├── Data cleaning using Python
└── README.md
/Data cleaning using Python:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "3631d4f9",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 3,
16 | "id": "85c18b1c",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "import matplotlib.pyplot as plt"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 4,
26 | "id": "0f16a430",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "data=pd.read_csv(r\"D:\\dataset for ML\\Employee.csv\")"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 5,
36 | "id": "68f1e690",
37 | "metadata": {},
38 | "outputs": [
39 | {
40 | "data": {
41 | "text/html": [
42 | "
\n",
43 | "\n",
56 | "
\n",
57 | " \n",
58 | " \n",
59 | " | \n",
60 | " Education | \n",
61 | " JoiningYear | \n",
62 | " City | \n",
63 | " PaymentTier | \n",
64 | " Age | \n",
65 | " Gender | \n",
66 | " EverBenched | \n",
67 | " ExperienceInCurrentDomain | \n",
68 | " LeaveOrNot | \n",
69 | "
\n",
70 | " \n",
71 | " \n",
72 | " \n",
73 | " 0 | \n",
74 | " Bachelors | \n",
75 | " 2017 | \n",
76 | " Bangalore | \n",
77 | " 3 | \n",
78 | " 34 | \n",
79 | " Male | \n",
80 | " No | \n",
81 | " 0 | \n",
82 | " 0 | \n",
83 | "
\n",
84 | " \n",
85 | " 1 | \n",
86 | " Bachelors | \n",
87 | " 2013 | \n",
88 | " Pune | \n",
89 | " 1 | \n",
90 | " 28 | \n",
91 | " Female | \n",
92 | " No | \n",
93 | " 3 | \n",
94 | " 1 | \n",
95 | "
\n",
96 | " \n",
97 | " 2 | \n",
98 | " Bachelors | \n",
99 | " 2014 | \n",
100 | " New Delhi | \n",
101 | " 3 | \n",
102 | " 38 | \n",
103 | " Female | \n",
104 | " No | \n",
105 | " 2 | \n",
106 | " 0 | \n",
107 | "
\n",
108 | " \n",
109 | " 3 | \n",
110 | " Masters | \n",
111 | " 2016 | \n",
112 | " Bangalore | \n",
113 | " 3 | \n",
114 | " 27 | \n",
115 | " Male | \n",
116 | " No | \n",
117 | " 5 | \n",
118 | " 1 | \n",
119 | "
\n",
120 | " \n",
121 | " 4 | \n",
122 | " Masters | \n",
123 | " 2017 | \n",
124 | " Pune | \n",
125 | " 3 | \n",
126 | " 24 | \n",
127 | " Male | \n",
128 | " Yes | \n",
129 | " 2 | \n",
130 | " 1 | \n",
131 | "
\n",
132 | " \n",
133 | " ... | \n",
134 | " ... | \n",
135 | " ... | \n",
136 | " ... | \n",
137 | " ... | \n",
138 | " ... | \n",
139 | " ... | \n",
140 | " ... | \n",
141 | " ... | \n",
142 | " ... | \n",
143 | "
\n",
144 | " \n",
145 | " 4648 | \n",
146 | " Bachelors | \n",
147 | " 2013 | \n",
148 | " Bangalore | \n",
149 | " 3 | \n",
150 | " 26 | \n",
151 | " Female | \n",
152 | " No | \n",
153 | " 4 | \n",
154 | " 0 | \n",
155 | "
\n",
156 | " \n",
157 | " 4649 | \n",
158 | " Masters | \n",
159 | " 2013 | \n",
160 | " Pune | \n",
161 | " 2 | \n",
162 | " 37 | \n",
163 | " Male | \n",
164 | " No | \n",
165 | " 2 | \n",
166 | " 1 | \n",
167 | "
\n",
168 | " \n",
169 | " 4650 | \n",
170 | " Masters | \n",
171 | " 2018 | \n",
172 | " New Delhi | \n",
173 | " 3 | \n",
174 | " 27 | \n",
175 | " Male | \n",
176 | " No | \n",
177 | " 5 | \n",
178 | " 1 | \n",
179 | "
\n",
180 | " \n",
181 | " 4651 | \n",
182 | " Bachelors | \n",
183 | " 2012 | \n",
184 | " Bangalore | \n",
185 | " 3 | \n",
186 | " 30 | \n",
187 | " Male | \n",
188 | " Yes | \n",
189 | " 2 | \n",
190 | " 0 | \n",
191 | "
\n",
192 | " \n",
193 | " 4652 | \n",
194 | " Bachelors | \n",
195 | " 2015 | \n",
196 | " Bangalore | \n",
197 | " 3 | \n",
198 | " 33 | \n",
199 | " Male | \n",
200 | " Yes | \n",
201 | " 4 | \n",
202 | " 0 | \n",
203 | "
\n",
204 | " \n",
205 | "
\n",
206 | "
4653 rows × 9 columns
\n",
207 | "
"
208 | ],
209 | "text/plain": [
210 | " Education JoiningYear City PaymentTier Age Gender EverBenched \\\n",
211 | "0 Bachelors 2017 Bangalore 3 34 Male No \n",
212 | "1 Bachelors 2013 Pune 1 28 Female No \n",
213 | "2 Bachelors 2014 New Delhi 3 38 Female No \n",
214 | "3 Masters 2016 Bangalore 3 27 Male No \n",
215 | "4 Masters 2017 Pune 3 24 Male Yes \n",
216 | "... ... ... ... ... ... ... ... \n",
217 | "4648 Bachelors 2013 Bangalore 3 26 Female No \n",
218 | "4649 Masters 2013 Pune 2 37 Male No \n",
219 | "4650 Masters 2018 New Delhi 3 27 Male No \n",
220 | "4651 Bachelors 2012 Bangalore 3 30 Male Yes \n",
221 | "4652 Bachelors 2015 Bangalore 3 33 Male Yes \n",
222 | "\n",
223 | " ExperienceInCurrentDomain LeaveOrNot \n",
224 | "0 0 0 \n",
225 | "1 3 1 \n",
226 | "2 2 0 \n",
227 | "3 5 1 \n",
228 | "4 2 1 \n",
229 | "... ... ... \n",
230 | "4648 4 0 \n",
231 | "4649 2 1 \n",
232 | "4650 5 1 \n",
233 | "4651 2 0 \n",
234 | "4652 4 0 \n",
235 | "\n",
236 | "[4653 rows x 9 columns]"
237 | ]
238 | },
239 | "execution_count": 5,
240 | "metadata": {},
241 | "output_type": "execute_result"
242 | }
243 | ],
244 | "source": [
245 | "data"
246 | ]
247 | },
248 | {
249 | "cell_type": "code",
