├── Data cleaning using Python └── README.md /Data cleaning using Python: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "3631d4f9", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 3, 16 | "id": "85c18b1c", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "import matplotlib.pyplot as plt" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 4, 26 | "id": "0f16a430", 27 | "metadata": {}, 28 | "outputs": [], 29 | "source": [ 30 | "data=pd.read_csv(r\"D:\\dataset for ML\\Employee.csv\")" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 5, 36 | "id": "68f1e690", 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "data": { 41 | "text/html": [ 42 | "
\n", 43 | "\n", 56 | "\n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | "
EducationJoiningYearCityPaymentTierAgeGenderEverBenchedExperienceInCurrentDomainLeaveOrNot
0Bachelors2017Bangalore334MaleNo00
1Bachelors2013Pune128FemaleNo31
2Bachelors2014New Delhi338FemaleNo20
3Masters2016Bangalore327MaleNo51
4Masters2017Pune324MaleYes21
..............................
4648Bachelors2013Bangalore326FemaleNo40
4649Masters2013Pune237MaleNo21
4650Masters2018New Delhi327MaleNo51
4651Bachelors2012Bangalore330MaleYes20
4652Bachelors2015Bangalore333MaleYes40
\n", 206 | "

4653 rows × 9 columns

\n", 207 | "
" 208 | ], 209 | "text/plain": [ 210 | " Education JoiningYear City PaymentTier Age Gender EverBenched \\\n", 211 | "0 Bachelors 2017 Bangalore 3 34 Male No \n", 212 | "1 Bachelors 2013 Pune 1 28 Female No \n", 213 | "2 Bachelors 2014 New Delhi 3 38 Female No \n", 214 | "3 Masters 2016 Bangalore 3 27 Male No \n", 215 | "4 Masters 2017 Pune 3 24 Male Yes \n", 216 | "... ... ... ... ... ... ... ... \n", 217 | "4648 Bachelors 2013 Bangalore 3 26 Female No \n", 218 | "4649 Masters 2013 Pune 2 37 Male No \n", 219 | "4650 Masters 2018 New Delhi 3 27 Male No \n", 220 | "4651 Bachelors 2012 Bangalore 3 30 Male Yes \n", 221 | "4652 Bachelors 2015 Bangalore 3 33 Male Yes \n", 222 | "\n", 223 | " ExperienceInCurrentDomain LeaveOrNot \n", 224 | "0 0 0 \n", 225 | "1 3 1 \n", 226 | "2 2 0 \n", 227 | "3 5 1 \n", 228 | "4 2 1 \n", 229 | "... ... ... \n", 230 | "4648 4 0 \n", 231 | "4649 2 1 \n", 232 | "4650 5 1 \n", 233 | "4651 2 0 \n", 234 | "4652 4 0 \n", 235 | "\n", 236 | "[4653 rows x 9 columns]" 237 | ] 238 | }, 239 | "execution_count": 5, 240 | "metadata": {}, 241 | "output_type": "execute_result" 242 | } 243 | ], 244 | "source": [ 245 | "data" 246 | ] 247 | }, 248 | { 249 | "cell_type": "code", 250 | "execution_count": 6, 251 | "id": "7e30784e", 252 | "metadata": {}, 253 | "outputs": [], 254 | "source": [ 255 | "data=data.dropna()" 256 | ] 257 | }, 258 | { 259 | "cell_type": "code", 260 | "execution_count": 7, 261 | "id": "c60e9f00", 262 | "metadata": {}, 263 | "outputs": [ 264 | { 265 | "data": { 266 | "text/html": [ 267 | "
\n", 268 | "\n", 281 | "\n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | "
EducationJoiningYearCityPaymentTierAgeGenderEverBenchedExperienceInCurrentDomainLeaveOrNot
0Bachelors2017Bangalore334MaleNo00
1Bachelors2013Pune128FemaleNo31
2Bachelors2014New Delhi338FemaleNo20
3Masters2016Bangalore327MaleNo51
4Masters2017Pune324MaleYes21
..............................
4648Bachelors2013Bangalore326FemaleNo40
4649Masters2013Pune237MaleNo21
4650Masters2018New Delhi327MaleNo51
4651Bachelors2012Bangalore330MaleYes20
4652Bachelors2015Bangalore333MaleYes40
\n", 431 | "

4653 rows × 9 columns

\n", 432 | "
" 433 | ], 434 | "text/plain": [ 435 | " Education JoiningYear City PaymentTier Age Gender EverBenched \\\n", 436 | "0 Bachelors 2017 Bangalore 3 34 Male No \n", 437 | "1 Bachelors 2013 Pune 1 28 Female No \n", 438 | "2 Bachelors 2014 New Delhi 3 38 Female No \n", 439 | "3 Masters 2016 Bangalore 3 27 Male No \n", 440 | "4 Masters 2017 Pune 3 24 Male Yes \n", 441 | "... ... ... ... ... ... ... ... \n", 442 | "4648 Bachelors 2013 Bangalore 3 26 Female No \n", 443 | "4649 Masters 2013 Pune 2 37 Male No \n", 444 | "4650 Masters 2018 New Delhi 3 27 Male No \n", 445 | "4651 Bachelors 2012 Bangalore 3 30 Male Yes \n", 446 | "4652 Bachelors 2015 Bangalore 3 33 Male Yes \n", 447 | "\n", 448 | " ExperienceInCurrentDomain LeaveOrNot \n", 449 | "0 0 0 \n", 450 | "1 3 1 \n", 451 | "2 2 0 \n", 452 | "3 5 1 \n", 453 | "4 2 1 \n", 454 | "... ... ... \n", 455 | "4648 4 0 \n", 456 | "4649 2 1 \n", 457 | "4650 5 1 \n", 458 | "4651 2 0 \n", 459 | "4652 4 0 \n", 460 | "\n", 461 | "[4653 rows x 9 columns]" 462 | ] 463 | }, 464 | "execution_count": 7, 465 | "metadata": {}, 466 | "output_type": "execute_result" 467 | } 468 | ], 469 | "source": [ 470 | "data" 471 | ] 472 | }, 473 | { 474 | "cell_type": "code", 475 | "execution_count": 8, 476 | "id": "755c3d9d", 477 | "metadata": {}, 478 | "outputs": [], 479 | "source": [ 480 | "data=data.fillna(2)" 481 | ] 482 | }, 483 | { 484 | "cell_type": "code", 485 | "execution_count": 9, 486 | "id": "697267b1", 487 | "metadata": {}, 488 | "outputs": [ 489 | { 490 | "data": { 491 | "text/html": [ 492 | "
\n", 493 | "\n", 506 | "\n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | "
EducationJoiningYearCityPaymentTierAgeGenderEverBenchedExperienceInCurrentDomainLeaveOrNot
0Bachelors2017Bangalore334MaleNo00
1Bachelors2013Pune128FemaleNo31
2Bachelors2014New Delhi338FemaleNo20
3Masters2016Bangalore327MaleNo51
4Masters2017Pune324MaleYes21
..............................
