├── README.md
├── admissions.csv
└── college_admissions_prediction.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Project: College Admissions Prediction
2 |
3 | ## Project Goal
4 | Predict a candidate's chances of being admitted into a college based on GPA and GRE score.
5 | ## Dataset Information:
6 | admissions.csv contains data on the candidates' GPA and GRE Score and whether they were admitted.
7 | ## Tech Stack
8 | Python
9 | Google Colaboratory
10 | NumPy
11 | Pandas
12 | Matplotlib
13 | Scikit-learn
14 |
15 | ## Featured ML Algorithms
16 | Linear Regression
17 | Logistic Regression
18 |
--------------------------------------------------------------------------------
/admissions.csv:
--------------------------------------------------------------------------------
1 | admit,gpa,gre
2 | 0,3.1772772600730947,594.1029915771487
3 | 0,3.4126553589367825,631.5286067220945
4 | 0,2.7280971435972337,553.7143989347039
5 | 0,3.0935590768541186,551.0899851159896
6 | 0,3.1419228288909364,537.1848938066419
7 | 0,3.599107765322437,442.7635672275836
8 | 0,3.238971962763903,667.4721888917547
9 | 0,3.4201768220815576,561.7139053278995
10 | 0,3.562482406012416,590.3403713673283
11 | 0,3.910494575439653,463.4701830286301
12 | 0,3.2643412097203486,636.4531655238836
13 | 0,3.3086233708202384,604.4055577685214
14 | 0,3.0189219146088115,567.7148296553638
15 | 0,3.1518344059816688,503.30729838232423
16 | 0,3.2981327505758458,628.1782052279433
17 | 0,2.652201106090184,644.3002614821658
18 | 0,3.11560326159216,533.4798096290625
19 | 0,3.1052418325806608,562.9397148907857
20 | 0,3.212379517188157,545.8789704414299
21 | 0,3.0106544128130666,537.0291024176911
22 | 0,3.520869793907214,534.1274997668197
23 | 0,2.907485116757919,532.5146989347077
24 | 0,3.0149948342937423,472.63676926684883
25 | 0,3.4003678794646888,693.3145060223562
26 | 0,2.8484078772810757,390.3635628638585
27 | 0,3.443319041815918,629.3674034463452
28 | 0,3.242583809706589,648.4938924982637
29 | 0,3.1223035552755523,714.2453378165393
30 | 0,2.6212573169932942,622.0926457864116
31 | 0,2.78277150274218,585.6995326080457
32 | 0,2.705202335297884,580.6915396453227
33 | 0,2.9573061482498293,620.7398706093188
34 | 0,3.4034243235495585,599.537622601994
35 | 0,3.3541825017449485,604.5885901101719
36 | 0,2.792631912862364,578.1292241830122
37 | 0,3.3933018397929904,614.0527552411496
38 | 0,3.531760721143764,478.94889127642443
39 | 0,3.6600348272639036,572.104294526624
40 | 0,3.3122895224437006,575.7970362399296
41 | 0,2.941452978447712,632.7515029914396
42 | 0,3.197952975886155,509.82064974673233
43 | 0,3.0807936793298474,567.6440238068826
44 | 0,3.3174796470428207,508.36091058387365
45 | 0,3.5611775616576717,547.8439296922647
46 | 0,3.0402224734404326,641.4122307762749
47 | 0,3.093927608476353,643.8147821908441
48 | 0,3.088539602931568,593.1053037940342
49 | 0,2.830827613605199,475.69768171613714
50 | 0,3.2053332208820198,566.9137035006737
51 | 0,2.6952944001236125,675.990886825232
52 | 0,3.1790267055611316,518.2628839792295
53 | 0,3.2310287934425586,581.4718387533322
54 | 0,2.73765809411329,687.3485800017862
55 | 0,2.929493901381452,580.2858930746277
56 | 0,3.4802615380516295,497.1964419799499
57 | 0,3.668730742880468,521.0679086882301
58 | 0,2.8245484490602077,548.9559657967511
