65 | 132 105.991
66 | 134 85.1993
67 | 136 74.3239
68 | 138 79.7775
69 | 140 110.202
70 | 142 132.08
71 | 144 127.961
72 | 146 118.53
73 | 148 122.036
74 | 150 137.441
75 | 152 140.659
76 | 154 134.641
77 | 156 121.036
78 | 158 108.629
79 | 160 94.3717
80 | 162 72.7912
81 | 164 57.6993
82 | 166 62.2963
83 | 168 75.6515
84 | 170 86.45
85 | 172 83.8703
86 | 174 76.7236
87 | 176 61.1647
88 | 178 48.2457
89 | 180 43.4783
90 | 182 51.6999
91 | 184 62.4653
92 | 186 55.1323
93 | 188 40.0184
94 | 190 35.5979
95 | 192 38.1513
96 | 194 35.9818
97 | 196 26.6791
98 | 198 13.3872
99 | 200 -4.42455
100 | 202 -14.5725
101 | 204 -14.5694
102 | 206 -8.70946
103 | 208 1.44603
104 | 210 17.4707
105 | 212 39.7335
106 | 214 57.7235
107 | 216 66.1234
108 | 218 64.9418
109 | 220 58.0391
110 | 222 52.7517
111 | 224 49.2901
112 | 226 38.9242
113 | 228 27.6545
114 | 230 26.5999
115 | 232 30.7921
116 | 234 21.871
117 | 236 14.1971
118 | 238 14.4508
119 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Strata - A Markov chain based stratigraphic simulator within a sequence stratigraphic framework
2 |
3 | Cyclostratigraphy in the rock is prevelant. We often rely on it to make predictions. The puropse of this code is to simulate a 1D stratigrahic section that closely resembles what is observed in reality. I've decided to do this by incorporating a sequence stratigraphic framework into the model. This means that the simulation incorporates external forcing such as chaning in the sea level and the amount sediment sourcing. In addition erosion can also be incorporated as a Markov state with negative depostion.
4 |
5 |
6 |

7 |
8 |
9 | ## How to use
10 | See the example Matlab script folder for possible usage. Basically 1) define the transition matrices and depositional rates at different sea levels, 2) define sea level curve, 3) Run. Possible usage into projects include:
11 | - Study the effect of changing cyclostratigraphic pattern on different outputs such as the seismic signal.
12 | - Study the effect of upscaling on different outputs.
13 | - Create a training dataset for machine learning.
14 |
15 | An example of usage is below. Note that most of the code is setting up the input parameters.
16 |
17 | ```
18 | % Parameters
19 | age = (0:200)';
20 | seaLevelAge = 0:.01:200;
21 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5);
22 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow
23 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep
24 | depositionalRates = [1, 1, 1];
25 |
26 | % Simulate and plot stratigraphy
27 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates);
28 | plotStrata(strata);
29 | ```
30 |
31 | ## Upscaling
32 | Upscaling functions are included. Mean and Mode moving window upscaling are implemented. See the example file on how for further details. General usage:
33 |
34 | ```
35 | smoothingInterval = 3;
36 | strata = upscaleStrata(strata, smoothingInterval, 'mode');
37 | strata = upscaleStrata(strata, smoothingInterval, 'mean');
38 | ```
39 |
40 |
41 |

42 |
43 |
44 |
45 | ## Referencing
46 | Al Ibrahim, M. A., Strata: A Markov chain based stratigraphic simulator within a sequence stratigraphic framework: Website, https://github.com/MosGeo/Strata/.
47 |
--------------------------------------------------------------------------------
/Strata/simulateStrata.m:
--------------------------------------------------------------------------------
1 | function [strata] = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates, matricesPosition)
2 | %% simulateStrata Simulate interval using Markov chains with sequence stratigraphic framework
3 | %
4 | % Mustafa Al Ibrahim @ 2018
5 | % Mustafa.Geoscientist@outlook.com
6 |
7 | %% Preprocessing
8 |
9 | % Assertions
10 | assert(exist('age', 'var')==true && iscolumn(age) && isnumeric(age), 'age is not valid');
11 | assert(exist('markovMatrices', 'var')==true,'markovMatrices must be provided');
12 |
13 | % Preprocessing
14 | if isscalar(age); age = (1:age)'; end
15 | if ~iscell(markovMatrices); markovMatrices = {markovMatrices}; end
16 | nLithologies = size(markovMatrices{1},1);
17 | nTimeIntervals = numel(age)-1;
18 | nMatrices = numel(markovMatrices);
19 |
20 | % Defaults
21 | if ~exist('seaLevelAge', 'var'); seaLevelAge = age; end
22 | if ~exist('seaLevelHeight', 'var'); seaLevelHeight = ones(numel(age),1); end
23 | if ~exist('depositionalRates', 'var'); depositionalRates = ones(nLithologies,1); end
24 | if ~exist('matricesPosition', 'var'); matricesPosition = (0:(nMatrices-1))/(nMatrices-1); end
25 |
26 | % Assertions
27 | assert(isvector(seaLevelHeight) && isvector(seaLevelAge), 'seaLevelAge, seaLevelHeight, must be vectors')
28 |
29 | %% Main
30 |
31 | % Deposition rates
32 |
33 | % Make sure things are columns
34 | seaLevelHeight = seaLevelHeight(:);
35 | seaLevelAge = seaLevelAge(:);
36 | age = age(:);
37 |
38 | % Sea level
39 | [age] = sort(age,'descend');
40 | seaLevel = interp1(seaLevelAge, seaLevelHeight, age);
41 |
42 | % Initialize the lithology
43 | initialLithology = round(rand()*(nLithologies-1) + 1);
44 | binaryLithology = zeros(1,nLithologies);
45 | binaryLithology(initialLithology) = 1;
46 |
47 | % Calculate time
48 | intervalTime = -diff(age);
49 | startTime = age(1:end-1);
50 | endTime = age(2:end);
51 |
52 | % Calculate sea level
53 | midDepositionTime = (startTime + endTime)/2;
54 | midSeaLevel = interp1(age, seaLevel,midDepositionTime);
55 | normalizedSeaLevel = (midSeaLevel - min(seaLevel))/( max(seaLevel)- min(seaLevel));
56 |
57 | % Simulate deposition
58 | lithology = zeros(nTimeIntervals,1);
59 | thickness = zeros(nTimeIntervals,1);
60 | for i = 1:nTimeIntervals
61 | currentTransitionMatrix = interpMarkovMatrix(markovMatrices, normalizedSeaLevel(i), matricesPosition);
62 | currentDepositionRate = interpDepositionalRates(depositionalRates, normalizedSeaLevel(i), matricesPosition);
63 | [lithology(i), binaryLithology] = sampleMarkovChain(binaryLithology, currentTransitionMatrix);
64 | thickness(i) = currentDepositionRate(lithology(i)) * intervalTime(i);
65 | end
66 |
67 | % Organize output
68 | strata = table(startTime, endTime, thickness, lithology, midSeaLevel);
69 |
70 | end
71 |
72 |
73 |
--------------------------------------------------------------------------------
/Strata/plotStrata.m:
--------------------------------------------------------------------------------
1 | function axisHandle = plotStrata(strata, isPlotErosion, isFinalizeStrata, nClasses)
2 | %% PLOTSTRATA Plot a stratigraphic section
3 | %
4 | % strata: Strataigraphic table (includes lithology, thickness)
5 | % isPlotErostion: Plot erosional surfaces in the stratigraphic section
6 | %
7 | % Mustafa Al Ibrahim @ 2018
8 | % Mustafa.Geoscientist@outlook.com
9 |
10 | %% Preprocessing
11 |
12 | % Defaults
13 | if ~exist('isPlotErosion', 'var'); isPlotErosion = true; end
14 | if ~exist('isFinalizeStrata', 'var'); isFinalizeStrata = true; end
15 |
16 | % Assertions
17 | assert(exist('strata', 'var')==true, 'strata must be provided');
18 | assert(isa(isPlotErosion, 'logical') && isscalar(isPlotErosion), 'isPlotErosion must be logical scalar');
19 |
20 | % Parameters
21 | isLithologyComp = ~isvector(strata.lithology);
22 |
23 | % Defaults 2
24 | if ~exist('nClasses', 'var') && ~isLithologyComp; nClasses = numel(unique(strata.lithology)); end
25 | if ~exist('nClasses', 'var') && isLithologyComp; nClasses = numel(strata.lithology(1,:)); end
26 |
27 |
28 | %% Main
29 |
30 | % Finalize strata if requested
31 | if isFinalizeStrata
32 | strata = finalizeStrata(strata);
33 | end
34 |
35 | % Initial needed parameters
36 | colors = gray(nClasses);
37 | [topDepth, baseDepth] = analyzeStrataThickness(strata, ~isPlotErosion);
38 |
39 | % Plot deposits
40 | nDeposits = sum(strata.thickness>0);
41 | indDeposits = find(strata.thickness>0);
42 |
43 | for iDeposit = 1:nDeposits
44 | i = indDeposits(iDeposit);
45 | startYPosition = topDepth(i);
46 | thickness = baseDepth(i)- topDepth(i);
47 |
48 | if ~isLithologyComp
49 | value = strata.lithology(i);
50 | endXPosition = baseDepth(1)/5*(value)^.5;
51 | rectangle('Position',[0 startYPosition endXPosition thickness], 'FaceColor', colors(value,:));
52 | else
53 | values = strata.lithology(i,:);
54 | maxPosition = baseDepth(1)/5*(nClasses)^.5;
55 | width = values*maxPosition;
56 | startXPositions = [0, cumsum(width)];
57 | for i = 1:nClasses
58 | if width(i) > 0
59 | rectangle('Position',[startXPositions(i) startYPosition width(i) thickness], 'FaceColor', colors(i,:));
60 | end
61 | end
62 |
63 | end
64 | hold on;
65 |
66 | end
67 |
68 | % Plot erosion
69 | if isPlotErosion == true
70 | nErosions = sum(strata.thickness<=0);
71 | indErosions = find(strata.thickness<=0);
72 |
73 | for iErosion = 1:nErosions
74 | i = indErosions(iErosion);
75 | startYPosition = topDepth(i);
76 |
77 | value = 0;
78 | if i>1 && strata.thickness(i-1)>0
79 | value = strata.lithology(i-1);
80 | elseif i==1
81 | value = nClasses;
82 | end
83 |
84 | if isLithologyComp; value = nClasses; end
85 | endXPosition = baseDepth(1)/5*(value)^.5;
86 |
87 | x = 0:.01:endXPosition;
88 | y = startYPosition + sin(x*10)*baseDepth(end)/8;
89 | plot(x,y,'r', 'LineWidth',2)
90 | end
91 | end
92 |
93 |
94 | % Finalize plot
95 | axis tight;
96 | %axis equal;
97 | set(gca,'XTickLabel', []);
98 | set(gca,'yDir', 'reverse')
99 | ylabel('Depth');
100 | xlabel('Lithology');
101 | set(gca, 'FontUnits','points', 'FontWeight','normal', 'FontSize',12, 'FontName','Times')
102 |
103 |
104 | end
--------------------------------------------------------------------------------
/main.m:
--------------------------------------------------------------------------------
1 | %% Multiple realization example
2 | clear
3 | clc
4 |
5 | % Define sea level curve
6 | rng(84282)
7 | maxAge= 200;
8 | age = (0:2:maxAge)';
9 | seaLevelAge = 0:.01:maxAge;
10 | seaLevelHeight = sin(seaLevelAge/20) ;%+ .25*sin(seaLevelAge/5);
11 |
12 | % Define transitional matrices
13 | % markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow
14 | % markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep
15 | % depositionalRates = [1, 1, 1];
16 |
17 | markovMatrices{1} = [.1 .4 .5 0; .1 .5 .4 0; 0 .3 .6 .1; 0 0 .9 .1]; % Shallow
18 | markovMatrices{2} = [.8 .2 .0 0; .6 .3 .1 0; .5 .2 .3 0; 0 0 .9 .1]; % Deep
19 | depositionalRates{1} = [1, 1, 1, -.1];
20 | depositionalRates{2} = [3, 4, 2, -.1];
21 |
22 | % Simulate
23 | nScales = 6
24 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto');
25 | for i = 1:nScales
26 |
27 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates);
28 | subplot(1,nScales+1,i+1)
29 | plotStrata(strata, true, true, size(markovMatrices{1},1)-1);
30 | title(['Realization: ', num2str(i)])
31 | set(gca,'YTicklabel', [])
32 | ylabel('')
33 |
34 | end
35 |
36 | subplot(1,nScales+1,1)
37 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2)
38 | set(gca, 'yDir', 'reverse')
39 | % xlabel(['Normalized relative', char(10), 'sea level'], 'Interpreter', 'latex'); ylabel('Depth')
40 | xlabel(['Sea level'], 'Interpreter', 'latex'); ylabel('Depth')
41 | axis tight
42 | set(gca, 'FontUnits','points', 'FontWeight','normal', 'FontSize',12, 'FontName','Times')
43 |
44 |
45 | %% Upscaling example (Mode)
46 |
47 | rng(842)
48 | % Parameters
49 | maxAge= 200;
50 | age = (0:maxAge)';
51 | seaLevelAge = 0:.01:maxAge;
52 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5);
53 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow
54 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep
55 | depositionalRates = [1, 1, 1];
56 |
57 | % Simulate
58 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates);
59 | smoothingIntervals = [1 3 5 7 9 11 13 15];
60 | nScales = numel(smoothingIntervals);
61 |
62 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto');
63 | for i = 1:nScales
64 |
65 | smoothingInterval = smoothingIntervals(i);
66 | strata = upscaleStrata(strata, smoothingInterval, 'mode');
67 |
68 | subplot(1,nScales+1,i+1)
69 | plotStrata(strata, true, true, size(markovMatrices{1},1));
70 | title(['Scale: ', num2str(smoothingInterval)])
71 | set(gca,'YTicklabel', [])
72 | ylabel('')
73 |
74 | end
75 |
76 | subplot(1,nScales+1,1)
77 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2)
78 | set(gca, 'yDir', 'reverse')
79 | xlabel('Sea-level'); ylabel('Depth')
80 | axis tight
81 |
82 | %% Upscaling example (Mean)
83 | rng(842)
84 |
85 | % Parameters
86 | maxAge= 200;
87 | age = (0:maxAge)';
88 | seaLevelAge = 0:.01:maxAge;
89 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5);
90 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow
91 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep
92 | depositionalRates = [1, 1, 1];
93 |
94 | % Simulate
95 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates);
96 | smoothingIntervals = [1 3 5 7 9 11 13 17 25];
97 |
98 | nScales = numel(smoothingIntervals);
99 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto');
100 |
101 | for i = 1:nScales
102 |
103 | smoothingInterval = smoothingIntervals(i);
104 | strataUpscaled = upscaleStrata(strata, smoothingInterval, 'mean');
105 |
106 | subplot(1,nScales+1,i+1)
107 | plotStrata(strataUpscaled, true, true, size(markovMatrices{1},1));
108 | title(['Scale: ', num2str(smoothingInterval)])
109 | set(gca,'YTicklabel', [])
110 | ylabel('')
111 | end
112 |
113 | subplot(1,nScales+1,1)
114 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2)
115 | set(gca, 'yDir', 'reverse')
116 | xlabel('Sea-level'); ylabel('Depth')
117 | axis tight
118 |
119 | %% Upscaling example uniform (Mode)
120 |
121 | rng(842)
122 |
123 | % Parameters
124 | maxAge= 200;
125 | age = (0:maxAge)';
126 | seaLevelAge = 0:.01:maxAge;
127 | seaLevelHeight = sin(seaLevelAge/20) + .25*sin(seaLevelAge/5);
128 | markovMatrices{1} = [.1 .4 .5; .1 .5 .4; 0 .3 .7]; % Shallow
129 | markovMatrices{2} = [.7 .2 .1; .4 .5 .1; .4 .4 .2]; % Deep
130 | depositionalRates = [1, 1, 1];
131 |
132 | % Simulate
133 | strata = simulateStrata(markovMatrices, age, seaLevelAge, seaLevelHeight, depositionalRates);
134 | smoothingIntervals = [1 3 5 7 9 11 13 17 25];
135 |
136 | nScales = numel(smoothingIntervals);
137 | figure('Color', 'White', 'Units','inches', 'Position',[3 3 10 4],'PaperPositionMode','auto');
138 |
139 | for i = 1:nScales
140 |
141 | smoothingInterval = smoothingIntervals(i);
142 | strataUpscaled = upscaleStrataUniform(strata, smoothingInterval, 'mean');
143 |
144 | subplot(1,nScales+1,i+1)
145 | plotStrata(strataUpscaled, true, true, size(markovMatrices{1},1));
146 | title(['Scale: ', num2str(smoothingInterval)])
147 | set(gca,'YTicklabel', [])
148 | ylabel('')
149 | end
150 |
151 | subplot(1,nScales+1,1)
152 | plot(seaLevelHeight, seaLevelAge, 'LineWidth',2)
153 | set(gca, 'yDir', 'reverse')
154 | xlabel('Sea-level'); ylabel('Depth')
155 | axis tight
156 |
157 |
158 |
--------------------------------------------------------------------------------
/Sea Level Curves/License.txt:
--------------------------------------------------------------------------------
1 | Data files taken from pyBadlands source files digitezed by Sabin Zahirovic, 13 June 2014
2 |
3 |
4 | GNU GENERAL PUBLIC LICENSE
5 | Version 3, 29 June 2007
6 |
7 | Copyright (C) 2007 Free Software Foundation, Inc.
8 | Everyone is permitted to copy and distribute verbatim copies
9 | of this license document, but changing it is not allowed.
10 |
11 | Preamble
12 |
13 | The GNU General Public License is a free, copyleft license for
14 | software and other kinds of works.
15 |
16 | The licenses for most software and other practical works are designed
17 | to take away your freedom to share and change the works. By contrast,
18 | the GNU General Public License is intended to guarantee your freedom to
19 | share and change all versions of a program--to make sure it remains free
20 | software for all its users. We, the Free Software Foundation, use the
21 | GNU General Public License for most of our software; it applies also to
22 | any other work released this way by its authors. You can apply it to
23 | your programs, too.
24 |
25 | When we speak of free software, we are referring to freedom, not
26 | price. Our General Public Licenses are designed to make sure that you
27 | have the freedom to distribute copies of free software (and charge for
28 | them if you wish), that you receive source code or can get it if you
29 | want it, that you can change the software or use pieces of it in new
30 | free programs, and that you know you can do these things.
31 |
32 | To protect your rights, we need to prevent others from denying you
33 | these rights or asking you to surrender the rights. Therefore, you have
34 | certain responsibilities if you distribute copies of the software, or if
35 | you modify it: responsibilities to respect the freedom of others.
36 |
37 | For example, if you distribute copies of such a program, whether
38 | gratis or for a fee, you must pass on to the recipients the same
39 | freedoms that you received. You must make sure that they, too, receive
40 | or can get the source code. And you must show them these terms so they
41 | know their rights.
42 |
43 | Developers that use the GNU GPL protect your rights with two steps:
44 | (1) assert copyright on the software, and (2) offer you this License
45 | giving you legal permission to copy, distribute and/or modify it.
46 |
47 | For the developers' and authors' protection, the GPL clearly explains
48 | that there is no warranty for this free software. For both users' and
49 | authors' sake, the GPL requires that modified versions be marked as
50 | changed, so that their problems will not be attributed erroneously to
51 | authors of previous versions.
52 |
53 | Some devices are designed to deny users access to install or run
54 | modified versions of the software inside them, although the manufacturer
55 | can do so. This is fundamentally incompatible with the aim of
56 | protecting users' freedom to change the software. The systematic
57 | pattern of such abuse occurs in the area of products for individuals to
58 | use, which is precisely where it is most unacceptable. Therefore, we
59 | have designed this version of the GPL to prohibit the practice for those
60 | products. If such problems arise substantially in other domains, we
61 | stand ready to extend this provision to those domains in future versions
62 | of the GPL, as needed to protect the freedom of users.
63 |
64 | Finally, every program is threatened constantly by software patents.
65 | States should not allow patents to restrict development and use of
66 | software on general-purpose computers, but in those that do, we wish to
67 | avoid the special danger that patents applied to a free program could
68 | make it effectively proprietary. To prevent this, the GPL assures that
69 | patents cannot be used to render the program non-free.
70 |
71 | The precise terms and conditions for copying, distribution and
72 | modification follow.
73 |
74 | TERMS AND CONDITIONS
75 |
76 | 0. Definitions.
77 |
78 | "This License" refers to version 3 of the GNU General Public License.
79 |
80 | "Copyright" also means copyright-like laws that apply to other kinds of
81 | works, such as semiconductor masks.
82 |
83 | "The Program" refers to any copyrightable work licensed under this
84 | License. Each licensee is addressed as "you". "Licensees" and
85 | "recipients" may be individuals or organizations.
86 |
87 | To "modify" a work means to copy from or adapt all or part of the work
88 | in a fashion requiring copyright permission, other than the making of an
89 | exact copy. The resulting work is called a "modified version" of the
90 | earlier work or a work "based on" the earlier work.
91 |
92 | A "covered work" means either the unmodified Program or a work based
93 | on the Program.
94 |
95 | To "propagate" a work means to do anything with it that, without
96 | permission, would make you directly or secondarily liable for
97 | infringement under applicable copyright law, except executing it on a
98 | computer or modifying a private copy. Propagation includes copying,
99 | distribution (with or without modification), making available to the
100 | public, and in some countries other activities as well.
101 |
102 | To "convey" a work means any kind of propagation that enables other
103 | parties to make or receive copies. Mere interaction with a user through
104 | a computer network, with no transfer of a copy, is not conveying.
105 |
106 | An interactive user interface displays "Appropriate Legal Notices"
107 | to the extent that it includes a convenient and prominently visible
108 | feature that (1) displays an appropriate copyright notice, and (2)
109 | tells the user that there is no warranty for the work (except to the
110 | extent that warranties are provided), that licensees may convey the
111 | work under this License, and how to view a copy of this License. If
112 | the interface presents a list of user commands or options, such as a
113 | menu, a prominent item in the list meets this criterion.
114 |
115 | 1. Source Code.
116 |
117 | The "source code" for a work means the preferred form of the work
118 | for making modifications to it. "Object code" means any non-source
119 | form of a work.
120 |
121 | A "Standard Interface" means an interface that either is an official
122 | standard defined by a recognized standards body, or, in the case of
123 | interfaces specified for a particular programming language, one that
124 | is widely used among developers working in that language.
125 |
126 | The "System Libraries" of an executable work include anything, other
127 | than the work as a whole, that (a) is included in the normal form of
128 | packaging a Major Component, but which is not part of that Major
129 | Component, and (b) serves only to enable use of the work with that
130 | Major Component, or to implement a Standard Interface for which an
131 | implementation is available to the public in source code form. A
132 | "Major Component", in this context, means a major essential component
133 | (kernel, window system, and so on) of the specific operating system
134 | (if any) on which the executable work runs, or a compiler used to
135 | produce the work, or an object code interpreter used to run it.
136 |
137 | The "Corresponding Source" for a work in object code form means all
138 | the source code needed to generate, install, and (for an executable
139 | work) run the object code and to modify the work, including scripts to
140 | control those activities. However, it does not include the work's
141 | System Libraries, or general-purpose tools or generally available free
142 | programs which are used unmodified in performing those activities but
143 | which are not part of the work. For example, Corresponding Source
144 | includes interface definition files associated with source files for
145 | the work, and the source code for shared libraries and dynamically
146 | linked subprograms that the work is specifically designed to require,
147 | such as by intimate data communication or control flow between those
148 | subprograms and other parts of the work.
149 |
150 | The Corresponding Source need not include anything that users
151 | can regenerate automatically from other parts of the Corresponding
152 | Source.
153 |
154 | The Corresponding Source for a work in source code form is that
155 | same work.
156 |
157 | 2. Basic Permissions.
158 |
159 | All rights granted under this License are granted for the term of
160 | copyright on the Program, and are irrevocable provided the stated
161 | conditions are met. This License explicitly affirms your unlimited
162 | permission to run the unmodified Program. The output from running a
163 | covered work is covered by this License only if the output, given its
164 | content, constitutes a covered work. This License acknowledges your
165 | rights of fair use or other equivalent, as provided by copyright law.
166 |
167 | You may make, run and propagate covered works that you do not
168 | convey, without conditions so long as your license otherwise remains
169 | in force. You may convey covered works to others for the sole purpose
170 | of having them make modifications exclusively for you, or provide you
171 | with facilities for running those works, provided that you comply with
172 | the terms of this License in conveying all material for which you do
173 | not control copyright. Those thus making or running the covered works
174 | for you must do so exclusively on your behalf, under your direction
175 | and control, on terms that prohibit them from making any copies of
176 | your copyrighted material outside their relationship with you.
177 |
178 | Conveying under any other circumstances is permitted solely under
179 | the conditions stated below. Sublicensing is not allowed; section 10
180 | makes it unnecessary.
181 |
182 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
183 |
184 | No covered work shall be deemed part of an effective technological
185 | measure under any applicable law fulfilling obligations under article
186 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
187 | similar laws prohibiting or restricting circumvention of such
188 | measures.
189 |
190 | When you convey a covered work, you waive any legal power to forbid
191 | circumvention of technological measures to the extent such circumvention
192 | is effected by exercising rights under this License with respect to
193 | the covered work, and you disclaim any intention to limit operation or
194 | modification of the work as a means of enforcing, against the work's
195 | users, your or third parties' legal rights to forbid circumvention of
196 | technological measures.
197 |
198 | 4. Conveying Verbatim Copies.
199 |
200 | You may convey verbatim copies of the Program's source code as you
201 | receive it, in any medium, provided that you conspicuously and
202 | appropriately publish on each copy an appropriate copyright notice;
203 | keep intact all notices stating that this License and any
204 | non-permissive terms added in accord with section 7 apply to the code;
205 | keep intact all notices of the absence of any warranty; and give all
206 | recipients a copy of this License along with the Program.
207 |
208 | You may charge any price or no price for each copy that you convey,
209 | and you may offer support or warranty protection for a fee.
210 |
211 | 5. Conveying Modified Source Versions.
212 |
213 | You may convey a work based on the Program, or the modifications to
214 | produce it from the Program, in the form of source code under the
215 | terms of section 4, provided that you also meet all of these conditions:
216 |
217 | a) The work must carry prominent notices stating that you modified
218 | it, and giving a relevant date.
219 |
220 | b) The work must carry prominent notices stating that it is
221 | released under this License and any conditions added under section
222 | 7. This requirement modifies the requirement in section 4 to
223 | "keep intact all notices".
224 |
225 | c) You must license the entire work, as a whole, under this
226 | License to anyone who comes into possession of a copy. This
227 | License will therefore apply, along with any applicable section 7
228 | additional terms, to the whole of the work, and all its parts,
229 | regardless of how they are packaged. This License gives no
230 | permission to license the work in any other way, but it does not
231 | invalidate such permission if you have separately received it.
232 |
233 | d) If the work has interactive user interfaces, each must display
234 | Appropriate Legal Notices; however, if the Program has interactive
235 | interfaces that do not display Appropriate Legal Notices, your
236 | work need not make them do so.
237 |
238 | A compilation of a covered work with other separate and independent
239 | works, which are not by their nature extensions of the covered work,
240 | and which are not combined with it such as to form a larger program,
241 | in or on a volume of a storage or distribution medium, is called an
242 | "aggregate" if the compilation and its resulting copyright are not
243 | used to limit the access or legal rights of the compilation's users
244 | beyond what the individual works permit. Inclusion of a covered work
245 | in an aggregate does not cause this License to apply to the other
246 | parts of the aggregate.
247 |
248 | 6. Conveying Non-Source Forms.
249 |
250 | You may convey a covered work in object code form under the terms
251 | of sections 4 and 5, provided that you also convey the
252 | machine-readable Corresponding Source under the terms of this License,
253 | in one of these ways:
254 |
255 | a) Convey the object code in, or embodied in, a physical product
256 | (including a physical distribution medium), accompanied by the
257 | Corresponding Source fixed on a durable physical medium
258 | customarily used for software interchange.
259 |
260 | b) Convey the object code in, or embodied in, a physical product
261 | (including a physical distribution medium), accompanied by a
262 | written offer, valid for at least three years and valid for as
263 | long as you offer spare parts or customer support for that product
264 | model, to give anyone who possesses the object code either (1) a
265 | copy of the Corresponding Source for all the software in the
266 | product that is covered by this License, on a durable physical
267 | medium customarily used for software interchange, for a price no
268 | more than your reasonable cost of physically performing this
269 | conveying of source, or (2) access to copy the
270 | Corresponding Source from a network server at no charge.
271 |
272 | c) Convey individual copies of the object code with a copy of the
273 | written offer to provide the Corresponding Source. This
274 | alternative is allowed only occasionally and noncommercially, and
275 | only if you received the object code with such an offer, in accord
276 | with subsection 6b.
277 |
278 | d) Convey the object code by offering access from a designated
279 | place (gratis or for a charge), and offer equivalent access to the
280 | Corresponding Source in the same way through the same place at no
281 | further charge. You need not require recipients to copy the
282 | Corresponding Source along with the object code. If the place to
283 | copy the object code is a network server, the Corresponding Source
284 | may be on a different server (operated by you or a third party)
285 | that supports equivalent copying facilities, provided you maintain
286 | clear directions next to the object code saying where to find the
287 | Corresponding Source. Regardless of what server hosts the
288 | Corresponding Source, you remain obligated to ensure that it is
289 | available for as long as needed to satisfy these requirements.
290 |
291 | e) Convey the object code using peer-to-peer transmission, provided
292 | you inform other peers where the object code and Corresponding
293 | Source of the work are being offered to the general public at no
294 | charge under subsection 6d.
295 |
296 | A separable portion of the object code, whose source code is excluded
297 | from the Corresponding Source as a System Library, need not be
298 | included in conveying the object code work.
299 |
300 | A "User Product" is either (1) a "consumer product", which means any
301 | tangible personal property which is normally used for personal, family,
302 | or household purposes, or (2) anything designed or sold for incorporation
303 | into a dwelling. In determining whether a product is a consumer product,
304 | doubtful cases shall be resolved in favor of coverage. For a particular
305 | product received by a particular user, "normally used" refers to a
306 | typical or common use of that class of product, regardless of the status
307 | of the particular user or of the way in which the particular user
308 | actually uses, or expects or is expected to use, the product. A product
309 | is a consumer product regardless of whether the product has substantial
310 | commercial, industrial or non-consumer uses, unless such uses represent
311 | the only significant mode of use of the product.
312 |
313 | "Installation Information" for a User Product means any methods,
314 | procedures, authorization keys, or other information required to install
315 | and execute modified versions of a covered work in that User Product from
316 | a modified version of its Corresponding Source. The information must
317 | suffice to ensure that the continued functioning of the modified object
318 | code is in no case prevented or interfered with solely because
319 | modification has been made.
320 |
321 | If you convey an object code work under this section in, or with, or
322 | specifically for use in, a User Product, and the conveying occurs as
323 | part of a transaction in which the right of possession and use of the
324 | User Product is transferred to the recipient in perpetuity or for a
325 | fixed term (regardless of how the transaction is characterized), the
326 | Corresponding Source conveyed under this section must be accompanied
327 | by the Installation Information. But this requirement does not apply
328 | if neither you nor any third party retains the ability to install
329 | modified object code on the User Product (for example, the work has
330 | been installed in ROM).
331 |
332 | The requirement to provide Installation Information does not include a
333 | requirement to continue to provide support service, warranty, or updates
334 | for a work that has been modified or installed by the recipient, or for
335 | the User Product in which it has been modified or installed. Access to a
336 | network may be denied when the modification itself materially and
337 | adversely affects the operation of the network or violates the rules and
338 | protocols for communication across the network.
339 |
340 | Corresponding Source conveyed, and Installation Information provided,
341 | in accord with this section must be in a format that is publicly
342 | documented (and with an implementation available to the public in
343 | source code form), and must require no special password or key for
344 | unpacking, reading or copying.
345 |
346 | 7. Additional Terms.
347 |
348 | "Additional permissions" are terms that supplement the terms of this
349 | License by making exceptions from one or more of its conditions.
350 | Additional permissions that are applicable to the entire Program shall
351 | be treated as though they were included in this License, to the extent
352 | that they are valid under applicable law. If additional permissions
353 | apply only to part of the Program, that part may be used separately
354 | under those permissions, but the entire Program remains governed by
355 | this License without regard to the additional permissions.
356 |
357 | When you convey a copy of a covered work, you may at your option
358 | remove any additional permissions from that copy, or from any part of
359 | it. (Additional permissions may be written to require their own
360 | removal in certain cases when you modify the work.) You may place
361 | additional permissions on material, added by you to a covered work,
362 | for which you have or can give appropriate copyright permission.
