├── FINALM_1.pdf
├── LICENSE
├── QFERNv4.py
├── README.md
├── barabassialbertmodel.py
├── classicaltoquantumbehavior.py
├── diffusion.py
├── epidemicmodel.py
├── firefly-kuramoto-v2.py
├── net-kuramoto.py
├── netsyncanalysis.py
├── netsyncanalysisQuantumDAGmodel.py
├── netsyncanalysisv2eigen.py
├── netsyncanalysisv2eigenwigner.py
├── perioddoublingbifurcation.py
├── pycxsimulator.py
├── qoppav2.py
├── qoppav4.py
├── scalefreequantum.py
└── votermodel.py
/FINALM_1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/MuonRay/QuantumNetworkSimulations/8c03a05a936b98102667e2ce7f5829229e7516cf/FINALM_1.pdf
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/QFERNv4.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Jan 18 19:59:18 2025
4 |
5 | @author: ektop
6 | """
7 |
8 | # -*- coding: utf-8 -*-
9 | """
10 | Created on Wed Sep 25 18:26:44 2024
11 |
12 | @author: ektop
13 | """
14 |
15 | import numpy as np
16 | import matplotlib.pyplot as plt
17 | import networkx as nx
18 | import random
19 | from itertools import combinations
20 |
21 | # Define the number of nodes in each component
22 | NUM_NODES_A = 10 # Number of nodes in group A
23 | NUM_NODES_B = 10 # Number of nodes in group B
24 |
25 | # Create a structured directed acyclic graph (DAG)
26 | dag = nx.DiGraph()
27 |
28 | def create_random_bipartite_structure(num_nodes_a, num_nodes_b):
29 | """Create a random bipartite-like structure."""
30 | edges = [(i, num_nodes_a + j) for i in range(num_nodes_a) for j in range(num_nodes_b)]
31 | random.shuffle(edges)
32 | selected_edges = random.sample(edges, k=random.randint(1, len(edges)))
33 | return selected_edges
34 |
35 | # Add random edges to the graph
36 | dag.add_edges_from(create_random_bipartite_structure(NUM_NODES_A, NUM_NODES_B))
37 | dag.add_edges_from(create_random_bipartite_structure(NUM_NODES_A, NUM_NODES_B))
38 |
39 | # Generate connections between the nodes
40 | component_connections = []
41 | connections_from_first_to_second = random.sample(
42 | [(i, NUM_NODES_A + j) for i in range(NUM_NODES_A) for j in range(NUM_NODES_B)],
43 | k=random.randint(1, 2))
44 | component_connections.extend(connections_from_first_to_second)
45 |
46 | # Create additional connections for the second section of nodes
47 | second_section_nodes = list(range(NUM_NODES_A, NUM_NODES_A + NUM_NODES_B))
48 | new_node = NUM_NODES_A + NUM_NODES_B
49 | for node in second_section_nodes:
50 | additional_connections = random.sample([new_node] + second_section_nodes,
51 | k=random.randint(1, len(second_section_nodes)))
52 | component_connections += [(node, conn) for conn in additional_connections if conn != node]
53 |
54 | dag.add_edges_from(component_connections)
55 |
56 | def compute_cheeger_constant(G):
57 | """Calculate the Cheeger constant of the graph."""
58 | n = len(G.nodes)
59 | cuts = []
60 | for cut_nodes in combinations(range(n), n // 2):
61 | cut_size = len([edge for edge in G.edges if (edge[0] in cut_nodes) ^ (edge[1] in cut_nodes)])
62 | cuts.append(cut_size)
63 | return min(cuts) / min(sum(1 for node in cut_nodes), sum(1 for node in G.nodes if node not in cut_nodes))
64 |
65 | # Calculate the initial Cheeger constant
66 | initial_cheeger_constant = compute_cheeger_constant(dag)
67 | print(f"Initial Cheeger Constant: {initial_cheeger_constant}")
68 |
69 | def laplacian_matrix(A):
70 | """Compute the normalized Laplacian matrix."""
71 | D = np.diag(np.sum(A, axis=1))
72 | return D - A
73 |
74 | def effective_resistance(u, v, eigenvalues, fiedler_vector):
75 | """Calculate the effective resistance between two nodes."""
76 | if len(eigenvalues) == 0 or len(fiedler_vector) == 0:
77 | return np.inf
78 | sum_term = 0
79 | for i in range(len(eigenvalues)):
80 | if eigenvalues[i] > 0:
81 | sum_term += (fiedler_vector[u] * fiedler_vector[v]) / eigenvalues[i]
82 | return sum_term
83 |
84 | def optimize_graph(g, iterations=100):
85 | """Optimize the graph to minimize effective resistance and maximize Cheeger constant."""
86 | previous_cheeger_constant = compute_cheeger_constant(g)
87 |
88 | for _ in range(iterations):
89 | # Step 1: Remove a random edge
90 | if len(g.edges) > 0:
91 | edge = random.choice(list(g.edges))
92 | g.remove_edge(*edge)
93 |
94 | # Step 2: Add a new random edge
95 | possible_edges = [(i, j) for i in range(len(g.nodes)) for j in range(len(g.nodes))
96 | if i != j and not g.has_edge(i, j)]
97 | if possible_edges:
98 | new_edge = random.choice(possible_edges)
99 | g.add_edge(*new_edge)
100 |
101 | # Step 3: Calculate the new Cheeger constant
102 | new_cheeger_constant = compute_cheeger_constant(g)
103 | print(f"Current Cheeger Constant: {new_cheeger_constant}")
104 |
105 | # Check for convergence
106 | if new_cheeger_constant == previous_cheeger_constant:
107 | break
108 |
109 | previous_cheeger_constant = new_cheeger_constant
110 |
111 | # Run the optimization process
112 | optimize_graph(dag)
113 |
114 | # Final graph attributes and effective resistance calculation
115 | num_nodes = dag.number_of_nodes()
116 | adjacency = nx.to_numpy_array(dag)
117 | normalized_laplacian = laplacian_matrix(adjacency)
118 |
119 | # Eigenvalue decomposition for effective resistance calculation
120 | eigenvalues, eigenvectors = np.linalg.eig(normalized_laplacian)
121 | order = np.argsort(eigenvalues)
122 | fiedler_vector = np.real(eigenvectors[:, order[1]])
123 |
124 | # Compute effective resistances for all node pairs
125 | effective_resistances = np.zeros((num_nodes, num_nodes))
126 | for u, v in combinations(range(num_nodes), 2):
127 | effective_resistances[u, v] = effective_resistance(u, v, eigenvalues[order[1:]], fiedler_vector)
128 | effective_resistances[v, u] = effective_resistances[u, v]
129 |
130 | # Visualization of effective resistances
131 | plt.figure(figsize=(10, 8))
132 | pos = nx.spring_layout(dag) # Positioning for the nodes
133 | node_color = [np.mean(effective_resistances[node]) for node in range(num_nodes)]
134 |
135 | # Draw the graph with effective resistances represented as colors
136 | nodes = nx.draw(dag, pos, node_color=node_color, with_labels=True, cmap=plt.cm.viridis, node_size=500)
137 |
138 | # Create the ScalarMappable for color representation
139 | sm = plt.cm.ScalarMappable(cmap=plt.cm.viridis)
140 | sm.set_array(node_color)
141 |
142 | # Add colorbar to the plot
143 | plt.colorbar(sm, label='Effective Resistance Level')
144 | plt.title('Graph Visualization of Effective Resistances')
145 | plt.show()
146 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # QuantumNetworkSimulations
2 | A series of simulation codes used to emulate quantum-like networks in the simulation of emergent adaptive behavior, such as network synchronization, and relate the nature of the coupled harmonic oscillators with non-local behavior and chimera states in systems of quantum particles. A full showcase of this project is discussed in the following videos:https://www.youtube.com/watch?v=OqJP6EatbFo
3 |
--------------------------------------------------------------------------------
/barabassialbertmodel.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Tue Mar 2 19:01:57 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 | import matplotlib
9 | matplotlib.use('TkAgg')
10 | from pylab import *
11 | import networkx as nx
12 |
13 | m0 = 5 # number of nodes in initial condition
14 | m = 2 # number of edges per new node
15 |
16 | def initialize():
17 | global g, nextg, counter
18 | g = nx.complete_graph(m0)
19 | g.pos = nx.spring_layout(g)
20 | nextg = g.copy()
21 |
22 |
23 | xdata = []
24 | ydata = []
25 |
26 | def observe():
27 | global g, nextg, counter
28 | subplot(1,2,1)
29 | cla()
30 | nx.draw(g)
31 |
32 | subplot(1,2,2)
33 | cla()
34 | plot(xdata, ydata,'o',alpha = 0.05)
35 | axis('image')
36 | # for percolation search
37 |
38 |
39 | def pref_select(nds):
40 | global g
41 | r = uniform(0, sum(g.degree(i) for i in nds))
42 | x = 0
43 | for i in nds:
44 | x += g.degree(i)
45 | if r <= x:
46 | return i
47 |
48 |
49 | def update():
50 | global g, nextg, counter
51 | counter += 1
52 | if counter % 20 == 0:
53 | nds = g.nodes()
54 | newcomer = max(nds) + 1
55 |
56 | for i in range(m):
57 | j = pref_select(nds)
58 | g.add_edge(newcomer, j)
59 | unsaturated_b = g.nodes()
60 | list(unsaturated_b).remove(j)
61 |
62 | xdata.append(g.degree(i))
63 | ccs = nx.connected_components(g)
64 | ydata.append(max(len(cc) for cc in ccs))
65 | #xdata.append(g.degree(i)); ydata.append(g.degree(j))
66 | #xdata.append(g.degree(j)); ydata.append(g.degree(i))
67 | #g.pos[newcomer] = (0, 0) # simulation of node movement
68 | g, nextg = nextg, g
69 |
70 | #g.pos = nx.spring_layout(pos = g.pos, iterations = 5)
71 |
72 | import pycxsimulator
73 |
74 | pycxsimulator.GUI().start(func=[initialize, observe, update])
75 |
76 |
77 |
--------------------------------------------------------------------------------
/classicaltoquantumbehavior.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 | import time # for steptime
17 |
18 | # for space vs time plotting (chimera search)
19 |
20 | import scipy
21 | import numpy as np
22 | from scipy import misc
23 |
24 | from matplotlib import pyplot as plt # For image viewing
25 |
26 | from matplotlib import colors
27 | from matplotlib import ticker
28 | from matplotlib.colors import LinearSegmentedColormap
29 |
30 |
31 |
32 |
33 |
34 | from random import random as rand
35 | from random import uniform
36 |
37 | def initialize():
38 | global g, nextg, counter
39 | s = 5
40 | g = nx.grid_graph(dim=[s,s])
41 | #nodes = list(G.nodes)
42 | #edges = list(G.edges)
43 |
44 | #g = nx.karate_club_graph()
45 | counter = 0
46 | for i in list(g.nodes()):
47 | g.node[i]['theta'] = 2 * pi * random()
48 | #rows, cols = (-0.05, 0.05)
49 | #arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
50 | #a = numpy.asarray(arr)
51 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
52 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
53 | nextg = g.copy()
54 | counter = +1
55 |
56 | def observe():
57 | global g, nextg
