├── BCM
├── evaluations
│ ├── __init__.py
│ ├── requirements.txt
│ ├── th_evaluator.py
│ └── inception_v3.py
├── cm
│ ├── __init__.py
│ ├── dist_util.py
│ ├── losses.py
│ ├── nn.py
│ ├── random_util.py
│ ├── resample.py
│ ├── image_datasets.py
│ ├── script_util.py
│ ├── fp16_util.py
│ └── logger.py
├── docker
│ ├── Makefile
│ └── Dockerfile
├── scripts
│ ├── visualize_image.py
│ ├── imagnet64_sample.sh
│ ├── bcf_imagenet64_no32_qkv_4096.sh
│ ├── cm_train.py
│ └── image_sample.py
└── setup.py
├── iCT
├── evaluations
│ ├── __init__.py
│ ├── requirements.txt
│ ├── th_evaluator.py
│ └── inception_v3.py
├── cm
│ ├── __init__.py
│ ├── dist_util.py
│ ├── losses.py
│ ├── nn.py
│ ├── image_datasets.py
│ ├── random_util.py
│ ├── resample.py
│ ├── script_util.py
│ └── fp16_util.py
├── docker
│ ├── Makefile
│ └── Dockerfile
├── scripts
│ ├── visualize_image.py
│ ├── imagenet64_sample.sh
│ ├── ict_imagenet64.sh
│ ├── ict_imagenet64_no32_qkv_4096.sh
│ ├── image_sample.py
│ └── cm_train.py
└── setup.py
├── LICENSE
├── datasets
└── README.md
└── README.md
/BCM/evaluations/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/iCT/evaluations/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/BCM/evaluations/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow-gpu>=2.0
2 | scipy
3 | requests
4 | tqdm
--------------------------------------------------------------------------------
/iCT/evaluations/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow-gpu>=2.0
2 | scipy
3 | requests
4 | tqdm
--------------------------------------------------------------------------------
/BCM/cm/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Codebase for "Improved Denoising Diffusion Probabilistic Models".
3 | """
4 |
--------------------------------------------------------------------------------
/iCT/cm/__init__.py:
--------------------------------------------------------------------------------
1 | """
2 | Codebase for "Improved Denoising Diffusion Probabilistic Models".
3 | """
4 |
--------------------------------------------------------------------------------
/BCM/docker/Makefile:
--------------------------------------------------------------------------------
1 | NAME=consistency_models
2 | TAG=0.1
3 | PROJECT_DIRECTORY = $(shell pwd)/..
4 |
5 | build:
6 | docker build -t ${NAME}:${TAG} -f Dockerfile .
7 |
8 | run:
9 | docker container run --gpus all\
10 | --restart=always\
11 | -it -d \
12 | -v $(PROJECT_DIRECTORY):/home/${NAME}\
13 | --name ${NAME} ${NAME}:${TAG} /bin/bash
14 |
--------------------------------------------------------------------------------
/iCT/docker/Makefile:
--------------------------------------------------------------------------------
1 | NAME=consistency_models
2 | TAG=0.1
3 | PROJECT_DIRECTORY = $(shell pwd)/..
4 |
5 | build:
6 | docker build -t ${NAME}:${TAG} -f Dockerfile .
7 |
8 | run:
9 | docker container run --gpus all\
10 | --restart=always\
11 | -it -d \
12 | -v $(PROJECT_DIRECTORY):/home/${NAME}\
13 | --name ${NAME} ${NAME}:${TAG} /bin/bash
14 |
--------------------------------------------------------------------------------
/BCM/scripts/visualize_image.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 |
5 | vis_num = 64
6 | npz_path = 'PATH_TO_THE_SAMPLE_NPZ_FILE'
7 | save_path = f'{npz_path[:-4]}.png'
8 | img = np.load(npz_path)['arr_0'][:vis_num]
9 |
10 | samples = img.reshape((8, 8, 64, 64, 3))
11 | samples = samples.transpose((0, 2, 1, 3, 4))
12 | samples = samples.reshape(
13 | (samples.shape[0] * samples.shape[1], samples.shape[2] * samples.shape[3], samples.shape[4]))
14 | plt.figure(figsize=(10, 10))
15 | plt.imshow(samples)
16 | plt.axis('off')
17 | plt.savefig(save_path)
18 | plt.close()
19 |
20 |
--------------------------------------------------------------------------------
/iCT/scripts/visualize_image.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import matplotlib.pyplot as plt
3 |
4 |
5 | vis_num = 64
6 | npz_path = 'PATH_TO_THE_SAMPLE_NPZ_FILE'
7 | save_path = f'{npz_path[:-4]}.png'
8 | img = np.load(npz_path)['arr_0'][:vis_num]
9 |
10 | samples = img.reshape((8, 8, 64, 64, 3))
11 | samples = samples.transpose((0, 2, 1, 3, 4))
12 | samples = samples.reshape(
13 | (samples.shape[0] * samples.shape[1], samples.shape[2] * samples.shape[3], samples.shape[4]))
14 | plt.figure(figsize=(10, 10))
15 | plt.imshow(samples)
16 | plt.axis('off')
17 | plt.savefig(save_path)
18 | plt.close()
19 |
20 |
--------------------------------------------------------------------------------
/iCT/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | setup(
4 | name="consistency-models",
5 | py_modules=["cm", "evaluations"],
6 | install_requires=[
7 | "blobfile>=1.0.5",
8 | "torch",
9 | "tqdm",
10 | "numpy",
11 | "scipy",
12 | "pandas",
13 | "Cython",
14 | "piq==0.7.0",
15 | "joblib==0.14.0",
16 | "albumentations==0.4.3",
17 | "lmdb",
18 | "clip @ git+https://github.com/openai/CLIP.git",
19 | "mpi4py",
20 | "flash-attn==0.2.8", # optional
21 | "pillow",
22 | ],
23 | )
24 |
--------------------------------------------------------------------------------
/BCM/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | setup(
4 | name="consistency-models",
5 | py_modules=["cm", "evaluations"],
6 | install_requires=[
7 | "blobfile>=1.0.5",
8 | "torch",
9 | "tqdm",
10 | "numpy",
11 | "scipy",
12 | "pandas",
13 | "Cython",
14 | "piq==0.7.0",
15 | "joblib==0.14.0",
16 | "albumentations==0.4.3",
17 | "lmdb",
18 | "clip @ git+https://github.com/openai/CLIP.git",
19 | "mpi4py",
20 | # "flash-attn==0.2.8", # optional
21 | "pillow",
22 | ],
23 | )
24 |
--------------------------------------------------------------------------------
/iCT/scripts/imagenet64_sample.sh:
--------------------------------------------------------------------------------
1 | python -u scripts/image_sample.py \
2 | --batch_size 32 \
3 | --training_mode consistency_training \
4 | --sampler onestep \
5 | --model_path CKPT_DIR/ict_imagenet64_no32_qkv_4096/ema_0.99997_680000.pt \
6 | --save_dir samples \
7 | --exp_name ict_imagenet64_no32_qkv_4096 \
8 | --attention_resolutions 16,8 \
9 | --class_cond True \
10 | --use_scale_shift_norm False \
11 | --dropout 0.0 \
12 | --image_size 64 \
13 | --num_channels 192 \
14 | --num_head_channels 64 \
15 | --num_res_blocks 3 \
16 | --num_samples 50000 \
17 | --resblock_updown True \
18 | --use_fp16 True \
19 | --weight_schedule uniform
--------------------------------------------------------------------------------
/BCM/scripts/imagnet64_sample.sh:
--------------------------------------------------------------------------------
1 | python -u scripts/image_sample.py \
2 | --batch_size 32 \
3 | --training_mode consistency_training \
4 | --sampler onestep \
5 | --model_path CKPT_DIR/bcf_imagenet64_no32_qkv_4096/ema_0.99997_234000.pt \
6 | --save_dir samples \
7 | --exp_name bcf_imagenet64_no32_qkv_4096 \
8 | --attention_resolutions 16,8 \
9 | --class_cond True \
10 | --use_scale_shift_norm False \
11 | --dropout 0.0 \
12 | --image_size 64 \
13 | --num_channels 192 \
14 | --num_head_channels 64 \
15 | --num_res_blocks 3 \
16 | --num_samples 50000 \
17 | --resblock_updown True \
18 | --use_fp16 True \
19 | --weight_schedule uniform \
20 | --eval_mse False \
21 | --test_data_dir IMAGENET_DIR/val
--------------------------------------------------------------------------------
/BCM/docker/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
2 |
3 | ENV DEBIAN_FRONTEND=noninteractive PIP_PREFER_BINARY=1
4 |
5 | RUN apt-get update && apt-get install -y --no-install-recommends \
6 | libgl1-mesa-dev libopenmpi-dev git wget \
7 | python3 python3-dev python3-pip python3-setuptools python3-wheel \
8 | && apt-get clean && rm -rf /var/lib/apt/lists/*
9 |
10 | RUN echo "export PATH=/usr/local/cuda/bin:$PATH" >> /etc/bash.bashrc \
11 | && echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH" >> /etc/bash.bashrc
12 |
13 | RUN pip3 install --no-cache-dir --upgrade pip setuptools wheel packaging mpi4py \
14 | && pip3 install --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cu118 \
15 | && pip3 install flash-attn==0.2.8
16 |
17 | WORKDIR /home/
18 | RUN pip3 install -e git+https://github.com/openai/consistency_models.git@main#egg=consistency_models \
19 | && ln -s /usr/bin/python3 /usr/bin/python
20 |
--------------------------------------------------------------------------------
/iCT/docker/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
2 |
3 | ENV DEBIAN_FRONTEND=noninteractive PIP_PREFER_BINARY=1
4 |
5 | RUN apt-get update && apt-get install -y --no-install-recommends \
6 | libgl1-mesa-dev libopenmpi-dev git wget \
7 | python3 python3-dev python3-pip python3-setuptools python3-wheel \
8 | && apt-get clean && rm -rf /var/lib/apt/lists/*
9 |
10 | RUN echo "export PATH=/usr/local/cuda/bin:$PATH" >> /etc/bash.bashrc \
11 | && echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH" >> /etc/bash.bashrc
12 |
13 | RUN pip3 install --no-cache-dir --upgrade pip setuptools wheel packaging mpi4py \
14 | && pip3 install --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cu118 \
15 | && pip3 install flash-attn==0.2.8
16 |
17 | WORKDIR /home/
18 | RUN pip3 install -e git+https://github.com/openai/consistency_models.git@main#egg=consistency_models \
19 | && ln -s /usr/bin/python3 /usr/bin/python
20 |
--------------------------------------------------------------------------------
/iCT/scripts/ict_imagenet64.sh:
--------------------------------------------------------------------------------
1 | python -u scripts/cm_train.py \
2 | --training_mode consistency_training \
3 | --exp_name ict_imagenet64 \
4 | --target_ema_mode adaptive \
5 | --start_ema 0.95 \
6 | --log_interval 100 \
7 | --save_interval 20000 \
8 | --scale_mode progressive \
9 | --start_scales 10 \
10 | --end_scales 1280 \
11 | --total_training_steps 800000 \
12 | --loss_norm ict \
13 | --lr_anneal_steps 0 \
14 | --attention_resolutions 32,16,8 \
15 | --class_cond True \
16 | --use_scale_shift_norm False \
17 | --dropout 0.0 \
18 | --teacher_dropout 0.1 \
19 | --ema_rate 0.99997 \
20 | --global_batch_size 4096 \
21 | --image_size 64 \
22 | --lr 0.0001 \
23 | --num_channels 192 \
24 | --num_head_channels 64 \
25 | --num_res_blocks 3 \
26 | --resblock_updown True \
27 | --schedule_sampler uniform \
28 | --use_fp16 True \
29 | --weight_decay 0.0 \
30 | --weight_schedule ict \
31 | --data_dir IMAGENET_PATH/train \
32 | # --resume_checkpoint CKPT_DIR/model500000.pt \
--------------------------------------------------------------------------------
/iCT/scripts/ict_imagenet64_no32_qkv_4096.sh:
--------------------------------------------------------------------------------
1 | python -u scripts/cm_train.py \
2 | --training_mode consistency_training \
3 | --exp_name ict_imagenet64_no32_qkv_4096 \
4 | --target_ema_mode adaptive \
5 | --start_ema 0.95 \
6 | --log_interval 100 \
7 | --save_interval 20000 \
8 | --scale_mode progressive \
9 | --start_scales 10 \
10 | --end_scales 1280 \
11 | --total_training_steps 800000 \
12 | --loss_norm ict \
13 | --lr_anneal_steps 0 \
14 | --attention_resolutions 16,8 \
15 | --class_cond True \
16 | --use_scale_shift_norm False \
17 | --dropout 0.0 \
18 | --teacher_dropout 0.1 \
19 | --ema_rate 0.99997 \
20 | --global_batch_size 4096 \
21 | --image_size 64 \
22 | --lr 0.0001 \
23 | --num_channels 192 \
24 | --num_head_channels 64 \
25 | --num_res_blocks 3 \
26 | --resblock_updown True \
27 | --schedule_sampler uniform \
28 | --use_fp16 True \
29 | --weight_decay 0.0 \
30 | --weight_schedule ict \
31 | --data_dir IMAGENET_PATH/train \
32 | # --resume_checkpoint CKPT_DIR/model500000.pt \
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2024 Liangchen Li and Jiajun He
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/BCM/scripts/bcf_imagenet64_no32_qkv_4096.sh:
--------------------------------------------------------------------------------
1 | python -u scripts/cm_train.py \
2 | --training_mode consistency_training \
3 | --exp_name bcf_imagenet64_no32_qkv_4096 \
4 | --target_ema_mode adaptive \
5 | --start_ema 0.95 \
6 | --log_interval 100 \
7 | --save_interval 10000 \
8 | --scale_mode progressive \
9 | --start_scales 320 \
10 | --end_scales 320 \
11 | --total_training_steps 800000 \
12 | --loss_norm ict \
13 | --lr_anneal_steps 0 \
14 | --attention_resolutions 16,8 \
15 | --class_cond True \
16 | --use_scale_shift_norm False \
17 | --dropout 0.0 \
18 | --teacher_dropout 0.1 \
19 | --ema_rate 0.99997 \
20 | --global_batch_size 4096 \
21 | --image_size 64 \
22 | --lr 0.0001 \
23 | --num_channels 192 \
24 | --num_head_channels 64 \
25 | --num_res_blocks 3 \
26 | --resblock_updown True \
27 | --schedule_sampler uniform \
28 | --use_fp16 True \
29 | --weight_decay 0.0 \
30 | --weight_schedule ict \
31 | --data_dir IMAGENET_PATH/train \
32 | --bcf True \
33 | --pretrained_model_path CKPT_DIR/ict_imagenet64_no32_qkv_4096/ema_0.99997_600000.pt \
34 | # --resume_checkpoint CKPT_DIR/bcf_imagenet64_no32_qkv_4096/model234000.pt
--------------------------------------------------------------------------------
/datasets/README.md:
--------------------------------------------------------------------------------
1 | # Downloading datasets
2 |
3 | This directory includes instructions and scripts for downloading ImageNet for use in this codebase.
4 |
5 | ## Class-conditional ImageNet
6 |
7 | For our class-conditional models, we use the official ILSVRC2012 dataset with manual center cropping and downsampling. To obtain this dataset, navigate to [this page on image-net.org](https://image-net.org/challenges/LSVRC/2012/2012-downloads.php) and sign in (or create an account if you do not already have one). Then click on the link reading "Training images (Task 1 & 2)". This is a 138GB tar file containing 1000 sub-tar files, one per class.
8 |
9 | Once the file is downloaded, extract it and look inside. You should see 1000 `.tar` files. You need to extract each of these, which may be impractical to do by hand on your operating system. To automate the process on a Unix-based system, you can `cd` into the directory and run this short shell script:
10 |
11 | ```
12 | for file in *.tar; do tar xf "$file"; rm "$file"; done
13 | ```
14 |
15 | This will extract and remove each tar file in turn.
16 |
17 | Once all of the images have been extracted, the resulting directory should be usable as a data directory (the `--data_dir` argument for the training script). The filenames should all start with WNID (class ids) followed by underscores, like `n01440764_2708.JPEG`. Conveniently (but not by accident) this is how the automated data-loader expects to discover class labels.
18 |
--------------------------------------------------------------------------------
/BCM/cm/dist_util.py:
--------------------------------------------------------------------------------
1 | """
2 | Helpers for distributed training.
3 | """
4 |
5 | import io
6 | import os
7 | import socket
8 |
9 | import blobfile as bf
10 | from mpi4py import MPI
11 | import torch as th
12 | import torch.distributed as dist
13 |
14 | # Change this to reflect your cluster layout.
15 | # The GPU for a given rank is (rank % GPUS_PER_NODE).
16 | GPUS_PER_NODE = 8
17 |
18 | SETUP_RETRY_COUNT = 3
19 |
20 |
21 | def setup_dist():
22 | """
23 | Setup a distributed process group.
24 | """
25 | if dist.is_initialized():
26 | return
27 | os.environ["CUDA_VISIBLE_DEVICES"] = f"{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}"
28 |
29 | comm = MPI.COMM_WORLD
30 | backend = "gloo" if not th.cuda.is_available() else "nccl"
31 |
32 | if backend == "gloo":
33 | hostname = "localhost"
34 | else:
35 | hostname = socket.gethostbyname(socket.getfqdn())
36 | os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0)
37 | os.environ["RANK"] = str(comm.rank)
38 | os.environ["WORLD_SIZE"] = str(comm.size)
39 |
40 | port = comm.bcast(_find_free_port(), root=0)
41 | os.environ["MASTER_PORT"] = str(port)
42 | dist.init_process_group(backend=backend, init_method="env://")
43 |
44 |
45 | def dev():
46 | """
47 | Get the device to use for torch.distributed.
48 | """
49 | if th.cuda.is_available():
50 | return th.device("cuda")
51 | return th.device("cpu")
52 |
53 |
54 | def load_state_dict(path, **kwargs):
55 | """
56 | Load a PyTorch file without redundant fetches across MPI ranks.
57 | """
58 | chunk_size = 2**30 # MPI has a relatively small size limit
59 | if MPI.COMM_WORLD.Get_rank() == 0:
60 | with bf.BlobFile(path, "rb") as f:
61 | data = f.read()
62 | num_chunks = len(data) // chunk_size
63 | if len(data) % chunk_size:
64 | num_chunks += 1
65 | MPI.COMM_WORLD.bcast(num_chunks)
66 | for i in range(0, len(data), chunk_size):
67 | MPI.COMM_WORLD.bcast(data[i : i + chunk_size])
68 | else:
69 | num_chunks = MPI.COMM_WORLD.bcast(None)
70 | data = bytes()
71 | for _ in range(num_chunks):
72 | data += MPI.COMM_WORLD.bcast(None)
73 |
74 | return th.load(io.BytesIO(data), **kwargs)
75 |
76 |
77 | def sync_params(params):
78 | """
79 | Synchronize a sequence of Tensors across ranks from rank 0.
80 | """
81 | for p in params:
82 | with th.no_grad():
83 | dist.broadcast(p, 0)
84 |
85 |
86 | def _find_free_port():
87 | try:
88 | s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
89 | s.bind(("", 0))
90 | s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
91 | return s.getsockname()[1]
92 | finally:
93 | s.close()
94 |
--------------------------------------------------------------------------------
/iCT/cm/dist_util.py:
--------------------------------------------------------------------------------
1 | """
2 | Helpers for distributed training.
3 | """
4 |
5 | import io
6 | import os
7 | import socket
8 |
9 | import blobfile as bf
10 | from mpi4py import MPI
11 | import torch as th
12 | import torch.distributed as dist
13 |
14 | # Change this to reflect your cluster layout.
15 | # The GPU for a given rank is (rank % GPUS_PER_NODE).
16 | GPUS_PER_NODE = 8
17 |
18 | SETUP_RETRY_COUNT = 3
19 |
20 |
21 | def setup_dist():
22 | """
23 | Setup a distributed process group.
24 | """
25 | if dist.is_initialized():
26 | return
27 | os.environ["CUDA_VISIBLE_DEVICES"] = f"{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}"
28 |
29 | comm = MPI.COMM_WORLD
30 | backend = "gloo" if not th.cuda.is_available() else "nccl"
31 |
32 | if backend == "gloo":
33 | hostname = "localhost"
34 | else:
35 | hostname = socket.gethostbyname(socket.getfqdn())
36 | os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0)
37 | os.environ["RANK"] = str(comm.rank)
38 | os.environ["WORLD_SIZE"] = str(comm.size)
39 |
40 | port = comm.bcast(_find_free_port(), root=0)
41 | os.environ["MASTER_PORT"] = str(port)
42 | dist.init_process_group(backend=backend, init_method="env://")
43 |
44 |
45 | def dev():
46 | """
47 | Get the device to use for torch.distributed.
48 | """
49 | if th.cuda.is_available():
50 | return th.device("cuda")
51 | return th.device("cpu")
52 |
53 |
54 | def load_state_dict(path, **kwargs):
55 | """
56 | Load a PyTorch file without redundant fetches across MPI ranks.
57 | """
58 | chunk_size = 2**30 # MPI has a relatively small size limit
59 | if MPI.COMM_WORLD.Get_rank() == 0:
60 | with bf.BlobFile(path, "rb") as f:
61 | data = f.read()
62 | num_chunks = len(data) // chunk_size
63 | if len(data) % chunk_size:
64 | num_chunks += 1
65 | MPI.COMM_WORLD.bcast(num_chunks)
66 | for i in range(0, len(data), chunk_size):
67 | MPI.COMM_WORLD.bcast(data[i : i + chunk_size])
68 | else:
69 | num_chunks = MPI.COMM_WORLD.bcast(None)
70 | data = bytes()
71 | for _ in range(num_chunks):
72 | data += MPI.COMM_WORLD.bcast(None)
73 |
74 | return th.load(io.BytesIO(data), **kwargs)
75 |
76 |
77 | def sync_params(params):
78 | """
79 | Synchronize a sequence of Tensors across ranks from rank 0.
80 | """
81 | for p in params:
82 | with th.no_grad():
83 | dist.broadcast(p, 0)
84 |
85 |
86 | def _find_free_port():
87 | try:
88 | s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
89 | s.bind(("", 0))
90 | s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
91 | return s.getsockname()[1]
92 | finally:
93 | s.close()
94 |
--------------------------------------------------------------------------------
/BCM/cm/losses.py:
--------------------------------------------------------------------------------
1 | """
2 | Helpers for various likelihood-based losses. These are ported from the original
3 | Ho et al. diffusion models codebase:
4 | https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
5 | """
6 |
7 | import numpy as np
8 |
9 | import torch as th
10 |
11 |
12 | def normal_kl(mean1, logvar1, mean2, logvar2):
13 | """
14 | Compute the KL divergence between two gaussians.
15 |
16 | Shapes are automatically broadcasted, so batches can be compared to
17 | scalars, among other use cases.
18 | """
19 | tensor = None
20 | for obj in (mean1, logvar1, mean2, logvar2):
21 | if isinstance(obj, th.Tensor):
22 | tensor = obj
23 | break
24 | assert tensor is not None, "at least one argument must be a Tensor"
25 |
26 | # Force variances to be Tensors. Broadcasting helps convert scalars to
27 | # Tensors, but it does not work for th.exp().
28 | logvar1, logvar2 = [
29 | x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
30 | for x in (logvar1, logvar2)
31 | ]
32 |
33 | return 0.5 * (
34 | -1.0
35 | + logvar2
36 | - logvar1
37 | + th.exp(logvar1 - logvar2)
38 | + ((mean1 - mean2) ** 2) * th.exp(-logvar2)
39 | )
40 |
41 |
42 | def approx_standard_normal_cdf(x):
43 | """
44 | A fast approximation of the cumulative distribution function of the
45 | standard normal.
46 | """
47 | return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
48 |
49 |
50 | def discretized_gaussian_log_likelihood(x, *, means, log_scales):
51 | """
52 | Compute the log-likelihood of a Gaussian distribution discretizing to a
53 | given image.
54 |
55 | :param x: the target images. It is assumed that this was uint8 values,
56 | rescaled to the range [-1, 1].
57 | :param means: the Gaussian mean Tensor.
58 | :param log_scales: the Gaussian log stddev Tensor.
59 | :return: a tensor like x of log probabilities (in nats).
60 | """
61 | assert x.shape == means.shape == log_scales.shape
62 | centered_x = x - means
63 | inv_stdv = th.exp(-log_scales)
64 | plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
65 | cdf_plus = approx_standard_normal_cdf(plus_in)
66 | min_in = inv_stdv * (centered_x - 1.0 / 255.0)
67 | cdf_min = approx_standard_normal_cdf(min_in)
68 | log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
69 | log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
70 | cdf_delta = cdf_plus - cdf_min
71 | log_probs = th.where(
72 | x < -0.999,
73 | log_cdf_plus,
74 | th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
75 | )
76 | assert log_probs.shape == x.shape
77 | return log_probs
78 |
--------------------------------------------------------------------------------
/iCT/cm/losses.py:
--------------------------------------------------------------------------------
1 | """
2 | Helpers for various likelihood-based losses. These are ported from the original
3 | Ho et al. diffusion models codebase:
4 | https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
5 | """
6 |
7 | import numpy as np
8 |
9 | import torch as th
10 |
11 |
12 | def normal_kl(mean1, logvar1, mean2, logvar2):
13 | """
14 | Compute the KL divergence between two gaussians.
15 |
16 | Shapes are automatically broadcasted, so batches can be compared to
17 | scalars, among other use cases.
18 | """
19 | tensor = None
20 | for obj in (mean1, logvar1, mean2, logvar2):
21 | if isinstance(obj, th.Tensor):
22 | tensor = obj
23 | break
24 | assert tensor is not None, "at least one argument must be a Tensor"
25 |
26 | # Force variances to be Tensors. Broadcasting helps convert scalars to
27 | # Tensors, but it does not work for th.exp().
28 | logvar1, logvar2 = [
29 | x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
30 | for x in (logvar1, logvar2)
31 | ]
32 |
33 | return 0.5 * (
34 | -1.0
35 | + logvar2
36 | - logvar1
37 | + th.exp(logvar1 - logvar2)
38 | + ((mean1 - mean2) ** 2) * th.exp(-logvar2)
39 | )
40 |
41 |
42 | def approx_standard_normal_cdf(x):
43 | """
44 | A fast approximation of the cumulative distribution function of the
45 | standard normal.
46 | """
47 | return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
48 |
49 |
50 | def discretized_gaussian_log_likelihood(x, *, means, log_scales):
51 | """
52 | Compute the log-likelihood of a Gaussian distribution discretizing to a
53 | given image.
54 |
55 | :param x: the target images. It is assumed that this was uint8 values,
56 | rescaled to the range [-1, 1].
57 | :param means: the Gaussian mean Tensor.
58 | :param log_scales: the Gaussian log stddev Tensor.
59 | :return: a tensor like x of log probabilities (in nats).