363 |
364 | Notwithstanding any other provision of this License, for material you
365 | add to a covered work, you may (if authorized by the copyright holders of
366 | that material) supplement the terms of this License with terms:
367 |
368 | a) Disclaiming warranty or limiting liability differently from the
369 | terms of sections 15 and 16 of this License; or
370 |
371 | b) Requiring preservation of specified reasonable legal notices or
372 | author attributions in that material or in the Appropriate Legal
373 | Notices displayed by works containing it; or
374 |
375 | c) Prohibiting misrepresentation of the origin of that material, or
376 | requiring that modified versions of such material be marked in
377 | reasonable ways as different from the original version; or
378 |
379 | d) Limiting the use for publicity purposes of names of licensors or
380 | authors of the material; or
381 |
382 | e) Declining to grant rights under trademark law for use of some
383 | trade names, trademarks, or service marks; or
384 |
385 | f) Requiring indemnification of licensors and authors of that
386 | material by anyone who conveys the material (or modified versions of
387 | it) with contractual assumptions of liability to the recipient, for
388 | any liability that these contractual assumptions directly impose on
389 | those licensors and authors.
390 |
391 | All other non-permissive additional terms are considered "further
392 | restrictions" within the meaning of section 10. If the Program as you
393 | received it, or any part of it, contains a notice stating that it is
394 | governed by this License along with a term that is a further
395 | restriction, you may remove that term. If a license document contains
396 | a further restriction but permits relicensing or conveying under this
397 | License, you may add to a covered work material governed by the terms
398 | of that license document, provided that the further restriction does
399 | not survive such relicensing or conveying.
400 |
401 | If you add terms to a covered work in accord with this section, you
402 | must place, in the relevant source files, a statement of the
403 | additional terms that apply to those files, or a notice indicating
404 | where to find the applicable terms.
405 |
406 | Additional terms, permissive or non-permissive, may be stated in the
407 | form of a separately written license, or stated as exceptions;
408 | the above requirements apply either way.
409 |
410 | 8. Termination.
411 |
412 | You may not propagate or modify a covered work except as expressly
413 | provided under this License. Any attempt otherwise to propagate or
414 | modify it is void, and will automatically terminate your rights under
415 | this License (including any patent licenses granted under the third
416 | paragraph of section 11).
417 |
418 | However, if you cease all violation of this License, then your
419 | license from a particular copyright holder is reinstated (a)
420 | provisionally, unless and until the copyright holder explicitly and
421 | finally terminates your license, and (b) permanently, if the copyright
422 | holder fails to notify you of the violation by some reasonable means
423 | prior to 60 days after the cessation.
424 |
425 | Moreover, your license from a particular copyright holder is
426 | reinstated permanently if the copyright holder notifies you of the
427 | violation by some reasonable means, this is the first time you have
428 | received notice of violation of this License (for any work) from that
429 | copyright holder, and you cure the violation prior to 30 days after
430 | your receipt of the notice.
431 |
432 | Termination of your rights under this section does not terminate the
433 | licenses of parties who have received copies or rights from you under
434 | this License. If your rights have been terminated and not permanently
435 | reinstated, you do not qualify to receive new licenses for the same
436 | material under section 10.
437 |
438 | 9. Acceptance Not Required for Having Copies.
439 |
440 | You are not required to accept this License in order to receive or
441 | run a copy of the Program. Ancillary propagation of a covered work
442 | occurring solely as a consequence of using peer-to-peer transmission
443 | to receive a copy likewise does not require acceptance. However,
444 | nothing other than this License grants you permission to propagate or
445 | modify any covered work. These actions infringe copyright if you do
446 | not accept this License. Therefore, by modifying or propagating a
447 | covered work, you indicate your acceptance of this License to do so.
448 |
449 | 10. Automatic Licensing of Downstream Recipients.
450 |
451 | Each time you convey a covered work, the recipient automatically
452 | receives a license from the original licensors, to run, modify and
453 | propagate that work, subject to this License. You are not responsible
454 | for enforcing compliance by third parties with this License.
455 |
456 | An "entity transaction" is a transaction transferring control of an
457 | organization, or substantially all assets of one, or subdividing an
458 | organization, or merging organizations. If propagation of a covered
459 | work results from an entity transaction, each party to that
460 | transaction who receives a copy of the work also receives whatever
461 | licenses to the work the party's predecessor in interest had or could
462 | give under the previous paragraph, plus a right to possession of the
463 | Corresponding Source of the work from the predecessor in interest, if
464 | the predecessor has it or can get it with reasonable efforts.
465 |
466 | You may not impose any further restrictions on the exercise of the
467 | rights granted or affirmed under this License. For example, you may
468 | not impose a license fee, royalty, or other charge for exercise of
469 | rights granted under this License, and you may not initiate litigation
470 | (including a cross-claim or counterclaim in a lawsuit) alleging that
471 | any patent claim is infringed by making, using, selling, offering for
472 | sale, or importing the Program or any portion of it.
473 |
474 | 11. Patents.
475 |
476 | A "contributor" is a copyright holder who authorizes use under this
477 | License of the Program or a work on which the Program is based. The
478 | work thus licensed is called the contributor's "contributor version".
479 |
480 | A contributor's "essential patent claims" are all patent claims
481 | owned or controlled by the contributor, whether already acquired or
482 | hereafter acquired, that would be infringed by some manner, permitted
483 | by this License, of making, using, or selling its contributor version,
484 | but do not include claims that would be infringed only as a
485 | consequence of further modification of the contributor version. For
486 | purposes of this definition, "control" includes the right to grant
487 | patent sublicenses in a manner consistent with the requirements of
488 | this License.
489 |
490 | Each contributor grants you a non-exclusive, worldwide, royalty-free
491 | patent license under the contributor's essential patent claims, to
492 | make, use, sell, offer for sale, import and otherwise run, modify and
493 | propagate the contents of its contributor version.
494 |
495 | In the following three paragraphs, a "patent license" is any express
496 | agreement or commitment, however denominated, not to enforce a patent
497 | (such as an express permission to practice a patent or covenant not to
498 | sue for patent infringement). To "grant" such a patent license to a
499 | party means to make such an agreement or commitment not to enforce a
500 | patent against the party.
501 |
502 | If you convey a covered work, knowingly relying on a patent license,
503 | and the Corresponding Source of the work is not available for anyone
504 | to copy, free of charge and under the terms of this License, through a
505 | publicly available network server or other readily accessible means,
506 | then you must either (1) cause the Corresponding Source to be so
507 | available, or (2) arrange to deprive yourself of the benefit of the
508 | patent license for this particular work, or (3) arrange, in a manner
509 | consistent with the requirements of this License, to extend the patent
510 | license to downstream recipients. "Knowingly relying" means you have
511 | actual knowledge that, but for the patent license, your conveying the
512 | covered work in a country, or your recipient's use of the covered work
513 | in a country, would infringe one or more identifiable patents in that
514 | country that you have reason to believe are valid.
515 |
516 | If, pursuant to or in connection with a single transaction or
517 | arrangement, you convey, or propagate by procuring conveyance of, a
518 | covered work, and grant a patent license to some of the parties
519 | receiving the covered work authorizing them to use, propagate, modify
520 | or convey a specific copy of the covered work, then the patent license
521 | you grant is automatically extended to all recipients of the covered
522 | work and works based on it.
523 |
524 | A patent license is "discriminatory" if it does not include within
525 | the scope of its coverage, prohibits the exercise of, or is
526 | conditioned on the non-exercise of one or more of the rights that are
527 | specifically granted under this License. You may not convey a covered
528 | work if you are a party to an arrangement with a third party that is
529 | in the business of distributing software, under which you make payment
530 | to the third party based on the extent of your activity of conveying
531 | the work, and under which the third party grants, to any of the
532 | parties who would receive the covered work from you, a discriminatory
533 | patent license (a) in connection with copies of the covered work
534 | conveyed by you (or copies made from those copies), or (b) primarily
535 | for and in connection with specific products or compilations that
536 | contain the covered work, unless you entered into that arrangement,
537 | or that patent license was granted, prior to 28 March 2007.
538 |
539 | Nothing in this License shall be construed as excluding or limiting
540 | any implied license or other defenses to infringement that may
541 | otherwise be available to you under applicable patent law.
542 |
543 | 12. No Surrender of Others' Freedom.
544 |
545 | If conditions are imposed on you (whether by court order, agreement or
546 | otherwise) that contradict the conditions of this License, they do not
547 | excuse you from the conditions of this License. If you cannot convey a
548 | covered work so as to satisfy simultaneously your obligations under this
549 | License and any other pertinent obligations, then as a consequence you may
550 | not convey it at all. For example, if you agree to terms that obligate you
551 | to collect a royalty for further conveying from those to whom you convey
552 | the Program, the only way you could satisfy both those terms and this
553 | License would be to refrain entirely from conveying the Program.
554 |
555 | 13. Use with the GNU Affero General Public License.
556 |
557 | Notwithstanding any other provision of this License, you have
558 | permission to link or combine any covered work with a work licensed
559 | under version 3 of the GNU Affero General Public License into a single
560 | combined work, and to convey the resulting work. The terms of this
561 | License will continue to apply to the part which is the covered work,
562 | but the special requirements of the GNU Affero General Public License,
563 | section 13, concerning interaction through a network will apply to the
564 | combination as such.
565 |
566 | 14. Revised Versions of this License.
567 |
568 | The Free Software Foundation may publish revised and/or new versions of
569 | the GNU General Public License from time to time. Such new versions will
570 | be similar in spirit to the present version, but may differ in detail to
571 | address new problems or concerns.
572 |
573 | Each version is given a distinguishing version number. If the
574 | Program specifies that a certain numbered version of the GNU General
575 | Public License "or any later version" applies to it, you have the
576 | option of following the terms and conditions either of that numbered
577 | version or of any later version published by the Free Software
578 | Foundation. If the Program does not specify a version number of the
579 | GNU General Public License, you may choose any version ever published
580 | by the Free Software Foundation.
581 |
582 | If the Program specifies that a proxy can decide which future
583 | versions of the GNU General Public License can be used, that proxy's
584 | public statement of acceptance of a version permanently authorizes you
585 | to choose that version for the Program.
586 |
587 | Later license versions may give you additional or different
588 | permissions. However, no additional obligations are imposed on any
589 | author or copyright holder as a result of your choosing to follow a
590 | later version.
591 |
592 | 15. Disclaimer of Warranty.
593 |
594 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
595 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
596 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
597 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
598 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
599 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
600 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
601 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
602 |
603 | 16. Limitation of Liability.
604 |
605 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
606 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
607 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
608 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
609 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
610 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
611 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
612 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
613 | SUCH DAMAGES.
614 |
615 | 17. Interpretation of Sections 15 and 16.
616 |
617 | If the disclaimer of warranty and limitation of liability provided
618 | above cannot be given local legal effect according to their terms,
619 | reviewing courts shall apply local law that most closely approximates
620 | an absolute waiver of all civil liability in connection with the
621 | Program, unless a warranty or assumption of liability accompanies a
622 | copy of the Program in return for a fee.
623 |
624 | END OF TERMS AND CONDITIONS
625 |
626 | How to Apply These Terms to Your New Programs
627 |
628 | If you develop a new program, and you want it to be of the greatest
629 | possible use to the public, the best way to achieve this is to make it
630 | free software which everyone can redistribute and change under these terms.
631 |
632 | To do so, attach the following notices to the program. It is safest
633 | to attach them to the start of each source file to most effectively
634 | state the exclusion of warranty; and each file should have at least
635 | the "copyright" line and a pointer to where the full notice is found.
636 |
637 | {one line to give the program's name and a brief idea of what it does.}
638 | Copyright (C) {year} {name of author}
639 |
640 | This program is free software: you can redistribute it and/or modify
641 | it under the terms of the GNU General Public License as published by
642 | the Free Software Foundation, either version 3 of the License, or
643 | (at your option) any later version.
644 |
645 | This program is distributed in the hope that it will be useful,
646 | but WITHOUT ANY WARRANTY; without even the implied warranty of
647 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
648 | GNU General Public License for more details.
649 |
650 | You should have received a copy of the GNU General Public License
651 | along with this program. If not, see .
652 |
653 | Also add information on how to contact you by electronic and paper mail.
654 |
655 | If the program does terminal interaction, make it output a short
656 | notice like this when it starts in an interactive mode:
657 |
658 | {project} Copyright (C) {year} {fullname}
659 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
660 | This is free software, and you are welcome to redistribute it
661 | under certain conditions; type `show c' for details.
662 |
663 | The hypothetical commands `show w' and `show c' should show the appropriate
664 | parts of the General Public License. Of course, your program's commands
665 | might be different; for a GUI interface, you would use an "about box".
666 |
667 | You should also get your employer (if you work as a programmer) or school,
668 | if any, to sign a "copyright disclaimer" for the program, if necessary.
669 | For more information on this, and how to apply and follow the GNU GPL, see
670 | .
671 |
672 | The GNU General Public License does not permit incorporating your program
673 | into proprietary programs. If your program is a subroutine library, you
674 | may consider it more useful to permit linking proprietary applications with
675 | the library. If this is what you want to do, use the GNU Lesser General
676 | Public License instead of this License. But first, please read
677 | .
678 |
--------------------------------------------------------------------------------
/Sea Level Curves/Haq et al., 1987.csv:
--------------------------------------------------------------------------------
1 | Age (Ma),SL (compared to present)
2 | 0.15,1.26
3 | 0.26,-79.63
4 | 0.97,-78.92
5 | 1.08,1.39
6 | 1.19,11.33
7 | 1.29,18.02
8 | 1.43,19.51
9 | 1.59,13.09
10 | 1.66,-0.89
11 | 1.73,-73.65
12 | 1.75,-77.67
13 | 1.94,-79.54
14 | 2.04,-75.45
15 | 2,-2.69
16 | 2.07,6.17
17 | 2.24,16.42
18 | 2.39,7.73
19 | 2.42,-3.54
20 | 2.46,-64.17
21 | 2.54,-71.55
22 | 2.61,-67.02
23 | 2.71,-60.11
24 | 2.77,-24.61
25 | 2.84,10.99
26 | 2.86,15.86
27 | 2.98,16.48
28 | 3.08,11.37
29 | 3.16,-62.69
30 | 3.14,-68.1
31 | 3.16,-72.97
32 | 3.27,-75.06
33 | 3.38,-69.66
34 | 3.43,-62.53
35 | 3.54,28.06
36 | 3.59,41.15
37 | 3.64,51.32
38 | 3.75,54.76
39 | 3.82,55.07
40 | 3.92,46.17
41 | 3.99,31
42 | 4.1,-20.33
43 | 4.11,-25.97
44 | 4.19,-27.83
45 | 4.27,-21.99
46 | 4.34,-14.32
47 | 4.36,1.59
48 | 4.34,61.46
49 | 4.4,67.62
50 | 4.44,69.67
51 | 4.51,68.14
52 | 4.63,70.39
53 | 4.78,79.67
54 | 4.92,85.05
55 | 5.23,88.24
56 | 5.47,87.75
57 | 5.65,83.82
58 | 5.71,71.9
59 | 5.83,-32.27
60 | 5.86,-38.13
61 | 5.97,-42.81
62 | 6.12,-36.23
63 | 6.15,-28.23
64 | 6.18,28.5
65 | 6.34,34.31
66 | 6.44,35.37
67 | 6.58,29.71
68 | 6.59,20.72
69 | 6.63,-18.48
70 | 6.73,-23.48
71 | 6.91,-26.22
72 | 7.01,-23.1
73 | 7.08,-18.13
74 | 7.11,-2.98
75 | 7.31,5.11
76 | 7.56,11.02
77 | 7.89,11.3
78 | 8.24,7.56
79 | 8.45,-2
80 | 8.66,-16.32
81 | 8.85,-21.87
82 | 9.08,-24.18
83 | 9.61,-24.48
84 | 9.78,-19.1
85 | 9.97,-7.99
86 | 10.07,-2.4
87 | 10.22,-0.31
88 | 10.36,-0.8
89 | 10.46,-3.88
90 | 10.52,-12.78
91 | 10.76,-69.08
92 | 10.79,-75.59
93 | 10.86,-79.08
94 | 10.97,-75.56
95 | 10.99,-67.45
96 | 11.01,25.76
97 | 11.05,39.7
98 | 11.15,49.72
99 | 11.27,52.9
100 | 11.4,53.39
101 | 11.53,52.24
102 | 11.65,46.98
103 | 11.7,41.76
104 | 11.81,39.65
105 | 11.89,48.16
106 | 11.93,82.68
107 | 12.03,91.11
108 | 12.31,96.25
109 | 12.61,94.67
110 | 12.8,89.76
111 | 12.94,84.86
112 | 13.12,84.39
113 | 13.23,90.11
114 | 13.29,118.79
115 | 13.44,127.42
116 | 13.72,136.57
117 | 14.12,142.98
118 | 14.52,141.38
119 | 14.8,137.11
120 | 14.89,57.08
121 | 15.02,52.51
122 | 15.08,58.24
123 | 15.11,101.21
124 | 15.25,133.87
125 | 15.31,140.14
126 | 15.52,143.23
127 | 15.77,138.83
128 | 15.83,131.13
129 | 15.92,45.69
130 | 15.98,41.24
131 | 16.09,41.64
132 | 16.13,50.62
133 | 16.18,89.36
134 | 16.22,106.79
135 | 16.24,122.48
136 | 16.32,131.01
137 | 16.43,135.75
138 | 16.6,138.3
139 | 16.77,137.18
140 | 16.87,133.26
141 | 16.94,122.31
142 | 17.01,116.88
143 | 17.13,115.33
144 | 17.4,118.73
145 | 17.74,120.7
146 | 18.07,118.46
147 | 18.61,106.63
148 | 19.27,87.1
149 | 19.83,67.69
150 | 20.01,64.18
151 | 20.14,66.96
152 | 20.25,74.3
153 | 20.33,110.65
154 | 20.41,117.23
155 | 20.6,120.64
156 | 20.77,116.37
157 | 20.82,109.11
158 | 20.95,102.57
159 | 21.1,110.65
160 | 21.29,118.39
161 | 21.69,128.24
162 | 22.06,133.22
163 | 22.44,134.09
164 | 22.88,129.1
165 | 23.18,121.33
166 | 23.35,104.17
167 | 23.44,45.04
168 | 23.5,35.06
169 | 23.65,33.28
170 | 23.76,39.53
171 | 23.85,71.45
172 | 23.86,80.86
173 | 24.05,85.26
174 | 24.25,84.25
175 | 24.38,75.68
176 | 24.45,61.37
177 | 24.45,53.36
178 | 24.68,47.36
179 | 24.89,54.24
180 | 25.06,69.37
181 | 25.24,77.24
182 | 25.52,80.86
183 | 25.8,80.81
184 | 26.04,76.43
185 | 26.26,66.96
186 | 26.55,36.7
187 | 26.64,31.49
188 | 26.84,30.26
189 | 26.99,34.01
190 | 27.14,58.13
191 | 27.68,62.07
192 | 28.29,56.48
193 | 28.8,37.69
194 | 28.93,20.46
195 | 28.99,10.06
196 | 29.23,3.1
197 | 29.5,1.01
198 | 29.93,11.14
199 | 29.93,35.06
200 | 30.16,131.72
201 | 30.11,148.02
202 | 30.37,167.15
203 | 30.59,177.32
204 | 30.84,178.81
205 | 31.02,175.68
206 | 31.22,173.42
207 | 31.36,178.86
208 | 31.8,192.24
209 | 32.14,196.27
210 | 32.46,196.3
211 | 32.77,192.65
212 | 33.08,179.26
213 | 33.12,160.95
214 | 33.29,111.11
215 | 33.37,102.64
216 | 33.57,103.46
217 | 33.67,113.39
218 | 33.72,137.74
219 | 33.77,147.46
220 | 33.88,151.31
221 | 34.04,149.51
222 | 34.08,142.24
223 | 34.1,135.95
224 | 34.19,131.7
225 | 34.28,132.74
226 | 34.36,138.89
227 | 34.72,142.74
228 | 35.02,136.63
229 | 35.08,129.8
230 | 35.45,124.88
231 | 35.91,129.57
232 | 36.23,133.3
233 | 36.57,128.25
234 | 36.67,120.01
235 | 36.8,102.01
236 | 37.23,94.57
237 | 37.37,158.74
238 | 37.57,170.61
239 | 37.68,175.03
240 | 37.99,175.95
241 | 38.4,171.98
242 | 38.74,173.32
243 | 38.96,177.51
244 | 39.04,187.13
245 | 39.34,192.38
246 | 39.65,192.01
247 | 39.85,180.72
248 | 40.1,151.99
249 | 40.29,144.05
250 | 40.68,139.66
251 | 41.01,139.72
252 | 41.36,146.48
253 | 41.64,168.52
254 | 41.75,174.78
255 | 42.08,177.97
256 | 42.42,174.66
257 | 42.65,172.24
258 | 42.92,174.03
259 | 43.22,186.86