58 | cla()
59 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
60 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
61 | pos = nx.spring_layout(g) )
62 |
63 |
64 | alpha = 1 # coupling strength
65 | Dt = 0.01 # Delta t
66 |
67 | def update():
68 | global g, nextg
69 | for i in list(g.nodes()):
70 | theta_i = g.node[i]['theta']
71 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
72 | sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i)) \
73 | / g.degree(i))) * Dt
74 | g, nextg = nextg, g
75 |
76 | agents = theta_i
77 | """
78 | environment
79 | """
80 |
81 | # empty numpy array for environmental state
82 | plot_time_stamp = []
83 | plot_agent = []
84 |
85 | # save for figure
86 | plot_time_stamp.append(counter)
87 | plot_agent.append(agents)
88 |
89 |
90 |
91 |
92 |
93 |
94 | import pycxsimulator
95 |
96 | pycxsimulator.GUI().start(func=[initialize, observe, update])
97 |
98 |
99 | plt.figure(1)
100 | #compare red and blue pixel data
101 | nbins = 20
102 | plt.hexbin(x=plot_time_stamp, y=plot_agent, gridsize=nbins, cmap=plt.cm.jet)
103 | plt.xlabel('Blue Reflectance')
104 | plt.ylabel('NIR Reflectance')
105 | # Add a title
106 | plt.title('NIR vs Blue Spectral Data')
107 | plt.show()
108 |
--------------------------------------------------------------------------------
/diffusion.py:
--------------------------------------------------------------------------------
1 |
2 | import matplotlib
3 | matplotlib.use('TkAgg')
4 | from pylab import *
5 | import networkx as nx
6 | import random as rd
7 |
8 | def initialize():
9 | global g, nextg
10 | g = nx.karate_club_graph()
11 | for i in g.nodes():
12 | g.node[i]['state'] = 1 if random() < .5 else 0
13 | nextg = g.copy()
14 |
15 |
16 |
17 | def observe():
18 | global g, nextg
19 | cla()
20 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
21 | node_color = [g.node[i]['state'] for i in g.nodes()],
22 | pos = nx.spring_layout(g) )
23 |
24 | alpha = 1 # coupling strength
25 | Dt = 0.01 # Delta t
26 |
27 | def update():
28 | global g, nextg
29 | for i in list(g.nodes()):
30 | ci = g.node[i]['state']
31 | nextg.node[i]['state'] = ci + alpha * ( \
32 | np.sum(g.node[j]['state'] for j in g.neighbors(i)) \
33 | -ci * g.degree(i)) * Dt
34 | g, nextg = nextg, g
35 |
36 |
37 |
38 | g.add_edge(0,1)
39 | g[0]['visited'] = True
40 | g.neighbors(0)
41 | ['visited', 1]
42 |
43 |
44 | import pycxsimulator
45 |
46 | pycxsimulator.GUI().start(func=[initialize, observe, update])
47 |
48 |
--------------------------------------------------------------------------------
/epidemicmodel.py:
--------------------------------------------------------------------------------
1 | # Epidemic model
2 |
3 | import matplotlib
4 | matplotlib.use('TkAgg')
5 | from pylab import *
6 | import networkx as nx
7 | import random as rd
8 |
9 | def initialize():
10 | global g, nextg
11 | g = nx.karate_club_graph()
12 | for i in g.nodes():
13 | g.node[i]['state'] = 1 if random() < .5 else 0
14 | nextg = g.copy()
15 |
16 |
17 |
18 | def observe():
19 | global g, nextg
20 | cla()
21 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
22 | node_color = [g.node[i]['state'] for i in g.nodes()],
23 | pos = nx.spring_layout(g) )
24 |
25 | p_i = 0.5 # infection probability
26 | p_r = 0.5 # recovery probability
27 |
28 | def update():
29 | global g, nextg
30 | a = rd.choice(g.nodes())
31 | if g.node[a]['state'] == 0: # if susceptable to infection
32 | b = rd.choice(g.neighbors(a))
33 | if g.node[b]['state'] == 1: # if neighbor b is infected
34 | g.node[a]['state'] = 1 if random() < p_i else 0
35 |
36 | else: # if infected
37 | g.node[a]['state'] = 1 if random() < p_r else 1
38 |
39 |
40 |
41 |
42 |
43 | #g.add_edge(0,1)
44 | #g[0]['visited'] = True
45 | #g.neighbors(0)
46 | #['visited', 1]
47 |
48 |
49 | import pycxsimulator
50 |
51 | pycxsimulator.GUI().start(func=[initialize, observe, update])
52 |
53 |
--------------------------------------------------------------------------------
/firefly-kuramoto-v2.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 | from random import random as rand
17 | from random import uniform
18 |
19 | def initialize():
20 | global g, nextg
21 | g = nx.karate_club_graph()
22 | for i in list(g.nodes()):
23 | g.node[i]['theta'] = 2 * pi * random()
24 | #rows, cols = (-0.05, 0.05)
25 | #arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
26 | #a = numpy.asarray(arr)
27 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
28 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
29 | nextg = g.copy()
30 |
31 | def observe():
32 | global g, nextg
33 | cla()
34 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
35 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
36 | pos = nx.spring_layout(g) )
37 |
38 | fig = go.Figure(data=go.Scatter(x=plot_time_stamp, y=plot_agent, mode='markers',
39 | marker=dict(size=4.5, color="Blue", opacity=0.6)))
40 | fig.show()
41 |
42 | alpha = 1 # coupling strength
43 | Dt = 0.01 # Delta t
44 |
45 | def update():
46 | global g, nextg
47 | for i in list(g.nodes()):
48 | theta_i = g.node[i]['theta']
49 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
50 | np.sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i)) \
51 | / g.degree(i))) * Dt
52 | g, nextg = nextg, g
53 |
54 |
55 | import pycxsimulator
56 |
57 | pycxsimulator.GUI().start(func=[initialize, observe, update])
58 |
59 |
60 |
61 |
--------------------------------------------------------------------------------
/net-kuramoto.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import sin, pi
14 | import numpy
15 |
16 | from random import random as rand
17 |
18 |
19 | def initialize():
20 | global g, nextg
21 | g = nx.karate_club_graph()
22 | g.pos = nx.spring_layout(g)
23 |
24 |
25 | for i in list(g.nodes()):
26 |
27 | #for i in g.nodes_iter():
28 | g.node[i]['theta'] = 2*pi*rand()
29 |
30 | rows, cols = (-0.05, 0.05)
31 | arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
32 | a = numpy.asarray(arr)
33 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
34 | g.node[i]['omega'] = 1. + a
35 |
36 | nextg = g.copy()
37 |
38 | def observe():
39 | global g, nextg
40 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
41 | node_color = [sin(g.node[i]['theta']) for i in list(g.nodes())],
42 | pos = g.pos)
43 |
44 | alpha = 1 # coupling strength
45 | Dt = 0.01 # Delta t
46 |
47 | def update():
48 | global g, nextg
49 | for i in list(g.nodes()):
50 | theta_i = g.node[i]['theta']
51 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
52 | sum(sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))
53 | /g.degree(i))) * Dt
54 | g, nextg = nextg, g
55 |
56 |
57 | import pycxsimulator
58 |
59 | pycxsimulator.GUI().start(func=[initialize, observe, update])
60 |
--------------------------------------------------------------------------------
/netsyncanalysis.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 |
17 |
18 | import scipy
19 | import numpy as np
20 | from scipy import misc
21 | import numpy as np
22 | import scipy.linalg as la
23 |
24 | from matplotlib import pyplot as plt # For image viewing
25 |
26 | from matplotlib import colors
27 | from matplotlib import ticker
28 | from matplotlib.colors import LinearSegmentedColormap
29 |
30 | from matplotlib.collections import LineCollection
31 | from matplotlib.colors import ListedColormap, BoundaryNorm
32 |
33 |
34 |
35 | from random import random as rand
36 | from random import uniform
37 |
38 | from qutip.visualization import plot_wigner, hinton
39 |
40 | from pygsp import graphs
41 |
42 | #def gridsize(val):
43 | # '''
44 | # Number Of Particles in a Grid Shall Be Entered such that gridsize 4 = 4 x 4 i.e. 16
45 | # Particles in Total. Note: this can only be changed at the start of a new
46 | # Simulation Run - In This Version Do Note Change While Running the Simulation!
47 | # '''
48 | # global n
49 |
50 | # n = int(val)
51 | # return val
52 |
53 |
54 |
55 | def initialize():
56 | global g, nextg
57 |
58 | n = 3
59 | g = nx.grid_graph(dim=[n,n])
60 |
61 | #g = nx.karate_club_graph()
62 |
63 | for i in list(g.nodes()):
64 | g.node[i]['theta'] = 2 * pi * random()
65 | #rows, cols = (-0.05, 0.05)
66 | #arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
67 | #a = numpy.asarray(arr)
68 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
69 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
70 | nextg = g.copy()
71 |
72 |
73 | for i in list(g.nodes()):
74 | g.node[i]['theta'] = random()
75 | nextg = g.copy()
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 | grid2d = graphs.Graph.from_networkx(nextg)
85 |
86 | print(grid2d.W.toarray())
87 | print(grid2d.signals)
88 | print(grid2d)
89 |
90 | grid2d.compute_fourier_basis()
91 |
92 | grid2d.set_coordinates()
93 |
94 |
95 |
96 |
97 |
98 | # plot spectrum
99 | fig, ax = plt.subplots(1, 1, figsize=(7,7))
100 | ax.plot(grid2d.e)
101 | ax.set_xlabel('eigenvalue index (i)')
102 | ax.set_ylabel('eigenvalue ($\lambda_{i}$)')
103 | ax.set_title('2D-grid spectrum');
104 | #fiedler vector highlighted graph
105 | grid2d.plot_signal(grid2d.U[:,1])
106 |
107 | #plot all eigenvectors as network graph frames
108 |
109 | fig, axes = plt.subplots(2, 3, figsize=(10, 6.6))
110 | count = 0
111 | for j in range(2):
112 | for i in range(3):
113 | grid2d.plot_signal(grid2d.U[:, count*1], ax=axes[j,i],colorbar=False)
114 | axes[j,i].set_xticks([])
115 | axes[j,i].set_yticks([])
116 | axes[j,i].set_title(f'Eigvec {count*1+1}')
117 | count+=1
118 | fig.tight_layout()
119 |
120 |
121 | #for space vs time graph
122 |
123 | xdata = []
124 | ydata = []
125 |
126 |
127 | def observe():
128 | global g, nextg, grid2d
129 | subplot(1,2,1)
130 | cla()
131 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
132 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
133 | pos = nx.spring_layout(g) )
134 | axis('image')
135 |
136 | subplot(1,2,2)
137 | cla()
138 |
139 | plot([np.cos(g.node[i]['theta']) for i in list(g.nodes())],
140 | [np.sin(g.node[i]['theta']) for i in list(g.nodes())], '.')