250 | "execution_count": 6,
251 | "id": "7e30784e",
252 | "metadata": {},
253 | "outputs": [],
254 | "source": [
255 | "data=data.dropna()"
256 | ]
257 | },
258 | {
259 | "cell_type": "code",
260 | "execution_count": 7,
261 | "id": "c60e9f00",
262 | "metadata": {},
263 | "outputs": [
264 | {
265 | "data": {
266 | "text/html": [
267 | "\n",
268 | "\n",
281 | "
\n",
282 | " \n",
283 | " \n",
284 | " | \n",
285 | " Education | \n",
286 | " JoiningYear | \n",
287 | " City | \n",
288 | " PaymentTier | \n",
289 | " Age | \n",
290 | " Gender | \n",
291 | " EverBenched | \n",
292 | " ExperienceInCurrentDomain | \n",
293 | " LeaveOrNot | \n",
294 | "
\n",
295 | " \n",
296 | " \n",
297 | " \n",
298 | " 0 | \n",
299 | " Bachelors | \n",
300 | " 2017 | \n",
301 | " Bangalore | \n",
302 | " 3 | \n",
303 | " 34 | \n",
304 | " Male | \n",
305 | " No | \n",
306 | " 0 | \n",
307 | " 0 | \n",
308 | "
\n",
309 | " \n",
310 | " 1 | \n",
311 | " Bachelors | \n",
312 | " 2013 | \n",
313 | " Pune | \n",
314 | " 1 | \n",
315 | " 28 | \n",
316 | " Female | \n",
317 | " No | \n",
318 | " 3 | \n",
319 | " 1 | \n",
320 | "
\n",
321 | " \n",
322 | " 2 | \n",
323 | " Bachelors | \n",
324 | " 2014 | \n",
325 | " New Delhi | \n",
326 | " 3 | \n",
327 | " 38 | \n",
328 | " Female | \n",
329 | " No | \n",
330 | " 2 | \n",
331 | " 0 | \n",
332 | "
\n",
333 | " \n",
334 | " 3 | \n",
335 | " Masters | \n",
336 | " 2016 | \n",
337 | " Bangalore | \n",
338 | " 3 | \n",
339 | " 27 | \n",
340 | " Male | \n",
341 | " No | \n",
342 | " 5 | \n",
343 | " 1 | \n",
344 | "
\n",
345 | " \n",
346 | " 4 | \n",
347 | " Masters | \n",
348 | " 2017 | \n",
349 | " Pune | \n",
350 | " 3 | \n",
351 | " 24 | \n",
352 | " Male | \n",
353 | " Yes | \n",
354 | " 2 | \n",
355 | " 1 | \n",
356 | "
\n",
357 | " \n",
358 | " ... | \n",
359 | " ... | \n",
360 | " ... | \n",
361 | " ... | \n",
362 | " ... | \n",
363 | " ... | \n",
364 | " ... | \n",
365 | " ... | \n",
366 | " ... | \n",
367 | " ... | \n",
368 | "
\n",
369 | " \n",
370 | " 4648 | \n",
371 | " Bachelors | \n",
372 | " 2013 | \n",
373 | " Bangalore | \n",
374 | " 3 | \n",
375 | " 26 | \n",
376 | " Female | \n",
377 | " No | \n",
378 | " 4 | \n",
379 | " 0 | \n",
380 | "
\n",
381 | " \n",
382 | " 4649 | \n",
383 | " Masters | \n",
384 | " 2013 | \n",
385 | " Pune | \n",
386 | " 2 | \n",
387 | " 37 | \n",
388 | " Male | \n",
389 | " No | \n",
390 | " 2 | \n",
391 | " 1 | \n",
392 | "
\n",
393 | " \n",
394 | " 4650 | \n",
395 | " Masters | \n",
396 | " 2018 | \n",
397 | " New Delhi | \n",
398 | " 3 | \n",
399 | " 27 | \n",
400 | " Male | \n",
401 | " No | \n",
402 | " 5 | \n",
403 | " 1 | \n",
404 | "
\n",
405 | " \n",
406 | " 4651 | \n",
407 | " Bachelors | \n",
408 | " 2012 | \n",
409 | " Bangalore | \n",
410 | " 3 | \n",
411 | " 30 | \n",
412 | " Male | \n",
413 | " Yes | \n",
414 | " 2 | \n",
415 | " 0 | \n",
416 | "
\n",
417 | " \n",
418 | " 4652 | \n",
419 | " Bachelors | \n",
420 | " 2015 | \n",
421 | " Bangalore | \n",
422 | " 3 | \n",
423 | " 33 | \n",
424 | " Male | \n",
425 | " Yes | \n",
426 | " 4 | \n",
427 | " 0 | \n",
428 | "
\n",
429 | " \n",
430 | "
\n",
431 | "
4653 rows × 9 columns
\n",
432 | "
"
433 | ],
434 | "text/plain": [
435 | " Education JoiningYear City PaymentTier Age Gender EverBenched \\\n",
436 | "0 Bachelors 2017 Bangalore 3 34 Male No \n",
437 | "1 Bachelors 2013 Pune 1 28 Female No \n",
438 | "2 Bachelors 2014 New Delhi 3 38 Female No \n",
439 | "3 Masters 2016 Bangalore 3 27 Male No \n",
440 | "4 Masters 2017 Pune 3 24 Male Yes \n",
441 | "... ... ... ... ... ... ... ... \n",
442 | "4648 Bachelors 2013 Bangalore 3 26 Female No \n",
443 | "4649 Masters 2013 Pune 2 37 Male No \n",
444 | "4650 Masters 2018 New Delhi 3 27 Male No \n",
445 | "4651 Bachelors 2012 Bangalore 3 30 Male Yes \n",
446 | "4652 Bachelors 2015 Bangalore 3 33 Male Yes \n",
447 | "\n",
448 | " ExperienceInCurrentDomain LeaveOrNot \n",
449 | "0 0 0 \n",
450 | "1 3 1 \n",
451 | "2 2 0 \n",
452 | "3 5 1 \n",
453 | "4 2 1 \n",
454 | "... ... ... \n",
455 | "4648 4 0 \n",
456 | "4649 2 1 \n",
457 | "4650 5 1 \n",
458 | "4651 2 0 \n",
459 | "4652 4 0 \n",
460 | "\n",
461 | "[4653 rows x 9 columns]"
462 | ]
463 | },
464 | "execution_count": 7,
465 | "metadata": {},
466 | "output_type": "execute_result"
467 | }
468 | ],
469 | "source": [
470 | "data"
471 | ]
472 | },
473 | {
474 | "cell_type": "code",
475 | "execution_count": 8,
476 | "id": "755c3d9d",
477 | "metadata": {},
478 | "outputs": [],
479 | "source": [
480 | "data=data.fillna(2)"
481 | ]
482 | },
483 | {
484 | "cell_type": "code",
485 | "execution_count": 9,
486 | "id": "697267b1",
487 | "metadata": {},
488 | "outputs": [
489 | {