60 | """
61 | assert x.shape == means.shape == log_scales.shape
62 | centered_x = x - means
63 | inv_stdv = th.exp(-log_scales)
64 | plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
65 | cdf_plus = approx_standard_normal_cdf(plus_in)
66 | min_in = inv_stdv * (centered_x - 1.0 / 255.0)
67 | cdf_min = approx_standard_normal_cdf(min_in)
68 | log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
69 | log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
70 | cdf_delta = cdf_plus - cdf_min
71 | log_probs = th.where(
72 | x < -0.999,
73 | log_cdf_plus,
74 | th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
75 | )
76 | assert log_probs.shape == x.shape
77 | return log_probs
78 |
--------------------------------------------------------------------------------
/iCT/scripts/image_sample.py:
--------------------------------------------------------------------------------
1 | """
2 | Generate a large batch of image samples from a model and save them as a large
3 | numpy array. This can be used to produce samples for FID evaluation.
4 | """
5 | import sys
6 | sys.path.append('/mnt/petrelfs/liliangchen/try/consistency_model_torch/cm_v2')
7 |
8 | import argparse
9 | import os
10 |
11 | import numpy as np
12 | import torch as th
13 | import torch.distributed as dist
14 |
15 | from cm import dist_util, logger
16 | from cm.script_util import (
17 | NUM_CLASSES,
18 | model_and_diffusion_defaults,
19 | create_model_and_diffusion,
20 | add_dict_to_argparser,
21 | args_to_dict,
22 | )
23 | from cm.random_util import get_generator
24 | from cm.karras_diffusion import karras_sample
25 |
26 |
27 | def main():
28 | args = create_argparser().parse_args()
29 |
30 | dist_util.setup_dist()
31 | logger.configure(dir=os.path.join(args.save_dir, args.exp_name))
32 |
33 | if "consistency" in args.training_mode:
34 | distillation = True
35 | else:
36 | distillation = False
37 |
38 | logger.log("creating model and diffusion...")
39 | model, diffusion = create_model_and_diffusion(
40 | **args_to_dict(args, model_and_diffusion_defaults().keys()),
41 | distillation=distillation,
42 | )
43 | model.load_state_dict(
44 | dist_util.load_state_dict(args.model_path, map_location="cpu")
45 | )
46 | model.to(dist_util.dev())
47 | if args.use_fp16:
48 | model.convert_to_fp16()
49 | model.eval()
50 | model_path = args.model_path
51 | model_path = model_path.split('/')[-1][:-3]
52 |
53 | logger.log("sampling...")
54 |
55 | all_images = []
56 | all_labels = []
57 |
58 | while len(all_images) * args.batch_size < args.num_samples:
59 | model_kwargs = {}
60 | if args.class_cond:
61 | classes = th.randint(
62 | low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
63 | )
64 | model_kwargs["y"] = classes
65 |
66 | sample = th.randn((args.batch_size, 3, args.image_size, args.image_size), device=dist_util.dev()) * 80.0
67 | multiplier = th.ones(sample.shape[0], dtype=sample.dtype, device=sample.device)
68 |
69 | # one-step sampling
70 | _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 80.0, y=classes)
71 |
72 | # uncomment the lines below for two-step sampling
73 | # sample += th.randn_like(sample, device=sample.device) * 0.7
74 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 0.7, y=classes)
75 |
76 | sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
77 | sample = sample.permute(0, 2, 3, 1)
78 | sample = sample.contiguous()
79 |
80 | gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
81 | dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
82 | all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
83 | if args.class_cond:
84 | gathered_labels = [
85 | th.zeros_like(classes) for _ in range(dist.get_world_size())
86 | ]
87 | dist.all_gather(gathered_labels, classes)
88 | all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
89 | logger.log(f"created {len(all_images) * args.batch_size} samples")
90 |
91 | arr = np.concatenate(all_images, axis=0)
92 | arr = arr[: args.num_samples]
93 | if args.class_cond:
94 | label_arr = np.concatenate(all_labels, axis=0)
95 | label_arr = label_arr[: args.num_samples]
96 | if dist.get_rank() == 0:
97 | shape_str = "x".join([str(x) for x in arr.shape])
98 | out_path = os.path.join(logger.get_dir(), f"{model_path}_samples_{shape_str}.npz")
99 | logger.log(f"saving to {out_path}")
100 | if args.class_cond:
101 | np.savez(out_path, arr, label_arr)
102 | else:
103 | np.savez(out_path, arr)
104 |
105 | dist.barrier()
106 | logger.log("sampling complete")
107 |
108 |
109 | def create_argparser():
110 | defaults = dict(
111 | training_mode="edm",
112 | generator="determ",
113 | clip_denoised=True,
114 | num_samples=50000,
115 | batch_size=16,
116 | sampler="heun",
117 | s_churn=0.0,
118 | s_tmin=0.0,
119 | s_tmax=float("inf"),
120 | s_noise=1.0,
121 | save_dir='./checkpoints',
122 | exp_name='ict',
123 | steps=40,
124 | model_path="",
125 | seed=42,
126 | ts="",
127 | )
128 | defaults.update(model_and_diffusion_defaults())
129 | parser = argparse.ArgumentParser()
130 | add_dict_to_argparser(parser, defaults)
131 | return parser
132 |
133 |
134 | if __name__ == "__main__":
135 | main()
136 |
--------------------------------------------------------------------------------
/iCT/scripts/cm_train.py:
--------------------------------------------------------------------------------
1 | """
2 | Train a diffusion model on images.
3 | """
4 | import sys
5 | sys.path.append('../iCT/')
6 |
7 | import argparse
8 | import os
9 |
10 | from cm import dist_util, logger
11 | from cm.image_datasets import load_data
12 | from cm.resample import create_named_schedule_sampler
13 | from cm.script_util import (
14 | model_and_diffusion_defaults,
15 | create_model_and_diffusion,
16 | cm_train_defaults,
17 | args_to_dict,
18 | add_dict_to_argparser,
19 | create_ema_and_scales_fn,
20 | )
21 | from cm.train_util import CMTrainLoop
22 | import torch.distributed as dist
23 | import copy
24 |
25 |
26 | def main():
27 | args = create_argparser().parse_args()
28 |
29 | dist_util.setup_dist()
30 | logger.configure(dir=os.path.join(args.save_dir, args.exp_name))
31 |
32 | logger.log("creating model and diffusion...")
33 | ema_scale_fn = create_ema_and_scales_fn(
34 | target_ema_mode=args.target_ema_mode,
35 | start_ema=args.start_ema,
36 | scale_mode=args.scale_mode,
37 | start_scales=args.start_scales,
38 | end_scales=args.end_scales,
39 | total_steps=args.total_training_steps,
40 | distill_steps_per_iter=args.distill_steps_per_iter,
41 | )
42 | if args.training_mode == "progdist":
43 | distillation = False
44 | elif "consistency" in args.training_mode:
45 | distillation = True
46 | else:
47 | raise ValueError(f"unknown training mode {args.training_mode}")
48 |
49 | model_and_diffusion_kwargs = args_to_dict(
50 | args, model_and_diffusion_defaults().keys()
51 | )
52 | model_and_diffusion_kwargs["distillation"] = distillation
53 | model, diffusion = create_model_and_diffusion(**model_and_diffusion_kwargs)
54 | model.to(dist_util.dev())
55 | model.train()
56 | if args.use_fp16:
57 | model.convert_to_fp16()
58 |
59 | schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
60 |
61 | logger.log("creating data loader...")
62 | if args.batch_size == -1:
63 | batch_size = args.global_batch_size // dist.get_world_size()
64 | if args.global_batch_size % dist.get_world_size() != 0:
65 | logger.log(
66 | f"warning, using smaller global_batch_size of {dist.get_world_size()*batch_size} instead of {args.global_batch_size}"
67 | )
68 | else:
69 | batch_size = args.batch_size
70 |
71 | data = load_data(
72 | data_dir=args.data_dir,
73 | batch_size=batch_size,
74 | image_size=args.image_size,
75 | class_cond=args.class_cond,
76 | )
77 |
78 | if len(args.teacher_model_path) > 0: # path to the teacher score model.
79 | logger.log(f"loading the teacher model from {args.teacher_model_path}")
80 | teacher_model_and_diffusion_kwargs = copy.deepcopy(model_and_diffusion_kwargs)
81 | teacher_model_and_diffusion_kwargs["dropout"] = args.teacher_dropout
82 | teacher_model_and_diffusion_kwargs["distillation"] = False
83 | teacher_model, teacher_diffusion = create_model_and_diffusion(
84 | **teacher_model_and_diffusion_kwargs,
85 | )
86 |
87 | teacher_model.load_state_dict(
88 | dist_util.load_state_dict(args.teacher_model_path, map_location="cpu"),
89 | )
90 |
91 | teacher_model.to(dist_util.dev())
92 | teacher_model.eval()
93 |
94 | for dst, src in zip(model.parameters(), teacher_model.parameters()):
95 | dst.data.copy_(src.data)
96 |
97 | if args.use_fp16:
98 | teacher_model.convert_to_fp16()
99 |
100 | else:
101 | teacher_model = None
102 | teacher_diffusion = None
103 |
104 | # load the target model for distillation, if path specified.
105 |
106 | logger.log("creating the target model")
107 | target_model, _ = create_model_and_diffusion(
108 | **model_and_diffusion_kwargs,
109 | )
110 |
111 | target_model.to(dist_util.dev())
112 | target_model.train()
113 |
114 | dist_util.sync_params(target_model.parameters())
115 | dist_util.sync_params(target_model.buffers())
116 |
117 | for dst, src in zip(target_model.parameters(), model.parameters()):
118 | dst.data.copy_(src.data)
119 |
120 | if args.use_fp16:
121 | target_model.convert_to_fp16()
122 |
123 | logger.log("training...")
124 | CMTrainLoop(
125 | model=model,
126 | target_model=target_model,
127 | teacher_model=teacher_model,
128 | teacher_diffusion=teacher_diffusion,
129 | training_mode=args.training_mode,
130 | ema_scale_fn=ema_scale_fn,
131 | total_training_steps=args.total_training_steps,
132 | diffusion=diffusion,
133 | data=data,
134 | batch_size=batch_size,
135 | microbatch=args.microbatch,
136 | lr=args.lr,
137 | ema_rate=args.ema_rate,
138 | log_interval=args.log_interval,
139 | save_interval=args.save_interval,
140 | resume_checkpoint=args.resume_checkpoint,
141 | use_fp16=args.use_fp16,
142 | fp16_scale_growth=args.fp16_scale_growth,
143 | schedule_sampler=schedule_sampler,
144 | weight_decay=args.weight_decay,
145 | lr_anneal_steps=args.lr_anneal_steps,
146 | ).run_loop()
147 |
148 |
149 | def create_argparser():
150 | defaults = dict(
151 | data_dir="",
152 | schedule_sampler="uniform",
153 | lr=1e-4,
154 | weight_decay=0.0,
155 | lr_anneal_steps=0,
156 | global_batch_size=2048,
157 | batch_size=-1,
158 | microbatch=-1, # -1 disables microbatches
159 | ema_rate="0.9999", # comma-separated list of EMA values
160 | log_interval=10,
161 | save_interval=10000,
162 | save_dir='./checkpoints',
163 | exp_name='ict',
164 | resume_checkpoint="",
165 | use_fp16=False,
166 | fp16_scale_growth=1e-3,
167 | )
168 | defaults.update(model_and_diffusion_defaults())
169 | defaults.update(cm_train_defaults())
170 | parser = argparse.ArgumentParser()
171 | add_dict_to_argparser(parser, defaults)
172 | return parser
173 |
174 |
175 | if __name__ == "__main__":
176 | main()
177 |
--------------------------------------------------------------------------------
/BCM/cm/nn.py:
--------------------------------------------------------------------------------
1 | """
2 | Various utilities for neural networks.
3 | """
4 |
5 | import math
6 |
7 | import torch as th
8 | import torch.nn as nn
9 | import numpy as np
10 | import torch.nn.functional as F
11 |
12 |
13 | # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
14 | class SiLU(nn.Module):
15 | def forward(self, x):
16 | return x * th.sigmoid(x)
17 |
18 |
19 | class GroupNorm32(nn.GroupNorm):
20 | def forward(self, x):
21 | return super().forward(x.float()).type(x.dtype)
22 |
23 |
24 | def conv_nd(dims, *args, **kwargs):
25 | """
26 | Create a 1D, 2D, or 3D convolution module.
27 | """
28 | if dims == 1:
29 | return nn.Conv1d(*args, **kwargs)
30 | elif dims == 2:
31 | return nn.Conv2d(*args, **kwargs)
32 | elif dims == 3:
33 | return nn.Conv3d(*args, **kwargs)
34 | raise ValueError(f"unsupported dimensions: {dims}")
35 |
36 |
37 | def linear(*args, **kwargs):
38 | """
39 | Create a linear module.
40 | """
41 | return nn.Linear(*args, **kwargs)
42 |
43 |
44 | def avg_pool_nd(dims, *args, **kwargs):
45 | """
46 | Create a 1D, 2D, or 3D average pooling module.
47 | """
48 | if dims == 1:
49 | return nn.AvgPool1d(*args, **kwargs)
50 | elif dims == 2:
51 | return nn.AvgPool2d(*args, **kwargs)
52 | elif dims == 3:
53 | return nn.AvgPool3d(*args, **kwargs)
54 | raise ValueError(f"unsupported dimensions: {dims}")
55 |
56 |
57 | def update_ema(target_params, source_params, rate=0.99):
58 | """
59 | Update target parameters to be closer to those of source parameters using
60 | an exponential moving average.
61 |
62 | :param target_params: the target parameter sequence.
63 | :param source_params: the source parameter sequence.
64 | :param rate: the EMA rate (closer to 1 means slower).
65 | """
66 | for targ, src in zip(target_params, source_params):
67 | targ.detach().mul_(rate).add_(src, alpha=1 - rate)
68 |
69 |
70 | def zero_module(module):
71 | """
72 | Zero out the parameters of a module and return it.
73 | """
74 | for p in module.parameters():
75 | p.detach().zero_()
76 | return module
77 |
78 |
79 | def scale_module(module, scale):
80 | """
81 | Scale the parameters of a module and return it.
82 | """
83 | for p in module.parameters():
84 | p.detach().mul_(scale)
85 | return module
86 |
87 |
88 | def mean_flat(tensor):
89 | """
90 | Take the mean over all non-batch dimensions.
91 | """
92 | return tensor.mean(dim=list(range(1, len(tensor.shape))))
93 |
94 |
95 | def append_dims(x, target_dims):
96 | """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
97 | dims_to_append = target_dims - x.ndim
98 | if dims_to_append < 0:
99 | raise ValueError(
100 | f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
101 | )
102 | return x[(...,) + (None,) * dims_to_append]
103 |
104 |
105 | def append_zero(x):
106 | return th.cat([x, x.new_zeros([1])])
107 |
108 |
109 | def normalization(channels):
110 | """
111 | Make a standard normalization layer.
112 |
113 | :param channels: number of input channels.
114 | :return: an nn.Module for normalization.
115 | """
116 | return GroupNorm32(32, channels)
117 |
118 |
119 | def timestep_embedding(timesteps, dim, max_period=10000):
120 | """
121 | Create sinusoidal timestep embeddings.
122 |
123 | :param timesteps: a 1-D Tensor of N indices, one per batch element.
124 | These may be fractional.
125 | :param dim: the dimension of the output.
126 | :param max_period: controls the minimum frequency of the embeddings.
127 | :return: an [N x dim] Tensor of positional embeddings.
128 | """
129 | half = dim // 2
130 | freqs = th.exp(
131 | -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
132 | ).to(device=timesteps.device)
133 | args = timesteps[:, None].float() * freqs[None]
134 | embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
135 | if dim % 2:
136 | embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
137 | return embedding
138 |
139 |
140 | def checkpoint(func, inputs, params, flag):
141 | """
142 | Evaluate a function without caching intermediate activations, allowing for
143 | reduced memory at the expense of extra compute in the backward pass.
144 |
145 | :param func: the function to evaluate.
146 | :param inputs: the argument sequence to pass to `func`.
147 | :param params: a sequence of parameters `func` depends on but does not
148 | explicitly take as arguments.
149 | :param flag: if False, disable gradient checkpointing.
150 | """
151 | if flag:
152 | args = tuple(inputs) + tuple(params)
153 | return CheckpointFunction.apply(func, len(inputs), *args)
154 | else:
155 | return func(*inputs)
156 |
157 |
158 | class CheckpointFunction(th.autograd.Function):
159 | @staticmethod
160 | def forward(ctx, run_function, length, *args):
161 | ctx.run_function = run_function
162 | ctx.input_tensors = list(args[:length])
163 | ctx.input_params = list(args[length:])
164 | with th.no_grad():
165 | output_tensors = ctx.run_function(*ctx.input_tensors)
166 | return output_tensors
167 |
168 | @staticmethod
169 | def backward(ctx, *output_grads):
170 | ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
171 | with th.enable_grad():
172 | # Fixes a bug where the first op in run_function modifies the
173 | # Tensor storage in place, which is not allowed for detach()'d
174 | # Tensors.
175 | shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
176 | output_tensors = ctx.run_function(*shallow_copies)
177 | input_grads = th.autograd.grad(
178 | output_tensors,
179 | ctx.input_tensors + ctx.input_params,
180 | output_grads,
181 | allow_unused=True,
182 | )
183 | del ctx.input_tensors
184 | del ctx.input_params
185 | del output_tensors
186 | return (None, None) + input_grads
187 |
--------------------------------------------------------------------------------
/iCT/cm/nn.py:
--------------------------------------------------------------------------------
1 | """
2 | Various utilities for neural networks.
3 | """
4 |
5 | import math
6 |
7 | import torch as th
8 | import torch.nn as nn
9 | import numpy as np
10 | import torch.nn.functional as F
11 |
12 |
13 | # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
14 | class SiLU(nn.Module):
15 | def forward(self, x):
16 | return x * th.sigmoid(x)
17 |
18 |
19 | class GroupNorm32(nn.GroupNorm):
20 | def forward(self, x):
21 | return super().forward(x.float()).type(x.dtype)
22 |
23 |
24 | def conv_nd(dims, *args, **kwargs):
25 | """
26 | Create a 1D, 2D, or 3D convolution module.
27 | """
28 | if dims == 1:
29 | return nn.Conv1d(*args, **kwargs)
30 | elif dims == 2:
31 | return nn.Conv2d(*args, **kwargs)
32 | elif dims == 3:
33 | return nn.Conv3d(*args, **kwargs)
34 | raise ValueError(f"unsupported dimensions: {dims}")
35 |
36 |
37 | def linear(*args, **kwargs):
38 | """
39 | Create a linear module.
40 | """
41 | return nn.Linear(*args, **kwargs)
42 |
43 |
44 | def avg_pool_nd(dims, *args, **kwargs):
45 | """
46 | Create a 1D, 2D, or 3D average pooling module.
47 | """
48 | if dims == 1:
49 | return nn.AvgPool1d(*args, **kwargs)
50 | elif dims == 2:
51 | return nn.AvgPool2d(*args, **kwargs)
52 | elif dims == 3:
53 | return nn.AvgPool3d(*args, **kwargs)
54 | raise ValueError(f"unsupported dimensions: {dims}")
55 |
56 |
57 | def update_ema(target_params, source_params, rate=0.99):
58 | """
59 | Update target parameters to be closer to those of source parameters using
60 | an exponential moving average.
61 |
62 | :param target_params: the target parameter sequence.
63 | :param source_params: the source parameter sequence.
64 | :param rate: the EMA rate (closer to 1 means slower).
65 | """
66 | for targ, src in zip(target_params, source_params):
67 | targ.detach().mul_(rate).add_(src, alpha=1 - rate)
68 |
69 |
70 | def zero_module(module):
71 | """
72 | Zero out the parameters of a module and return it.
73 | """
74 | for p in module.parameters():
75 | p.detach().zero_()
76 | return module
77 |
78 |
79 | def scale_module(module, scale):
80 | """
81 | Scale the parameters of a module and return it.
82 | """
83 | for p in module.parameters():
84 | p.detach().mul_(scale)
85 | return module
86 |
87 |
88 | def mean_flat(tensor):
89 | """
90 | Take the mean over all non-batch dimensions.
91 | """
92 | return tensor.mean(dim=list(range(1, len(tensor.shape))))
93 |
94 |
95 | def append_dims(x, target_dims):
96 | """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
97 | dims_to_append = target_dims - x.ndim
98 | if dims_to_append < 0:
99 | raise ValueError(
100 | f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
101 | )
102 | return x[(...,) + (None,) * dims_to_append]
103 |
104 |
105 | def append_zero(x):
106 | return th.cat([x, x.new_zeros([1])])
107 |
108 |
109 | def normalization(channels):
110 | """
111 | Make a standard normalization layer.
112 |
113 | :param channels: number of input channels.
114 | :return: an nn.Module for normalization.
115 | """
116 | return GroupNorm32(32, channels)
117 |
118 |
119 | def timestep_embedding(timesteps, dim, max_period=10000):
120 | """
121 | Create sinusoidal timestep embeddings.
122 |
123 | :param timesteps: a 1-D Tensor of N indices, one per batch element.
124 | These may be fractional.
125 | :param dim: the dimension of the output.
126 | :param max_period: controls the minimum frequency of the embeddings.
127 | :return: an [N x dim] Tensor of positional embeddings.
128 | """
129 | half = dim // 2
130 | freqs = th.exp(
131 | -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
132 | ).to(device=timesteps.device)
133 | args = timesteps[:, None].float() * freqs[None]
134 | embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
135 | if dim % 2:
136 | embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
137 | return embedding
138 |
139 |
140 | def checkpoint(func, inputs, params, flag):
141 | """
142 | Evaluate a function without caching intermediate activations, allowing for
143 | reduced memory at the expense of extra compute in the backward pass.
144 |
145 | :param func: the function to evaluate.
146 | :param inputs: the argument sequence to pass to `func`.
147 | :param params: a sequence of parameters `func` depends on but does not
148 | explicitly take as arguments.
149 | :param flag: if False, disable gradient checkpointing.
150 | """
151 | if flag:
152 | args = tuple(inputs) + tuple(params)
153 | return CheckpointFunction.apply(func, len(inputs), *args)
154 | else:
155 | return func(*inputs)
156 |
157 |
158 | class CheckpointFunction(th.autograd.Function):
159 | @staticmethod
160 | def forward(ctx, run_function, length, *args):
161 | ctx.run_function = run_function
162 | ctx.input_tensors = list(args[:length])
163 | ctx.input_params = list(args[length:])
164 | with th.no_grad():
165 | output_tensors = ctx.run_function(*ctx.input_tensors)
166 | return output_tensors
167 |
168 | @staticmethod
169 | def backward(ctx, *output_grads):
170 | ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
171 | with th.enable_grad():
172 | # Fixes a bug where the first op in run_function modifies the
173 | # Tensor storage in place, which is not allowed for detach()'d
174 | # Tensors.
175 | shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
176 | output_tensors = ctx.run_function(*shallow_copies)
177 | input_grads = th.autograd.grad(
178 | output_tensors,
179 | ctx.input_tensors + ctx.input_params,
180 | output_grads,
181 | allow_unused=True,
182 | )
183 | del ctx.input_tensors
184 | del ctx.input_params
185 | del output_tensors
186 | return (None, None) + input_grads
187 |
--------------------------------------------------------------------------------
/iCT/cm/image_datasets.py:
--------------------------------------------------------------------------------
1 | import math
2 | import random
3 |
4 | from PIL import Image
5 | import blobfile as bf
6 | from mpi4py import MPI
7 | import numpy as np
8 | from torch.utils.data import DataLoader, Dataset
9 |
10 |
11 | def load_data(
12 | *,
13 | data_dir,
14 | batch_size,
15 | image_size,
16 | class_cond=False,
17 | deterministic=False,
18 | random_crop=False,
19 | random_flip=True,
20 | ):
21 | """
22 | For a dataset, create a generator over (images, kwargs) pairs.
23 |
24 | Each images is an NCHW float tensor, and the kwargs dict contains zero or
25 | more keys, each of which map to a batched Tensor of their own.
26 | The kwargs dict can be used for class labels, in which case the key is "y"
27 | and the values are integer tensors of class labels.
28 |
29 | :param data_dir: a dataset directory.
30 | :param batch_size: the batch size of each returned pair.
31 | :param image_size: the size to which images are resized.
32 | :param class_cond: if True, include a "y" key in returned dicts for class
33 | label. If classes are not available and this is true, an
34 | exception will be raised.
35 | :param deterministic: if True, yield results in a deterministic order.
36 | :param random_crop: if True, randomly crop the images for augmentation.
37 | :param random_flip: if True, randomly flip the images for augmentation.
38 | """
39 | if not data_dir:
40 | raise ValueError("unspecified data directory")
41 | all_files = _list_image_files_recursively(data_dir)
42 | classes = None
43 | if class_cond:
44 | # Assume classes are the first part of the filename,
45 | # before an underscore.
46 | class_names = [bf.basename(path).split("_")[0] for path in all_files]
47 | sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
48 | classes = [sorted_classes[x] for x in class_names]
49 | dataset = ImageDataset(
50 | image_size,
51 | all_files,
52 | classes=classes,
53 | shard=MPI.COMM_WORLD.Get_rank(),
54 | num_shards=MPI.COMM_WORLD.Get_size(),
55 | random_crop=random_crop,
56 | random_flip=random_flip,
57 | )
58 | if deterministic:
59 | loader = DataLoader(
60 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
61 | )
62 | else:
63 | loader = DataLoader(
64 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
65 | )
66 | while True:
67 | yield from loader
68 |
69 |
70 | def _list_image_files_recursively(data_dir):
71 | results = []
72 | for entry in sorted(bf.listdir(data_dir)):
73 | full_path = bf.join(data_dir, entry)
74 | ext = entry.split(".")[-1]
75 | if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
76 | results.append(full_path)
77 | elif bf.isdir(full_path):
78 | results.extend(_list_image_files_recursively(full_path))
79 | return results
80 |
81 |
82 | class ImageDataset(Dataset):
83 | def __init__(
84 | self,
85 | resolution,
86 | image_paths,
87 | classes=None,
88 | shard=0,
89 | num_shards=1,
90 | random_crop=False,
91 | random_flip=True,
92 | ):
93 | super().__init__()
94 | self.resolution = resolution
95 | self.local_images = image_paths[shard:][::num_shards]
96 | self.local_classes = None if classes is None else classes[shard:][::num_shards]
97 | self.random_crop = random_crop
98 | self.random_flip = random_flip
99 |
100 | def __len__(self):
101 | return len(self.local_images)
102 |
103 | def __getitem__(self, idx):
104 | path = self.local_images[idx]
105 | with bf.BlobFile(path, "rb") as f:
106 | pil_image = Image.open(f)
107 | pil_image.load()
108 | pil_image = pil_image.convert("RGB")
109 |
110 | if self.random_crop:
111 | arr = random_crop_arr(pil_image, self.resolution)
112 | else:
113 | arr = center_crop_arr(pil_image, self.resolution)
114 |
115 | if self.random_flip and random.random() < 0.5:
116 | arr = arr[:, ::-1]
117 |
118 | arr = arr.astype(np.float32) / 127.5 - 1
119 |
120 | out_dict = {}
121 | if self.local_classes is not None:
122 | out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
123 | return np.transpose(arr, [2, 0, 1]), out_dict
124 |
125 |
126 | def center_crop_arr(pil_image, image_size):
127 | # We are not on a new enough PIL to support the `reducing_gap`
128 | # argument, which uses BOX downsampling at powers of two first.