260 | 43.54,200.55
261 | 43.95,208.48
262 | 44.55,210.85
263 | 44.98,205.57
264 | 45.14,200.23
265 | 45.32,194.35
266 | 45.54,191.82
267 | 45.95,196.49
268 | 46.44,207.65
269 | 46.71,213.01
270 | 47.18,214.2
271 | 47.39,211.13
272 | 47.57,204.05
273 | 47.62,169.18
274 | 47.81,161.56
275 | 48.07,160.53
276 | 48.28,168.93
277 | 48.33,183.1
278 | 48.56,186.1
279 | 48.75,185.43
280 | 48.86,178.8
281 | 49.16,80.03
282 | 49.3,71.68
283 | 49.54,83.33
284 | 49.56,92.31
285 | 49.76,187.11
286 | 49.83,195.54
287 | 49.89,198.87
288 | 50.02,200.13
289 | 50.12,195.33
290 | 50.33,202.11
291 | 50.41,206.32
292 | 50.62,202.92
293 | 50.81,207.33
294 | 51.05,210.98
295 | 51.35,212.14
296 | 51.52,204.86
297 | 51.57,184.07
298 | 51.78,176.68
299 | 52.04,180.11
300 | 52.27,208.97
301 | 52.31,215.02
302 | 52.4,217.16
303 | 52.48,212.7
304 | 52.52,207.06
305 | 52.6,206.28
306 | 52.67,211.57
307 | 52.92,220.15
308 | 53.03,217.62
309 | 53.15,212.17
310 | 53.24,209
311 | 53.47,211.99
312 | 54.04,214.08
313 | 54.43,209.92
314 | 54.66,160.52
315 | 54.86,154.33
316 | 55.11,157.65
317 | 55.26,197.25
318 | 55.41,187.37
319 | 55.43,164.85
320 | 55.56,134.08
321 | 55.64,130.82
322 | 55.7,138.71
323 | 55.7,172.7
324 | 55.83,177.64
325 | 55.89,170.81
326 | 55.89,71.96
327 | 55.9,72.6
328 | 55.97,173.79
329 | 56.19,184.45
330 | 56.48,191.64
331 | 56.79,193.4
332 | 57.15,192.99
333 | 57.3,190.14
334 | 57.65,177.17
335 | 58.66,70.62
336 | 58.71,61.08
337 | 58.92,56.16
338 | 59.15,65.3
339 | 59.22,148.21
340 | 59.27,173.51
341 | 59.34,178.66
342 | 59.41,179.26
343 | 59.47,172.84
344 | 59.54,154.17
345 | 59.62,149.25
346 | 59.69,151.05
347 | 59.75,166.83
348 | 59.86,180.65
349 | 60.11,192.15
350 | 60.41,198.65
351 | 60.77,197.88
352 | 61.12,194.08
353 | 61.41,191.38
354 | 61.69,193.45
355 | 62.03,201.02
356 | 62.5,198.53
357 | 62.57,199.34
358 | 62.64,200.7
359 | 62.71,202.6
360 | 62.79,203.41
361 | 62.86,204.5
362 | 62.93,205.1
363 | 63,205.1
364 | 63.07,207
365 | 63.14,207
366 | 63.21,207
367 | 63.29,207
368 | 63.36,207
369 | 63.43,207
370 | 63.5,207
371 | 63.57,207
372 | 63.64,207
373 | 63.71,207
374 | 63.79,207
375 | 63.86,207
376 | 63.93,207
377 | 64,207
378 | 64.07,207
379 | 64.14,207
380 | 64.21,207
381 | 64.29,207
382 | 64.36,207
383 | 64.43,207.1
384 | 64.5,207.1
385 | 64.57,207.1
386 | 64.64,207.1
387 | 64.71,205.2
388 | 64.79,201.4
389 | 64.86,197.6
390 | 64.93,193.8
391 | 65,190
392 | 65.1,187.47
393 | 65.2,186.2
394 | 65.3,186.3
395 | 65.4,188.2
396 | 65.5,188.2
397 | 65.55,190.1
398 | 65.6,192
399 | 65.65,194.85
400 | 65.7,195.8
401 | 65.75,195.8
402 | 65.8,192
403 | 65.85,154.03
404 | 65.9,121.9
405 | 65.95,120
406 | 66,154.1
407 | 66.18,188.2
408 | 66.35,195.8
409 | 66.53,199.6
410 | 66.71,203.4
411 | 66.88,205.3
412 | 67.06,207.2
413 | 67.24,209.1
414 | 67.41,211
415 | 67.59,212.9
416 | 67.77,214.8
417 | 67.94,214.8
418 | 68.12,214.8
419 | 68.3,214.8
420 | 68.47,214.8
421 | 68.65,214.8
422 | 68.83,214.8
423 | 69,212.9
424 | 69.18,211
425 | 69.36,211
426 | 69.53,209.1
427 | 69.71,207.3
428 | 69.89,203.5
429 | 70.06,200.33
430 | 70.24,196.38
431 | 70.42,189.57
432 | 70.59,177.57
433 | 70.77,169.4
434 | 70.95,169.4
435 | 71.12,180.8
436 | 71.3,191.15
437 | 71.39,198.75
438 | 71.48,205.4
439 | 71.57,209.2
440 | 71.66,213
441 | 71.75,214.9
442 | 71.84,218.7
443 | 71.93,220.6
444 | 72.02,222.5
445 | 72.11,224.4
446 | 72.2,226.3
447 | 72.29,226.3
448 | 72.38,226.3
449 | 72.47,228.2
450 | 72.56,228.2
451 | 72.65,228.2
452 | 72.74,229.71
453 | 72.83,229.78
454 | 72.92,229.8
455 | 73.01,229.8
456 | 73.1,229.8
457 | 73.19,229.8
458 | 73.28,229.8
459 | 73.37,229.53
460 | 73.46,227.93
461 | 73.55,227.99
462 | 73.64,225.56
463 | 73.73,222.84
464 | 73.82,222.26
465 | 73.91,222.21
466 | 74,220.3
467 | 74.1,216.4
468 | 74.19,214.03
469 | 74.29,209.75
470 | 74.38,203.48
471 | 74.48,196.16
472 | 74.57,191.5
473 | 74.67,189.6
474 | 74.76,189.6
475 | 74.86,189.6
476 | 74.95,191.5
477 | 75.05,198.2
478 | 75.14,206.8
479 | 75.24,211.6
480 | 75.33,218.3
481 | 75.43,222.1
482 | 75.52,225.9
483 | 75.62,229.8
484 | 75.71,233.6
485 | 75.81,236.45
486 | 75.9,237.4
487 | 76,237.4
488 | 76.09,237.4
489 | 76.19,237.4
490 | 76.28,236.64
491 | 76.38,234.36
492 | 76.47,233.1
493 | 76.57,231.6
494 | 76.66,229.7
495 | 76.76,229.7
496 | 76.85,229.7
497 | 76.95,231.6
498 | 77.04,231.6
499 | 77.14,231.6
500 | 77.23,233.5
501 | 77.33,234.45
502 | 77.42,237.4
503 | 77.52,241.2
504 | 77.61,243.1
505 | 77.71,245
506 | 77.8,245
507 | 77.9,245
508 | 77.99,245
509 | 78.09,245
510 | 78.18,243.1
511 | 78.28,241.1
512 | 78.37,239.2
513 | 78.47,237.3
514 | 78.56,237.3
515 | 78.66,237.3
516 | 78.75,239.2
517 | 78.85,239.2
518 | 78.94,241.1
519 | 79.04,243
520 | 79.13,244.9
521 | 79.23,243
522 | 79.32,241.1
523 | 79.42,236.83
524 | 79.51,223.9
525 | 79.61,193.2
526 | 79.7,186.23
527 | 79.8,202.8
528 | 79.89,217.15
529 | 79.99,221.9
530 | 80.08,225.8
531 | 80.18,227.7
532 | 80.27,231.5
533 | 80.37,233.4
534 | 80.46,233.4
535 | 80.56,235.3
536 | 80.65,235.93
537 | 80.75,237.2
538 | 80.84,237.2
539 | 80.94,237.2
540 | 81.03,237.2
541 | 81.13,235.3
542 | 81.22,235.3
543 | 81.32,235.3
544 | 81.41,233.4
545 | 81.51,233.4
546 | 81.6,233.4
547 | 81.7,231.4
548 | 81.79,229.03
549 | 81.89,225.7
550 | 81.98,219.52
551 | 82.08,215.34
552 | 82.17,212.3
553 | 82.27,210.4
554 | 82.36,210.4
555 | 82.46,210.3
556 | 82.55,212.3
557 | 82.65,213.25
558 | 82.74,216.1
559 | 82.84,217.05
560 | 82.93,219.9
561 | 83.03,221.8
562 | 83.12,223.7
563 | 83.22,225.6
564 | 83.31,224.08
565 | 83.41,222.56
566 | 83.5,220.28
567 | 83.56,216
568 | 83.62,211.82
569 | 83.67,207.64
570 | 83.73,202.22
571 | 83.79,189.7
572 | 83.85,184.64
573 | 83.9,181.6
574 | 83.96,181.6
575 | 84.02,185.4
576 | 84.08,194.33
577 | 84.13,204.5
578 | 84.19,212.2
579 | 84.25,217.9
580 | 84.31,221.7
581 | 84.36,223.6
582 | 84.42,223.6
583 | 84.48,223.6
584 | 84.54,223.6
585 | 84.59,225.35
586 | 84.65,225.7
587 | 84.71,224.41
588 | 84.77,221.73
589 | 84.82,220.1
590 | 84.88,220.1
591 | 84.94,218.2
592 | 85,218.2
593 | 85.05,216.3
594 | 85.11,216.3
595 | 85.17,216.3
596 | 85.23,216.32
597 | 85.28,216.39
598 | 85.34,217.62
599 | 85.4,218.98
600 | 85.46,220.47
601 | 85.51,223.19
602 | 85.57,225.95
603 | 85.63,227.86
604 | 85.69,229.7
605 | 85.74,229.7
606 | 85.8,229.8
607 | 86.12,227.9
608 | 86.44,224.1
609 | 86.76,222.2
610 | 87.08,224.1
611 | 87.4,226
612 | 87.72,231.7
613 | 88.04,235.6
614 | 88.36,237.5
615 | 88.68,237.5
616 | 89,237.5
617 | 89.15,234.97
618 | 89.3,229.9
619 | 89.45,214.7
620 | 89.6,176.5
621 | 89.75,135.5
622 | 89.9,128.8
623 | 90.05,130.7
624 | 90.2,163.2
625 | 90.35,209
626 | 90.5,241.5
627 | 90.65,238.97
628 | 90.8,224.3
629 | 90.95,220.5
630 | 91.1,251.1
631 | 91.25,254.9
632 | 91.4,254.9
633 | 91.55,247.3
634 | 91.7,243.5
635 | 91.85,243.5
636 | 92,249.3
637 | 92.15,256.9
638 | 92.3,256.9
639 | 92.45,257
640 | 92.6,257
641 | 92.75,257.99
642 | 92.9,255.27
643 | 93.05,252.01
644 | 93.2,246.93
645 | 93.35,241.7
646 | 93.5,238.99
647 | 93.64,234.64
648 | 93.77,229.76
649 | 93.91,227.04
650 | 94.04,224.34
651 | 94.18,222.8
652 | 94.31,222.8
653 | 94.45,220.9
654 | 94.58,220.9
655 | 94.72,218.3
656 | 94.85,218.3
657 | 94.99,219.25
658 | 95.12,221.8
659 | 95.26,222.2
660 | 95.39,224.1
661 | 95.53,224.18
662 | 95.66,226.1
663 | 95.8,226.1
664 | 95.93,226.16
665 | 96.07,224.3
666 | 96.2,217.87
667 | 96.34,200.7
668 | 96.47,184.1
669 | 96.61,178.4
670 | 96.74,178.5
671 | 96.88,199.5
672 | 97.01,230.2
673 | 97.15,237.52
674 | 97.28,241.7
675 | 97.42,243.7
676 | 97.55,245.6
677 | 97.69,245.6
678 | 97.82,245.7
679 | 97.96,243.8
680 | 98.09,241.9
681 | 98.23,240
682 | 98.36,236.2
683 | 98.5,234.3
684 | 98.63,234.3
685 | 98.77,232.44
686 | 98.9,232.5
687 | 99.01,232.5
688 | 99.12,234.9
689 | 99.23,223.1
690 | 99.34,229.53
691 | 99.45,235.93
692 | 99.57,240.4
693 | 99.68,242.3
694 | 99.79,244.2
695 | 99.9,244.2
696 | 100.01,244.2
697 | 100.12,242.3
698 | 100.23,240.4
699 | 100.34,234.7
700 | 100.45,225.1
701 | 100.56,210.75
702 | 100.67,192.6
703 | 100.78,184.9
704 | 100.9,186.23
705 | 101.01,204.73
706 | 101.12,219.4
707 | 101.23,230.9
708 | 101.34,229
709 | 101.45,227.1
710 | 101.56,221.4
711 | 101.67,212.75
712 | 101.78,208
713 | 101.89,204.1
714 | 102,204.2
715 | 102.11,206.1
716 | 102.23,210.53
717 | 102.34,213.7
718 | 102.45,215.7
719 | 102.56,217.6
720 | 102.67,215.7
721 | 102.78,213.8
722 | 102.89,208
723 | 103,195.6
724 | 103.11,190.8
725 | 103.22,187
726 | 103.33,185.1
727 | 103.44,185.1
728 | 103.56,185.1
729 | 103.67,187
730 | 103.78,190.87
731 | 103.89,194.7
732 | 104,197.55
733 | 104.11,198.5
734 | 104.22,198.5
735 | 104.33,198.5
736 | 104.44,196.6
737 | 104.55,193.75
738 | 104.66,190.43
739 | 104.77,190
740 | 104.89,190
741 | 105,190
742 | 105.11,189
743 | 105.22,189
744 | 105.33,188
745 | 105.44,188
746 | 105.55,187.47
747 | 105.66,186.2
748 | 105.77,184.93
749 | 105.88,184.4
750 | 105.99,184.4
751 | 106.1,184.4
752 | 106.22,187.35
753 | 106.33,189.25
754 | 106.44,192.17
755 | 106.55,196
756 | 106.66,197.95
757 | 106.77,198
758 | 106.88,198
759 | 106.99,198
760 | 107.1,196.73
761 | 107.21,195.57
762 | 107.32,193.67
763 | 107.43,191.45
764 | 107.55,188.6
765 | 107.66,185.75
766 | 107.77,184.17
767 | 107.88,181
768 | 107.99,179.1
769 | 108.1,177.2
770 | 108.21,175.35
771 | 108.32,174.13
772 | 108.43,172.23
773 | 108.54,170.97
774 | 108.65,169.07
775 | 108.76,161.5
776 | 108.88,159.6
777 | 108.99,159.15
778 | 109.1,158.7
779 | 109.21,158.25
780 | 109.32,157.8
781 | 109.43,157.8
782 | 109.54,157.8
783 | 109.65,157.8
784 | 109.76,157.8
785 | 109.87,159.7
786 | 109.98,159.75
787 | 110.09,159.8
788 | 110.21,159.8
789 | 110.32,162.9
790 | 110.43,162.9
791 | 110.54,161.95
792 | 110.65,161
793 | 110.76,160.53
794 | 110.87,159.1
795 | 110.98,158.63
796 | 111.09,155.3
797 | 111.2,151.98
798 | 111.31,144.22
799 | 111.42,130.6
800 | 111.54,120.1
801 | 111.65,121.1
802 | 111.76,133.93
803 | 111.87,147.7
804 | 111.98,153.88
805 | 112.09,157.83
806 | 112.2,159.1
807 | 112.38,157.68
808 | 112.55,155.78
809 | 112.73,152.45
810 | 112.9,148.46
811 | 113.08,143.9
812 | 113.26,141.05
813 | 113.43,138.2
814 | 113.61,136.3
815 | 113.78,136.3
816 | 113.96,134.88
817 | 114.14,134.4
818 | 114.31,135.67
819 | 114.49,136.3
820 | 114.66,136.93
821 | 114.84,138.2
822 | 115.02,140.73
823 | 115.19,143.9
824 | 115.37,147.7
825 | 115.54,150.87
826 | 115.72,154.35
827 | 115.9,157.2
828 | 116.07,159.1
829 | 116.25,160.53
830 | 116.42,161
831 | 116.6,162.27
832 | 116.78,162.9
833 | 116.95,162.9
834 | 117.13,162.9
835 | 117.3,162.9
836 | 117.48,162.9
837 | 117.66,162.9
838 | 117.83,162.43
839 | 118.01,161
840 | 118.18,159.58
841 | 118.36,156.06
842 | 118.54,145.53
843 | 118.71,127.1
844 | 118.89,108.33
845 | 119.06,97.07
846 | 119.24,94.88
847 | 119.42,103.9
848 | 119.59,122.97
849 | 119.77,145.33
850 | 119.94,157.2
851 | 120.12,163.38
852 | 120.3,164.8
853 | 120.47,166.7
854 | 120.65,165.75
855 | 120.82,163.85
856 | 121,161.95
857 | 121.17,160.05
858 | 121.34,158.8
859 | 121.51,162
860 | 121.69,164.5
861 | 121.86,170.2
862 | 122.03,171.15
863 | 122.2,172.1
864 | 122.37,174.1
865 | 122.54,174.1
866 | 122.71,174.1
867 | 122.89,174.1
868 | 123.06,171.25
869 | 123.23,168.4
870 | 123.4,167.93
871 | 123.57,167.45
872 | 123.74,164.7
873 | 123.91,164.7
874 | 124.09,165.65
875 | 124.26,166.6
876 | 124.43,170
877 | 124.6,176.1
878 | 124.77,181.9
879 | 124.94,181.43
880 | 125.11,180.95
881 | 125.29,178.1
882 | 125.46,174.3
883 | 125.63,171.45
884 | 125.8,168.6
885 | 125.97,168.6
886 | 126.14,170.55
887 | 126.31,172.5
888 | 126.49,174.4
889 | 126.66,177.25
890 | 126.83,180.1
891 | 127,180.1
892 | 127.11,177.25
893 | 127.22,174.4
894 | 127.33,170.6
895 | 127.44,163
896 | 127.56,162.1
897 | 127.67,161.2
898 | 127.78,163.1
899 | 127.89,166.9
900 | 128,167.85
901 | 128.11,168.8
902 | 128.22,170.7
903 | 128.33,168.9
904 | 128.44,165.1
905 | 128.56,161.3
906 | 128.67,153.7
907 | 128.78,146.1
908 | 128.89,138.5
909 | 129,135.65
910 | 129.11,132.8
911 | 129.22,134.7
912 | 129.33,136.6
913 | 129.44,138.5
914 | 129.56,142.3
915 | 129.67,143.3
916 | 129.78,144.3
917 | 129.89,144.3
918 | 130,141.45
919 | 130.11,136.7
920 | 130.22,127.2
921 | 130.33,128
922 | 130.44,129.1
923 | 130.56,132.9
924 | 130.67,132.95
925 | 130.78,133
926 | 130.89,131.4
927 | 131,127.9
928 | 131.11,122.2
929 | 131.22,116.5
930 | 131.33,112.7
931 | 131.44,112.7
932 | 131.56,114.6
933 | 131.67,115.55
934 | 131.78,116.5
935 | 131.89,116.5
936 | 132,114.6
937 | 132.07,111.75
938 | 132.14,108.9
939 | 132.21,107
940 | 132.29,104.15
941 | 132.36,101.3
942 | 132.43,98.44
943 | 132.5,95.58
944 | 132.57,95.58
945 | 132.64,94.4
946 | 132.71,94.4
947 | 132.79,94.4
948 | 132.86,95.04
949 | 132.93,96.31
950 | 133,97.45
951 | 133.07,98.53
952 | 133.14,100.1
953 | 133.21,100.42
954 | 133.29,102
955 | 133.36,102
956 | 133.43,102
957 | 133.5,102
958 | 133.57,102
959 | 133.64,100.86
960 | 133.71,100.1
961 | 133.79,100.1
962 | 133.86,98.21
963 | 133.93,96.69
964 | 134,96.31
965 | 134.07,94.4
966 | 134.14,92.98
967 | 134.21,90.6
968 | 134.29,88.69
969 | 134.36,87.27
970 | 134.43,83.74
971 | 134.5,80.61
972 | 134.57,77.75
973 | 134.64,74.61
974 | 134.71,70.93
975 | 134.79,67.28
976 | 134.86,62.05
977 | 134.93,56.34
978 | 135,48.72
979 | 135.07,37.3
980 | 135.14,16.36
981 | 135.21,0.19
982 | 135.29,-8.85
983 | 135.36,-10.28
984 | 135.43,-10.28
985 | 135.5,-10.28
986 | 135.57,21.7
987 | 135.64,55.7
988 | 135.71,86.16
989 | 135.79,91.87
990 | 135.86,95.36
991 | 135.93,98.59
992 | 136,100.73
993 | 136.07,102.95
994 | 136.14,103.9
995 | 136.21,105.17
996 | 136.29,105.8
997 | 136.36,106.18
998 | 136.43,107.7
999 | 136.5,107.32
1000 | 136.57,105.33
1001 | 136.64,100.1
1002 | 136.71,92.5
1003 | 136.79,79.18
1004 | 136.86,62.05
1005 | 136.93,46.82
1006 | 137,35.4
1007 | 137.24,30.64
1008 | 137.48,29.69
1009 | 137.72,29.69
1010 | 137.96,32.35
1011 | 138.2,60.46
1012 | 138.44,88.05
1013 | 138.68,114.35
1014 | 138.92,118.72
1015 | 139.16,119.1
1016 | 139.4,119.1
1017 | 139.64,122.05
1018 | 139.88,124.27
1019 | 140.12,126.48
1020 | 140.36,128.32
1021 | 140.6,130.28
1022 | 140.84,131.87
1023 | 141.08,134.4
1024 | 141.32,136.3
1025 | 141.56,137.82
1026 | 141.8,139.15
1027 | 142.04,141.05
1028 | 142.28,142
1029 | 142.52,142
1030 | 142.76,143.58
1031 | 143,143.9
1032 | 143.24,143.9
1033 | 143.48,143.9
1034 | 143.72,143.9
1035 | 143.96,143.14
1036 | 144.2,140.58
1037 | 144.33,136.93
1038 | 144.46,126.18
1039 | 144.59,120.38
1040 | 144.72,117.24
1041 | 144.85,116.77
1042 | 144.98,118.1
1043 | 145.11,119.43
1044 | 145.24,122.93
1045 | 145.37,125.37
1046 | 145.5,128
1047 | 145.63,128.08
1048 | 145.76,128.1
1049 | 145.89,128.17
1050 | 146.02,127.88
1051 | 146.15,125.16
1052 | 146.28,121.93
1053 | 146.41,116.63
1054 | 146.54,110.35
1055 | 146.67,104.58
1056 | 146.8,98.78
1057 | 146.93,95.41
1058 | 147.06,93.51
1059 | 147.19,91.61
1060 | 147.32,91.65
1061 | 147.45,93.09
1062 | 147.58,94.34
1063 | 147.71,97.91
1064 | 147.84,103.53
1065 | 147.97,112.47
1066 | 148.1,124.4
1067 | 148.23,133.44
1068 | 148.36,136.8
1069 | 148.49,136.87
1070 | 148.62,134.97
1071 | 148.75,125.75
1072 | 148.88,109.73
1073 | 149.01,91.6
1074 | 149.14,86.45
1075 | 149.27,86.5
1076 | 149.4,89.79
1077 | 149.53,104.67
1078 | 149.66,127.2
1079 | 149.79,143.7
1080 | 149.92,147.1
1081 | 150.05,147.14
1082 | 150.18,145.25
1083 | 150.31,139.47
1084 | 150.44,124.9
1085 | 150.57,101.89
1086 | 150.7,81.55
1087 | 150.73,79.26
1088 | 150.77,102.4
1089 | 150.8,136.47
1090 | 150.84,154.37
1091 | 150.87,159.59
1092 | 150.9,162.27
1093 | 150.94,164.11
1094 | 150.97,165.3
1095 | 151.01,165.3
1096 | 151.04,165.38
1097 | 151.07,165.4
1098 | 151.11,165.06
1099 | 151.14,163.22
1100 | 151.18,159.7
1101 | 151.21,153.23
1102 | 151.24,142.75
1103 | 151.28,131.27
1104 | 151.31,122.38
1105 | 151.35,115.63
1106 | 151.38,113.9
1107 | 151.41,113.3
1108 | 151.45,115.3
1109 | 151.48,130.27
1110 | 151.52,156.56
1111 | 151.55,172.66
1112 | 151.58,171.6
1113 | 151.62,168.58
1114 | 151.65,162.78
1115 | 151.69,157.45
1116 | 151.72,154.92
1117 | 151.75,154.95
1118 | 151.79,156.61
1119 | 151.82,158.95
1120 | 151.86,164.24
1121 | 151.89,166.5
1122 | 151.92,167.5
1123 | 151.96,167.5
1124 | 151.99,167.03
1125 | 152.03,166.55
1126 | 152.06,166.08
1127 | 152.09,165.6
1128 | 152.13,163.6
1129 | 152.16,163.6
1130 | 152.2,160.75
1131 | 152.23,159.8
1132 | 152.26,158.85
1133 | 152.3,156
1134 | 152.33,154.1
1135 | 152.37,154.1
1136 | 152.4,152.2
1137 | 152.43,149.35
1138 | 152.47,146.5
1139 | 152.5,144.6
1140 | 152.54,144.6
1141 | 152.57,142.7
1142 | 152.6,142.7
1143 | 152.64,140.8
1144 | 152.67,140.8
1145 | 152.71,140.8
1146 | 152.74,140.8
1147 | 152.77,142.7
1148 | 152.81,142.7
1149 | 152.84,142.7
1150 | 152.88,146.5
1151 | 152.91,147.45
1152 | 152.94,148.4
1153 | 152.98,148.4
1154 | 153.01,148.4
1155 | 153.05,148.4
1156 | 153.08,148.4
1157 | 153.11,145.55
1158 | 153.15,142.7
1159 | 153.18,137.95
1160 | 153.22,135.1
1161 | 153.25,132.25
1162 | 153.28,131.78
1163 | 153.32,131.3
1164 | 153.35,131.3
1165 | 153.39,132.25
1166 | 153.42,133.2
1167 | 153.45,135.1
1168 | 153.49,137.95
1169 | 153.52,140.8
1170 | 153.56,139.38
1171 | 153.59,137.95
1172 | 153.62,136.98
1173 | 153.66,136
1174 | 153.69,133.1
1175 | 153.73,131.2
1176 | 153.76,126.45
1177 | 153.79,123.6
1178 | 153.83,118.85
1179 | 153.86,116
1180 | 153.9,112.2
1181 | 153.93,112.2
1182 | 153.96,111.73
1183 | 154,111.25
1184 | 154.03,110.78
1185 | 154.07,110.3
1186 | 154.1,110.3
1187 | 154.19,111.25
1188 | 154.28,112.2
1189 | 154.37,114.1
1190 | 154.45,116
1191 | 154.54,117.9
1192 | 154.63,119.8
1193 | 154.72,119.8
1194 | 154.81,120.75
1195 | 154.9,121.7
1196 | 154.98,121.7
1197 | 155.07,121.7
1198 | 155.16,121.7
1199 | 155.25,121.7
1200 | 155.34,119.8
1201 | 155.43,119.8
1202 | 155.51,116.95
1203 | 155.6,114.1
1204 | 155.69,113.63
1205 | 155.78,113.15
1206 | 155.87,112.68
1207 | 155.96,112.2
1208 | 156.04,114.1
1209 | 156.13,116
1210 | 156.22,117.9
1211 | 156.31,117.9
1212 | 156.4,119.8
1213 | 156.49,119.8
1214 | 156.57,119.8
1215 | 156.66,119.8
1216 | 156.75,119.33
1217 | 156.84,118.85
1218 | 156.93,114.1
1219 | 157.02,112.2
1220 | 157.1,112.1
1221 | 157.19,114
1222 | 157.28,115.9
1223 | 157.37,117.8
1224 | 157.46,117.8
1225 | 157.55,115.9
1226 | 157.63,112.1
1227 | 157.72,104.5
1228 | 157.81,104.03
1229 | 157.9,103.55
1230 | 157.99,103.08
1231 | 158.08,102.6
1232 | 158.16,102.6
1233 | 158.25,103.55
1234 | 158.34,104.5
1235 | 158.43,104.5
1236 | 158.52,104.5
1237 | 158.61,104.5
1238 | 158.69,104.5
1239 | 158.78,106.4
1240 | 158.87,106.4
1241 | 158.96,106.4
1242 | 159.05,106.4
1243 | 159.14,108.3
1244 | 159.22,108.3
1245 | 159.31,108.3
1246 | 159.4,106.4
1247 | 159.5,106.4
1248 | 159.6,106.4
1249 | 159.7,106.4
1250 | 159.8,106.4
1251 | 159.9,104.5
1252 | 160,104.5
1253 | 160.1,104.5
1254 | 160.2,102.6
1255 | 160.3,102.6
1256 | 160.4,100.7
1257 | 160.5,98.77
1258 | 160.6,96.87
1259 | 160.7,96.87
1260 | 160.8,94.01
1261 | 160.9,91.16
1262 | 161,89.26
1263 | 161.1,86.41
1264 | 161.2,83.55
1265 | 161.3,79.75
1266 | 161.4,75.94
1267 | 161.5,71.19
1268 | 161.6,68.34
1269 | 161.7,66.44
1270 | 161.8,62.63
1271 | 161.9,61.21
1272 | 162,59.78
1273 | 162.1,59.3
1274 | 162.2,58.82
1275 | 162.3,56.92
1276 | 162.4,56.92
1277 | 162.5,56.92
1278 | 162.6,57.87
1279 | 162.7,58.81
1280 | 162.8,58.81
1281 | 162.9,60.71
1282 | 163,62.61
1283 | 163.1,64.51
1284 | 163.2,68.31
1285 | 163.3,68.31
1286 | 163.4,68.3
1287 | 163.5,70.2
1288 | 163.6,69.73
1289 | 163.7,69.25
1290 | 163.8,68.3
1291 | 163.9,67.34
1292 | 164,64.49
1293 | 164.1,62.59
1294 | 164.2,59.73
1295 | 164.3,54.98
1296 | 164.4,52.13
1297 | 164.46,49.27
1298 | 164.52,47.37
1299 | 164.58,42.62
1300 | 164.64,39.76
1301 | 164.7,35.01
1302 | 164.76,32.16
1303 | 164.82,30.26
1304 | 164.88,30.25
1305 | 164.94,28.35
1306 | 165,28.35
1307 | 165.06,30.25
1308 | 165.12,32.15
1309 | 165.18,35.95
1310 | 165.24,39.75
1311 | 165.3,43.55
1312 | 165.36,51.15
1313 | 165.42,54.94
1314 | 165.48,55.89
1315 | 165.54,56.84
1316 | 165.6,56.84
1317 | 165.66,54.94
1318 | 165.72,53.04
1319 | 165.78,53.03
1320 | 165.84,53.03
1321 | 165.9,54.93
1322 | 165.96,56.83
1323 | 166.02,56.83
1324 | 166.08,56.83
1325 | 166.14,56.82
1326 | 166.2,56.82
1327 | 166.26,54.92
1328 | 166.32,54.91
1329 | 166.38,53.01
1330 | 166.44,51.11
1331 | 166.5,51.11
1332 | 166.56,51.11
1333 | 166.62,51.11
1334 | 166.68,51.1
1335 | 166.74,51.1
1336 | 166.8,51.1
1337 | 166.86,51.1
1338 | 166.92,54.9
1339 | 166.98,54.9
1340 | 167.04,54.89
1341 | 167.1,60.59
1342 | 167.16,64.39
1343 | 167.22,66.29
1344 | 167.28,68.19
1345 | 167.34,71.99
1346 | 167.4,74.84
1347 | 167.46,77.69
1348 | 167.52,79.59
1349 | 167.58,83.38
1350 | 167.64,85.28
1351 | 167.7,87.18
1352 | 167.76,90.98
1353 | 167.82,90.98
1354 | 167.88,90.98
1355 | 167.94,94.78
1356 | 168,94.78
1357 | 168.06,94.77
1358 | 168.12,96.67
1359 | 168.18,96.67
1360 | 168.24,97.62
1361 | 168.3,98.57
1362 | 168.36,98.56
1363 | 168.42,98.56
1364 | 168.48,98.56
1365 | 168.54,98.56
1366 | 168.6,98.56
1367 | 168.66,98.56
1368 | 168.72,98.55
1369 | 168.78,98.55
1370 | 168.84,96.65
1371 | 168.9,96.65
1372 | 168.96,96.17
1373 | 169.02,95.69
1374 | 169.08,95.22
1375 | 169.14,94.74
1376 | 169.2,94.74
1377 | 169.32,92.83
1378 | 169.44,92.83
1379 | 169.57,90.93
1380 | 169.69,90.93
1381 | 169.81,90.93
1382 | 169.93,90.92
1383 | 170.05,89.02
1384 | 170.17,90.92
1385 | 170.3,90.92
1386 | 170.42,90.92
1387 | 170.54,90.91
1388 | 170.66,92.81
1389 | 170.78,92.81
1390 | 170.9,92.81
1391 | 171.03,94.71
1392 | 171.15,92.8
1393 | 171.27,92.8
1394 | 171.39,90.9
1395 | 171.51,88.05
1396 | 171.63,87.57
1397 | 171.76,87.09
1398 | 171.88,84.24
1399 | 172,79.49
1400 | 172.12,79.48
1401 | 172.24,77.58
1402 | 172.36,74.73
1403 | 172.49,74.25
1404 | 172.61,73.77
1405 | 172.73,71.87
1406 | 172.85,71.87
1407 | 172.97,71.87
1408 | 173.09,69.96
1409 | 173.22,69.96
1410 | 173.34,69.96
1411 | 173.46,69.96
1412 | 173.58,69.96
1413 | 173.7,69.96
1414 | 173.82,69.95
1415 | 173.95,71.85
1416 | 174.07,71.85
1417 | 174.19,71.85
1418 | 174.31,75.65
1419 | 174.43,77.54
1420 | 174.55,78.49
1421 | 174.68,79.44
1422 | 174.8,81.34
1423 | 174.92,82.29
1424 | 175.04,83.24
1425 | 175.16,85.14
1426 | 175.28,85.13
1427 | 175.41,88.69
1428 | 175.53,90.58
1429 | 175.65,90.58
1430 | 175.77,90.57
1431 | 175.89,90.56
1432 | 176.01,90.55
1433 | 176.14,88.64
1434 | 176.26,88.64
1435 | 176.38,88.63
1436 | 176.5,88.62
1437 | 176.55,86.71