59 | 0,3.4341173287126363,547.90447258484
60 | 0,3.0372443283126165,538.8501189849093
61 | 0,2.953115655890425,590.7452977285442
62 | 0,3.4711906534804124,603.041168688458
63 | 0,3.0499608213927725,602.0018834937181
64 | 0,2.6977631357714533,536.3786457342512
65 | 0,3.4558184819599003,546.0301573335673
66 | 0,3.7420555674637375,618.4282229696441
67 | 0,3.4817692408628664,619.2931222492252
68 | 0,3.02754218175908,595.4575191779527
69 | 0,2.811848758904254,502.3348982101269
70 | 0,3.5424002514340174,548.1661262686354
71 | 0,2.9616418049859847,641.3979571267232
72 | 0,3.5405273126971144,484.05861490162147
73 | 0,3.691416719758093,496.273937232653
74 | 0,3.1165682569830864,650.3212158917192
75 | 0,2.7558563466566826,693.4515483607734
76 | 0,3.749812492619135,541.4266631555095
77 | 0,3.374212360299532,635.9033367311207
78 | 0,3.07375923075854,653.9922819073322
79 | 0,3.7372697665951415,536.2438611619967
80 | 0,3.235722794823678,455.9251548158102
81 | 0,2.8045107848224435,673.4062959255436
82 | 0,3.2781693910246625,633.001481938083
83 | 0,2.8295325591802576,538.0920524545681
84 | 0,3.2308015507868033,628.4161104255103
85 | 0,3.4490419890916333,620.180934896652
86 | 0,2.6984608313530183,581.6860272098203
87 | 0,3.3369408191149788,489.93175670570366
88 | 0,2.8228645493264235,589.6148177627459
89 | 0,3.0599395247529753,477.23099205009385
90 | 0,3.2653153255157568,532.5645751190089
91 | 0,3.036726266995144,562.1632689028618
92 | 0,3.498628338413873,632.13366264622
93 | 0,3.5193535341977946,502.6853936723594
94 | 0,2.7718239082934764,549.1116630247848
95 | 0,3.3101848594919057,505.3810021140046
96 | 0,3.3055898959368104,578.6277372000742
97 | 0,3.0952369667844284,499.9831447772188
98 | 0,3.1688522721599446,632.2010916672211
99 | 0,3.6298893617046,559.2265114773478
100 | 0,3.3299910405884567,663.4368671980689
101 | 0,2.916654444814452,661.1706795466342
102 | 0,3.234565732925065,656.9070011938558
103 | 0,2.177099741534103,623.3035593535575
104 | 0,3.4056927236595587,673.9224930307382
105 | 0,3.6913925557375857,540.1304670037962
106 | 0,3.1022673988324816,680.1631145606542
107 | 0,2.7944889114509848,697.7857374079746
108 | 0,3.4656950983227333,578.8300981089401
109 | 0,3.231726198917023,588.1529333100058
110 | 0,3.3439065246176667,627.3965739949182
111 | 0,3.2858234239878565,528.9735829280062
112 | 0,2.9131361098228363,630.9098785803095
113 | 0,3.01153282337683,578.2128862055373
114 | 0,3.3437405845442805,494.84742521977324
115 | 0,3.297388601944005,634.805427389985
116 | 0,2.98872048124726,603.9015875776503
117 | 0,3.3375099107442536,569.9828350208181
118 | 0,3.2202920247485047,680.0286608773104
119 | 0,3.219668523868511,483.761856454296
120 | 0,3.2762027567953886,627.4410591735673
121 | 0,3.2833990747705406,544.4264789606473
122 | 0,2.78671937323828,564.3849272775213
123 | 0,2.799224979054804,654.2163745769233
124 | 0,3.085012277399103,594.8763061891326
125 | 0,3.1191015919744336,548.8248292342785
126 | 0,3.3857318703528487,582.5353663200542
127 | 0,3.1227954570519936,649.2990335505198
128 | 0,3.43090613897668,419.75019422227166
129 | 0,2.9749886529940808,623.3975575705074
130 | 0,3.467072844286366,604.0169116632862
131 | 0,3.4444164671771778,473.50457945576164
132 | 0,2.968177681194612,541.7306048613339
133 | 0,2.9049968769786174,607.1130667783326