129 | # Thus, we do it by hand to improve downsample quality.
130 | while min(*pil_image.size) >= 2 * image_size:
131 | pil_image = pil_image.resize(
132 | tuple(x // 2 for x in pil_image.size), resample=Image.BOX
133 | )
134 |
135 | scale = image_size / min(*pil_image.size)
136 | pil_image = pil_image.resize(
137 | tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
138 | )
139 |
140 | arr = np.array(pil_image)
141 | crop_y = (arr.shape[0] - image_size) // 2
142 | crop_x = (arr.shape[1] - image_size) // 2
143 | return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
144 |
145 |
146 | def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
147 | min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
148 | max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
149 | smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)
150 |
151 | # We are not on a new enough PIL to support the `reducing_gap`
152 | # argument, which uses BOX downsampling at powers of two first.
153 | # Thus, we do it by hand to improve downsample quality.
154 | while min(*pil_image.size) >= 2 * smaller_dim_size:
155 | pil_image = pil_image.resize(
156 | tuple(x // 2 for x in pil_image.size), resample=Image.BOX
157 | )
158 |
159 | scale = smaller_dim_size / min(*pil_image.size)
160 | pil_image = pil_image.resize(
161 | tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
162 | )
163 |
164 | arr = np.array(pil_image)
165 | crop_y = random.randrange(arr.shape[0] - image_size + 1)
166 | crop_x = random.randrange(arr.shape[1] - image_size + 1)
167 | return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
168 |
--------------------------------------------------------------------------------
/BCM/cm/random_util.py:
--------------------------------------------------------------------------------
1 | import torch as th
2 | import torch.distributed as dist
3 | from . import dist_util
4 |
5 |
6 | def get_generator(generator, num_samples=0, seed=0):
7 | if generator == "dummy":
8 | return DummyGenerator()
9 | elif generator == "determ":
10 | return DeterministicGenerator(num_samples, seed)
11 | elif generator == "determ-indiv":
12 | return DeterministicIndividualGenerator(num_samples, seed)
13 | else:
14 | raise NotImplementedError
15 |
16 |
17 | class DummyGenerator:
18 | def randn(self, *args, **kwargs):
19 | return th.randn(*args, **kwargs)
20 |
21 | def randint(self, *args, **kwargs):
22 | return th.randint(*args, **kwargs)
23 |
24 | def randn_like(self, *args, **kwargs):
25 | return th.randn_like(*args, **kwargs)
26 |
27 |
28 | class DeterministicGenerator:
29 | """
30 | RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
31 | Uses a single rng and samples num_samples sized randomness and subsamples the current indices
32 | """
33 |
34 | def __init__(self, num_samples, seed=0):
35 | if dist.is_initialized():
36 | self.rank = dist.get_rank()
37 | self.world_size = dist.get_world_size()
38 | else:
39 | print("Warning: Distributed not initialised, using single rank")
40 | self.rank = 0
41 | self.world_size = 1
42 | self.num_samples = num_samples
43 | self.done_samples = 0
44 | self.seed = seed
45 | self.rng_cpu = th.Generator()
46 | if th.cuda.is_available():
47 | self.rng_cuda = th.Generator(dist_util.dev())
48 | self.set_seed(seed)
49 |
50 | def get_global_size_and_indices(self, size):
51 | global_size = (self.num_samples, *size[1:])
52 | indices = th.arange(
53 | self.done_samples + self.rank,
54 | self.done_samples + self.world_size * int(size[0]),
55 | self.world_size,
56 | )
57 | indices = th.clamp(indices, 0, self.num_samples - 1)
58 | assert (
59 | len(indices) == size[0]
60 | ), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
61 | return global_size, indices
62 |
63 | def get_generator(self, device):
64 | return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda
65 |
66 | def randn(self, *size, dtype=th.float, device="cpu"):
67 | global_size, indices = self.get_global_size_and_indices(size)
68 | generator = self.get_generator(device)
69 | return th.randn(*global_size, generator=generator, dtype=dtype, device=device)[
70 | indices
71 | ]
72 |
73 | def randint(self, low, high, size, dtype=th.long, device="cpu"):
74 | global_size, indices = self.get_global_size_and_indices(size)
75 | generator = self.get_generator(device)
76 | return th.randint(
77 | low, high, generator=generator, size=global_size, dtype=dtype, device=device
78 | )[indices]
79 |
80 | def randn_like(self, tensor):
81 | size, dtype, device = tensor.size(), tensor.dtype, tensor.device
82 | return self.randn(*size, dtype=dtype, device=device)
83 |
84 | def set_done_samples(self, done_samples):
85 | self.done_samples = done_samples
86 | self.set_seed(self.seed)
87 |
88 | def get_seed(self):
89 | return self.seed
90 |
91 | def set_seed(self, seed):
92 | self.rng_cpu.manual_seed(seed)
93 | if th.cuda.is_available():
94 | self.rng_cuda.manual_seed(seed)
95 |
96 |
97 | class DeterministicIndividualGenerator:
98 | """
99 | RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
100 | Uses a separate rng for each sample to reduce memoery usage
101 | """
102 |
103 | def __init__(self, num_samples, seed=0):
104 | if dist.is_initialized():
105 | self.rank = dist.get_rank()
106 | self.world_size = dist.get_world_size()
107 | else:
108 | print("Warning: Distributed not initialised, using single rank")
109 | self.rank = 0
110 | self.world_size = 1
111 | self.num_samples = num_samples
112 | self.done_samples = 0
113 | self.seed = seed
114 | self.rng_cpu = [th.Generator() for _ in range(num_samples)]
115 | if th.cuda.is_available():
116 | self.rng_cuda = [th.Generator(dist_util.dev()) for _ in range(num_samples)]
117 | self.set_seed(seed)
118 |
119 | def get_size_and_indices(self, size):
120 | indices = th.arange(
121 | self.done_samples + self.rank,
122 | self.done_samples + self.world_size * int(size[0]),
123 | self.world_size,
124 | )
125 | indices = th.clamp(indices, 0, self.num_samples - 1)
126 | assert (
127 | len(indices) == size[0]
128 | ), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
129 | return (1, *size[1:]), indices
130 |
131 | def get_generator(self, device):
132 | return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda
133 |
134 | def randn(self, *size, dtype=th.float, device="cpu"):
135 | size, indices = self.get_size_and_indices(size)
136 | generator = self.get_generator(device)
137 | return th.cat(
138 | [
139 | th.randn(*size, generator=generator[i], dtype=dtype, device=device)
140 | for i in indices
141 | ],
142 | dim=0,
143 | )
144 |
145 | def randint(self, low, high, size, dtype=th.long, device="cpu"):
146 | size, indices = self.get_size_and_indices(size)
147 | generator = self.get_generator(device)
148 | return th.cat(
149 | [
150 | th.randint(
151 | low,
152 | high,
153 | generator=generator[i],
154 | size=size,
155 | dtype=dtype,
156 | device=device,
157 | )
158 | for i in indices
159 | ],
160 | dim=0,
161 | )
162 |
163 | def randn_like(self, tensor):
164 | size, dtype, device = tensor.size(), tensor.dtype, tensor.device
165 | return self.randn(*size, dtype=dtype, device=device)
166 |
167 | def set_done_samples(self, done_samples):
168 | self.done_samples = done_samples
169 |
170 | def get_seed(self):
171 | return self.seed
172 |
173 | def set_seed(self, seed):
174 | [
175 | rng_cpu.manual_seed(i + self.num_samples * seed)
176 | for i, rng_cpu in enumerate(self.rng_cpu)
177 | ]
178 | if th.cuda.is_available():
179 | [
180 | rng_cuda.manual_seed(i + self.num_samples * seed)
181 | for i, rng_cuda in enumerate(self.rng_cuda)
182 | ]
183 |
--------------------------------------------------------------------------------
/iCT/cm/random_util.py:
--------------------------------------------------------------------------------
1 | import torch as th
2 | import torch.distributed as dist
3 | from . import dist_util
4 |
5 |
6 | def get_generator(generator, num_samples=0, seed=0):
7 | if generator == "dummy":
8 | return DummyGenerator()
9 | elif generator == "determ":
10 | return DeterministicGenerator(num_samples, seed)
11 | elif generator == "determ-indiv":
12 | return DeterministicIndividualGenerator(num_samples, seed)
13 | else:
14 | raise NotImplementedError
15 |
16 |
17 | class DummyGenerator:
18 | def randn(self, *args, **kwargs):
19 | return th.randn(*args, **kwargs)
20 |
21 | def randint(self, *args, **kwargs):
22 | return th.randint(*args, **kwargs)
23 |
24 | def randn_like(self, *args, **kwargs):
25 | return th.randn_like(*args, **kwargs)
26 |
27 |
28 | class DeterministicGenerator:
29 | """
30 | RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
31 | Uses a single rng and samples num_samples sized randomness and subsamples the current indices
32 | """
33 |
34 | def __init__(self, num_samples, seed=0):
35 | if dist.is_initialized():
36 | self.rank = dist.get_rank()
37 | self.world_size = dist.get_world_size()
38 | else:
39 | print("Warning: Distributed not initialised, using single rank")
40 | self.rank = 0
41 | self.world_size = 1
42 | self.num_samples = num_samples
43 | self.done_samples = 0
44 | self.seed = seed
45 | self.rng_cpu = th.Generator()
46 | if th.cuda.is_available():
47 | self.rng_cuda = th.Generator(dist_util.dev())
48 | self.set_seed(seed)
49 |
50 | def get_global_size_and_indices(self, size):
51 | global_size = (self.num_samples, *size[1:])
52 | indices = th.arange(
53 | self.done_samples + self.rank,
54 | self.done_samples + self.world_size * int(size[0]),
55 | self.world_size,
56 | )
57 | indices = th.clamp(indices, 0, self.num_samples - 1)
58 | assert (
59 | len(indices) == size[0]
60 | ), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
61 | return global_size, indices
62 |
63 | def get_generator(self, device):
64 | return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda
65 |
66 | def randn(self, *size, dtype=th.float, device="cpu"):
67 | global_size, indices = self.get_global_size_and_indices(size)
68 | generator = self.get_generator(device)
69 | return th.randn(*global_size, generator=generator, dtype=dtype, device=device)[
70 | indices
71 | ]
72 |
73 | def randint(self, low, high, size, dtype=th.long, device="cpu"):
74 | global_size, indices = self.get_global_size_and_indices(size)
75 | generator = self.get_generator(device)
76 | return th.randint(
77 | low, high, generator=generator, size=global_size, dtype=dtype, device=device
78 | )[indices]
79 |
80 | def randn_like(self, tensor):
81 | size, dtype, device = tensor.size(), tensor.dtype, tensor.device
82 | return self.randn(*size, dtype=dtype, device=device)
83 |
84 | def set_done_samples(self, done_samples):
85 | self.done_samples = done_samples
86 | self.set_seed(self.seed)
87 |
88 | def get_seed(self):
89 | return self.seed
90 |
91 | def set_seed(self, seed):
92 | self.rng_cpu.manual_seed(seed)
93 | if th.cuda.is_available():
94 | self.rng_cuda.manual_seed(seed)
95 |
96 |
97 | class DeterministicIndividualGenerator:
98 | """
99 | RNG to deterministically sample num_samples samples that does not depend on batch_size or mpi_machines
100 | Uses a separate rng for each sample to reduce memoery usage
101 | """
102 |
103 | def __init__(self, num_samples, seed=0):
104 | if dist.is_initialized():
105 | self.rank = dist.get_rank()
106 | self.world_size = dist.get_world_size()
107 | else:
108 | print("Warning: Distributed not initialised, using single rank")
109 | self.rank = 0
110 | self.world_size = 1
111 | self.num_samples = num_samples
112 | self.done_samples = 0
113 | self.seed = seed
114 | self.rng_cpu = [th.Generator() for _ in range(num_samples)]
115 | if th.cuda.is_available():
116 | self.rng_cuda = [th.Generator(dist_util.dev()) for _ in range(num_samples)]
117 | self.set_seed(seed)
118 |
119 | def get_size_and_indices(self, size):
120 | indices = th.arange(
121 | self.done_samples + self.rank,
122 | self.done_samples + self.world_size * int(size[0]),
123 | self.world_size,
124 | )
125 | indices = th.clamp(indices, 0, self.num_samples - 1)
126 | assert (
127 | len(indices) == size[0]
128 | ), f"rank={self.rank}, ws={self.world_size}, l={len(indices)}, bs={size[0]}"
129 | return (1, *size[1:]), indices
130 |
131 | def get_generator(self, device):
132 | return self.rng_cpu if th.device(device).type == "cpu" else self.rng_cuda
133 |
134 | def randn(self, *size, dtype=th.float, device="cpu"):
135 | size, indices = self.get_size_and_indices(size)
136 | generator = self.get_generator(device)
137 | return th.cat(
138 | [
139 | th.randn(*size, generator=generator[i], dtype=dtype, device=device)
140 | for i in indices
141 | ],
142 | dim=0,
143 | )
144 |
145 | def randint(self, low, high, size, dtype=th.long, device="cpu"):
146 | size, indices = self.get_size_and_indices(size)
147 | generator = self.get_generator(device)
148 | return th.cat(
149 | [
150 | th.randint(
151 | low,
152 | high,
153 | generator=generator[i],
154 | size=size,
155 | dtype=dtype,
156 | device=device,
157 | )
158 | for i in indices
159 | ],
160 | dim=0,
161 | )
162 |
163 | def randn_like(self, tensor):
164 | size, dtype, device = tensor.size(), tensor.dtype, tensor.device
165 | return self.randn(*size, dtype=dtype, device=device)
166 |
167 | def set_done_samples(self, done_samples):
168 | self.done_samples = done_samples
169 |
170 | def get_seed(self):
171 | return self.seed
172 |
173 | def set_seed(self, seed):
174 | [
175 | rng_cpu.manual_seed(i + self.num_samples * seed)
176 | for i, rng_cpu in enumerate(self.rng_cpu)
177 | ]
178 | if th.cuda.is_available():
179 | [
180 | rng_cuda.manual_seed(i + self.num_samples * seed)
181 | for i, rng_cuda in enumerate(self.rng_cuda)
182 | ]
183 |
--------------------------------------------------------------------------------
/BCM/scripts/cm_train.py:
--------------------------------------------------------------------------------
1 | """
2 | Train a diffusion model on images.
3 | """
4 | import sys
5 | import copy
6 | import torch
7 |
8 | sys.path.append('../BCM/')
9 |
10 | import argparse
11 | import os
12 |
13 | from cm import dist_util, logger
14 | from cm.image_datasets import load_data
15 | from cm.resample import create_named_schedule_sampler
16 | from cm.script_util import (
17 | model_and_diffusion_defaults,
18 | create_model_and_diffusion,
19 | cm_train_defaults,
20 | args_to_dict,
21 | add_dict_to_argparser,
22 | create_ema_and_scales_fn,
23 | )
24 | from cm.train_util import CMTrainLoop
25 | import torch.distributed as dist
26 | import copy
27 |
28 |
29 | def main():
30 | args = create_argparser().parse_args()
31 |
32 | dist_util.setup_dist()
33 | logger.configure(dir=os.path.join(args.save_dir, args.exp_name))
34 |
35 | logger.log("creating model and diffusion...")
36 | ema_scale_fn = create_ema_and_scales_fn(
37 | target_ema_mode=args.target_ema_mode,
38 | start_ema=args.start_ema,
39 | scale_mode=args.scale_mode,
40 | start_scales=args.start_scales,
41 | end_scales=args.end_scales,
42 | total_steps=args.total_training_steps,
43 | distill_steps_per_iter=args.distill_steps_per_iter,
44 | )
45 | if args.training_mode == "progdist":
46 | distillation = False
47 | elif "consistency" in args.training_mode:
48 | distillation = True
49 | else:
50 | raise ValueError(f"unknown training mode {args.training_mode}")
51 |
52 | model_and_diffusion_kwargs = args_to_dict(
53 | args, model_and_diffusion_defaults().keys()
54 | )
55 | model_and_diffusion_kwargs["distillation"] = distillation
56 | model, diffusion = create_model_and_diffusion(**model_and_diffusion_kwargs)
57 | if args.bcf and not args.resume_checkpoint:
58 | print(f"Loading pretrained model from {args.pretrained_model_path} for BCF...")
59 | pretrained_state_dict = dist_util.load_state_dict(args.pretrained_model_path, map_location="cpu")
60 | model.load_state_dict(
61 | pretrained_state_dict,
62 | strict=False
63 | )
64 |
65 | model.time_embed_end = copy.deepcopy(model.time_embed) # initialize t_end embedding layer from t embedding
66 | # initialize linear network to [I; 0], to make sure this initialization does not change the CM results
67 | embed_dim = model.time_embed_align.weight.data.shape[0] # Note! weight in nn.Linear is saved in its transpose
68 | model.time_embed_align.weight.data[:, : embed_dim] = torch.diag(torch.ones(embed_dim, dtype=model.time_embed_align.weight.dtype))
69 | model.time_embed_align.weight.data[:, embed_dim:] = torch.zeros((embed_dim, embed_dim), dtype=model.time_embed_align.weight.dtype)
70 |
71 | model.to(dist_util.dev())
72 | model.train()
73 | if args.use_fp16:
74 | model.convert_to_fp16()
75 |
76 | schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
77 |
78 | logger.log("creating data loader...")
79 | if args.batch_size == -1:
80 | batch_size = args.global_batch_size // dist.get_world_size()
81 | if args.global_batch_size % dist.get_world_size() != 0:
82 | logger.log(
83 | f"warning, using smaller global_batch_size of {dist.get_world_size()*batch_size} instead of {args.global_batch_size}"
84 | )
85 | else:
86 | batch_size = args.batch_size
87 |
88 | data = load_data(
89 | data_dir=args.data_dir,
90 | batch_size=batch_size,
91 | image_size=args.image_size,
92 | class_cond=args.class_cond,
93 | )
94 |
95 | if len(args.teacher_model_path) > 0: # path to the teacher score model.
96 | logger.log(f"loading the teacher model from {args.teacher_model_path}")
97 | teacher_model_and_diffusion_kwargs = copy.deepcopy(model_and_diffusion_kwargs)
98 | teacher_model_and_diffusion_kwargs["dropout"] = args.teacher_dropout
99 | teacher_model_and_diffusion_kwargs["distillation"] = False
100 | teacher_model, teacher_diffusion = create_model_and_diffusion(
101 | **teacher_model_and_diffusion_kwargs,
102 | )
103 |
104 | teacher_model.load_state_dict(
105 | dist_util.load_state_dict(args.teacher_model_path, map_location="cpu"),
106 | )
107 |
108 | teacher_model.to(dist_util.dev())
109 | teacher_model.eval()
110 |
111 | for dst, src in zip(model.parameters(), teacher_model.parameters()):
112 | dst.data.copy_(src.data)
113 |
114 | if args.use_fp16:
115 | teacher_model.convert_to_fp16()
116 |
117 | else:
118 | teacher_model = None
119 | teacher_diffusion = None
120 |
121 | # load the target model for distillation, if path specified.
122 |
123 | logger.log("creating the target model")
124 | target_model, _ = create_model_and_diffusion(
125 | **model_and_diffusion_kwargs,
126 | )
127 |
128 | target_model.to(dist_util.dev())
129 | target_model.train()
130 |
131 | dist_util.sync_params(target_model.parameters())
132 | dist_util.sync_params(target_model.buffers())
133 |
134 | for dst, src in zip(target_model.parameters(), model.parameters()):
135 | dst.data.copy_(src.data)
136 |
137 | if args.use_fp16:
138 | target_model.convert_to_fp16()
139 |
140 | logger.log("training...")
141 | CMTrainLoop(
142 | model=model,
143 | target_model=target_model,
144 | teacher_model=teacher_model,
145 | teacher_diffusion=teacher_diffusion,
146 | training_mode=args.training_mode,
147 | ema_scale_fn=ema_scale_fn,
148 | total_training_steps=args.total_training_steps,
149 | diffusion=diffusion,
150 | data=data,
151 | batch_size=batch_size,
152 | microbatch=args.microbatch,
153 | lr=args.lr,
154 | ema_rate=args.ema_rate,
155 | log_interval=args.log_interval,
156 | save_interval=args.save_interval,
157 | resume_checkpoint=args.resume_checkpoint,
158 | use_fp16=args.use_fp16,
159 | fp16_scale_growth=args.fp16_scale_growth,
160 | schedule_sampler=schedule_sampler,
161 | weight_decay=args.weight_decay,
162 | lr_anneal_steps=args.lr_anneal_steps,
163 | ).run_loop()
164 |
165 |
166 | def create_argparser():
167 | defaults = dict(
168 | data_dir="",
169 | schedule_sampler="uniform",
170 | lr=1e-4,
171 | weight_decay=0.0,
172 | lr_anneal_steps=0,
173 | global_batch_size=4096,
174 | batch_size=-1,
175 | microbatch=-1, # -1 disables microbatches
176 | ema_rate="0.9999", # comma-separated list of EMA values
177 | log_interval=10,
178 | save_interval=10000,
179 | save_dir='./checkpoints',
180 | exp_name='ict',
181 | resume_checkpoint="",
182 | use_fp16=False,
183 | fp16_scale_growth=1e-3,
184 | bcf=False,
185 | pretrained_model_path="",
186 |
187 | )
188 | defaults.update(model_and_diffusion_defaults())
189 | defaults.update(cm_train_defaults())
190 | parser = argparse.ArgumentParser()
191 | add_dict_to_argparser(parser, defaults)
192 | return parser
193 |
194 |
195 | if __name__ == "__main__":
196 | main()
197 |
--------------------------------------------------------------------------------
/BCM/cm/resample.py:
--------------------------------------------------------------------------------
1 | from abc import ABC, abstractmethod
2 |
3 | import numpy as np
4 | import torch as th
5 | from scipy.stats import norm
6 | import torch.distributed as dist
7 |
8 |
9 | def create_named_schedule_sampler(name, diffusion):
10 | """
11 | Create a ScheduleSampler from a library of pre-defined samplers.
12 |
13 | :param name: the name of the sampler.
14 | :param diffusion: the diffusion object to sample for.
15 | """
16 | if name == "uniform":
17 | return UniformSampler(diffusion)
18 | elif name == "loss-second-moment":
19 | return LossSecondMomentResampler(diffusion)
20 | elif name == "lognormal":
21 | return LogNormalSampler()
22 | else:
23 | raise NotImplementedError(f"unknown schedule sampler: {name}")
24 |
25 |
26 | class ScheduleSampler(ABC):
27 | """
28 | A distribution over timesteps in the diffusion process, intended to reduce
29 | variance of the objective.
30 |
31 | By default, samplers perform unbiased importance sampling, in which the
32 | objective's mean is unchanged.
33 | However, subclasses may override sample() to change how the resampled
34 | terms are reweighted, allowing for actual changes in the objective.
35 | """
36 |
37 | @abstractmethod
38 | def weights(self):
39 | """
40 | Get a numpy array of weights, one per diffusion step.
41 |
42 | The weights needn't be normalized, but must be positive.
43 | """
44 |
45 | def sample(self, batch_size, device):
46 | """
47 | Importance-sample timesteps for a batch.
48 |
49 | :param batch_size: the number of timesteps.
50 | :param device: the torch device to save to.
51 | :return: a tuple (timesteps, weights):
52 | - timesteps: a tensor of timestep indices.
53 | - weights: a tensor of weights to scale the resulting losses.
54 | """
55 | w = self.weights()
56 | p = w / np.sum(w)
57 | indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
58 | indices = th.from_numpy(indices_np).long().to(device)
59 | weights_np = 1 / (len(p) * p[indices_np])
60 | weights = th.from_numpy(weights_np).float().to(device)
61 | return indices, weights
62 |
63 |
64 | class UniformSampler(ScheduleSampler):
65 | def __init__(self, diffusion):
66 | self.diffusion = diffusion
67 | self._weights = np.ones([diffusion.num_timesteps])
68 |
69 | def weights(self):
70 | return self._weights
71 |
72 |
73 | class LossAwareSampler(ScheduleSampler):
74 | def update_with_local_losses(self, local_ts, local_losses):
75 | """
76 | Update the reweighting using losses from a model.
77 |
78 | Call this method from each rank with a batch of timesteps and the
79 | corresponding losses for each of those timesteps.
80 | This method will perform synchronization to make sure all of the ranks
81 | maintain the exact same reweighting.
82 |
83 | :param local_ts: an integer Tensor of timesteps.
84 | :param local_losses: a 1D Tensor of losses.
85 | """
86 | batch_sizes = [
87 | th.tensor([0], dtype=th.int32, device=local_ts.device)
88 | for _ in range(dist.get_world_size())
89 | ]
90 | dist.all_gather(
91 | batch_sizes,
92 | th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
93 | )
94 |
95 | # Pad all_gather batches to be the maximum batch size.
96 | batch_sizes = [x.item() for x in batch_sizes]
97 | max_bs = max(batch_sizes)
98 |
99 | timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
100 | loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
101 | dist.all_gather(timestep_batches, local_ts)
102 | dist.all_gather(loss_batches, local_losses)
103 | timesteps = [
104 | x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
105 | ]
106 | losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
107 | self.update_with_all_losses(timesteps, losses)
108 |
109 | @abstractmethod
110 | def update_with_all_losses(self, ts, losses):
111 | """
112 | Update the reweighting using losses from a model.
113 |
114 | Sub-classes should override this method to update the reweighting
115 | using losses from the model.
116 |
117 | This method directly updates the reweighting without synchronizing
118 | between workers. It is called by update_with_local_losses from all
119 | ranks with identical arguments. Thus, it should have deterministic
120 | behavior to maintain state across workers.
121 |
122 | :param ts: a list of int timesteps.
123 | :param losses: a list of float losses, one per timestep.
124 | """
125 |
126 |
127 | class LossSecondMomentResampler(LossAwareSampler):
128 | def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
129 | self.diffusion = diffusion
130 | self.history_per_term = history_per_term
131 | self.uniform_prob = uniform_prob
132 | self._loss_history = np.zeros(
133 | [diffusion.num_timesteps, history_per_term], dtype=np.float64
134 | )
135 | self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
136 |
137 | def weights(self):
138 | if not self._warmed_up():
139 | return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
140 | weights = np.sqrt(np.mean(self._loss_history**2, axis=-1))
141 | weights /= np.sum(weights)
142 | weights *= 1 - self.uniform_prob
143 | weights += self.uniform_prob / len(weights)
144 | return weights
145 |
146 | def update_with_all_losses(self, ts, losses):
147 | for t, loss in zip(ts, losses):
148 | if self._loss_counts[t] == self.history_per_term:
149 | # Shift out the oldest loss term.
150 | self._loss_history[t, :-1] = self._loss_history[t, 1:]
151 | self._loss_history[t, -1] = loss
152 | else:
153 | self._loss_history[t, self._loss_counts[t]] = loss
154 | self._loss_counts[t] += 1
155 |
156 | def _warmed_up(self):
157 | return (self._loss_counts == self.history_per_term).all()
158 |
159 |
160 | class LogNormalSampler:
161 | def __init__(self, p_mean=-1.1, p_std=2.0, even=False):
162 | self.p_mean = p_mean
163 | self.p_std = p_std
164 | self.even = even
165 | if self.even:
166 | self.inv_cdf = lambda x: norm.ppf(x, loc=p_mean, scale=p_std)
167 | self.rank, self.size = dist.get_rank(), dist.get_world_size()
168 |
169 | def sample(self, bs, device):
170 | if self.even:
171 | # buckets = [1/G]
172 | start_i, end_i = self.rank * bs, (self.rank + 1) * bs
173 | global_batch_size = self.size * bs
174 | locs = (th.arange(start_i, end_i) + th.rand(bs)) / global_batch_size
175 | log_sigmas = th.tensor(self.inv_cdf(locs), dtype=th.float32, device=device)
176 | else:
177 | log_sigmas = self.p_mean + self.p_std * th.randn(bs, device=device)
178 | sigmas = th.exp(log_sigmas)
179 | weights = th.ones_like(sigmas)
180 | return sigmas, weights
181 |
--------------------------------------------------------------------------------
/iCT/cm/resample.py:
--------------------------------------------------------------------------------
1 | from abc import ABC, abstractmethod
2 |
3 | import numpy as np
4 | import torch as th
5 | from scipy.stats import norm
6 | import torch.distributed as dist
7 |
8 |
9 | def create_named_schedule_sampler(name, diffusion):
10 | """
11 | Create a ScheduleSampler from a library of pre-defined samplers.
12 |
13 | :param name: the name of the sampler.
14 | :param diffusion: the diffusion object to sample for.
15 | """
16 | if name == "uniform":
17 | return UniformSampler(diffusion)
18 | elif name == "loss-second-moment":
19 | return LossSecondMomentResampler(diffusion)
20 | elif name == "lognormal":
21 | return LogNormalSampler()
22 | else:
23 | raise NotImplementedError(f"unknown schedule sampler: {name}")
24 |
25 |
26 | class ScheduleSampler(ABC):
27 | """
28 | A distribution over timesteps in the diffusion process, intended to reduce
29 | variance of the objective.
30 |
31 | By default, samplers perform unbiased importance sampling, in which the
32 | objective's mean is unchanged.
33 | However, subclasses may override sample() to change how the resampled
34 | terms are reweighted, allowing for actual changes in the objective.
35 | """
36 |
37 | @abstractmethod
38 | def weights(self):
39 | """
40 | Get a numpy array of weights, one per diffusion step.
41 |
42 | The weights needn't be normalized, but must be positive.
43 | """
44 |
45 | def sample(self, batch_size, device):
46 | """
47 | Importance-sample timesteps for a batch.
48 |
49 | :param batch_size: the number of timesteps.
50 | :param device: the torch device to save to.
51 | :return: a tuple (timesteps, weights):
52 | - timesteps: a tensor of timestep indices.
53 | - weights: a tensor of weights to scale the resulting losses.
54 | """
55 | w = self.weights()
56 | p = w / np.sum(w)
57 | indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
58 | indices = th.from_numpy(indices_np).long().to(device)
59 | weights_np = 1 / (len(p) * p[indices_np])
60 | weights = th.from_numpy(weights_np).float().to(device)
61 | return indices, weights
62 |
63 |
64 | class UniformSampler(ScheduleSampler):
65 | def __init__(self, diffusion):
66 | self.diffusion = diffusion
67 | self._weights = np.ones([diffusion.num_timesteps])
68 |
69 | def weights(self):
70 | return self._weights
71 |
72 |
73 | class LossAwareSampler(ScheduleSampler):
74 | def update_with_local_losses(self, local_ts, local_losses):
75 | """
76 | Update the reweighting using losses from a model.
77 |
78 | Call this method from each rank with a batch of timesteps and the
79 | corresponding losses for each of those timesteps.
80 | This method will perform synchronization to make sure all of the ranks
81 | maintain the exact same reweighting.
82 |
83 | :param local_ts: an integer Tensor of timesteps.
84 | :param local_losses: a 1D Tensor of losses.
85 | """
86 | batch_sizes = [
87 | th.tensor([0], dtype=th.int32, device=local_ts.device)
88 | for _ in range(dist.get_world_size())
89 | ]
90 | dist.all_gather(
91 | batch_sizes,
92 | th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
93 | )
94 |
95 | # Pad all_gather batches to be the maximum batch size.
96 | batch_sizes = [x.item() for x in batch_sizes]
97 | max_bs = max(batch_sizes)
98 |
99 | timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
100 | loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
101 | dist.all_gather(timestep_batches, local_ts)
102 | dist.all_gather(loss_batches, local_losses)
103 | timesteps = [
104 | x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
105 | ]
106 | losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
107 | self.update_with_all_losses(timesteps, losses)
108 |
109 | @abstractmethod
110 | def update_with_all_losses(self, ts, losses):
111 | """
112 | Update the reweighting using losses from a model.
113 |
114 | Sub-classes should override this method to update the reweighting
115 | using losses from the model.
116 |
117 | This method directly updates the reweighting without synchronizing
118 | between workers. It is called by update_with_local_losses from all
119 | ranks with identical arguments. Thus, it should have deterministic
120 | behavior to maintain state across workers.
121 |
122 | :param ts: a list of int timesteps.
123 | :param losses: a list of float losses, one per timestep.
124 | """
125 |
126 |
127 | class LossSecondMomentResampler(LossAwareSampler):
128 | def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
129 | self.diffusion = diffusion
130 | self.history_per_term = history_per_term
131 | self.uniform_prob = uniform_prob
132 | self._loss_history = np.zeros(
133 | [diffusion.num_timesteps, history_per_term], dtype=np.float64
134 | )
135 | self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
136 |
137 | def weights(self):
138 | if not self._warmed_up():
139 | return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
140 | weights = np.sqrt(np.mean(self._loss_history**2, axis=-1))
141 | weights /= np.sum(weights)
142 | weights *= 1 - self.uniform_prob
143 | weights += self.uniform_prob / len(weights)
144 | return weights
145 |
146 | def update_with_all_losses(self, ts, losses):
147 | for t, loss in zip(ts, losses):
148 | if self._loss_counts[t] == self.history_per_term:
149 | # Shift out the oldest loss term.
150 | self._loss_history[t, :-1] = self._loss_history[t, 1:]
151 | self._loss_history[t, -1] = loss
152 | else:
153 | self._loss_history[t, self._loss_counts[t]] = loss
154 | self._loss_counts[t] += 1
155 |
156 | def _warmed_up(self):
157 | return (self._loss_counts == self.history_per_term).all()
158 |
159 |
160 | class LogNormalSampler:
161 | def __init__(self, p_mean=-1.1, p_std=2.0, even=False):
162 | self.p_mean = p_mean
163 | self.p_std = p_std
164 | self.even = even
165 | if self.even:
166 | self.inv_cdf = lambda x: norm.ppf(x, loc=p_mean, scale=p_std)
167 | self.rank, self.size = dist.get_rank(), dist.get_world_size()
168 |
169 | def sample(self, bs, device):
170 | if self.even:
171 | # buckets = [1/G]
172 | start_i, end_i = self.rank * bs, (self.rank + 1) * bs
173 | global_batch_size = self.size * bs
174 | locs = (th.arange(start_i, end_i) + th.rand(bs)) / global_batch_size
175 | log_sigmas = th.tensor(self.inv_cdf(locs), dtype=th.float32, device=device)
176 | else:
177 | log_sigmas = self.p_mean + self.p_std * th.randn(bs, device=device)
178 | sigmas = th.exp(log_sigmas)
179 | weights = th.ones_like(sigmas)
180 | return sigmas, weights
181 |
--------------------------------------------------------------------------------
/BCM/cm/image_datasets.py:
--------------------------------------------------------------------------------
1 | import math
2 | import random
3 |
4 | from PIL import Image
5 | import blobfile as bf
6 | from mpi4py import MPI
7 | import numpy as np
8 | from torch.utils.data import DataLoader, Dataset
9 |
10 |
11 | def load_data(
12 | *,
13 | data_dir,
14 | batch_size,
15 | image_size,
16 | class_cond=False,
17 | deterministic=False,
18 | random_crop=False,
19 | random_flip=True,
20 | val=False
21 | ):
22 | """
23 | For a dataset, create a generator over (images, kwargs) pairs.
24 |
25 | Each images is an NCHW float tensor, and the kwargs dict contains zero or
26 | more keys, each of which map to a batched Tensor of their own.
27 | The kwargs dict can be used for class labels, in which case the key is "y"
28 | and the values are integer tensors of class labels.
29 |
30 | :param data_dir: a dataset directory.
31 | :param batch_size: the batch size of each returned pair.
32 | :param image_size: the size to which images are resized.
33 | :param class_cond: if True, include a "y" key in returned dicts for class
34 | label. If classes are not available and this is true, an
35 | exception will be raised.
36 | :param deterministic: if True, yield results in a deterministic order.
37 | :param random_crop: if True, randomly crop the images for augmentation.
38 | :param random_flip: if True, randomly flip the images for augmentation.
39 | """
40 | if not data_dir:
41 | raise ValueError("unspecified data directory")
42 | classes = None
43 | all_files = _list_image_files_recursively(data_dir)
44 | if class_cond:
45 | if not val: # imagenet的training set可以直接从图片名字读出label
46 | # Assume classes are the first part of the filename,
47 | # before an underscore.
48 | class_names = [bf.basename(path).split("_")[0] for path in all_files]
49 | sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
50 | classes = [sorted_classes[x] for x in class_names]
51 | else:
52 | val_label_text_path = 'datasets/imagenet_val_label.txt'
53 | val_label_dict = {}
54 | with open(val_label_text_path, "r") as f:
55 | for line in f.readlines():
56 | line = line.strip('\n')
57 | img, label = line.split(' ')
58 | val_label_dict[img] = int(label)
59 | classes = [val_label_dict[path.split('/')[-1]] for path in all_files]
60 |
61 | dataset = ImageDataset(
62 | image_size,
63 | all_files,
64 | classes=classes,
65 | shard=MPI.COMM_WORLD.Get_rank(),
66 | num_shards=MPI.COMM_WORLD.Get_size(),
67 | random_crop=random_crop,
68 | random_flip=random_flip,
69 | )
70 | if deterministic:
71 | loader = DataLoader(
72 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
73 | )
74 | else:
75 | loader = DataLoader(
76 | dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
77 | )
78 | while True:
79 | yield from loader
80 |
81 |
82 | def _list_image_files_recursively(data_dir):
83 | results = []
84 | for entry in sorted(bf.listdir(data_dir)):
85 | full_path = bf.join(data_dir, entry)
86 | ext = entry.split(".")[-1]
87 | if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
88 | results.append(full_path)
89 | elif bf.isdir(full_path):
90 | results.extend(_list_image_files_recursively(full_path))
91 | return results
92 |
93 |
94 | class ImageDataset(Dataset):
95 | def __init__(
96 | self,
97 | resolution,
98 | image_paths,
99 | classes=None,
100 | shard=0,
101 | num_shards=1,
102 | random_crop=False,
103 | random_flip=True,
104 | ):
105 | super().__init__()
106 | self.resolution = resolution
107 | self.local_images = image_paths[shard:][::num_shards]
108 | self.local_classes = None if classes is None else classes[shard:][::num_shards]
109 | self.random_crop = random_crop
110 | self.random_flip = random_flip
111 | self.save_jpg = False
112 | self.jpg_quality = 20
113 | self.jpg_save_path = f'/mnt/petrelfs/liliangchen/try/consistency_model_torch/bcm/playground/imagenet64_val_jpg_qf{self.jpg_quality}'
114 |
115 | def __len__(self):
116 | return len(self.local_images)
117 |
118 | def __getitem__(self, idx):
119 | path = self.local_images[idx]
120 | with bf.BlobFile(path, "rb") as f:
121 | pil_image = Image.open(f)
122 | pil_image.load()
123 | pil_image = pil_image.convert("RGB")
124 |
125 | if self.random_crop:
126 | arr = random_crop_arr(pil_image, self.resolution)
127 | else:
128 | arr = center_crop_arr(pil_image, self.resolution)
129 |
130 | if self.save_jpg:
131 | pic_name = path.split('/')[-1]
132 | temp = Image.fromarray(arr)
133 | temp.save(f'{self.jpg_save_path}/{pic_name}', quality=self.jpg_quality)
134 |
135 | if self.random_flip and random.random() < 0.5:
136 | arr = arr[:, ::-1]
137 |
138 | arr = arr.astype(np.float32) / 127.5 - 1
139 |
140 | out_dict = {}
141 | if self.local_classes is not None:
142 | out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
143 | return np.transpose(arr, [2, 0, 1]), out_dict
144 |
145 |
146 | def center_crop_arr(pil_image, image_size):
147 | # We are not on a new enough PIL to support the `reducing_gap`
148 | # argument, which uses BOX downsampling at powers of two first.
149 | # Thus, we do it by hand to improve downsample quality.
150 | while min(*pil_image.size) >= 2 * image_size:
151 | pil_image = pil_image.resize(
152 | tuple(x // 2 for x in pil_image.size), resample=Image.BOX
153 | )
154 |
155 | scale = image_size / min(*pil_image.size)
156 | pil_image = pil_image.resize(
157 | tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
158 | )
159 |
160 | arr = np.array(pil_image)
161 | crop_y = (arr.shape[0] - image_size) // 2
162 | crop_x = (arr.shape[1] - image_size) // 2
163 | return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
164 |
165 |
166 | def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
167 | min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
168 | max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
169 | smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)
170 |
171 | # We are not on a new enough PIL to support the `reducing_gap`
172 | # argument, which uses BOX downsampling at powers of two first.
173 | # Thus, we do it by hand to improve downsample quality.
174 | while min(*pil_image.size) >= 2 * smaller_dim_size:
175 | pil_image = pil_image.resize(
176 | tuple(x // 2 for x in pil_image.size), resample=Image.BOX
177 | )
178 |
179 | scale = smaller_dim_size / min(*pil_image.size)
180 | pil_image = pil_image.resize(
181 | tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
182 | )
183 |
184 | arr = np.array(pil_image)
185 | crop_y = random.randrange(arr.shape[0] - image_size + 1)
186 | crop_x = random.randrange(arr.shape[1] - image_size + 1)
187 | return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
188 |
--------------------------------------------------------------------------------
/BCM/cm/script_util.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | from .karras_diffusion import KarrasDenoiser
4 | from .unet_bcf import UNetModel
5 | import numpy as np
6 |
7 | NUM_CLASSES = 1000
8 |
9 |
10 | def cm_train_defaults():
11 | return dict(
12 | teacher_model_path="",
13 | teacher_dropout=0.1,
14 | training_mode="consistency_distillation",
15 | target_ema_mode="fixed",
16 | scale_mode="fixed",
17 | total_training_steps=600000,
18 | start_ema=0.0,
19 | start_scales=40,
20 | end_scales=40,
21 | distill_steps_per_iter=50000,
22 | loss_norm="lpips",
23 | )
24 |
25 |
26 | def model_and_diffusion_defaults():
27 | """
28 | Defaults for image training.
29 | """
30 | res = dict(
31 | sigma_min=0.002,
32 | sigma_max=80.0,
33 | image_size=64,
34 | num_channels=128,
35 | num_res_blocks=2,
36 | num_heads=4,
37 | num_heads_upsample=-1,
38 | num_head_channels=-1,
39 | attention_resolutions="32,16,8",
40 | channel_mult="",
41 | dropout=0.0,
42 | class_cond=False,
43 | use_checkpoint=False,
44 | use_scale_shift_norm=True,
45 | resblock_updown=False,
46 | use_fp16=False,
47 | use_new_attention_order=False,
48 | learn_sigma=False,
49 | weight_schedule="karras",
50 | )
51 | return res
52 |
53 |
54 | def create_model_and_diffusion(
55 | image_size,
56 | class_cond,
57 | learn_sigma,
58 | num_channels,
59 | num_res_blocks,
60 | channel_mult,
61 | num_heads,
62 | num_head_channels,
63 | num_heads_upsample,
64 | attention_resolutions,
65 | dropout,
66 | use_checkpoint,
67 | use_scale_shift_norm,
68 | resblock_updown,
69 | use_fp16,
70 | use_new_attention_order,
71 | weight_schedule,
72 | sigma_min=0.002,
73 | sigma_max=80.0,
74 | distillation=False,
75 | ):
76 | model = create_model(
77 | image_size,
78 | num_channels,
79 | num_res_blocks,
80 | channel_mult=channel_mult,
81 | learn_sigma=learn_sigma,
82 | class_cond=class_cond,
83 | use_checkpoint=use_checkpoint,
84 | attention_resolutions=attention_resolutions,
85 | num_heads=num_heads,
86 | num_head_channels=num_head_channels,
87 | num_heads_upsample=num_heads_upsample,
88 | use_scale_shift_norm=use_scale_shift_norm,
89 | dropout=dropout,
90 | resblock_updown=resblock_updown,
91 | use_fp16=use_fp16,
92 | use_new_attention_order=use_new_attention_order,
93 | )
94 | diffusion = KarrasDenoiser(
95 | sigma_data=0.5,
96 | sigma_max=sigma_max,
97 | sigma_min=sigma_min,
98 | distillation=distillation,
99 | weight_schedule=weight_schedule,
100 | )
101 | return model, diffusion
102 |
103 |
104 | def create_model(
105 | image_size,
106 | num_channels,
107 | num_res_blocks,
108 | channel_mult="",
109 | learn_sigma=False,
110 | class_cond=False,
111 | use_checkpoint=False,
112 | attention_resolutions="16",
113 | num_heads=1,
114 | num_head_channels=-1,
115 | num_heads_upsample=-1,
116 | use_scale_shift_norm=False,
117 | dropout=0,
118 | resblock_updown=False,
119 | use_fp16=False,
120 | use_new_attention_order=False,
121 | ):
122 | if channel_mult == "":
123 | if image_size == 512:
124 | channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
125 | elif image_size == 256:
126 | channel_mult = (1, 1, 2, 2, 4, 4)
127 | elif image_size == 128:
128 | channel_mult = (1, 1, 2, 3, 4)
129 | elif image_size == 64:
130 | channel_mult = (1, 2, 3, 4)
131 | else:
132 | raise ValueError(f"unsupported image size: {image_size}")
133 | else:
134 | channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
135 |
136 | attention_ds = []
137 | for res in attention_resolutions.split(","):
138 | attention_ds.append(image_size // int(res))
139 |
140 | return UNetModel(
141 | image_size=image_size,
142 | in_channels=3,
143 | model_channels=num_channels,
144 | out_channels=(3 if not learn_sigma else 6),
145 | num_res_blocks=num_res_blocks,
146 | attention_resolutions=tuple(attention_ds),
147 | dropout=dropout,
148 | channel_mult=channel_mult,
149 | num_classes=(NUM_CLASSES if class_cond else None),
150 | use_checkpoint=use_checkpoint,
151 | use_fp16=use_fp16,
152 | num_heads=num_heads,
153 | num_head_channels=num_head_channels,
154 | num_heads_upsample=num_heads_upsample,
155 | use_scale_shift_norm=use_scale_shift_norm,
156 | resblock_updown=resblock_updown,
157 | use_new_attention_order=use_new_attention_order,
158 | )
159 |
160 |
161 | def create_ema_and_scales_fn(
162 | target_ema_mode,
163 | start_ema,
164 | scale_mode,
165 | start_scales,
166 | end_scales,
167 | total_steps,
168 | distill_steps_per_iter,
169 | ):
170 | def ema_and_scales_fn(step):
171 | if target_ema_mode == "fixed" and scale_mode == "fixed":
172 | target_ema = start_ema
173 | scales = start_scales
174 | elif target_ema_mode == "fixed" and scale_mode == "progressive":
175 | target_ema = start_ema
176 | scales = np.ceil(
177 | np.sqrt(
178 | (step / total_steps) * ((end_scales + 1) ** 2 - start_scales ** 2)
179 | + start_scales ** 2
180 | )
181 | - 1
182 | ).astype(np.int32)
183 | scales = np.maximum(scales, 1)
184 | scales = scales + 1
185 |
186 | elif target_ema_mode == "adaptive" and scale_mode == "progressive":
187 |
188 | Kp = np.floor(total_steps / (np.log2(end_scales / start_scales) + 1))
189 | scales = np.minimum(end_scales, start_scales * 2 ** np.floor(step / Kp)).astype(np.int32) + 1
190 | target_ema = 0.
191 |
192 | elif target_ema_mode == "fixed" and scale_mode == "progdist":
193 | distill_stage = step // distill_steps_per_iter
194 | scales = start_scales // (2 ** distill_stage)
195 | scales = np.maximum(scales, 2)
196 |
197 | sub_stage = np.maximum(
198 | step - distill_steps_per_iter * (np.log2(start_scales) - 1),
199 | 0,
200 | )
201 | sub_stage = sub_stage // (distill_steps_per_iter * 2)
202 | sub_scales = 2 // (2 ** sub_stage)
203 | sub_scales = np.maximum(sub_scales, 1)
204 |
205 | scales = np.where(scales == 2, sub_scales, scales)
206 |
207 | target_ema = 1.0
208 | else:
209 | raise NotImplementedError
210 |
211 | return float(target_ema), int(scales)
212 |
213 | return ema_and_scales_fn
214 |
215 |
216 | def add_dict_to_argparser(parser, default_dict):
217 | for k, v in default_dict.items():
218 | v_type = type(v)
219 | if v is None:
220 | v_type = str
221 | elif isinstance(v, bool):
222 | v_type = str2bool
223 | parser.add_argument(f"--{k}", default=v, type=v_type)
224 |
225 |
226 | def args_to_dict(args, keys):
227 | return {k: getattr(args, k) for k in keys}
228 |
229 |
230 | def str2bool(v):
231 | """
232 | https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
233 | """
234 | if isinstance(v, bool):
235 | return v
236 | if v.lower() in ("yes", "true", "t", "y", "1"):
237 | return True
238 | elif v.lower() in ("no", "false", "f", "n", "0"):
239 | return False
240 | else:
241 | raise argparse.ArgumentTypeError("boolean value expected")
242 |
--------------------------------------------------------------------------------
/iCT/cm/script_util.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 | from .karras_diffusion import KarrasDenoiser
4 | from .unet import UNetModel
5 | import numpy as np
6 |
7 | NUM_CLASSES = 1000
8 |
9 |
10 | def cm_train_defaults():
11 | return dict(
12 | teacher_model_path="",
13 | teacher_dropout=0.1,
14 | training_mode="consistency_distillation",
15 | target_ema_mode="fixed",
16 | scale_mode="fixed",
17 | total_training_steps=600000,
18 | start_ema=0.0,
19 | start_scales=40,
20 | end_scales=40,
21 | distill_steps_per_iter=50000,
22 | loss_norm="lpips",
23 | )
24 |
25 |
26 | def model_and_diffusion_defaults():
27 | """
28 | Defaults for image training.
29 | """
30 | res = dict(
31 | sigma_min=0.002,
32 | sigma_max=80.0,
33 | image_size=64,
34 | num_channels=128,
35 | num_res_blocks=2,
36 | num_heads=4,
37 | num_heads_upsample=-1,
38 | num_head_channels=-1,
39 | attention_resolutions="32,16,8",
40 | channel_mult="",
41 | dropout=0.0,
42 | class_cond=False,
43 | use_checkpoint=False,
44 | use_scale_shift_norm=True,
45 | resblock_updown=False,
46 | use_fp16=False,
47 | use_new_attention_order=False,
48 | learn_sigma=False,
49 | weight_schedule="karras",
50 | )
51 | return res
52 |
53 |
54 | def create_model_and_diffusion(
55 | image_size,
56 | class_cond,
57 | learn_sigma,
58 | num_channels,
59 | num_res_blocks,
60 | channel_mult,
61 | num_heads,
62 | num_head_channels,
63 | num_heads_upsample,
64 | attention_resolutions,
65 | dropout,
66 | use_checkpoint,
67 | use_scale_shift_norm,
68 | resblock_updown,
69 | use_fp16,
70 | use_new_attention_order,
71 | weight_schedule,
72 | sigma_min=0.002,
73 | sigma_max=80.0,
74 | distillation=False,
75 | ):
76 | model = create_model(
77 | image_size,
78 | num_channels,
79 | num_res_blocks,
80 | channel_mult=channel_mult,
81 | learn_sigma=learn_sigma,
82 | class_cond=class_cond,
83 | use_checkpoint=use_checkpoint,
84 | attention_resolutions=attention_resolutions,
85 | num_heads=num_heads,
86 | num_head_channels=num_head_channels,
87 | num_heads_upsample=num_heads_upsample,
88 | use_scale_shift_norm=use_scale_shift_norm,
89 | dropout=dropout,
90 | resblock_updown=resblock_updown,
91 | use_fp16=use_fp16,
92 | use_new_attention_order=use_new_attention_order,
93 | )
94 | diffusion = KarrasDenoiser(
95 | sigma_data=0.5,
96 | sigma_max=sigma_max,
97 | sigma_min=sigma_min,
98 | distillation=distillation,
99 | weight_schedule=weight_schedule,
100 | )
101 | return model, diffusion
102 |
103 |
104 | def create_model(
105 | image_size,
106 | num_channels,
107 | num_res_blocks,
108 | channel_mult="",
109 | learn_sigma=False,
110 | class_cond=False,
111 | use_checkpoint=False,
112 | attention_resolutions="16",
113 | num_heads=1,
114 | num_head_channels=-1,
115 | num_heads_upsample=-1,
116 | use_scale_shift_norm=False,
117 | dropout=0,
118 | resblock_updown=False,
119 | use_fp16=False,
120 | use_new_attention_order=False,
121 | ):
122 | if channel_mult == "":
123 | if image_size == 512:
124 | channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
125 | elif image_size == 256:
126 | channel_mult = (1, 1, 2, 2, 4, 4)
127 | elif image_size == 128:
128 | channel_mult = (1, 1, 2, 3, 4)
129 | elif image_size == 64:
130 | channel_mult = (1, 2, 3, 4)
131 | else:
132 | raise ValueError(f"unsupported image size: {image_size}")
133 | else:
134 | channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
135 |
136 | attention_ds = []
137 | for res in attention_resolutions.split(","):
138 | attention_ds.append(image_size // int(res))
139 |
140 | return UNetModel(
141 | image_size=image_size,
142 | in_channels=3,
143 | model_channels=num_channels,
144 | out_channels=(3 if not learn_sigma else 6),
145 | num_res_blocks=num_res_blocks,
146 | attention_resolutions=tuple(attention_ds),
147 | dropout=dropout,
148 | channel_mult=channel_mult,
149 | num_classes=(NUM_CLASSES if class_cond else None),
150 | use_checkpoint=use_checkpoint,
151 | use_fp16=use_fp16,
152 | num_heads=num_heads,
153 | num_head_channels=num_head_channels,
154 | num_heads_upsample=num_heads_upsample,
155 | use_scale_shift_norm=use_scale_shift_norm,
156 | resblock_updown=resblock_updown,
157 | use_new_attention_order=use_new_attention_order,
158 | )
159 |
160 |
161 | def create_ema_and_scales_fn(
162 | target_ema_mode,
163 | start_ema,
164 | scale_mode,
165 | start_scales,
166 | end_scales,
167 | total_steps,
168 | distill_steps_per_iter,
169 | ):
170 | def ema_and_scales_fn(step):
171 | if target_ema_mode == "fixed" and scale_mode == "fixed":
172 | target_ema = start_ema
173 | scales = start_scales
174 | elif target_ema_mode == "fixed" and scale_mode == "progressive":
175 | target_ema = start_ema
176 | scales = np.ceil(
177 | np.sqrt(
178 | (step / total_steps) * ((end_scales + 1) ** 2 - start_scales ** 2)
179 | + start_scales ** 2
180 | )
181 | - 1
182 | ).astype(np.int32)
183 | scales = np.maximum(scales, 1)
184 | scales = scales + 1
185 |
186 | elif target_ema_mode == "adaptive" and scale_mode == "v1":
187 | scales = np.ceil(
188 | np.sqrt(
189 | (step / total_steps) * ((end_scales + 1) ** 2 - start_scales**2)
190 | + start_scales**2
191 | )
192 | - 1
193 | ).astype(np.int32)
194 | scales = np.maximum(scales, 1)
195 | scales = scales + 1
196 | target_ema = 0.