1438 | 176.59,86.7
1439 | 176.64,84.8
1440 | 176.68,84.79
1441 | 176.73,82.88
1442 | 176.77,80.97
1443 | 176.82,80.96
1444 | 176.86,78.1
1445 | 176.91,75.23
1446 | 176.95,73.33
1447 | 177,73.32
1448 | 177.04,71.41
1449 | 177.09,68.55
1450 | 177.13,65.68
1451 | 177.18,63.77
1452 | 177.22,60.92
1453 | 177.27,58.05
1454 | 177.31,58.04
1455 | 177.36,56.13
1456 | 177.4,54.22
1457 | 177.45,51.36
1458 | 177.49,48.5
1459 | 177.54,46.59
1460 | 177.58,46.58
1461 | 177.63,44.67
1462 | 177.67,41.81
1463 | 177.72,38.94
1464 | 177.76,38.93
1465 | 177.81,37.03
1466 | 177.85,35.12
1467 | 177.9,35.11
1468 | 177.94,33.2
1469 | 177.99,30.34
1470 | 178.03,29.38
1471 | 178.08,28.42
1472 | 178.12,25.56
1473 | 178.17,25.08
1474 | 178.21,24.6
1475 | 178.26,23.64
1476 | 178.3,22.68
1477 | 178.35,22.19
1478 | 178.39,21.71
1479 | 178.44,21.7
1480 | 178.48,21.22
1481 | 178.53,20.74
1482 | 178.57,20.25
1483 | 178.62,19.77
1484 | 178.66,19.76
1485 | 178.71,19.76
1486 | 178.75,19.75
1487 | 178.8,19.74
1488 | 178.84,20.69
1489 | 178.89,21.63
1490 | 178.93,21.62
1491 | 178.98,23.52
1492 | 179.02,24.47
1493 | 179.07,25.41
1494 | 179.11,29.21
1495 | 179.16,30.16
1496 | 179.2,31.1
1497 | 179.25,34.9
1498 | 179.29,40.6
1499 | 179.34,40.6
1500 | 179.38,40.59
1501 | 179.43,44.38
1502 | 179.47,45.33
1503 | 179.52,46.28
1504 | 179.56,46.27
1505 | 179.61,46.27
1506 | 179.65,46.26
1507 | 179.7,46.25
1508 | 179.74,46.24
1509 | 179.79,46.24
1510 | 179.83,46.23
1511 | 179.88,46.22
1512 | 179.92,44.31
1513 | 179.97,44.3
1514 | 180.01,44.3
1515 | 180.06,44.29
1516 | 180.1,44.28
1517 | 180.24,45.23
1518 | 180.37,46.17
1519 | 180.51,46.16
1520 | 180.64,47.11
1521 | 180.78,48.06
1522 | 180.91,51.85
1523 | 181.05,55.65
1524 | 181.19,56.6
1525 | 181.32,57.54
1526 | 181.46,61.34
1527 | 181.59,61.34
1528 | 181.73,61.33
1529 | 181.86,63.22
1530 | 182,63.21
1531 | 182.14,61.3
1532 | 182.27,61.3
1533 | 182.41,61.29
1534 | 182.54,61.28
1535 | 182.68,59.38
1536 | 182.81,63.17
1537 | 182.95,63.17
1538 | 183.09,63.16
1539 | 183.22,66.96
1540 | 183.36,66.95
1541 | 183.49,67.9
1542 | 183.63,68.84
1543 | 183.76,68.83
1544 | 183.9,68.35
1545 | 184.04,67.87
1546 | 184.17,67.38
1547 | 184.31,66.9
1548 | 184.44,63.09
1549 | 184.58,62.13
1550 | 184.71,61.17
1551 | 184.85,61.16
1552 | 184.99,64.96
1553 | 185.12,64.96
1554 | 185.26,64.95
1555 | 185.39,66.84
1556 | 185.53,67.79
1557 | 185.66,68.74
1558 | 185.8,68.73
1559 | 185.94,68.73
1560 | 186.07,68.72
1561 | 186.21,68.71
1562 | 186.34,68.7
1563 | 186.48,66.79
1564 | 186.61,64.88
1565 | 186.75,64.87
1566 | 186.89,61.06
1567 | 187.02,57.25
1568 | 187.16,53.43
1569 | 187.29,49.62
1570 | 187.43,43.9
1571 | 187.56,38.18
1572 | 187.7,33.42
1573 | 187.84,28.65
1574 | 187.97,24.84
1575 | 188.11,24.83
1576 | 188.24,22.92
1577 | 188.38,21.01
1578 | 188.51,21
1579 | 188.65,19.09
1580 | 188.79,19.08
1581 | 188.92,19.08
1582 | 189.06,19.07
1583 | 189.19,19.06
1584 | 189.33,20.96
1585 | 189.46,21.91
1586 | 189.6,22.85
1587 | 189.67,24.74
1588 | 189.74,25.69
1589 | 189.81,26.64
1590 | 189.89,28.53
1591 | 189.96,29.48
1592 | 190.03,30.42
1593 | 190.1,32.32
1594 | 190.17,36.11
1595 | 190.24,37.06
1596 | 190.31,38.01
1597 | 190.38,38
1598 | 190.46,36.09
1599 | 190.53,36.08
1600 | 190.6,34.17
1601 | 190.67,34.17
1602 | 190.74,34.16
1603 | 190.81,34.15
1604 | 190.88,37.95
1605 | 190.95,37.95
1606 | 191.03,37.94
1607 | 191.1,41.73
1608 | 191.17,41.25
1609 | 191.24,40.77
1610 | 191.31,36
1611 | 191.38,28.39
1612 | 191.45,28.38
1613 | 191.52,30.28
1614 | 191.6,32.17
1615 | 191.67,37.87
1616 | 191.74,41.67
1617 | 191.81,43.57
1618 | 191.88,45.47
1619 | 191.95,45.46
1620 | 192.02,46.41
1621 | 192.09,47.35
1622 | 192.17,47.34
1623 | 192.24,45.43
1624 | 192.31,45.42
1625 | 192.38,45.42
1626 | 192.45,45.41
1627 | 192.52,45.4
1628 | 192.59,43.49
1629 | 192.66,43.48
1630 | 192.74,43.48
1631 | 192.81,43.47
1632 | 192.88,43.46
1633 | 192.95,43.45
1634 | 193.02,44.4
1635 | 193.09,45.35
1636 | 193.16,49.14
1637 | 193.23,49.14
1638 | 193.31,49.13
1639 | 193.38,51.03
1640 | 193.45,51.03
1641 | 193.52,51.02
1642 | 193.59,51.01
1643 | 193.66,51
1644 | 193.73,49.09
1645 | 193.8,48.61
1646 | 193.88,48.13
1647 | 193.95,45.26
1648 | 194.02,45.25
1649 | 194.09,43.34
1650 | 194.16,41.43
1651 | 194.23,38.58
1652 | 194.3,37.62
1653 | 194.37,36.66
1654 | 194.45,33.79
1655 | 194.52,31.88
1656 | 194.59,31.87
1657 | 194.66,29.96
1658 | 194.73,27.1
1659 | 194.8,26.14
1660 | 194.87,25.19
1661 | 194.94,22.32
1662 | 195.02,21.84
1663 | 195.09,21.36
1664 | 195.16,18.49
1665 | 195.23,18.48
1666 | 195.3,18.48
1667 | 195.39,18.47
1668 | 195.49,18.46
1669 | 195.58,16.55
1670 | 195.68,18.45
1671 | 195.77,18.45
1672 | 195.87,18.44
1673 | 195.96,18.43
1674 | 196.05,19.38
1675 | 196.15,20.32
1676 | 196.24,22.21
1677 | 196.34,22.21
1678 | 196.43,22.2
1679 | 196.53,24.1
1680 | 196.62,25.99
1681 | 196.71,26.94
1682 | 196.81,27.88
1683 | 196.9,29.78
1684 | 197,29.78
1685 | 197.09,29.77
1686 | 197.19,31.66
1687 | 197.28,29.75
1688 | 197.37,29.74
1689 | 197.47,28.78
1690 | 197.56,27.83
1691 | 197.66,26.39
1692 | 197.75,24.96
1693 | 197.85,22.09
1694 | 197.94,20.19
1695 | 198.03,17.33
1696 | 198.13,14.46
1697 | 198.22,9.7
1698 | 198.32,6.83
1699 | 198.41,4.92
1700 | 198.51,2.06
1701 | 198.6,1.1
1702 | 198.69,0.14
1703 | 198.79,-0.34
1704 | 198.88,-0.82
1705 | 198.98,-0.83
1706 | 199.07,-0.84
1707 | 199.17,-0.84
1708 | 199.26,1.05
1709 | 199.35,2
1710 | 199.45,2.95
1711 | 199.54,4.84
1712 | 199.64,6.73
1713 | 199.73,6.73
1714 | 199.83,6.72
1715 | 199.92,6.71
1716 | 200.01,6.71
1717 | 200.11,6.7
1718 | 200.2,6.69
1719 | 200.3,6.68
1720 | 200.39,4.77
1721 | 200.49,4.29
1722 | 200.58,3.81
1723 | 200.67,0.95
1724 | 200.77,-0.96
1725 | 200.86,-0.97
1726 | 200.96,-2.88
1727 | 201.05,-5.74
1728 | 201.15,-10.51
1729 | 201.24,-13.38
1730 | 201.33,-16.23
1731 | 201.43,-18.14
1732 | 201.52,-23.86
1733 | 201.62,-25.3
1734 | 201.71,-26.74
1735 | 201.81,-29.59
1736 | 201.9,-31.5
1737 | 201.94,-33.41
1738 | 201.98,-33.42
1739 | 202.03,-35.33
1740 | 202.07,-35.34
1741 | 202.11,-35.35
1742 | 202.15,-35.36
1743 | 202.2,-35.36
1744 | 202.24,-35.37
1745 | 202.28,-34.43
1746 | 202.32,-33.48
1747 | 202.36,-33.49
1748 | 202.41,-31.59
1749 | 202.45,-29.69
1750 | 202.49,-29.7
1751 | 202.53,-25.9
1752 | 202.58,-25.91
1753 | 202.62,-25.91
1754 | 202.66,-22.12
1755 | 202.7,-22.13
1756 | 202.74,-22.13
1757 | 202.79,-20.23
1758 | 202.83,-19.29
1759 | 202.87,-18.34
1760 | 202.91,-16.45
1761 | 202.96,-14.55
1762 | 203,-14.56
1763 | 203.04,-14.56
1764 | 203.08,-12.67
1765 | 203.12,-12.68
1766 | 203.17,-12.68
1767 | 203.21,-10.78
1768 | 203.25,-10.8
1769 | 203.29,-9.85
1770 | 203.34,-8.9
1771 | 203.38,-7.01
1772 | 203.42,-7.01
1773 | 203.46,-7.02
1774 | 203.5,-7.03
1775 | 203.55,-7.03
1776 | 203.59,-7.04
1777 | 203.63,-7.05
1778 | 203.67,-7.06
1779 | 203.72,-6.11
1780 | 203.76,-5.17
1781 | 203.8,-7.07
1782 | 203.84,-7.08
1783 | 203.88,-7.09
1784 | 203.93,-9
1785 | 203.97,-9.01
1786 | 204.01,-9.01
1787 | 204.05,-9.02
1788 | 204.1,-10.93
1789 | 204.14,-10.94
1790 | 204.18,-12.85
1791 | 204.22,-12.86
1792 | 204.26,-14.77
1793 | 204.31,-14.78
1794 | 204.35,-16.69
1795 | 204.39,-16.7
1796 | 204.43,-18.6
1797 | 204.48,-18.61
1798 | 204.52,-18.61
1799 | 204.56,-18.62
1800 | 204.6,-18.63
1801 | 204.64,-18.64
1802 | 204.69,-18.64
1803 | 204.73,-18.65
1804 | 204.77,-18.66
1805 | 204.81,-18.66
1806 | 204.86,-18.67
1807 | 204.9,-18.68
1808 | 204.94,-18.68
1809 | 204.98,-18.69
1810 | 205.02,-18.7
1811 | 205.07,-18.71
1812 | 205.11,-18.71
1813 | 205.15,-18.72
1814 | 205.19,-17.78
1815 | 205.24,-16.83
1816 | 205.28,-16.84
1817 | 205.32,-16.85
1818 | 205.36,-16.85
1819 | 205.4,-14.96
1820 | 205.45,-14.97
1821 | 205.49,-14.02
1822 | 205.53,-13.07
1823 | 205.57,-13.08
1824 | 205.62,-13.09
1825 | 205.66,-13.09
1826 | 205.7,-11.2
1827 | 205.77,-9.31
1828 | 205.83,-9.31
1829 | 205.9,-9.32
1830 | 205.96,-7.42
1831 | 206.03,-7.43
1832 | 206.09,-7.43
1833 | 206.16,-5.54
1834 | 206.22,-4.59
1835 | 206.29,-3.65
1836 | 206.35,-1.75
1837 | 206.42,-1.76
1838 | 206.48,-0.82
1839 | 206.55,0.13
1840 | 206.61,2.02
1841 | 206.68,2.02
1842 | 206.74,2.01
1843 | 206.81,3.91
1844 | 206.87,3.9
1845 | 206.94,3.9
1846 | 207,3.89
1847 | 207.07,1.98
1848 | 207.13,1.97
1849 | 207.2,1.96
1850 | 207.26,0.05
1851 | 207.33,-1.86
1852 | 207.39,-1.87
1853 | 207.46,-3.78
1854 | 207.52,-3.79
1855 | 207.59,-5.7
1856 | 207.65,-5.7
1857 | 207.72,-5.71
1858 | 207.78,-5.72
1859 | 207.85,-5.73
1860 | 207.91,-5.73
1861 | 207.98,-5.74
1862 | 208.04,-5.75
1863 | 208.11,-5.75
1864 | 208.17,-5.76
1865 | 208.24,-3.86
1866 | 208.3,-2.92
1867 | 208.37,-1.97
1868 | 208.43,-1.98
1869 | 208.5,1.82
1870 | 208.56,2.76
1871 | 208.63,3.71
1872 | 208.69,5.6
1873 | 208.76,6.55
1874 | 208.82,7.5
1875 | 208.89,9.39
1876 | 208.95,13.19
1877 | 209.02,13.19
1878 | 209.08,13.18
1879 | 209.15,16.97
1880 | 209.21,16.97
1881 | 209.28,16.96
1882 | 209.34,20.76
1883 | 209.41,21.71
1884 | 209.47,22.65
1885 | 209.54,24.55
1886 | 209.6,26.44
1887 | 209.76,27.39
1888 | 209.92,28.34
1889 | 210.08,30.23
1890 | 210.23,31.18
1891 | 210.39,32.12
1892 | 210.55,34.02
1893 | 210.71,34.97
1894 | 210.87,35.91
1895 | 211.03,37.8
1896 | 211.19,39.7
1897 | 211.34,40.65
1898 | 211.5,41.59
1899 | 211.66,43.48
1900 | 211.82,44.43
1901 | 211.98,45.38
1902 | 212.14,47.27
1903 | 212.3,49.16
1904 | 212.45,50.11
1905 | 212.61,51.06
1906 | 212.77,51.05
1907 | 212.93,52
1908 | 213.09,52.94
1909 | 213.25,54.83
1910 | 213.41,55.78
1911 | 213.56,56.73
1912 | 213.72,58.62
1913 | 213.88,60.51
1914 | 214.04,60.51
1915 | 214.2,60.5
1916 | 214.36,62.4
1917 | 214.52,62.4
1918 | 214.67,62.39
1919 | 214.83,64.28
1920 | 214.99,64.28
1921 | 215.15,64.27
1922 | 215.31,68.07
1923 | 215.47,68.06
1924 | 215.63,68.06
1925 | 215.78,68.05
1926 | 215.94,69.51
1927 | 216.1,69.08
1928 | 216.26,69.08
1929 | 216.42,69.09
1930 | 216.58,69.09
1931 | 216.74,70.99
1932 | 216.89,70.99
1933 | 217.05,71
1934 | 217.21,71
1935 | 217.37,71.01
1936 | 217.53,71.01
1937 | 217.69,71.02
1938 | 217.85,71.02
1939 | 218,71.03
1940 | 218.16,71.03
1941 | 218.32,71.04
1942 | 218.48,71.04
1943 | 218.64,71.05
1944 | 218.8,71.05
1945 | 218.96,71.05
1946 | 219.11,71.06
1947 | 219.27,70.12
1948 | 219.43,69.17
1949 | 219.59,67.29
1950 | 219.75,65.4
1951 | 219.91,64.46
1952 | 220.07,63.51
1953 | 220.22,61.63
1954 | 220.38,59.74
1955 | 220.54,57.85
1956 | 220.7,54.07
1957 | 220.78,46.51
1958 | 220.87,38.94
1959 | 220.95,31.37
1960 | 221.04,31.37
1961 | 221.12,25.7
1962 | 221.2,23.82
1963 | 221.29,23.82
1964 | 221.37,23.82
1965 | 221.45,26.67
1966 | 221.54,31.4
1967 | 221.62,40.88
1968 | 221.71,52.23
1969 | 221.79,59.81
1970 | 221.87,63.6
1971 | 221.96,65.49
1972 | 222.04,68.34
1973 | 222.12,69.29
1974 | 222.21,71.19
1975 | 222.29,71.19
1976 | 222.38,71.2
1977 | 222.46,73.09
1978 | 222.54,71.21
1979 | 222.63,71.21
1980 | 222.71,70.27
1981 | 222.79,69.33
1982 | 222.88,67.44
1983 | 222.96,66.5
1984 | 223.05,65.55
1985 | 223.13,63.67
1986 | 223.21,61.78
1987 | 223.3,61.78
1988 | 223.38,58.95
1989 | 223.46,56.11
1990 | 223.55,52.33
1991 | 223.63,46.66
1992 | 223.72,44.77
1993 | 223.8,42.88
1994 | 223.88,35.32
1995 | 223.97,35.32
1996 | 224.05,31.54
1997 | 224.13,29.66
1998 | 224.22,27.77
1999 | 224.3,25.88
2000 | 224.39,25.88
2001 | 224.47,25.89
2002 | 224.55,25.89
2003 | 224.64,26.85
2004 | 224.72,31.58
2005 | 224.8,35.37
2006 | 224.89,42
2007 | 224.97,48.63
2008 | 225.06,54.31
2009 | 225.14,58.1
2010 | 225.22,60
2011 | 225.31,61.9
2012 | 225.39,63.79
2013 | 225.47,63.8
2014 | 225.56,63.8
2015 | 225.64,63.81
2016 | 225.73,63.81
2017 | 225.81,63.81
2018 | 225.89,63.82
2019 | 225.98,61.93
2020 | 226.06,61.93
2021 | 226.14,60.05
2022 | 226.23,58.16
2023 | 226.31,56.27
2024 | 226.4,54.38
2025 | 226.48,52.5
2026 | 226.56,52.5
2027 | 226.65,49.67
2028 | 226.73,46.83
2029 | 226.81,44.94
2030 | 226.9,37.38
2031 | 226.98,36.44
2032 | 227.07,35.49
2033 | 227.15,22.25
2034 | 227.23,22.25
2035 | 227.32,1.44
2036 | 227.4,1.45
2037 | 227.54,-23.15
2038 | 227.68,-23.15
2039 | 227.81,-26.93
2040 | 227.95,-30.71
2041 | 228.09,-32.6
2042 | 228.23,-32.6
2043 | 228.37,-30.7
2044 | 228.5,-28.8
2045 | 228.64,-17.44
2046 | 228.78,3.38
2047 | 228.92,15.69
2048 | 229.06,28
2049 | 229.19,32.74
2050 | 229.33,35.58
2051 | 229.47,37.47
2052 | 229.61,39.37
2053 | 229.75,41.27
2054 | 229.88,42.22
2055 | 230.02,43.17
2056 | 230.16,43.17
2057 | 230.3,43.18
2058 | 230.44,43.18
2059 | 230.57,43.19
2060 | 230.71,43.19
2061 | 230.85,43.2
2062 | 230.99,41.31
2063 | 231.13,41.31
2064 | 231.26,41.32
2065 | 231.4,41.32
2066 | 231.54,41.33
2067 | 231.68,39.44
2068 | 231.82,39.45
2069 | 231.95,39.45
2070 | 232.09,39.45
2071 | 232.23,39.46
2072 | 232.37,38.52
2073 | 232.51,37.58
2074 | 232.64,37.58
2075 | 232.78,35.69
2076 | 232.92,35.7
2077 | 233.06,33.81
2078 | 233.2,31.92
2079 | 233.33,31.92
2080 | 233.47,26.25
2081 | 233.61,24.37
2082 | 233.75,22.48
2083 | 233.89,20.59
2084 | 234.02,16.81
2085 | 234.16,12.08
2086 | 234.3,7.35
2087 | 234.49,4.52
2088 | 234.67,1.68
2089 | 234.86,-2.1
2090 | 235.04,-3.04
2091 | 235.23,-3.98
2092 | 235.41,-3.98
2093 | 235.6,-3.97
2094 | 235.78,-3.97
2095 | 235.97,-3.96
2096 | 236.15,-1.12
2097 | 236.34,3.62
2098 | 236.52,10.25
2099 | 236.71,18.77
2100 | 236.89,24.46
2101 | 237.08,28.24
2102 | 237.26,30.14
2103 | 237.45,30.15
2104 | 237.63,30.15
2105 | 237.82,30.16
2106 | 238,29.21
2107 | 238.19,28.27
2108 | 238.37,28.27
2109 | 238.56,20.71
2110 | 238.74,20.71
2111 | 238.93,7.47
2112 | 239.11,4.63
2113 | 239.3,1.8
2114 | 239.48,-3.87
2115 | 239.67,-3.87
2116 | 239.85,-3.86
2117 | 240.04,0.87
2118 | 240.22,7.5
2119 | 240.41,15.08
2120 | 240.59,23.6
2121 | 240.78,26.44
2122 | 240.96,26.45
2123 | 241.15,24.56
2124 | 241.33,22.67
2125 | 241.52,20.78
2126 | 241.7,17
2127 | 241.73,15.12
2128 | 241.76,15.12
2129 | 241.79,15.12
2130 | 241.82,17.02
2131 | 241.86,18.92
2132 | 241.89,20.82
2133 | 241.92,22.71
2134 | 241.95,23.67
2135 | 241.98,23.2
2136 | 242.01,22.73
2137 | 242.04,20.84
2138 | 242.07,18.01
2139 | 242.1,15.17
2140 | 242.13,13.28
2141 | 242.17,12.34
2142 | 242.2,11.4
2143 | 242.23,11.4
2144 | 242.26,11.41
2145 | 242.29,11.41
2146 | 242.32,11.41
2147 | 242.35,12.37
2148 | 242.38,13.32
2149 | 242.41,16.16
2150 | 242.44,19.01
2151 | 242.48,19.96
2152 | 242.51,20.91
2153 | 242.54,19.97
2154 | 242.57,19.02
2155 | 242.6,19.03
2156 | 242.63,13.36
2157 | 242.66,12.42
2158 | 242.69,11.47
2159 | 242.72,2.01
2160 | 242.75,2.02
2161 | 242.79,-1.76
2162 | 242.82,-2.71
2163 | 242.85,-3.65
2164 | 242.88,-5.53
2165 | 242.91,-5.53
2166 | 242.94,-5.53
2167 | 242.97,-5.52
2168 | 243,-5.52
2169 | 243.03,-5.51
2170 | 243.06,-5.51
2171 | 243.1,-5.5
2172 | 243.13,-5.5
2173 | 243.16,-3.6
2174 | 243.19,-1.7
2175 | 243.22,-1.7
2176 | 243.25,0.2
2177 | 243.28,2.1
2178 | 243.31,3.99
2179 | 243.34,4
2180 | 243.37,5.9
2181 | 243.41,5.9
2182 | 243.44,5.9
2183 | 243.47,5.91
2184 | 243.5,5.91
2185 | 243.53,5.92
2186 | 243.56,4.98
2187 | 243.59,4.03
2188 | 243.62,4.04
2189 | 243.65,3.1
2190 | 243.68,2.15
2191 | 243.72,0.27
2192 | 243.75,0.27
2193 | 243.78,0.27
2194 | 243.81,-1.61
2195 | 243.84,-3.5
2196 | 243.87,-3.49
2197 | 243.9,-5.38
2198 | 243.93,-5.38
2199 | 243.96,-6.32
2200 | 243.99,-7.26
2201 | 244.03,-9.15
2202 | 244.06,-11.04
2203 | 244.09,-11.98
2204 | 244.12,-12.92
2205 | 244.15,-14.81
2206 | 244.18,-15.75
2207 | 244.21,-16.69
2208 | 244.24,-18.58
2209 | 244.27,-19.53
2210 | 244.3,-20.47
2211 | 244.34,-24.24
2212 | 244.37,-26.13
2213 | 244.4,-27.08
2214 | 244.43,-28.02
2215 | 244.46,-29.9
2216 | 244.49,-31.79
2217 | 244.52,-33.68
2218 | 244.55,-35.57
2219 | 244.58,-37.45
2220 | 244.61,-37.45
2221 | 244.65,-40.29
2222 | 244.68,-43.12
2223 | 244.71,-45.01
2224 | 244.74,-48.79
2225 | 244.77,-49.73
2226 | 244.8,-50.67
2227 |
--------------------------------------------------------------------------------
/Sea Level Curves/Haq87_HighResolution.dat:
--------------------------------------------------------------------------------
1 | 0 0
2 | 0.15 1.26
3 | 0.26 -79.63
4 | 0.97 -78.92
5 | 1.08 1.39
6 | 1.19 11.33
7 | 1.29 18.02
8 | 1.43 19.51
9 | 1.59 13.09
10 | 1.66 -0.89
11 | 1.73 -73.65
12 | 1.75 -77.67
13 | 1.94 -79.54
14 | 2.00 -2.69
15 | 2.04 -75.45
16 | 2.07 6.17
17 | 2.24 16.42
18 | 2.39 7.73
19 | 2.42 -3.54
20 | 2.46 -64.17
21 | 2.54 -71.55
22 | 2.61 -67.02
23 | 2.71 -60.11
24 | 2.77 -24.61
25 | 2.84 10.99
26 | 2.86 15.86
27 | 2.98 16.48
28 | 3.08 11.37
29 | 3.14 -68.10
30 | 3.16 -62.69
31 | 3.16 -72.97
32 | 3.27 -75.06
33 | 3.38 -69.66
34 | 3.43 -62.53
35 | 3.54 28.06
36 | 3.59 41.15
37 | 3.64 51.32
38 | 3.75 54.76
39 | 3.82 55.07
40 | 3.92 46.17
41 | 3.99 31.00
42 | 4.10 -20.33
43 | 4.11 -25.97
44 | 4.19 -27.83
45 | 4.27 -21.99
46 | 4.34 -14.32
47 | 4.34 61.46
48 | 4.36 1.59
49 | 4.40 67.62
50 | 4.44 69.67
51 | 4.51 68.14
52 | 4.63 70.39
53 | 4.78 79.67
54 | 4.92 85.05
55 | 5.23 88.24
56 | 5.47 87.75
57 | 5.65 83.82
58 | 5.71 71.90
59 | 5.83 -32.27
60 | 5.86 -38.13
61 | 5.97 -42.81
62 | 6.12 -36.23
63 | 6.15 -28.23
64 | 6.18 28.50
65 | 6.34 34.31
66 | 6.44 35.37
67 | 6.58 29.71
68 | 6.59 20.72
69 | 6.63 -18.48
70 | 6.73 -23.48
71 | 6.91 -26.22
72 | 7.01 -23.10
73 | 7.08 -18.13
74 | 7.11 -2.98
75 | 7.31 5.11
76 | 7.56 11.02
77 | 7.89 11.30
78 | 8.24 7.56
79 | 8.45 -2.00
80 | 8.66 -16.32
81 | 8.85 -21.87
82 | 9.08 -24.18
83 | 9.61 -24.48
84 | 9.78 -19.10
85 | 9.97 -7.99
86 | 10.07 -2.40
87 | 10.22 -0.31
88 | 10.36 -0.80
89 | 10.46 -3.88
90 | 10.52 -12.78
91 | 10.76 -69.08
92 | 10.79 -75.59
93 | 10.86 -79.08
94 | 10.97 -75.56
95 | 10.99 -67.45
96 | 11.01 25.76
97 | 11.05 39.70
98 | 11.15 49.72
99 | 11.27 52.90
100 | 11.40 53.39
101 | 11.53 52.24
102 | 11.65 46.98
103 | 11.70 41.76
104 | 11.81 39.65
105 | 11.89 48.16
106 | 11.93 82.68
107 | 12.03 91.11
108 | 12.31 96.25
109 | 12.61 94.67
110 | 12.80 89.76
111 | 12.94 84.86
112 | 13.12 84.39
113 | 13.23 90.11
114 | 13.29 118.79
115 | 13.44 127.42
116 | 13.72 136.57
117 | 14.12 142.98
118 | 14.52 141.38
119 | 14.80 137.11
120 | 14.89 57.08
121 | 15.02 52.51
122 | 15.08 58.24
123 | 15.11 101.21
124 | 15.25 133.87
125 | 15.31 140.14
126 | 15.52 143.23
127 | 15.77 138.83
128 | 15.83 131.13
129 | 15.92 45.69
130 | 15.98 41.24
131 | 16.09 41.64
132 | 16.13 50.62
133 | 16.18 89.36
134 | 16.22 106.79
135 | 16.24 122.48
136 | 16.32 131.01
137 | 16.43 135.75
138 | 16.60 138.30
139 | 16.77 137.18
140 | 16.87 133.26
141 | 16.94 122.31
142 | 17.01 116.88
143 | 17.13 115.33
144 | 17.40 118.73
145 | 17.74 120.70
146 | 18.07 118.46
147 | 18.61 106.63
148 | 19.27 87.10
149 | 19.83 67.69
150 | 20.01 64.18
151 | 20.14 66.96
152 | 20.25 74.30
153 | 20.33 110.65
154 | 20.41 117.23
155 | 20.60 120.64
156 | 20.77 116.37
157 | 20.82 109.11
158 | 20.95 102.57
159 | 21.10 110.65
160 | 21.29 118.39
161 | 21.69 128.24
162 | 22.06 133.22
163 | 22.44 134.09
164 | 22.88 129.10
165 | 23.18 121.33
166 | 23.35 104.17
167 | 23.44 45.04
168 | 23.50 35.06
169 | 23.65 33.28
170 | 23.76 39.53
171 | 23.85 71.45
172 | 23.86 80.86
173 | 24.05 85.26
174 | 24.25 84.25
175 | 24.38 75.68
176 | 24.45 61.37
177 | 24.45 53.36
178 | 24.68 47.36
179 | 24.89 54.24
180 | 25.06 69.37
181 | 25.24 77.24
182 | 25.52 80.86
183 | 25.80 80.81
184 | 26.04 76.43
185 | 26.26 66.96
186 | 26.55 36.70
187 | 26.64 31.49
188 | 26.84 30.26
189 | 26.99 34.01
190 | 27.14 58.13
191 | 27.68 62.07
192 | 28.29 56.48
193 | 28.80 37.69
194 | 28.93 20.46
195 | 28.99 10.06
196 | 29.23 3.10
197 | 29.50 1.01
198 | 29.93 11.14
199 | 29.93 35.06
200 | 30.11 148.02
201 | 30.16 131.72
202 | 30.37 167.15
203 | 30.59 177.32
204 | 30.84 178.81
205 | 31.02 175.68
206 | 31.22 173.42
207 | 31.36 178.86
208 | 31.80 192.24
209 | 32.14 196.27
210 | 32.46 196.30
211 | 32.77 192.65
212 | 33.08 179.26
213 | 33.12 160.95
214 | 33.29 111.11
215 | 33.37 102.64
216 | 33.57 103.46
217 | 33.67 113.39
218 | 33.72 137.74
219 | 33.77 147.46
220 | 33.88 151.31
221 | 34.04 149.51
222 | 34.08 142.24
223 | 34.10 135.95
224 | 34.19 131.70
225 | 34.28 132.74
226 | 34.36 138.89
227 | 34.72 142.74
228 | 35.02 136.63
229 | 35.08 129.80
230 | 35.45 124.88
231 | 35.91 129.57
232 | 36.23 133.30
233 | 36.57 128.25
234 | 36.67 120.01
235 | 36.80 102.01
236 | 37.23 94.57
237 | 37.37 158.74
238 | 37.57 170.61
239 | 37.68 175.03
240 | 37.99 175.95
241 | 38.40 171.98
242 | 38.74 173.32
243 | 38.96 177.51
244 | 39.04 187.13
245 | 39.34 192.38
246 | 39.65 192.01
247 | 39.85 180.72
248 | 40.10 151.99
249 | 40.29 144.05
250 | 40.68 139.66
251 | 41.01 139.72
252 | 41.36 146.48
253 | 41.64 168.52
254 | 41.75 174.78
255 | 42.08 177.97
256 | 42.42 174.66
257 | 42.65 172.24
258 | 42.92 174.03
259 | 43.22 186.86
260 | 43.54 200.55
261 | 43.95 208.48
262 | 44.55 210.85
263 | 44.98 205.57
264 | 45.14 200.23
265 | 45.32 194.35
266 | 45.54 191.82
267 | 45.95 196.49
268 | 46.44 207.65
269 | 46.71 213.01
270 | 47.18 214.20
271 | 47.39 211.13
272 | 47.57 204.05
273 | 47.62 169.18
274 | 47.81 161.56
275 | 48.07 160.53
276 | 48.28 168.93
277 | 48.33 183.10
278 | 48.56 186.10
279 | 48.75 185.43
280 | 48.86 178.80
281 | 49.16 80.03
282 | 49.30 71.68
283 | 49.54 83.33
284 | 49.56 92.31
285 | 49.76 187.11
286 | 49.83 195.54
287 | 49.89 198.87
288 | 50.02 200.13
289 | 50.12 195.33
290 | 50.33 202.11
291 | 50.41 206.32
292 | 50.62 202.92
293 | 50.81 207.33
294 | 51.05 210.98
295 | 51.35 212.14
296 | 51.52 204.86
297 | 51.57 184.07
298 | 51.78 176.68
299 | 52.04 180.11
300 | 52.27 208.97
301 | 52.31 215.02
302 | 52.40 217.16
303 | 52.48 212.70
304 | 52.52 207.06
305 | 52.60 206.28
306 | 52.67 211.57
307 | 52.92 220.15
308 | 53.03 217.62
309 | 53.15 212.17
310 | 53.24 209.00
311 | 53.47 211.99
312 | 54.04 214.08
313 | 54.43 209.92
314 | 54.66 160.52
315 | 54.86 154.33
316 | 55.11 157.65
317 | 55.26 197.25
318 | 55.41 187.37
319 | 55.43 164.85
320 | 55.56 134.08
321 | 55.64 130.82
322 | 55.70 138.71
323 | 55.70 172.70
324 | 55.83 177.64
325 | 55.89 170.81
326 | 55.89 71.96
327 | 55.90 72.60
328 | 55.97 173.79
329 | 56.19 184.45
330 | 56.48 191.64
331 | 56.79 193.40
332 | 57.15 192.99
333 | 57.30 190.14
334 | 57.65 177.17
335 | 58.66 70.62
336 | 58.71 61.08
337 | 58.92 56.16
338 | 59.15 65.30
339 | 59.22 148.21
340 | 59.27 173.51
341 | 59.34 178.66
342 | 59.41 179.26
343 | 59.47 172.84
344 | 59.54 154.17
345 | 59.62 149.25
346 | 59.69 151.05
347 | 59.75 166.83
348 | 59.86 180.65
349 | 60.11 192.15
350 | 60.41 198.65
351 | 60.77 197.88
352 | 61.12 194.08
353 | 61.41 191.38
354 | 61.69 193.45
355 | 62.03 201.02
356 | 62.50 198.53
357 | 62.57 199.34