4648Bachelors2013Bangalore326FemaleNo40
4649Masters2013Pune237MaleNo21
4650Masters2018New Delhi327MaleNo51
4651Bachelors2012Bangalore330MaleYes20
4652Bachelors2015Bangalore333MaleYes40
\n", 656 | "

4653 rows × 9 columns

\n", 657 | "
" 658 | ], 659 | "text/plain": [ 660 | " Education JoiningYear City PaymentTier Age Gender EverBenched \\\n", 661 | "0 Bachelors 2017 Bangalore 3 34 Male No \n", 662 | "1 Bachelors 2013 Pune 1 28 Female No \n", 663 | "2 Bachelors 2014 New Delhi 3 38 Female No \n", 664 | "3 Masters 2016 Bangalore 3 27 Male No \n", 665 | "4 Masters 2017 Pune 3 24 Male Yes \n", 666 | "... ... ... ... ... ... ... ... \n", 667 | "4648 Bachelors 2013 Bangalore 3 26 Female No \n", 668 | "4649 Masters 2013 Pune 2 37 Male No \n", 669 | "4650 Masters 2018 New Delhi 3 27 Male No \n", 670 | "4651 Bachelors 2012 Bangalore 3 30 Male Yes \n", 671 | "4652 Bachelors 2015 Bangalore 3 33 Male Yes \n", 672 | "\n", 673 | " ExperienceInCurrentDomain LeaveOrNot \n", 674 | "0 0 0 \n", 675 | "1 3 1 \n", 676 | "2 2 0 \n", 677 | "3 5 1 \n", 678 | "4 2 1 \n", 679 | "... ... ... \n", 680 | "4648 4 0 \n", 681 | "4649 2 1 \n", 682 | "4650 5 1 \n", 683 | "4651 2 0 \n", 684 | "4652 4 0 \n", 685 | "\n", 686 | "[4653 rows x 9 columns]" 687 | ] 688 | }, 689 | "execution_count": 9, 690 | "metadata": {}, 691 | "output_type": "execute_result" 692 | } 693 | ], 694 | "source": [ 695 | "data" 696 | ] 697 | }, 698 | { 699 | "cell_type": "code", 700 | "execution_count": 10, 701 | "id": "21ad4911", 702 | "metadata": {}, 703 | "outputs": [], 704 | "source": [ 705 | "pay=data['PaymentTier']" 706 | ] 707 | }, 708 | { 709 | "cell_type": "code", 710 | "execution_count": 11, 711 | "id": "dc55b7d2", 712 | "metadata": {}, 713 | "outputs": [ 714 | { 715 | "data": { 716 | "text/plain": [ 717 | "0 3\n", 718 | "1 1\n", 719 | "2 3\n", 720 | "3 3\n", 721 | "4 3\n", 722 | " ..\n", 723 | "4648 3\n", 724 | "4649 2\n", 725 | "4650 3\n", 726 | "4651 3\n", 727 | "4652 3\n", 728 | "Name: PaymentTier, Length: 4653, dtype: int64" 729 | ] 730 | }, 731 | "execution_count": 11, 732 | "metadata": {}, 733 | "output_type": "execute_result" 734 | } 735 | ], 736 | "source": [ 737 | "pay" 738 | ] 739 | }, 740 | { 741 | "cell_type": "code", 742 | "execution_count": 18, 743 | "id": "ae905dd1", 744 | "metadata": {}, 745 | "outputs": [], 746 | "source": [ 747 | "age=data['Age']" 748 | ] 749 | }, 750 | { 751 | "cell_type": "code", 752 | "execution_count": 19, 753 | "id": "831979df", 754 | "metadata": {}, 755 | "outputs": [ 756 | { 757 | "data": { 758 | "text/plain": [ 759 | "0 34\n", 760 | "1 28\n", 761 | "2 38\n", 762 | "3 27\n", 763 | "4 24\n", 764 | " ..\n", 765 | "4648 26\n", 766 | "4649 37\n", 767 | "4650 27\n", 768 | "4651 30\n", 769 | "4652 33\n", 770 | "Name: Age, Length: 4653, dtype: int64" 771 | ] 772 | }, 773 | "execution_count": 19, 774 | "metadata": {}, 775 | "output_type": "execute_result" 776 | } 777 | ], 778 | "source": [ 779 | "age" 780 | ] 781 | }, 782 | { 783 | "cell_type": "code", 784 | "execution_count": 26, 785 | "id": "3b693527", 786 | "metadata": {}, 787 | "outputs": [ 788 | { 789 | "data": { 790 