197 |
198 | elif target_ema_mode == "adaptive" and scale_mode == "progressive":
199 | Kp = np.floor(total_steps / (np.log2(end_scales / start_scales) + 1))
200 | scales = np.minimum(end_scales, start_scales * 2 ** np.floor(step / Kp)).astype(np.int32) + 1
201 | target_ema = 0.
202 |
203 |
204 | elif target_ema_mode == 'adaptive' and scale_mode == "exponential":
205 | rho = -1.0
206 | alpha1 = 1 / (start_scales + 1)
207 | alpha2 = 1 / (end_scales + 1)
208 | scales = alpha1 ** rho + step / total_steps * (alpha2 ** rho - alpha1 ** rho)
209 | scales = (np.floor(1 / scales ** (1 / rho)) + 1).astype(np.int32)
210 | target_ema = 0.
211 |
212 | elif target_ema_mode == "fixed" and scale_mode == "progdist":
213 | distill_stage = step // distill_steps_per_iter
214 | scales = start_scales // (2 ** distill_stage)
215 | scales = np.maximum(scales, 2)
216 |
217 | sub_stage = np.maximum(
218 | step - distill_steps_per_iter * (np.log2(start_scales) - 1),
219 | 0,
220 | )
221 | sub_stage = sub_stage // (distill_steps_per_iter * 2)
222 | sub_scales = 2 // (2 ** sub_stage)
223 | sub_scales = np.maximum(sub_scales, 1)
224 |
225 | scales = np.where(scales == 2, sub_scales, scales)
226 |
227 | target_ema = 1.0
228 | else:
229 | raise NotImplementedError
230 |
231 | return float(target_ema), int(scales)
232 |
233 | return ema_and_scales_fn
234 |
235 |
236 | def add_dict_to_argparser(parser, default_dict):
237 | for k, v in default_dict.items():
238 | v_type = type(v)
239 | if v is None:
240 | v_type = str
241 | elif isinstance(v, bool):
242 | v_type = str2bool
243 | parser.add_argument(f"--{k}", default=v, type=v_type)
244 |
245 |
246 | def args_to_dict(args, keys):
247 | return {k: getattr(args, k) for k in keys}
248 |
249 |
250 | def str2bool(v):
251 | """
252 | https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
253 | """
254 | if isinstance(v, bool):
255 | return v
256 | if v.lower() in ("yes", "true", "t", "y", "1"):
257 | return True
258 | elif v.lower() in ("no", "false", "f", "n", "0"):
259 | return False
260 | else:
261 | raise argparse.ArgumentTypeError("boolean value expected")
262 |
--------------------------------------------------------------------------------
/iCT/cm/fp16_util.py:
--------------------------------------------------------------------------------
1 | """
2 | Helpers to train with 16-bit precision.
3 | """
4 |
5 | import numpy as np
6 | import torch as th
7 | import torch.nn as nn
8 | from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
9 |
10 | from . import logger
11 |
12 | INITIAL_LOG_LOSS_SCALE = 20.0
13 |
14 |
15 | def convert_module_to_f16(l):
16 | """
17 | Convert primitive modules to float16.
18 | """
19 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
20 | l.weight.data = l.weight.data.half()
21 | if l.bias is not None:
22 | l.bias.data = l.bias.data.half()
23 |
24 |
25 | def convert_module_to_f32(l):
26 | """
27 | Convert primitive modules to float32, undoing convert_module_to_f16().
28 | """
29 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
30 | l.weight.data = l.weight.data.float()
31 | if l.bias is not None:
32 | l.bias.data = l.bias.data.float()
33 |
34 |
35 | def make_master_params(param_groups_and_shapes):
36 | """
37 | Copy model parameters into a (differently-shaped) list of full-precision
38 | parameters.
39 | """
40 | master_params = []
41 | for param_group, shape in param_groups_and_shapes:
42 | master_param = nn.Parameter(
43 | _flatten_dense_tensors(
44 | [param.detach().float() for (_, param) in param_group]
45 | ).view(shape)
46 | )
47 | master_param.requires_grad = True
48 | master_params.append(master_param)
49 | return master_params
50 |
51 |
52 | def model_grads_to_master_grads(param_groups_and_shapes, master_params):
53 | """
54 | Copy the gradients from the model parameters into the master parameters
55 | from make_master_params().
56 | """
57 | for master_param, (param_group, shape) in zip(
58 | master_params, param_groups_and_shapes
59 | ):
60 | master_param.grad = _flatten_dense_tensors(
61 | [param_grad_or_zeros(param) for (_, param) in param_group]
62 | ).view(shape)
63 |
64 |
65 | def master_params_to_model_params(param_groups_and_shapes, master_params):
66 | """
67 | Copy the master parameter data back into the model parameters.
68 | """
69 | # Without copying to a list, if a generator is passed, this will
70 | # silently not copy any parameters.
71 | for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
72 | for (_, param), unflat_master_param in zip(
73 | param_group, unflatten_master_params(param_group, master_param.view(-1))
74 | ):
75 | param.detach().copy_(unflat_master_param)
76 |
77 |
78 | def unflatten_master_params(param_group, master_param):
79 | return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
80 |
81 |
82 | def get_param_groups_and_shapes(named_model_params):
83 | named_model_params = list(named_model_params)
84 | scalar_vector_named_params = (
85 | [(n, p) for (n, p) in named_model_params if p.ndim <= 1],
86 | (-1),
87 | )
88 | matrix_named_params = (
89 | [(n, p) for (n, p) in named_model_params if p.ndim > 1],
90 | (1, -1),
91 | )
92 | return [scalar_vector_named_params, matrix_named_params]
93 |
94 |
95 | def master_params_to_state_dict(
96 | model, param_groups_and_shapes, master_params, use_fp16
97 | ):
98 | # if use_fp16:
99 | if True:
100 | state_dict = model.state_dict()
101 | for master_param, (param_group, _) in zip(
102 | master_params, param_groups_and_shapes
103 | ):
104 | for (name, _), unflat_master_param in zip(
105 | param_group, unflatten_master_params(param_group, master_param.view(-1))
106 | ):
107 | assert name in state_dict
108 | state_dict[name] = unflat_master_param
109 | else:
110 | state_dict = model.state_dict()
111 | for i, (name, _value) in enumerate(model.named_parameters()):
112 | assert name in state_dict
113 | state_dict[name] = master_params[i]
114 | return state_dict
115 |
116 |
117 | def state_dict_to_master_params(model, state_dict, use_fp16):
118 | # if use_fp16:
119 | if True:
120 | named_model_params = [
121 | (name, state_dict[name]) for name, _ in model.named_parameters()
122 | ]
123 | param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
124 | master_params = make_master_params(param_groups_and_shapes)
125 | else:
126 | master_params = [state_dict[name] for name, _ in model.named_parameters()]
127 | return master_params
128 |
129 |
130 | def zero_master_grads(master_params):
131 | for param in master_params:
132 | param.grad = None
133 |
134 |
135 | def zero_grad(model_params):
136 | for param in model_params:
137 | # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
138 | if param.grad is not None:
139 | param.grad.detach_()
140 | param.grad.zero_()
141 |
142 |
143 | def param_grad_or_zeros(param):
144 | if param.grad is not None:
145 | return param.grad.data.detach()
146 | else:
147 | return th.zeros_like(param)
148 |
149 |
150 | class MixedPrecisionTrainer:
151 | def __init__(
152 | self,
153 | *,
154 | model,
155 | use_fp16=False,
156 | fp16_scale_growth=1e-3,
157 | initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
158 | ):
159 | self.model = model
160 | self.use_fp16 = use_fp16
161 | self.fp16_scale_growth = fp16_scale_growth
162 |
163 | self.model_params = list(self.model.parameters())
164 | self.master_params = self.model_params
165 | self.param_groups_and_shapes = None
166 | self.lg_loss_scale = initial_lg_loss_scale
167 |
168 | # if self.use_fp16:
169 | self.param_groups_and_shapes = get_param_groups_and_shapes(
170 | self.model.named_parameters()
171 | )
172 | self.master_params = make_master_params(self.param_groups_and_shapes)
173 | if self.use_fp16:
174 | self.model.convert_to_fp16()
175 |
176 | def zero_grad(self):
177 | zero_grad(self.model_params)
178 |
179 | def backward(self, loss: th.Tensor):
180 | if self.use_fp16:
181 | loss_scale = 2**self.lg_loss_scale
182 | (loss * loss_scale).backward()
183 | else:
184 | loss.backward()
185 |
186 | def optimize(self, opt: th.optim.Optimizer):
187 | if self.use_fp16:
188 | return self._optimize_fp16(opt)
189 | else:
190 | return self._optimize_normal(opt)
191 |
192 | def _optimize_fp16(self, opt: th.optim.Optimizer):
193 | logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
194 | model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
195 | grad_norm, param_norm = self._compute_norms(grad_scale=2**self.lg_loss_scale)
196 | if check_overflow(grad_norm):
197 | self.lg_loss_scale -= 1
198 | logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
199 | zero_master_grads(self.master_params)
200 | return False
201 |
202 | logger.logkv_mean("grad_norm", grad_norm)
203 | logger.logkv_mean("param_norm", param_norm)
204 |
205 | for p in self.master_params:
206 | p.grad.mul_(1.0 / (2**self.lg_loss_scale))
207 | opt.step()
208 | zero_master_grads(self.master_params)
209 | master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
210 | self.lg_loss_scale += self.fp16_scale_growth
211 | return True
212 |
213 | def _optimize_normal(self, opt: th.optim.Optimizer):
214 | model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
215 | grad_norm, param_norm = self._compute_norms()
216 | if check_overflow(grad_norm) or np.isnan(grad_norm):
217 | logger.log(f"Found NaN; Skip current batch;")
218 | zero_master_grads(self.master_params)
219 | return False
220 |
221 | logger.logkv_mean("grad_norm", grad_norm)
222 | logger.logkv_mean("param_norm", param_norm)
223 | opt.step()
224 | zero_master_grads(self.master_params)
225 | master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
226 | return True
227 |
228 | def _compute_norms(self, grad_scale=1.0):
229 | grad_norm = 0.0
230 | param_norm = 0.0
231 | for p in self.master_params:
232 | with th.no_grad():
233 | param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
234 | if p.grad is not None:
235 | grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
236 | return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
237 |
238 | def master_params_to_state_dict(self, master_params):
239 | return master_params_to_state_dict(
240 | self.model, self.param_groups_and_shapes, master_params, self.use_fp16
241 | )
242 |
243 | def state_dict_to_master_params(self, state_dict):
244 | return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
245 |
246 |
247 | def check_overflow(value):
248 | return (value == float("inf")) or (value == -float("inf")) or (value != value)
249 |
--------------------------------------------------------------------------------
/BCM/cm/fp16_util.py:
--------------------------------------------------------------------------------
1 | """
2 | Helpers to train with 16-bit precision.
3 | """
4 |
5 | import numpy as np
6 | import torch as th
7 | import torch.nn as nn
8 | from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
9 |
10 | from . import logger
11 |
12 | INITIAL_LOG_LOSS_SCALE = 20.0
13 |
14 |
15 | def convert_module_to_f16(l):
16 | """
17 | Convert primitive modules to float16.
18 | """
19 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
20 | l.weight.data = l.weight.data.half()
21 | if l.bias is not None:
22 | l.bias.data = l.bias.data.half()
23 |
24 |
25 | def convert_module_to_f32(l):
26 | """
27 | Convert primitive modules to float32, undoing convert_module_to_f16().
28 | """
29 | if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
30 | l.weight.data = l.weight.data.float()
31 | if l.bias is not None:
32 | l.bias.data = l.bias.data.float()
33 |
34 |
35 | def make_master_params(param_groups_and_shapes):
36 | """
37 | Copy model parameters into a (differently-shaped) list of full-precision
38 | parameters.
39 | """
40 | master_params = []
41 | for param_group, shape in param_groups_and_shapes:
42 | master_param = nn.Parameter(
43 | _flatten_dense_tensors(
44 | [param.detach().float() for (_, param) in param_group]
45 | ).view(shape)
46 | )
47 | master_param.requires_grad = True
48 | master_params.append(master_param)
49 | return master_params
50 |
51 |
52 | def model_grads_to_master_grads(param_groups_and_shapes, master_params):
53 | """
54 | Copy the gradients from the model parameters into the master parameters
55 | from make_master_params().
56 | """
57 | for master_param, (param_group, shape) in zip(
58 | master_params, param_groups_and_shapes
59 | ):
60 | master_param.grad = _flatten_dense_tensors(
61 | [param_grad_or_zeros(param) for (_, param) in param_group]
62 | ).view(shape)
63 |
64 |
65 | def master_params_to_model_params(param_groups_and_shapes, master_params):
66 | """
67 | Copy the master parameter data back into the model parameters.
68 | """
69 | # Without copying to a list, if a generator is passed, this will
70 | # silently not copy any parameters.
71 | for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
72 | for (_, param), unflat_master_param in zip(
73 | param_group, unflatten_master_params(param_group, master_param.view(-1))
74 | ):
75 | param.detach().copy_(unflat_master_param)
76 |
77 |
78 | def unflatten_master_params(param_group, master_param):
79 | return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
80 |
81 |
82 | def get_param_groups_and_shapes(named_model_params):
83 | named_model_params = list(named_model_params)
84 | scalar_vector_named_params = (
85 | [(n, p) for (n, p) in named_model_params if p.ndim <= 1],
86 | (-1),
87 | )
88 | matrix_named_params = (
89 | [(n, p) for (n, p) in named_model_params if p.ndim > 1],
90 | (1, -1),
91 | )
92 | return [scalar_vector_named_params, matrix_named_params]
93 |
94 |
95 | def master_params_to_state_dict(
96 | model, param_groups_and_shapes, master_params, use_fp16
97 | ):
98 | # if use_fp16:
99 | if True:
100 | state_dict = model.state_dict()
101 | for master_param, (param_group, _) in zip(
102 | master_params, param_groups_and_shapes
103 | ):
104 | for (name, _), unflat_master_param in zip(
105 | param_group, unflatten_master_params(param_group, master_param.view(-1))
106 | ):
107 | assert name in state_dict
108 | state_dict[name] = unflat_master_param
109 | else:
110 | state_dict = model.state_dict()
111 | for i, (name, _value) in enumerate(model.named_parameters()):
112 | assert name in state_dict
113 | state_dict[name] = master_params[i]
114 | return state_dict
115 |
116 |
117 | def state_dict_to_master_params(model, state_dict, use_fp16):
118 | # if use_fp16:
119 | if True:
120 | named_model_params = [
121 | (name, state_dict[name]) for name, _ in model.named_parameters()
122 | ]
123 | param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
124 | master_params = make_master_params(param_groups_and_shapes)
125 | else:
126 | master_params = [state_dict[name] for name, _ in model.named_parameters()]
127 | return master_params
128 |
129 |
130 | def zero_master_grads(master_params):
131 | for param in master_params:
132 | param.grad = None
133 |
134 |
135 | def zero_grad(model_params):
136 | for param in model_params:
137 | # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
138 | if param.grad is not None:
139 | param.grad.detach_()
140 | param.grad.zero_()
141 |
142 |
143 | def param_grad_or_zeros(param):
144 | if param.grad is not None:
145 | return param.grad.data.detach()
146 | else:
147 | return th.zeros_like(param)
148 |
149 |
150 | class MixedPrecisionTrainer:
151 | def __init__(
152 | self,
153 | *,
154 | model,
155 | use_fp16=False,
156 | fp16_scale_growth=1e-3,
157 | initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
158 | ):
159 | self.model = model
160 | self.use_fp16 = use_fp16
161 | self.fp16_scale_growth = fp16_scale_growth
162 |
163 | self.model_params = list(self.model.parameters())
164 | self.master_params = self.model_params
165 | self.param_groups_and_shapes = None
166 | self.lg_loss_scale = initial_lg_loss_scale
167 |
168 | # if self.use_fp16:
169 | self.param_groups_and_shapes = get_param_groups_and_shapes(
170 | self.model.named_parameters()
171 | )
172 | self.master_params = make_master_params(self.param_groups_and_shapes)
173 | if self.use_fp16:
174 | self.model.convert_to_fp16()
175 |
176 | def zero_grad(self):
177 | zero_grad(self.model_params)
178 |
179 | def backward(self, loss: th.Tensor):
180 | if self.use_fp16:
181 | loss_scale = 2**self.lg_loss_scale
182 | (loss * loss_scale).backward()
183 | else:
184 | loss.backward()
185 |
186 | def optimize(self, opt: th.optim.Optimizer):
187 | if self.use_fp16:
188 | return self._optimize_fp16(opt)
189 | else:
190 | return self._optimize_normal(opt)
191 |
192 | def _optimize_fp16(self, opt: th.optim.Optimizer):
193 | logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
194 | model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
195 | grad_norm, param_norm = self._compute_norms(grad_scale=2**self.lg_loss_scale)
196 | if check_overflow(grad_norm):
197 | self.lg_loss_scale -= 1
198 | logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
199 | zero_master_grads(self.master_params)
200 | return False
201 |
202 | logger.logkv_mean("grad_norm", grad_norm)
203 | logger.logkv_mean("param_norm", param_norm)
204 |
205 | for p in self.master_params:
206 | p.grad.mul_(1.0 / (2**self.lg_loss_scale))
207 | opt.step()
208 | zero_master_grads(self.master_params)
209 | master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
210 | self.lg_loss_scale += self.fp16_scale_growth
211 | return True
212 |
213 | def _optimize_normal(self, opt: th.optim.Optimizer):
214 | model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
215 | grad_norm, param_norm = self._compute_norms()
216 | if check_overflow(grad_norm) or np.isnan(grad_norm):
217 | logger.log(f"Found NaN; Skip current batch;")
218 | zero_master_grads(self.master_params)
219 | return False
220 |
221 | logger.logkv_mean("grad_norm", grad_norm)
222 | logger.logkv_mean("param_norm", param_norm)
223 | # 做一下grad clip
224 | nn.utils.clip_grad_norm_(self.master_params, 1.0)
225 | grad_norm, param_norm = self._compute_norms()
226 | logger.logkv_mean("clipped_grad_norm", grad_norm)
227 |
228 | opt.step()
229 | zero_master_grads(self.master_params)
230 | master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
231 | return True
232 |
233 | def _compute_norms(self, grad_scale=1.0):
234 | grad_norm = 0.0
235 | param_norm = 0.0
236 | for p in self.master_params:
237 | with th.no_grad():
238 | param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
239 | if p.grad is not None:
240 | grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
241 | return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
242 |
243 | def master_params_to_state_dict(self, master_params):
244 | return master_params_to_state_dict(
245 | self.model, self.param_groups_and_shapes, master_params, self.use_fp16
246 | )
247 |
248 | def state_dict_to_master_params(self, state_dict):
249 | return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
250 |
251 |
252 | def check_overflow(value):
253 | return (value == float("inf")) or (value == -float("inf")) or (value != value)
254 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Bidirectional Consistency Models (PyTorch)
Official code and model checkpoints
2 |
3 | [](https://arxiv.org/abs/2403.18035)
4 |
5 | This repo contains:
6 | - official PyTorch **code** and model **weights** of [Bidirectional Consistency Models (BCM)](https://arxiv.org/abs/2403.18035) on ImageNet-64.
7 | - PyTorch **code** and model **weights** of our reproduced [Improved Consistency Training (iCT)](https://arxiv.org/abs/2310.14189) on ImageNet-64.
8 |
9 | BCM learns a single neural network that enables both forward and backward traversal along the PF ODE, efficiently unifying generation and inversion tasks within one framework. Our repository is based on [openai/consistency_models](https://github.com/openai/consistency_models), which was initially released under the MIT license.
10 |
11 |
12 |
13 | ## TL;DR
14 | BCM learns a single neural network that enables both forward and backward traversal along the PF ODE, efficiently unifying generation and inversion tasks within one framework. BCM offers diverse sampling options and has great potential in downstream tasks.
15 |
16 | ## Model Weights
17 | We provide checkpoints for BCM and our reproduced iCT on ImageNet-64:
18 | - [BCM-ImageNet-64](https://figshare.com/ndownloader/articles/27134694/versions/1?folder_path=bcf_imagenet64_no32_qkv_4096)
19 | - [iCT-ImageNet-64](https://figshare.com/ndownloader/articles/27134694/versions/1?folder_path=ict_imagenet64_no32_qkv_4096)
20 | - [BCM-deep-ImageNet-64](https://figshare.com/ndownloader/articles/27134694/versions/1?folder_path=bcf_imagenet64_no32_qkv_deep_4096)
21 | - [iCT-deep-ImageNet-64](https://figshare.com/ndownloader/articles/27134694/versions/2?folder_path=ict_imagenet64_no32_qkv_deep_4096)
22 |
23 | Their FIDs are as follows:
24 | | Name | NFE | FID |
25 | |:--------:|:---:|:---:|
26 | | BCM / BCM-deep | 1 | 4.18 / 3.14 |
27 | | | 2 | 2.88 / 2.45 |
28 | | | 3 | 2.78 / 2.61 |
29 | | | 4 | 2.68 / 2.35 |
30 | | reproduced iCT / iCT-deep| 1 | 4.60 / 3.94 |
31 | | | 2 | 3.40 / 3.14 |
32 |
33 |
34 | ## Dependencies
35 |
36 | To install all packages in this codebase along with their dependencies, run
37 | ```
38 | cd iCT
39 | pip install -e .
40 | ```
41 |
42 | To install with Docker, run the following commands:
43 | ```
44 | cd docker && make build && make run
45 | ```
46 |
47 | Please note that flash-attn==0.2.8, which cannot be substituted with the latest version and could be hard to install, is fortunately optional and not used in our best models.
48 |
49 | We also suggest manually install mpi4py using Anaconda instead of pip, with the following command:
50 | ```
51 | conda install -c conda-forge mpi4py=3.1.4 mpich=3.2.3
52 | ```
53 |
54 | ## Training
55 |
56 | As we described in our paper, for complex dataset like ImageNet-64, we propose to finetune BCM from pretrained iCT model.
57 | We, therefore, first provide code for iCT and then for BCM Finetuning.
58 |
59 |
60 | ### iCT
61 |
62 | The code for our reproduced iCT is located in the ```iCT``` folder.
63 | As we described in our paper, we found the original iCT suffers from instability on ImageNet-64.
64 | In our experiments, it diverges after ~620k iterations and the best one-step generation FID we got is ~6.20, largely falling behind the reported 4.02 in the iCT paper.
65 | We are open to any discussions on solutions to the instability issue and possible ways to reproduce the officially reported results.
66 |
67 | We suspect this instability comes from the architecture of ADM. Therefore, as a remedy, we proposed *removing the attention at the resolution of 32* and applying *normalization to QKV matrices*, following EDM2. We found this helpful in improving the performance and yielding a one-step FID of 4.60.
68 | We also apply *early stop* and save the checkpoint with the best one-step generation FID.
69 |
70 | Without modifications to the code, it is expected to start the training scripts with MPI for DDP training. For the commonly used SLURM, we provide the following starting script as an example:
71 | ```
72 | srun -p YOUR_SLURM_PARTITION \
73 | --job-name=ict_no32_qkv \
74 | -n 64 --gres=gpu:8 --ntasks-per-node=8 \
75 | --cpus-per-task=16 \
76 | --quotatype=reserved \
77 | --mpi=pmi2 \
78 | sh WORKSPACE_DIR/iCT/scripts/ict_imagenet64_no32_qkv_4096.sh
79 | ```
80 | The above script starts an iCT experiment with our architecture modifications, using 8 computing nodes (64 GPUs in total).
81 |
82 | To run the original iCT, please first switch back to the original network architecture.
83 | If you have flash-attn==0.2.8 installed, this can be done by simply setting ```attention_type="flash"``` at https://github.com/Mosasaur5526/BCM-iCT-torch/blob/main/iCT/cm/unet.py#L282.
84 | If not, just keep ```attention_type="default"``` and set ```cosine=False``` at https://github.com/Mosasaur5526/BCM-iCT-torch/blob/main/iCT/cm/unet.py#L412.
85 | Then run the following script:
86 | ```
87 | srun -p YOUR_SLURM_PARTITION \
88 | --job-name=ict \
89 | -n 64 --gres=gpu:8 --ntasks-per-node=8 \
90 | --cpus-per-task=16 \
91 | --quotatype=reserved \
92 | --mpi=pmi2 \
93 | sh WORKSPACE_DIR/iCT/scripts/ict_imagenet64.sh
94 | ```
95 |
96 |
97 | ### BCM Funetuning
98 |
99 | The code for BCM is located in the ```BCM``` folder.
100 | For ImageNet-64, we finetune BCM from pretrained iCT model to increase scalability, so please specify the location of the pretrained checkpoint in ```BCM/scripts/bcf_imagenet64_no32_qkv_4096.sh```.
101 | We carefully initialize the model to ensure that newly added ```t_end``` will not influence the iCT prediction. Please find the details in our paper.