358 | 62.64 200.70
359 | 62.71 202.60
360 | 62.79 203.41
361 | 62.86 204.50
362 | 62.93 205.10
363 | 63.00 205.10
364 | 63.07 207.00
365 | 63.14 207.00
366 | 63.21 207.00
367 | 63.29 207.00
368 | 63.36 207.00
369 | 63.43 207.00
370 | 63.50 207.00
371 | 63.57 207.00
372 | 63.64 207.00
373 | 63.71 207.00
374 | 63.79 207.00
375 | 63.86 207.00
376 | 63.93 207.00
377 | 64.00 207.00
378 | 64.07 207.00
379 | 64.14 207.00
380 | 64.21 207.00
381 | 64.29 207.00
382 | 64.36 207.00
383 | 64.43 207.10
384 | 64.50 207.10
385 | 64.57 207.10
386 | 64.64 207.10
387 | 64.71 205.20
388 | 64.79 201.40
389 | 64.86 197.60
390 | 64.93 193.80
391 | 65.00 190.00
392 | 65.10 187.47
393 | 65.20 186.20
394 | 65.30 186.30
395 | 65.40 188.20
396 | 65.50 188.20
397 | 65.55 190.10
398 | 65.60 192.00
399 | 65.65 194.85
400 | 65.70 195.80
401 | 65.75 195.80
402 | 65.80 192.00
403 | 65.85 154.03
404 | 65.90 121.90
405 | 65.95 120.00
406 | 66.00 154.10
407 | 66.18 188.20
408 | 66.35 195.80
409 | 66.53 199.60
410 | 66.71 203.40
411 | 66.88 205.30
412 | 67.06 207.20
413 | 67.24 209.10
414 | 67.41 211.00
415 | 67.59 212.90
416 | 67.77 214.80
417 | 67.94 214.80
418 | 68.12 214.80
419 | 68.30 214.80
420 | 68.47 214.80
421 | 68.65 214.80
422 | 68.83 214.80
423 | 69.00 212.90
424 | 69.18 211.00
425 | 69.36 211.00
426 | 69.53 209.10
427 | 69.71 207.30
428 | 69.89 203.50
429 | 70.06 200.33
430 | 70.24 196.38
431 | 70.42 189.57
432 | 70.59 177.57
433 | 70.77 169.40
434 | 70.95 169.40
435 | 71.12 180.80
436 | 71.30 191.15
437 | 71.39 198.75
438 | 71.48 205.40
439 | 71.57 209.20
440 | 71.66 213.00
441 | 71.75 214.90
442 | 71.84 218.70
443 | 71.93 220.60
444 | 72.02 222.50
445 | 72.11 224.40
446 | 72.20 226.30
447 | 72.29 226.30
448 | 72.38 226.30
449 | 72.47 228.20
450 | 72.56 228.20
451 | 72.65 228.20
452 | 72.74 229.71
453 | 72.83 229.78
454 | 72.92 229.80
455 | 73.01 229.80
456 | 73.10 229.80
457 | 73.19 229.80
458 | 73.28 229.80
459 | 73.37 229.53
460 | 73.46 227.93
461 | 73.55 227.99
462 | 73.64 225.56
463 | 73.73 222.84
464 | 73.82 222.26
465 | 73.91 222.21
466 | 74.00 220.30
467 | 74.10 216.40
468 | 74.19 214.03
469 | 74.29 209.75
470 | 74.38 203.48
471 | 74.48 196.16
472 | 74.57 191.50
473 | 74.67 189.60
474 | 74.76 189.60
475 | 74.86 189.60
476 | 74.95 191.50
477 | 75.05 198.20
478 | 75.14 206.80
479 | 75.24 211.60
480 | 75.33 218.30
481 | 75.43 222.10
482 | 75.52 225.90
483 | 75.62 229.80
484 | 75.71 233.60
485 | 75.81 236.45
486 | 75.90 237.40
487 | 76.00 237.40
488 | 76.09 237.40
489 | 76.19 237.40
490 | 76.28 236.64
491 | 76.38 234.36
492 | 76.47 233.10
493 | 76.57 231.60
494 | 76.66 229.70
495 | 76.76 229.70
496 | 76.85 229.70
497 | 76.95 231.60
498 | 77.04 231.60
499 | 77.14 231.60
500 | 77.23 233.50
501 | 77.33 234.45
502 | 77.42 237.40
503 | 77.52 241.20
504 | 77.61 243.10
505 | 77.71 245.00
506 | 77.80 245.00
507 | 77.90 245.00
508 | 77.99 245.00
509 | 78.09 245.00
510 | 78.18 243.10
511 | 78.28 241.10
512 | 78.37 239.20
513 | 78.47 237.30
514 | 78.56 237.30
515 | 78.66 237.30
516 | 78.75 239.20
517 | 78.85 239.20
518 | 78.94 241.10
519 | 79.04 243.00
520 | 79.13 244.90
521 | 79.23 243.00
522 | 79.32 241.10
523 | 79.42 236.83
524 | 79.51 223.90
525 | 79.61 193.20
526 | 79.70 186.23
527 | 79.80 202.80
528 | 79.89 217.15
529 | 79.99 221.90
530 | 80.08 225.80
531 | 80.18 227.70
532 | 80.27 231.50
533 | 80.37 233.40
534 | 80.46 233.40
535 | 80.56 235.30
536 | 80.65 235.93
537 | 80.75 237.20
538 | 80.84 237.20
539 | 80.94 237.20
540 | 81.03 237.20
541 | 81.13 235.30
542 | 81.22 235.30
543 | 81.32 235.30
544 | 81.41 233.40
545 | 81.51 233.40
546 | 81.60 233.40
547 | 81.70 231.40
548 | 81.79 229.03
549 | 81.89 225.70
550 | 81.98 219.52
551 | 82.08 215.34
552 | 82.17 212.30
553 | 82.27 210.40
554 | 82.36 210.40
555 | 82.46 210.30
556 | 82.55 212.30
557 | 82.65 213.25
558 | 82.74 216.10
559 | 82.84 217.05
560 | 82.93 219.90
561 | 83.03 221.80
562 | 83.12 223.70
563 | 83.22 225.60
564 | 83.31 224.08
565 | 83.41 222.56
566 | 83.50 220.28
567 | 83.56 216.00
568 | 83.62 211.82
569 | 83.67 207.64
570 | 83.73 202.22
571 | 83.79 189.70
572 | 83.85 184.64
573 | 83.90 181.60
574 | 83.96 181.60
575 | 84.02 185.40
576 | 84.08 194.33
577 | 84.13 204.50
578 | 84.19 212.20
579 | 84.25 217.90
580 | 84.31 221.70
581 | 84.36 223.60
582 | 84.42 223.60
583 | 84.48 223.60
584 | 84.54 223.60
585 | 84.59 225.35
586 | 84.65 225.70
587 | 84.71 224.41
588 | 84.77 221.73
589 | 84.82 220.10
590 | 84.88 220.10
591 | 84.94 218.20
592 | 85.00 218.20
593 | 85.05 216.30
594 | 85.11 216.30
595 | 85.17 216.30
596 | 85.23 216.32
597 | 85.28 216.39
598 | 85.34 217.62
599 | 85.40 218.98
600 | 85.46 220.47
601 | 85.51 223.19
602 | 85.57 225.95
603 | 85.63 227.86
604 | 85.69 229.70
605 | 85.74 229.70
606 | 85.80 229.80
607 | 86.12 227.90
608 | 86.44 224.10
609 | 86.76 222.20
610 | 87.08 224.10
611 | 87.40 226.00
612 | 87.72 231.70
613 | 88.04 235.60
614 | 88.36 237.50
615 | 88.68 237.50
616 | 89.00 237.50
617 | 89.15 234.97
618 | 89.30 229.90
619 | 89.45 214.70
620 | 89.60 176.50
621 | 89.75 135.50
622 | 89.90 128.80
623 | 90.05 130.70
624 | 90.20 163.20
625 | 90.35 209.00
626 | 90.50 241.50
627 | 90.65 238.97
628 | 90.80 224.30
629 | 90.95 220.50
630 | 91.10 251.10
631 | 91.25 254.90
632 | 91.40 254.90
633 | 91.55 247.30
634 | 91.70 243.50
635 | 91.85 243.50
636 | 92.00 249.30
637 | 92.15 256.90
638 | 92.30 256.90
639 | 92.45 257.00
640 | 92.60 257.00
641 | 92.75 257.99
642 | 92.90 255.27
643 | 93.05 252.01
644 | 93.20 246.93
645 | 93.35 241.70
646 | 93.50 238.99
647 | 93.64 234.64
648 | 93.77 229.76
649 | 93.91 227.04
650 | 94.04 224.34
651 | 94.18 222.80
652 | 94.31 222.80
653 | 94.45 220.90
654 | 94.58 220.90
655 | 94.72 218.30
656 | 94.85 218.30
657 | 94.99 219.25
658 | 95.12 221.80
659 | 95.26 222.20
660 | 95.39 224.10
661 | 95.53 224.18
662 | 95.66 226.10
663 | 95.80 226.10
664 | 95.93 226.16
665 | 96.07 224.30
666 | 96.20 217.87
667 | 96.34 200.70
668 | 96.47 184.10
669 | 96.61 178.40
670 | 96.74 178.50
671 | 96.88 199.50
672 | 97.01 230.20
673 | 97.15 237.52
674 | 97.28 241.70
675 | 97.42 243.70
676 | 97.55 245.60
677 | 97.69 245.60
678 | 97.82 245.70
679 | 97.96 243.80
680 | 98.09 241.90
681 | 98.23 240.00
682 | 98.36 236.20
683 | 98.50 234.30
684 | 98.63 234.30
685 | 98.77 232.44
686 | 98.90 232.50
687 | 99.01 232.50
688 | 99.12 234.90
689 | 99.23 223.10
690 | 99.34 229.53
691 | 99.45 235.93
692 | 99.57 240.40
693 | 99.68 242.30
694 | 99.79 244.20
695 | 99.90 244.20
696 | 100.01 244.20
697 | 100.12 242.30
698 | 100.23 240.40
699 | 100.34 234.70
700 | 100.45 225.10
701 | 100.56 210.75
702 | 100.67 192.60
703 | 100.78 184.90
704 | 100.90 186.23
705 | 101.01 204.73
706 | 101.12 219.40
707 | 101.23 230.90
708 | 101.34 229.00
709 | 101.45 227.10
710 | 101.56 221.40
711 | 101.67 212.75
712 | 101.78 208.00
713 | 101.89 204.10
714 | 102.00 204.20
715 | 102.11 206.10
716 | 102.23 210.53
717 | 102.34 213.70
718 | 102.45 215.70
719 | 102.56 217.60
720 | 102.67 215.70
721 | 102.78 213.80
722 | 102.89 208.00
723 | 103.00 195.60
724 | 103.11 190.80
725 | 103.22 187.00
726 | 103.33 185.10
727 | 103.44 185.10
728 | 103.56 185.10
729 | 103.67 187.00
730 | 103.78 190.87
731 | 103.89 194.70
732 | 104.00 197.55
733 | 104.11 198.50
734 | 104.22 198.50
735 | 104.33 198.50
736 | 104.44 196.60
737 | 104.55 193.75
738 | 104.66 190.43
739 | 104.77 190.00
740 | 104.89 190.00
741 | 105.00 190.00
742 | 105.11 189.00
743 | 105.22 189.00
744 | 105.33 188.00
745 | 105.44 188.00
746 | 105.55 187.47
747 | 105.66 186.20
748 | 105.77 184.93
749 | 105.88 184.40
750 | 105.99 184.40
751 | 106.10 184.40
752 | 106.22 187.35
753 | 106.33 189.25
754 | 106.44 192.17
755 | 106.55 196.00
756 | 106.66 197.95
757 | 106.77 198.00
758 | 106.88 198.00
759 | 106.99 198.00
760 | 107.10 196.73
761 | 107.21 195.57
762 | 107.32 193.67
763 | 107.43 191.45
764 | 107.55 188.60
765 | 107.66 185.75
766 | 107.77 184.17
767 | 107.88 181.00
768 | 107.99 179.10
769 | 108.10 177.20
770 | 108.21 175.35
771 | 108.32 174.13
772 | 108.43 172.23
773 | 108.54 170.97
774 | 108.65 169.07
775 | 108.76 161.50
776 | 108.88 159.60
777 | 108.99 159.15
778 | 109.10 158.70
779 | 109.21 158.25
780 | 109.32 157.80
781 | 109.43 157.80
782 | 109.54 157.80
783 | 109.65 157.80
784 | 109.76 157.80
785 | 109.87 159.70
786 | 109.98 159.75
787 | 110.09 159.80
788 | 110.21 159.80
789 | 110.32 162.90
790 | 110.43 162.90
791 | 110.54 161.95
792 | 110.65 161.00
793 | 110.76 160.53
794 | 110.87 159.10
795 | 110.98 158.63
796 | 111.09 155.30
797 | 111.20 151.98
798 | 111.31 144.22
799 | 111.42 130.60
800 | 111.54 120.10
801 | 111.65 121.10
802 | 111.76 133.93
803 | 111.87 147.70
804 | 111.98 153.88
805 | 112.09 157.83
806 | 112.20 159.10
807 | 112.38 157.68
808 | 112.55 155.78
809 | 112.73 152.45
810 | 112.90 148.46
811 | 113.08 143.90
812 | 113.26 141.05
813 | 113.43 138.20
814 | 113.61 136.30
815 | 113.78 136.30
816 | 113.96 134.88
817 | 114.14 134.40
818 | 114.31 135.67
819 | 114.49 136.30
820 | 114.66 136.93
821 | 114.84 138.20
822 | 115.02 140.73
823 | 115.19 143.90
824 | 115.37 147.70
825 | 115.54 150.87
826 | 115.72 154.35
827 | 115.90 157.20
828 | 116.07 159.10
829 | 116.25 160.53
830 | 116.42 161.00
831 | 116.60 162.27
832 | 116.78 162.90
833 | 116.95 162.90
834 | 117.13 162.90
835 | 117.30 162.90
836 | 117.48 162.90
837 | 117.66 162.90
838 | 117.83 162.43
839 | 118.01 161.00
840 | 118.18 159.58
841 | 118.36 156.06
842 | 118.54 145.53
843 | 118.71 127.10
844 | 118.89 108.33
845 | 119.06 97.07
846 | 119.24 94.88
847 | 119.42 103.90
848 | 119.59 122.97
849 | 119.77 145.33
850 | 119.94 157.20
851 | 120.12 163.38
852 | 120.30 164.80
853 | 120.47 166.70
854 | 120.65 165.75
855 | 120.82 163.85
856 | 121.00 161.95
857 | 121.17 160.05
858 | 121.34 158.80
859 | 121.51 162.00
860 | 121.69 164.50
861 | 121.86 170.20
862 | 122.03 171.15
863 | 122.20 172.10
864 | 122.37 174.10
865 | 122.54 174.10
866 | 122.71 174.10
867 | 122.89 174.10
868 | 123.06 171.25
869 | 123.23 168.40
870 | 123.40 167.93
871 | 123.57 167.45
872 | 123.74 164.70
873 | 123.91 164.70
874 | 124.09 165.65
875 | 124.26 166.60
876 | 124.43 170.00
877 | 124.60 176.10
878 | 124.77 181.90
879 | 124.94 181.43
880 | 125.11 180.95
881 | 125.29 178.10
882 | 125.46 174.30
883 | 125.63 171.45
884 | 125.80 168.60
885 | 125.97 168.60
886 | 126.14 170.55
887 | 126.31 172.50
888 | 126.49 174.40
889 | 126.66 177.25
890 | 126.83 180.10
891 | 127.00 180.10
892 | 127.11 177.25
893 | 127.22 174.40
894 | 127.33 170.60
895 | 127.44 163.00
896 | 127.56 162.10
897 | 127.67 161.20
898 | 127.78 163.10
899 | 127.89 166.90
900 | 128.00 167.85
901 | 128.11 168.80
902 | 128.22 170.70
903 | 128.33 168.90
904 | 128.44 165.10
905 | 128.56 161.30
906 | 128.67 153.70
907 | 128.78 146.10
908 | 128.89 138.50
909 | 129.00 135.65
910 | 129.11 132.80
911 | 129.22 134.70
912 | 129.33 136.60
913 | 129.44 138.50
914 | 129.56 142.30
915 | 129.67 143.30
916 | 129.78 144.30
917 | 129.89 144.30
918 | 130.00 141.45
919 | 130.11 136.70
920 | 130.22 127.20
921 | 130.33 128.00
922 | 130.44 129.10
923 | 130.56 132.90
924 | 130.67 132.95
925 | 130.78 133.00
926 | 130.89 131.40
927 | 131.00 127.90
928 | 131.11 122.20
929 | 131.22 116.50
930 | 131.33 112.70
931 | 131.44 112.70
932 | 131.56 114.60
933 | 131.67 115.55
934 | 131.78 116.50
935 | 131.89 116.50
936 | 132.00 114.60
937 | 132.07 111.75
938 | 132.14 108.90
939 | 132.21 107.00
940 | 132.29 104.15
941 | 132.36 101.30
942 | 132.43 98.44
943 | 132.50 95.58
944 | 132.57 95.58
945 | 132.64 94.40
946 | 132.71 94.40
947 | 132.79 94.40
948 | 132.86 95.04
949 | 132.93 96.31
950 | 133.00 97.45
951 | 133.07 98.53
952 | 133.14 100.10
953 | 133.21 100.42
954 | 133.29 102.00
955 | 133.36 102.00
956 | 133.43 102.00
957 | 133.50 102.00
958 | 133.57 102.00
959 | 133.64 100.86
960 | 133.71 100.10
961 | 133.79 100.10
962 | 133.86 98.21
963 | 133.93 96.69
964 | 134.00 96.31
965 | 134.07 94.40
966 | 134.14 92.98
967 | 134.21 90.60
968 | 134.29 88.69
969 | 134.36 87.27
970 | 134.43 83.74
971 | 134.50 80.61
972 | 134.57 77.75
973 | 134.64 74.61
974 | 134.71 70.93
975 | 134.79 67.28
976 | 134.86 62.05
977 | 134.93 56.34
978 | 135.00 48.72
979 | 135.07 37.30
980 | 135.14 16.36
981 | 135.21 0.19
982 | 135.29 -8.85
983 | 135.36 -10.28
984 | 135.43 -10.28
985 | 135.50 -10.28
986 | 135.57 21.70
987 | 135.64 55.70
988 | 135.71 86.16
989 | 135.79 91.87
990 | 135.86 95.36
991 | 135.93 98.59
992 | 136.00 100.73
993 | 136.07 102.95
994 | 136.14 103.90
995 | 136.21 105.17
996 | 136.29 105.80
997 | 136.36 106.18
998 | 136.43 107.70
999 | 136.50 107.32
1000 | 136.57 105.33
1001 | 136.64 100.10
1002 | 136.71 92.50
1003 | 136.79 79.18
1004 | 136.86 62.05
1005 | 136.93 46.82
1006 | 137.00 35.40
1007 | 137.24 30.64
1008 | 137.48 29.69
1009 | 137.72 29.69
1010 | 137.96 32.35
1011 | 138.20 60.46
1012 | 138.44 88.05
1013 | 138.68 114.35
1014 | 138.92 118.72
1015 | 139.16 119.10
1016 | 139.40 119.10
1017 | 139.64 122.05
1018 | 139.88 124.27
1019 | 140.12 126.48
1020 | 140.36 128.32
1021 | 140.60 130.28
1022 | 140.84 131.87
1023 | 141.08 134.40
1024 | 141.32 136.30
1025 | 141.56 137.82
1026 | 141.80 139.15
1027 | 142.04 141.05
1028 | 142.28 142.00
1029 | 142.52 142.00
1030 | 142.76 143.58
1031 | 143.00 143.90
1032 | 143.24 143.90
1033 | 143.48 143.90
1034 | 143.72 143.90
1035 | 143.96 143.14
1036 | 144.20 140.58
1037 | 144.33 136.93
1038 | 144.46 126.18
1039 | 144.59 120.38
1040 | 144.72 117.24
1041 | 144.85 116.77
1042 | 144.98 118.10
1043 | 145.11 119.43
1044 | 145.24 122.93
1045 | 145.37 125.37
1046 | 145.50 128.00
1047 | 145.63 128.08
1048 | 145.76 128.10
1049 | 145.89 128.17
1050 | 146.02 127.88
1051 | 146.15 125.16
1052 | 146.28 121.93
1053 | 146.41 116.63
1054 | 146.54 110.35
1055 | 146.67 104.58
1056 | 146.80 98.78
1057 | 146.93 95.41
1058 | 147.06 93.51
1059 | 147.19 91.61
1060 | 147.32 91.65
1061 | 147.45 93.09
1062 | 147.58 94.34
1063 | 147.71 97.91
1064 | 147.84 103.53
1065 | 147.97 112.47
1066 | 148.10 124.40
1067 | 148.23 133.44
1068 | 148.36 136.80
1069 | 148.49 136.87
1070 | 148.62 134.97
1071 | 148.75 125.75
1072 | 148.88 109.73
1073 | 149.01 91.60
1074 | 149.14 86.45
1075 | 149.27 86.50
1076 | 149.40 89.79
1077 | 149.53 104.67
1078 | 149.66 127.20
1079 | 149.79 143.70
1080 | 149.92 147.10
1081 | 150.05 147.14
1082 | 150.18 145.25
1083 | 150.31 139.47
1084 | 150.44 124.90
1085 | 150.57 101.89
1086 | 150.70 81.55
1087 | 150.73 79.26
1088 | 150.77 102.40
1089 | 150.80 136.47
1090 | 150.84 154.37
1091 | 150.87 159.59
1092 | 150.90 162.27
1093 | 150.94 164.11
1094 | 150.97 165.30
1095 | 151.01 165.30
1096 | 151.04 165.38
1097 | 151.07 165.40
1098 | 151.11 165.06
1099 | 151.14 163.22
1100 | 151.18 159.70
1101 | 151.21 153.23
1102 | 151.24 142.75
1103 | 151.28 131.27
1104 | 151.31 122.38
1105 | 151.35 115.63
1106 | 151.38 113.90
1107 | 151.41 113.30
1108 | 151.45 115.30
1109 | 151.48 130.27
1110 | 151.52 156.56
1111 | 151.55 172.66
1112 | 151.58 171.60
1113 | 151.62 168.58
1114 | 151.65 162.78
1115 | 151.69 157.45
1116 | 151.72 154.92
1117 | 151.75 154.95
1118 | 151.79 156.61
1119 | 151.82 158.95
1120 | 151.86 164.24
1121 | 151.89 166.50
1122 | 151.92 167.50
1123 | 151.96 167.50
1124 | 151.99 167.03
1125 | 152.03 166.55
1126 | 152.06 166.08
1127 | 152.09 165.60
1128 | 152.13 163.60
1129 | 152.16 163.60
1130 | 152.20 160.75
1131 | 152.23 159.80
1132 | 152.26 158.85
1133 | 152.30 156.00
1134 | 152.33 154.10
1135 | 152.37 154.10
1136 | 152.40 152.20
1137 | 152.43 149.35
1138 | 152.47 146.50
1139 | 152.50 144.60
1140 | 152.54 144.60
1141 | 152.57 142.70
1142 | 152.60 142.70
1143 | 152.64 140.80
1144 | 152.67 140.80
1145 | 152.71 140.80
1146 | 152.74 140.80
1147 | 152.77 142.70
1148 | 152.81 142.70
1149 | 152.84 142.70
1150 | 152.88 146.50
1151 | 152.91 147.45
1152 | 152.94 148.40
1153 | 152.98 148.40
1154 | 153.01 148.40
1155 | 153.05 148.40
1156 | 153.08 148.40
1157 | 153.11 145.55
1158 | 153.15 142.70
1159 | 153.18 137.95
1160 | 153.22 135.10
1161 | 153.25 132.25
1162 | 153.28 131.78
1163 | 153.32 131.30
1164 | 153.35 131.30
1165 | 153.39 132.25
1166 | 153.42 133.20
1167 | 153.45 135.10
1168 | 153.49 137.95
1169 | 153.52 140.80
1170 | 153.56 139.38
1171 | 153.59 137.95
1172 | 153.62 136.98
1173 | 153.66 136.00
1174 | 153.69 133.10
1175 | 153.73 131.20
1176 | 153.76 126.45
1177 | 153.79 123.60
1178 | 153.83 118.85
1179 | 153.86 116.00
1180 | 153.90 112.20
1181 | 153.93 112.20
1182 | 153.96 111.73
1183 | 154.00 111.25
1184 | 154.03 110.78
1185 | 154.07 110.30
1186 | 154.10 110.30
1187 | 154.19 111.25
1188 | 154.28 112.20
1189 | 154.37 114.10
1190 | 154.45 116.00
1191 | 154.54 117.90
1192 | 154.63 119.80
1193 | 154.72 119.80
1194 | 154.81 120.75
1195 | 154.90 121.70
1196 | 154.98 121.70
1197 | 155.07 121.70
1198 | 155.16 121.70
1199 | 155.25 121.70
1200 | 155.34 119.80
1201 | 155.43 119.80
1202 | 155.51 116.95
1203 | 155.60 114.10
1204 | 155.69 113.63
1205 | 155.78 113.15
1206 | 155.87 112.68
1207 | 155.96 112.20
1208 | 156.04 114.10
1209 | 156.13 116.00
1210 | 156.22 117.90
1211 | 156.31 117.90
1212 | 156.40 119.80
1213 | 156.49 119.80
1214 | 156.57 119.80
1215 | 156.66 119.80
1216 | 156.75 119.33
1217 | 156.84 118.85
1218 | 156.93 114.10
1219 | 157.02 112.20
1220 | 157.10 112.10
1221 | 157.19 114.00
1222 | 157.28 115.90
1223 | 157.37 117.80
1224 | 157.46 117.80
1225 | 157.55 115.90
1226 | 157.63 112.10
1227 | 157.72 104.50
1228 | 157.81 104.03
1229 | 157.90 103.55
1230 | 157.99 103.08
1231 | 158.08 102.60
1232 | 158.16 102.60
1233 | 158.25 103.55
1234 | 158.34 104.50
1235 | 158.43 104.50
1236 | 158.52 104.50
1237 | 158.61 104.50
1238 | 158.69 104.50
1239 | 158.78 106.40
1240 | 158.87 106.40
1241 | 158.96 106.40
1242 | 159.05 106.40
1243 | 159.14 108.30
1244 | 159.22 108.30
1245 | 159.31 108.30
1246 | 159.40 106.40
1247 | 159.50 106.40
1248 | 159.60 106.40
1249 | 159.70 106.40
1250 | 159.80 106.40
1251 | 159.90 104.50
1252 | 160.00 104.50
1253 | 160.10 104.50
1254 | 160.20 102.60
1255 | 160.30 102.60
1256 | 160.40 100.70
1257 | 160.50 98.77
1258 | 160.60 96.87
1259 | 160.70 96.87
1260 | 160.80 94.01
1261 | 160.90 91.16
1262 | 161.00 89.26
1263 | 161.10 86.41
1264 | 161.20 83.55
1265 | 161.30 79.75
1266 | 161.40 75.94
1267 | 161.50 71.19
1268 | 161.60 68.34
1269 | 161.70 66.44
1270 | 161.80 62.63
1271 | 161.90 61.21
1272 | 162.00 59.78
1273 | 162.10 59.30
1274 | 162.20 58.82
1275 | 162.30 56.92
1276 | 162.40 56.92
1277 | 162.50 56.92
1278 | 162.60 57.87
1279 | 162.70 58.81
1280 | 162.80 58.81
1281 | 162.90 60.71
1282 | 163.00 62.61
1283 | 163.10 64.51
1284 | 163.20 68.31
1285 | 163.30 68.31
1286 | 163.40 68.30
1287 | 163.50 70.20
1288 | 163.60 69.73
1289 | 163.70 69.25
1290 | 163.80 68.30
1291 | 163.90 67.34
1292 | 164.00 64.49
1293 | 164.10 62.59
1294 | 164.20 59.73
1295 | 164.30 54.98
1296 | 164.40 52.13
1297 | 164.46 49.27
1298 | 164.52 47.37
1299 | 164.58 42.62
1300 | 164.64 39.76
1301 | 164.70 35.01
1302 | 164.76 32.16
1303 | 164.82 30.26
1304 | 164.88 30.25
1305 | 164.94 28.35
1306 | 165.00 28.35
1307 | 165.06 30.25
1308 | 165.12 32.15
1309 | 165.18 35.95
1310 | 165.24 39.75
1311 | 165.30 43.55
1312 | 165.36 51.15
1313 | 165.42 54.94
1314 | 165.48 55.89
1315 | 165.54 56.84
1316 | 165.60 56.84
1317 | 165.66 54.94
1318 | 165.72 53.04
1319 | 165.78 53.03
1320 | 165.84 53.03
1321 | 165.90 54.93
1322 | 165.96 56.83
1323 | 166.02 56.83
1324 | 166.08 56.83
1325 | 166.14 56.82
1326 | 166.20 56.82
1327 | 166.26 54.92
1328 | 166.32 54.91
1329 | 166.38 53.01
1330 | 166.44 51.11
1331 | 166.50 51.11
1332 | 166.56 51.11
1333 | 166.62 51.11
1334 | 166.68 51.10
1335 | 166.74 51.10
1336 | 166.80 51.10
1337 | 166.86 51.10
1338 | 166.92 54.90
1339 | 166.98 54.90
1340 | 167.04 54.89
1341 | 167.10 60.59
1342 | 167.16 64.39
1343 | 167.22 66.29
1344 | 167.28 68.19
1345 | 167.34 71.99
1346 | 167.40 74.84
1347 | 167.46 77.69
1348 | 167.52 79.59
1349 | 167.58 83.38
1350 | 167.64 85.28
1351 | 167.70 87.18
1352 | 167.76 90.98
1353 | 167.82 90.98
1354 | 167.88 90.98
1355 | 167.94 94.78
1356 | 168.00 94.78
1357 | 168.06 94.77
1358 | 168.12 96.67
1359 | 168.18 96.67
1360 | 168.24 97.62
1361 | 168.30 98.57
1362 | 168.36 98.56
1363 | 168.42 98.56
1364 | 168.48 98.56
1365 | 168.54 98.56
1366 | 168.60 98.56
1367 | 168.66 98.56
1368 | 168.72 98.55
1369 | 168.78 98.55
1370 | 168.84 96.65
1371 | 168.90 96.65
1372 | 168.96 96.17
1373 | 169.02 95.69
1374 | 169.08 95.22
1375 | 169.14 94.74
1376 | 169.20 94.74
1377 | 169.32 92.83
1378 | 169.44 92.83
1379 | 169.57 90.93
1380 | 169.69 90.93
1381 | 169.81 90.93
1382 | 169.93 90.92
1383 | 170.05 89.02
1384 | 170.17 90.92
1385 | 170.30 90.92
1386 | 170.42 90.92
1387 | 170.54 90.91
1388 | 170.66 92.81
1389 | 170.78 92.81
1390 | 170.90 92.81
1391 | 171.03 94.71
1392 | 171.15 92.80
1393 | 171.27 92.80
1394 | 171.39 90.90
1395 | 171.51 88.05
1396 | 171.63 87.57
1397 | 171.76 87.09
1398 | 171.88 84.24
1399 | 172.00 79.49
1400 | 172.12 79.48
1401 | 172.24 77.58
1402 | 172.36 74.73
1403 | 172.49 74.25
1404 | 172.61 73.77
1405 | 172.73 71.87
1406 | 172.85 71.87
1407 | 172.97 71.87
1408 | 173.09 69.96
1409 | 173.22 69.96
1410 | 173.34 69.96
1411 | 173.46 69.96
1412 | 173.58 69.96
1413 | 173.70 69.96
1414 | 173.82 69.95
1415 | 173.95 71.85
1416 | 174.07 71.85
1417 | 174.19 71.85
1418 | 174.31 75.65
1419 | 174.43 77.54
1420 | 174.55 78.49
1421 | 174.68 79.44
1422 | 174.80 81.34
1423 | 174.92 82.29
1424 | 175.04 83.24
1425 | 175.16 85.14
1426 | 175.28 85.13
1427 | 175.41 88.69
1428 | 175.53 90.58
1429 | 175.65 90.58
1430 | 175.77 90.57
1431 | 175.89 90.56
1432 | 176.01 90.55
1433 | 176.14 88.64
1434 | 176.26 88.64
1435 | 176.38 88.63
1436 | 176.50 88.62
1437 | 176.55 86.71
1438 | 176.59 86.70
1439 | 176.64 84.80
1440 | 176.68 84.79
1441 | 176.73 82.88
1442 | 176.77 80.97
1443 | 176.82 80.96
1444 | 176.86 78.10
1445 | 176.91 75.23
1446 | 176.95 73.33
1447 | 177.00 73.32
1448 | 177.04 71.41
1449 | 177.09 68.55
1450 | 177.13 65.68
1451 | 177.18 63.77
1452 | 177.22 60.92
1453 | 177.27 58.05
1454 | 177.31 58.04
1455 | 177.36 56.13
1456 | 177.40 54.22
1457 | 177.45 51.36
1458 | 177.49 48.50
1459 | 177.54 46.59
1460 | 177.58 46.58
1461 | 177.63 44.67
1462 | 177.67 41.81
1463 | 177.72 38.94
1464 | 177.76 38.93
1465 | 177.81 37.03
1466 | 177.85 35.12
1467 | 177.90 35.11
1468 | 177.94 33.20
1469 | 177.99 30.34
1470 | 178.03 29.38
1471 | 178.08 28.42
1472 | 178.12 25.56
1473 | 178.17 25.08
1474 | 178.21 24.60
1475 | 178.26 23.64
1476 | 178.30 22.68
1477 | 178.35 22.19