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/k0lEQVR4nO3deVxV1f7/8fdR4YiKGA4MSUaiONIgmUOpOCWWmlZXswGywTE1K69oJXZTzMqsTLOuoVamldrkFJpgZhYOpJb61cKhlDQHcMSU9fujH+d2BIzD4DluXs/HYz++7LWnD8vV5f1de599bMYYIwAAAIso5+4CAAAAShLhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBmXGrFmzZLPZClySk5PdUpfNZlN8fLxbrn0hm82mWbNmubsMJ7n/brt373Z3KQ5r165VfHy8jh07lmdbu3bt1K5du0tekyf66aefFB8fn++/Xbt27dSkSZNLXxTKhAruLgC41BITE9WgQYM87Y0aNXJDNbgcrV27VuPGjVNsbKyqVavmtG3atGnuKcoD/fTTTxo3bpzatWunq6++2t3loAwh3KDMadKkiSIjI91dBtzk1KlTqlSpUqmdvzAh+fz58zp37pzsdnup1fFPSrsfAHfithSQD5vNpiFDhigxMVHh4eHy8fFRZGSk1q1bJ2OMXnzxRYWGhqpKlSpq3769du3a5XR87pT7119/rRYtWsjHx0dXXnmlnnnmGZ0/f/4fr79161b16NFDV1xxhSpWrKjrrrtOs2fPdmw/ceKEqlWrpv79++c5dvfu3SpfvrxefPFFR1tGRob69++v2rVry9vbW6GhoRo3bpzOnTt30ToOHTqkRx99VCEhIbLb7apZs6Zat26tFStWFPu4pKQk9ejRQ7Vr11bFihUVFham/v37648//vjH/inssfHx8bLZbNq4caPuuusuXXHFFapbt67effdd2Ww2ffvtt3nO/dxzz8nLy0v79+/P99rx8fF66qmnJEmhoaF5bmteeFtq9+7dstlsmjRpkp5//nmFhobKbrdr1apVkqT169ere/fu8vf3V8WKFXX99dfrww8//Mc+kKRff/1Vd911l3x9fVWtWjXde++9Sk1NzXN7MTY2VlWqVNGWLVvUuXNn+fr6qkOHDpKkI0eOaNCgQbryyivl7e2ta665RmPGjFF2drbj+LvvvluNGzd2una3bt1ks9n00UcfOdo2btwom82mzz//XLNmzdLdd98tSYqKinL004W3PVNTU3XLLbeoUqVKuuaaazRx4kTl5OQU6vcHCsLMDcqc3P+v+e9sNpvKly/v1PbFF19o06ZNmjhxomw2m/7973/rtttuU0xMjH755RdNnTpVmZmZGjFihO68806lpaXJZrM5js/IyFCfPn00atQoPffcc1q8eLGef/55HT16VFOnTi2wvh07dqhVq1aqVauWXnvtNVWvXl3vvfeeYmNj9fvvv2vkyJGqUqWK+vXrp7feekuTJk2Sn5+f4/hp06bJ29tb/fr1c9TRvHlzlStXTs8++6zq1q2rb7/9Vs8//7x2796txMREx7HGGKda7r//fm3cuFHjx49X/fr1dezYMW3cuFGHDx++aB8X5riff/5ZLVu21MMPPyw/Pz/t3r1bkydP1s0336wtW7bIy8urwPO7emyvXr3Up08fDRgwQCdPnlR0dLRGjhypN954Qy1btnTsd+7cOc2YMUM9e/ZUcHBwvtd++OGHdeTIEb3++utauHChgoKCJP3zjM1rr72m+vXr66WXXlLVqlVVr149rVq1Sl26dNFNN92kN998U35+fpo3b5569+6tU6dOKTY2tsDznTx5UlFRUTpy5IheeOEFhYWFadmyZerdu3e++589e1bdu3dX//79NWrUKJ07d05nzpxRVFSUfv75Z40bN04RERH6+uuvlZCQoLS0NC1evFiS1LFjR3388cc6cOCAgoKCdO7cOaWkpMjHx0dJSUmOELNixQpVqFBB7dq105kzZzRhwgSNHj1ab7zxhm644QZJUt26dR01ZWRk6N5779UTTzyhsWPHatGiRYqLi1NwcLAeeOCBi/YncFEGKCMSExONpHyX8uXLO+0ryQQGBpoTJ0442j755BMjyVx33XUmJyfH0T5lyhQjyWzevNnR1rZtWyPJfPrpp07nfeSRR0y5cuXMnj17nK41duxYx3qfPn2M3W43e/fudTo2OjraVKpUyRw7dswYY8zPP/9sypUrZ1555RXHPqdPnzbVq1c3Dz74oKOtf//+pkqVKk7XNMaYl156yUgyP/74Y4F9VqVKFTN8+PACt5fUcTk5OebPP/80e/bsydNvuf9u6enpLh87duxYI8k8++yzeY4bO3as8fb2Nr///rujbf78+UaSSUlJuWi9L774YoE1tW3b1rRt29axnp6ebiSZunXrmrNnzzrt26BBA3P99debP//806n99ttvN0FBQeb8+fMF1vDGG28YSWbp0qVO7f379zeSTGJioqMtJibGSDLvvPOO075vvvmmkWQ+/PBDp/YXXnjBSDJffvmlMcaYXbt2GUlmzpw5xhhj1qxZYySZkSNHmtDQUMdxnTp1Mq1atXKsf/TRR0aSWbVqVZ76c/8b+e6775zaGzVqZG699dYCf2+gMLgthTJnzpw5Sk1NdVq+++67PPtFRUWpcuXKjvWGDRtKkqKjo51maHLb9+zZ43S8r6+vunfv7tTWt29f5eTkaPXq1QXW99VXX6lDhw4KCQlxao+NjdWpU6cct1KuueYa3X777Zo2bZpjxmXu3Lk6fPiwhgwZ4jjuiy++UFRUlIKDg3Xu3DnHEh0dLUlKSUkpsJbmzZtr1qxZev7557Vu3Tr9+eefBe7r6nEHDx7UgAEDFBISogoVKsjLy0t16tSRJG3btu2i53f12DvvvDNP28CBAyVJb7/9tqNt6tSpatq0qdq0aVOo39MV3bt3d5pR2rVrl7Zv3657771Xkpz+bbp27aoDBw5ox44dBZ4vJSVFvr6+6tKli1P7PffcU+AxF/bDV199pcqVK+uuu+5yas+dMVq5cqWkv2Zbrr76asdtxaSkJDVt2lT33Xef0tPT9fPPPys7O1tr1qxRx44d/6En/icwMFDNmzd3aouIiMjz3xLgKsINypyGDRsqMjLSaWnWrFme/fz9/Z3Wvb29L9p+5swZp/aAgIA85wwMDJSki97WOXz4sONWx9/l3ib5+7HDhg3Tzp07lZSUJEmO2yy5twAk6ffff9fnn38uLy8vpyX3GYqLPeMyf/58xcTE6L///a9atmwpf39/PfDAA8rIyCjwmMIcl5OTo86dO2vhwoUaOXKkVq5cqe+//17r1q2TJJ0+fbrAcxfl2Pz6MyAgQL1799aMGTN0/vx5bd68WV9//bVTMCxJF9bw+++/S5KefPLJPP82gwYNknTxf5vDhw/nO8bya5OkSpUqqWrVqnnOERgY6BTWJalWrVqqUKGC01jr0KGDI+ysWLFCnTp1UtOmTRUQEKAVK1bom2++0enTp10KN9WrV8/TZrfbL/rvDxQGz9wApST3j9ff5f5xz+9/1HNVr15dBw4cyNOe+4BrjRo1HG3t27dXkyZNNHXqVFWpUkUbN27Ue++953RcjRo1FBERofHjx+d7vYKeLck9dsqUKZoyZYr27t2rzz77TKNGjdLBgwe1bNmyIh+3detW/fDDD5o1a5ZiYmIcx134YHZ+inLshX+8cw0bNkzvvvuuPv30Uy1btszxUG5puLCG3H/HuLg49erVK99jwsPDCzxf9erV9f333+dpLyh45tcH1atX13fffSdjjNP2gwcP6ty5c05jrUOHDpo5c6a+//57fffdd3r66acl/TUGk5KStGfPHlWpUkUtWrQosGbgUiHcAKXk+PHj+uyzz5xuTc2dO1flypW76G2PDh06aNGiRdq/f79T8JgzZ44qVaqU54/H0KFDNWDAAGVmZiogIMDxcGeu22+/XUuWLFHdunV1xRVXFPn3ueqqqzRkyBCtXLlS33zzTbGOy/1DeuFHoWfMmPGP5yvOsRdq1qyZWrVqpRdeeEFbt27Vo48+6nQrsiC51y7ODEN4eLjq1aunH374QRMmTHD5+LZt2+rDDz/U0qVLHbcYJWnevHmFPkeHDh304Ycf6pNPPlHPnj0d7XPmzHFs//u+NptNzzzzjNMY7tixo5566int2bNHbdq0cbr1VhL9BBQF4QZlztatW/P9CHTdunVVs2bNErtO9erVNXDgQO3du1f169fXkiVL9Pbbb2vgwIG66qqrCjxu7Nixjudknn32Wfn7++v999/X4sWL83wySpLuu+8+xcXFafXq1Xr66acdt8lyPffcc0pKSlKrVq00dOhQhYeH68yZM9q9e7eWLFmiN998U7Vr185TR2ZmpqKiotS3b181aNBAvr6+Sk1N1bJlywqcaSjscQ0aNFDdunU1atQoGWPk7++vzz//3HF77WKKc2x+hg0bpt69e8tmszluB/2Tpk2bSpJeffVVxcTEyMvLS+Hh4fL19XXp2jNmzFB0dLRuvfVWxcbG6sorr9SRI0e0bds2bdy40elj1heKiYnRK6+8ovvuu0/PP/+8wsLCtHTpUi1fvlySVK7cPz918MADD+iNN95QTEyMdu/eraZNm2rNmjWaMGGCunbt6nSLqVatWmrSpIm+/PJLRUVFOd6R07FjRx05ckRHjhzR5MmTnc6f+wbit956S76+vqpYsaJCQ0MvOnMJlAj3Ps8MXDoX+7SUJPP222879pVkBg8e7HR87qdeXnzxRaf2VatWGUnmo48+crS1bdvWNG7c2CQnJ5vIyEhjt9tNUFCQGT16dJ5PxuiCT0sZY8yWLVtMt27djJ+fn/H29jbXXnut06dfLhQbG2sqVKhgfv3113y3Hzp0yAwdOtSEhoYaLy8v4+/vb5o1a2bGjBnj9Imwvztz5owZMGCAiYiIMFWrVjU+Pj4mPDzcjB071pw8ebLAWgp73E8//WQ6depkfH19zRVXXGHuvvtus3fv3jz9kd+npQp7bO6npQ4dOlRgvdnZ2cZut5suXboUuE9+4uLiTHBwsClXrpzTJ4IK+rTUheMm1w8//GD+9a9/mVq1ahkvLy8TGBho2rdvb958881/rGHv3r2mV69epkqVKsbX19fceeedZsmSJXk+NRYTE2MqV66c7zkOHz5sBgwYYIKCgkyFChVMnTp1TFxcnDlz5kyefR9//HEjyYwfP96pvV69enk+MZhrypQpJjQ01JQvX97pU1y5/41cKCYmxtSpU+cff3fgYmzGXPBiCwDF1q5dO/3xxx/aunVrqV/r7Nmzuvrqq3XzzTcX+uVv+J/PP/9c3bt31+LFi9W1a1d3l1NsEyZM0NNPP629e/fmOyMHlAXclgIuU4cOHdKOHTuUmJio33//XaNGjXJ3SZeVn376SXv27NETTzyh6667zum5lctF7ssgGzRooD///FNfffWVXnvtNd13330EG5RphBvgMrV48WI9+OCDCgoK0rRp05w+/o1/NmjQIH3zzTe64YYbNHv27AI/UeXJKlWqpFdeeUW7d+9Wdna2rrrqKv373/92fJIJKKu4LQUAACyFl/gBAABLIdwAAABLIdwAAABLsfwDxTk5Odq/f798fX0vywcGAQAoi4wxOn78uIKDgwv1Usq/s3y42b9/f55vVwYAAJeHffv2ufxqA8uHm9zXoe/bty/PN+ICAADPlJWVpZCQEJe/1kQqA+Em91ZU1apVCTcAAFxmivJICQ8UAwAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAAS6ng7gIud1ePWuzuEuBGuyfe5u4SGINlHGMQ7uYJY/BCzNwAAABLIdwAAABLIdwAAABL8Zhwk5CQIJvNpuHDhzvajDGKj49XcHCwfHx81K5dO/3444/uKxIAAHg8jwg3qampeuuttxQREeHUPmnSJE2ePFlTp05VamqqAgMD1alTJx0/ftxNlQIAAE/n9nBz4sQJ3XvvvXr77bd1xRVXONqNMZoyZYrGjBmjXr16qUmTJpo9e7ZOnTqluXPnurFiAADgydwebgYPHqzbbrtNHTt2dGpPT09XRkaGOnfu7Giz2+1q27at1q5dW+D5srOzlZWV5bQAAICyw63vuZk3b542btyo1NTUPNsyMjIkSQEBAU7tAQEB2rNnT4HnTEhI0Lhx40q2UAAAcNlw28zNvn37NGzYML333nuqWLFigfvZbDandWNMnra/i4uLU2ZmpmPZt29fidUMAAA8n9tmbjZs2KCDBw+qWbNmjrbz589r9erVmjp1qnbs2CHprxmcoKAgxz4HDx7MM5vzd3a7XXa7vfQKBwAAHs1tMzcdOnTQli1blJaW5lgiIyN17733Ki0tTddcc40CAwOVlJTkOObs2bNKSUlRq1at3FU2AADwcG6bufH19VWTJk2c2ipXrqzq1as72ocPH64JEyaoXr16qlevniZMmKBKlSqpb9++7igZAABcBjz6izNHjhyp06dPa9CgQTp69Khuuukmffnll/L19XV3aQAAwEN5VLhJTk52WrfZbIqPj1d8fLxb6gEAAJcft7/nBgAAoCQRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKW4NdxMnz5dERERqlq1qqpWraqWLVtq6dKlju2xsbGy2WxOS4sWLdxYMQAA8HQV3Hnx2rVra+LEiQoLC5MkzZ49Wz169NCmTZvUuHFjSVKXLl2UmJjoOMbb29sttQIAgMuDW8NNt27dnNbHjx+v6dOna926dY5wY7fbFRgY6I7yAADAZchjnrk5f/685s2bp5MnT6ply5aO9uTkZNWqVUv169fXI488ooMHD170PNnZ2crKynJaAABA2eH2cLNlyxZVqVJFdrtdAwYM0KJFi9SoUSNJUnR0tN5//3199dVXevnll5Wamqr27dsrOzu7wPMlJCTIz8/PsYSEhFyqXwUAAHgAt96WkqTw8HClpaXp2LFjWrBggWJiYpSSkqJGjRqpd+/ejv2aNGmiyMhI1alTR4sXL1avXr3yPV9cXJxGjBjhWM/KyiLgAABQhrg93Hh7ezseKI6MjFRqaqpeffVVzZgxI8++QUFBqlOnjnbu3Fng+ex2u+x2e6nVCwAAPJvbb0tdyBhT4G2nw4cPa9++fQoKCrrEVQEAgMuFW2duRo8erejoaIWEhOj48eOaN2+ekpOTtWzZMp04cULx8fG68847FRQUpN27d2v06NGqUaOGevbs6c6yAQCAB3NruPn99991//3368CBA/Lz81NERISWLVumTp066fTp09qyZYvmzJmjY8eOKSgoSFFRUZo/f758fX3dWTYAAPBgbg03M2fOLHCbj4+Pli9ffgmrAQAAVuBxz9wAAAAUB+EGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYilvDzfTp0xUREaGqVauqatWqatmypZYuXerYboxRfHy8goOD5ePjo3bt2unHH390Y8UAAMDTuTXc1K5dWxMnTtT69eu1fv16tW/fXj169HAEmEmTJmny5MmaOnWqUlNTFRgYqE6dOun48ePuLBsAAHgwt4abbt26qWvXrqpfv77q16+v8ePHq0qVKlq3bp2MMZoyZYrGjBmjXr16qUmTJpo9e7ZOnTqluXPnurNsAADgwTzmmZvz589r3rx5OnnypFq2bKn09HRlZGSoc+fOjn3sdrvatm2rtWvXFnie7OxsZWVlOS