102 |
103 | To perform BCF with, e.g., 64 GPUs, please run the following script:
104 | ```
105 | srun -p YOUR_SLURM_PARTITION \
106 | --job-name=bcm \
107 | -n 64 --gres=gpu:8 --ntasks-per-node=8 \
108 | --cpus-per-task=16 \
109 | --quotatype=reserved \
110 | --mpi=pmi2 \
111 | sh WORKSPACE_DIR/BCM/scripts/bcf_imagenet64_no32_qkv_4096.sh
112 | ```
113 |
114 |
115 |
116 |
117 | ### FP32 Training
118 |
119 | Our implementation also support training with fp32 by setting ```fp16=False``` in the training script, **which is actually *not* supported by [the official CM implementation](https://github.com/openai/consistency_models).**
120 | Please note that training with higher numerical accuracy doubles the computing budget and GPU memory and, according to our early experiments, may lead to different model behaviors during training.
121 | We hope our code and observation could help future studies on the influence of numerical issues on CMs.
122 |
123 | ## Evaluations
124 |
125 | ### Sampling
126 |
127 | Since BCM supports very flexible ways of sampling (ancestral, zigzag, mixture; see details in our paper), we think it would be overly verbose and less straightforward to pass arguments to the sampling script.
128 | Instead, we provide just one simple script (```BCM/scripts/image_sample.py``` or ```iCT/scripts/image_sample.py``` for BCM/iCT), and allow users to modify the code for all sampling methods.
129 | We provide detailed examples in the script, around https://github.com/Mosasaur5526/BCM-iCT-torch/blob/main/iCT/scripts/image_sample.py#L70 for iCT and around https://github.com/Mosasaur5526/BCM-iCT-torch/blob/main/BCM/scripts/image_sample.py#L116 for BCM.
130 | We believe these examples are simple and straightforward enough as each of them only requires to modify numbers in a few lines.
131 |
132 | To do distributed sampling on 4 GPUs (e.g., for iCT), please run:
133 | ```
134 | srun -p YOUR_SLURM_PARTITION \
135 | --job-name=ict_sampling \
136 | -n 4 --gres=gpu:4 --ntasks-per-node=4 \
137 | --cpus-per-task=16 \
138 | --quotatype=reserved \
139 | --mpi=pmi2 \
140 | sh WORKSPACE_DIR/iCT/scripts/imagenet64_sample.sh
141 | ```
142 | In the example script, it loads weights from ```CKPT_DIR/ict_imagenet64_no32_qkv_4096/ema_0.99997_680000.pt```, samples 50,000 images and saves them to ```WORKSPACE_DIR/samples/ict_imagenet64_no32_qkv_4096``` for further evaluation.
143 |
144 | ### Inversion and Reconstruction (BCM only)
145 | Inversion and reconstruction shares the same scripts as sampling.
146 | By setting ```--eval_mse=True``` in the sampling script, one can perform inversion and reconstruction for the images in ```--test_data_dir```.
147 | The per pixel MSE will be calculated automatically at the end and both the original and reconstructed images will be saved.
148 | Again for conciseness and clarity, we refer users to https://github.com/Mosasaur5526/BCM-iCT-torch/blob/main/BCM/scripts/image_sample.py#L172 to modify the code to enable one/multi-step inversion.
149 |
150 | Note that the ImageNet validation set is not structured by categories as the training set, so we modify the ```load_data``` function in ```cm/image_datasets.py ``` to support loading both images and labels from the valiadtion set.
151 | For convenience, the labels could be found in ```datasets/imagenet_val_label.txt``` and specified at https://github.com/Mosasaur5526/BCM-iCT-torch/blob/main/BCM/cm/image_datasets.py#L52; one may also load the image-label pairs in their customized ways by rewriting the loading function.
152 | Please notice the labels are important as they will be sent into the model as conditions during inversion and reconstruction.
153 |
154 |
155 |
156 | ### Calculating Metrics
157 | We follow the standard evaluation process in the [ADM repo](https://github.com/openai/guided-diffusion/tree/main/evaluations), as also adopted in the official CM repo.
158 |
159 |
160 | ### Visualizing Samples
161 | We also provide a simple visualization script in ```scripts/visualize_image.py```.
162 |
163 | ## Citation
164 | If you use this repository, including our code or the weights for BCM and our reproduced iCT, please cite the following work:
165 | ```
166 | @article{li2024bidirectional,
167 | title={Bidirectional Consistency Models},
168 | author={Li, Liangchen and He, Jiajun},
169 | journal={arXiv preprint arXiv:2403.18035},
170 | year={2024}
171 | }
172 | ```
173 |
--------------------------------------------------------------------------------
/BCM/scripts/image_sample.py:
--------------------------------------------------------------------------------
1 | """
2 | Generate a large batch of image samples from a model and save them as a large
3 | numpy array. This can be used to produce samples for FID evaluation.
4 | """
5 | import sys
6 | sys.path.append('../BCM')
7 |
8 | from PIL import Image
9 |
10 | import argparse
11 | import os
12 |
13 | import numpy as np
14 | import torch as th
15 | import torch.distributed as dist
16 |
17 | from cm import dist_util, logger
18 | from cm.script_util import (
19 | NUM_CLASSES,
20 | model_and_diffusion_defaults,
21 | create_model_and_diffusion,
22 | add_dict_to_argparser,
23 | args_to_dict,
24 | )
25 | from cm.random_util import get_generator
26 | from cm.karras_diffusion import karras_sample
27 | from cm.image_datasets import load_data
28 |
29 |
30 | def center_crop_arr(pil_image, image_size):
31 | # We are not on a new enough PIL to support the `reducing_gap`
32 | # argument, which uses BOX downsampling at powers of two first.
33 | # Thus, we do it by hand to improve downsample quality.
34 | while min(*pil_image.size) >= 2 * image_size:
35 | pil_image = pil_image.resize(
36 | tuple(x // 2 for x in pil_image.size), resample=Image.BOX
37 | )
38 |
39 | scale = image_size / min(*pil_image.size)
40 | pil_image = pil_image.resize(
41 | tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
42 | )
43 |
44 | arr = np.array(pil_image)
45 | crop_y = (arr.shape[0] - image_size) // 2
46 | crop_x = (arr.shape[1] - image_size) // 2
47 | return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
48 |
49 |
50 | def main():
51 | args = create_argparser().parse_args()
52 |
53 | dist_util.setup_dist()
54 | logger.configure(dir=os.path.join(args.save_dir, args.exp_name))
55 |
56 | if "consistency" in args.training_mode:
57 | distillation = True
58 | else:
59 | distillation = False
60 |
61 | if args.eval_mse:
62 | logger.log("loading test data for reconstruction MSE evaluation...")
63 | # test data
64 | data = load_data(
65 | data_dir=args.test_data_dir,
66 | batch_size=args.batch_size,
67 | image_size=args.image_size,
68 | class_cond=args.class_cond,
69 | val=True
70 | )
71 | else:
72 | data = None
73 |
74 | logger.log("creating model and diffusion...")
75 | model, diffusion = create_model_and_diffusion(
76 | **args_to_dict(args, model_and_diffusion_defaults().keys()),
77 | distillation=distillation,
78 | model_type=args.model_type
79 | )
80 | model.load_state_dict(
81 | dist_util.load_state_dict(args.model_path, map_location="cpu")
82 | )
83 | model.to(dist_util.dev())
84 | if args.use_fp16:
85 | model.convert_to_fp16()
86 | model.eval()
87 | model_path = args.model_path
88 | model_path = model_path.split('/')[-1][:-3]
89 |
90 | logger.log("sampling...")
91 | if args.sampler == "multistep":
92 | assert len(args.ts) > 0
93 | ts = tuple(int(x) for x in args.ts.split(","))
94 | else:
95 | ts = None
96 |
97 | all_images = []
98 | all_images2 = []
99 | all_labels = []
100 | generator = get_generator(args.generator, args.num_samples, args.seed)
101 |
102 | while len(all_images) * args.batch_size < args.num_samples:
103 | if not args.eval_mse:
104 | # then perform generation
105 | model_kwargs = {}
106 | if args.class_cond:
107 | classes = th.randint(
108 | low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
109 | )
110 | model_kwargs["y"] = classes
111 |
112 | # now, sample is the initial Gaussian noise at T=80.0
113 | sample = th.randn((args.batch_size, 3, args.image_size, args.image_size), device=dist_util.dev()) * 80.0
114 | multiplier = th.ones(sample.shape[0], dtype=sample.dtype, device=sample.device)
115 |
116 | # ----------------- one-step generation -----------------
117 | # 80.0 -> 0.002
118 | _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 80.0, sigmas_end=multiplier * 0.002, y=classes)
119 | # ----------------------------------------------------------
120 |
121 | # -------------- two-step ancestral sampling ------------
122 | # 80.0 -> 2.4 -> 0.002
123 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 80.0, sigmas_end=multiplier * 2.4, y=classes)
124 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 2.4, sigmas_end=multiplier * 0.002, y=classes)
125 | # ----------------------------------------------------------
126 |
127 | # -------------- three-step zigzag sampling ------------
128 | # 80.0 -> 0.002 -> 0.1 (manually added noise) -> 1.2 (amplified by BCM) -> 0.002
129 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 80.0, sigmas_end=multiplier * 0.002, y=classes)
130 | # sample += th.randn_like(sample, device=sample.device) * 0.1
131 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 0.1, sigmas_end=multiplier * 1.2, y=classes)
132 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 1.2, sigmas_end=multiplier * 0.002, y=classes)
133 | # ----------------------------------------------------------
134 |
135 | # -------------- four-step mixed sampling --------------
136 | # 80.0 -> 3.0 -> 0.002
137 | # -> 0.12 (manually added noise) -> 0.4 (amplified by BCM) -> 0.002
138 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 80.0, sigmas_end=multiplier * 3.0, y=classes)
139 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 3.0, sigmas_end=multiplier * 0.002, y=classes)
140 | # sample += th.randn_like(sample, device=sample.device) * 0.12
141 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 0.12, sigmas_end=multiplier * 0.4, y=classes)
142 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 0.4, sigmas_end=multiplier * 0.002, y=classes)
143 | # ----------------------------------------------------------
144 |
145 | else:
146 | # to perform inversion and evaluate reconstrution MSE, first load samples from val set
147 | batch, classes = next(data)
148 | batch = batch.to(device=dist_util.dev())
149 | classes = classes['y'].to(device=dist_util.dev())
150 | sample = batch
151 |
152 | sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
153 | sample = sample.permute(0, 2, 3, 1)
154 | sample = sample.contiguous()
155 |
156 | gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
157 | dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
158 | all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
159 | if args.class_cond:
160 | gathered_labels = [
161 | th.zeros_like(classes) for _ in range(dist.get_world_size())
162 | ]
163 | dist.all_gather(gathered_labels, classes)
164 | all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
165 | logger.log(f"created {len(all_images) * args.batch_size} samples")
166 |
167 | if args.reconstruct or args.eval_mse:
168 | # add a small initial noise
169 | multiplier = th.ones(sample.shape[0], dtype=sample.dtype, device=sample.device)
170 | sample = sample + th.randn_like(sample, device=sample.device) * 0.07
171 |
172 | # ------------------- one-step inversion -----------------
173 | # _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 0.07, sigmas_end=multiplier * 80.0, y=classes)
174 | # ----------------------------------------------------------
175 |
176 | # ------------------- two-step inversion -----------------
177 | _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 0.07, sigmas_end=multiplier * 15.0, y=classes)
178 | _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 15.0, sigmas_end=multiplier * 80.0, y=classes)
179 | # ----------------------------------------------------------
180 |
181 | # --------------------- reconstrution --------------------
182 | _, sample = diffusion.denoise(model, sample, sigmas=multiplier * 80.0, sigmas_end=multiplier * 0.002, y=classes)
183 | # ----------------------------------------------------------
184 |
185 | sample = sample.permute(0, 2, 3, 1)
186 | sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
187 | sample = sample.contiguous()
188 |
189 | gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
190 | dist.all_gather(gathered_samples, sample) # gather not supported with NCCL
191 | all_images2.extend([sample.cpu().numpy() for sample in gathered_samples])
192 |
193 | arr = np.concatenate(all_images, axis=0)
194 | arr = arr[: args.num_samples]
195 | if args.reconstruct or args.eval_mse:
196 | arr2 = np.concatenate(all_images2, axis=0)
197 | arr2 = arr2[: args.num_samples]
198 | if args.class_cond:
199 | label_arr = np.concatenate(all_labels, axis=0)
200 | label_arr = label_arr[: args.num_samples]
201 | if dist.get_rank() == 0:
202 | shape_str = "x".join([str(x) for x in arr.shape])
203 | name = 'samples_original' if args.reconstruct or args.eval_mse else 'samples'
204 | name2 = 'Original samples' if args.reconstruct or args.eval_mse else 'Samples'
205 | out_path = os.path.join(logger.get_dir(), f"{model_path}_{name}_{shape_str}.npz")
206 | logger.log(f"{name2} saving to {out_path}")
207 | if args.class_cond:
208 | np.savez(out_path, arr, label_arr)
209 | else:
210 | np.savez(out_path, arr)
211 | if args.reconstruct or args.eval_mse:
212 | out_path2 = os.path.join(logger.get_dir(), f"{model_path}_samples_reconstructed.npz")
213 | np.savez(out_path2, arr2)
214 | logger.log(f"Reconstructed images saving to {out_path2}")
215 |
216 | mse = (((arr / 255. - arr2 / 255.).reshape(-1)) ** 2).mean()
217 | logger.log(f"Reconstruction per pixel MSE: {mse}")
218 |
219 | dist.barrier()
220 | logger.log("sampling complete")
221 |
222 |
223 | def create_argparser():
224 | defaults = dict(
225 | training_mode="edm",
226 | generator="determ",
227 | clip_denoised=True,
228 | num_samples=50000,
229 | batch_size=16,
230 | sampler="heun",
231 | s_churn=0.0,
232 | s_tmin=0.0,
233 | s_tmax=float("inf"),
234 | s_noise=1.0,
235 | steps=40,
236 | model_path="",
237 | save_dir='./checkpoints',
238 | exp_name='ict',
239 | seed=42,
240 | ts="",
241 | reconstruct=False,
242 | test_data_dir='/mnt/petrelfs/share/images/val',
243 | eval_mse=False,
244 | model_type='tsinghua'
245 | )
246 | defaults.update(model_and_diffusion_defaults())
247 | parser = argparse.ArgumentParser()
248 | add_dict_to_argparser(parser, defaults)
249 | return parser
250 |
251 |
252 | if __name__ == "__main__":
253 | main()
254 |
--------------------------------------------------------------------------------
/BCM/evaluations/th_evaluator.py:
--------------------------------------------------------------------------------
1 | from .inception_v3 import InceptionV3
2 | import blobfile as bf
3 | import torch
4 | import torch.distributed as dist
5 | import torch.nn as nn
6 | from cm import dist_util
7 | import numpy as np
8 | import warnings
9 | from scipy import linalg
10 | from PIL import Image
11 | from tqdm import tqdm
12 |
13 |
14 | def clip_preproc(preproc_fn, x):
15 | return preproc_fn(Image.fromarray(x.astype(np.uint8)))
16 |
17 |
18 | def all_gather(x, dim=0):
19 | xs = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
20 | dist.all_gather(xs, x)
21 | return torch.cat(xs, dim=dim)
22 |
23 |
24 | class FIDStatistics:
25 | def __init__(self, mu: np.ndarray, sigma: np.ndarray, resolution: int):
26 | self.mu = mu
27 | self.sigma = sigma
28 | self.resolution = resolution
29 |
30 | def frechet_distance(self, other, eps=1e-6):
31 | """
32 | Compute the Frechet distance between two sets of statistics.
33 | """
34 | mu1, sigma1 = self.mu, self.sigma
35 | mu2, sigma2 = other.mu, other.sigma
36 |
37 | mu1 = np.atleast_1d(mu1)
38 | mu2 = np.atleast_1d(mu2)
39 |
40 | sigma1 = np.atleast_2d(sigma1)
41 | sigma2 = np.atleast_2d(sigma2)
42 |
43 | assert (
44 | mu1.shape == mu2.shape
45 | ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
46 | assert (
47 | sigma1.shape == sigma2.shape
48 | ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
49 |
50 | diff = mu1 - mu2
51 |
52 | # product might be almost singular
53 | covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
54 | if not np.isfinite(covmean).all():
55 | msg = (
56 | "fid calculation produces singular product; adding %s to diagonal of cov estimates"
57 | % eps
58 | )
59 | warnings.warn(msg)
60 | offset = np.eye(sigma1.shape[0]) * eps
61 | covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
62 |
63 | # numerical error might give slight imaginary component
64 | if np.iscomplexobj(covmean):
65 | if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
66 | m = np.max(np.abs(covmean.imag))
67 | raise ValueError("Imaginary component {}".format(m))
68 | covmean = covmean.real
69 |
70 | tr_covmean = np.trace(covmean)
71 |
72 | return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
73 |
74 |
75 | class FIDAndIS:
76 | def __init__(
77 | self,
78 | softmax_batch_size=512,
79 | clip_score_batch_size=512,
80 | path="https://openaipublic.blob.core.windows.net/consistency/inception/inception-2015-12-05.pt",
81 | ):
82 | import clip
83 |
84 | super().__init__()
85 |
86 | self.softmax_batch_size = softmax_batch_size
87 | self.clip_score_batch_size = clip_score_batch_size
88 | self.inception = InceptionV3()
89 | with bf.BlobFile(path, "rb") as f:
90 | self.inception.load_state_dict(torch.load(f))
91 | self.inception.eval()
92 | self.inception.to(dist_util.dev())
93 |
94 | self.inception_softmax = self.inception.create_softmax_model()
95 |
96 | if dist.get_rank() % 8 == 0:
97 | clip_model, self.clip_preproc_fn = clip.load(
98 | "ViT-B/32", device=dist_util.dev()
99 | )
100 | dist.barrier()
101 | if dist.get_rank() % 8 != 0:
102 | clip_model, self.clip_preproc_fn = clip.load(
103 | "ViT-B/32", device=dist_util.dev()
104 | )
105 | dist.barrier()
106 |
107 | # Compute the probe features separately from the final projection.
108 | class ProjLayer(nn.Module):
109 | def __init__(self, param):
110 | super().__init__()
111 | self.param = param
112 |
113 | def forward(self, x):
114 | return x @ self.param
115 |
116 | self.clip_visual = clip_model.visual
117 | self.clip_proj = ProjLayer(self.clip_visual.proj)
118 | self.clip_visual.proj = None
119 |
120 | class TextModel(nn.Module):
121 | def __init__(self, clip_model):
122 | super().__init__()
123 | self.clip_model = clip_model
124 |
125 | def forward(self, x):
126 | return self.clip_model.encode_text(x)
127 |
128 | self.clip_tokenizer = lambda captions: clip.tokenize(captions, truncate=True)
129 | self.clip_text = TextModel(clip_model)
130 | self.clip_logit_scale = clip_model.logit_scale.exp().item()
131 | self.ref_features = {}
132 | self.is_root = not dist.is_initialized() or dist.get_rank() == 0
133 |
134 | def get_statistics(self, activations: np.ndarray, resolution: int):
135 | """
136 | Compute activation statistics for a batch of images.
137 |
138 | :param activations: an [N x D] batch of activations.
139 | :return: an FIDStatistics object.
140 | """
141 | mu = np.mean(activations, axis=0)
142 | sigma = np.cov(activations, rowvar=False)
143 | return FIDStatistics(mu, sigma, resolution)
144 |
145 | def get_preds(self, batch, captions=None):
146 | with torch.no_grad():
147 | batch = 127.5 * (batch + 1)
148 | np_batch = batch.to(torch.uint8).cpu().numpy().transpose((0, 2, 3, 1))
149 |
150 | pred, spatial_pred = self.inception(batch)
151 | pred, spatial_pred = pred.reshape(
152 | [pred.shape[0], -1]
153 | ), spatial_pred.reshape([spatial_pred.shape[0], -1])
154 |
155 | clip_in = torch.stack(
156 | [clip_preproc(self.clip_preproc_fn, img) for img in np_batch]
157 | )
158 | clip_pred = self.clip_visual(clip_in.half().to(dist_util.dev()))
159 | if captions is not None:
160 | text_in = self.clip_tokenizer(captions)
161 | text_pred = self.clip_text(text_in.to(dist_util.dev()))
162 | else:
163 | # Hack to easily deal with no captions
164 | text_pred = self.clip_proj(clip_pred.half())
165 | text_pred = text_pred / text_pred.norm(dim=-1, keepdim=True)
166 |
167 | return pred, spatial_pred, clip_pred, text_pred, np_batch
168 |
169 | def get_inception_score(
170 | self, activations: np.ndarray, split_size: int = 5000
171 | ) -> float:
172 | """
173 | Compute the inception score using a batch of activations.
174 | :param activations: an [N x D] batch of activations.
175 | :param split_size: the number of samples per split. This is used to
176 | make results consistent with other work, even when
177 | using a different number of samples.
178 | :return: an inception score estimate.
179 | """
180 | softmax_out = []
181 | for i in range(0, len(activations), self.softmax_batch_size):
182 | acts = activations[i : i + self.softmax_batch_size]
183 | with torch.no_grad():
184 | softmax_out.append(
185 | self.inception_softmax(torch.from_numpy(acts).to(dist_util.dev()))
186 | .cpu()
187 | .numpy()
188 | )
189 | preds = np.concatenate(softmax_out, axis=0)
190 | # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
191 | scores = []
192 | for i in range(0, len(preds), split_size):
193 | part = preds[i : i + split_size]
194 | kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
195 | kl = np.mean(np.sum(kl, 1))
196 | scores.append(np.exp(kl))
197 | return float(np.mean(scores))
198 |
199 | def get_clip_score(
200 | self, activations: np.ndarray, text_features: np.ndarray
201 | ) -> float:
202 | # Sizes should never mismatch, but if they do we want to compute
203 | # _some_ value instead of crash looping.
204 | size = min(len(activations), len(text_features))
205 | activations = activations[:size]
206 | text_features = text_features[:size]
207 |
208 | scores_out = []
209 | for i in range(0, len(activations), self.clip_score_batch_size):
210 | acts = activations[i : i + self.clip_score_batch_size]
211 | sub_features = text_features[i : i + self.clip_score_batch_size]
212 | with torch.no_grad():
213 | image_features = self.clip_proj(
214 | torch.from_numpy(acts).half().to(dist_util.dev())
215 | )
216 | image_features = image_features / image_features.norm(
217 | dim=-1, keepdim=True
218 | )
219 | image_features = image_features.detach().cpu().float().numpy()
220 | scores_out.extend(np.sum(sub_features * image_features, axis=-1).tolist())
221 | return np.mean(scores_out) * self.clip_logit_scale
222 |
223 | def get_activations(self, data, num_samples, global_batch_size, pr_samples=50000):
224 | if self.is_root:
225 | preds = []
226 | spatial_preds = []
227 | clip_preds = []
228 | pr_images = []
229 |
230 | for _ in tqdm(range(0, int(np.ceil(num_samples / global_batch_size)))):
231 | batch, cond, _ = next(data)
232 | batch, cond = batch.to(dist_util.dev()), {
233 | k: v.to(dist_util.dev()) for k, v in cond.items()
234 | }
235 | pred, spatial_pred, clip_pred, _, np_batch = self.get_preds(batch)
236 | pred, spatial_pred, clip_pred = (
237 | all_gather(pred).cpu().numpy(),
238 | all_gather(spatial_pred).cpu().numpy(),
239 | all_gather(clip_pred).cpu().numpy(),
240 | )
241 | if self.is_root:
242 | preds.append(pred)
243 | spatial_preds.append(spatial_pred)
244 | clip_preds.append(clip_pred)
245 | if len(pr_images) * np_batch.shape[0] < pr_samples:
246 | pr_images.append(np_batch)
247 |
248 | if self.is_root:
249 | preds, spatial_preds, clip_preds, pr_images = (
250 | np.concatenate(preds, axis=0),
251 | np.concatenate(spatial_preds, axis=0),
252 | np.concatenate(clip_preds, axis=0),
253 | np.concatenate(pr_images, axis=0),
254 | )
255 | # assert len(pr_images) >= pr_samples
256 | return (
257 | preds[:num_samples],
258 | spatial_preds[:num_samples],
259 | clip_preds[:num_samples],
260 | pr_images[:pr_samples],
261 | )
262 | else:
263 | return [], [], [], []
264 |
265 | def get_virtual_batch(self, data, num_samples, global_batch_size, resolution):
266 | preds, spatial_preds, clip_preds, batch = self.get_activations(
267 | data, num_samples, global_batch_size, pr_samples=10000
268 | )
269 | if self.is_root:
270 | fid_stats = self.get_statistics(preds, resolution)
271 | spatial_stats = self.get_statistics(spatial_preds, resolution)
272 | clip_stats = self.get_statistics(clip_preds, resolution)
273 | return batch, dict(
274 | mu=fid_stats.mu,
275 | sigma=fid_stats.sigma,
276 | mu_s=spatial_stats.mu,
277 | sigma_s=spatial_stats.sigma,
278 | mu_clip=clip_stats.mu,
279 | sigma_clip=clip_stats.sigma,
280 | )
281 | else:
282 | return None, dict()
283 |
284 | def set_ref_batch(self, ref_batch):
285 | with bf.BlobFile(ref_batch, "rb") as f:
286 | data = np.load(f)
287 | fid_stats = FIDStatistics(mu=data["mu"], sigma=data["sigma"], resolution=-1)
288 | spatial_stats = FIDStatistics(
289 | mu=data["mu_s"], sigma=data["sigma_s"], resolution=-1
290 | )
291 | clip_stats = FIDStatistics(
292 | mu=data["mu_clip"], sigma=data["sigma_clip"], resolution=-1
293 | )
294 |
295 | self.ref_features[ref_batch] = (fid_stats, spatial_stats, clip_stats)
296 |
297 | def get_ref_batch(self, ref_batch):
298 | return self.ref_features[ref_batch]
299 |
--------------------------------------------------------------------------------
/iCT/evaluations/th_evaluator.py:
--------------------------------------------------------------------------------
1 | from .inception_v3 import InceptionV3
2 | import blobfile as bf
3 | import torch
4 | import torch.distributed as dist
5 | import torch.nn as nn
6 | from cm import dist_util
7 | import numpy as np
8 | import warnings
9 | from scipy import linalg
10 | from PIL import Image
11 | from tqdm import tqdm
12 |
13 |
14 | def clip_preproc(preproc_fn, x):
15 | return preproc_fn(Image.fromarray(x.astype(np.uint8)))
16 |
17 |
18 | def all_gather(x, dim=0):
19 | xs = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
20 | dist.all_gather(xs, x)
21 | return torch.cat(xs, dim=dim)
22 |
23 |
24 | class FIDStatistics:
25 | def __init__(self, mu: np.ndarray, sigma: np.ndarray, resolution: int):
26 | self.mu = mu
27 | self.sigma = sigma
28 | self.resolution = resolution
29 |
30 | def frechet_distance(self, other, eps=1e-6):
31 | """
32 | Compute the Frechet distance between two sets of statistics.