134 | 0,3.018096365065686,501.5881053350032
135 | 0,3.4743180469103407,661.9693989616616
136 | 0,2.9022486866946804,667.7385376383813
137 | 0,3.019333498275574,557.2459916039859
138 | 0,3.1364144247413037,594.9832385257153
139 | 0,3.2842187382264587,744.1576657374477
140 | 0,3.788716984113952,531.1057005251945
141 | 0,3.1238642546247224,610.015116506466
142 | 0,3.250495622156127,596.0578675704786
143 | 0,3.1705155307523905,554.4152496718526
144 | 0,3.497400104636486,696.8706245203384
145 | 0,3.48559883661086,623.1160083790057
146 | 0,2.6879060629210327,540.035697398622
147 | 0,2.804895162885992,544.9431782983859
148 | 0,3.445072081156263,577.1543847525147
149 | 0,3.083063858598598,578.2464612913558
150 | 0,3.0001608918448985,533.2112795055525
151 | 0,2.8731492906055647,649.5392455376489
152 | 0,3.0584315199340306,705.9014595684198
153 | 0,3.0520467925730297,635.2923744336176
154 | 0,2.8358863885815335,734.2728069807678
155 | 0,3.0249133454300368,586.9479730570145
156 | 0,2.8672912432787814,600.3647095511236
157 | 0,3.0410565111531125,680.4200125148348
158 | 0,3.486987718011803,473.20722040973857
159 | 0,3.145548825287185,451.139210357965
160 | 0,3.068723921643098,714.9819337752342
161 | 0,3.493950954418398,687.4325049196858
162 | 0,3.380544360518372,490.0833765858207
163 | 0,3.2182019536901745,684.0680725070714
164 | 0,3.4934618088199425,476.27322509756857
165 | 0,3.458793540957417,573.0977579089074
166 | 0,3.4387092228077316,548.3394967630314
167 | 0,3.3207499528484097,716.1732753527218
168 | 0,3.6889806409732286,644.8640451461905
169 | 0,2.923580609816,622.5246654356524
170 | 0,2.9106195106591013,619.3927633671013
171 | 0,3.3098764085729733,518.2573215332292
172 | 0,3.090761996771908,609.377330498385
173 | 0,3.331254129793272,539.3429935759318
174 | 0,3.2072771813969267,556.4656981235597
175 | 0,2.9321466304646058,564.7987636396534
176 | 0,3.1207781423483225,593.7471639440071
177 | 0,3.2660237779781873,574.1566637085041
178 | 0,3.337680261260401,540.4451766186381
179 | 0,3.0782526316084025,528.5514613007006
180 | 0,3.073865208703836,483.03054931661933
181 | 0,3.044987473724373,564.2550104732666
182 | 0,3.000826857836904,579.8345020016585
183 | 0,3.3333800031363254,513.5551587785495
184 | 0,3.1241726909772014,566.2668550721362
185 | 0,3.3405642661468837,612.2639305758106
186 | 0,3.345809407701525,607.4191520312377
187 | 0,3.0849685464472882,642.5612752112055
188 | 0,3.6309731016317817,554.4151765447715
189 | 0,2.9290091267954352,612.3122934554897
190 | 0,3.229677788972793,563.6824079912416
191 | 0,3.470676550366511,551.8740288169964
192 | 0,3.0084336868953616,438.5370990333665
193 | 0,3.604054743174197,553.2723550791078
194 | 0,3.222918183940976,557.4198380156613
195 | 0,2.6153621057045764,548.9659132811095
196 | 0,3.1563698267339135,652.3418739481488
197 | 0,3.2290563409449486,568.5769417934832
198 | 0,3.067959006395628,540.0569832816137
199 | 0,3.6305565477295407,540.8135921298889
200 | 0,3.0684447898799387,597.5441221625074
201 | 0,2.9692039108605086,648.3039992525645
202 | 0,3.0555982672151383,686.6674563018936
203 | 0,3.6195041480281462,463.774415624792
204 | 0,3.269048852930533,614.2377001331961
205 | 0,3.4199838163588314,497.65733351454713
206 | 0,3.2780136477752784,612.6469912083854
207 | 0,2.92377220702269,672.7855035950379