1478 | 178.39 21.71
1479 | 178.44 21.70
1480 | 178.48 21.22
1481 | 178.53 20.74
1482 | 178.57 20.25
1483 | 178.62 19.77
1484 | 178.66 19.76
1485 | 178.71 19.76
1486 | 178.75 19.75
1487 | 178.80 19.74
1488 | 178.84 20.69
1489 | 178.89 21.63
1490 | 178.93 21.62
1491 | 178.98 23.52
1492 | 179.02 24.47
1493 | 179.07 25.41
1494 | 179.11 29.21
1495 | 179.16 30.16
1496 | 179.20 31.10
1497 | 179.25 34.90
1498 | 179.29 40.60
1499 | 179.34 40.60
1500 | 179.38 40.59
1501 | 179.43 44.38
1502 | 179.47 45.33
1503 | 179.52 46.28
1504 | 179.56 46.27
1505 | 179.61 46.27
1506 | 179.65 46.26
1507 | 179.70 46.25
1508 | 179.74 46.24
1509 | 179.79 46.24
1510 | 179.83 46.23
1511 | 179.88 46.22
1512 | 179.92 44.31
1513 | 179.97 44.30
1514 | 180.01 44.30
1515 | 180.06 44.29
1516 | 180.10 44.28
1517 | 180.24 45.23
1518 | 180.37 46.17
1519 | 180.51 46.16
1520 | 180.64 47.11
1521 | 180.78 48.06
1522 | 180.91 51.85
1523 | 181.05 55.65
1524 | 181.19 56.60
1525 | 181.32 57.54
1526 | 181.46 61.34
1527 | 181.59 61.34
1528 | 181.73 61.33
1529 | 181.86 63.22
1530 | 182.00 63.21
1531 | 182.14 61.30
1532 | 182.27 61.30
1533 | 182.41 61.29
1534 | 182.54 61.28
1535 | 182.68 59.38
1536 | 182.81 63.17
1537 | 182.95 63.17
1538 | 183.09 63.16
1539 | 183.22 66.96
1540 | 183.36 66.95
1541 | 183.49 67.90
1542 | 183.63 68.84
1543 | 183.76 68.83
1544 | 183.90 68.35
1545 | 184.04 67.87
1546 | 184.17 67.38
1547 | 184.31 66.90
1548 | 184.44 63.09
1549 | 184.58 62.13
1550 | 184.71 61.17
1551 | 184.85 61.16
1552 | 184.99 64.96
1553 | 185.12 64.96
1554 | 185.26 64.95
1555 | 185.39 66.84
1556 | 185.53 67.79
1557 | 185.66 68.74
1558 | 185.80 68.73
1559 | 185.94 68.73
1560 | 186.07 68.72
1561 | 186.21 68.71
1562 | 186.34 68.70
1563 | 186.48 66.79
1564 | 186.61 64.88
1565 | 186.75 64.87
1566 | 186.89 61.06
1567 | 187.02 57.25
1568 | 187.16 53.43
1569 | 187.29 49.62
1570 | 187.43 43.90
1571 | 187.56 38.18
1572 | 187.70 33.42
1573 | 187.84 28.65
1574 | 187.97 24.84
1575 | 188.11 24.83
1576 | 188.24 22.92
1577 | 188.38 21.01
1578 | 188.51 21.00
1579 | 188.65 19.09
1580 | 188.79 19.08
1581 | 188.92 19.08
1582 | 189.06 19.07
1583 | 189.19 19.06
1584 | 189.33 20.96
1585 | 189.46 21.91
1586 | 189.60 22.85
1587 | 189.67 24.74
1588 | 189.74 25.69
1589 | 189.81 26.64
1590 | 189.89 28.53
1591 | 189.96 29.48
1592 | 190.03 30.42
1593 | 190.10 32.32
1594 | 190.17 36.11
1595 | 190.24 37.06
1596 | 190.31 38.01
1597 | 190.38 38.00
1598 | 190.46 36.09
1599 | 190.53 36.08
1600 | 190.60 34.17
1601 | 190.67 34.17
1602 | 190.74 34.16
1603 | 190.81 34.15
1604 | 190.88 37.95
1605 | 190.95 37.95
1606 | 191.03 37.94
1607 | 191.10 41.73
1608 | 191.17 41.25
1609 | 191.24 40.77
1610 | 191.31 36.00
1611 | 191.38 28.39
1612 | 191.45 28.38
1613 | 191.52 30.28
1614 | 191.60 32.17
1615 | 191.67 37.87
1616 | 191.74 41.67
1617 | 191.81 43.57
1618 | 191.88 45.47
1619 | 191.95 45.46
1620 | 192.02 46.41
1621 | 192.09 47.35
1622 | 192.17 47.34
1623 | 192.24 45.43
1624 | 192.31 45.42
1625 | 192.38 45.42
1626 | 192.45 45.41
1627 | 192.52 45.40
1628 | 192.59 43.49
1629 | 192.66 43.48
1630 | 192.74 43.48
1631 | 192.81 43.47
1632 | 192.88 43.46
1633 | 192.95 43.45
1634 | 193.02 44.40
1635 | 193.09 45.35
1636 | 193.16 49.14
1637 | 193.23 49.14
1638 | 193.31 49.13
1639 | 193.38 51.03
1640 | 193.45 51.03
1641 | 193.52 51.02
1642 | 193.59 51.01
1643 | 193.66 51.00
1644 | 193.73 49.09
1645 | 193.80 48.61
1646 | 193.88 48.13
1647 | 193.95 45.26
1648 | 194.02 45.25
1649 | 194.09 43.34
1650 | 194.16 41.43
1651 | 194.23 38.58
1652 | 194.30 37.62
1653 | 194.37 36.66
1654 | 194.45 33.79
1655 | 194.52 31.88
1656 | 194.59 31.87
1657 | 194.66 29.96
1658 | 194.73 27.10
1659 | 194.80 26.14
1660 | 194.87 25.19
1661 | 194.94 22.32
1662 | 195.02 21.84
1663 | 195.09 21.36
1664 | 195.16 18.49
1665 | 195.23 18.48
1666 | 195.30 18.48
1667 | 195.39 18.47
1668 | 195.49 18.46
1669 | 195.58 16.55
1670 | 195.68 18.45
1671 | 195.77 18.45
1672 | 195.87 18.44
1673 | 195.96 18.43
1674 | 196.05 19.38
1675 | 196.15 20.32
1676 | 196.24 22.21
1677 | 196.34 22.21
1678 | 196.43 22.20
1679 | 196.53 24.10
1680 | 196.62 25.99
1681 | 196.71 26.94
1682 | 196.81 27.88
1683 | 196.90 29.78
1684 | 197.00 29.78
1685 | 197.09 29.77
1686 | 197.19 31.66
1687 | 197.28 29.75
1688 | 197.37 29.74
1689 | 197.47 28.78
1690 | 197.56 27.83
1691 | 197.66 26.39
1692 | 197.75 24.96
1693 | 197.85 22.09
1694 | 197.94 20.19
1695 | 198.03 17.33
1696 | 198.13 14.46
1697 | 198.22 9.70
1698 | 198.32 6.83
1699 | 198.41 4.92
1700 | 198.51 2.06
1701 | 198.60 1.10
1702 | 198.69 0.14
1703 | 198.79 -0.34
1704 | 198.88 -0.82
1705 | 198.98 -0.83
1706 | 199.07 -0.84
1707 | 199.17 -0.84
1708 | 199.26 1.05
1709 | 199.35 2.00
1710 | 199.45 2.95
1711 | 199.54 4.84
1712 | 199.64 6.73
1713 | 199.73 6.73
1714 | 199.83 6.72
1715 | 199.92 6.71
1716 | 200.01 6.71
1717 | 200.11 6.70
1718 | 200.20 6.69
1719 | 200.30 6.68
1720 | 200.39 4.77
1721 | 200.49 4.29
1722 | 200.58 3.81
1723 | 200.67 0.95
1724 | 200.77 -0.96
1725 | 200.86 -0.97
1726 | 200.96 -2.88
1727 | 201.05 -5.74
1728 | 201.15 -10.51
1729 | 201.24 -13.38
1730 | 201.33 -16.23
1731 | 201.43 -18.14
1732 | 201.52 -23.86
1733 | 201.62 -25.30
1734 | 201.71 -26.74
1735 | 201.81 -29.59
1736 | 201.90 -31.50
1737 | 201.94 -33.41
1738 | 201.98 -33.42
1739 | 202.03 -35.33
1740 | 202.07 -35.34
1741 | 202.11 -35.35
1742 | 202.15 -35.36
1743 | 202.20 -35.36
1744 | 202.24 -35.37
1745 | 202.28 -34.43
1746 | 202.32 -33.48
1747 | 202.36 -33.49
1748 | 202.41 -31.59
1749 | 202.45 -29.69
1750 | 202.49 -29.70
1751 | 202.53 -25.90
1752 | 202.58 -25.91
1753 | 202.62 -25.91
1754 | 202.66 -22.12
1755 | 202.70 -22.13
1756 | 202.74 -22.13
1757 | 202.79 -20.23
1758 | 202.83 -19.29
1759 | 202.87 -18.34
1760 | 202.91 -16.45
1761 | 202.96 -14.55
1762 | 203.00 -14.56
1763 | 203.04 -14.56
1764 | 203.08 -12.67
1765 | 203.12 -12.68
1766 | 203.17 -12.68
1767 | 203.21 -10.78
1768 | 203.25 -10.80
1769 | 203.29 -9.85
1770 | 203.34 -8.90
1771 | 203.38 -7.01
1772 | 203.42 -7.01
1773 | 203.46 -7.02
1774 | 203.50 -7.03
1775 | 203.55 -7.03
1776 | 203.59 -7.04
1777 | 203.63 -7.05
1778 | 203.67 -7.06
1779 | 203.72 -6.11
1780 | 203.76 -5.17
1781 | 203.80 -7.07
1782 | 203.84 -7.08
1783 | 203.88 -7.09
1784 | 203.93 -9.00
1785 | 203.97 -9.01
1786 | 204.01 -9.01
1787 | 204.05 -9.02
1788 | 204.10 -10.93
1789 | 204.14 -10.94
1790 | 204.18 -12.85
1791 | 204.22 -12.86
1792 | 204.26 -14.77
1793 | 204.31 -14.78
1794 | 204.35 -16.69
1795 | 204.39 -16.70
1796 | 204.43 -18.60
1797 | 204.48 -18.61
1798 | 204.52 -18.61
1799 | 204.56 -18.62
1800 | 204.60 -18.63
1801 | 204.64 -18.64
1802 | 204.69 -18.64
1803 | 204.73 -18.65
1804 | 204.77 -18.66
1805 | 204.81 -18.66
1806 | 204.86 -18.67
1807 | 204.90 -18.68
1808 | 204.94 -18.68
1809 | 204.98 -18.69
1810 | 205.02 -18.70
1811 | 205.07 -18.71
1812 | 205.11 -18.71
1813 | 205.15 -18.72
1814 | 205.19 -17.78
1815 | 205.24 -16.83
1816 | 205.28 -16.84
1817 | 205.32 -16.85
1818 | 205.36 -16.85
1819 | 205.40 -14.96
1820 | 205.45 -14.97
1821 | 205.49 -14.02
1822 | 205.53 -13.07
1823 | 205.57 -13.08
1824 | 205.62 -13.09
1825 | 205.66 -13.09
1826 | 205.70 -11.20
1827 | 205.77 -9.31
1828 | 205.83 -9.31
1829 | 205.90 -9.32
1830 | 205.96 -7.42
1831 | 206.03 -7.43
1832 | 206.09 -7.43
1833 | 206.16 -5.54
1834 | 206.22 -4.59
1835 | 206.29 -3.65
1836 | 206.35 -1.75
1837 | 206.42 -1.76
1838 | 206.48 -0.82
1839 | 206.55 0.13
1840 | 206.61 2.02
1841 | 206.68 2.02
1842 | 206.74 2.01
1843 | 206.81 3.91
1844 | 206.87 3.90
1845 | 206.94 3.90
1846 | 207.00 3.89
1847 | 207.07 1.98
1848 | 207.13 1.97
1849 | 207.20 1.96
1850 | 207.26 0.05
1851 | 207.33 -1.86
1852 | 207.39 -1.87
1853 | 207.46 -3.78
1854 | 207.52 -3.79
1855 | 207.59 -5.70
1856 | 207.65 -5.70
1857 | 207.72 -5.71
1858 | 207.78 -5.72
1859 | 207.85 -5.73
1860 | 207.91 -5.73
1861 | 207.98 -5.74
1862 | 208.04 -5.75
1863 | 208.11 -5.75
1864 | 208.17 -5.76
1865 | 208.24 -3.86
1866 | 208.30 -2.92
1867 | 208.37 -1.97
1868 | 208.43 -1.98
1869 | 208.50 1.82
1870 | 208.56 2.76
1871 | 208.63 3.71
1872 | 208.69 5.60
1873 | 208.76 6.55
1874 | 208.82 7.50
1875 | 208.89 9.39
1876 | 208.95 13.19
1877 | 209.02 13.19
1878 | 209.08 13.18
1879 | 209.15 16.97
1880 | 209.21 16.97
1881 | 209.28 16.96
1882 | 209.34 20.76
1883 | 209.41 21.71
1884 | 209.47 22.65
1885 | 209.54 24.55
1886 | 209.60 26.44
1887 | 209.76 27.39
1888 | 209.92 28.34
1889 | 210.08 30.23
1890 | 210.23 31.18
1891 | 210.39 32.12
1892 | 210.55 34.02
1893 | 210.71 34.97
1894 | 210.87 35.91
1895 | 211.03 37.80
1896 | 211.19 39.70
1897 | 211.34 40.65
1898 | 211.50 41.59
1899 | 211.66 43.48
1900 | 211.82 44.43
1901 | 211.98 45.38
1902 | 212.14 47.27
1903 | 212.30 49.16
1904 | 212.45 50.11
1905 | 212.61 51.06
1906 | 212.77 51.05
1907 | 212.93 52.00
1908 | 213.09 52.94
1909 | 213.25 54.83
1910 | 213.41 55.78
1911 | 213.56 56.73
1912 | 213.72 58.62
1913 | 213.88 60.51
1914 | 214.04 60.51
1915 | 214.20 60.50
1916 | 214.36 62.40
1917 | 214.52 62.40
1918 | 214.67 62.39
1919 | 214.83 64.28
1920 | 214.99 64.28
1921 | 215.15 64.27
1922 | 215.31 68.07
1923 | 215.47 68.06
1924 | 215.63 68.06
1925 | 215.78 68.05
1926 | 215.94 69.51
1927 | 216.10 69.08
1928 | 216.26 69.08
1929 | 216.42 69.09
1930 | 216.58 69.09
1931 | 216.74 70.99
1932 | 216.89 70.99
1933 | 217.05 71.00
1934 | 217.21 71.00
1935 | 217.37 71.01
1936 | 217.53 71.01
1937 | 217.69 71.02
1938 | 217.85 71.02
1939 | 218.00 71.03
1940 | 218.16 71.03
1941 | 218.32 71.04
1942 | 218.48 71.04
1943 | 218.64 71.05
1944 | 218.80 71.05
1945 | 218.96 71.05
1946 | 219.11 71.06
1947 | 219.27 70.12
1948 | 219.43 69.17
1949 | 219.59 67.29
1950 | 219.75 65.40
1951 | 219.91 64.46
1952 | 220.07 63.51
1953 | 220.22 61.63
1954 | 220.38 59.74
1955 | 220.54 57.85
1956 | 220.70 54.07
1957 | 220.78 46.51
1958 | 220.87 38.94
1959 | 220.95 31.37
1960 | 221.04 31.37
1961 | 221.12 25.70
1962 | 221.20 23.82
1963 | 221.29 23.82
1964 | 221.37 23.82
1965 | 221.45 26.67
1966 | 221.54 31.40
1967 | 221.62 40.88
1968 | 221.71 52.23
1969 | 221.79 59.81
1970 | 221.87 63.60
1971 | 221.96 65.49
1972 | 222.04 68.34
1973 | 222.12 69.29
1974 | 222.21 71.19
1975 | 222.29 71.19
1976 | 222.38 71.20
1977 | 222.46 73.09
1978 | 222.54 71.21
1979 | 222.63 71.21
1980 | 222.71 70.27
1981 | 222.79 69.33
1982 | 222.88 67.44
1983 | 222.96 66.50
1984 | 223.05 65.55
1985 | 223.13 63.67
1986 | 223.21 61.78
1987 | 223.30 61.78
1988 | 223.38 58.95
1989 | 223.46 56.11
1990 | 223.55 52.33
1991 | 223.63 46.66
1992 | 223.72 44.77
1993 | 223.80 42.88
1994 | 223.88 35.32
1995 | 223.97 35.32
1996 | 224.05 31.54
1997 | 224.13 29.66
1998 | 224.22 27.77
1999 | 224.30 25.88
2000 | 224.39 25.88
2001 | 224.47 25.89
2002 | 224.55 25.89
2003 | 224.64 26.85
2004 | 224.72 31.58
2005 | 224.80 35.37
2006 | 224.89 42.00
2007 | 224.97 48.63
2008 | 225.06 54.31
2009 | 225.14 58.10
2010 | 225.22 60.00
2011 | 225.31 61.90
2012 | 225.39 63.79
2013 | 225.47 63.80
2014 | 225.56 63.80
2015 | 225.64 63.81
2016 | 225.73 63.81
2017 | 225.81 63.81
2018 | 225.89 63.82
2019 | 225.98 61.93
2020 | 226.06 61.93
2021 | 226.14 60.05
2022 | 226.23 58.16
2023 | 226.31 56.27
2024 | 226.40 54.38
2025 | 226.48 52.50
2026 | 226.56 52.50
2027 | 226.65 49.67
2028 | 226.73 46.83
2029 | 226.81 44.94
2030 | 226.90 37.38
2031 | 226.98 36.44
2032 | 227.07 35.49
2033 | 227.15 22.25
2034 | 227.23 22.25
2035 | 227.32 1.44
2036 | 227.40 1.45
2037 | 227.54 -23.15
2038 | 227.68 -23.15
2039 | 227.81 -26.93
2040 | 227.95 -30.71
2041 | 228.09 -32.60
2042 | 228.23 -32.60
2043 | 228.37 -30.70
2044 | 228.50 -28.80
2045 | 228.64 -17.44
2046 | 228.78 3.38
2047 | 228.92 15.69
2048 | 229.06 28.00
2049 | 229.19 32.74
2050 | 229.33 35.58
2051 | 229.47 37.47
2052 | 229.61 39.37
2053 | 229.75 41.27
2054 | 229.88 42.22
2055 | 230.02 43.17
2056 | 230.16 43.17
2057 | 230.30 43.18
2058 | 230.44 43.18
2059 | 230.57 43.19
2060 | 230.71 43.19
2061 | 230.85 43.20
2062 | 230.99 41.31
2063 | 231.13 41.31
2064 | 231.26 41.32
2065 | 231.40 41.32
2066 | 231.54 41.33
2067 | 231.68 39.44
2068 | 231.82 39.45
2069 | 231.95 39.45
2070 | 232.09 39.45
2071 | 232.23 39.46
2072 | 232.37 38.52
2073 | 232.51 37.58
2074 | 232.64 37.58
2075 | 232.78 35.69
2076 | 232.92 35.70
2077 | 233.06 33.81
2078 | 233.20 31.92
2079 | 233.33 31.92
2080 | 233.47 26.25
2081 | 233.61 24.37
2082 | 233.75 22.48
2083 | 233.89 20.59
2084 | 234.02 16.81
2085 | 234.16 12.08
2086 | 234.30 7.35
2087 | 234.49 4.52
2088 | 234.67 1.68
2089 | 234.86 -2.10
2090 | 235.04 -3.04
2091 | 235.23 -3.98
2092 | 235.41 -3.98
2093 | 235.60 -3.97
2094 | 235.78 -3.97
2095 | 235.97 -3.96
2096 | 236.15 -1.12
2097 | 236.34 3.62
2098 | 236.52 10.25
2099 | 236.71 18.77
2100 | 236.89 24.46
2101 | 237.08 28.24
2102 | 237.26 30.14
2103 | 237.45 30.15
2104 | 237.63 30.15
2105 | 237.82 30.16
2106 | 238.00 29.21
2107 | 238.19 28.27
2108 | 238.37 28.27
2109 | 238.56 20.71
2110 | 238.74 20.71
2111 | 238.93 7.47
2112 | 239.11 4.63
2113 | 239.30 1.80
2114 | 239.48 -3.87
2115 | 239.67 -3.87
2116 | 239.85 -3.86
2117 | 240.04 0.87
2118 | 240.22 7.50
2119 | 240.41 15.08
2120 | 240.59 23.60
2121 | 240.78 26.44
2122 | 240.96 26.45
2123 | 241.15 24.56
2124 | 241.33 22.67
2125 | 241.52 20.78
2126 | 241.70 17.00
2127 | 241.73 15.12
2128 | 241.76 15.12
2129 | 241.79 15.12
2130 | 241.82 17.02
2131 | 241.86 18.92
2132 | 241.89 20.82
2133 | 241.92 22.71
2134 | 241.95 23.67
2135 | 241.98 23.20
2136 | 242.01 22.73
2137 | 242.04 20.84
2138 | 242.07 18.01
2139 | 242.10 15.17
2140 | 242.13 13.28
2141 | 242.17 12.34
2142 | 242.20 11.40
2143 | 242.23 11.40
2144 | 242.26 11.41
2145 | 242.29 11.41
2146 | 242.32 11.41
2147 | 242.35 12.37
2148 | 242.38 13.32
2149 | 242.41 16.16
2150 | 242.44 19.01
2151 | 242.48 19.96
2152 | 242.51 20.91
2153 | 242.54 19.97
2154 | 242.57 19.02
2155 | 242.60 19.03
2156 | 242.63 13.36
2157 | 242.66 12.42
2158 | 242.69 11.47
2159 | 242.72 2.01
2160 | 242.75 2.02
2161 | 242.79 -1.76
2162 | 242.82 -2.71
2163 | 242.85 -3.65
2164 | 242.88 -5.53
2165 | 242.91 -5.53
2166 | 242.94 -5.53
2167 | 242.97 -5.52
2168 | 243.00 -5.52
2169 | 243.03 -5.51
2170 | 243.06 -5.51
2171 | 243.10 -5.50
2172 | 243.13 -5.50
2173 | 243.16 -3.60
2174 | 243.19 -1.70
2175 | 243.22 -1.70
2176 | 243.25 0.20
2177 | 243.28 2.10
2178 | 243.31 3.99
2179 | 243.34 4.00
2180 | 243.37 5.90
2181 | 243.41 5.90
2182 | 243.44 5.90
2183 | 243.47 5.91
2184 | 243.50 5.91
2185 | 243.53 5.92
2186 | 243.56 4.98
2187 | 243.59 4.03
2188 | 243.62 4.04
2189 | 243.65 3.10
2190 | 243.68 2.15
2191 | 243.72 0.27
2192 | 243.75 0.27
2193 | 243.78 0.27
2194 | 243.81 -1.61
2195 | 243.84 -3.50
2196 | 243.87 -3.49
2197 | 243.90 -5.38
2198 | 243.93 -5.38
2199 | 243.96 -6.32
2200 | 243.99 -7.26
2201 | 244.03 -9.15
2202 | 244.06 -11.04
2203 | 244.09 -11.98
2204 | 244.12 -12.92
2205 | 244.15 -14.81
2206 | 244.18 -15.75
2207 | 244.21 -16.69
2208 | 244.24 -18.58
2209 | 244.27 -19.53
2210 | 244.30 -20.47
2211 | 244.34 -24.24
2212 | 244.37 -26.13
2213 | 244.40 -27.08
2214 | 244.43 -28.02
2215 | 244.46 -29.90
2216 | 244.49 -31.79
2217 | 244.52 -33.68
2218 | 244.55 -35.57
2219 | 244.58 -37.45
2220 | 244.61 -37.45
2221 | 244.65 -40.29
2222 | 244.68 -43.12
2223 | 244.71 -45.01
2224 | 244.74 -48.79
2225 | 244.77 -49.73
2226 | 244.80 -50.67
2227 |
--------------------------------------------------------------------------------
/Sea Level Curves/Haq87_Longterm_Normalized.dat:
--------------------------------------------------------------------------------
1 | 0 0
2 | 0.1 0.649747
3 | 0.2 1.29992
4 | 0.3 1.95207
5 | 0.4 2.6047
6 | 0.5 3.25942
7 | 0.6 3.91466
8 | 0.7 4.57213
9 | 0.8 5.23018
10 | 0.9 5.89059
11 | 1 6.55164
12 | 1.1 7.2152
13 | 1.2 7.87948
14 | 1.3 8.54641
15 | 1.4 9.21414
16 | 1.5 9.8847
17 | 1.6 10.5561
18 | 1.7 11.2306
19 | 1.8 11.906
20 | 1.9 12.5846
21 | 2 13.2644
22 | 2.1 13.9475
23 | 2.2 14.6318
24 | 2.3 15.3197
25 | 2.4 16.0089
26 | 2.5 16.7015
27 | 2.6 17.3953
28 | 2.7 18.0921
29 | 2.8 18.7901
30 | 2.9 19.4906
31 | 3 20.1922
32 | 3.1 20.896
33 | 3.2 21.6008
34 | 3.3 22.3074
35 | 3.4 23.0149
36 | 3.5 23.7239
37 | 3.6 24.4335
38 | 3.7 25.1444
39 | 3.8 25.8559
40 | 3.9 26.5683
41 | 4 27.281
42 | 4.1 27.9944
43 | 4.2 28.708
44 | 4.3 29.422
45 | 4.4 30.136
46 | 4.5 30.8501
47 | 4.6 31.5641
48 | 4.7 32.2779
49 | 4.8 32.9914
50 | 4.9 33.7045
51 | 5 34.417
52 | 5.1 35.1289
53 | 5.2 35.84
54 | 5.3 36.5504
55 | 5.4 37.2596
56 | 5.5 37.9679
57 | 5.6 38.6748
58 | 5.7 39.3806
59 | 5.8 40.0849
60 | 5.9 40.788
61 | 6 41.4896
62 | 6.1 42.19
63 | 6.2 42.8888
64 | 6.3 43.5864
65 | 6.4 44.2823
66 | 6.5 44.977
67 | 6.6 45.67
68 | 6.7 46.3617
69 | 6.8 47.0517
70 | 6.9 47.7404
71 | 7 48.4271
72 | 7.1 49.1127
73 | 7.2 49.7963
74 | 7.3 50.4786
75 | 7.4 51.1588
76 | 7.5 51.8378
77 | 7.6 52.5145
78 | 7.7 53.1901
79 | 7.8 53.8632
80 | 7.9 54.5352
81 | 8 55.2047
82 | 8.1 55.8729
83 | 8.2 56.5386
84 | 8.3 57.203
85 | 8.4 57.8646
86 | 8.5 58.525
87 | 8.6 59.1826
88 | 8.7 59.8388
89 | 8.8 60.4921
90 | 8.9 61.1441
91 | 9 61.7929
92 | 9.1 62.4404
93 | 9.2 63.0845
94 | 9.3 63.7274
95 | 9.4 64.3666
96 | 9.5 65.0044
97 | 9.6 65.6381
98 | 9.7 66.2702
99 | 9.8 66.8975
100 | 9.9 67.523
101 | 10 68.1431
102 | 10.1 68.7613
103 | 10.2 69.3733
104 | 10.3 69.9831
105 | 10.4 70.5862
106 | 10.5 71.1868
107 | 10.6 71.78
108 | 10.7 72.3704
109 | 10.8 72.9526
110 | 10.9 73.5317
111 | 11 74.1019
112 | 11.1 74.6686
113 | 11.2 75.2256
114 | 11.3 75.7787
115 | 11.4 76.3214
116 | 11.5 76.8597
117 | 11.6 77.3869
118 | 11.7 77.9093
119 | 11.8 78.42
120 | 11.9 78.9253
121 | 12 79.4184
122 | 12.1 79.9055
123 | 12.2 80.3799
124 | 12.3 80.8475
125 | 12.4 81.3021
126 | 12.5 81.749
127 | 12.6 82.1824
128 | 12.7 82.6071
129 | 12.8 83.0181
130 | 12.9 83.4191
131 | 13 83.8061
132 | 13.1 84.1818
133 | 13.2 84.5434
134 | 13.3 84.8921
135 | 13.4 85.2267
136 | 13.5 85.5465
137 | 13.6 85.8523
138 | 13.7 86.1414
139 | 13.8 86.4166
140 | 13.9 86.6728
141 | 14 86.9157
142 | 14.1 87.1374
143 | 14.2 87.3478
144 | 14.3 87.5365
145 | 14.4 87.7159
146 | 14.5 87.8736
147 | 14.6 88.0239
148 | 14.7 88.1526
149 | 14.8 88.2754
150 | 14.9 88.3769
151 | 15 88.474
152 | 15.1 88.5498
153 | 15.2 88.6226
154 | 15.3 88.6743
155 | 15.4 88.7242
156 | 15.5 88.7531
157 | 15.6 88.7814
158 | 15.7 88.7888
159 | 15.8 88.7962
160 | 15.9 88.7837
161 | 16 88.7707
162 | 16.1 88.7398
163 | 16.2 88.7075
164 | 16.3 88.659
165 | 16.4 88.6084
166 | 16.5 88.5432
167 | 16.6 88.4752
168 | 16.7 88.3943
169 | 16.8 88.31
170 | 16.9 88.2147
171 | 17 88.1157
172 | 17.1 88.0074
173 | 17.2 87.8952
174 | 17.3 87.7752
175 | 17.4 87.6511
176 | 17.5 87.5207
177 | 17.6 87.3862
178 | 17.7 87.2465
179 | 17.8 87.1029
180 | 17.9 86.9552
181 | 18 86.8037
182 | 18.1 86.649
183 | 18.2 86.4909
184 | 18.3 86.3305
185 | 18.4 86.167
186 | 18.5 86.0019
187 | 18.6 85.8342
188 | 18.7 85.6654
189 | 18.8 85.4946
190 | 18.9 85.3233
191 | 19 85.1506
192 | 19.1 84.9776
193 | 19.2 84.8037
194 | 19.3 84.6296
195 | 19.4 84.4547
196 | 19.5 84.2797
197 | 19.6 84.104
198 | 19.7 83.9281
199 | 19.8 83.7518
200 | 19.9 83.5753
201 | 20 83.3984
202 | 20.1 83.2215
203 | 20.2 83.0442
204 | 20.3 82.867
205 | 20.4 82.6895
206 | 20.5 82.512
207 | 20.6 82.3345
208 | 20.7 82.157
209 | 20.8 81.9796
210 | 20.9 81.8022
211 | 21 81.625
212 | 21.1 81.4479
213 | 21.2 81.2711
214 | 21.3 81.0944
215 | 21.4 80.9181
216 | 21.5 80.742
217 | 21.6 80.5664
218 | 21.7 80.3911
219 | 21.8 80.2163
220 | 21.9 80.0418
221 | 22 79.868
222 | 22.1 79.6946
223 | 22.2 79.5219
224 | 22.3 79.3497
225 | 22.4 79.1783
226 | 22.5 79.0075
227 | 22.6 78.8375
228 | 22.7 78.6683
229 | 22.8 78.4999
230 | 22.9 78.3323
231 | 23 78.1656
232 | 23.1 78
233 | 23.2 77.8352
234 | 23.3 77.6716
235 | 23.4 77.5088
236 | 23.5 77.3475
237 | 23.6 77.1869
238 | 23.7 77.0281
239 | 23.8 76.8708
240 | 23.9 76.7174
241 | 24 76.5667
242 | 24.1 76.4245
243 | 24.2 76.2855
244 | 24.3 76.1603
245 | 24.4 76.0385
246 | 24.5 75.9365
247 | 24.6 75.8374
248 | 24.7 75.7649
249 | 24.8 75.6942
250 | 24.9 75.6578
251 | 25 75.6215
252 | 25.1 75.628
253 | 25.2 75.6346
254 | 25.3 75.6893
255 | 25.4 75.7463
256 | 25.5 75.8542
257 | 25.6 75.9675
258 | 25.7 76.1306
259 | 25.8 76.3021
260 | 25.9 76.522
261 | 26 76.7536
262 | 26.1 77.0325
263 | 26.2 77.3266
264 | 26.3 77.6676
265 | 26.4 78.0275
266 | 26.5 78.4345
267 | 26.6 78.8641
268 | 26.7 79.3418
269 | 26.8 79.8458
270 | 26.9 80.4002
271 | 27 80.9843
272 | 27.1 81.6226
273 | 27.2 82.2934
274 | 27.3 83.024
275 | 27.4 83.7887
276 | 27.5 84.6139
277 | 27.6 85.4694
278 | 27.7 86.381
279 | 27.8 87.3155
280 | 27.9 88.3014
281 | 28 89.3026
282 | 28.1 90.3498
283 | 28.2 91.4056
284 | 28.3 92.5006
285 | 28.4 93.5992
286 | 28.5 94.7274
287 | 28.6 95.8576
288 | 28.7 97.0036
289 | 28.8 98.1509
290 | 28.9 99.3026
291 | 29 100.452
292 | 29.1 101.597
293 | 29.2 102.735
294 | 29.3 103.861
295 | 29.4 104.975
296 | 29.5 106.077
297 | 29.6 107.168
298 | 29.7 108.251
299 | 29.8 109.325
300 | 29.9 110.394
301 | 30 111.457
302 | 30.1 112.518
303 | 30.2 113.577
304 | 30.3 114.634
305 | 30.4 115.693
306 | 30.5 116.753
307 | 30.6 117.817
308 | 30.7 118.881
309 | 30.8 119.946
310 | 30.9 121.01
311 | 31 122.069
312 | 31.1 123.125
313 | 31.2 124.172
314 | 31.3 125.213
315 | 31.4 126.241
316 | 31.5 127.259
317 | 31.6 128.263
318 | 31.7 129.251
319 | 31.8 130.224
320 | 31.9 131.175
321 | 32 132.11
322 | 32.1 133.018
323 | 32.2 133.908
324 | 32.3 134.766
325 | 32.4 135.605
326 | 32.5 136.405
327 | 32.6 137.188
328 | 32.7 137.924
329 | 32.8 138.643
330 | 32.9 139.31
331 | 33 139.958
332 | 33.1 140.549
333 | 33.2 141.121
334 | 33.3 141.63
335 | 33.4 142.118
336 | 33.5 142.537
337 | 33.6 142.931
338 | 33.7 143.244
339 | 33.8 143.521
340 | 33.9 143.711
341 | 34 143.856
342 | 34.1 143.928
343 | 34.2 143.957
344 | 34.3 143.928
345 | 34.4 143.857
346 | 34.5 143.741
347 | 34.6 143.585
348 | 34.7 143.396
349 | 34.8 143.171
350 | 34.9 142.921
351 | 35 142.639
352 | 35.1 142.34
353 | 35.2 142.014
354 | 35.3 141.678
355 | 35.4 141.32
356 | 35.5 140.956
357 | 35.6 140.576
358 | 35.7 140.193
359 | 35.8 139.799
360 | 35.9 139.404
361 | 36 139.005
362 | 36.1 138.606
363 | 36.2 138.208
364 | 36.3 137.812
365 | 36.4 137.424
366 | 36.5 137.039
367 | 36.6 136.669
368 | 36.7 136.303
369 | 36.8 135.958
370 | 36.9 135.618
371 | 37 135.308
372 | 37.1 135.001
373 | 37.2 134.727
374 | 37.3 134.456
375 | 37.4 134.219
376 | 37.5 133.982
377 | 37.6 133.781
378 | 37.7 133.579
379 | 37.8 133.412
380 | 37.9 133.247
381 | 38 133.113
382 | 38.1 132.983
383 | 38.2 132.884
384 | 38.3 132.789
385 | 38.4 132.724
386 | 38.5 132.666
387 | 38.6 132.636
388 | 38.7 132.614