33 | """
34 | mu1, sigma1 = self.mu, self.sigma
35 | mu2, sigma2 = other.mu, other.sigma
36 |
37 | mu1 = np.atleast_1d(mu1)
38 | mu2 = np.atleast_1d(mu2)
39 |
40 | sigma1 = np.atleast_2d(sigma1)
41 | sigma2 = np.atleast_2d(sigma2)
42 |
43 | assert (
44 | mu1.shape == mu2.shape
45 | ), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
46 | assert (
47 | sigma1.shape == sigma2.shape
48 | ), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
49 |
50 | diff = mu1 - mu2
51 |
52 | # product might be almost singular
53 | covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
54 | if not np.isfinite(covmean).all():
55 | msg = (
56 | "fid calculation produces singular product; adding %s to diagonal of cov estimates"
57 | % eps
58 | )
59 | warnings.warn(msg)
60 | offset = np.eye(sigma1.shape[0]) * eps
61 | covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
62 |
63 | # numerical error might give slight imaginary component
64 | if np.iscomplexobj(covmean):
65 | if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
66 | m = np.max(np.abs(covmean.imag))
67 | raise ValueError("Imaginary component {}".format(m))
68 | covmean = covmean.real
69 |
70 | tr_covmean = np.trace(covmean)
71 |
72 | return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
73 |
74 |
75 | class FIDAndIS:
76 | def __init__(
77 | self,
78 | softmax_batch_size=512,
79 | clip_score_batch_size=512,
80 | path="https://openaipublic.blob.core.windows.net/consistency/inception/inception-2015-12-05.pt",
81 | ):
82 | import clip
83 |
84 | super().__init__()
85 |
86 | self.softmax_batch_size = softmax_batch_size
87 | self.clip_score_batch_size = clip_score_batch_size
88 | self.inception = InceptionV3()
89 | with bf.BlobFile(path, "rb") as f:
90 | self.inception.load_state_dict(torch.load(f))
91 | self.inception.eval()
92 | self.inception.to(dist_util.dev())
93 |
94 | self.inception_softmax = self.inception.create_softmax_model()
95 |
96 | if dist.get_rank() % 8 == 0:
97 | clip_model, self.clip_preproc_fn = clip.load(
98 | "ViT-B/32", device=dist_util.dev()
99 | )
100 | dist.barrier()
101 | if dist.get_rank() % 8 != 0:
102 | clip_model, self.clip_preproc_fn = clip.load(
103 | "ViT-B/32", device=dist_util.dev()
104 | )
105 | dist.barrier()
106 |
107 | # Compute the probe features separately from the final projection.
108 | class ProjLayer(nn.Module):
109 | def __init__(self, param):
110 | super().__init__()
111 | self.param = param
112 |
113 | def forward(self, x):
114 | return x @ self.param
115 |
116 | self.clip_visual = clip_model.visual
117 | self.clip_proj = ProjLayer(self.clip_visual.proj)
118 | self.clip_visual.proj = None
119 |
120 | class TextModel(nn.Module):
121 | def __init__(self, clip_model):
122 | super().__init__()
123 | self.clip_model = clip_model
124 |
125 | def forward(self, x):
126 | return self.clip_model.encode_text(x)
127 |
128 | self.clip_tokenizer = lambda captions: clip.tokenize(captions, truncate=True)
129 | self.clip_text = TextModel(clip_model)
130 | self.clip_logit_scale = clip_model.logit_scale.exp().item()
131 | self.ref_features = {}
132 | self.is_root = not dist.is_initialized() or dist.get_rank() == 0
133 |
134 | def get_statistics(self, activations: np.ndarray, resolution: int):
135 | """
136 | Compute activation statistics for a batch of images.
137 |
138 | :param activations: an [N x D] batch of activations.
139 | :return: an FIDStatistics object.
140 | """
141 | mu = np.mean(activations, axis=0)
142 | sigma = np.cov(activations, rowvar=False)
143 | return FIDStatistics(mu, sigma, resolution)
144 |
145 | def get_preds(self, batch, captions=None):
146 | with torch.no_grad():
147 | batch = 127.5 * (batch + 1)
148 | np_batch = batch.to(torch.uint8).cpu().numpy().transpose((0, 2, 3, 1))
149 |
150 | pred, spatial_pred = self.inception(batch)
151 | pred, spatial_pred = pred.reshape(
152 | [pred.shape[0], -1]
153 | ), spatial_pred.reshape([spatial_pred.shape[0], -1])
154 |
155 | clip_in = torch.stack(
156 | [clip_preproc(self.clip_preproc_fn, img) for img in np_batch]
157 | )
158 | clip_pred = self.clip_visual(clip_in.half().to(dist_util.dev()))
159 | if captions is not None:
160 | text_in = self.clip_tokenizer(captions)
161 | text_pred = self.clip_text(text_in.to(dist_util.dev()))
162 | else:
163 | # Hack to easily deal with no captions
164 | text_pred = self.clip_proj(clip_pred.half())
165 | text_pred = text_pred / text_pred.norm(dim=-1, keepdim=True)
166 |
167 | return pred, spatial_pred, clip_pred, text_pred, np_batch
168 |
169 | def get_inception_score(
170 | self, activations: np.ndarray, split_size: int = 5000
171 | ) -> float:
172 | """
173 | Compute the inception score using a batch of activations.
174 | :param activations: an [N x D] batch of activations.
175 | :param split_size: the number of samples per split. This is used to
176 | make results consistent with other work, even when
177 | using a different number of samples.
178 | :return: an inception score estimate.
179 | """
180 | softmax_out = []
181 | for i in range(0, len(activations), self.softmax_batch_size):
182 | acts = activations[i : i + self.softmax_batch_size]
183 | with torch.no_grad():
184 | softmax_out.append(
185 | self.inception_softmax(torch.from_numpy(acts).to(dist_util.dev()))
186 | .cpu()
187 | .numpy()
188 | )
189 | preds = np.concatenate(softmax_out, axis=0)
190 | # https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
191 | scores = []
192 | for i in range(0, len(preds), split_size):
193 | part = preds[i : i + split_size]
194 | kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
195 | kl = np.mean(np.sum(kl, 1))
196 | scores.append(np.exp(kl))
197 | return float(np.mean(scores))
198 |
199 | def get_clip_score(
200 | self, activations: np.ndarray, text_features: np.ndarray
201 | ) -> float:
202 | # Sizes should never mismatch, but if they do we want to compute
203 | # _some_ value instead of crash looping.
204 | size = min(len(activations), len(text_features))
205 | activations = activations[:size]
206 | text_features = text_features[:size]
207 |
208 | scores_out = []
209 | for i in range(0, len(activations), self.clip_score_batch_size):
210 | acts = activations[i : i + self.clip_score_batch_size]
211 | sub_features = text_features[i : i + self.clip_score_batch_size]
212 | with torch.no_grad():
213 | image_features = self.clip_proj(
214 | torch.from_numpy(acts).half().to(dist_util.dev())
215 | )
216 | image_features = image_features / image_features.norm(
217 | dim=-1, keepdim=True
218 | )
219 | image_features = image_features.detach().cpu().float().numpy()
220 | scores_out.extend(np.sum(sub_features * image_features, axis=-1).tolist())
221 | return np.mean(scores_out) * self.clip_logit_scale
222 |
223 | def get_activations(self, data, num_samples, global_batch_size, pr_samples=50000):
224 | if self.is_root:
225 | preds = []
226 | spatial_preds = []
227 | clip_preds = []
228 | pr_images = []
229 |
230 | for _ in tqdm(range(0, int(np.ceil(num_samples / global_batch_size)))):
231 | batch, cond, _ = next(data)
232 | batch, cond = batch.to(dist_util.dev()), {
233 | k: v.to(dist_util.dev()) for k, v in cond.items()
234 | }
235 | pred, spatial_pred, clip_pred, _, np_batch = self.get_preds(batch)
236 | pred, spatial_pred, clip_pred = (
237 | all_gather(pred).cpu().numpy(),
238 | all_gather(spatial_pred).cpu().numpy(),
239 | all_gather(clip_pred).cpu().numpy(),
240 | )
241 | if self.is_root:
242 | preds.append(pred)
243 | spatial_preds.append(spatial_pred)
244 | clip_preds.append(clip_pred)
245 | if len(pr_images) * np_batch.shape[0] < pr_samples:
246 | pr_images.append(np_batch)
247 |
248 | if self.is_root:
249 | preds, spatial_preds, clip_preds, pr_images = (
250 | np.concatenate(preds, axis=0),
251 | np.concatenate(spatial_preds, axis=0),
252 | np.concatenate(clip_preds, axis=0),
253 | np.concatenate(pr_images, axis=0),
254 | )
255 | # assert len(pr_images) >= pr_samples
256 | return (
257 | preds[:num_samples],
258 | spatial_preds[:num_samples],
259 | clip_preds[:num_samples],
260 | pr_images[:pr_samples],
261 | )
262 | else:
263 | return [], [], [], []
264 |
265 | def get_virtual_batch(self, data, num_samples, global_batch_size, resolution):
266 | preds, spatial_preds, clip_preds, batch = self.get_activations(
267 | data, num_samples, global_batch_size, pr_samples=10000
268 | )
269 | if self.is_root:
270 | fid_stats = self.get_statistics(preds, resolution)
271 | spatial_stats = self.get_statistics(spatial_preds, resolution)
272 | clip_stats = self.get_statistics(clip_preds, resolution)
273 | return batch, dict(
274 | mu=fid_stats.mu,
275 | sigma=fid_stats.sigma,
276 | mu_s=spatial_stats.mu,
277 | sigma_s=spatial_stats.sigma,
278 | mu_clip=clip_stats.mu,
279 | sigma_clip=clip_stats.sigma,
280 | )
281 | else:
282 | return None, dict()
283 |
284 | def set_ref_batch(self, ref_batch):
285 | with bf.BlobFile(ref_batch, "rb") as f:
286 | data = np.load(f)
287 | fid_stats = FIDStatistics(mu=data["mu"], sigma=data["sigma"], resolution=-1)
288 | spatial_stats = FIDStatistics(
289 | mu=data["mu_s"], sigma=data["sigma_s"], resolution=-1
290 | )
291 | clip_stats = FIDStatistics(
292 | mu=data["mu_clip"], sigma=data["sigma_clip"], resolution=-1
293 | )
294 |
295 | self.ref_features[ref_batch] = (fid_stats, spatial_stats, clip_stats)
296 |
297 | def get_ref_batch(self, ref_batch):
298 | return self.ref_features[ref_batch]
299 |
--------------------------------------------------------------------------------
/BCM/evaluations/inception_v3.py:
--------------------------------------------------------------------------------
1 | # Ported from the model here:
2 | # https://github.com/NVlabs/stylegan3/blob/407db86e6fe432540a22515310188288687858fa/metrics/frechet_inception_distance.py#L22
3 | #
4 | # I have verified that the spatial features and output features are correct
5 | # within a mean absolute error of ~3e-5.
6 |
7 | import collections
8 |
9 | import torch
10 |
11 |
12 | class Conv2dLayer(torch.nn.Module):
13 | def __init__(self, in_channels, out_channels, kh, kw, stride=1, padding=0):
14 | super().__init__()
15 | self.stride = stride
16 | self.padding = padding
17 | self.weight = torch.nn.Parameter(torch.zeros(out_channels, in_channels, kh, kw))
18 | self.beta = torch.nn.Parameter(torch.zeros(out_channels))
19 | self.mean = torch.nn.Parameter(torch.zeros(out_channels))
20 | self.var = torch.nn.Parameter(torch.zeros(out_channels))
21 |
22 | def forward(self, x):
23 | x = torch.nn.functional.conv2d(
24 | x, self.weight.to(x.dtype), stride=self.stride, padding=self.padding
25 | )
26 | x = torch.nn.functional.batch_norm(
27 | x, running_mean=self.mean, running_var=self.var, bias=self.beta, eps=1e-3
28 | )
29 | x = torch.nn.functional.relu(x)
30 | return x
31 |
32 |
33 | # ----------------------------------------------------------------------------
34 |
35 |
36 | class InceptionA(torch.nn.Module):
37 | def __init__(self, in_channels, tmp_channels):
38 | super().__init__()
39 | self.conv = Conv2dLayer(in_channels, 64, kh=1, kw=1)
40 | self.tower = torch.nn.Sequential(
41 | collections.OrderedDict(
42 | [
43 | ("conv", Conv2dLayer(in_channels, 48, kh=1, kw=1)),
44 | ("conv_1", Conv2dLayer(48, 64, kh=5, kw=5, padding=2)),
45 | ]
46 | )
47 | )
48 | self.tower_1 = torch.nn.Sequential(
49 | collections.OrderedDict(
50 | [
51 | ("conv", Conv2dLayer(in_channels, 64, kh=1, kw=1)),
52 | ("conv_1", Conv2dLayer(64, 96, kh=3, kw=3, padding=1)),
53 | ("conv_2", Conv2dLayer(96, 96, kh=3, kw=3, padding=1)),
54 | ]
55 | )
56 | )
57 | self.tower_2 = torch.nn.Sequential(
58 | collections.OrderedDict(
59 | [
60 | (
61 | "pool",
62 | torch.nn.AvgPool2d(
63 | kernel_size=3, stride=1, padding=1, count_include_pad=False
64 | ),
65 | ),
66 | ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
67 | ]
68 | )
69 | )
70 |
71 | def forward(self, x):
72 | return torch.cat(
73 | [
74 | self.conv(x).contiguous(),
75 | self.tower(x).contiguous(),
76 | self.tower_1(x).contiguous(),
77 | self.tower_2(x).contiguous(),
78 | ],
79 | dim=1,
80 | )
81 |
82 |
83 | # ----------------------------------------------------------------------------
84 |
85 |
86 | class InceptionB(torch.nn.Module):
87 | def __init__(self, in_channels):
88 | super().__init__()
89 | self.conv = Conv2dLayer(in_channels, 384, kh=3, kw=3, stride=2)
90 | self.tower = torch.nn.Sequential(
91 | collections.OrderedDict(
92 | [
93 | ("conv", Conv2dLayer(in_channels, 64, kh=1, kw=1)),
94 | ("conv_1", Conv2dLayer(64, 96, kh=3, kw=3, padding=1)),
95 | ("conv_2", Conv2dLayer(96, 96, kh=3, kw=3, stride=2)),
96 | ]
97 | )
98 | )
99 | self.pool = torch.nn.MaxPool2d(kernel_size=3, stride=2)
100 |
101 | def forward(self, x):
102 | return torch.cat(
103 | [
104 | self.conv(x).contiguous(),
105 | self.tower(x).contiguous(),
106 | self.pool(x).contiguous(),
107 | ],
108 | dim=1,
109 | )
110 |
111 |
112 | # ----------------------------------------------------------------------------
113 |
114 |
115 | class InceptionC(torch.nn.Module):
116 | def __init__(self, in_channels, tmp_channels):
117 | super().__init__()
118 | self.conv = Conv2dLayer(in_channels, 192, kh=1, kw=1)
119 | self.tower = torch.nn.Sequential(
120 | collections.OrderedDict(
121 | [
122 | ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
123 | (
124 | "conv_1",
125 | Conv2dLayer(
126 | tmp_channels, tmp_channels, kh=1, kw=7, padding=[0, 3]
127 | ),
128 | ),
129 | (
130 | "conv_2",
131 | Conv2dLayer(tmp_channels, 192, kh=7, kw=1, padding=[3, 0]),
132 | ),
133 | ]
134 | )
135 | )
136 | self.tower_1 = torch.nn.Sequential(
137 | collections.OrderedDict(
138 | [
139 | ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
140 | (
141 | "conv_1",
142 | Conv2dLayer(
143 | tmp_channels, tmp_channels, kh=7, kw=1, padding=[3, 0]
144 | ),
145 | ),
146 | (
147 | "conv_2",
148 | Conv2dLayer(
149 | tmp_channels, tmp_channels, kh=1, kw=7, padding=[0, 3]
150 | ),
151 | ),
152 | (
153 | "conv_3",
154 | Conv2dLayer(
155 | tmp_channels, tmp_channels, kh=7, kw=1, padding=[3, 0]
156 | ),
157 | ),
158 | (
159 | "conv_4",
160 | Conv2dLayer(tmp_channels, 192, kh=1, kw=7, padding=[0, 3]),
161 | ),
162 | ]
163 | )
164 | )
165 | self.tower_2 = torch.nn.Sequential(
166 | collections.OrderedDict(
167 | [
168 | (
169 | "pool",
170 | torch.nn.AvgPool2d(
171 | kernel_size=3, stride=1, padding=1, count_include_pad=False
172 | ),
173 | ),
174 | ("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
175 | ]
176 | )
177 | )
178 |
179 | def forward(self, x):
180 | return torch.cat(
181 | [
182 | self.conv(x).contiguous(),
183 | self.tower(x).contiguous(),
184 | self.tower_1(x).contiguous(),
185 | self.tower_2(x).contiguous(),
186 | ],
187 | dim=1,
188 | )
189 |
190 |
191 | # ----------------------------------------------------------------------------
192 |
193 |
194 | class InceptionD(torch.nn.Module):
195 | def __init__(self, in_channels):
196 | super().__init__()
197 | self.tower = torch.nn.Sequential(
198 | collections.OrderedDict(
199 | [
200 | ("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
201 | ("conv_1", Conv2dLayer(192, 320, kh=3, kw=3, stride=2)),
202 | ]
203 | )
204 | )
205 | self.tower_1 = torch.nn.Sequential(
206 | collections.OrderedDict(
207 | [
208 | ("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
209 | ("conv_1", Conv2dLayer(192, 192, kh=1, kw=7, padding=[0, 3])),
210 | ("conv_2", Conv2dLayer(192, 192, kh=7, kw=1, padding=[3, 0])),
211 | ("conv_3", Conv2dLayer(192, 192, kh=3, kw=3, stride=2)),
212 | ]
213 | )
214 | )
215 | self.pool = torch.nn.MaxPool2d(kernel_size=3, stride=2)
216 |
217 | def forward(self, x):
218 | return torch.cat(
219 | [
220 | self.tower(x).contiguous(),
221 | self.tower_1(x).contiguous(),
222 | self.pool(x).contiguous(),
223 | ],
224 | dim=1,
225 | )
226 |
227 |
228 | # ----------------------------------------------------------------------------
229 |
230 |
231 | class InceptionE(torch.nn.Module):
232 | def __init__(self, in_channels, use_avg_pool):
233 | super().__init__()
234 | self.conv = Conv2dLayer(in_channels, 320, kh=1, kw=1)
235 | self.tower_conv = Conv2dLayer(in_channels, 384, kh=1, kw=1)
236 | self.tower_mixed_conv = Conv2dLayer(384, 384, kh=1, kw=3, padding=[0, 1])
237 | self.tower_mixed_conv_1 = Conv2dLayer(384, 384, kh=3, kw=1, padding=[1, 0])
238 | self.tower_1_conv = Conv2dLayer(in_channels, 448, kh=1, kw=1)
239 | self.tower_1_conv_1 = Conv2dLayer(448, 384, kh=3, kw=3, padding=1)
240 | self.tower_1_mixed_conv = Conv2dLayer(384, 384, kh=1, kw=3, padding=[0, 1])
241 | self.tower_1_mixed_conv_1 = Conv2dLayer(384, 384, kh=3, kw=1, padding=[1, 0])
242 | if use_avg_pool:
243 | self.tower_2_pool = torch.nn.AvgPool2d(
244 | kernel_size=3, stride=1, padding=1, count_include_pad=False
245 | )
246 | else:
247 | self.tower_2_pool = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
248 | self.tower_2_conv = Conv2dLayer(in_channels, 192, kh=1, kw=1)
249 |
250 | def forward(self, x):
251 | a = self.tower_conv(x)
252 | b = self.tower_1_conv_1(self.tower_1_conv(x))
253 | return torch.cat(
254 | [
255 | self.conv(x).contiguous(),
256 | self.tower_mixed_conv(a).contiguous(),
257 | self.tower_mixed_conv_1(a).contiguous(),
258 | self.tower_1_mixed_conv(b).contiguous(),
259 | self.tower_1_mixed_conv_1(b).contiguous(),
260 | self.tower_2_conv(self.tower_2_pool(x)).contiguous(),
261 | ],
262 | dim=1,
263 | )
264 |
265 |
266 | # ----------------------------------------------------------------------------
267 |
268 |
269 | class InceptionV3(torch.nn.Module):
270 | def __init__(self):
271 | super().__init__()
272 | self.layers = torch.nn.Sequential(
273 | collections.OrderedDict(
274 | [
275 | ("conv", Conv2dLayer(3, 32, kh=3, kw=3, stride=2)),
276 | ("conv_1", Conv2dLayer(32, 32, kh=3, kw=3)),
277 | ("conv_2", Conv2dLayer(32, 64, kh=3, kw=3, padding=1)),
278 | ("pool0", torch.nn.MaxPool2d(kernel_size=3, stride=2)),
279 | ("conv_3", Conv2dLayer(64, 80, kh=1, kw=1)),
280 | ("conv_4", Conv2dLayer(80, 192, kh=3, kw=3)),
281 | ("pool1", torch.nn.MaxPool2d(kernel_size=3, stride=2)),
282 | ("mixed", InceptionA(192, tmp_channels=32)),
283 | ("mixed_1", InceptionA(256, tmp_channels=64)),
284 | ("mixed_2", InceptionA(288, tmp_channels=64)),
285 | ("mixed_3", InceptionB(288)),
286 | ("mixed_4", InceptionC(768, tmp_channels=128)),
287 | ("mixed_5", InceptionC(768, tmp_channels=160)),
288 | ("mixed_6", InceptionC(768, tmp_channels=160)),
289 | ("mixed_7", InceptionC(768, tmp_channels=192)),
290 | ("mixed_8", InceptionD(768)),
291 | ("mixed_9", InceptionE(1280, use_avg_pool=True)),
292 | ("mixed_10", InceptionE(2048, use_avg_pool=False)),
293 | ("pool2", torch.nn.AvgPool2d(kernel_size=8)),
294 | ]
295 | )
296 | )
297 | self.output = torch.nn.Linear(2048, 1008)
298 |
299 | def forward(
300 | self,
301 | img,
302 | return_features: bool = True,
303 | use_fp16: bool = False,
304 | no_output_bias: bool = False,
305 | ):
306 | batch_size, channels, height, width = img.shape # [NCHW]
307 | assert channels == 3
308 |
309 | # Cast to float.
310 | x = img.to(torch.float16 if use_fp16 else torch.float32)
311 |
312 | # Emulate tf.image.resize_bilinear(x, [299, 299]), including the funky alignment.
313 | new_width, new_height = 299, 299
314 | theta = torch.eye(2, 3, device=x.device)
315 | theta[0, 2] += theta[0, 0] / width - theta[0, 0] / new_width
316 | theta[1, 2] += theta[1, 1] / height - theta[1, 1] / new_height
317 | theta = theta.to(x.dtype).unsqueeze(0).repeat([batch_size, 1, 1])
318 | grid = torch.nn.functional.affine_grid(
319 | theta, [batch_size, channels, new_height, new_width], align_corners=False
320 | )
321 | x = torch.nn.functional.grid_sample(
322 | x, grid, mode="bilinear", padding_mode="border", align_corners=False
323 | )
324 |
325 | # Scale dynamic range from [0,255] to [-1,1[.
326 | x -= 128
327 | x /= 128
328 |
329 | # Main layers.
330 | intermediate = self.layers[:-6](x)
331 | spatial_features = (
332 | self.layers[-6]
333 | .conv(intermediate)[:, :7]
334 | .permute(0, 2, 3, 1)
335 | .reshape(-1, 2023)
336 | )
337 | features = self.layers[-6:](intermediate).reshape(-1, 2048).to(torch.float32)
338 | if return_features:
339 | return features, spatial_features
340 |
341 | # Output layer.
342 | return self.acts_to_probs(features, no_output_bias=no_output_bias)
343 |
344 | def acts_to_probs(self, features, no_output_bias: bool = False):
345 | if no_output_bias:
346 | logits = torch.nn.functional.linear(features, self.output.weight)
347 | else:
348 | logits = self.output(features)
349 | probs = torch.nn.functional.softmax(logits, dim=1)
350 | return probs
351 |
352 | def create_softmax_model(self):
353 | return SoftmaxModel(self.output.weight)
354 |
355 |
356 | class SoftmaxModel(torch.nn.Module):
357 | def __init__(self, weight: torch.Tensor):
358 | super().__init__()
359 | self.weight = torch.nn.Parameter(weight.detach().clone())
360 |
361 | def forward(self, x):
362 | logits = torch.nn.functional.linear(x, self.weight)
363 | probs = torch.nn.functional.softmax(logits, dim=1)
364 | return probs
365 |
--------------------------------------------------------------------------------
/iCT/evaluations/inception_v3.py:
--------------------------------------------------------------------------------
1 | # Ported from the model here:
2 | # https://github.com/NVlabs/stylegan3/blob/407db86e6fe432540a22515310188288687858fa/metrics/frechet_inception_distance.py#L22
3 | #
4 | # I have verified that the spatial features and output features are correct
5 | # within a mean absolute error of ~3e-5.