0AAKDscHu42bJli6pUqSK73a4BAwZo0aJFatSokTIyMiRJAQEBTvsHBAQ4tuUnISFBfn5+jiUkJKRU6wcAAJ7F7eEmPDxcaWlpWrdunQYOHKiYmBj99NNPju02m81pf2NMnra/i4uLU2ZmpmPZt29fqdUOAAA8TwV3F+Dt7a2wsDBJUmRkpFJTU/Xqq6/q3//+tyQpIyNDQUFBjv0PHjyYZzbn7+x2u+x2e+kWDQAAPJbbZ24uZIxRdna2QkNDFRgYqKSkJMe2s2fPKiUlRa1atXJjhQAAwJO5deZm9OjRio6OVkhIiI4fP6558+YpOTlZy5Ytk81m0/DhwzVhwgTVq1dP9erV04QJE1SpUiX17dvXnWUDAAAP5tZw8/vvv+v+++/XgQMH5Ofnp4iICC1btkydOnWSJI0cOVKnT5/WoEGDdPToUd1000368ssv5evr686yAQCAB3NruJk5c+ZFt9tsNsXHxys+Pv7SFAQAAC57HvfMDQAAQHEUKdy8++67at26tYKDg7Vnzx5J0pQpU/Tpp5+WaHEAAACucjncTJ8+XSNGjFDXrl117NgxnT9/XpJUrVo1TZkypaTrAwAAcInL4eb111/X22+/rTFjxqh8+fKO9sjISG3ZsqVEiwMAAHCVy+EmPT1d119/fZ52u92ukydPlkhRAAAAReVyuAkNDVVaWlqe9qVLl6pRo0YlURMAAECRufxR8KeeekqDBw/WmTNnZIzR999/rw8++EAJCQn673//Wxo1AgAAFJrL4ebBBx/UuXPnNHLkSJ06dUp9+/bVlVdeqVdffVV9+vQpjRoBAAAKrUgv8XvkkUf0yCOP6I8//lBOTo5q1apV0nUBAAAUicvP3MTHxzvebVOjRg2CDQAA8Cguh5vPP/9cdevWVYcOHTR37lydOXOmNOoCAAAoEpfDzYYNG7Rx40ZFRETo8ccfV1BQkAYOHKjU1NTSqA8AAMAlRfr6hYiICL3yyiv67bff9M477+i3335T69at1bRpU7366qvKzMws6ToBAAAKpVhfnJmTk6OzZ88qOztbxhj5+/tr+vTpCgkJ0fz580uqRgAAgEIrUrjZsGGDhgwZoqCgID3++OO6/vrrtW3bNqWkpGj79u0aO3ashg4dWtK1AgAA/COXw01ERIRatGih9PR0zZw5U/v27dPEiRMVFhbm2OeBBx7QoUOHSrRQAACAwnD5PTd33323+vXrpyuvvLLAfWrWrKmcnJxiFQYAAFAULoebZ555xvGzMUaSZLPZSq4iAACAYijSMzdz5sxR06ZN5ePjIx8fH0VEROjdd98t6doAAABc5vLMzeTJk/XMM89oyJAhat26tYwx+uabbzRgwAD98ccfevzxx0ujTgAAgEJxOdy8/vrrmj59uh544AFHW48ePdS4cWPFx8cTbgAAgFu5fFvqwIEDatWqVZ72Vq1a6cCBAyVSFAAAQFG5HG7CwsL04Ycf5mmfP3++6tWrVyJFAQAAFJXLt6XGjRun3r17a/Xq1WrdurVsNpvWrFmjlStX5ht6AAAALiWXZ27uvPNOfffdd6pRo4Y++eQTLVy4UDVq1ND333+vnj17lkaNAAAAhebyzI0kNWvWTO+9915J1wIAAFBshQo3WVlZhT5h1apVi1wMAABAcRUq3FSrVu0f30JsjJHNZtP58+dLpDAAAICiKFS4WbVqVWnXAQAAUCIKFW7atm1b2nUAAACUiCI9UHz06FHNnDlT27Ztk81mU8OGDfXggw/K39+/pOsDAABwicsfBU9JSdHVV1+t1157TUePHtWRI0f02muvKTQ0VCkpKaVRIwAAQKG5HG4GDx6s3r17Kz09XQsXLtTChQv1yy+/qE+fPho8eLBL50pISNCNN94oX19f1apVS3fccYd27NjhtE9sbKxsNpvT0qJFC1fLBgAAZYTL4ebnn3/WE088ofLlyzvaypcvrxEjRujnn3926VwpKSkaPHiw1q1bp6SkJJ07d06dO3fWyZMnnfbr0qWLDhw44FiWLFniatkAAKCMcPmZmxtuuEHbtm1TeHi4U/u2bdt03XXXuXSuZcuWOa0nJiaqVq1a2rBhg9q0aeNot9vtCgwMdLVUAABQBrkcboYOHaphw4Zp165djttD69at0xtvvKGJEydq8+bNjn0jIiJcOndmZqYk5XkwOTk5WbVq1VK1atXUtm1bjR8/XrVq1cr3HNnZ2crOznasu/ICQgAAcPlzOdzcc889kqSRI0fmu81msxXphX7GGI0YMUI333yzmjRp4miPjo7W3XffrTp16ig9PV3PPPOM2rdvrw0bNshut+c5T0JCgsaNG+fqrwUAACzC5XCTnp5eGnVoyJAh2rx5s9asWePU3rt3b8fPTZo0UWRkpOrUqaPFixerV69eec4TFxenESNGONazsrIUEhJSKjUDAADP43K4qVOnTokX8dhjj+mzzz7T6tWrVbt27YvuGxQUpDp16mjnzp35brfb7fnO6AAAgLKhSC/x++233/TNN9/o4MGDysnJcdo2dOjQQp/HGKPHHntMixYtUnJyskJDQ//xmMOHD2vfvn0KCgpyuW4AAGB9LoebxMREDRgwQN7e3qpevbrTF2rabDaXws3gwYM1d+5cffrpp/L19VVGRoYkyc/PTz4+Pjpx4oTi4+N15513KigoSLt379bo0aNVo0YN9ezZ09XSAQBAGeByuHn22Wf17LPPKi4uTuXKufyaHCfTp0+XJLVr186pPTExUbGxsSpfvry2bNmiOXPm6NixYwoKClJUVJTmz58vX1/fYl0bAABYk8vh5tSpU+rTp0+xg430122pi/Hx8dHy5cuLfR0AAFB2uJxQHnroIX300UelUQsAAECxuTxzk5CQoNtvv13Lli1T06ZN5eXl5bR98uTJJVYcAACAq1wONxMmTNDy5csdX79w4QPFAAAA7uRyuJk8ebLeeecdxcbGlkI5AAAAxePyMzd2u12tW7cujVoAAACKzeVwM2zYML3++uulUQsAAECxuXxb6vvvv9dXX32lL774Qo0bN87zQPHChQtLrDgAAABXuRxuqlWrlu8XVgIAAHiCIn39AgAAgKcq0muGz507pxUrVmjGjBk6fvy4JGn//v06ceJEiRYHAADgKpdnbvbs2aMuXbpo7969ys7OVqdOneTr66tJkybpzJkzevPNN0ujTgAAgEIp0qelIiMjdfToUfn4+Djae/bsqZUrV5ZocQAAAK5yeeZmzZo1+uabb+Tt7e3UXqdOHf32228lVhgAAEBRuDxzk5OTo/Pnz+dp//XXX+Xr61siRQEAABSVy+GmU6dOmjJlimPdZrPpxIkTGjt2rLp27VqStQEAALjM5dtSr7zyiqKiotSoUSOdOXNGffv21c6dO1WjRg198MEHpVEjAABAobkcboKDg5WWlqZ58+Zpw4YNysnJ0UMPPaR7773X6QFjAAAAd3A53EiSj4+PHnzwQT344IMlXQ8AAECxFOklfgAAAJ6KcAMAACyFcAMAACylUOHmtdde05kzZyRJe/fulTGmVIsCAAAoqkKFmxEjRigrK0uSFBoaqkOHDpVqUQAAAEVVqE9LBQcHa8GCBeratauMMfr1118dMzkXuuqqq0q0QAAAAFcUKtw8/fTTeuyxxzRkyBDZbDbdeOONefYxxshms+X71QwAAACXSqHCzaOPPqp77rlHe/bsUUREhFasWKHq1auXdm0AAAAuK/RL/Hx9fdWkSRMlJiaqdevWstvtpVkXAABAkbj8huKYmBhJ0oYNG7Rt2zbZbDY1bNhQN9xwQ4kXBwAA4CqXw83BgwfVp08fJScnq1q1ajLGKDMzU1FRUZo3b55q1qxZGnUCAAAUissv8XvssceUlZWlH3/8UUeOHNHRo0e1detWZWVlaejQoaVRIwAAQKG5PHOzbNkyrVixQg0bNnS0NWrUSG+88YY6d+5cosUBAAC4yuWZm5ycHHl5eeVp9/LyUk5OTokUBQAAUFQuh5v27dtr2LBh2r9/v6Ptt99+0+OPP64OHTq4dK6EhATdeOON8vX1Va1atXTHHXdox44dTvsYYxQfH6/g4GD5+PioXbt2+vHHH10tGwAAlBEuh5upU6fq+PHjuvrqq1W3bl2FhYUpNDRUx48f1+uvv+7SuVJSUjR48GCtW7dOSUlJOnfunDp37qyTJ0869pk0aZImT56sqVOnKjU1VYGBgerUqZOOHz/uaukAAKAMcPmZm5CQEG3cuFFJSUnavn27jDFq1KiROnbs6PLFly1b5rSemJioWrVqacOGDWrTpo2MMZoyZYrGjBmjXr16SZJmz56tgIAAzZ07V/3793f5mgAAwNpcDje5OnXqpE6dOpVkLcrMzJQk+fv7S5LS09OVkZHh9KCy3W5X27ZttXbt2nzDTXZ2trKzsx3ruV/4CQAAygaXb0uVFmOMRowYoZtvvllNmjSRJGVkZEiSAgICnPYNCAhwbLtQQkKC/Pz8HEtISEjpFg4AADyKx4SbIUOGaPPmzfrggw/ybLPZbE7ruV/SmZ+4uDhlZmY6ln379pVKvQAAwDMV+bZUSXrsscf02WefafXq1apdu7ajPTAwUNJfMzhBQUGO9oMHD+aZzcllt9v53isAAMowt87cGGM0ZMgQLVy4UF999ZVCQ0OdtoeGhiowMFBJSUmOtrNnzyolJUWtWrW61OUCAIDLQJFmbnJycrRr1y4dPHgwz4v72rRpU+jzDB48WHPnztWnn34qX19fx3M0fn5+8vHxkc1m0/DhwzVhwgTVq1dP9erV04QJE1SpUiX17du3KKUDAACLczncrFu3Tn379tWePXtkjHHaZrPZdP78+UKfa/r06ZKkdu3aObUnJiYqNjZWkjRy5EidPn1agwYN0tGjR3XTTTfpyy+/lK+vr6ulAwCAMsDlcDNgwABFRkZq8eLFCgoKKvDB3sK4MBzlx2azKT4+XvHx8UW+DgAAKDtcDjc7d+7Uxx9/rLCwsNKoBwAAoFhcfqD4pptu0q5du0qjFgAAgGIr1MzN5s2bHT8/9thjeuKJJ5SRkaGmTZvm+YbwiIiIkq0QAADABYUKN9ddd51sNpvTMzL9+vVz/Jy7zdUHigEAAEpaocJNenp6adcBAABQIgoVburUqeP4efXq1WrVqpUqVHA+9Ny5c1q7dq3TvgAAAJeayw8UR0VF6ciRI3naMzMzFRUVVSJFAQAAFJXL4aagL608fPiwKleuXCJFAQAAFFWh33PTq1cvSX89PBwbG+v05ZTnz5/X5s2b+b4nAADgdoUON35+fpL+mrnx9fWVj4+PY5u3t7datGihRx55pOQrBAAAcEGhw01iYqIk6eqrr9aTTz7JLSgAAOCRXH7mJjg4WPv37y+NWgAAAIrN5XDz8ssvq0GDBgoODtY999yjGTNmaPv27aVRGwAAgMtcDjfbt2/Xb7/9ppdffll+fn565ZVX1LhxYwUGBqpPnz6lUSMAAEChufyt4JIUGBioe+65R927d9eaNWs0b948vffee/r4449Luj4AAACXuBxuli5dqpSUFCUnJ+uHH35Q48aN1aZNGy1YsEC33HJLadQIAABQaC6Hm9tuu001a9bUE088oeXLlzs+Ig4AAOAJXH7mZvLkyWrdurVefPFFhYeHq3fv3po+fbq2bdtWGvUBAAC4xOVwM3z4cC1cuFCHDh1SUlKSbrnlFq1YsULXXnutgoKCSqNGAACAQivSA8WStGnTJiUnJ2vVqlX6+uuvlZOTo9q1a5dkbQAAAC5zeeame/fu8vf314033qj3339f9evX17vvvqsjR44oNTW1NGoEAAAoNJdnburXr69HH31Ubdq0UdWqVUujJgAAgCJzOdy89NJLpVEHAABAiXD5tpQkpaSkqFu3bgoLC1O9evXUvXt3ff311yVdGwAAgMtcDjfvvfeeOnbsqEqVKmno0KEaMmSIfHx81KFDB82dO7c0agQAACg0l29LjR8/XpMmTdLjjz/uaBs2bJgmT56s//znP+rbt2+JFggAAOAKl2dufvnlF3Xr1i1Pe/fu3ZWenl4iRQEAABSVy+EmJCREK1euzNO+cuVKhYSElEhRAAAAReXybaknnnhCQ4cOVVpamlq1aiWbzaY1a9Zo1qxZevXVV0ujRgAAgEJzOdwMHDhQgYGBevnll/Xhhx9Kkho2bKj58+erR48eJV4gAACAK1wKN+fOndP48ePVr18/rVmzprRqAgAAKDKXnrmpUKGCXnzxRZ0/f7606gEAACgWlx8o7tixo5KTk0vk4qtXr1a3bt0UHBwsm82mTz75xGl7bGysbDab09KiRYsSuTYAALAml5+5iY6OVlxcnLZu3apmzZqpcuXKTtu7d+9e6HOdPHlS1157rR588EHdeeed+e7TpUsXJSYmOta9vb1dLRkAAJQhRXqgWJImT56cZ5vNZnPpllV0dLSio6Mvuo/dbldgYKBrRQIAgDLL5dtSOTk5BS6l8SxOcnKyatWqpfr16+uRRx7RwYMHL7p/dna2srKynBYAAFB2FOmLMy+V6Ohovf/++/rqq6/08ssvKzU1Ve3bt1d2dnaBxyQkJMjPz8+x8GJBAADKlkLfljp9+rRWrlyp22+/XZIUFxfnFDLKly+v//znP6pYsWKJFde7d2/Hz02aNFFkZKTq1KmjxYsXq1evXvkeExcXpxEjRjjWs7KyCDgAAJQhhQ43c+bM0RdffOEIN1OnTlXjxo3l4+MjSdq+fbuCg4OdvlCzpAUFBalOnTrauXNngfvY7XbZ7fZSqwEAAHi2Qt+Wev/999WvXz+ntrlz52rVqlVatWqVXnzxRccbi0vL4cOHtW/fPgUFBZXqdQAAwOWr0OHm//7v/1S/fn3HesWKFVWu3P8Ob968uX766SeXLn7ixAmlpaUpLS1NkpSenq60tDTt3btXJ06c0JNPPqlvv/1Wu3fvVnJysrp166YaNWqoZ8+eLl0HAACUHYW+LZWZmakKFf63+6FDh5y25+TkXPRB3/ysX79eUVFRjvXcZ2ViYmI0ffp0bdmyRXPmzNGxY8cUFBSkqKgozZ8/X76+vi5dBwAAlB2FDje1a9fW1q1bFR4enu/2zZs3q3bt2i5dvF27djLGFLh9+fLlLp0PAACg0LelunbtqmeffVZnzpzJs+306dMaN26cbrvtthItDgAAwFWFnrkZPXq0PvzwQ4WHh2vIkCGqX7++bDabtm/frqlTp+rcuXMaPXp0adYKAADwjwodbgICArR27VoNHDhQo0aNctxOstls6tSpk6ZNm6aAgIBSKxQAAKAwXPpuqdDQUC1btkxHjhzRrl27JElhYWHy9/cvleIAAABc5fIXZ0qSv7+/mjdvXtK1AAAAFJtHf7cUAACAqwg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUtwablavXq1u3bopODhYNptNn3zyidN2Y4zi4+MVHBwsHx8ftWvXTj/++KN7igUAAJcFt4abkydP6tprr9XUqVPz3T5p0iRNnjxZU6dOVWpqqgIDA9WpUycdP378ElcKAAAuFxXcefHo6GhFR0fnu80YoylTpmjMmDHq1auXJGn27NkKCAjQ3Llz1b9//0tZKgAAuEx47DM36enpysjIUOfOnR1tdrtdbdu21dq1aws8Ljs7W1lZWU4LAAAoOzw23GRkZEiSAgICnNoDAgIc2/KTkJAgPz8/xxISElKqdQIAAM/iseEml81mc1o3xuRp+7u4uDhlZmY6ln379pV2iQAAwIO49ZmbiwkMDJT01wxOUFCQo/3gwYN5ZnP+zm63y263l3p9AADAM3nszE1oaKgCAwOVlJTkaDt79qxSUlLUqlUrN1YGAAA8mVtnbk6cOKFdu3Y51tPT05WWliZ/f39dddVVGj58uCZMmKB69eqpXr16mjBhgipVqqS+ffu6sWoAAODJ3Bpu1q9fr6ioKMf6iBEjJEkxMTGaNWuWRo4cqdOnT2vQoEE6evSobrrpJn355Zfy9fV1V8kAAMDDuTXctGvXTsaYArfbbDbFx8crPj7+0hUFAAAuax77zA0AAEBREG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAICleHS4iY+Pl81mc1oCAwPdXRYAAPBgFdxdwD9p3LixVqxY4VgvX768G6sBAACezuPDTYUKFZitAQAAhebRt6UkaefOnQoODlZoaKj69OmjX3755aL7Z2dnKysry2kBAABlh0eHm5tuuklz5szR8uXL9fbbbysjI0OtWrXS4cOHCzwmISFBfn5+jiUkJOQSVgwAANzNo8NNdHS07rzzTjVt2lQdO3bU4sWLJUmzZ88u8Ji4uDhlZmY6ln379l2qcgEAgAfw+Gdu/q5y5cpq2rSpdu7cWeA+drtddrv9ElYFAAA8iUfP3FwoOztb27ZtU1BQkLtLAQAAHsqjw82TTz6plJQUpaen67vvvtNdd92lrKwsxcTEuLs0AADgoTz6ttSvv/6qe+65R3/88Ydq1qypFi1aaN26dapTp467SwMAAB7Ko8PNvHnz3F0CAAC4zHj0bSkAAABXEW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClXBbhZtq0aQoNDVXFihXVrFkzff311+4uCQAAeCiPDzfz58/X8OHDNWbMGG3atEm33HKLoqOjtXfvXneXBgAAPJDHh5vJkyfroYce0sMPP6yGDRtqypQpCgkJ0fTp091dGgAA8EAeHW7Onj2rDRs2qHPnzk7tnTt31tq1a91UFQAA8GQV3F3Axfzxxx86f/68AgICnNoDAgKUkZGR7zHZ2dnKzs52rGdmZkqSsrKySqXGnOxTpXJeXB5Ka1y5gjFYtjEG4W6lNQZzz2uMcflYjw43uWw2m9O6MSZPW66EhASNGzcuT3tISEip1IayzW+KuytAWccYhLuV9hg8fvy4/Pz8XDrGo8NNjRo1VL58+TyzNAcPHswzm5MrLi5OI0aMcKzn5OToyJEjql69ulMgysrKUkhIiPbt26eqVauWzi9gcfRh8dGHxUP/FR99WDz0X/EV1IfGGB0/flzBwcEun9Ojw423t7eaNWumpKQk9ezZ09GelJSkHj165HuM3W6X3W53aqtWrVqB16hatSoDspjow+KjD4uH/is++rB46L/iy68PXZ2xyeXR4UaSRowYofvvv1+RkZFq2bKl3nrrLe3du1cDBgxwd2kAAMADeXy46d27tw4fPqznnntOBw4cUJMmTbRkyRLVqVPH3aUBAAAP5PHhRpIGDRqkQYMGleg57Xa7xo4dm+cWFgqPPiw++rB46L/iow+Lh/4rvtLoQ5spymesAAAAPJRHv8QPAADAVYQbAABgKYQbAABgKYQbAABgKZYON9OmTVNoaKgqVqyoZs2a6euvvy5w3+TkZNlstjzL9u3bL2HFnmP16tXq1q2bgoODZbPZ9Mknn/zjMSkpKWrWrJkqVqyoa665Rm+++WbpF+rBXO1DxqCzhIQE3XjjjfL19VWtWrV0xx13aMeOHf94HOPwL0XpP8ags+nTpysiIsLxcrmWLVtq6dKlFz2G8efM1T4sqTFo2XAzf/58DR8+XGPGjNGmTZt0yy23KDo6Wnv37r3ocTt27NCBAwccS7169S5RxZ7l5MmTuvbaazV16tRC7Z+enq6uXbvqlltu0aZNmzR69GgNHTpUCxYsKOVKPZerfZiLMfiXlJQUDR48WOvWrVNSUpLOnTunzp076+TJkwUewzj8n6L0Xy7G4F9q166tiRMnav369Vq/fr3at2+vHj166Mcff8x3f8ZfXq72Ya5ij0FjUc2bNzcDBgxwamvQoIEZNWpUvvuvWrXKSDJHjx69BNVdXiSZRYsWXXSfkSNHmgYNGji19e/f37Ro0aIUK7t8FKYPGYMXd/DgQSPJpKSkFLgP47Bghek/xuA/u+KKK8x///vffLcx/grnYn1YUmPQkjM3Z8+e1YYNG9S5c2en9s6dO2vt2rUXPfb6669XUFCQOnTooFWrVpVmmZby7bff5unvW2+9VevXr9eff/7ppqouT4zB/GVmZkqS/P39C9yHcViwwvRfLsZgXufPn9e8efN08uRJtWzZMt99GH8XV5g+zFXcMWjJcPPHH3/o/Pnzeb45PCAgIM83jOcKCgrSW2+9pQULFmjhwoUKDw9Xhw4dtHr16ktR8mUvIyMj3/4+d+6c/vjjDzdVdXlhDBbMGKMRI0bo5ptvVpMmTQrcj3GYv8L2H2Mwry1btqhKlSqy2+0aMGCAFi1apEaNGuW7L+Mvf670YUmNwcvi6xeKymazOa0bY/K05QoPD1d4eLhjvWXLltq3b59eeukltWnTplTrtIr8+ju/duSPMViwIUOGaPPmzVqzZs0/7ss4zKuw/ccYzCs8PFxpaWk6duyYFixYoJiYGKWkpBT4x5nxl5crfVhSY9CSMzc1atRQ+fLl88zSHDx4ME+qvpgWLVpo586dJV2eJQUGBubb3xUqVFD16tXdVNXljzEoPfbYY/rss8+0atUq1a5d+6L7Mg7zcqX/8lPWx6C3t7fCwsIUGRmphIQEXXvttXr11Vfz3Zfxlz9X+jA/RRmDlgw33t7eatasmZKSkpzak5KS1KpVq0KfZ9OmTQoKCirp8iypZcuWefr7yy+/VGRkpLy8vNxU1eWvLI9BY4yGDBmihQsX6quvvlJoaOg/HsM4/J+i9F9+yvIYzI8xRtnZ2fluY/wVzsX6MD9FGoPFehzZg82bN894eXmZmTNnmp9++skMHz7cVK5c2ezevdsYY8yoUaPM/fff79j/lVdeMYsWLTL/93//Z7Zu3WpGjRplJJkFCxa461dwq+PHj5tNmzaZTZs2GUlm8uTJZtOmTWbPnj3GmLz998svv5hKlSqZxx9/3Pz0009m5syZxsvLy3z88cfu+hXcztU+ZAw6GzhwoPHz8zPJycnmwIEDjuXUqVOOfRiHBStK/zEGncXFxZnVq1eb9PR0s3nzZjN69GhTrlw58+WXXxpjGH+F4WofltQYtGy4McaYN954w9SpU8d4e3ubG264wekjkDExMaZt27aO9RdeeMHUrVvXVKxY0VxxxRXm5ptvNosXL3ZD1Z4h9+N4Fy4xMTHGmLz9Z4wxycnJ5vrrrzfe3t7m6quvNtOnT7/0hXsQV/uQMegsv76TZBITEx37MA4LVpT+Yww669evn+NvSM2aNU2HDh0cf5SNYfwVhqt9WFJj0GbM/3/aCQAAwAIs+cwNAAAouwg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AC57sbGxuuOOO9xdBgAPQbgBUGJiY2Nls9nyLF26dHF3aQDKkAruLgCAtXTp0kWJiYlObXa73U3VACiLmLkBUKLsdrsCAwOdliuuuEKSZLPZNGPGDN1+++2qVKmSGjZsqG+//Va7du1Su3btVLlyZbVs2VI///yz43zx8fG67rrrNGPGDIWEhKhSpUq6++67dezYsQJryM7O1tChQ1WrVi1VrFhRN998s1JTUyX99Y3EYWFheumll5yO2bp1q8qVK+e4dmZmph599FHVqlVLVatWVfv27fXDDz+UcG8BKA2EGwCX1H/+8x898MADSktLU4MGDdS3b1/1799fcXFxWr9+vSRpyJAhTsfs2rVLH374oT7//HMtW7ZMaWlpGjx4cIHXGDlypBYsWKDZs2dr48aNCgsL06233qojR47IZrOpX79+eWaX3nnnHd1yyy2qW7eujDG67bbblJGRoSVLlmjDhg264YYb1KFDBx05cqTkOwVAySruN34CQK6YmBhTvnx5U7lyZaflueeeM8b89U3VTz/9tGP/b7/91kgyM2fOdLR98MEHpmLFio71sWPHmvLly5t9+/Y52pYuXWrKlStnDhw44Lhujx49jDHGnDhxwnh5eZn333/fsf/Zs2dNcHCwmTRpkjHGmP3795vy5cub7777zrG9Zs2aZtasWcYYY1auXGmqVq1qzpw54/T71a1b18yYMaPY/QSgdPHMDYASFRUVpenTpzu1+fv7O36OiIhw/BwQECBJatq0qVPbmTNnlJWVpapVq0qSrrrqKtWuXduxT8uWLZWTk6MdO3YoMDDQ6Vo///yz/vzzT7Vu3drR5uXlpebNm2vbtm2SpKCgIN12221655131Lx5c33xxRc6c+aM7r77bknShg0bdOLECVWvXt3p3KdPn3a6ZQbAMxFuAJSoypUrKywsrMDtXl5ejp9tNluBbTk5OQWeI3ef3P/7d8aYfLcZY5zaHn74Yd1///165ZVXlJiYqN69e6tSpUqOawcFBSk5OTnP+atVq1ZgXQA8A8/cAPB4e/fu1f79+x3r3377rcqVK6f69evn2TcsLEze3t5as2aNo+3PP//U+vXr1bBhQ0db165dVblyZU2fPl1Lly5Vv379HNtuuOEGZWRkqEKFCgoLC3NaatSoUUq/JYCSwswNgBKVnZ2tjIwMp7YKFSoUKxRUrFhRMTExeumll5SVlaWhQ4fqX//6V55bUtJfM0cDBw7UU089JX9/f1111VWaNGmSTp06pYceesixX/ny5RUbG6u4uDiFhYWpZcuWjm0dO3ZUy5Ytdccdd+iFF15QeHi49u/fryVLluiOO+5QZGRkkX8XAKWPcAOgRC1btkxBQUFObeHh4dq+fXuRzxkWFqZevXqpa9euOnLkiLp27app06YVuP/EiROVk5Oj+++/X8ePH1dkZKSWL1/u+Eh6roceekgTJkxwmrWR/rqltWTJEo0ZM0b9+vXToUOHFBgYqDZt2jieEwLguWwm9wY1AHig+Ph4ffLJJ0pLSyvxc3/zzTdq166dfv31V0ILYCHM3AAoc7Kzs7Vv3z4988wz+te//kWwASyGB4oBlDkffPCBwsPDlZmZqUmTJrm7HAAljNtSAADAUpi5AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlvL/AHXJaMGliZcsAAAAAElFTkSuQmCC", 791 | "text/plain": [ 792 | "
" 793 | ] 794 | }, 795 | "metadata": {}, 796 | "output_type": "display_data" 797 | } 798 | ], 799 | "source": [ 800 | "plt.bar(pay,age)\n", 801 | "plt.xlabel(\"Employe\")\n", 802 | "plt.ylabel(\"Growth of employe\")\n", 803 | "plt.title(\"Employe's salary tire growth\")\n", 804 | "plt.show()" 805 | ] 806 | }, 807 | { 808 | "cell_type": "code", 809 | "execution_count": null, 810 | "id": "31cb7e9c", 811 | "metadata": {}, 812 | "outputs": [], 813 | "source": [] 814 | } 815 | ], 816 | "metadata": { 817 | "kernelspec": { 818 | "display_name": "Python 3 (ipykernel)", 819 | "language": "python", 820 | "name": "python3" 821 | }, 822 | "language_info": { 823 | "codemirror_mode": { 824 | "name": "ipython", 825 | "version": 3 826 | }, 827 | "file_extension": ".py", 828 | "mimetype": "text/x-python", 829 | "name": "python", 830 | "nbconvert_exporter": "python", 831 | "pygments_lexer": "ipython3", 832 | "version": "3.11.5" 833 | } 834 | }, 835 | "nbformat": 4, 836 | "nbformat_minor": 5 837 | } 838 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Data-Cleaning-using-Python 2 | This part consist of the Data cleaning which includes the removing the null values and replacing the some values instead of the null values and making it a cleaned data set 3 | --------------------------------------------------------------------------------