141 | axis('image')
142 |
143 | axis([-1.1,1.1,-1.1,1.1])
144 |
145 |
146 |
147 |
148 |
149 |
150 | #subplot(1,2,2)
151 | #cla()
152 | #plot(xdata, ydata,'o',alpha = 0.05)
153 | #axis('image')
154 | # for space vs time plotting (chimera search)
155 |
156 |
157 |
158 |
159 | alpha = 2 # coupling strength
160 | beta = 1 # acceleration rate
161 | Dt = 0.01 # Delta t
162 |
163 | #def update():
164 | # global g, nextg
165 | # for i in list(g.nodes()):
166 | # theta_i = g.node[i]['theta']
167 | # nextg.node[i]['theta'] = theta_i + (beta * theta_i + alpha * (np.sum(sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))) * Dt)
168 | # g, nextg = nextg, g
169 |
170 | def update():
171 | global g, nextg, eig_values, eig_vectors, rho, grid2d
172 | for i in list(g.nodes()):
173 | theta_i = g.node[i]['theta']
174 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
175 | sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i)) \
176 | / g.degree(i))) * Dt
177 | g, nextg = nextg, g
178 |
179 |
180 | #for i, j in list(g.nodes()):
181 | #xdata.append(g.degree(i))
182 | #ccs = nx.connected_components(g)
183 | #ydata.append(max(len(cc) for cc in ccs))
184 | #xdata.append(g.degree(i)); ydata.append(g.degree(j))
185 | #xdata.append(g.degree(j)); ydata.append(g.degree(i))
186 |
187 |
188 | A = nx.adjacency_matrix(nextg)
189 | print(A)
190 | n, m = A.shape
191 | diags = A.sum(axis=0) # 1 = outdegree, 0 = indegree
192 | D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format="csr")
193 | L = (A-D)
194 | Lap = L.todense()
195 | print(Lap)
196 |
197 | eig_values, eig_vectors = la.eig(Lap)
198 | fiedler_pos = np.where(eig_values.real == np.sort(eig_values.real)[1])[0][0]
199 | fiedler_vector = np.transpose(eig_vectors)[fiedler_pos]
200 |
201 | print("Fiedler value: " + str(fiedler_pos.real))
202 |
203 | print("Fiedler vector: " + str(fiedler_vector.real))
204 | #nx.laplacian_matrix(nextg).toarray()
205 |
206 |
207 | # applying matrix.trace() method
208 | LTrace = np.matrix.trace(Lap)
209 | print(LTrace)
210 |
211 | #print density matrix
212 | rho = np.divide(Lap,LTrace)
213 | print(rho)
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 | #note you can calculate the trace faster using the hadamard product (element-wise multiplication)
224 | # using the fiedler vector as the basis for the emergent density matrix
225 |
226 |
227 |
228 |
229 | import pycxsimulator
230 |
231 | pycxsimulator.GUI().start(func=[initialize, observe, update])
232 |
233 |
234 |
235 |
236 | #plt.figure(1)
237 | #compare red and blue pixel data
238 | #nbins = 20
239 | #plt.hexbin(x=plot_time_stamp, y=plot_agent, gridsize=nbins, cmap=plt.cm.jet)
240 | #plt.xlabel('Blue Reflectance')
241 | #plt.ylabel('NIR Reflectance')
242 | # Add a title
243 | #plt.title('NIR vs Blue Spectral Data')
244 | #plt.show()
245 |
--------------------------------------------------------------------------------
/netsyncanalysisQuantumDAGmodel.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 |
17 |
18 | import scipy
19 | import numpy as np
20 | from scipy import misc
21 |
22 | from matplotlib import pyplot as plt # For image viewing
23 |
24 | from matplotlib import colors
25 | from matplotlib import ticker
26 | from matplotlib.colors import LinearSegmentedColormap
27 |
28 | #new feature 2022
29 | from qutip.visualization import plot_wigner, hinton
30 |
31 |
32 | import operator
33 |
34 | from random import random as rand
35 | from random import uniform
36 |
37 | import rustworkx as rx
38 |
39 | from rustworkx.visualization import mpl_draw
40 |
41 |
42 | #def gridsize(val):
43 | # '''
44 | # Number Of Particles in a Grid Shall Be Entered such that gridsize 4 = 4 x 4 i.e. 16
45 | # Particles in Total. Note: this can only be changed at the start of a new
46 | # Simulation Run - In This Version Do Note Change While Running the Simulation!
47 | # '''
48 | # global n
49 |
50 | # n = int(val)
51 | # return val
52 |
53 |
54 |
55 |
56 |
57 | def initialize():
58 | global g, nextg, A, nextA
59 |
60 | n = 3
61 | #g = nx.grid_graph(dim=[n,n])
62 |
63 | #using dag
64 | #g = nx.from_edgelist([dag], create_using=nx.DiGraph)
65 | #construct classical network graph g from adjacency matrix
66 | g = nx.scale_free_graph(n) #obtain a directed acyclic graph
67 | #remove self loops
68 | g.remove_edges_from(nx.selfloop_edges(g))
69 |
70 |
71 |
72 | #g = nx.karate_club_graph()
73 |
74 | for i in list(g.nodes()):
75 | g.node[i]['theta'] = 2 * pi * random()
76 | #rows, cols = (-0.05, 0.05)
77 | #arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
78 | #a = numpy.asarray(arr)
79 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
80 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
81 | nextg = g.copy()
82 |
83 |
84 | for i in list(g.nodes()):
85 | g.node[i]['theta'] = random()
86 | nextg = g.copy()
87 |
88 |
89 | #for space vs time graph
90 |
91 | xdata = []
92 | ydata = []
93 |
94 |
95 | def observe():
96 | global g, nextg
97 | subplot(1,2,1)
98 | cla()
99 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
100 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
101 | pos = nx.spring_layout(g) )
102 | axis('image')
103 |
104 | subplot(1,2,2)
105 | cla()
106 |
107 | plot([np.cos(g.node[i]['theta']) for i in list(g.nodes())],
108 | [np.sin(g.node[i]['theta']) for i in list(g.nodes())], '.')
109 | axis('image')
110 |
111 | axis([-1.1,1.1,-1.1,1.1])
112 |
113 |
114 | #subplot(1,2,2)
115 | #cla()
116 | #plot(xdata, ydata,'o',alpha = 0.05)
117 | #axis('image')
118 | # for space vs time plotting (chimera search)
119 |
120 |
121 | alpha = 2 # coupling strength
122 | beta = 1 # acceleration rate
123 | Dt = 0.01 # Delta t
124 |
125 | #def update():
126 | # global g, nextg
127 | # for i in list(g.nodes()):
128 | # theta_i = g.node[i]['theta']
129 | # nextg.node[i]['theta'] = theta_i + (beta * theta_i + alpha * (np.sum(sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))) * Dt)
130 | # g, nextg = nextg, g
131 |
132 | def update():
133 | global g, nextg, A, k_in, L
134 | for i in list(g.nodes()):
135 | theta_i = g.node[i]['theta']
136 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
137 | sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i)) \
138 | / g.degree(i))) * Dt
139 | g, nextg = nextg, g
140 | A = nx.adj_matrix(nextg).todense()
141 | k_in = np.zeros(nextg.number_of_nodes())
142 |
143 | L = np.diag(k_in) - A
144 |
145 |
146 |
147 | #for i, j in list(g.nodes()):
148 | #xdata.append(g.degree(i))
149 | #ccs = nx.connected_components(g)
150 | #ydata.append(max(len(cc) for cc in ccs))
151 | #xdata.append(g.degree(i)); ydata.append(g.degree(j))
152 | #xdata.append(g.degree(j)); ydata.append(g.degree(i))
153 |
154 |
155 |
156 | import pycxsimulator
157 |
158 | pycxsimulator.GUI().start(func=[initialize, observe, update])
159 |
160 |
161 |
162 | #plt.figure(1)
163 | #compare red and blue pixel data
164 | #nbins = 20
165 | #plt.hexbin(x=plot_time_stamp, y=plot_agent, gridsize=nbins, cmap=plt.cm.jet)
166 | #plt.xlabel('Blue Reflectance')
167 | #plt.ylabel('NIR Reflectance')
168 | # Add a title
169 | #plt.title('NIR vs Blue Spectral Data')
170 | #plt.show()
171 |
--------------------------------------------------------------------------------
/netsyncanalysisv2eigen.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 |
17 |
18 | import scipy
19 | import numpy as np
20 | from scipy import misc
21 | import numpy as np
22 | import scipy.linalg as la
23 |
24 | from matplotlib import pyplot as plt # For image viewing
25 |
26 | from matplotlib import colors
27 | from matplotlib import ticker
28 | from matplotlib.colors import LinearSegmentedColormap
29 |
30 | from matplotlib.collections import LineCollection
31 | from matplotlib.colors import ListedColormap, BoundaryNorm
32 |
33 |
34 |
35 | from random import random as rand
36 | from random import uniform
37 |
38 | from qutip.visualization import plot_wigner, hinton
39 |
40 | #qutip star imports
41 | from qutip import *
42 |
43 | from qutip import Qobj, rand_dm, fidelity, displace, qdiags, qeye, expect
44 | from qutip.states import coherent, coherent_dm, thermal_dm, fock_dm
45 | from qutip.wigner import qfunc
46 |
47 |
48 | from pygsp import graphs
49 |
50 | #def gridsize(val):
51 | # '''
52 | # Number Of Particles in a Grid Shall Be Entered such that gridsize 4 = 4 x 4 i.e. 16
53 | # Particles in Total. Note: this can only be changed at the start of a new
54 | # Simulation Run - In This Version Do Note Change While Running the Simulation!