490 | "data": {
491 | "text/html": [
492 | "\n",
493 | "\n",
506 | "
\n",
507 | " \n",
508 | " \n",
509 | " | \n",
510 | " Education | \n",
511 | " JoiningYear | \n",
512 | " City | \n",
513 | " PaymentTier | \n",
514 | " Age | \n",
515 | " Gender | \n",
516 | " EverBenched | \n",
517 | " ExperienceInCurrentDomain | \n",
518 | " LeaveOrNot | \n",
519 | "
\n",
520 | " \n",
521 | " \n",
522 | " \n",
523 | " 0 | \n",
524 | " Bachelors | \n",
525 | " 2017 | \n",
526 | " Bangalore | \n",
527 | " 3 | \n",
528 | " 34 | \n",
529 | " Male | \n",
530 | " No | \n",
531 | " 0 | \n",
532 | " 0 | \n",
533 | "
\n",
534 | " \n",
535 | " 1 | \n",
536 | " Bachelors | \n",
537 | " 2013 | \n",
538 | " Pune | \n",
539 | " 1 | \n",
540 | " 28 | \n",
541 | " Female | \n",
542 | " No | \n",
543 | " 3 | \n",
544 | " 1 | \n",
545 | "
\n",
546 | " \n",
547 | " 2 | \n",
548 | " Bachelors | \n",
549 | " 2014 | \n",
550 | " New Delhi | \n",
551 | " 3 | \n",
552 | " 38 | \n",
553 | " Female | \n",
554 | " No | \n",
555 | " 2 | \n",
556 | " 0 | \n",
557 | "
\n",
558 | " \n",
559 | " 3 | \n",
560 | " Masters | \n",
561 | " 2016 | \n",
562 | " Bangalore | \n",
563 | " 3 | \n",
564 | " 27 | \n",
565 | " Male | \n",
566 | " No | \n",
567 | " 5 | \n",
568 | " 1 | \n",
569 | "
\n",
570 | " \n",
571 | " 4 | \n",
572 | " Masters | \n",
573 | " 2017 | \n",
574 | " Pune | \n",
575 | " 3 | \n",
576 | " 24 | \n",
577 | " Male | \n",
578 | " Yes | \n",
579 | " 2 | \n",
580 | " 1 | \n",
581 | "
\n",
582 | " \n",
583 | " ... | \n",
584 | " ... | \n",
585 | " ... | \n",
586 | " ... | \n",
587 | " ... | \n",
588 | " ... | \n",
589 | " ... | \n",
590 | " ... | \n",
591 | " ... | \n",
592 | " ... | \n",
593 | "
\n",
594 | " \n",
595 | " 4648 | \n",
596 | " Bachelors | \n",
597 | " 2013 | \n",
598 | " Bangalore | \n",
599 | " 3 | \n",
600 | " 26 | \n",
601 | " Female | \n",
602 | " No | \n",
603 | " 4 | \n",
604 | " 0 | \n",
605 | "
\n",
606 | " \n",
607 | " 4649 | \n",
608 | " Masters | \n",
609 | " 2013 | \n",
610 | " Pune | \n",
611 | " 2 | \n",
612 | " 37 | \n",
613 | " Male | \n",
614 | " No | \n",
615 | " 2 | \n",
616 | " 1 | \n",
617 | "
\n",
618 | " \n",
619 | " 4650 | \n",
620 | " Masters | \n",
621 | " 2018 | \n",
622 | " New Delhi | \n",
623 | " 3 | \n",
624 | " 27 | \n",
625 | " Male | \n",
626 | " No | \n",
627 | " 5 | \n",
628 | " 1 | \n",
629 | "
\n",
630 | " \n",
631 | " 4651 | \n",
632 | " Bachelors | \n",
633 | " 2012 | \n",
634 | " Bangalore | \n",
635 | " 3 | \n",
636 | " 30 | \n",
637 | " Male | \n",
638 | " Yes | \n",
639 | " 2 | \n",
640 | " 0 | \n",
641 | "
\n",
642 | " \n",
643 | " 4652 | \n",
644 | " Bachelors | \n",
645 | " 2015 | \n",
646 | " Bangalore | \n",
647 | " 3 | \n",
648 | " 33 | \n",
649 | " Male | \n",
650 | " Yes | \n",
651 | " 4 | \n",
652 | " 0 | \n",
653 | "
\n",
654 | " \n",
655 | "
\n",
656 | "
4653 rows × 9 columns
\n",
657 | "
"
658 | ],
659 | "text/plain": [
660 | " Education JoiningYear City PaymentTier Age Gender EverBenched \\\n",
661 | "0 Bachelors 2017 Bangalore 3 34 Male No \n",
662 | "1 Bachelors 2013 Pune 1 28 Female No \n",
663 | "2 Bachelors 2014 New Delhi 3 38 Female No \n",
664 | "3 Masters 2016 Bangalore 3 27 Male No \n",
665 | "4 Masters 2017 Pune 3 24 Male Yes \n",
666 | "... ... ... ... ... ... ... ... \n",
667 | "4648 Bachelors 2013 Bangalore 3 26 Female No \n",
668 | "4649 Masters 2013 Pune 2 37 Male No \n",
669 | "4650 Masters 2018 New Delhi 3 27 Male No \n",
670 | "4651 Bachelors 2012 Bangalore 3 30 Male Yes \n",
671 | "4652 Bachelors 2015 Bangalore 3 33 Male Yes \n",
672 | "\n",
673 | " ExperienceInCurrentDomain LeaveOrNot \n",
674 | "0 0 0 \n",
675 | "1 3 1 \n",
676 | "2 2 0 \n",
677 | "3 5 1 \n",
678 | "4 2 1 \n",
679 | "... ... ... \n",
680 | "4648 4 0 \n",
681 | "4649 2 1 \n",
682 | "4650 5 1 \n",
683 | "4651 2 0 \n",
684 | "4652 4 0 \n",
685 | "\n",
686 | "[4653 rows x 9 columns]"
687 | ]
688 | },
689 | "execution_count": 9,
690 | "metadata": {},
691 | "output_type": "execute_result"
692 | }
693 | ],
694 | "source": [
695 | "data"
696 | ]
697 | },
698 | {
699 | "cell_type": "code",
700 | "execution_count": 10,
701 | "id": "21ad4911",
702 | "metadata": {},
703 | "outputs": [],
704 | "source": [
705 | "pay=data['PaymentTier']"
706 | ]
707 | },
708 | {
709 | "cell_type": "code",
710 | "execution_count": 11,
711 | "id": "dc55b7d2",
712 | "metadata": {},
713 | "outputs": [
714 | {
715 | "data": {
716 | "text/plain": [
717 | "0 3\n",
718 | "1 1\n",
719 | "2 3\n",
720 | "3 3\n",
721 | "4 3\n",
722 | " ..\n",
723 | "4648 3\n",
724 | "4649 2\n",
725 | "4650 3\n",
726 | "4651 3\n",
727 | "4652 3\n",
728 | "Name: PaymentTier, Length: 4653, dtype: int64"
729 | ]