389 | 38.8 132.621
390 | 38.9 132.637
391 | 39 132.681
392 | 39.1 132.737
393 | 39.2 132.818
394 | 39.3 132.913
395 | 39.4 133.03
396 | 39.5 133.163
397 | 39.6 133.315
398 | 39.7 133.483
399 | 39.8 133.668
400 | 39.9 133.869
401 | 40 134.086
402 | 40.1 134.32
403 | 40.2 134.567
404 | 40.3 134.832
405 | 40.4 135.107
406 | 40.5 135.402
407 | 40.6 135.705
408 | 40.7 136.027
409 | 40.8 136.358
410 | 40.9 136.707
411 | 41 137.063
412 | 41.1 137.437
413 | 41.2 137.818
414 | 41.3 138.217
415 | 41.4 138.622
416 | 41.5 139.045
417 | 41.6 139.472
418 | 41.7 139.918
419 | 41.8 140.368
420 | 41.9 140.836
421 | 42 141.306
422 | 42.1 141.796
423 | 42.2 142.287
424 | 42.3 142.796
425 | 42.4 143.306
426 | 42.5 143.83
427 | 42.6 144.355
428 | 42.7 144.889
429 | 42.8 145.424
430 | 42.9 145.964
431 | 43 146.504
432 | 43.1 147.044
433 | 43.2 147.585
434 | 43.3 148.122
435 | 43.4 148.658
436 | 43.5 149.187
437 | 43.6 149.715
438 | 43.7 150.231
439 | 43.8 150.746
440 | 43.9 151.244
441 | 44 151.741
442 | 44.1 152.217
443 | 44.2 152.692
444 | 44.3 153.14
445 | 44.4 153.588
446 | 44.5 154.003
447 | 44.6 154.418
448 | 44.7 154.796
449 | 44.8 155.171
450 | 44.9 155.505
451 | 45 155.835
452 | 45.1 156.12
453 | 45.2 156.4
454 | 45.3 156.64
455 | 45.4 156.873
456 | 45.5 157.075
457 | 45.6 157.27
458 | 45.7 157.441
459 | 45.8 157.604
460 | 45.9 157.751
461 | 46 157.892
462 | 46.1 158.021
463 | 46.2 158.145
464 | 46.3 158.263
465 | 46.4 158.378
466 | 46.5 158.491
467 | 46.6 158.603
468 | 46.7 158.718
469 | 46.8 158.835
470 | 46.9 158.958
471 | 47 159.087
472 | 47.1 159.224
473 | 47.2 159.372
474 | 47.3 159.53
475 | 47.4 159.703
476 | 47.5 159.886
477 | 47.6 160.087
478 | 47.7 160.296
479 | 47.8 160.52
480 | 47.9 160.751
481 | 48 160.995
482 | 48.1 161.244
483 | 48.2 161.504
484 | 48.3 161.766
485 | 48.4 162.038
486 | 48.5 162.312
487 | 48.6 162.591
488 | 48.7 162.872
489 | 48.8 163.156
490 | 48.9 163.44
491 | 49 163.724
492 | 49.1 164.008
493 | 49.2 164.289
494 | 49.3 164.57
495 | 49.4 164.844
496 | 49.5 165.117
497 | 49.6 165.38
498 | 49.7 165.643
499 | 49.8 165.893
500 | 49.9 166.142
501 | 50 166.376
502 | 50.1 166.608
503 | 50.2 166.823
504 | 50.3 167.035
505 | 50.4 167.227
506 | 50.5 167.416
507 | 50.6 167.583
508 | 50.7 167.745
509 | 50.8 167.884
510 | 50.9 168.015
511 | 51 168.123
512 | 51.1 168.22
513 | 51.2 168.293
514 | 51.3 168.352
515 | 51.4 168.386
516 | 51.5 168.403
517 | 51.6 168.395
518 | 51.7 168.366
519 | 51.8 168.312
520 | 51.9 168.232
521 | 52 168.127
522 | 52.1 167.992
523 | 52.2 167.832
524 | 52.3 167.635
525 | 52.4 167.412
526 | 52.5 167.144
527 | 52.6 166.848
528 | 52.7 166.495
529 | 52.8 166.111
530 | 52.9 165.657
531 | 53 165.174
532 | 53.1 164.613
533 | 53.2 164.022
534 | 53.3 163.345
535 | 53.4 162.634
536 | 53.5 161.829
537 | 53.6 160.98
538 | 53.7 160.028
539 | 53.8 159.02
540 | 53.9 157.914
541 | 54 156.757
542 | 54.1 155.54
543 | 54.2 154.29
544 | 54.3 153.016
545 | 54.4 151.741
546 | 54.5 150.466
547 | 54.6 149.236
548 | 54.7 148.015
549 | 54.8 146.897
550 | 54.9 145.794
551 | 55 144.835
552 | 55.1 143.895
553 | 55.2 143.083
554 | 55.3 142.293
555 | 55.4 141.606
556 | 55.5 140.937
557 | 55.6 140.355
558 | 55.7 139.788
559 | 55.8 139.293
560 | 55.9 138.809
561 | 56 138.387
562 | 56.1 137.972
563 | 56.2 137.61
564 | 56.3 137.252
565 | 56.4 136.939
566 | 56.5 136.628
567 | 56.6 136.359
568 | 56.7 136.091
569 | 56.8 135.865
570 | 56.9 135.641
571 | 57 135.457
572 | 57.1 135.277
573 | 57.2 135.136
574 | 57.3 135
575 | 57.4 134.904
576 | 57.5 134.814
577 | 57.6 134.763
578 | 57.7 134.722
579 | 57.8 134.719
580 | 57.9 134.728
581 | 58 134.772
582 | 58.1 134.83
583 | 58.2 134.916
584 | 58.3 135.016
585 | 58.4 135.14
586 | 58.5 135.277
587 | 58.6 135.434
588 | 58.7 135.604
589 | 58.8 135.79
590 | 58.9 135.988
591 | 59 136.198
592 | 59.1 136.42
593 | 59.2 136.651
594 | 59.3 136.893
595 | 59.4 137.141
596 | 59.5 137.398
597 | 59.6 137.66
598 | 59.7 137.929
599 | 59.8 138.201
600 | 59.9 138.478
601 | 60 138.757
602 | 60.1 139.039
603 | 60.2 139.322
604 | 60.3 139.606
605 | 60.4 139.889
606 | 60.5 140.171
607 | 60.6 140.453
608 | 60.7 140.729
609 | 60.8 141.005
610 | 60.9 141.273
611 | 61 141.54
612 | 61.1 141.796
613 | 61.2 142.051
614 | 61.3 142.294
615 | 61.4 142.537
616 | 61.5 142.768
617 | 61.6 142.998
618 | 61.7 143.218
619 | 61.8 143.438
620 | 61.9 143.649
621 | 62 143.859
622 | 62.1 144.062
623 | 62.2 144.263
624 | 62.3 144.458
625 | 62.4 144.652
626 | 62.5 144.84
627 | 62.6 145.027
628 | 62.7 145.209
629 | 62.8 145.39
630 | 62.9 145.567
631 | 63 145.743
632 | 63.1 145.916
633 | 63.2 146.087
634 | 63.3 146.256
635 | 63.4 146.423
636 | 63.5 146.587
637 | 63.6 146.75
638 | 63.7 146.91
639 | 63.8 147.068
640 | 63.9 147.224
641 | 64 147.378
642 | 64.1 147.529
643 | 64.2 147.678
644 | 64.3 147.825
645 | 64.4 147.969
646 | 64.5 148.111
647 | 64.6 148.25
648 | 64.7 148.387
649 | 64.8 148.522
650 | 64.9 148.654
651 | 65 148.783
652 | 65.1 148.91
653 | 65.2 149.034
654 | 65.3 149.156
655 | 65.4 149.274
656 | 65.5 149.391
657 | 65.6 149.503
658 | 65.7 149.614
659 | 65.8 149.72
660 | 65.9 149.825
661 | 66 149.925
662 | 66.1 150.597
663 | 66.2 150.724
664 | 66.3 150.857
665 | 66.4 150.999
666 | 66.5 151.146
667 | 66.6 151.3
668 | 66.7 151.462
669 | 66.8 151.629
670 | 66.9 151.803
671 | 67 151.985
672 | 67.1 152.173
673 | 67.2 152.367
674 | 67.3 152.571
675 | 67.4 152.781
676 | 67.5 152.996
677 | 67.6 153.22
678 | 67.7 153.451
679 | 67.8 153.686
680 | 67.9 153.932
681 | 68 154.183
682 | 68.1 154.439
683 | 68.2 154.705
684 | 68.3 154.977
685 | 68.4 155.255
686 | 68.5 155.541
687 | 68.6 155.835
688 | 68.7 156.135
689 | 68.8 156.442
690 | 68.9 156.759
691 | 69 157.081
692 | 69.1 157.411
693 | 69.2 157.751
694 | 69.3 158.097
695 | 69.4 158.451
696 | 69.5 158.815
697 | 69.6 159.185
698 | 69.7 159.56
699 | 69.8 159.945
700 | 69.9 160.333
701 | 70 160.727
702 | 70.1 161.127
703 | 70.2 161.53
704 | 70.3 161.936
705 | 70.4 162.347
706 | 70.5 162.761
707 | 70.6 163.176
708 | 70.7 163.594
709 | 70.8 164.014
710 | 70.9 164.434
711 | 71 164.854
712 | 71.1 165.275
713 | 71.2 165.696
714 | 71.3 166.115
715 | 71.4 166.533
716 | 71.5 166.95
717 | 71.6 167.364
718 | 71.7 167.775
719 | 71.8 168.183
720 | 71.9 168.588
721 | 72 168.987
722 | 72.1 169.382
723 | 72.2 169.774
724 | 72.3 170.16
725 | 72.4 170.542
726 | 72.5 170.921
727 | 72.6 171.296
728 | 72.7 171.668
729 | 72.8 172.038
730 | 72.9 172.405
731 | 73 172.77
732 | 73.1 173.133
733 | 73.2 173.495
734 | 73.3 173.856
735 | 73.4 174.216
736 | 73.5 174.576
737 | 73.6 174.936
738 | 73.7 175.296
739 | 73.8 175.657
740 | 73.9 176.018
741 | 74 176.381
742 | 74.1 176.745
743 | 74.2 177.112
744 | 74.3 177.481
745 | 74.4 177.851
746 | 74.5 178.226
747 | 74.6 178.603
748 | 74.7 178.983
749 | 74.8 179.369
750 | 74.9 179.758
751 | 75 180.151
752 | 75.1 180.55
753 | 75.2 180.953
754 | 75.3 181.358
755 | 75.4 181.767
756 | 75.5 182.177
757 | 75.6 182.588
758 | 75.7 182.998
759 | 75.8 183.407
760 | 75.9 183.814
761 | 76 184.219
762 | 76.1 184.618
763 | 76.2 185.014
764 | 76.3 185.405
765 | 76.4 185.786
766 | 76.5 186.161
767 | 76.6 186.529
768 | 76.7 186.885
769 | 76.8 187.231
770 | 76.9 187.568
771 | 77 187.89
772 | 77.1 188.198
773 | 77.2 188.496
774 | 77.3 188.775
775 | 77.4 189.037
776 | 77.5 189.285
777 | 77.6 189.514
778 | 77.7 189.72
779 | 77.8 189.911
780 | 77.9 190.079
781 | 78 190.221
782 | 78.1 190.344
783 | 78.2 190.445
784 | 78.3 190.518
785 | 78.4 190.576
786 | 78.5 190.616
787 | 78.6 190.632
788 | 78.7 190.634
789 | 78.8 190.621
790 | 78.9 190.582
791 | 79 190.527
792 | 79.1 190.456
793 | 79.2 190.353
794 | 79.3 190.232
795 | 79.4 190.092
796 | 79.5 189.916
797 | 79.6 189.716
798 | 79.7 189.493
799 | 79.8 189.228
800 | 79.9 188.933
801 | 80 188.614
802 | 80.1 188.253
803 | 80.2 187.86
804 | 80.3 187.442
805 | 80.4 186.986
806 | 80.5 186.492
807 | 80.6 185.971
808 | 80.7 185.413
809 | 80.8 184.81
810 | 80.9 184.175
811 | 81 183.506
812 | 81.1 182.79
813 | 81.2 182.053
814 | 81.3 181.299
815 | 81.4 180.528
816 | 81.5 179.757
817 | 81.6 178.988
818 | 81.7 178.23
819 | 81.8 177.496
820 | 81.9 176.786
821 | 82 176.106
822 | 82.1 175.484
823 | 82.2 174.904
824 | 82.3 174.365
825 | 82.4 173.895
826 | 82.5 173.461
827 | 82.6 173.06
828 | 82.7 172.708
829 | 82.8 172.387
830 | 82.9 172.091
831 | 83 171.829
832 | 83.1 171.593
833 | 83.2 171.373
834 | 83.3 171.177
835 | 83.4 170.999
836 | 83.5 170.832
837 | 83.6 170.679
838 | 83.7 170.536
839 | 83.8 170.4
840 | 83.9 170.27
841 | 84 170.147
842 | 84.1 170.03
843 | 84.2 169.919
844 | 84.3 169.818
845 | 84.4 169.723
846 | 84.5 169.635
847 | 84.6 169.558
848 | 84.7 169.488
849 | 84.8 169.426
850 | 84.9 169.378
851 | 85 169.337
852 | 85.1 169.305
853 | 85.2 169.289
854 | 85.3 169.281
855 | 85.4 169.283
856 | 85.5 169.303
857 | 85.6 169.334
858 | 85.7 169.376
859 | 85.8 169.436
860 | 85.9 169.51
861 | 86 169.596
862 | 86.1 169.703
863 | 86.2 169.825
864 | 86.3 169.96
865 | 86.4 170.117
866 | 86.5 170.292
867 | 86.6 170.481
868 | 86.7 170.693
869 | 86.8 170.926
870 | 86.9 171.175
871 | 87 171.448
872 | 87.1 171.747
873 | 87.2 172.063
874 | 87.3 172.405
875 | 87.4 172.776
876 | 87.5 173.169
877 | 87.6 173.586
878 | 87.7 174.042
879 | 87.8 174.52
880 | 87.9 175.024
881 | 88 175.574
882 | 88.1 176.15
883 | 88.2 176.753
884 | 88.3 177.399
885 | 88.4 178.073
886 | 88.5 178.773
887 | 88.6 179.509
888 | 88.7 180.278
889 | 88.8 181.072
890 | 88.9 181.894
891 | 89 182.756
892 | 89.1 183.642
893 | 89.2 184.553
894 | 89.3 185.502
895 | 89.4 186.481
896 | 89.5 187.485
897 | 89.6 188.521
898 | 89.7 189.595
899 | 89.8 190.696
900 | 89.9 191.82
901 | 90 192.966
902 | 90.1 194.111
903 | 90.2 195.246
904 | 90.3 196.366
905 | 90.4 197.438
906 | 90.5 198.464
907 | 90.6 199.441
908 | 90.7 200.345
909 | 90.8 201.151
910 | 90.9 201.882
911 | 91 202.529
912 | 91.1 203.034
913 | 91.2 203.453
914 | 91.3 203.782
915 | 91.4 203.926
916 | 91.5 203.958
917 | 91.6 203.875
918 | 91.7 203.539
919 | 91.8 203.061
920 | 91.9 202.448
921 | 92 201.679
922 | 92.1 200.847
923 | 92.2 199.985
924 | 92.3 199.116
925 | 92.4 198.283
926 | 92.5 197.477
927 | 92.6 196.702
928 | 92.7 195.985
929 | 92.8 195.304
930 | 92.9 194.661
931 | 93 194.089
932 | 93.1 193.569
933 | 93.2 193.097
934 | 93.3 192.705
935 | 93.4 192.386
936 | 93.5 192.126
937 | 93.6 191.956
938 | 93.7 191.88
939 | 93.8 191.865
940 | 93.9 191.923
941 | 94 192.045
942 | 94.1 192.2
943 | 94.2 192.39
944 | 94.3 192.605
945 | 94.4 192.828
946 | 94.5 193.054
947 | 94.6 193.267
948 | 94.7 193.468
949 | 94.8 193.653
950 | 94.9 193.807
951 | 95 193.941
952 | 95.1 194.054
953 | 95.2 194.12
954 | 95.3 194.158
955 | 95.4 194.166
956 | 95.5 194.111
957 | 95.6 194.017
958 | 95.7 193.886
959 | 95.8 193.693
960 | 95.9 193.462
961 | 96 193.199
962 | 96.1 192.884
963 | 96.2 192.534
964 | 96.3 192.155
965 | 96.4 191.736
966 | 96.5 191.281
967 | 96.6 190.802
968 | 96.7 190.29
969 | 96.8 189.744
970 | 96.9 189.176
971 | 97 188.583
972 | 97.1 187.956
973 | 97.2 187.31
974 | 97.3 186.644
975 | 97.4 185.941
976 | 97.5 185.217
977 | 97.6 184.472
978 | 97.7 183.69
979 | 97.8 182.879
980 | 97.9 182.042
981 | 98 181.17
982 | 98.1 180.258
983 | 98.2 179.314
984 | 98.3 178.339
985 | 98.4 177.309
986 | 98.5 176.239
987 | 98.6 175.13
988 | 98.7 173.972
989 | 98.8 172.75
990 | 98.9 171.478
991 | 99 170.155
992 | 99.1 168.771
993 | 99.2 167.335
994 | 99.3 165.866
995 | 99.4 164.37
996 | 99.5 162.853
997 | 99.6 161.325
998 | 99.7 159.799
999 | 99.8 158.282
1000 | 99.9 156.779
1001 | 100 155.313
1002 | 100.1 153.884
1003 | 100.2 152.491
1004 | 100.3 151.135
1005 | 100.4 149.825
1006 | 100.5 148.549
1007 | 100.6 147.302
1008 | 100.7 146.083
1009 | 100.8 144.904
1010 | 100.9 143.748
1011 | 101 142.615
1012 | 101.1 141.507
1013 | 101.2 140.429
1014 | 101.3 139.369
1015 | 101.4 138.327
1016 | 101.5 137.312
1017 | 101.6 136.315
1018 | 101.7 135.334
1019 | 101.8 134.371
1020 | 101.9 133.43
1021 | 102 132.502
1022 | 102.1 131.587
1023 | 102.2 130.691
1024 | 102.3 129.807
1025 | 102.4 128.935
1026 | 102.5 128.076
1027 | 102.6 127.23
1028 | 102.7 126.394
1029 | 102.8 125.567
1030 | 102.9 124.753
1031 | 103 123.946
1032 | 103.1 123.147
1033 | 103.2 122.357
1034 | 103.3 121.576
1035 | 103.4 120.799
1036 | 103.5 120.03
1037 | 103.6 119.267
1038 | 103.7 118.509
1039 | 103.8 117.756
1040 | 103.9 117.008
1041 | 104 116.264
1042 | 104.1 115.523
1043 | 104.2 114.789
1044 | 104.3 114.06
1045 | 104.4 113.337
1046 | 104.5 112.62
1047 | 104.6 111.913
1048 | 104.7 111.213
1049 | 104.8 110.519
1050 | 104.9 109.84
1051 | 105 109.169
1052 | 105.1 108.507
1053 | 105.2 107.86
1054 | 105.3 107.225
1055 | 105.4 106.602
1056 | 105.5 105.993
1057 | 105.6 105.402
1058 | 105.7 104.823
1059 | 105.8 104.26
1060 | 105.9 103.719
1061 | 106 103.193
1062 | 106.1 102.682
1063 | 106.2 102.2
1064 | 106.3 101.733
1065 | 106.4 101.283
1066 | 106.5 100.862
1067 | 106.6 100.461
1068 | 106.7 100.079
1069 | 106.8 99.7271
1070 | 106.9 99.4004
1071 | 107 99.0941
1072 | 107.1 98.8206
1073 | 107.2 98.5778
1074 | 107.3 98.3582
1075 | 107.4 98.1735
1076 | 107.5 98.0264
1077 | 107.6 97.9058
1078 | 107.7 97.8221
1079 | 107.8 97.7783
1080 | 107.9 97.7587
1081 | 108 97.7685
1082 | 108.1 97.8122
1083 | 108.2 97.8748
1084 | 108.3 97.9594
1085 | 108.4 98.0718
1086 | 108.5 98.1989
1087 | 108.6 98.3419
1088 | 108.7 98.507
1089 | 108.8 98.6828
1090 | 108.9 98.8696
1091 | 109 99.073
1092 | 109.1 99.2838
1093 | 109.2 99.5021
1094 | 109.3 99.7331
1095 | 109.4 99.9709
1096 | 109.5 100.215
1097 | 109.6 100.47
1098 | 109.7 100.732
1099 | 109.8 100.999
1100 | 109.9 101.275
1101 | 110 101.557
1102 | 110.1 101.845
1103 | 110.2 102.139
1104 | 110.3 102.44
1105 | 110.4 102.744
1106 | 110.5 103.055
1107 | 110.6 103.371
1108 | 110.7 103.69
1109 | 110.8 104.014
1110 | 110.9 104.343
1111 | 111 104.675
1112 | 111.1 105.011
1113 | 111.2 105.35
1114 | 111.3 105.692
1115 | 111.4 106.036
1116 | 111.5 106.384
1117 | 111.6 106.734
1118 | 111.7 107.086
1119 | 111.8 107.44
1120 | 111.9 107.798
1121 | 112 108.158
1122 | 112.1 108.526
1123 | 112.2 108.899
1124 | 112.3 109.279
1125 | 112.4 109.668
1126 | 112.5 110.068
1127 | 112.6 110.477
1128 | 112.7 110.899
1129 | 112.8 111.336
1130 | 112.9 111.784
1131 | 113 112.248
1132 | 113.1 112.734
1133 | 113.2 113.234
1134 | 113.3 113.752
1135 | 113.4 114.298
1136 | 113.5 114.863
1137 | 113.6 115.447
1138 | 113.7 116.067
1139 | 113.8 116.71
1140 | 113.9 117.377
1141 | 114 118.081
1142 | 114.1 118.815
1143 | 114.2 119.568
1144 | 114.3 120.34
1145 | 114.4 121.12
1146 | 114.5 121.899
1147 | 114.6 122.672
1148 | 114.7 123.42
1149 | 114.8 124.146
1150 | 114.9 124.845
1151 | 115 125.49
1152 | 115.1 126.084
1153 | 115.2 126.632
1154 | 115.3 127.103
1155 | 115.4 127.49
1156 | 115.5 127.812
1157 | 115.6 128.04
1158 | 115.7 128.167
1159 | 115.8 128.231
1160 | 115.9 128.22
1161 | 116 128.118
1162 | 116.1 127.962
1163 | 116.2 127.742
1164 | 116.3 127.433
1165 | 116.4 127.07
1166 | 116.5 126.649
1167 | 116.6 126.131
1168 | 116.7 125.557
1169 | 116.8 124.926
1170 | 116.9 124.187
1171 | 117 123.38
1172 | 117.1 122.505
1173 | 117.2 121.524
1174 | 117.3 120.439
1175 | 117.4 119.264
1176 | 117.5 117.988
1177 | 117.6 116.556
1178 | 117.7 115.017
1179 | 117.8 113.382
1180 | 117.9 111.658
1181 | 118 109.851
1182 | 118.1 107.973
1183 | 118.2 106.057
1184 | 118.3 104.115
1185 | 118.4 102.164
1186 | 118.5 100.218
1187 | 118.6 98.3057
1188 | 118.7 96.4409
1189 | 118.8 94.6254
1190 | 118.9 92.8576
1191 | 119 91.1332
1192 | 119.1 89.459
1193 | 119.2 87.8182
1194 | 119.3 86.2061
1195 | 119.4 84.6198
1196 | 119.5 83.0596
1197 | 119.6 81.5219
1198 | 119.7 79.999
1199 | 119.8 78.4884
1200 | 119.9 76.9884
1201 | 120 75.4973
1202 | 120.1 74.009
1203 | 120.2 72.5216
1204 | 120.3 71.0333
1205 | 120.4 69.5403
1206 | 120.5 68.0494
1207 | 120.6 66.5658
1208 | 120.7 65.0939
1209 | 120.8 63.6472
1210 | 120.9 62.2321
1211 | 121 60.85
1212 | 121.1 59.505
1213 | 121.2 58.2181
1214 | 121.3 56.9925
1215 | 121.4 55.8189
1216 | 121.5 54.6963
1217 | 121.6 53.6419
1218 | 121.7 52.628
1219 | 121.8 51.6487
1220 | 121.9 50.7075
1221 | 122 49.8038
1222 | 122.1 48.9223
1223 | 122.2 48.0615
1224 | 122.3 47.2283
1225 | 122.4 46.4086
1226 | 122.5 45.6004
1227 | 122.6 44.8058
1228 | 122.7 44.0249
1229 | 122.8 43.256
1230 | 122.9 42.5027
1231 | 123 41.7744
1232 | 123.1 41.0641
1233 | 123.2 40.3723
1234 | 123.3 39.7186
1235 | 123.4 39.0895
1236 | 123.5 38.4852
1237 | 123.6 37.9244
1238 | 123.7 37.4001
1239 | 123.8 36.907
1240 | 123.9 36.462
1241 | 124 36.0673
1242 | 124.1 35.7105
1243 | 124.2 35.406
1244 | 124.3 35.1644
1245 | 124.4 34.9622
1246 | 124.5 34.8079
1247 | 124.6 34.7142
1248 | 124.7 34.6555
1249 | 124.8 34.6374
1250 | 124.9 34.6778
1251 | 125 34.7507
1252 | 125.1 34.8594
1253 | 125.2 35.0262
1254 | 125.3 35.2247
1255 | 125.4 35.4559
1256 | 125.5 35.7472
1257 | 125.6 36.0708
1258 | 125.7 36.4269
1259 | 125.8 36.8422
1260 | 125.9 37.2918
1261 | 126 37.774
1262 | 126.1 38.3104
1263 | 126.2 38.8862
1264 | 126.3 39.4958
1265 | 126.4 40.1553
1266 | 126.5 40.8631
1267 | 126.6 41.608
1268 | 126.7 42.3981
1269 | 126.8 43.251
1270 | 126.9 44.1466
1271 | 127 45.0858
1272 | 127.1 46.0894
1273 | 127.2 47.1368
1274 | 127.3 48.2215
1275 | 127.4 49.3463
1276 | 127.5 50.519
1277 | 127.6 51.7211
1278 | 127.7 52.9515
1279 | 127.8 54.214
1280 | 127.9 55.5062
1281 | 128 56.8187
1282 | 128.1 58.15
1283 | 128.2 59.5022
1284 | 128.3 60.8694
1285 | 128.4 62.2445
1286 | 128.5 63.6247
1287 | 128.6 65.0056
1288 | 128.7 66.3799
1289 | 128.8 67.7446
1290 | 128.9 69.0968
1291 | 129 70.4266
1292 | 129.1 71.7288
1293 | 129.2 73.0041
1294 | 129.3 74.2503
1295 | 129.4 75.4493
1296 | 129.5 76.6028
1297 | 129.6 77.7143
1298 | 129.7 78.7819
1299 | 129.8 79.7711
1300 | 129.9 80.7079
1301 | 130 81.592
1302 | 130.1 82.4023
1303 | 130.2 83.1334
1304 | 130.3 83.8043
1305 | 130.4 84.4043
1306 | 130.5 84.8962
1307 | 130.6 85.3201
1308 | 130.7 85.6695
1309 | 130.8 85.8767
1310 | 130.9 85.9905
1311 | 131 85.9894
1312 | 131.1 85.749
1313 | 131.2 85.3344
1314 | 131.3 84.7172
1315 | 131.4 83.6247
1316 | 131.5 82.2338
1317 | 131.6 81.5268
1318 | 131.7 80.0609
1319 | 131.8 78.5811
1320 | 131.9 77.1409
1321 | 132 75.7876
1322 | 132.1 74.588
1323 | 132.2 73.5603
1324 | 132.3 72.6569
1325 | 132.4 71.8698
1326 | 132.5 71.2217
1327 | 132.6 70.7193
1328 | 132.7 70.3265
1329 | 132.8 70.0419
1330 | 132.9 69.9207
1331 | 133 69.899
1332 | 133.1 69.9662
1333 | 133.2 70.1426
1334 | 133.3 70.4293
1335 | 133.4 70.793
1336 | 133.5 71.2337
1337 | 133.6 71.7945
1338 | 133.7 72.4345
1339 | 133.8 73.1483
1340 | 133.9 73.9399
1341 | 134 74.8186
1342 | 134.1 75.7494
1343 | 134.2 76.7278
1344 | 134.3 77.7506
1345 | 134.4 78.8172
1346 | 134.5 79.9055
1347 | 134.6 81.01
1348 | 134.7 82.1249
1349 | 134.8 83.2457
1350 | 134.9 84.3677
1351 | 135 85.4893
1352 | 135.1 86.6086
1353 | 135.2 87.7223
1354 | 135.3 88.8274
1355 | 135.4 89.9228
1356 | 135.5 91.0071
1357 | 135.6 92.0764
1358 | 135.7 93.1244
1359 | 135.8 94.1537
1360 | 135.9 95.1643
1361 | 136 96.1557
1362 | 136.1 97.1272
1363 | 136.2 98.0884
1364 | 136.3 99.0414
1365 | 136.4 99.9881
1366 | 136.5 100.931
1367 | 136.6 101.876
1368 | 136.7 102.824
1369 | 136.8 103.777
1370 | 136.9 104.744
1371 | 137 105.723
1372 | 137.1 106.717
1373 | 137.2 107.729
1374 | 137.3 108.758
1375 | 137.4 109.778
1376 | 137.5 110.778
1377 | 137.6 111.746
1378 | 137.7 112.639
1379 | 137.8 113.452
1380 | 137.9 114.18
1381 | 138 114.813
1382 | 138.1 115.279
1383 | 138.2 115.649
1384 | 138.3 115.934
1385 | 138.4 116.123
1386 | 138.5 116.224
1387 | 138.6 116.269
1388 | 138.7 116.261
1389 | 138.8 116.177
1390 | 138.9 116.049
1391 | 139 115.88
1392 | 139.1 115.658
1393 | 139.2 115.385
1394 | 139.3 115.075
1395 | 139.4 114.728
1396 | 139.5 114.324
1397 | 139.6 113.885
1398 | 139.7 113.41
1399 | 139.8 112.893
1400 | 139.9 112.329
1401 | 140 111.734
1402 | 140.1 111.112
1403 | 140.2 110.455
1404 | 140.3 109.774
1405 | 140.4 109.074
1406 | 140.5 108.359
1407 | 140.6 107.625
1408 | 140.7 106.882
1409 | 140.8 106.133
1410 | 140.9 105.379
1411 | 141 104.621
1412 | 141.1 103.863
1413 | 141.2 103.104
1414 | 141.3 102.345
1415 | 141.4 101.588
1416 | 141.5 100.834
1417 | 141.6 100.082
1418 | 141.7 99.3341
1419 | 141.8 98.5929
1420 | 141.9 97.8573
1421 | 142 97.1279
1422 | 142.1 96.408
1423 | 142.2 95.6983
1424 | 142.3 94.9967
1425 | 142.4 94.303
1426 | 142.5 93.6192
1427 | 142.6 92.9417
1428 | 142.7 92.2693
1429 | 142.8 91.6017
1430 | 142.9 90.9395
1431 | 143 90.2799
1432 | 143.1 89.6224
1433 | 143.2 88.9667
1434 | 143.3 88.3116
1435 | 143.4 87.6561
1436 | 143.5 86.9999
1437 | 143.6 86.3416
1438 | 143.7 85.6801
1439 | 143.8 85.0154
1440 | 143.9 84.347
1441 | 144 83.6728
1442 | 144.1 82.9954
1443 | 144.2 82.316
1444 | 144.3 81.6352
1445 | 144.4 80.9543
1446 | 144.5 80.2748
1447 | 144.6 79.5973
1448 | 144.7 78.923
1449 | 144.8 78.2546
1450 | 144.9 77.5916
1451 | 145 76.9345
1452 | 145.1 76.2868
1453 | 145.2 75.6498
1454 | 145.3 75.0223
1455 | 145.4 74.4049
1456 | 145.5 73.8045
1457 | 145.6 73.2184
1458 | 145.7 72.6455
1459 | 145.8 72.0876
1460 | 145.9 71.5514
1461 | 146 71.0304
1462 | 146.1 70.5248
1463 | 146.2 70.0403
1464 | 146.3 69.5777
1465 | 146.4 69.1327
1466 | 146.5 68.7056
1467 | 146.6 68.3086
1468 | 146.7 67.9326
1469 | 146.8 67.5772
1470 | 146.9 67.2482
1471 | 147 66.9512
1472 | 147.1 66.678
1473 | 147.2 66.429
1474 | 147.3 66.219
1475 | 147.4 66.0346
1476 | 147.5 65.8716
1477 | 147.6 65.7323
1478 | 147.7 65.6168
1479 | 147.8 65.515
1480 | 147.9 65.4259
1481 | 148 65.3523
1482 | 148.1 65.2864
1483 | 148.2 65.2261
1484 | 148.3 65.1706
1485 | 148.4 65.1163
1486 | 148.5 65.0607
1487 | 148.6 65.0026
1488 | 148.7 64.9365
1489 | 148.8 64.8615
1490 | 148.9 64.777
1491 | 149 64.6786
1492 | 149.1 64.5599
1493 | 149.2 64.4264
1494 | 149.3 64.2778
1495 | 149.4 64.1062
1496 | 149.5 63.9188
1497 | 149.6 63.717
1498 | 149.7 63.4979
1499 | 149.8 63.2585
1500 | 149.9 63.0049
1501 | 150 62.7372
1502 | 150.1 62.4474
1503 | 150.2 62.1415
1504 | 150.3 61.8209
1505 | 150.4 61.4826
1506 | 150.5 61.1219
1507 | 150.6 60.7456
1508 | 150.7 60.3535
1509 | 150.8 59.9375
1510 | 150.9 59.5023
1511 | 151 59.0503
1512 | 151.1 58.5791
1513 | 151.2 58.0811
1514 | 151.3 57.565
1515 | 151.4 57.0304
1516 | 151.5 56.4698
1517 | 151.6 55.8845
1518 | 151.7 55.2789
1519 | 151.8 54.6527
1520 | 151.9 53.9929
1521 | 152 53.3099
1522 | 152.1 52.6038
1523 | 152.2 51.8713
1524 | 152.3 51.1028