55 | # '''
56 | # global n
57 |
58 | # n = int(val)
59 | # return val
60 |
61 |
62 |
63 | def initialize():
64 | global g, nextg, hilbert_size
65 |
66 |
67 |
68 |
69 | n = 2
70 | g = nx.grid_graph(dim=[n,n])
71 |
72 | #g = nx.karate_club_graph()
73 |
74 | for i in list(g.nodes()):
75 | g.node[i]['theta'] = 2 * pi * random()
76 | #rows, cols = (-0.05, 0.05)
77 | #arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
78 | #a = numpy.asarray(arr)
79 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
80 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
81 | nextg = g.copy()
82 |
83 |
84 | for i in list(g.nodes()):
85 | g.node[i]['theta'] = random()
86 | nextg = g.copy()
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 | grid2d = graphs.Graph.from_networkx(nextg)
96 |
97 | #print(grid2d.W.toarray())
98 | #print(grid2d.signals)
99 | #print(grid2d)
100 |
101 | grid2d.compute_fourier_basis()
102 |
103 | grid2d.set_coordinates()
104 |
105 |
106 |
107 |
108 |
109 | # plot spectrum
110 | fig, ax = plt.subplots(1, 1, figsize=(7,7))
111 | ax.plot(grid2d.e)
112 | ax.set_xlabel('eigenvalue index (i)')
113 | ax.set_ylabel('eigenvalue ($\lambda_{i}$)')
114 | ax.set_title('2D-grid spectrum');
115 | #fiedler vector highlighted graph
116 | grid2d.plot_signal(grid2d.U[:,1])
117 |
118 | #plot all eigenvectors as network graph frames
119 |
120 | fig, axes = plt.subplots(2, 3, figsize=(10, 6.6))
121 | count = 0
122 | for j in range(2):
123 | for i in range(2):
124 | grid2d.plot_signal(grid2d.U[:, count*1], ax=axes[j,i],colorbar=False)
125 | axes[j,i].set_xticks([])
126 | axes[j,i].set_yticks([])
127 | axes[j,i].set_title(f'Eigvec {count*1+1}')
128 | count+=1
129 | fig.tight_layout()
130 |
131 |
132 |
133 | #hilbert space must be the same as the network size for this to make sense
134 |
135 |
136 | alphas = grid2d.signals['omega']
137 |
138 |
139 | print(alphas)
140 |
141 | betas = grid2d.signals['theta']
142 |
143 | print(betas)
144 |
145 | hilbert_size = n
146 |
147 |
148 |
149 |
150 | psi = coherent(hilbert_size, 0)
151 |
152 | rho = coherent_dm(hilbert_size, 1-1j)
153 |
154 | d = displace(hilbert_size, 2+2j)
155 |
156 |
157 |
158 | #psi = sum([coherent_dm(hilbert_size, a) for a in alphas])
159 | psi = psi.unit()
160 | rho = psi*psi.dag()
161 |
162 | fig, ax = plt.subplots(1, 4, figsize=(19, 4))
163 |
164 | plot_wigner_fock_distribution(psi, fig=fig, axes=[ax[0], ax[1]])
165 | plot_wigner_fock_distribution(d*psi, fig=fig, axes=[ax[2], ax[3]])
166 |
167 | ax[0].set_title(r"Initial state, $\psi_{vac} = |0 \rangle$")
168 | ax[2].set_title(r"Displaced state, $D(\alpha=2+2i )\psi_{vac}$")
169 | plt.show()
170 |
171 | fig, ax = plot_wigner_fock_distribution(rho, figsize=(9, 4))
172 | ax[0].set_title("Superposition of three coherent states")
173 | plt.show()
174 |
175 |
176 | measured_populations = [measure_population(b, rho) for b in betas]
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 | def observe():
187 | global g, nextg, grid2d
188 | subplot(1,2,1)
189 | cla()
190 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
191 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
192 | pos = nx.spring_layout(g) )
193 | axis('image')
194 |
195 | subplot(1,2,2)
196 | cla()
197 |
198 | plot([np.cos(g.node[i]['theta']) for i in list(g.nodes())],
199 | [np.sin(g.node[i]['theta']) for i in list(g.nodes())], '.')
200 | axis('image')
201 |
202 | axis([-1.1,1.1,-1.1,1.1])
203 |
204 |
205 |
206 |
207 |
208 |
209 | #subplot(1,2,2)
210 | #cla()
211 | #plot(xdata, ydata,'o',alpha = 0.05)
212 | #axis('image')
213 | # for space vs time plotting (chimera search)
214 |
215 |
216 |
217 |
218 | alpha = 2 # coupling strength
219 | beta = 1 # acceleration rate
220 | Dt = 0.01 # Delta t
221 |
222 | #def update():
223 | # global g, nextg
224 | # for i in list(g.nodes()):
225 | # theta_i = g.node[i]['theta']
226 | # nextg.node[i]['theta'] = theta_i + (beta * theta_i + alpha * (np.sum(sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))) * Dt)
227 | # g, nextg = nextg, g
228 |
229 | def measure_population(beta, rho):
230 | """
231 | Measures the photon number statistics for state rho when displaced
232 | by angle alpha.
233 |
234 | Parameters
235 | ----------
236 | alpha: np.complex
237 | A complex displacement.
238 |
239 | rho:
240 | The density matrix as a QuTiP Qobj (`qutip.Qobj`)
241 |
242 | Returns
243 | -------
244 | population: ndarray
245 | A 1D array for the probabilities for populations.
246 | """
247 | hilbertsize = rho.shape[0]
248 | # Apply a displacement to the state and then measure the diagonals.
249 |
250 | D = displace(hilbertsize, beta)
251 | rho_disp = D*rho*D.dag()
252 | populations = np.real(np.diagonal(rho_disp.full()))
253 | return populations
254 |
255 |
256 |
257 |
258 |
259 | def update():
260 | global g, nextg, eig_values, eig_vectors, rho, grid2d, theta_i
261 | for i in list(g.nodes()):
262 | theta_i = g.node[i]['theta']
263 | omega_i = g.node[i]['omega']
264 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
265 | sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i)) \
266 | / g.degree(i))) * Dt
267 | g, nextg = nextg, g
268 |
269 |
270 | #for i, j in list(g.nodes()):
271 | #xdata.append(g.degree(i))
272 | #ccs = nx.connected_components(g)
273 | #ydata.append(max(len(cc) for cc in ccs))
274 | #xdata.append(g.degree(i)); ydata.append(g.degree(j))
275 | #xdata.append(g.degree(j)); ydata.append(g.degree(i))
276 |
277 |
278 | A = nx.adjacency_matrix(nextg)
279 | print(A)
280 | n, m = A.shape
281 | diags = A.sum(axis=0) # 1 = outdegree, 0 = indegree
282 | D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format="csr")
283 | L = (A-D)
284 | Lap = L.todense()
285 | print(Lap)
286 |
287 | eig_values, eig_vectors = la.eig(Lap)
288 | fiedler_pos = np.where(eig_values.real == np.sort(eig_values.real)[1])[0][0]
289 | fiedler_vector = np.transpose(eig_vectors)[fiedler_pos]
290 |
291 | #print("Fiedler value: " + str(fiedler_pos.real))
292 |
293 | # this will be an eigenbra version
294 | print("Fiedler vector: " + str(fiedler_vector.real))
295 |
296 |
297 | #nx.laplacian_matrix(nextg).toarray()
298 |
299 |
300 | # applying matrix.trace() method
301 | LTrace = np.matrix.trace(Lap)
302 | #print(LTrace)
303 |
304 | #print density matrix from graph laplacian
305 |
306 | rho = np.divide(Lap,LTrace)
307 |
308 | #we need to represent this graph density matrix as a cavity reduced density matrix to make physical sense
309 |
310 | #print(rho)
311 |
312 |
313 |
314 |
315 |
316 | print(theta_i)
317 |
318 | print(omega_i)
319 |
320 |
321 |
322 |
323 | #note you can calculate the trace faster using the hadamard product (element-wise multiplication)
324 | # using the fiedler vector as the basis for the emergent density matrix
325 |
326 |
327 |
328 |
329 | import pycxsimulator
330 |
331 | pycxsimulator.GUI().start(func=[initialize, observe, update])
332 |
333 |
334 |
335 | #plt.figure(1)
336 | #compare red and blue pixel data
337 | #nbins = 20
338 | #plt.hexbin(x=plot_time_stamp, y=plot_agent, gridsize=nbins, cmap=plt.cm.jet)
339 | #plt.xlabel('Blue Reflectance')
340 | #plt.ylabel('NIR Reflectance')
341 | # Add a title
342 | #plt.title('NIR vs Blue Spectral Data')
343 | #plt.show()
344 |
--------------------------------------------------------------------------------
/netsyncanalysisv2eigenwigner.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sat Feb 13 13:30:10 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 |
17 |
18 | import scipy
19 | import numpy as np
20 | from scipy import misc
21 | import numpy as np
22 | import scipy.linalg as la
23 |
24 | from matplotlib import pyplot as plt # For image viewing
25 |
26 | from matplotlib import colors
27 | from matplotlib import ticker
28 | from matplotlib.colors import LinearSegmentedColormap
29 |
30 | from matplotlib.collections import LineCollection
31 | from matplotlib.colors import ListedColormap, BoundaryNorm
32 |
33 |
34 |
35 | from random import random as rand
36 | from random import uniform
37 |
38 | from qutip.visualization import plot_wigner, hinton
39 |
40 | #qutip star imports
41 | from qutip import *
42 |
43 | from qutip import Qobj, rand_dm, fidelity, displace, qdiags, qeye, expect
44 | from qutip.states import coherent, coherent_dm, thermal_dm, fock_dm
45 | from qutip.wigner import qfunc
46 |
47 |
48 | from pygsp import graphs
49 |
50 | #def gridsize(val):
51 | # '''
52 | # Number Of Particles in a Grid Shall Be Entered such that gridsize 4 = 4 x 4 i.e. 16
53 | # Particles in Total. Note: this can only be changed at the start of a new
54 | # Simulation Run - In This Version Do Note Change While Running the Simulation!
55 | # '''
56 | # global n
57 |
58 | # n = int(val)
59 | # return val
60 |
61 |
62 |
63 | def initialize():
64 | global g, nextg, hilbert_size
65 |
66 |
67 |
68 |
69 | n = 2
70 | g = nx.grid_graph(dim=[n,n])
71 |
72 | #g = nx.karate_club_graph()
73 |
74 | for i in list(g.nodes()):
75 | g.node[i]['theta'] = 2 * pi * random()
76 | #rows, cols = (-0.05, 0.05)
77 | #arr = [[rand.randrange(10) for i in range(int(cols))] for j in range(int(rows))]
78 | #a = numpy.asarray(arr)
79 | #g.node[i]['omega'] = 1. + rand.uniform(-0.05, 0.05)
80 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
81 | nextg = g.copy()
82 |
83 |
84 | for i in list(g.nodes()):
85 | g.node[i]['theta'] = random()
86 | nextg = g.copy()
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 | grid2d = graphs.Graph.from_networkx(nextg)
96 |
97 | #print(grid2d.W.toarray())
98 | #print(grid2d.signals)
99 | #print(grid2d)
100 |
101 | grid2d.compute_fourier_basis()
102 |
103 | grid2d.set_coordinates()
104 |
105 |
106 |
107 |
108 |
109 | # plot spectrum
110 | fig, ax = plt.subplots(1, 1, figsize=(7,7))
111 | ax.plot(grid2d.e)
112 | ax.set_xlabel('eigenvalue index (i)')
113 | ax.set_ylabel('eigenvalue ($\lambda_{i}$)')
114 | ax.set_title('2D-grid spectrum');
115 | #fiedler vector highlighted graph
116 | grid2d.plot_signal(grid2d.U[:,1])
117 |
118 | #plot all eigenvectors as network graph frames
119 |
120 | fig, axes = plt.subplots(2, 3, figsize=(10, 6.6))
121 | count = 0
122 | for j in range(2):
123 | for i in range(2):
124 | grid2d.plot_signal(grid2d.U[:, count*1], ax=axes[j,i],colorbar=False)
125 | axes[j,i].set_xticks([])
126 | axes[j,i].set_yticks([])
127 | axes[j,i].set_title(f'Eigvec {count*1+1}')
128 | count+=1
129 | fig.tight_layout()
130 |
131 |
132 |
133 | #hilbert space must be the same as the network size for this to make sense
134 |
135 |
136 | alphas = grid2d.signals['omega']
137 |
138 |
139 | print(alphas)
140 |
141 | betas = grid2d.signals['theta']
142 |
143 | print(betas)
144 |
145 | hilbert_size = n
146 |
147 |
148 |
149 |
150 | psi = coherent(hilbert_size, 0)
151 |
152 | rho = coherent_dm(hilbert_size, 1-1j)
153 |
154 | d = displace(hilbert_size, 2+2j)
155 |
156 |
157 |
158 | #psi = sum([coherent_dm(hilbert_size, a) for a in alphas])
159 | psi = psi.unit()
160 | rho = psi*psi.dag()
161 |
162 | fig, ax = plt.subplots(1, 4, figsize=(19, 4))
163 |
164 | plot_wigner_fock_distribution(psi, fig=fig, axes=[ax[0], ax[1]])
165 | plot_wigner_fock_distribution(d*psi, fig=fig, axes=[ax[2], ax[3]])
166 |
167 | ax[0].set_title(r"Initial state, $\psi_{vac} = |0 \rangle$")
168 | ax[2].set_title(r"Displaced state, $D(\alpha=2+2i )\psi_{vac}$")
169 | plt.show()
170 |
171 | fig, ax = plot_wigner_fock_distribution(rho, figsize=(9, 4))
172 | ax[0].set_title("Superposition of three coherent states")
173 | plt.show()
174 |
175 |
176 | measured_populations = [measure_population(b, rho) for b in betas]
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 | def observe():
187 | global g, nextg, grid2d
188 | subplot(1,2,1)
189 | cla()
190 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
191 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
192 | pos = nx.spring_layout(g) )
193 | axis('image')
194 |
195 | subplot(1,2,2)
196 | cla()
197 |
198 | plot([np.cos(g.node[i]['theta']) for i in list(g.nodes())],
199 | [np.sin(g.node[i]['theta']) for i in list(g.nodes())], '.')