730 | },
731 | "execution_count": 11,
732 | "metadata": {},
733 | "output_type": "execute_result"
734 | }
735 | ],
736 | "source": [
737 | "pay"
738 | ]
739 | },
740 | {
741 | "cell_type": "code",
742 | "execution_count": 18,
743 | "id": "ae905dd1",
744 | "metadata": {},
745 | "outputs": [],
746 | "source": [
747 | "age=data['Age']"
748 | ]
749 | },
750 | {
751 | "cell_type": "code",
752 | "execution_count": 19,
753 | "id": "831979df",
754 | "metadata": {},
755 | "outputs": [
756 | {
757 | "data": {
758 | "text/plain": [
759 | "0 34\n",
760 | "1 28\n",
761 | "2 38\n",
762 | "3 27\n",
763 | "4 24\n",
764 | " ..\n",
765 | "4648 26\n",
766 | "4649 37\n",
767 | "4650 27\n",
768 | "4651 30\n",
769 | "4652 33\n",
770 | "Name: Age, Length: 4653, dtype: int64"
771 | ]
772 | },
773 | "execution_count": 19,
774 | "metadata": {},
775 | "output_type": "execute_result"
776 | }
777 | ],
778 | "source": [
779 | "age"
780 | ]
781 | },
782 | {
783 | "cell_type": "code",
784 | "execution_count": 26,
785 | "id": "3b693527",
786 | "metadata": {},
787 | "outputs": [
788 | {
789 | "data": {
790 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/k0lEQVR4nO3deVxV1f7/8fdR4YiKGA4MSUaiONIgmUOpOCWWmlZXswGywTE1K69oJXZTzMqsTLOuoVamldrkFJpgZhYOpJb61cKhlDQHcMSU9fujH+d2BIzD4DluXs/HYz++7LWnD8vV5f1de599bMYYIwAAAIso5+4CAAAAShLhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBmXGrFmzZLPZClySk5PdUpfNZlN8fLxbrn0hm82mWbNmubsMJ7n/brt373Z3KQ5r165VfHy8jh07lmdbu3bt1K5du0tekyf66aefFB8fn++/Xbt27dSkSZNLXxTKhAruLgC41BITE9WgQYM87Y0aNXJDNbgcrV27VuPGjVNsbKyqVavmtG3atGnuKcoD/fTTTxo3bpzatWunq6++2t3loAwh3KDMadKkiSIjI91dBtzk1KlTqlSpUqmdvzAh+fz58zp37pzsdnup1fFPSrsfAHfithSQD5vNpiFDhigxMVHh4eHy8fFRZGSk1q1bJ2OMXnzxRYWGhqpKlSpq3769du3a5XR87pT7119/rRYtWsjHx0dXXnmlnnnmGZ0/f/4fr79161b16NFDV1xxhSpWrKjrrrtOs2fPdmw/ceKEqlWrpv79++c5dvfu3SpfvrxefPFFR1tGRob69++v2rVry9vbW6GhoRo3bpzOnTt30ToOHTqkRx99VCEhIbLb7apZs6Zat26tFStWFPu4pKQk9ejRQ7Vr11bFihUVFham/v37648//vjH/inssfHx8bLZbNq4caPuuusuXXHFFapbt67effdd2Ww2ffvtt3nO/dxzz8nLy0v79+/P99rx8fF66qmnJEmhoaF5bmteeFtq9+7dstlsmjRpkp5//nmFhobKbrdr1apVkqT169ere/fu8vf3V8WKFXX99dfrww8//Mc+kKRff/1Vd911l3x9fVWtWjXde++9Sk1NzXN7MTY2VlWqVNGWLVvUuXNn+fr6qkOHDpKkI0eOaNCgQbryyivl7e2ta665RmPGjFF2drbj+LvvvluNGzd2una3bt1ks9n00UcfOdo2btwom82mzz//XLNmzdLdd98tSYqKinL004W3PVNTU3XLLbeoUqVKuuaaazRx4kTl5OQU6vcHCsLMDcqc3P+v+e9sNpvKly/v1PbFF19o06ZNmjhxomw2m/7973/rtttuU0xMjH755RdNnTpVmZmZGjFihO68806lpaXJZrM5js/IyFCfPn00atQoPffcc1q8eLGef/55HT16VFOnTi2wvh07dqhVq1aqVauWXnvtNVWvXl3vvfeeYmNj9fvvv2vkyJGqUqWK+vXrp7feekuTJk2Sn5+f4/hp06bJ29tb/fr1c9TRvHlzlStXTs8++6zq1q2rb7/9Vs8//7x2796txMREx7HGGKda7r//fm3cuFHjx49X/fr1dezYMW3cuFGHDx++aB8X5riff/5ZLVu21MMPPyw/Pz/t3r1bkydP1s0336wtW7bIy8urwPO7emyvXr3Up08fDRgwQCdPnlR0dLRGjhypN954Qy1btnTsd+7cOc2YMUM9e/ZUcHBwvtd++OGHdeTIEb3++utauHChgoKCJP3zjM1rr72m+vXr66WXXlLVqlVVr149rVq1Sl26dNFNN92kN998U35+fpo3b5569+6tU6dOKTY2tsDznTx5UlFRUTpy5IheeOEFhYWFadmyZerdu3e++589e1bdu3dX//79NWrUKJ07d05nzpxRVFSUfv75Z40bN04RERH6+uuvlZCQoLS0NC1evFiS1LFjR3388cc6cOCAgoKCdO7cOaWkpMjHx0dJSUmOELNixQpVqFBB7dq105kzZzRhwgSNHj1ab7zxhm644QZJUt26dR01ZWRk6N5779UTTzyhsWPHatGiRYqLi1NwcLAeeOCBi/YncFEGKCMSExONpHyX8uXLO+0ryQQGBpoTJ0442j755BMjyVx33XUmJyfH0T5lyhQjyWzevNnR1rZtWyPJfPrpp07nfeSRR0y5cuXMnj17nK41duxYx3qfPn2M3W43e/fudTo2OjraVKpUyRw7dswYY8zPP/9sypUrZ1555RXHPqdPnzbVq1c3Dz74oKOtf//+pkqVKk7XNMaYl156yUgyP/74Y4F9VqVKFTN8+PACt5fUcTk5OebPP/80e/bsydNvuf9u6enpLh87duxYI8k8++yzeY4bO3as8fb2Nr///rujbf78+UaSSUlJuWi9L774YoE1tW3b1rRt29axnp6ebiSZunXrmrNnzzrt26BBA3P99debP//806n99ttvN0FBQeb8+fMF1vDGG28YSWbp0qVO7f379zeSTGJioqMtJibGSDLvvPOO075vvvmmkWQ+/PBDp/YXXnjBSDJffvmlMcaYXbt2GUlmzpw5xhhj1qxZYySZkSNHmtDQUMdxnTp1Mq1atXKsf/TRR0aSWbVqVZ76c/8b+e6775zaGzVqZG699dYCf2+gMLgthTJnzpw5Sk1NdVq+++67PPtFRUWpcuXKjvWGDRtKkqKjo51maHLb9+zZ43S8r6+vunfv7tTWt29f5eTkaPXq1QXW99VXX6lDhw4KCQlxao+NjdWpU6cct1KuueYa3X777Zo2bZpjxmXu3Lk6fPiwhgwZ4jjuiy++UFRUlIKDg3Xu3DnHEh0dLUlKSUkpsJbmzZtr1qxZev7557Vu3Tr9+eefBe7r6nEHDx7UgAEDFBISogoVKsjLy0t16tSRJG3btu2i53f12DvvvDNP28CBAyVJb7/9tqNt6tSpatq0qdq0aVOo39MV3bt3d5pR2rVrl7Zv3657771Xkpz+bbp27aoDBw5ox44dBZ4vJSVFvr6+6tKli1P7PffcU+AxF/bDV199pcqVK+uuu+5yas+dMVq5cqWkv2Zbrr76asdtxaSkJDVt2lT33Xef0tPT9fPPPys7O1tr1qxRx44d/6En/icwMFDNmzd3aouIiMjz3xLgKsINypyGDRsqMjLSaWnWrFme/fz9/Z3Wvb29L9p+5swZp/aAgIA85wwMDJSki97WOXz4sONWx9/l3ib5+7HDhg3Tzp07lZSUJEmO2yy5twAk6ffff9fnn38uLy8vpyX3GYqLPeMyf/58xcTE6L///a9atmwpf39/PfDAA8rIyCjwmMIcl5OTo86dO2vhwoUaOXKkVq5cqe+//17r1q2TJJ0+fbrAcxfl2Pz6MyAgQL1799aMGTN0/vx5bd68WV9//bVTMCxJF9bw+++/S5KefPLJPP82gwYNknTxf5vDhw/nO8bya5OkSpUqqWrVqnnOERgY6BTWJalWrVqqUKGC01jr0KGDI+ysWLFCnTp1UtOmTRUQEKAVK1bom2++0enTp10KN9WrV8/TZrfbL/rvDxQGz9wApST3j9ff5f5xz+9/1HNVr15dBw4cyNOe+4BrjRo1HG3t27dXkyZNNHXqVFWpUkUbN27Ue++953RcjRo1FBERofHjx+d