1525 | 152.4 50.3085
1526 | 152.5 49.4874
1527 | 152.6 48.6336
1528 | 152.7 47.7408
1529 | 152.8 46.8175
1530 | 152.9 45.8626
1531 | 153 44.8697
1532 | 153.1 43.8311
1533 | 153.2 42.7558
1534 | 153.3 41.6427
1535 | 153.4 40.4901
1536 | 153.5 39.2893
1537 | 153.6 38.06
1538 | 153.7 36.8059
1539 | 153.8 35.5307
1540 | 153.9 34.2367
1541 | 154 32.9315
1542 | 154.1 31.6222
1543 | 154.2 30.313
1544 | 154.3 29.0079
1545 | 154.4 27.716
1546 | 154.5 26.442
1547 | 154.6 25.1889
1548 | 154.7 23.9593
1549 | 154.8 22.7572
1550 | 154.9 21.5879
1551 | 155 20.4431
1552 | 155.1 19.3224
1553 | 155.2 18.2256
1554 | 155.3 17.1621
1555 | 155.4 16.1234
1556 | 155.5 15.1081
1557 | 155.6 14.1163
1558 | 155.7 13.1564
1559 | 155.8 12.223
1560 | 155.9 11.3132
1561 | 156 10.427
1562 | 156.1 9.57414
1563 | 156.2 8.74853
1564 | 156.3 7.94734
1565 | 156.4 7.17065
1566 | 156.5 6.43111
1567 | 156.6 5.71865
1568 | 156.7 5.03155
1569 | 156.8 4.37142
1570 | 156.9 3.74885
1571 | 157 3.15088
1572 | 157.1 2.57731
1573 | 157.2 2.03453
1574 | 157.3 1.5242
1575 | 157.4 1.03812
1576 | 157.5 0.576221
1577 | 157.6 0.151474
1578 | 157.7 -0.246034
1579 | 157.8 -0.618791
1580 | 157.9 -0.962213
1581 | 158 -1.26822
1582 | 158.1 -1.54833
1583 | 158.2 -1.8024
1584 | 158.3 -2.01648
1585 | 158.4 -2.19861
1586 | 158.5 -2.35279
1587 | 158.6 -2.47337
1588 | 158.7 -2.54767
1589 | 158.8 -2.58834
1590 | 158.9 -2.59421
1591 | 159 -2.54142
1592 | 159.1 -2.43974
1593 | 159.2 -2.29259
1594 | 159.3 -2.08728
1595 | 159.4 -1.80164
1596 | 159.5 -1.45622
1597 | 159.6 -1.04944
1598 | 159.7 -0.552087
1599 | 159.8 0.0151147
1600 | 159.9 0.643247
1601 | 160 1.33585
1602 | 160.1 2.12354
1603 | 160.2 2.97582
1604 | 160.3 3.89521
1605 | 160.4 4.88991
1606 | 160.5 5.98902
1607 | 160.6 7.16651
1608 | 160.7 8.4177
1609 | 160.8 9.73454
1610 | 160.9 11.11
1611 | 161 12.5138
1612 | 161.1 13.9256
1613 | 161.2 15.3304
1614 | 161.3 16.7133
1615 | 161.4 18.0429
1616 | 161.5 19.303
1617 | 161.6 20.4938
1618 | 161.7 21.6171
1619 | 161.8 22.6729
1620 | 161.9 23.6592
1621 | 162 24.6015
1622 | 162.1 25.5042
1623 | 162.2 26.3686
1624 | 162.3 27.1933
1625 | 162.4 27.9958
1626 | 162.5 28.7792
1627 | 162.6 29.5446
1628 | 162.7 30.2971
1629 | 162.8 31.0448
1630 | 162.9 31.7903
1631 | 163 32.5384
1632 | 163.1 33.2959
1633 | 163.2 34.0649
1634 | 163.3 34.8466
1635 | 163.4 35.6414
1636 | 163.5 36.4286
1637 | 163.6 37.1988
1638 | 163.7 37.9445
1639 | 163.8 38.6336
1640 | 163.9 39.2829
1641 | 164 39.8963
1642 | 164.1 40.4725
1643 | 164.2 41.002
1644 | 164.3 41.5028
1645 | 164.4 41.9761
1646 | 164.5 42.4148
1647 | 164.6 42.8231
1648 | 164.7 43.2092
1649 | 164.8 43.5738
1650 | 164.9 43.9063
1651 | 165 44.2207
1652 | 165.1 44.5178
1653 | 165.2 44.7938
1654 | 165.3 45.0496
1655 | 165.4 45.2916
1656 | 165.5 45.5202
1657 | 165.6 45.7276
1658 | 165.7 45.9212
1659 | 165.8 46.1009
1660 | 165.9 46.2621
1661 | 166 46.4024
1662 | 166.1 46.5267
1663 | 166.2 46.6345
1664 | 166.3 46.7131
1665 | 166.4 46.7717
1666 | 166.5 46.8104
1667 | 166.6 46.8221
1668 | 166.7 46.8064
1669 | 166.8 46.7711
1670 | 166.9 46.7167
1671 | 167 46.6316
1672 | 167.1 46.5282
1673 | 167.2 46.4071
1674 | 167.3 46.2628
1675 | 167.4 46.0954
1676 | 167.5 45.911
1677 | 167.6 45.7098
1678 | 167.7 45.4808
1679 | 167.8 45.2349
1680 | 167.9 44.9722
1681 | 168 44.6874
1682 | 168.1 44.3799
1683 | 168.2 44.0557
1684 | 168.3 43.7152
1685 | 168.4 43.3492
1686 | 168.5 42.967
1687 | 168.6 42.5694
1688 | 168.7 42.1532
1689 | 168.8 41.7161
1690 | 168.9 41.2642
1691 | 169 40.7976
1692 | 169.1 40.3096
1693 | 169.2 39.8049
1694 | 169.3 39.2856
1695 | 169.4 38.7507
1696 | 169.5 38.1933
1697 | 169.6 37.621
1698 | 169.7 37.0339
1699 | 169.8 36.4279
1700 | 169.9 35.8028
1701 | 170 35.164
1702 | 170.1 34.5116
1703 | 170.2 33.8411
1704 | 170.3 33.1563
1705 | 170.4 32.4596
1706 | 170.5 31.7513
1707 | 170.6 31.0262
1708 | 170.7 30.2902
1709 | 170.8 29.5441
1710 | 170.9 28.7873
1711 | 171 28.0165
1712 | 171.1 27.2367
1713 | 171.2 26.4482
1714 | 171.3 25.6498
1715 | 171.4 24.8401
1716 | 171.5 24.0227
1717 | 171.6 23.1975
1718 | 171.7 22.3633
1719 | 171.8 21.5185
1720 | 171.9 20.6655
1721 | 172 19.804
1722 | 172.1 18.9317
1723 | 172.2 18.0474
1724 | 172.3 17.1534
1725 | 172.4 16.2493
1726 | 172.5 15.332
1727 | 172.6 14.4007
1728 | 172.7 13.4575
1729 | 172.8 12.5019
1730 | 172.9 11.5308
1731 | 173 10.542
1732 | 173.1 9.53856
1733 | 173.2 8.52012
1734 | 173.3 7.48459
1735 | 173.4 6.43182
1736 | 173.5 5.36797
1737 | 173.6 4.29426
1738 | 173.7 3.2118
1739 | 173.8 2.12039
1740 | 173.9 1.02484
1741 | 174 -0.0736082
1742 | 174.1 -1.1737
1743 | 174.2 -2.27334
1744 | 174.3 -3.37018
1745 | 174.4 -4.46302
1746 | 174.5 -5.55066
1747 | 174.6 -6.62975
1748 | 174.7 -7.69651
1749 | 174.8 -8.7486
1750 | 174.9 -9.78279
1751 | 175 -10.7908
1752 | 175.1 -11.7614
1753 | 175.2 -12.698
1754 | 175.3 -13.5976
1755 | 175.4 -14.4486
1756 | 175.5 -15.2359
1757 | 175.6 -15.9704
1758 | 175.7 -16.6497
1759 | 175.8 -17.2508
1760 | 175.9 -17.771
1761 | 176 -18.2309
1762 | 176.1 -18.6328
1763 | 176.2 -18.95
1764 | 176.3 -19.2149
1765 | 176.4 -19.4321
1766 | 176.5 -19.5912
1767 | 176.6 -19.69
1768 | 176.7 -19.7474
1769 | 176.8 -19.7643
1770 | 176.9 -19.7165
1771 | 177 -19.6294
1772 | 177.1 -19.5046
1773 | 177.2 -19.3299
1774 | 177.3 -19.1073
1775 | 177.4 -18.8506
1776 | 177.5 -18.5606
1777 | 177.6 -18.2198
1778 | 177.7 -17.8502
1779 | 177.8 -17.4527
1780 | 177.9 -17.0215
1781 | 178 -16.5569
1782 | 178.1 -16.0691
1783 | 178.2 -15.5588
1784 | 178.3 -15.0172
1785 | 178.4 -14.4541
1786 | 178.5 -13.8724
1787 | 178.6 -13.2714
1788 | 178.7 -12.6454
1789 | 178.8 -12.0031
1790 | 178.9 -11.3446
1791 | 179 -10.6665
1792 | 179.1 -9.96724
1793 | 179.2 -9.25232
1794 | 179.3 -8.52172
1795 | 179.4 -7.77019
1796 | 179.5 -6.99979
1797 | 179.6 -6.21371
1798 | 179.7 -5.41189
1799 | 179.8 -4.58779
1800 | 179.9 -3.74561
1801 | 180 -2.88718
1802 | 180.1 -2.01228
1803 | 180.2 -1.11349
1804 | 180.3 -0.19604
1805 | 180.4 0.736743
1806 | 180.5 1.6824
1807 | 180.6 2.63023
1808 | 180.7 3.56471
1809 | 180.8 4.47871
1810 | 180.9 5.36548
1811 | 181 6.19628
1812 | 181.1 6.96842
1813 | 181.2 7.68278
1814 | 181.3 8.33655
1815 | 181.4 8.89692
1816 | 181.5 9.40125
1817 | 181.6 9.85088
1818 | 181.7 10.2332
1819 | 181.8 10.5422
1820 | 181.9 10.7987
1821 | 182 11.0027
1822 | 182.1 11.1209
1823 | 182.2 11.1806
1824 | 182.3 11.1846
1825 | 182.4 11.1151
1826 | 182.5 10.9701
1827 | 182.6 10.7732
1828 | 182.7 10.5255
1829 | 182.8 10.2011
1830 | 182.9 9.82917
1831 | 183 9.41244
1832 | 183.1 8.94157
1833 | 183.2 8.41083
1834 | 183.3 7.83718
1835 | 183.4 7.22017
1836 | 183.5 6.5403
1837 | 183.6 5.80617
1838 | 183.7 5.02313
1839 | 183.8 4.18892
1840 | 183.9 3.27372
1841 | 184 2.29348
1842 | 184.1 1.24628
1843 | 184.2 0.127129
1844 | 184.3 -1.08797
1845 | 184.4 -2.36802
1846 | 184.5 -3.69255
1847 | 184.6 -5.04887
1848 | 184.7 -6.42346
1849 | 184.8 -7.79417
1850 | 184.9 -9.14059
1851 | 185 -10.4495
1852 | 185.1 -11.7086
1853 | 185.2 -12.8973
1854 | 185.3 -13.9856
1855 | 185.4 -14.9988
1856 | 185.5 -15.9399
1857 | 185.6 -16.8057
1858 | 185.7 -17.5758
1859 | 185.8 -18.28
1860 | 185.9 -18.9188
1861 | 186 -19.4751
1862 | 186.1 -19.9407
1863 | 186.2 -20.3415
1864 | 186.3 -20.6792
1865 | 186.4 -20.9252
1866 | 186.5 -21.1116
1867 | 186.6 -21.2444
1868 | 186.7 -21.3117
1869 | 186.8 -21.3061
1870 | 186.9 -21.2492
1871 | 187 -21.1408
1872 | 187.1 -20.9543
1873 | 187.2 -20.7227
1874 | 187.3 -20.4521
1875 | 187.4 -20.1384
1876 | 187.5 -19.7857
1877 | 187.6 -19.4107
1878 | 187.7 -19.0159
1879 | 187.8 -18.6004
1880 | 187.9 -18.1774
1881 | 188 -17.7509
1882 | 188.1 -17.3246
1883 | 188.2 -16.9089
1884 | 188.3 -16.5054
1885 | 188.4 -16.1155
1886 | 188.5 -15.7454
1887 | 188.6 -15.3906
1888 | 188.7 -15.0475
1889 | 188.8 -14.716
1890 | 188.9 -14.3997
1891 | 189 -14.0919
1892 | 189.1 -13.792
1893 | 189.2 -13.5019
1894 | 189.3 -13.2195
1895 | 189.4 -12.9424
1896 | 189.5 -12.6704
1897 | 189.6 -12.4054
1898 | 189.7 -12.1453
1899 | 189.8 -11.8905
1900 | 189.9 -11.6436
1901 | 190 -11.406
1902 | 190.1 -11.1762
1903 | 190.2 -10.9543
1904 | 190.3 -10.7475
1905 | 190.4 -10.5511
1906 | 190.5 -10.3654
1907 | 190.6 -10.1946
1908 | 190.7 -10.0409
1909 | 190.8 -9.90073
1910 | 190.9 -9.77442
1911 | 191 -9.67327
1912 | 191.1 -9.58895
1913 | 191.2 -9.52172
1914 | 191.3 -9.4784
1915 | 191.4 -9.46098
1916 | 191.5 -9.46258
1917 | 191.6 -9.48309
1918 | 191.7 -9.53402
1919 | 191.8 -9.60267
1920 | 191.9 -9.68888
1921 | 192 -9.79832
1922 | 192.1 -9.93053
1923 | 192.2 -10.0798
1924 | 192.3 -10.2464
1925 | 192.4 -10.4414
1926 | 192.5 -10.6539
1927 | 192.6 -10.8841
1928 | 192.7 -11.138
1929 | 192.8 -11.4152
1930 | 192.9 -11.7097
1931 | 193 -12.0213
1932 | 193.1 -12.36
1933 | 193.2 -12.7153
1934 | 193.3 -13.0868
1935 | 193.4 -13.4784
1936 | 193.5 -13.8915
1937 | 193.6 -14.3202
1938 | 193.7 -14.7642
1939 | 193.8 -15.2315
1940 | 193.9 -15.7155
1941 | 194 -16.2146
1942 | 194.1 -16.7307
1943 | 194.2 -17.2692
1944 | 194.3 -17.8227
1945 | 194.4 -18.3913
1946 | 194.5 -18.9801
1947 | 194.6 -19.5884
1948 | 194.7 -20.212
1949 | 194.8 -20.8512
1950 | 194.9 -21.5132
1951 | 195 -22.1917
1952 | 195.1 -22.8853
1953 | 195.2 -23.5946
1954 | 195.3 -24.3263
1955 | 195.4 -25.0727
1956 | 195.5 -25.8338
1957 | 195.6 -26.6118
1958 | 195.7 -27.4104
1959 | 195.8 -28.2238
1960 | 195.9 -29.0521
1961 | 196 -29.8983
1962 | 196.1 -30.7646
1963 | 196.2 -31.6462
1964 | 196.3 -32.5433
1965 | 196.4 -33.4595
1966 | 196.5 -34.3965
1967 | 196.6 -35.3499
1968 | 196.7 -36.3192
1969 | 196.8 -37.3055
1970 | 196.9 -38.3047
1971 | 197 -39.3101
1972 | 197.1 -40.3191
1973 | 197.2 -41.329
1974 | 197.3 -42.3335
1975 | 197.4 -43.3299
1976 | 197.5 -44.3158
1977 | 197.6 -45.2878
1978 | 197.7 -46.2345
1979 | 197.8 -47.1591
1980 | 197.9 -48.0593
1981 | 198 -48.9314
1982 | 198.1 -49.7584
1983 | 198.2 -50.5544
1984 | 198.3 -51.3205
1985 | 198.4 -52.0542
1986 | 198.5 -52.7498
1987 | 198.6 -53.4197
1988 | 198.7 -54.0646
1989 | 198.8 -54.6779
1990 | 198.9 -55.2602
1991 | 199 -55.8188
1992 | 199.1 -56.3539
1993 | 199.2 -56.8541
1994 | 199.3 -57.3307
1995 | 199.4 -57.7867
1996 | 199.5 -58.2203
1997 | 199.6 -58.6268
1998 | 199.7 -59.0165
1999 | 199.8 -59.3899
2000 | 199.9 -59.7419
2001 | 200 -60.077
2002 | 200.1 -60.399
2003 | 200.2 -60.7078
2004 | 200.3 -60.9989
2005 | 200.4 -61.2799
2006 | 200.5 -61.5513
2007 | 200.6 -61.8106
2008 | 200.7 -62.0602
2009 | 200.8 -62.3029
2010 | 200.9 -62.5389
2011 | 201 -62.7662
2012 | 201.1 -62.9891
2013 | 201.2 -63.2081
2014 | 201.3 -63.4227
2015 | 201.4 -63.6345
2016 | 201.5 -63.8443
2017 | 201.6 -64.0523
2018 | 201.7 -64.2573
2019 | 201.8 -64.4603
2020 | 201.9 -64.6613
2021 | 202 -64.8593
2022 | 202.1 -65.0544
2023 | 202.2 -65.2472
2024 | 202.3 -65.4375
2025 | 202.4 -65.6236
2026 | 202.5 -65.807
2027 | 202.6 -65.9876
2028 | 202.7 -66.1643
2029 | 202.8 -66.337
2030 | 202.9 -66.5066
2031 | 203 -66.6728
2032 | 203.1 -66.8334
2033 | 203.2 -66.9904
2034 | 203.3 -67.1436
2035 | 203.4 -67.2917
2036 | 203.5 -67.4344
2037 | 203.6 -67.5729
2038 | 203.7 -67.7071
2039 | 203.8 -67.8338
2040 | 203.9 -67.9558
2041 | 204 -68.073
2042 | 204.1 -68.1835
2043 | 204.2 -68.2871
2044 | 204.3 -68.3854
2045 | 204.4 -68.4782
2046 | 204.5 -68.5614
2047 | 204.6 -68.6386
2048 | 204.7 -68.7096
2049 | 204.8 -68.772
2050 | 204.9 -68.8257
2051 | 205 -68.8723
2052 | 205.1 -68.9118
2053 | 205.2 -68.939
2054 | 205.3 -68.9583
2055 | 205.4 -68.9697
2056 | 205.5 -68.9697
2057 | 205.6 -68.9583
2058 | 205.7 -68.938
2059 | 205.8 -68.9081
2060 | 205.9 -68.8638
2061 | 206 -68.8111
2062 | 206.1 -68.7501
2063 | 206.2 -68.6783
2064 | 206.3 -68.5968
2065 | 206.4 -68.5081
2066 | 206.5 -68.4121
2067 | 206.6 -68.3053
2068 | 206.7 -68.1924
2069 | 206.8 -68.0732
2070 | 206.9 -67.946
2071 | 207 -67.8117
2072 | 207.1 -67.672
2073 | 207.2 -67.527
2074 | 207.3 -67.374
2075 | 207.4 -67.2166
2076 | 207.5 -67.0546
2077 | 207.6 -66.8867
2078 | 207.7 -66.7137
2079 | 207.8 -66.5369
2080 | 207.9 -66.3562
2081 | 208 -66.1697
2082 | 208.1 -65.9795
2083 | 208.2 -65.7858
2084 | 208.3 -65.5869
2085 | 208.4 -65.3833
2086 | 208.5 -65.1759
2087 | 208.6 -64.9645
2088 | 208.7 -64.7468
2089 | 208.8 -64.5251
2090 | 208.9 -64.2994
2091 | 209 -64.0681
2092 | 209.1 -63.8313
2093 | 209.2 -63.5902
2094 | 209.3 -63.3447
2095 | 209.4 -63.0917
2096 | 209.5 -62.8341
2097 | 209.6 -62.5718
2098 | 209.7 -62.303
2099 | 209.8 -62.0275
2100 | 209.9 -61.7468
2101 | 210 -65.3277
2102 | 210.1 -64.9724
2103 | 210.2 -64.6119
2104 | 210.3 -64.2465
2105 | 210.4 -63.8742
2106 | 210.5 -63.4998
2107 | 210.6 -63.1217
2108 | 210.7 -62.7418
2109 | 210.8 -62.3609
2110 | 210.9 -61.9798
2111 | 211 -61.5995
2112 | 211.1 -61.2204
2113 | 211.2 -60.8439
2114 | 211.3 -60.4672
2115 | 211.4 -60.0872
2116 | 211.5 -59.6982
2117 | 211.6 -59.303
2118 | 211.7 -58.8814
2119 | 211.8 -58.4446
2120 | 211.9 -57.9827
2121 | 212 -57.4808
2122 | 212.1 -56.9574
2123 | 212.2 -56.3874
2124 | 212.3 -55.7894
2125 | 212.4 -55.1695
2126 | 212.5 -54.5066
2127 | 212.6 -53.8274
2128 | 212.7 -53.1244
2129 | 212.8 -52.3942
2130 | 212.9 -51.6509
2131 | 213 -50.8857
2132 | 213.1 -50.105
2133 | 213.2 -49.3146
2134 | 213.3 -48.507
2135 | 213.4 -47.6922
2136 | 213.5 -46.8707
2137 | 213.6 -46.0405
2138 | 213.7 -45.2077
2139 | 213.8 -44.3718
2140 | 213.9 -43.5317
2141 | 214 -42.6891
2142 | 214.1 -41.842
2143 | 214.2 -40.9899
2144 | 214.3 -40.1344
2145 | 214.4 -39.2718
2146 | 214.5 -38.4036
2147 | 214.6 -37.5311
2148 | 214.7 -36.6481
2149 | 214.8 -35.7594
2150 | 214.9 -34.8644
2151 | 215 -33.9568
2152 | 215.1 -33.0427
2153 | 215.2 -32.1192
2154 | 215.3 -31.1821
2155 | 215.4 -30.237
2156 | 215.5 -29.279
2157 | 215.6 -28.3064
2158 | 215.7 -27.325
2159 | 215.8 -26.3295
2160 | 215.9 -25.3246
2161 | 216 -24.3138
2162 | 216.1 -23.2943
2163 | 216.2 -22.2712
2164 | 216.3 -21.2455
2165 | 216.4 -20.2178
2166 | 216.5 -19.191
2167 | 216.6 -18.165
2168 | 216.7 -17.1444
2169 | 216.8 -16.1283
2170 | 216.9 -15.1171
2171 | 217 -14.1186
2172 | 217.1 -13.1276
2173 | 217.2 -12.1463
2174 | 217.3 -11.1807
2175 | 217.4 -10.2236
2176 | 217.5 -9.27901
2177 | 217.6 -8.35024
2178 | 217.7 -7.43079
2179 | 217.8 -6.5274
2180 | 217.9 -5.63951
2181 | 218 -4.7618
2182 | 218.1 -3.90475
2183 | 218.2 -3.06229
2184 | 218.3 -2.23095
2185 | 218.4 -1.42623
2186 | 218.5 -0.634333
2187 | 218.6 0.141696
2188 | 218.7 0.890928
2189 | 218.8 1.62655
2190 | 218.9 2.33951
2191 | 219 3.02888
2192 | 219.1 3.70535
2193 | 219.2 4.35804
2194 | 219.3 4.99821
2195 | 219.4 5.62838
2196 | 219.5 6.24156
2197 | 219.6 6.84932
2198 | 219.7 7.44904
2199 | 219.8 8.04225
2200 | 219.9 8.63292
2201 | 220 9.22043
2202 | 220.1 9.80823
2203 | 220.2 10.3962
2204 | 220.3 10.9879
2205 | 220.4 11.5784
2206 | 220.5 12.1672
2207 | 220.6 12.7449
2208 | 220.7 13.3149
2209 | 220.8 13.8651
2210 | 220.9 14.3933
2211 | 221 14.9071
2212 | 221.1 15.3728
2213 | 221.2 15.8145
2214 | 221.3 16.2195
2215 | 221.4 16.5704
2216 | 221.5 16.8958
2217 | 221.6 17.1687
2218 | 221.7 17.411
2219 | 221.8 17.6281
2220 | 221.9 17.7999
2221 | 222 17.9552
2222 | 222.1 18.0804
2223 | 222.2 18.1807
2224 | 222.3 18.2674
2225 | 222.4 18.3232
2226 | 222.5 18.368
2227 | 222.6 18.3964
2228 | 222.7 18.407
2229 | 222.8 18.4093
2230 | 222.9 18.3922
2231 | 223 18.3635
2232 | 223.1 18.3232
2233 | 223.2 18.2615
2234 | 223.3 18.1906
2235 | 223.4 18.1002
2236 | 223.5 17.9933
2237 | 223.6 17.8759
2238 | 223.7 17.7302
2239 | 223.8 17.5733
2240 | 223.9 17.3968
2241 | 224 17.1967
2242 | 224.1 16.9842
2243 | 224.2 16.7409
2244 | 224.3 16.4799
2245 | 224.4 16.1998
2246 | 224.5 15.8858
2247 | 224.6 15.5571
2248 | 224.7 15.1998
2249 | 224.8 14.8239
2250 | 224.9 14.4368
2251 | 225 14.0294
2252 | 225.1 13.6172
2253 | 225.2 13.198
2254 | 225.3 12.7763
2255 | 225.4 12.355
2256 | 225.5 11.9384
2257 | 225.6 11.5298
2258 | 225.7 11.1276
2259 | 225.8 10.7474
2260 | 225.9 10.3792
2261 | 226 10.0324
2262 | 226.1 9.71491
2263 | 226.2 9.41307
2264 | 226.3 9.14835
2265 | 226.4 8.90073
2266 | 226.5 8.6716
2267 | 226.6 8.46817
2268 | 226.7 8.27475
2269 | 226.8 8.1002
2270 | 226.9 7.93741
2271 | 227 7.78226
2272 | 227.1 7.64115
2273 | 227.2 7.50363
2274 | 227.3 7.3722
2275 | 227.4 7.24403
2276 | 227.5 7.11707
2277 | 227.6 6.98982
2278 | 227.7 6.86015
2279 | 227.8 6.72771
2280 | 227.9 6.58685
2281 | 228 6.44119
2282 | 228.1 6.2834
2283 | 228.2 6.11365
2284 | 228.3 5.93513
2285 | 228.4 5.73134
2286 | 228.5 5.51551
2287 | 228.6 5.2774
2288 | 228.7 5.01122
2289 | 228.8 4.72924
2290 | 228.9 4.40361
2291 | 229 4.05527
2292 | 229.1 3.68067
2293 | 229.2 3.26821
2294 | 229.3 2.83944
2295 | 229.4 2.3801
2296 | 229.5 1.89799
2297 | 229.6 1.40174
2298 | 229.7 0.874176
2299 | 229.8 0.334543
2300 | 229.9 -0.221484
2301 | 230 -0.798071
2302 | 230.1 -1.38394
2303 | 230.2 -1.98649
2304 | 230.3 -2.60064
2305 | 230.4 -3.22214
2306 | 230.5 -3.85829
2307 | 230.6 -4.49966
2308 | 230.7 -5.14748
2309 | 230.8 -5.80183
2310 | 230.9 -6.45823
2311 | 231 -7.11723
2312 | 231.1 -7.77589
2313 | 231.2 -8.43396
2314 | 231.3 -9.08793
2315 | 231.4 -9.73752
2316 | 231.5 -10.3829
2317 | 231.6 -11.0165
2318 | 231.7 -11.6435
2319 | 231.8 -12.2593
2320 | 231.9 -12.8594
2321 | 232 -13.4502
2322 | 232.1 -14.0193
2323 | 232.2 -14.5721
2324 | 232.3 -15.1117
2325 | 232.4 -15.6231
2326 | 232.5 -16.1238
2327 | 232.6 -16.6074
2328 | 232.7 -17.0732
2329 | 232.8 -17.5301
2330 | 232.9 -17.9688
2331 | 233 -18.3977
2332 | 233.1 -18.8178
2333 | 233.2 -19.2231
2334 | 233.3 -19.6229
2335 | 233.4 -20.0131
2336 | 233.5 -20.3953
2337 | 233.6 -20.7733
2338 | 233.7 -21.1425
2339 | 233.8 -21.5084
2340 | 233.9 -21.8704
2341 | 234 -22.228
2342 | 234.1 -22.5841
2343 | 234.2 -22.9378
2344 | 234.3 -23.2899
2345 | 234.4 -23.641
2346 | 234.5 -23.9886
2347 | 234.6 -24.3345
2348 | 234.7 -24.6773
2349 | 234.8 -25.0158
2350 | 234.9 -25.3519
2351 | 235 -25.6818
2352 | 235.1 -26.0075
2353 | 235.2 -26.3292
2354 | 235.3 -26.6424
2355 | 235.4 -26.9515
2356 | 235.5 -27.2529
2357 | 235.6 -27.5462
2358 | 235.7 -27.8348
2359 | 235.8 -28.1103
2360 | 235.9 -28.3795
2361 | 236 -28.6399
2362 | 236.1 -28.8871
2363 | 236.2 -29.1281
2364 | 236.3 -29.3555
2365 | 236.4 -29.575
2366 | 236.5 -29.788
2367 | 236.6 -29.9897
2368 | 236.7 -30.1875
2369 | 236.8 -30.378
2370 | 236.9 -30.5629
2371 | 237 -30.7449
2372 | 237.1 -30.9208
2373 | 237.2 -31.0949
2374 | 237.3 -31.2663
2375 | 237.4 -31.4358
2376 | 237.5 -31.6046
2377 | 237.6 -31.7729
2378 | 237.7 -31.9418
2379 | 237.8 -32.1113
2380 | 237.9 -32.2835
2381 | 238 -32.4575
2382 | 238.1 -32.6349
2383 | 238.2 -32.8168
2384 | 238.3 -33.0013
2385 | 238.4 -33.1917
2386 | 238.5 -33.3838
2387 | 238.6 -33.5783
2388 | 238.7 -33.7742
2389 | 238.8 -33.9705
2390 | 238.9 -34.1664
2391 | 239 -34.3608
2392 | 239.1 -34.5541
2393 | 239.2 -34.7428
2394 | 239.3 -34.9292
2395 | 239.4 -35.1103
2396 | 239.5 -35.2853
2397 | 239.6 -35.4567
2398 | 239.7 -35.6165
2399 | 239.8 -35.7707
2400 | 239.9 -35.9164
2401 | 240 -36.0492
2402 | 240.1 -36.1754
2403 | 240.2 -36.2853
2404 | 240.3 -36.3854
2405 | 240.4 -36.4766
2406 | 240.5 -36.5558
2407 | 240.6 -36.6315
2408 | 240.7 -36.7016
2409 | 240.8 -36.7706
2410 | 240.9 -36.8388
2411 | 241 -36.9108
2412 | 241.1 -36.9864
2413 | 241.2 -37.068
2414 | 241.3 -37.161
2415 | 241.4 -37.2603
2416 | 241.5 -37.3785
2417 | 241.6 -37.51
2418 | 241.7 -37.6557
2419 | 241.8 -37.8301
2420 | 241.9 -38.0185
2421 | 242 -38.237
2422 | 242.1 -38.4785
2423 | 242.2 -38.7346
2424 | 242.3 -39.0239
2425 | 242.4 -39.3245
2426 | 242.5 -39.6436
2427 | 242.6 -39.982
2428 | 242.7 -40.3296
2429 | 242.8 -40.6962
2430 | 242.9 -41.0722
2431 | 243 -41.4571
2432 | 243.1 -41.8552
2433 | 243.2 -42.258
2434 | 243.3 -42.6689
2435 | 243.4 -43.0851
2436 | 243.5 -43.5042
2437 | 243.6 -43.9277
2438 | 243.7 -44.3523
2439 | 243.8 -44.7782
2440 | 243.9 -45.2072
2441 | 244 -45.6379
2442 | 244.1 -46.0728
2443 | 244.2 -46.5122
2444 | 244.3 -46.9544
2445 | 244.4 -47.4057
2446 | 244.5 -47.8613
2447 | 244.6 -48.3237
2448 | 244.7 -48.7963
2449 | 244.8 -49.2743
2450 | 244.9 -49.7648
2451 | 245 -50.265
2452 | 245.1 -50.7727
2453 | 245.2 -51.2992
2454 | 245.3 -51.8342
2455 | 245.4 -52.383
2456 | 245.5 -52.9503
2457 | 245.6 -53.5278
2458 | 245.7 -54.1274
2459 | 245.8 -54.7437
2460 | 245.9 -55.3721
2461 | 246 -56.0283
2462 | 246.1 -56.6952
2463 | 246.2 -57.3777
2464 | 246.3 -58.08
2465 | 246.4 -58.792
2466 | 246.5 -59.521
2467 | 246.6 -60.2638
2468 | 246.7 -61.0154
2469 | 246.8 -61.7845
2470 | 246.9 -62.5628
2471 | 247 -63.3497
2472 | 247.1 -64.1523
2473 | 247.2 -64.9615
2474 | 247.3 -65.7801
2475 | 247.4 -66.6102
2476 | 247.5 -67.4461
2477 | 247.6 -68.2917
2478 | 247.7 -69.1444
2479 | 247.8 -70.0012
2480 | 247.9 -70.8634
2481 | 248 -71.7268
2482 | 248.1 -72.591
2483 | 248.2 -73.4531
2484 | 248.3 -74.3123
2485 | 248.4 -75.168
2486 | 248.5 -76.0142
2487 | 248.6 -76.8544
2488 | 248.7 -77.6845
2489 | 248.8 -78.5
2490 | 248.9 -79.3063
2491 | 249 -80.0938
2492 | 249.1 -80.8637
2493 | 249.2 -81.6214
2494 | 249.3 -82.3488
2495 | 249.4 -83.0584
2496 | 249.5 -83.7492
2497 | 249.6 -84.4026
2498 | 249.7 -85.0375
2499 | 249.8 -85.6414
2500 | 249.9 -86.2111
2501 | 250 -86.7622
2502 | 250.1 -87.2744
2503 | 250.2 -87.7637
2504 | 250.3 -88.233
2505 | 250.4 -88.6639
2506 | 250.5 -89.0792
2507 | 250.6 -89.4671
2508 | 250.7 -89.8278
2509 | 250.8 -90.1738
2510 | 250.9 -90.485
2511 | 251 -90.7791
2512 | 251.1 -91.0532
2513 | 251.2 -91.2968
2514 | 251.3 -91.5268
2515 | 251.4 -91.7281
2516 | 251.5 -91.9086
2517 | 251.6 -92.0738
2518 | 251.7 -92.2049
2519 | 251.8 -92.3224
2520 | 251.9 -92.414
2521 | 252 -92.4765
2522 | 252.1 -92.523
2523 | 252.2 -92.5209
2524 | 252.3 -92.4952
2525 | 252.4 -92.4346
2526 | 252.5 -92.3218
2527 | 252.6 -92.1826
2528 | 252.7 -91.977
2529 | 252.8 -91.7254
2530 | 252.9 -91.4312
2531 | 253 -91.0459
2532 | 253.1 -90.6195
2533 | 253.2 -90.1174
2534 | 253.3 -89.5467
2535 | 253.4 -88.9362
2536 | 253.5 -88.2422
2537 | 253.6 -87.5048
2538 | 253.7 -86.7256
2539 | 253.8 -85.8723
2540 | 253.9 -84.9867
2541 | 254 -84.0551
2542 | 254.1 -83.0673
2543 | 254.2 -82.0494
2544 | 254.3 -80.9853
2545 | 254.4 -79.8763
2546 | 254.5 -78.739
2547 | 254.6 -77.5578
2548 | 254.7 -76.3348
2549 | 254.8 -75.0823
2550 | 254.9 -73.7853
2551 | 255 -72.442
2552 | 255.1 -71.0657
2553 | 255.2 -69.6459
2554 | 255.3 -68.1706
2555 | 255.4 -66.6575
2556 | 255.5 -65.1049
2557 | 255.6 -63.4814
2558 | 255.7 -61.8136
2559 | 255.8 -60.0999
2560 | 255.9 -58.3209
2561 | 256 -56.4744
2562 |
--------------------------------------------------------------------------------