200 | axis('image')
201 |
202 | axis([-1.1,1.1,-1.1,1.1])
203 |
204 |
205 |
206 |
207 |
208 |
209 | #subplot(1,2,2)
210 | #cla()
211 | #plot(xdata, ydata,'o',alpha = 0.05)
212 | #axis('image')
213 | # for space vs time plotting (chimera search)
214 |
215 |
216 |
217 |
218 | alpha = 2 # coupling strength
219 | beta = 1 # acceleration rate
220 |
221 |
222 | #beta could a delay for simulating memory.
223 |
224 | Dt = 0.01 # Delta t
225 |
226 | #def update():
227 | # global g, nextg
228 | # for i in list(g.nodes()):
229 | # theta_i = g.node[i]['theta']
230 | # nextg.node[i]['theta'] = theta_i + (beta * theta_i + alpha * (np.sum(sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))) * Dt)
231 | # g, nextg = nextg, g
232 |
233 | def measure_population(beta, rho):
234 | """
235 | Measures the photon number statistics for state rho when displaced
236 | by angle alpha.
237 |
238 | Parameters
239 | ----------
240 | alpha: np.complex
241 | A complex displacement.
242 |
243 | rho:
244 | The density matrix as a QuTiP Qobj (`qutip.Qobj`)
245 |
246 | Returns
247 | -------
248 | population: ndarray
249 | A 1D array for the probabilities for populations.
250 | """
251 | hilbertsize = rho.shape[0]
252 | # Apply a displacement to the state and then measure the diagonals.
253 |
254 | D = displace(hilbertsize, beta)
255 | rho_disp = D*rho*D.dag()
256 | populations = np.real(np.diagonal(rho_disp.full()))
257 | return populations
258 |
259 |
260 |
261 |
262 |
263 | def update():
264 | global g, nextg, eig_values, eig_vectors, rho, grid2d, theta_i
265 | for i in list(g.nodes()):
266 | theta_i = g.node[i]['theta']
267 | omega_i = g.node[i]['omega']
268 | nextg.node[i]['theta'] = theta_i + (g.node[i]['omega'] + alpha * ( \
269 | sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i)) \
270 | / g.degree(i))) * Dt
271 | g, nextg = nextg, g
272 |
273 |
274 | #for i, j in list(g.nodes()):
275 | #xdata.append(g.degree(i))
276 | #ccs = nx.connected_components(g)
277 | #ydata.append(max(len(cc) for cc in ccs))
278 | #xdata.append(g.degree(i)); ydata.append(g.degree(j))
279 | #xdata.append(g.degree(j)); ydata.append(g.degree(i))
280 |
281 |
282 | A = nx.adjacency_matrix(nextg)
283 | print(A)
284 | n, m = A.shape
285 | diags = A.sum(axis=0) # 1 = outdegree, 0 = indegree
286 | D = scipy.sparse.spdiags(diags.flatten(), [0], m, n, format="csr")
287 | L = (A-D)
288 | Lap = L.todense()
289 | print(Lap)
290 |
291 | eig_values, eig_vectors = la.eig(Lap)
292 | fiedler_pos = np.where(eig_values.real == np.sort(eig_values.real)[1])[0][0]
293 | fiedler_vector = np.transpose(eig_vectors)[fiedler_pos]
294 |
295 | #print("Fiedler value: " + str(fiedler_pos.real))
296 |
297 | # this will be an eigenbra version
298 | print("Fiedler vector: " + str(fiedler_vector.real))
299 |
300 |
301 | #nx.laplacian_matrix(nextg).toarray()
302 |
303 |
304 | # applying matrix.trace() method
305 | LTrace = np.matrix.trace(Lap)
306 | #print(LTrace)
307 |
308 | #print density matrix from graph laplacian
309 |
310 | rho = np.divide(Lap,LTrace)
311 |
312 | #we need to represent this graph density matrix as a cavity reduced density matrix to make physical sense
313 |
314 | #print(rho)
315 |
316 |
317 |
318 |
319 |
320 | print(theta_i)
321 |
322 | print(omega_i)
323 |
324 |
325 |
326 |
327 | #note you can calculate the trace faster using the hadamard product (element-wise multiplication)
328 | # using the fiedler vector as the basis for the emergent density matrix
329 |
330 |
331 |
332 |
333 | import pycxsimulator
334 |
335 | pycxsimulator.GUI().start(func=[initialize, observe, update])
336 |
337 |
338 |
339 | #plt.figure(1)
340 | #compare red and blue pixel data
341 | #nbins = 20
342 | #plt.hexbin(x=plot_time_stamp, y=plot_agent, gridsize=nbins, cmap=plt.cm.jet)
343 | #plt.xlabel('Blue Reflectance')
344 | #plt.ylabel('NIR Reflectance')
345 | # Add a title
346 | #plt.title('NIR vs Blue Spectral Data')
347 | #plt.show()
348 |
--------------------------------------------------------------------------------
/perioddoublingbifurcation.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Wed Mar 3 18:28:58 2021
4 |
5 | @author: cosmi
6 | """
7 |
8 | from pylab import *
9 | def initialize():
10 | global x, result
11 | x = 0.1
12 | result = [x]
13 |
14 |
15 | def observe():
16 | global x, result
17 | result.append(x)
18 |
19 | def update():
20 | global x, result
21 | x = x + r - x**2
22 |
23 | #def plot_asymptotic_states():
24 | def plot_phase_space():
25 | initialize()
26 | for t in range(30):
27 | update()
28 | observe()
29 | plot(result)
30 | ylim(0, 2)
31 | title('r = ' + str(r))
32 | rs = [0.1, 0.5, 1.0, 1.1, 1.5, 1.6]
33 |
34 | for i in range(len(rs)):
35 | subplot(2, 3, i + 1)
36 | r = rs[i]
37 | plot_phase_space()
38 | show()
39 |
--------------------------------------------------------------------------------
/pycxsimulator.py:
--------------------------------------------------------------------------------
1 | ## "pycxsimulator.py"
2 | ## Dynamic, interactive simulation GUI for PyCX
3 | ##
4 | ## Project website:
5 | ## https://github.com/hsayama/PyCX
6 | ##
7 | ## Initial development by:
8 | ## Chun Wong
9 | ## email@chunwong.net
10 | ##
11 | ## Revisions by:
12 | ## Hiroki Sayama
13 | ## sayama@binghamton.edu
14 | ##
15 | ## Copyright 2012 Chun Wong
16 | ## Copyright 2012-2019 Hiroki Sayama
17 | ##
18 | ## Simulation control & GUI extensions
19 | ## Copyright 2013 Przemyslaw Szufel & Bogumil Kaminski
20 | ## {pszufe, bkamins}@sgh.waw.pl
21 | ##
22 | ## Fixing errors due to "the grid and pack problem" by:
23 | ## Toshihiro Tanizawa
24 | ## tanizawa@ee.kochi-ct.ac.jp
25 | ## began at 2016-06-15(Wed) 17:10:17
26 | ## fixed grid() and pack() problem on 2016-06-21(Tue) 18:29:40
27 | ##
28 | ## various bug fixes and updates by Steve Morgan on 3/28/2020
29 |
30 | import matplotlib
31 |
32 | #System check added by Steve Morgan
33 | import platform #SM 3/28/2020
34 | if platform.system() == 'Windows': #SM 3/28/2020
35 | backend = 'TkAgg' #SM 3/28/2020
36 | else: #SM 3/28/2020
37 | backend = 'Qt5Agg' #SM 3/28/2020
38 | matplotlib.use(backend) #SM 3/28/2020
39 |
40 | import matplotlib.pyplot as plt #SM 3/28/2020
41 |
42 | ## version check added by Hiroki Sayama on 01/08/2019
43 | import sys
44 | if sys.version_info[0] == 3: # Python 3
45 | from tkinter import *
46 | from tkinter.ttk import Notebook
47 | else: # Python 2
48 | from Tkinter import *
49 | from ttk import Notebook
50 |
51 | ## suppressing matplotlib deprecation warnings (especially with subplot) by Hiroki Sayama on 06/29/2020
52 | import warnings
53 | warnings.filterwarnings("ignore", category = matplotlib.cbook.MatplotlibDeprecationWarning)
54 |
55 | class GUI:
56 |
57 | # Constructor
58 | def __init__(self, title='PyCX Simulator', interval=0, stepSize=1, parameterSetters=[]):
59 |
60 | ## all GUI variables moved to inside constructor by Hiroki Sayama 10/09/2018
61 |
62 | self.titleText = title
63 | self.timeInterval = interval
64 | self.stepSize = stepSize
65 | self.parameterSetters = parameterSetters
66 | self.varEntries = {}
67 | self.statusStr = ""
68 |
69 | self.running = False
70 | self.modelFigure = None
71 | self.currentStep = 0
72 |
73 | # initGUI() removed by Hiroki Sayama 10/09/2018
74 |
75 | #create root window
76 | self.rootWindow = Tk()
77 | self.statusText = StringVar(self.rootWindow, value=self.statusStr) # at this point, statusStr = ""
78 | # added "self.rootWindow" above by Hiroki Sayama 10/09/2018
79 | self.setStatusStr("Simulation not yet started")
80 |
81 | self.rootWindow.wm_title(self.titleText) # titleText = 'PyCX Simulator'
82 | self.rootWindow.protocol('WM_DELETE_WINDOW', self.quitGUI)
83 | self.rootWindow.geometry('450x300')
84 | self.rootWindow.columnconfigure(0, weight=1)
85 | self.rootWindow.rowconfigure(0, weight=1)
86 |
87 | self.notebook = Notebook(self.rootWindow)
88 | # self.notebook.grid(row=0,column=0,padx=2,pady=2,sticky='nswe') # commented out by toshi on 2016-06-21(Tue) 18:30:25
89 | self.notebook.pack(side=TOP, padx=2, pady=2)
90 |
91 | # added "self.rootWindow" by Hiroki Sayama 10/09/2018
92 | self.frameRun = Frame(self.rootWindow)
93 | self.frameSettings = Frame(self.rootWindow)
94 | self.frameParameters = Frame(self.rootWindow)
95 | self.frameInformation = Frame(self.rootWindow)
96 |
97 | self.notebook.add(self.frameRun,text="Run")
98 | self.notebook.add(self.frameSettings,text="Settings")
99 | self.notebook.add(self.frameParameters,text="Parameters")
100 | self.notebook.add(self.frameInformation,text="Info")
101 | self.notebook.pack(expand=NO, fill=BOTH, padx=5, pady=5 ,side=TOP)
102 | # self.notebook.grid(row=0, column=0, padx=5, pady=5, sticky='nswe') # commented out by toshi on 2016-06-21(Tue) 18:31:02
103 |
104 | self.status = Label(self.rootWindow, width=40,height=3, relief=SUNKEN, bd=1, textvariable=self.statusText)
105 | # self.status.grid(row=1,column=0,padx=5,pady=5,sticky='nswe') # commented out by toshi on 2016-06-21(Tue) 18:31:17
106 | self.status.pack(side=TOP, fill=X, padx=5, pady=5, expand=NO)
107 |
108 | # -----------------------------------
109 | # frameRun
110 | # -----------------------------------
111 | # buttonRun
112 | self.runPauseString = StringVar(self.rootWindow) # added "self.rootWindow" by Hiroki Sayama 10/09/2018
113 | self.runPauseString.set("Run")
114 | self.buttonRun = Button(self.frameRun,width=30,height=2,textvariable=self.runPauseString,command=self.runEvent)
115 | self.buttonRun.pack(side=TOP, padx=5, pady=5)
116 | self.showHelp(self.buttonRun,"Runs the simulation (or pauses the running simulation)")
117 |
118 | # buttonStep
119 | self.buttonStep = Button(self.frameRun,width=30,height=2,text='Step Once',command=self.stepOnce)
120 | self.buttonStep.pack(side=TOP, padx=5, pady=5)