7vYKeLck9dsqUKZoyZYr27t2rzz77TKNGjdLBgwe1bNmyIh+3detW/fDDD5o1a5ZiYmIcx134YHZ+inLshX+8cw0bNkzvvvuuPv30Uy1btszxUG5puLCG3H/HuLg49erVK99jwsPDCzxf9erV9f333+dpLyh45tcH1atX13fffSdjjNP2gwcP6ty5c05jrUOHDpo5c6a+//57fffdd3r66acl/TUGk5KStGfPHlWpUkUtWrQosGbgUiHcAKXk+PHj+uyzz5xuTc2dO1flypW76G2PDh06aNGiRdq/f79T8JgzZ44qVaqU54/H0KFDNWDAAGVmZiogIMDxcGeu22+/XUuWLFHdunV1xRVXFPn3ueqqqzRkyBCtXLlS33zzTbGOy/1DeuFHoWfMmPGP5yvOsRdq1qyZWrVqpRdeeEFbt27Vo48+6nQrsiC51y7ODEN4eLjq1aunH374QRMmTHD5+LZt2+rDDz/U0qVLHbcYJWnevHmFPkeHDh304Ycf6pNPPlHPnj0d7XPmzHFs//u+NptNzzzzjNMY7tixo5566int2bNHbdq0cbr1VhL9BBQF4QZlztatW/P9CHTdunVVs2bNErtO9erVNXDgQO3du1f169fXkiVL9Pbbb2vgwIG66qqrCjxu7Nixjudknn32Wfn7++v999/X4sWL83wySpLuu+8+xcXFafXq1Xr66acdt8lyPffcc0pKSlKrVq00dOhQhYeH68yZM9q9e7eWLFmiN998U7Vr185TR2ZmpqKiotS3b181aNBAvr6+Sk1N1bJlywqcaSjscQ0aNFDdunU1atQoGWPk7++vzz//3HF77WKKc2x+hg0bpt69e8tmszluB/2Tpk2bSpJeffVVxcTEyMvLS+Hh4fL19XXp2jNmzFB0dLRuvfVWxcbG6sorr9SRI0e0bds2bdy40elj1heKiYnRK6+8ovvuu0/PP/+8wsLCtHTpUi1fvlySVK7cPz918MADD+iNN95QTEyMdu/eraZNm2rNmjWaMGGCunbt6nSLqVatWmrSpIm+/PJLRUVFOd6R07FjRx05ckRHjhzR5MmTnc6f+wbit956S76+vqpYsaJCQ0MvOnMJlAj3Ps8MXDoX+7SUJPP222879pVkBg8e7HR87qdeXnzxRaf2VatWGUnmo48+crS1bdvWNG7c2CQnJ5vIyEhjt9tNUFCQGT16dJ5PxuiCT0sZY8yWLVtMt27djJ+fn/H29jbXXnut06dfLhQbG2sqVKhgfv3113y3Hzp0yAwdOtSEhoYaLy8v4+/vb5o1a2bGjBnj9Imwvztz5owZMGCAiYiIMFWrVjU+Pj4mPDzcjB071pw8ebLAWgp73E8//WQ6depkfH19zRVXXGHuvvtus3fv3jz9kd+npQp7bO6npQ4dOlRgvdnZ2cZut5suXboUuE9+4uLiTHBwsClXrpzTJ4IK+rTUheMm1w8//GD+9a9/mVq1ahkvLy8TGBho2rdvb958881/rGHv3r2mV69epkqVKsbX19fceeedZsmSJXk+NRYTE2MqV66c7zkOHz5sBgwYYIKCgkyFChVMnTp1TFxcnDlz5kyefR9//HEjyYwfP96pvV69enk+MZhrypQpJjQ01JQvX97pU1y5/41cKCYmxtSpU+cff3fgYmzGXPBiCwDF1q5dO/3xxx/aunVrqV/r7Nmzuvrqq3XzzTcX+uVv+J/PP/9c3bt31+LFi9W1a1d3l1NsEyZM0NNPP629e/fmOyMHlAXclgIuU4cOHdKOHTuUmJio33//XaNGjXJ3SZeVn376SXv27NETTzyh6667zum5lctF7ssgGzRooD///FNfffWVXnvtNd13330EG5RphBvgMrV48WI9+OCDCgoK0rRp05w+/o1/NmjQIH3zzTe64YYbNHv27AI/UeXJKlWqpFdeeUW7d+9Wdna2rrrqKv373/92fJIJKKu4LQUAACyFl/gBAABLIdwAAABLIdwAAABLsfwDxTk5Odq/f798fX0vywcGAQAoi4wxOn78uIKDgwv1Usq/s3y42b9/f55vVwYAAJeHffv2ufxqA8uHm9zXoe/bty/PN+ICAADPlJWVpZCQEJe/1kQqA+Em91ZU1apVCTcAAFxmivJICQ8UAwAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAAS6ng7gIud1ePWuzuEuBGuyfe5u4SGINlHGMQ7uYJY/BCzNwAAABLIdwAAABLIdwAAABL8Zhwk5CQIJvNpuHDhzvajDGKj49XcHCwfHx81K5dO/3444/uKxIAAHg8jwg3qampeuuttxQREeHUPmnSJE2ePFlTp05VamqqAgMD1alTJx0/ftxNlQIAAE/n9nBz4sQJ3XvvvXr77bd1xRVXONqNMZoyZYrGjBmjXr16qUmTJpo9e7ZOnTqluXPnurFiAADgydwebgYPHqzbbrtNHTt2dGpPT09XRkaGOnfu7Giz2+1q27at1q5dW+D5srOzlZWV5bQAAICyw63vuZk3b542btyo1NTUPNsyMjIkSQEBAU7tAQEB2rNnT4HnTEhI0Lhx40q2UAAAcNlw28zNvn37NGzYML333nuqWLFigfvZbDandWNMnra/i4uLU2ZmpmPZt29fidUMAAA8n9tmbjZs2KCDBw+qWbNmjrbz589r9erVmjp1qnbs2CHprxmcoKAgxz4HDx7MM5vzd3a7XXa7vfQKBwAAHs1tMzcdOnTQli1blJaW5lgiIyN17733Ki0tTddcc40CAwOVlJTkOObs2bNKSUlRq1at3FU2AADwcG6bufH19VWTJk2c2ipXrqzq1as72ocPH64JEyaoXr16qlevniZMmKBKlSqpb9++7igZAABcBjz6izNHjhyp06dPa9CgQTp69Khuuukmffnll/L19XV3aQAAwEN5VLhJTk52WrfZbIqPj1d8fLxb6gEAAJcft7/nBgAAoCQRbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKUQbgAAgKW4NdxMnz5dERERqlq1qqpWraqWLVtq6dKlju2xsbGy2WxOS4sWLdxYMQAA8HQV3Hnx2rVra+LEiQoLC5MkzZ49Wz169NCmTZvUuHFjSVKXLl2UmJjoOMbb29sttQIAgMuDW8NNt27dnNbHjx+v6dOna926dY5wY7fbFRgY6I7yAADAZchjnrk5f/685s2bp5MnT6ply5aO9uTkZNWqVUv169fXI488ooMHD170PNnZ2crKynJaAABA2eH2cLNlyxZVqVJFdrtdAwYM0KJFi9SoUSNJUnR0tN5//3199dVXevnll5Wamqr27dsrOzu7wPMlJCTIz8/PsYSEhFyqXwUAAHgAt96WkqTw8HClpaXp2LFjWrBggWJiYpSSkqJGjRqpd+/ejv2aNGmiyMhI1alTR4sXL1avXr3yPV9cXJxGjBjhWM/KyiLgAABQhrg93Hh7ezseKI6MjFRqaqpeffVVzZgxI8++QUFBqlOnjnbu3Fng+ex2u+x2e6nVCwAAPJvbb0tdyBhT4G2nw4cPa9++fQoKCrrEVQEAgMuFW2duRo8erejoaIWEhOj48eOaN2+ekpOTtWzZMp04cULx8fG68847FRQUpN27d2v06NGqUaOGevbs6c6yAQCAB3NruPn99991//3368CBA/Lz81NERISWLVumTp066fTp09qyZYvmzJmjY8eOKSgoSFFRUZo/f758fX3dWTYAAPBgbg03M2fOLHCbj4+Pli9ffgmrAQAAVuBxz9wAAAAUB+EGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYCuEGAABYilvDzfTp0xUREaGqVauqatWqatmypZYuXerYboxRfHy8goOD5ePjo3bt2unHH390Y8UAAMDTuTXc1K5dWxMnTtT69eu1fv16tW/fXj169HAEmEmTJmny5MmaOnWqUlNTFRgYqE6dOun48ePuLBsAAHgwt4abbt26qWvXrqpfv77q16+v8ePHq0qVKlq3bp2MMZoyZYrGjBmjXr16qUmTJpo9e7ZOnTqluXPnurNsAADgwTzmmZvz589r3rx5OnnypFq2bKn09HRlZGSoc+fOjn3sdrvatm2rtWvXFnie7OxsZWVlOS0AAKDscHu42bJli6pUqSK73a4BAwZo0aJFatSokTIyMiRJAQEBTvsHBAQ4tuUnISFBfn5+jiUkJKRU6wcAAJ7F7eEmPDxcaWlpWrdunQYOHKiYmBj99NNPju02m81pf2NMnra/i4uLU2ZmpmPZt29fqdUOAAA8TwV3F+Dt7a2wsDBJUmRkpFJTU/Xqq6/q3//+tyQpIyNDQUFBjv0PHjyYZzbn7+x2u+x2e+kWDQAAPJbbZ24uZIxRdna2QkNDFRgYqKSkJMe2s2fPKiUlRa1atXJjhQAAwJO5deZm9OjRio6OVkhIiI4fP6558+YpOTlZy5Ytk81m0/DhwzVhwgTVq1dP9erV04QJE1SpUiX17dvXnWUDAAAP5tZw8/vvv+v+++/XgQMH5Ofnp4iICC1btkydOnWSJI0cOVKnT5/WoEGDdPToUd1000368ssv5evr686yAQCAB3NruJk5c+ZFt9tsNsXHxys+