6 |
7 | import collections
8 |
9 | import torch
10 |
11 |
12 | class Conv2dLayer(torch.nn.Module):
13 | def __init__(self, in_channels, out_channels, kh, kw, stride=1, padding=0):
14 | super().__init__()
15 | self.stride = stride
16 | self.padding = padding
17 | self.weight = torch.nn.Parameter(torch.zeros(out_channels, in_channels, kh, kw))
18 | self.beta = torch.nn.Parameter(torch.zeros(out_channels))
19 | self.mean = torch.nn.Parameter(torch.zeros(out_channels))
20 | self.var = torch.nn.Parameter(torch.zeros(out_channels))
21 |
22 | def forward(self, x):
23 | x = torch.nn.functional.conv2d(
24 | x, self.weight.to(x.dtype), stride=self.stride, padding=self.padding
25 | )
26 | x = torch.nn.functional.batch_norm(
27 | x, running_mean=self.mean, running_var=self.var, bias=self.beta, eps=1e-3
28 | )
29 | x = torch.nn.functional.relu(x)
30 | return x
31 |
32 |
33 | # ----------------------------------------------------------------------------
34 |
35 |
36 | class InceptionA(torch.nn.Module):
37 | def __init__(self, in_channels, tmp_channels):
38 | super().__init__()
39 | self.conv = Conv2dLayer(in_channels, 64, kh=1, kw=1)
40 | self.tower = torch.nn.Sequential(
41 | collections.OrderedDict(
42 | [
43 | ("conv", Conv2dLayer(in_channels, 48, kh=1, kw=1)),
44 | ("conv_1", Conv2dLayer(48, 64, kh=5, kw=5, padding=2)),
45 | ]
46 | )
47 | )
48 | self.tower_1 = torch.nn.Sequential(
49 | collections.OrderedDict(
50 | [
51 | ("conv", Conv2dLayer(in_channels, 64, kh=1, kw=1)),
52 | ("conv_1", Conv2dLayer(64, 96, kh=3, kw=3, padding=1)),
53 | ("conv_2", Conv2dLayer(96, 96, kh=3, kw=3, padding=1)),
54 | ]
55 | )
56 | )
57 | self.tower_2 = torch.nn.Sequential(
58 | collections.OrderedDict(
59 | [
60 | (
61 | "pool",
62 | torch.nn.AvgPool2d(
63 | kernel_size=3, stride=1, padding=1, count_include_pad=False
64 | ),
65 | ),
66 | ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
67 | ]
68 | )
69 | )
70 |
71 | def forward(self, x):
72 | return torch.cat(
73 | [
74 | self.conv(x).contiguous(),
75 | self.tower(x).contiguous(),
76 | self.tower_1(x).contiguous(),
77 | self.tower_2(x).contiguous(),
78 | ],
79 | dim=1,
80 | )
81 |
82 |
83 | # ----------------------------------------------------------------------------
84 |
85 |
86 | class InceptionB(torch.nn.Module):
87 | def __init__(self, in_channels):
88 | super().__init__()
89 | self.conv = Conv2dLayer(in_channels, 384, kh=3, kw=3, stride=2)
90 | self.tower = torch.nn.Sequential(
91 | collections.OrderedDict(
92 | [
93 | ("conv", Conv2dLayer(in_channels, 64, kh=1, kw=1)),
94 | ("conv_1", Conv2dLayer(64, 96, kh=3, kw=3, padding=1)),
95 | ("conv_2", Conv2dLayer(96, 96, kh=3, kw=3, stride=2)),
96 | ]
97 | )
98 | )
99 | self.pool = torch.nn.MaxPool2d(kernel_size=3, stride=2)
100 |
101 | def forward(self, x):
102 | return torch.cat(
103 | [
104 | self.conv(x).contiguous(),
105 | self.tower(x).contiguous(),
106 | self.pool(x).contiguous(),
107 | ],
108 | dim=1,
109 | )
110 |
111 |
112 | # ----------------------------------------------------------------------------
113 |
114 |
115 | class InceptionC(torch.nn.Module):
116 | def __init__(self, in_channels, tmp_channels):
117 | super().__init__()
118 | self.conv = Conv2dLayer(in_channels, 192, kh=1, kw=1)
119 | self.tower = torch.nn.Sequential(
120 | collections.OrderedDict(
121 | [
122 | ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
123 | (
124 | "conv_1",
125 | Conv2dLayer(
126 | tmp_channels, tmp_channels, kh=1, kw=7, padding=[0, 3]
127 | ),
128 | ),
129 | (
130 | "conv_2",
131 | Conv2dLayer(tmp_channels, 192, kh=7, kw=1, padding=[3, 0]),
132 | ),
133 | ]
134 | )
135 | )
136 | self.tower_1 = torch.nn.Sequential(
137 | collections.OrderedDict(
138 | [
139 | ("conv", Conv2dLayer(in_channels, tmp_channels, kh=1, kw=1)),
140 | (
141 | "conv_1",
142 | Conv2dLayer(
143 | tmp_channels, tmp_channels, kh=7, kw=1, padding=[3, 0]
144 | ),
145 | ),
146 | (
147 | "conv_2",
148 | Conv2dLayer(
149 | tmp_channels, tmp_channels, kh=1, kw=7, padding=[0, 3]
150 | ),
151 | ),
152 | (
153 | "conv_3",
154 | Conv2dLayer(
155 | tmp_channels, tmp_channels, kh=7, kw=1, padding=[3, 0]
156 | ),
157 | ),
158 | (
159 | "conv_4",
160 | Conv2dLayer(tmp_channels, 192, kh=1, kw=7, padding=[0, 3]),
161 | ),
162 | ]
163 | )
164 | )
165 | self.tower_2 = torch.nn.Sequential(
166 | collections.OrderedDict(
167 | [
168 | (
169 | "pool",
170 | torch.nn.AvgPool2d(
171 | kernel_size=3, stride=1, padding=1, count_include_pad=False
172 | ),
173 | ),
174 | ("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
175 | ]
176 | )
177 | )
178 |
179 | def forward(self, x):
180 | return torch.cat(
181 | [
182 | self.conv(x).contiguous(),
183 | self.tower(x).contiguous(),
184 | self.tower_1(x).contiguous(),
185 | self.tower_2(x).contiguous(),
186 | ],
187 | dim=1,
188 | )
189 |
190 |
191 | # ----------------------------------------------------------------------------
192 |
193 |
194 | class InceptionD(torch.nn.Module):
195 | def __init__(self, in_channels):
196 | super().__init__()
197 | self.tower = torch.nn.Sequential(
198 | collections.OrderedDict(
199 | [
200 | ("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
201 | ("conv_1", Conv2dLayer(192, 320, kh=3, kw=3, stride=2)),
202 | ]
203 | )
204 | )
205 | self.tower_1 = torch.nn.Sequential(
206 | collections.OrderedDict(
207 | [
208 | ("conv", Conv2dLayer(in_channels, 192, kh=1, kw=1)),
209 | ("conv_1", Conv2dLayer(192, 192, kh=1, kw=7, padding=[0, 3])),
210 | ("conv_2", Conv2dLayer(192, 192, kh=7, kw=1, padding=[3, 0])),
211 | ("conv_3", Conv2dLayer(192, 192, kh=3, kw=3, stride=2)),
212 | ]
213 | )
214 | )
215 | self.pool = torch.nn.MaxPool2d(kernel_size=3, stride=2)
216 |
217 | def forward(self, x):
218 | return torch.cat(
219 | [
220 | self.tower(x).contiguous(),
221 | self.tower_1(x).contiguous(),
222 | self.pool(x).contiguous(),
223 | ],
224 | dim=1,
225 | )
226 |
227 |
228 | # ----------------------------------------------------------------------------
229 |
230 |
231 | class InceptionE(torch.nn.Module):
232 | def __init__(self, in_channels, use_avg_pool):
233 | super().__init__()
234 | self.conv = Conv2dLayer(in_channels, 320, kh=1, kw=1)
235 | self.tower_conv = Conv2dLayer(in_channels, 384, kh=1, kw=1)
236 | self.tower_mixed_conv = Conv2dLayer(384, 384, kh=1, kw=3, padding=[0, 1])
237 | self.tower_mixed_conv_1 = Conv2dLayer(384, 384, kh=3, kw=1, padding=[1, 0])
238 | self.tower_1_conv = Conv2dLayer(in_channels, 448, kh=1, kw=1)
239 | self.tower_1_conv_1 = Conv2dLayer(448, 384, kh=3, kw=3, padding=1)
240 | self.tower_1_mixed_conv = Conv2dLayer(384, 384, kh=1, kw=3, padding=[0, 1])
241 | self.tower_1_mixed_conv_1 = Conv2dLayer(384, 384, kh=3, kw=1, padding=[1, 0])
242 | if use_avg_pool:
243 | self.tower_2_pool = torch.nn.AvgPool2d(
244 | kernel_size=3, stride=1, padding=1, count_include_pad=False
245 | )
246 | else:
247 | self.tower_2_pool = torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
248 | self.tower_2_conv = Conv2dLayer(in_channels, 192, kh=1, kw=1)
249 |
250 | def forward(self, x):
251 | a = self.tower_conv(x)
252 | b = self.tower_1_conv_1(self.tower_1_conv(x))
253 | return torch.cat(
254 | [
255 | self.conv(x).contiguous(),
256 | self.tower_mixed_conv(a).contiguous(),
257 | self.tower_mixed_conv_1(a).contiguous(),
258 | self.tower_1_mixed_conv(b).contiguous(),
259 | self.tower_1_mixed_conv_1(b).contiguous(),
260 | self.tower_2_conv(self.tower_2_pool(x)).contiguous(),
261 | ],
262 | dim=1,
263 | )
264 |
265 |
266 | # ----------------------------------------------------------------------------
267 |
268 |
269 | class InceptionV3(torch.nn.Module):
270 | def __init__(self):
271 | super().__init__()
272 | self.layers = torch.nn.Sequential(
273 | collections.OrderedDict(
274 | [
275 | ("conv", Conv2dLayer(3, 32, kh=3, kw=3, stride=2)),
276 | ("conv_1", Conv2dLayer(32, 32, kh=3, kw=3)),
277 | ("conv_2", Conv2dLayer(32, 64, kh=3, kw=3, padding=1)),
278 | ("pool0", torch.nn.MaxPool2d(kernel_size=3, stride=2)),
279 | ("conv_3", Conv2dLayer(64, 80, kh=1, kw=1)),
280 | ("conv_4", Conv2dLayer(80, 192, kh=3, kw=3)),
281 | ("pool1", torch.nn.MaxPool2d(kernel_size=3, stride=2)),
282 | ("mixed", InceptionA(192, tmp_channels=32)),
283 | ("mixed_1", InceptionA(256, tmp_channels=64)),
284 | ("mixed_2", InceptionA(288, tmp_channels=64)),
285 | ("mixed_3", InceptionB(288)),
286 | ("mixed_4", InceptionC(768, tmp_channels=128)),
287 | ("mixed_5", InceptionC(768, tmp_channels=160)),
288 | ("mixed_6", InceptionC(768, tmp_channels=160)),
289 | ("mixed_7", InceptionC(768, tmp_channels=192)),
290 | ("mixed_8", InceptionD(768)),
291 | ("mixed_9", InceptionE(1280, use_avg_pool=True)),
292 | ("mixed_10", InceptionE(2048, use_avg_pool=False)),
293 | ("pool2", torch.nn.AvgPool2d(kernel_size=8)),
294 | ]
295 | )
296 | )
297 | self.output = torch.nn.Linear(2048, 1008)
298 |
299 | def forward(
300 | self,
301 | img,
302 | return_features: bool = True,
303 | use_fp16: bool = False,
304 | no_output_bias: bool = False,
305 | ):
306 | batch_size, channels, height, width = img.shape # [NCHW]
307 | assert channels == 3
308 |
309 | # Cast to float.
310 | x = img.to(torch.float16 if use_fp16 else torch.float32)
311 |
312 | # Emulate tf.image.resize_bilinear(x, [299, 299]), including the funky alignment.
313 | new_width, new_height = 299, 299
314 | theta = torch.eye(2, 3, device=x.device)
315 | theta[0, 2] += theta[0, 0] / width - theta[0, 0] / new_width
316 | theta[1, 2] += theta[1, 1] / height - theta[1, 1] / new_height
317 | theta = theta.to(x.dtype).unsqueeze(0).repeat([batch_size, 1, 1])
318 | grid = torch.nn.functional.affine_grid(
319 | theta, [batch_size, channels, new_height, new_width], align_corners=False
320 | )
321 | x = torch.nn.functional.grid_sample(
322 | x, grid, mode="bilinear", padding_mode="border", align_corners=False
323 | )
324 |
325 | # Scale dynamic range from [0,255] to [-1,1[.
326 | x -= 128
327 | x /= 128
328 |
329 | # Main layers.
330 | intermediate = self.layers[:-6](x)
331 | spatial_features = (
332 | self.layers[-6]
333 | .conv(intermediate)[:, :7]
334 | .permute(0, 2, 3, 1)
335 | .reshape(-1, 2023)
336 | )
337 | features = self.layers[-6:](intermediate).reshape(-1, 2048).to(torch.float32)
338 | if return_features:
339 | return features, spatial_features
340 |
341 | # Output layer.
342 | return self.acts_to_probs(features, no_output_bias=no_output_bias)
343 |
344 | def acts_to_probs(self, features, no_output_bias: bool = False):
345 | if no_output_bias:
346 | logits = torch.nn.functional.linear(features, self.output.weight)
347 | else:
348 | logits = self.output(features)
349 | probs = torch.nn.functional.softmax(logits, dim=1)
350 | return probs
351 |
352 | def create_softmax_model(self):
353 | return SoftmaxModel(self.output.weight)
354 |
355 |
356 | class SoftmaxModel(torch.nn.Module):
357 | def __init__(self, weight: torch.Tensor):
358 | super().__init__()
359 | self.weight = torch.nn.Parameter(weight.detach().clone())
360 |
361 | def forward(self, x):
362 | logits = torch.nn.functional.linear(x, self.weight)
363 | probs = torch.nn.functional.softmax(logits, dim=1)
364 | return probs
365 |
--------------------------------------------------------------------------------
/BCM/cm/logger.py:
--------------------------------------------------------------------------------
1 | """
2 | Logger copied from OpenAI baselines to avoid extra RL-based dependencies:
3 | https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py
4 | """
5 |
6 | import os
7 | import sys
8 | import shutil
9 | import os.path as osp
10 | import json
11 | import time
12 | import datetime
13 | import tempfile
14 | import warnings
15 | from collections import defaultdict
16 | from contextlib import contextmanager
17 |
18 | DEBUG = 10
19 | INFO = 20
20 | WARN = 30
21 | ERROR = 40
22 |
23 | DISABLED = 50
24 |
25 |
26 | class KVWriter(object):
27 | def writekvs(self, kvs):
28 | raise NotImplementedError
29 |
30 |
31 | class SeqWriter(object):
32 | def writeseq(self, seq):
33 | raise NotImplementedError
34 |
35 |
36 | class HumanOutputFormat(KVWriter, SeqWriter):
37 | def __init__(self, filename_or_file):
38 | if isinstance(filename_or_file, str):
39 | self.file = open(filename_or_file, "wt")
40 | self.own_file = True
41 | else:
42 | assert hasattr(filename_or_file, "read"), (
43 | "expected file or str, got %s" % filename_or_file
44 | )
45 | self.file = filename_or_file
46 | self.own_file = False
47 |
48 | def writekvs(self, kvs):
49 | # Create strings for printing
50 | key2str = {}
51 | for (key, val) in sorted(kvs.items()):
52 | if hasattr(val, "__float__"):
53 | valstr = "%-8.3g" % val
54 | else:
55 | valstr = str(val)
56 | key2str[self._truncate(key)] = self._truncate(valstr)
57 |
58 | # Find max widths
59 | if len(key2str) == 0:
60 | print("WARNING: tried to write empty key-value dict")
61 | return
62 | else:
63 | keywidth = max(map(len, key2str.keys()))
64 | valwidth = max(map(len, key2str.values()))
65 |
66 | # Write out the data
67 | dashes = "-" * (keywidth + valwidth + 7)
68 | lines = [dashes]
69 | for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()):
70 | lines.append(
71 | "| %s%s | %s%s |"
72 | % (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val)))
73 | )
74 | lines.append(dashes)
75 | self.file.write("\n".join(lines) + "\n")
76 |
77 | # Flush the output to the file
78 | self.file.flush()
79 |
80 | def _truncate(self, s):
81 | maxlen = 30
82 | return s[: maxlen - 3] + "..." if len(s) > maxlen else s
83 |
84 | def writeseq(self, seq):
85 | seq = list(seq)
86 | for (i, elem) in enumerate(seq):
87 | self.file.write(elem)
88 | if i < len(seq) - 1: # add space unless this is the last one
89 | self.file.write(" ")
90 | self.file.write("\n")
91 | self.file.flush()
92 |
93 | def close(self):
94 | if self.own_file:
95 | self.file.close()
96 |
97 |
98 | class JSONOutputFormat(KVWriter):
99 | def __init__(self, filename):
100 | self.file = open(filename, "wt")
101 |
102 | def writekvs(self, kvs):
103 | for k, v in sorted(kvs.items()):
104 | if hasattr(v, "dtype"):
105 | kvs[k] = float(v)
106 | self.file.write(json.dumps(kvs) + "\n")
107 | self.file.flush()
108 |
109 | def close(self):
110 | self.file.close()
111 |
112 |
113 | class CSVOutputFormat(KVWriter):
114 | def __init__(self, filename):
115 | self.file = open(filename, "w+t")
116 | self.keys = []
117 | self.sep = ","
118 |
119 | def writekvs(self, kvs):
120 | # Add our current row to the history
121 | extra_keys = list(kvs.keys() - self.keys)
122 | extra_keys.sort()
123 | if extra_keys:
124 | self.keys.extend(extra_keys)
125 | self.file.seek(0)
126 | lines = self.file.readlines()
127 | self.file.seek(0)
128 | for (i, k) in enumerate(self.keys):
129 | if i > 0:
130 | self.file.write(",")
131 | self.file.write(k)
132 | self.file.write("\n")
133 | for line in lines[1:]:
134 | self.file.write(line[:-1])
135 | self.file.write(self.sep * len(extra_keys))
136 | self.file.write("\n")
137 | for (i, k) in enumerate(self.keys):
138 | if i > 0:
139 | self.file.write(",")
140 | v = kvs.get(k)
141 | if v is not None:
142 | self.file.write(str(v))
143 | self.file.write("\n")
144 | self.file.flush()
145 |
146 | def close(self):
147 | self.file.close()
148 |
149 |
150 | class TensorBoardOutputFormat(KVWriter):
151 | """
152 | Dumps key/value pairs into TensorBoard's numeric format.
153 | """
154 |
155 | def __init__(self, dir):
156 | os.makedirs(dir, exist_ok=True)
157 | self.dir = dir
158 | self.step = 1
159 | prefix = "events"
160 | path = osp.join(osp.abspath(dir), prefix)
161 | import tensorflow as tf
162 | from tensorflow.python import pywrap_tensorflow
163 | from tensorflow.core.util import event_pb2
164 | from tensorflow.python.util import compat
165 |
166 | self.tf = tf
167 | self.event_pb2 = event_pb2
168 | self.pywrap_tensorflow = pywrap_tensorflow
169 | self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
170 |
171 | def writekvs(self, kvs):
172 | def summary_val(k, v):
173 | kwargs = {"tag": k, "simple_value": float(v)}
174 | return self.tf.Summary.Value(**kwargs)
175 |
176 | summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()])
177 | event = self.event_pb2.Event(wall_time=time.time(), summary=summary)
178 | event.step = (
179 | self.step
180 | ) # is there any reason why you'd want to specify the step?
181 | self.writer.WriteEvent(event)
182 | self.writer.Flush()
183 | self.step += 1
184 |
185 | def close(self):
186 | if self.writer:
187 | self.writer.Close()
188 | self.writer = None
189 |
190 |
191 | def make_output_format(format, ev_dir, log_suffix=""):
192 | os.makedirs(ev_dir, exist_ok=True)
193 | if format == "stdout":
194 | return HumanOutputFormat(sys.stdout)
195 | elif format == "log":
196 | return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix))
197 | elif format == "json":
198 | return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix))
199 | elif format == "csv":
200 | return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix))
201 | elif format == "tensorboard":
202 | return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix))
203 | else:
204 | raise ValueError("Unknown format specified: %s" % (format,))
205 |
206 |
207 | # ================================================================
208 | # API
209 | # ================================================================
210 |
211 |
212 | def logkv(key, val):
213 | """
214 | Log a value of some diagnostic
215 | Call this once for each diagnostic quantity, each iteration
216 | If called many times, last value will be used.
217 | """
218 | get_current().logkv(key, val)
219 |
220 |
221 | def logkv_mean(key, val):
222 | """
223 | The same as logkv(), but if called many times, values averaged.
224 | """
225 | get_current().logkv_mean(key, val)
226 |
227 |
228 | def logkvs(d):
229 | """
230 | Log a dictionary of key-value pairs
231 | """
232 | for (k, v) in d.items():
233 | logkv(k, v)
234 |
235 |
236 | def dumpkvs():
237 | """
238 | Write all of the diagnostics from the current iteration
239 | """
240 | return get_current().dumpkvs()
241 |
242 |
243 | def getkvs():
244 | return get_current().name2val
245 |
246 |
247 | def log(*args, level=INFO):
248 | """
249 | Write the sequence of args, with no separators, to the console and output files (if you've configured an output file).
250 | """
251 | get_current().log(*args, level=level)
252 |
253 |
254 | def debug(*args):
255 | log(*args, level=DEBUG)
256 |
257 |
258 | def info(*args):
259 | log(*args, level=INFO)
260 |
261 |
262 | def warn(*args):
263 | log(*args, level=WARN)
264 |
265 |
266 | def error(*args):
267 | log(*args, level=ERROR)
268 |
269 |
270 | def set_level(level):
271 | """
272 | Set logging threshold on current logger.
273 | """
274 | get_current().set_level(level)
275 |
276 |
277 | def set_comm(comm):
278 | get_current().set_comm(comm)
279 |
280 |
281 | def get_dir():
282 | """
283 | Get directory that log files are being written to.
284 | will be None if there is no output directory (i.e., if you didn't call start)
285 | """
286 | return get_current().get_dir()
287 |
288 |
289 | record_tabular = logkv
290 | dump_tabular = dumpkvs
291 |
292 |
293 | @contextmanager
294 | def profile_kv(scopename):
295 | logkey = "wait_" + scopename
296 | tstart = time.time()
297 | try:
298 | yield
299 | finally:
300 | get_current().name2val[logkey] += time.time() - tstart
301 |
302 |
303 | def profile(n):
304 | """
305 | Usage:
306 | @profile("my_func")
307 | def my_func(): code
308 | """
309 |
310 | def decorator_with_name(func):
311 | def func_wrapper(*args, **kwargs):
312 | with profile_kv(n):
313 | return func(*args, **kwargs)
314 |
315 | return func_wrapper
316 |
317 | return decorator_with_name
318 |
319 |
320 | # ================================================================
321 | # Backend
322 | # ================================================================
323 |
324 |
325 | def get_current():
326 | if Logger.CURRENT is None:
327 | _configure_default_logger()
328 |
329 | return Logger.CURRENT
330 |
331 |
332 | class Logger(object):
333 | DEFAULT = None # A logger with no output files. (See right below class definition)
334 | # So that you can still log to the terminal without setting up any output files
335 | CURRENT = None # Current logger being used by the free functions above
336 |
337 | def __init__(self, dir, output_formats, comm=None):
338 | self.name2val = defaultdict(float) # values this iteration
339 | self.name2cnt = defaultdict(int)
340 | self.level = INFO
341 | self.dir = dir
342 | self.output_formats = output_formats
343 | self.comm = comm
344 |
345 | # Logging API, forwarded
346 | # ----------------------------------------
347 | def logkv(self, key, val):
348 | self.name2val[key] = val
349 |
350 | def logkv_mean(self, key, val):
351 | oldval, cnt = self.name2val[key], self.name2cnt[key]
352 | self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1)
353 | self.name2cnt[key] = cnt + 1
354 |
355 | def dumpkvs(self):
356 | if self.comm is None:
357 | d = self.name2val
358 | else:
359 | d = mpi_weighted_mean(
360 | self.comm,
361 | {
362 | name: (val, self.name2cnt.get(name, 1))
363 | for (name, val) in self.name2val.items()
364 | },
365 | )
366 | if self.comm.rank != 0:
367 | d["dummy"] = 1 # so we don't get a warning about empty dict
368 | out = d.copy() # Return the dict for unit testing purposes
369 | for fmt in self.output_formats:
370 | if isinstance(fmt, KVWriter):
371 | fmt.writekvs(d)
372 | self.name2val.clear()
373 | self.name2cnt.clear()
374 | return out
375 |
376 | def log(self, *args, level=INFO):
377 | if self.level <= level:
378 | self._do_log(args)
379 |
380 | # Configuration
381 | # ----------------------------------------
382 | def set_level(self, level):
383 | self.level = level
384 |
385 | def set_comm(self, comm):
386 | self.comm = comm
387 |
388 | def get_dir(self):
389 | return self.dir
390 |
391 | def close(self):
392 | for fmt in self.output_formats:
393 | fmt.close()
394 |
395 | # Misc
396 | # ----------------------------------------
397 | def _do_log(self, args):
398 | for fmt in self.output_formats:
399 | if isinstance(fmt, SeqWriter):
400 | fmt.writeseq(map(str, args))
401 |
402 |
403 | def get_rank_without_mpi_import():
404 | # check environment variables here instead of importing mpi4py
405 | # to avoid calling MPI_Init() when this module is imported
406 | for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]:
407 | if varname in os.environ:
408 | return int(os.environ[varname])
409 | return 0
410 |
411 |
412 | def mpi_weighted_mean(comm, local_name2valcount):
413 | """
414 | Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110
415 | Perform a weighted average over dicts that are each on a different node
416 | Input: local_name2valcount: dict mapping key -> (value, count)
417 | Returns: key -> mean
418 | """
419 | all_name2valcount = comm.gather(local_name2valcount)
420 | if comm.rank == 0:
421 | name2sum = defaultdict(float)
422 | name2count = defaultdict(float)
423 | for n2vc in all_name2valcount:
424 | for (name, (val, count)) in n2vc.items():
425 | try:
426 | val = float(val)
427 | except ValueError:
428 | if comm.rank == 0:
429 | warnings.warn(
430 | "WARNING: tried to compute mean on non-float {}={}".format(
431 | name, val
432 | )
433 | )
434 | else:
435 | name2sum[name] += val * count
436 | name2count[name] += count
437 | return {name: name2sum[name] / name2count[name] for name in name2sum}
438 | else:
439 | return {}
440 |
441 |
442 | def configure(dir=None, format_strs=None, comm=None, log_suffix=""):
443 | """
444 | If comm is provided, average all numerical stats across that comm
445 | """
446 | if dir is None:
447 | dir = os.getenv("OPENAI_LOGDIR")
448 | if dir is None:
449 | dir = osp.join(
450 | tempfile.gettempdir(),
451 | datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"),
452 | )
453 | assert isinstance(dir, str)
454 | dir = os.path.expanduser(dir)
455 | os.makedirs(os.path.expanduser(dir), exist_ok=True)
456 |
457 | rank = get_rank_without_mpi_import()
458 | if rank > 0:
459 | log_suffix = log_suffix + "-rank%03i" % rank
460 |
461 | if format_strs is None:
462 | if rank == 0:
463 | format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",")
464 | else:
465 | format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",")
466 | format_strs = filter(None, format_strs)
467 | output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs]
468 |
469 | Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm)
470 | if output_formats:
471 | log("Logging to %s" % dir)
472 |
473 |
474 | def _configure_default_logger():
475 | configure()
476 | Logger.DEFAULT = Logger.CURRENT
477 |
478 |
479 | def reset():
480 | if Logger.CURRENT is not Logger.DEFAULT:
481 | Logger.CURRENT.close()
482 | Logger.CURRENT = Logger.DEFAULT
483 | log("Reset logger")
484 |
485 |
486 | @contextmanager
487 | def scoped_configure(dir=None, format_strs=None, comm=None):
488 | prevlogger = Logger.CURRENT
489 | configure(dir=dir, format_strs=format_strs, comm=comm)
490 | try:
491 | yield
492 | finally:
493 | Logger.CURRENT.close()
494 | Logger.CURRENT = prevlogger
495 |
496 |
--------------------------------------------------------------------------------