121 | self.showHelp(self.buttonStep,"Steps the simulation only once")
122 |
123 | # buttonReset
124 | self.buttonReset = Button(self.frameRun,width=30,height=2,text='Reset',command=self.resetModel)
125 | self.buttonReset.pack(side=TOP, padx=5, pady=5)
126 | self.showHelp(self.buttonReset,"Resets the simulation")
127 |
128 | # -----------------------------------
129 | # frameSettings
130 | # -----------------------------------
131 | can = Canvas(self.frameSettings)
132 |
133 | lab = Label(can, width=25,height=1,text="Step size ", justify=LEFT, anchor=W,takefocus=0)
134 | lab.pack(side='left')
135 |
136 | self.stepScale = Scale(can,from_=1, to=50, resolution=1,command=self.changeStepSize,orient=HORIZONTAL, width=25,length=150)
137 | self.stepScale.set(self.stepSize)
138 | self.showHelp(self.stepScale,"Skips model redraw during every [n] simulation steps\nResults in a faster model run.")
139 | self.stepScale.pack(side='left')
140 |
141 | can.pack(side='top')
142 |
143 | can = Canvas(self.frameSettings)
144 | lab = Label(can, width=25,height=1,text="Step visualization delay in ms ", justify=LEFT, anchor=W,takefocus=0)
145 | lab.pack(side='left')
146 | self.stepDelay = Scale(can,from_=0, to=max(2000,self.timeInterval),
147 | resolution=10,command=self.changeStepDelay,orient=HORIZONTAL, width=25,length=150)
148 | self.stepDelay.set(self.timeInterval)
149 | self.showHelp(self.stepDelay,"The visualization of each step is delays by the given number of milliseconds.")
150 | self.stepDelay.pack(side='left')
151 |
152 | can.pack(side='top')
153 |
154 | # --------------------------------------------
155 | # frameInformation
156 | # --------------------------------------------
157 | scrollInfo = Scrollbar(self.frameInformation)
158 | self.textInformation = Text(self.frameInformation, width=45,height=13,bg='lightgray',wrap=WORD,font=("Courier",10))
159 | scrollInfo.pack(side=RIGHT, fill=Y)
160 | self.textInformation.pack(side=LEFT,fill=BOTH,expand=YES)
161 | scrollInfo.config(command=self.textInformation.yview)
162 | self.textInformation.config(yscrollcommand=scrollInfo.set)
163 |
164 | # --------------------------------------------
165 | # ParameterSetters
166 | # --------------------------------------------
167 | for variableSetter in self.parameterSetters:
168 | can = Canvas(self.frameParameters)
169 |
170 | lab = Label(can, width=25,height=1,text=variableSetter.__name__+" ",anchor=W,takefocus=0)
171 | lab.pack(side='left')
172 |
173 | ent = Entry(can, width=11)
174 | ent.insert(0, str(variableSetter()))
175 |
176 | if variableSetter.__doc__ != None and len(variableSetter.__doc__) > 0:
177 | self.showHelp(ent,variableSetter.__doc__.strip())
178 |
179 | ent.pack(side='left')
180 |
181 | can.pack(side='top')
182 |
183 | self.varEntries[variableSetter]=ent
184 |
185 | if len(self.parameterSetters) > 0:
186 | self.buttonSaveParameters = Button(self.frameParameters,width=50,height=1,
187 | command=self.saveParametersCmd,text="Save parameters to the running model",state=DISABLED)
188 | self.showHelp(self.buttonSaveParameters,
189 | "Saves the parameter values.\nNot all values may take effect on a running model\nA model reset might be required.")
190 | self.buttonSaveParameters.pack(side='top',padx=5,pady=5)
191 | self.buttonSaveParametersAndReset = Button(self.frameParameters,width=50,height=1,
192 | command=self.saveParametersAndResetCmd,text="Save parameters to the model and reset the model")
193 | self.showHelp(self.buttonSaveParametersAndReset,"Saves the given parameter values and resets the model")
194 | self.buttonSaveParametersAndReset.pack(side='top',padx=5,pady=5)
195 |
196 | # <<<<< Init >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
197 |
198 | def setStatusStr(self,newStatus):
199 | self.statusStr = newStatus
200 | self.statusText.set(self.statusStr)
201 |
202 | # model control functions for changing parameters
203 | def changeStepSize(self,val):
204 | self.stepSize = int(val)
205 |
206 | def changeStepDelay(self,val):
207 | self.timeInterval= int(val)
208 |
209 | def saveParametersCmd(self):
210 | for variableSetter in self.parameterSetters:
211 | variableSetter(float(self.varEntries[variableSetter].get()))
212 | self.setStatusStr("New parameter values have been set")
213 |
214 | def saveParametersAndResetCmd(self):
215 | self.saveParametersCmd()
216 | self.resetModel()
217 |
218 | # <<<< runEvent >>>>>
219 | # This event is envoked when "Run" button is clicked.
220 | def runEvent(self):
221 | self.running = not self.running
222 | if self.running:
223 | self.rootWindow.after(self.timeInterval,self.stepModel)
224 | self.runPauseString.set("Pause")
225 | self.buttonStep.configure(state=DISABLED)
226 | self.buttonReset.configure(state=DISABLED)
227 | if len(self.parameterSetters) > 0:
228 | self.buttonSaveParameters.configure(state=NORMAL)
229 | self.buttonSaveParametersAndReset.configure(state=DISABLED)
230 | else:
231 | self.runPauseString.set("Continue Run")
232 | self.buttonStep.configure(state=NORMAL)
233 | self.buttonReset.configure(state=NORMAL)
234 | if len(self.parameterSetters) > 0:
235 | self.buttonSaveParameters.configure(state=NORMAL)
236 | self.buttonSaveParametersAndReset.configure(state=NORMAL)
237 |
238 | def stepModel(self):
239 | if self.running:
240 | self.modelStepFunc()
241 | self.currentStep += 1
242 | self.setStatusStr("Step "+str(self.currentStep))
243 | self.status.configure(foreground='black')
244 | if (self.currentStep) % self.stepSize == 0:
245 | self.drawModel()
246 | self.rootWindow.after(int(self.timeInterval*1.0/self.stepSize),self.stepModel)
247 |
248 | def stepOnce(self):
249 | self.running = False
250 | self.runPauseString.set("Continue Run")
251 | self.modelStepFunc()
252 | self.currentStep += 1
253 | self.setStatusStr("Step "+str(self.currentStep))
254 | self.drawModel()
255 | if len(self.parameterSetters) > 0:
256 | self.buttonSaveParameters.configure(state=NORMAL)
257 |
258 | def resetModel(self):
259 | self.running = False
260 | self.runPauseString.set("Run")
261 | self.modelInitFunc()
262 | self.currentStep = 0;
263 | self.setStatusStr("Model has been reset")
264 | self.drawModel()
265 |
266 | def drawModel(self):
267 | plt.ion() #SM 3/26/2020
268 | if self.modelFigure == None or self.modelFigure.canvas.manager.window == None:
269 | self.modelFigure = plt.figure() #SM 3/26/2020
270 | self.modelDrawFunc()
271 | self.modelFigure.canvas.manager.window.update()
272 | plt.show() # bug fix by Hiroki Sayama in 2016 #SM 3/26/2020
273 |
274 | def start(self,func=[]):
275 | if len(func)==3:
276 | self.modelInitFunc = func[0]
277 | self.modelDrawFunc = func[1]
278 | self.modelStepFunc = func[2]
279 | if (self.modelStepFunc.__doc__ != None and len(self.modelStepFunc.__doc__)>0):
280 | self.showHelp(self.buttonStep,self.modelStepFunc.__doc__.strip())
281 | if (self.modelInitFunc.__doc__ != None and len(self.modelInitFunc.__doc__)>0):
282 | self.textInformation.config(state=NORMAL)
283 | self.textInformation.delete(1.0, END)
284 | self.textInformation.insert(END, self.modelInitFunc.__doc__.strip())
285 | self.textInformation.config(state=DISABLED)
286 |
287 | self.modelInitFunc()
288 | self.drawModel()
289 | self.rootWindow.mainloop()
290 |
291 | def quitGUI(self):
292 | self.running = False # HS 06/29/2020
293 | self.rootWindow.quit()
294 | plt.close('all') # HS 06/29/2020
295 | self.rootWindow.destroy()
296 |
297 | def showHelp(self, widget,text):
298 | def setText(self):
299 | self.statusText.set(text)
300 | self.status.configure(foreground='blue')
301 | def showHelpLeave(self):
302 | self.statusText.set(self.statusStr)
303 | self.status.configure(foreground='black')
304 | widget.bind("", lambda e : setText(self))
305 | widget.bind("", lambda e : showHelpLeave(self))
--------------------------------------------------------------------------------
/qoppav2.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Wed Jul 31 16:51:21 2024
4 |
5 | @author: ektop
6 | """
7 |
8 |
9 | import matplotlib
10 | matplotlib.use('TkAgg')
11 | from pylab import *
12 | import networkx as nx
13 | from math import pi
14 | import numpy as np
15 |
16 |
17 |
18 | import scipy
19 | import numpy as np
20 | from scipy import misc
21 | import numpy as np
22 | import scipy.linalg as la
23 |
24 | from matplotlib import pyplot as plt # For image viewing
25 |
26 | from matplotlib import colors
27 | from matplotlib import ticker
28 | from matplotlib.colors import LinearSegmentedColormap
29 |
30 | from matplotlib.collections import LineCollection
31 | from matplotlib.colors import ListedColormap, BoundaryNorm
32 |
33 |
34 |
35 | from random import random as rand
36 | from random import uniform
37 |
38 | alpha = 1 # coupling strength
39 | Dt = 0.01 # Delta t
40 |
41 | # Define constants for the mass (m) of the oscillators if relevant
42 | m = 1 # Assume mass as 1 for simplicity
43 |
44 | # Initialize the network and the next network state
45 |
46 | def initialize():
47 | global g, nextg, hilbert_size
48 |
49 |
50 |
51 |
52 | n = 3
53 | g = nx.grid_graph(dim=[n,n])
54 |
55 |
56 |
57 | # g = nx.karate_club_graph()
58 | for i in list(g.nodes()):
59 | g.node[i]['theta'] = 2 * pi * np.random.random()
60 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
61 | nextg = g.copy()
62 |
63 | # Visualize the network
64 | def observe():
65 | global g, nextg, grid2d
66 | subplot(1,2,1)
67 | cla()
68 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
69 | node_color = [np.sin(g.node[i]['theta']) for i in list(g.nodes())],
70 | pos = nx.spring_layout(g) )
71 | axis('image')
72 |
73 | subplot(1,2,2)
74 | cla()
75 |
76 | plot([np.cos(g.node[i]['theta']) for i in list(g.nodes())],
77 | [np.sin(g.node[i]['theta']) for i in list(g.nodes())], '.')