Pv7SFAQAAC57HvfMDQAAQHEUKdy8++67at26tYKDg7Vnzx5J0pQpU/Tpp5+WaHEAAACucjncTJ8+XSNGjFDXrl117NgxnT9/XpJUrVo1TZkypaTrAwAAcInL4eb111/X22+/rTFjxqh8+fKO9sjISG3ZsqVEiwMAAHCVy+EmPT1d119/fZ52u92ukydPlkhRAAAAReVyuAkNDVVaWlqe9qVLl6pRo0YlURMAAECRufxR8KeeekqDBw/WmTNnZIzR999/rw8++EAJCQn673//Wxo1AgAAFJrL4ebBBx/UuXPnNHLkSJ06dUp9+/bVlVdeqVdffVV9+vQpjRoBAAAKrUgv8XvkkUf0yCOP6I8//lBOTo5q1apV0nUBAAAUicvP3MTHxzvebVOjRg2CDQAA8Cguh5vPP/9cdevWVYcOHTR37lydOXOmNOoCAAAoEpfDzYYNG7Rx40ZFRETo8ccfV1BQkAYOHKjU1NTSqA8AAMAlRfr6hYiICL3yyiv67bff9M477+i3335T69at1bRpU7366qvKzMws6ToBAAAKpVhfnJmTk6OzZ88qOztbxhj5+/tr+vTpCgkJ0fz580uqRgAAgEIrUrjZsGGDhgwZoqCgID3++OO6/vrrtW3bNqWkpGj79u0aO3ashg4dWtK1AgAA/COXw01ERIRatGih9PR0zZw5U/v27dPEiRMVFhbm2OeBBx7QoUOHSrRQAACAwnD5PTd33323+vXrpyuvvLLAfWrWrKmcnJxiFQYAAFAULoebZ555xvGzMUaSZLPZSq4iAACAYijSMzdz5sxR06ZN5ePjIx8fH0VEROjdd98t6doAAABc5vLMzeTJk/XMM89oyJAhat26tYwx+uabbzRgwAD98ccfevzxx0ujTgAAgEJxOdy8/vrrmj59uh544AFHW48ePdS4cWPFx8cTbgAAgFu5fFvqwIEDatWqVZ72Vq1a6cCBAyVSFAAAQFG5HG7CwsL04Ycf5mmfP3++6tWrVyJFAQAAFJXLt6XGjRun3r17a/Xq1WrdurVsNpvWrFmjlStX5ht6AAAALiWXZ27uvPNOfffdd6pRo4Y++eQTLVy4UDVq1ND333+vnj17lkaNAAAAhebyzI0kNWvWTO+9915J1wIAAFBshQo3WVlZhT5h1apVi1wMAABAcRUq3FSrVu0f30JsjJHNZtP58+dLpDAAAICiKFS4WbVqVWnXAQAAUCIKFW7atm1b2nUAAACUiCI9UHz06FHNnDlT27Ztk81mU8OGDfXggw/K39+/pOsDAABwicsfBU9JSdHVV1+t1157TUePHtWRI0f02muvKTQ0VCkpKaVRIwAAQKG5HG4GDx6s3r17Kz09XQsXLtTChQv1yy+/qE+fPho8eLBL50pISNCNN94oX19f1apVS3fccYd27NjhtE9sbKxsNpvT0qJFC1fLBgAAZYTL4ebnn3/WE088ofLlyzvaypcvrxEjRujnn3926VwpKSkaPHiw1q1bp6SkJJ07d06dO3fWyZMnnfbr0qWLDhw44FiWLFniatkAAKCMcPmZmxtuuEHbtm1TeHi4U/u2bdt03XXXuXSuZcuWOa0nJiaqVq1a2rBhg9q0aeNot9vtCgwMdLVUAABQBrkcboYOHaphw4Zp165djttD69at0xtvvKGJEydq8+bNjn0jIiJcOndmZqYk5XkwOTk5WbVq1VK1atXUtm1bjR8/XrVq1cr3HNnZ2crOznasu/ICQgAAcPlzOdzcc889kqSRI0fmu81msxXphX7GGI0YMUI333yzmjRp4miPjo7W3XffrTp16ig9PV3PPPOM2rdvrw0bNshut+c5T0JCgsaNG+fqrwUAACzC5XCTnp5eGnVoyJAh2rx5s9asWePU3rt3b8fPTZo0UWRkpOrUqaPFixerV69eec4TFxenESNGONazsrIUEhJSKjUDAADP43K4qVOnTokX8dhjj+mzzz7T6tWrVbt27YvuGxQUpDp16mjnzp35brfb7fnO6AAAgLKhSC/x++233/TNN9/o4MGDysnJcdo2dOjQQp/HGKPHHntMixYtUnJyskJDQ//xmMOHD2vfvn0KCgpyuW4AAGB9LoebxMREDRgwQN7e3qpevbrTF2rabDaXws3gwYM1d+5cffrpp/L19VVGRoYkyc/PTz4+Pjpx4oTi4+N15513KigoSLt379bo0aNVo0YN9ezZ09XSAQBAGeByuHn22Wf17LPPKi4uTuXKufyaHCfTp0+XJLVr186pPTExUbGxsSpfvry2bNmiOXPm6NixYwoKClJUVJTmz58vX1/fYl0bAABYk8vh5tSpU+rTp0+xg430122pi/Hx8dHy5cuLfR0AAFB2uJxQHnroIX300UelUQsAAECxuTxzk5CQoNtvv13Lli1T06ZN5eXl5bR98uTJJVYcAACAq1wONxMmTNDy5csdX79w4QPFAAAA7uRyuJk8ebLeeecdxcbGlkI5AAAAxePyMzd2u12tW7cujVoAAACKzeVwM2zYML3++uulUQsAAECxuXxb6vvvv9dXX32lL774Qo0bN87zQPHChQtLrDgAAABXuRxuqlWrlu8XVgIAAHiCIn39AgAAgKcq0muGz507pxUrVmjGjBk6fvy4JGn//v06ceJEiRYHAADgKpdnbvbs2aMuXbpo7969ys7OVqdOneTr66tJkybpzJkzevPNN0ujTgAAgEIp0qelIiMjdfToUfn4+Djae/bsqZUrV5ZocQAAAK5yeeZmzZo1+uabb+Tt7e3UXqdOHf32228lVhgAAEBRuDxzk5OTo/Pnz+dp//XXX+Xr61siRQEAABSVy+GmU6dOmjJlimPdZrPpxIkTGjt2rLp27VqStQEAALjM5dtSr7zyiqKiotSoUSOdOXNGffv21c6dO1WjRg198MEHpVEjAABAobkcboKDg5WWlqZ58+Zpw4YNysnJ0UMPPaR7773X6QFjAAAAd3A53EiSj4+PHnzwQT344IMlXQ8AAECxFOklfgAAAJ6KcAMAACyFcAMAACylUOHmtdde05kzZyRJe/fulTGmVIsCAAAoqkKFmxEjRigrK0uSFBoaqkOHDpVqUQAAAEVVqE9LBQcHa8GCBeratauMMfr1118dMzkXuuqqq0q0QAAAAFcUKtw8/fTTeuyxxzRkyBDZbDbdeOONefYxxshms+X71QwAAACXSqHCzaOPPqp77rlHe/bsUUREhFasWKHq1auXdm0AAAAuK/RL/Hx9fdWkSRMlJiaqdevWstvtpVkXAABAkbj8huKYmBhJ0oYNG7Rt2zbZbDY1bNhQN9xwQ4kXBwAA4CqXw83BgwfVp08fJScnq1q1ajLGKDMzU1FRUZo3b55q1qxZGnUCAAAUissv8XvssceUlZWlH3/8UUeOHNHRo0e1detWZWVlaejQoaVRIwAAQKG5PHOzbNkyrVixQg0bNnS0NWrUSG+88YY6d+5cosUBAAC4yuWZm5ycHHl5eeVp9/LyUk5OTokUBQAAUFQuh5v27dtr2LBh2r9/v6Ptt99+0+OPP64OHTq4dK6EhATdeOON8vX1Va1atXTHHXdox44dTvsYYxQfH6/g4GD5+PioXbt2+vHHH10tGwAAlBEuh5upU6fq+PHjuvrqq1W3bl2FhYUpNDRUx48f1+uvv+7SuVJSUjR48GCtW7dOSUlJOnfunDp37qyTJ0869pk0aZImT56sqVOnKjU1VYGBgerUqZOOHz/uaukAAKAMcPmZm5CQEG3cuFFJSUnavn27jDFq1KiROnbs6PLFly1b5rSemJioWrVqacOGDWrTpo2MMZoyZYrGjBmjXr16SZJmz56tgIAAzZ07V/3793f5mgAAwNpcDje5OnXqpE6dOpVkLcrMzJQk+fv7S5LS09OVkZHh9KCy3W5X27ZttXbt2nzDTXZ2trKzsx3ruV/4CQAAygaXb0uVFmOMRowYoZtvvllNmjSRJGVkZEiSAgICnPYNCAhwbLtQQkKC/Pz8HEtISEjpFg4AADyKx4SbIUOGaPPmzfrggw/ybLPZbE7ruV/SmZ+4uDhlZmY6ln379pVKvQAAwDMV+bZUSXrsscf02WefafXq1apdu7ajPTAwUNJfMzhBQUGO9oMHD+aZzcllt9v53isAAMowt87cGGM0ZMgQLVy4UF999ZVCQ0OdtoeGhiowMFBJSUmOtrNnzyolJUWtWrW61OUCAIDLQJFmbnJycrRr1y4dPHgwz4v72rRpU+jzDB48WHPnztWnn34qX19fx3M0fn5+8vHxkc1m0/DhwzVhwgTVq1dP9erV04QJE1SpUiX17du3KKUDAACLczncrFu3Tn379tWePXtkjHHaZrPZdP78+UKfa/r06ZKkdu3aObUnJiYqNjZWkjRy5EidPn1agwYN0tGjR3XTTTfpyy+/lK+vr6ulAwCAMsDlcDNgwABFRkZq8eLFCgoKKvDB3sK4MBzlx2azKT4+XvHx8UW+DgAAKDtcDjc7d+7Uxx9/rLCwsNKoBwAAoFhcfqD4pptu0q5du0qjFgAAgGIr1MzN5s2bHT8/9thjeuKJJ5SRkaGmTZvm+YbwiIiIkq0QAADABYUKN9ddd51sNpvTMzL9+vVz/Jy7zdUHigEAAEpaocJNenp6adcBAABQIgoVburUqeP4efXq1WrVqpUqVHA+9Ny5c1q7dq3TvgAAAJeayw8UR0VF6ciRI3naMzMzFRUVVSJFAQAAFJXL4aagL608fPiwKleuXCJFAQAAFFWh33PTq1cvSX89PBwbG+v05ZTnz5/X5s2b+b4nAADgdoUON35+fpL+mrnx9fWVj4+PY5u3t7datGihRx55pOQrBAAAcEGhw01iYqIk6eqrr9aTTz7JLSgAAOCRXH7mJjg4WPv37y+NWgAAAIrN5XDz8ssvq0GDBgoODtY999yjGTNmaPv27aVRGwAAgMtcDjfbt2/Xb7/9ppdffll+fn565ZVX1LhxYwUGBqpPnz6lUSMAAEChufyt4JIUGBioe+65R927d9eaNWs0b948vffee/r4449Luj4AAACXuBxuli5dqpSUFCUnJ+uHH35Q48aN1aZNGy1YsEC33HJLadQIAABQaC6Hm9tuu001a9bUE088oeXLlzs+Ig4AAOAJXH7mZvLkyWrdurVefPFFhYeHq3fv3po+fbq2bdtWGvUBAAC4xOVwM3z4cC1cuFCHDh1SUlKSbrnlFq1YsULXXnutgoKCSqNGAACAQivSA8WStGnTJiUnJ2vVqlX6+uuvlZOTo9q1a5dkbQAAAC5zeeame/fu8vf314033qj3339f9evX17vvvqsjR44oNTW1NGoEAAAoNJdnburXr69HH31Ubdq0UdWqVUujJgAAgCJzOdy89NJLpVEHAABAiXD5tpQkpaSkqFu3bgoLC1O9evXUvXt3ff311yVdGwAAgMtcDjfvvfeeOnbsqEqVKmno0KEaMmSIfHx81KFDB82dO7c0agQAACg0l29LjR8/XpMmTdLjjz/uaBs2bJgmT56s//znP+rbt2+JFggAAOAKl2dufvnlF3Xr1i1Pe/fu3ZWenl4iRQEAABSVy+EmJCREK1euzNO+cuVKhYSElEhRAAAAReXybaknnnhCQ4cOVVpamlq1aiWbzaY1a9Zo1qxZevXVV0ujRgAAgEJzOdwMHDhQgYGBevnll/Xhhx9Kkho2bKj58+erR48eJV4gAACAK1wKN+fOndP48ePVr18/rVmzprRqAgAAKDKXnrmpUKGCXnzxRZ0/f7606gEAACgWlx8o7tixo5KTk0vk4qtXr1a3bt0UHBwsm82mTz75xGl7bGysbDab09KiRYsSuTYAALAml5+5iY6OVlxcnLZu3apmzZqpcuXKTtu7d+9e6HOdPHlS1157rR588EHdeeed+e7TpUsXJSYmOta9vb1dLRkAAJQhRXqgWJImT56cZ5vNZnPpllV0dLSio6Mvuo/dbldgYKBrRQIAgDLL5dtSOTk5BS6l8SxOcnKyatWqpfr16+uRRx7RwYMHL7p/dna2srKynBYAAFB2FOmLMy+V6Ohovf/++/rqq6/08ssvKzU1Ve3bt1d2dnaBxyQkJMjPz8+x8GJBAADKlkLfljp9+rRWrlyp22+/XZIUFxfnFDLKly+v//znP6pYsWKJFde7d2/Hz02aNFFkZKTq1KmjxYsXq1evXvkeExcXpxEjRjjWs7KyCDgAAJQhhQ43c+bM0RdffOEIN1OnTlXjxo3l4+MjSdq+fbuCg4OdvlCzpAUFBalOnTrauXNngfvY7XbZ7fZSqwEAAHi2Qt+Wev/999WvXz+ntrlz52rVqlVatWqVXnzxRccbi0vL4cOHtW/fPgUFBZXqdQAAwOWr0OHm//7v/1S/fn3HesWKFVWu3P8Ob968uX766SeXLn7ixAmlpaUpLS1NkpSenq60tDTt3btXJ06c0JNPPqlvv/1Wu3fvVnJysrp166YaNWqoZ8+eLl0HAACUHYW+LZWZmakKFf63+6FDh5y25+TkXPRB3/ysX79eUVFRjvXcZ2ViYmI0ffp0bdmyRXPmzNGxY8cUFBSkqKgozZ8/X76+vi5dBwAAlB2FDje1a9fW1q1bFR4enu/2zZs3q3bt2i5dvF27djLGFLh9+fLlLp0PAACg0LelunbtqmeffVZnzpzJs+306dMaN26cbrvtthItDgAAwFWFnrkZPXq0PvzwQ4WHh2vIkCGqX7++bDabtm/frqlTp+rcuXMaPXp0adYKAADwjwodbgICArR27VoNHDhQo0aNctxOstls6tSpk6ZNm6aAgIBSKxQAAKAwXPpuqdDQUC1btkxHjhzRrl27JElhYWHy9/cvleIAAABc5fIXZ0qSv7+/mjdvXtK1AAAAFJtHf7cUAACAqwg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUtwablavXq1u3bopODhYNptNn3zyidN2Y4zi4+MVHBwsHx8ftWvXTj/++KN7igUAAJcFt4abkydP6tprr9XUqVPz3T5p0iRNnjxZU6dOVWpqqgIDA9WpUycdP378ElcKAAAuFxXcefHo6GhFR0fnu80YoylTpmjMmDHq1auXJGn27NkKCAjQ3Llz1b9//0tZKgAAuEx47DM36enpysjIUOfOnR1tdrtdbdu21dq1aws8Ljs7W1lZWU4LAAAoOzw23GRkZEiSAgICnNoDAgIc2/KTkJAgPz8/xxISElKqdQIAAM/iseEml81mc1o3xuRp+7u4uDhlZmY6ln379pV2iQAAwIO49ZmbiwkMDJT01wxOUFCQo/3gwYN5ZnP+zm63y263l3p9AADAM3nszE1oaKgCAwOVlJTkaDt79qxSUlLUqlUrN1YGAAA8mVtnbk6cOKFdu3Y51tPT05WWliZ/f39dddVVGj58uCZMmKB69eqpXr16mjBhgipVqqS+ffu6sWoAAODJ3Bpu1q9fr6ioKMf6iBEjJEkxMTGaNWuWRo4cqdOnT2vQoEE6evSobrrpJn355Zfy9fV1V8kAAMDDuTXctGvXTsaYArfbbDbFx8crPj7+0hUFAAAuax77zA0AAEBREG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAICleHS4iY+Pl81mc1oCAwPdXRYAAPBgFdxdwD9p3LixVqxY4VgvX768G6sBAACezuPDTYUKFZitAQAAhebRt6UkaefOnQoODlZoaKj69OmjX3755aL7Z2dnKysry2kBAABlh0eHm5tuuklz5szR8uXL9fbbbysjI0OtWrXS4cOHCzwmISFBfn5+jiUkJOQSVgwAANzNo8NNdHS07rzzTjVt2lQdO3bU4sWLJUmzZ88u8Ji4uDhlZmY6ln379l2qcgEAgAfw+Gdu/q5y5cpq2rSpdu7cWeA+drtddrv9ElYFAAA8iUfP3FwoOztb27ZtU1BQkLtLAQAAHsqjw82TTz6plJQUpaen67vvvtNdd92lrKwsxcTEuLs0AADgoTz6ttSvv/6qe+65R3/88Ydq1qypFi1aaN26dapTp467SwMAAB7Ko8PNvHnz3F0CAAC4zHj0bSkAAABXEW4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClEG4AAIClXBbhZtq0aQoNDVXFihXVrFkzff311+4uCQAAeCiPDzfz58/X8OHDNWbMGG3atEm33HKLoqOjtXfvXneXBgAAPJDHh5vJkyfroYce0sMPP6yGDRtqypQpCgkJ0fTp091dGgAA8EAeHW7Onj2rDRs2qHPnzk7tnTt31tq1a91UFQAA8GQV3F3Axfzxxx86f/68AgICnNoDAgKUkZGR7zHZ2dnKzs52rGdmZkqSsrKySqXGnOxTpXJeXB5Ka1y5gjFYtjEG4W6lNQZzz2uMcflYjw43uWw2m9O6MSZPW66EhASNGzcuT3tISEip1IayzW+KuytAWccYhLuV9hg8fvy4/Pz8XDrGo8NNjRo1VL58+TyzNAcPHswzm5MrLi5OI0aMcKzn5OToyJEjql69ulMgysrKUkhIiPbt26eqVauWzi9gcfRh8dGHxUP/FR99WDz0X/EV1IfGGB0/flzBwcEun9Ojw423t7eaNWumpKQk9ezZ09GelJSkHj165HuM3W6X3W53aqtWrVqB16hatSoDspjow+KjD4uH/is++rB46L/iy68PXZ2xyeXR4UaSRowYofvvv1+RkZFq2bKl3nrrLe3du1cDBgxwd2kAAMADeXy46d27tw4fPqznnntOBw4cUJMmTbRkyRLVqVPH3aUBAAAP5PHhRpIGDRqkQYMGleg57Xa7xo4dm+cWFgqPPiw++rB46L/iow+Lh/4rvtLoQ5spymesAAAAPJRHv8QPAADAVYQbAABgKYQbAABgKYQbAABgKZYON9OmTVNoaKgqVqyoZs2a6euvvy5w3+TkZNlstjzL9u3bL2HFnmP16tXq1q2bgoODZbPZ9Mknn/zjMSkpKWrWrJkqVqyoa665Rm+++WbpF+rBXO1DxqCzhIQE3XjjjfL19VWtWrV0xx13aMeOHf94HOPwL0XpP8ags+nTpysiIsLxcrmWLVtq6dKlFz2G8efM1T4sqTFo2XAzf/58DR8+XGPGjNGmTZt0yy23KDo6Wnv37r3ocTt27NCBAwccS7169S5RxZ7l5MmTuvbaazV16tRC7Z+enq6uXbvqlltu0aZNmzR69GgNHTpUCxYsKOVKPZerfZiLMfiXlJQUDR48WOvWrVNSUpLOnTunzp076+TJkwUewzj8n6L0Xy7G4F9q166tiRMnav369Vq/fr3at2+vHj166Mcff8x3f8ZfXq72Ya5ij0FjUc2bNzcDBgxwamvQoIEZNWpUvvuvWrXKSDJHjx69BNVdXiSZRYsWXXSfkSNHmgYNGji19e/f37Ro0aIUK7t8FKYPGYMXd/DgQSPJpKSkFLgP47Bghek/xuA/u+KKK8x///vffLcx/grnYn1YUmPQkjM3Z8+e1YYNG9S5c2en9s6dO2vt2rUXPfb6669XUFCQOnTooFWrVpVmmZby7bff5unvW2+9VevXr9eff/7ppqouT4zB/GVmZkqS/P39C9yHcViwwvRfLsZgXufPn9e8efN08uRJtWzZMt99GH8XV5g+zFXcMWjJcPPHH3/o/Pnzeb45PCAgIM83jOcKCgrSW2+9pQULFmjhwoUKDw9Xhw4dtHr16ktR8mUvIyMj3/4+d+6c/vjjDzdVdXlhDBbMGKMRI0bo5ptvVpMmTQrcj3GYv8L2H2Mwry1btqhKlSqy2+0aMGCAFi1apEaNGuW7L+Mvf670YUmNwcvi6xeKymazOa0bY/K05QoPD1d4eLhjvWXLltq3b59eeukltWnTplTrtIr8+ju/duSPMViwIUOGaPPmzVqzZs0/7ss4zKuw/ccYzCs8PFxpaWk6duyYFixYoJiYGKWkpBT4x5nxl5crfVhSY9CSMzc1atRQ+fLl88zSHDx4ME+qvpgWLVpo586dJV2eJQUGBubb3xUqVFD16tXdVNXljzEoPfbYY/rss8+0atUq1a5d+6L7Mg7zcqX/8lPWx6C3t7fCwsIUGRmphIQEXXvttXr11Vfz3Zfxlz9X+jA/RRmDlgw33t7eatasmZKSkpzak5KS1KpVq0KfZ9OmTQoKCirp8iypZcuWefr7yy+/VGRkpLy8vNxU1eWvLI9BY4yGDBmihQsX6quvvlJoaOg/HsM4/J+i9F9+yvIYzI8xRtnZ2fluY/wVzsX6MD9FGoPFehzZg82bN894eXmZmTNnmp9++skMHz7cVK5c2ezevdsYY8yoUaPM/fff79j/lVdeMYsWLTL/93//Z7Zu3WpGjRplJJkFCxa461dwq+PHj5tNmzaZTZs2GUlm8uTJZtOmTWbPnj3GmLz998svv5hKlSqZxx9/3Pz0009m5syZxsvLy3z88cfu+hXcztU+ZAw6GzhwoPHz8zPJycnmwIEDjuXUqVOOfRiHBStK/zEGncXFxZnVq1eb9PR0s3nzZjN69GhTrlw58+WXXxpjGH+F4WofltQYtGy4McaYN954w9SpU8d4e3ubG264wekjkDExMaZt27aO9RdeeMHUrVvXVKxY0VxxxRXm5ptvNosXL3ZD1Z4h9+N4Fy4xMTHGmLz9Z4wxycnJ5vrrrzfe3t7m6quvNtOnT7/0hXsQV/uQMegsv76TZBITEx37MA4LVpT+Yww669evn+NvSM2aNU2HDh0cf5SNYfwVhqt9WFJj0GbM/3/aCQAAwAIs+cwNAAAouwg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AC57sbGxuuOOO9xdBgAPQbgBUGJiY2Nls9nyLF26dHF3aQDKkAruLgCAtXTp0kWJiYlObXa73U3VACiLmLkBUKLsdrsCAwOdliuuuEKSZLPZNGPGDN1+++2qVKmSGjZsqG+//Va7du1Su3btVLlyZbVs2VI///yz43zx8fG67rrrNGPGDIWEhKhSpUq6++67dezYsQJryM7O1tChQ1WrVi1VrFhRN998s1JTUyX99Y3EYWFheumll5yO2bp1q8qVK+e4dmZmph599FHVqlVLVatWVfv27fXDDz+UcG8BKA2EGwCX1H/+8x898MADSktLU4MGDdS3b1/1799fcXFxWr9+vSRpyJAhTsfs2rVLH374oT7//HMtW7ZMaWlpGjx4cIHXGDlypBYsWKDZs2dr48aNCgsL06233qojR47IZrOpX79+eWaX3nnnHd1yyy2qW7eujDG67bbblJGRoSVLlmjDhg264YYb1KFDBx05cqTkOwVAySruN34CQK6YmBhTvnx5U7lyZaflueeeM8b89U3VTz/9tGP/b7/91kgyM2fOdLR98MEHpmLFio71sWPHmvLly5t9+/Y52pYuXWrKlStnDhw44Lhujx49jDHGnDhxwnh5eZn333/fsf/Zs2dNcHCwmTRpkjHGmP3795vy5cub7777zrG9Zs2aZtasWcYYY1auXGmqVq1qzpw54/T71a1b18yYMaPY/QSgdPHMDYASFRUVpenTpzu1+fv7O36OiIhw/BwQECBJatq0qVPbmTNnlJWVpapVq0qSrrrqKtWuXduxT8uWLZWTk6MdO3YoMDDQ6Vo///yz/vzzT7Vu3drR5uXlpebNm2vbtm2SpKCgIN12221655131Lx5c33xxRc6c+aM7r77bknShg0bdOLECVWvXt3p3KdPn3a6ZQbAMxFuAJSoypUrKywsrMDtXl5ejp9tNluBbTk5OQWeI3ef3P/7d8aYfLcZY5zaHn74Yd1///165ZVXlJiYqN69e6tSpUqOawcFBSk5OTnP+atVq1ZgXQA8A8/cAPB4e/fu1f79+x3r3377rcqVK6f69evn2TcsLEze3t5as2aNo+3PP//U+vXr1bBhQ0db165dVblyZU2fPl1Lly5Vv379HNtuuOEGZWRkqEKFCgoLC3NaatSoUUq/JYCSwswNgBKVnZ2tjIwMp7YKFSoUKxRUrFhRMTExeumll5SVlaWhQ4fqX//6V55bUtJfM0cDBw7UU089JX9/f1111VWaNGmSTp06pYceesixX/ny5RUbG6u4uDiFhYWpZcuWjm0dO3ZUy5Ytdccdd+iFF15QeHi49u/fryVLluiOO+5QZGRkkX8XAKWPcAOgRC1btkxBQUFObeHh4dq+fXuRzxkWFqZevXqpa9euOnLkiLp27app06YVuP/EiROVk5Oj+++/X8ePH1dkZKSWL1/u+Eh6roceekgTJkxwmrWR/rqltWTJEo0ZM0b9+vXToUOHFBgYqDZt2jieEwLguWwm9wY1AHig+Ph4ffLJJ0pLSyvxc3/zzTdq166dfv31V0ILYCHM3AAoc7Kzs7Vv3z4988wz+te//kWwASyGB4oBlDkffPCBwsPDlZmZqUmTJrm7HAAljNtSAADAUpi5AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlvL/AHXJaMGliZcsAAAAAElFTkSuQmCC",
791 | "text/plain": [
792 | ""
793 | ]
794 | },
795 | "metadata": {},
796 | "output_type": "display_data"
797 | }
798 | ],
799 | "source": [
800 | "plt.bar(pay,age)\n",
801 | "plt.xlabel(\"Employe\")\n",
802 | "plt.ylabel(\"Growth of employe\")\n",
803 | "plt.title(\"Employe's salary tire growth\")\n",
804 | "plt.show()"
805 | ]
806 | },
807 | {
808 | "cell_type": "code",
809 | "execution_count": null,
810 | "id": "31cb7e9c",
811 | "metadata": {},
812 | "outputs": [],
813 | "source": []
814 | }
815 | ],
816 | "metadata": {
817 | "kernelspec": {
818 | "display_name": "Python 3 (ipykernel)",
819 | "language": "python",
820 | "name": "python3"
821 | },
822 | "language_info": {
823 | "codemirror_mode": {
824 | "name": "ipython",
825 | "version": 3
826 | },
827 | "file_extension": ".py",
828 | "mimetype": "text/x-python",
829 | "name": "python",
830 | "nbconvert_exporter": "python",
831 | "pygments_lexer": "ipython3",
832 | "version": "3.11.5"
833 | }
834 | },
835 | "nbformat": 4,
836 | "nbformat_minor": 5
837 | }
838 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Data-Cleaning-using-Python
2 | This part consist of the Data cleaning which includes the removing the null values and replacing the some values instead of the null values and making it a cleaned data set
3 |
--------------------------------------------------------------------------------