78 | axis('image')
79 |
80 | axis([-1.1,1.1,-1.1,1.1])
81 | # Define the Gauss/Mouse map transformation
82 | def gauss_mouse_map(phase):
83 | return np.sin(phase)
84 |
85 |
86 |
87 | # Update the network state
88 | def update():
89 | global g, nextg, chaotic_numbers_data, timestamps, frequency_shifts, koppa_values, action_derivative_values
90 | chaotic_numbers = []
91 |
92 | num_nodes = len(g.nodes())
93 | angular_accelerations = np.zeros(num_nodes)
94 | action_derivative = 0 # Initialize action derivative for this timestep
95 |
96 | # Store previous angular velocities
97 | previous_angular_velocities = np.array([g.nodes[i]['omega'] for i in g.nodes()])
98 |
99 | # Create a node to index mapping
100 | node_to_index = {node: idx for idx, node in enumerate(g.nodes())}
101 |
102 | for i in g.nodes():
103 | idx = node_to_index[i] # Get the index for the current node
104 | theta_i = g.nodes[i]['theta']
105 | omega_i = g.nodes[i]['omega']
106 |
107 | # Calculate next angular momentum using Euler's method
108 | nextg.nodes[i]['theta'] = theta_i + omega_i * Dt + (alpha * (
109 | np.sum(np.sin(g.nodes[j]['theta'] - theta_i) for j in g.neighbors(i))
110 | / g.degree(i))) * Dt
111 |
112 | # Update angular acceleration
113 | angular_accelerations[idx] = (nextg.nodes[i]['theta'] - theta_i) / Dt # This is a simple approximation
114 |
115 | chaotic_number = gauss_mouse_map(g.nodes[i]['theta'])
116 | chaotic_numbers.append(chaotic_number)
117 |
118 | # Now compute the derivative of action
119 | for i in range(num_nodes):
120 | action_derivative += 0.5 * m * previous_angular_velocities[i] * angular_accelerations[i]
121 |
122 | action_derivative_values.append(action_derivative) # Store action derivative over time
123 |
124 | # Calculate frequency shifts
125 | if len(chaotic_numbers_data) > 0:
126 | previous_chaotic_numbers = chaotic_numbers_data[-1]
127 | frequency_shift = [chaotic_numbers[j] - previous_chaotic_numbers[j] for j in range(len(chaotic_numbers))]
128 | frequency_shifts.append(np.mean(frequency_shift)) # Store the average frequency shift over time
129 | else:
130 | frequency_shifts.append(0) # No shift initially
131 |
132 | # Calculate algebraic connectivity (koppa)
133 | laplacian = nx.laplacian_matrix(g).toarray()
134 | eigenvalues = np.linalg.eigvals(laplacian)
135 | koppa = np.sort(eigenvalues)[1] # Second smallest eigenvalue
136 | koppa_values.append(koppa)
137 |
138 | g, nextg = nextg, g
139 | chaotic_numbers_data.append(chaotic_numbers)
140 | timestamps.append(len(chaotic_numbers_data))
141 |
142 | # Initialize and update the network state
143 | def initialize_and_update():
144 | initialize()
145 | update()
146 |
147 | import pycxsimulator
148 |
149 | # Run the simulation
150 | chaotic_numbers_data = []
151 | frequency_shifts = []
152 | timestamps = []
153 | koppa_values = []
154 | action_derivative_values = [] # List to store action derivatives over time
155 | pycxsimulator.GUI().start(func=[initialize, observe, update])
156 |
157 | # Create scatter plot of chaotic number values vs timestamps
158 | plt.figure(figsize=(12, 5))
159 | for i, chaotic_numbers in enumerate(chaotic_numbers_data):
160 | colors = ['r' if num >= 0 else 'b' for num in chaotic_numbers]
161 | plt.scatter([timestamps[i]] * len(chaotic_numbers), chaotic_numbers, color=colors, alpha=0.5)
162 |
163 | plt.xlabel('Timestamp')
164 | plt.ylabel('Chaotic Number Value')
165 | plt.title('Scatter Plot of Chaotic Number Values vs Timestamp')
166 | plt.show()
167 |
168 | # Create scatter plot of frequency shifts
169 | plt.figure(figsize=(12, 5))
170 | for i, shift in enumerate(frequency_shifts):
171 | plt.scatter(timestamps[i], shift, color='g', alpha=0.5) # Use just `timestamps[i]` for y values
172 |
173 | plt.xlabel('Timestamp')
174 | plt.ylabel('Average Frequency Shift')
175 | plt.title('Scatter Plot of Frequency Shifts vs Timestamp')
176 | plt.show()
177 |
178 | # Plot the trend of wavelength shifts vs koppa
179 | plt.figure(figsize=(12, 5))
180 | plt.plot(timestamps, koppa_values, marker='o', linestyle='-')
181 | plt.title('Algebraic Connectivity Koppa over Time')
182 | plt.xlabel('Timestamp')
183 | plt.ylabel('Algebraic Connectivity (Koppa)')
184 | plt.grid()
185 | plt.show()
186 |
187 | plt.figure(figsize=(12, 5))
188 | plt.scatter(koppa_values, frequency_shifts, color='purple', alpha=0.5)
189 | plt.title('Wavelength Shifts vs Algebraic Connectivity Koppa')
190 | plt.xlabel('Algebraic Connectivity (Koppa)')
191 | plt.ylabel('Average Frequency Shift')
192 | plt.grid()
193 | plt.show()
194 |
195 | # New: Plot action derivatives over time
196 | plt.figure(figsize=(12, 5))
197 | plt.plot(timestamps, action_derivative_values, marker='o', linestyle='-')
198 | plt.title('Action Derivative over Time')
199 | plt.xlabel('Timestamp')
200 | plt.ylabel('Action Derivative')
201 | plt.grid()
202 | plt.show()
203 |
204 | # New: Plot frequency shifts vs action derivatives
205 | plt.figure(figsize=(12, 5))
206 | plt.scatter(action_derivative_values, frequency_shifts, color='orange', alpha=0.5)
207 | plt.title('Frequency Shifts vs Action Derivative')
208 | plt.xlabel('Action Derivative')
209 | plt.ylabel('Average Frequency Shift')
210 | plt.grid()
211 | plt.show()
--------------------------------------------------------------------------------
/qoppav4.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Wed Jul 31 17:15:19 2024
4 |
5 | @author: ektop
6 | """
7 |
8 | import networkx as nx
9 | import numpy as np
10 | from random import uniform
11 | from math import pi
12 | import matplotlib.pyplot as plt
13 | from mpl_toolkits.mplot3d import Axes3D
14 |
15 | alpha = 1 # coupling strength
16 | Dt = 0.01 # Delta t
17 | m = 1 # Assume mass as 1 for simplicity
18 |
19 | def initialize():
20 | global g, nextg
21 | g = nx.karate_club_graph()
22 | for i in list(g.nodes()):
23 | g.node[i]['theta'] = 2 * pi * np.random.random()
24 | g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
25 | nextg = g.copy()
26 |
27 | def observe():
28 | global g
29 | plt.clf()
30 | nx.draw(g, cmap=plt.cm.hsv, vmin=-1, vmax=1,
31 | node_color=[np.sin(g.node[i]['theta']) for i in list(g.nodes())],
32 | pos=nx.spring_layout(g))
33 | plt.title('Network Visualization')
34 | plt.show()
35 |
36 | def gauss_mouse_map(phase):
37 | return np.sin(phase)
38 |
39 | def update():
40 | global g, nextg, chaotic_numbers_data, timestamps, frequency_shifts, action_derivative_values
41 | chaotic_numbers = []
42 | angular_accelerations = np.zeros(len(g.nodes()))
43 | action_derivative = 0 # Initialize action derivative for this timestep
44 | previous_angular_velocities = np.array([g.node[i]['omega'] for i in g.nodes()])
45 |
46 | for i in list(g.nodes()):
47 | theta_i = g.node[i]['theta']
48 | omega_i = g.node[i]['omega']
49 |
50 | # Update angular position using Euler's method
51 | nextg.node[i]['theta'] = theta_i + omega_i * Dt + (alpha * (
52 | np.sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))
53 | / g.degree(i))) * Dt
54 |
55 | angular_accelerations[i] = (nextg.node[i]['theta'] - theta_i) / Dt
56 |
57 | chaotic_number = gauss_mouse_map(g.node[i]['theta'])
58 | chaotic_numbers.append(chaotic_number)
59 |
60 | # Compute derivative of action
61 | for i in range(len(g.nodes())):
62 | action_derivative += 0.5 * m * previous_angular_velocities[i] * angular_accelerations[i]
63 |
64 | action_derivative_values.append(action_derivative) # Store action derivative over time
65 | # Calculate frequency shifts
66 | if len(chaotic_numbers_data) > 0:
67 | previous_chaotic_numbers = chaotic_numbers_data[-1]
68 | frequency_shift = [chaotic_numbers[j] - previous_chaotic_numbers[j] for j in range(len(chaotic_numbers))]
69 | frequency_shifts.append(np.mean(frequency_shift)) # Store the average frequency shift over time
70 | else:
71 | frequency_shifts.append(0) # No shift initially
72 |
73 |
74 | # Update the states
75 | g, nextg = nextg, g
76 | chaotic_numbers_data.append(chaotic_numbers)
77 | timestamps.append(len(chaotic_numbers_data))
78 |
79 | def initialize_and_update():
80 | initialize()
81 | update()
82 |
83 | import pycxsimulator
84 |
85 | # Initialize lists to store data
86 | chaotic_numbers_data = []
87 | frequency_shifts = []
88 | action_derivative_values = [] # List to store action derivatives over time
89 | timestamps = [] # Initialize timestamps
90 |
91 | # Run the simulation
92 | pycxsimulator.GUI().start(func=[initialize, observe, update])
93 |
94 |
95 | # Create scatter plot of chaotic number values vs timestamps
96 | plt.figure(figsize=(12, 5))
97 | for i, chaotic_numbers in enumerate(chaotic_numbers_data):
98 | colors = ['r' if num >= 0 else 'b' for num in chaotic_numbers]
99 | plt.scatter([timestamps[i]] * len(chaotic_numbers), chaotic_numbers, color=colors, alpha=0.5)
100 |
101 | plt.xlabel('Timestamp')
102 | plt.ylabel('Chaotic Number Value')
103 | plt.title('Scatter Plot of Chaotic Number Values vs Timestamp')
104 | plt.show()
105 |
106 |
107 | # Create scatter plot of frequency shifts
108 | plt.figure(figsize=(12, 5))
109 | for i, shift in enumerate(frequency_shifts):
110 | plt.scatter(timestamps[i], shift, color='g', alpha=0.5)
111 |
112 | plt.xlabel('Timestamp')
113 | plt.ylabel('Average Frequency Shift')
114 | plt.title('Scatter Plot of Frequency Shifts vs Timestamp')
115 | plt.show()
116 |
117 |
118 | # New: Plot action derivatives over time
119 | plt.figure(figsize=(12, 5))
120 | plt.plot(timestamps, action_derivative_values, marker='o', linestyle='-')
121 | plt.title('Action Derivative over Time')
122 | plt.xlabel('Timestamp')
123 | plt.ylabel('Action Derivative')
124 | plt.grid()
125 | plt.show()
126 |
127 | # New: Create scatter plot of action derivative vs chaotic numbers
128 | plt.figure(figsize=(12, 5))
129 | for i, chaotic_numbers in enumerate(chaotic_numbers_data):
130 | for j in range(len(chaotic_numbers)):
131 | plt.scatter(action_derivative_values[i], chaotic_numbers[j], color='red', alpha=0.5)
132 |
133 | plt.title('Chaotic Numbers vs Action Derivative')
134 | plt.xlabel('Action Derivative')
135 | plt.ylabel('Chaotic Number Value')
136 | plt.grid()
137 | plt.show()
138 |
139 |
140 | # New: Plot frequency shifts vs actions
141 | plt.figure(figsize=(12, 5))
142 | plt.scatter(action_derivative_values, frequency_shifts, color='orange', alpha=0.5)
143 | plt.title('Frequency Shifts vs Action Derivative')
144 | plt.xlabel('Action Derivative')
145 | plt.ylabel('Average Frequency Shift')
146 | plt.grid()
147 | plt.show()
148 |
149 |
150 |
151 |
152 |
153 | # Assuming you have the following variables defined
154 | # timestamps, action_derivative_values, frequency_shifts
155 |
156 | # Create a figure
157 | fig = plt.figure(figsize=(12, 8))
158 |
159 | # Create a 3D scatter plot
160 | ax = fig.add_subplot(111, projection='3d')
161 |
162 | # Create a scatter plot, using timestamps, action derivatives, and chaotic numbers
163 | scatter = ax.scatter(timestamps, action_derivative_values, frequency_shifts,
164 | c=action_derivative_values, cmap='viridis', alpha=0.5)
165 |
166 | # Add titles and labels
167 | ax.set_title('3D Visualization of Action Derivative, Frequency Shift, va Timestamps')
168 | ax.set_xlabel('Timestamp')
169 | ax.set_ylabel('Action Derivative')
170 | ax.set_zlabel('Frequency Shift Value')
171 |
172 | # Show color bar for reference
173 | plt.colorbar(scatter, label='Action Derivative')
174 |
175 | # Show the plot
176 | plt.show()
177 |
178 |
179 |
180 |
181 |
--------------------------------------------------------------------------------
/scalefreequantum.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Sun May 28 01:18:22 2023
4 |
5 | @author: ektop
6 | """
7 |
8 | # -*- coding: utf-8 -*-
9 | """
10 | Created on Tue Mar 2 19:01:57 2021
11 |
12 | @author: cosmi
13 | """
14 |
15 | import matplotlib
16 | matplotlib.use('TkAgg')
17 | from pylab import *
18 | import networkx as nx
19 |
20 | import numpy as np
21 |
22 | from pygsp import graphs
23 | import matplotlib.pyplot as plt
24 |
25 | m0 = 4 # number of nodes in initial condition
26 | m = 2 # number of edges per new node
27 |
28 | global grid2d
29 |
30 | counter = 0
31 |
32 | def initialize():
33 | global g, nextg, counter, grid2d
34 | g = nx.complete_graph(m0)
35 | g.pos = nx.spring_layout(g)
36 | nextg = g.copy()
37 |
38 |
39 | xdata = []
40 | ydata = []
41 |
42 | grid2d = []
43 |
44 | def observe1():
45 | global g, nextg, counter, grid2d
46 |
47 |
48 |
49 | subplot(1,2,1)
50 | cla()
51 | nx.draw(g)
52 |
53 | #subplot(1,2,2)
54 | #cla()
55 | #plot(xdata, ydata,'o',alpha = 0.05)
56 | #axis('image')
57 |
58 |
59 | def observe2():
60 | global g, nextg, counter, grid2d
61 |
62 | subplot(1,2,2)
63 | grid2d = graphs.Graph.from_networkx(g)
64 |
65 | plt.imshow(grid2d.A.todense())
66 | axis('image')
67 |
68 |
69 |
70 |
71 | def pref_select(nds):
72 | global g
73 | r = uniform(0, sum(g.degree(i) for i in nds))
74 | x = 0
75 | for i in nds:
76 | x += g.degree(i)
77 | if r <= x:
78 | return i
79 |
80 |
81 | def update():
82 | global g, nextg, counter, grid2d
83 | counter += 1
84 | if counter % 20 == 0:
85 | nds = g.nodes()
86 | newcomer = max(nds) + 1
87 |
88 | for i in range(m):
89 | j = pref_select(nds)
90 | g.add_edge(newcomer, j)
91 | unsaturated_b = g.nodes()
92 | list(unsaturated_b).remove(j)
93 |
94 | xdata.append(g.degree(i))
95 | ccs = nx.connected_components(g)
96 | ydata.append(max(len(cc) for cc in ccs))
97 | #xdata.append(g.degree(i)); ydata.append(g.degree(j))
98 | #xdata.append(g.degree(j)); ydata.append(g.degree(i))
99 | #g.pos[newcomer] = (0, 0) # simulation of node movement
100 | g, nextg = nextg, g
101 |
102 | grid2d = graphs.Graph.from_networkx(g)
103 |
104 |
105 |
106 | #g.pos = nx.spring_layout(pos = g.pos, iterations = 5)
107 |
108 | import pycxsimulator2plots
109 |
110 | pycxsimulator2plots.GUI().start(func=[initialize, observe1, observe2, update])
111 |
112 |
113 |
114 |
115 |
116 |
117 | # for percolation search at end of run
118 | pycxsimulator2plots.GUI().quitGUI
119 |
120 |
121 | print(grid2d.W.toarray())
122 | print(grid2d.signals)
123 |
124 | print(grid2d)
125 |
126 |
127 |
128 | grid2d.compute_fourier_basis()
129 |
130 | grid2d.set_coordinates()
131 | grid2d.plot()
132 |
133 | plt.imshow(grid2d.A.todense())
134 |
135 |
136 |
137 | # plot spectrum
138 | fig, ax = plt.subplots(1, 1, figsize=(7,7))
139 | ax.plot(grid2d.e)
140 | ax.set_xlabel('eigenvalue index (i)')
141 | ax.set_ylabel('eigenvalue ($\lambda_{i}$)')
142 | ax.set_title('2D-grid spectrum');
143 |
144 |
145 | #fiedler vector highlighted graph
146 | grid2d.plot_signal(grid2d.U[:,1])
147 |
148 |
149 | #plot all eigenvectors as network graph frames
150 |
151 | fig, axes = plt.subplots(2, 3, figsize=(10, 6.6))
152 | count = 0
153 | for j in range(2):
154 | for i in range(3):
155 | grid2d.plot_signal(grid2d.U[:, count*1], ax=axes[j,i],colorbar=False)
156 | axes[j,i].set_xticks([])
157 | axes[j,i].set_yticks([])
158 | axes[j,i].set_title(f'Eigvec {count*1+1}')
159 | count+=1
160 | fig.tight_layout()
161 |
162 |
163 |
164 |
165 |
166 |
--------------------------------------------------------------------------------
/votermodel.py:
--------------------------------------------------------------------------------
1 |
2 | import matplotlib
3 | matplotlib.use('TkAgg')
4 | from pylab import *
5 | import networkx as nx
6 | import random as rd
7 |
8 | def initialize():
9 | global g
10 | g = nx.karate_club_graph()
11 | for i in g.nodes():
12 | g.node[i]['state'] = 1 if random() < .5 else 0
13 |
14 |
15 | def observe():
16 | global g
17 | cla()
18 | nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,
19 | node_color = [g.node[i]['state'] for i in g.nodes()],
20 | pos = nx.spring_layout(g) )
21 |
22 |
23 | def update():
24 | global g
25 | listener = rd.choice(g.nodes())
26 | speaker = rd.choice(g.neighbors(listener))
27 | g.node[listener]['state'] = g.node[speaker]['state']
28 | g.add_edge(0,1)
29 | g[0]['visited'] = True
30 | g.neighbors(0)
31 | ['visited', 1]
32 |
33 |
34 | import pycxsimulator
35 |
36 | pycxsimulator.GUI().start(func=[initialize, observe, update])
37 |
38 |
--------------------------------------------------------------------------------