208 | 0,2.69001931296112,640.1540296691778
209 | 0,2.9739035905472617,561.0871145338588
210 | 0,3.7336965505719206,524.5044119342293
211 | 0,2.660525655272227,611.9353348322842
212 | 0,2.965010915287872,693.3975812594837
213 | 0,2.8547465621512504,532.2988942083359
214 | 0,2.973886123604617,646.9228425307358
215 | 0,3.202665896150117,576.5516964562486
216 | 0,3.2477947864319283,518.5566969623668
217 | 0,3.2591233275704266,614.7004466091893
218 | 0,2.625306759752072,582.8352278810381
219 | 0,3.230623942577911,546.2740481907298
220 | 0,3.048871544019309,473.7788708934023
221 | 0,3.2525439428673826,678.6157327581658
222 | 0,3.1346563726260754,675.2863932345673
223 | 0,3.699874636110279,493.92027665399553
224 | 0,3.3100738277262587,471.58179104439364
225 | 0,3.364395829380983,624.5247772655039
226 | 0,3.704223214654992,514.0450388769378
227 | 0,2.84456637150125,703.0434618111681
228 | 0,3.7674465262570913,565.9064402578646
229 | 0,2.8039299503399695,561.5914179205149
230 | 0,2.762242747117749,572.1875285224879
231 | 0,3.419234410326616,547.6096548373705
232 | 0,3.1197616845431297,558.0100435888248
233 | 0,3.1220523680769614,571.9555126996207
234 | 0,2.9418248559512388,598.2144148571763
235 | 0,3.256223283862901,542.8458962626776
236 | 0,2.885001897322838,510.4260771524176
237 | 0,2.943824778825048,535.5804395356471
238 | 0,3.3094652864033445,538.9282444855509
239 | 0,3.2373526575497333,643.4859722331269
240 | 0,3.6722630557823432,643.9893281694972
241 | 0,3.2790920575795965,636.2020219938622
242 | 0,3.1342722602054613,572.1081379494758
243 | 0,3.204654667233996,638.9710467564174
244 | 0,2.671251429830513,560.458375958111
245 | 0,3.4176153078438234,656.6287365811057
246 | 0,3.4577384232699835,702.3446108890048
247 | 0,3.0479453411113013,631.9405266503867
248 | 0,3.895526233982143,647.8395938211337
249 | 0,3.150400131965301,514.1804736199643
250 | 0,2.9933130999513144,494.6880819621666
251 | 0,3.46704817540804,571.4146452811582
252 | 0,3.4931001537821427,540.8098343640388
253 | 0,3.1542549183100874,416.19290064931977
254 | 0,3.088197599276912,695.0898188362967
255 | 0,3.2482283450894744,620.3700082160685
256 | 0,3.108219611192783,617.1033298018148
257 | 0,3.1216943225193923,531.3910420999155
258 | 0,2.6740399932271237,599.8958582001621
259 | 0,3.1940402868723443,593.0058966102281
260 | 0,3.020869303710393,627.673435232693
261 | 0,3.0710715437662985,548.3745561929873
262 | 0,3.4140358176752392,577.6656101494109
263 | 0,3.266654383526188,612.6121519466743
264 | 0,3.2323880277350012,533.3076377856919
265 | 0,3.103706219671569,634.1046994378711
266 | 0,3.1502679268691813,444.2232788901464
267 | 0,3.4318487441353103,561.5880270330792
268 | 0,2.7823381397280174,558.0124939455145
269 | 0,3.32251999884668,583.8614085775414
270 | 0,3.1640310627956763,598.900194758833
271 | 0,2.859057877648496,485.1427346574052
272 | 0,3.0407672519240667,749.8326849894133
273 | 0,3.1416684416670484,508.9693356408189
274 | 0,3.4955865362138603,658.9653864318359
275 | 0,3.4738259580687414,584.4918771375744
276 | 0,3.2269538723277926,450.28866285205055
277 | 0,3.2681962201832278,691.2609760630356
278 | 0,3.2177319767400165,672.6132432020672
279 | 0,3.201273023116209,478.43287098770594
280 | 0,3.5403202531610845,555.0278640190545
281 | 0,3.085858767689692,503.9329030015365
282 | 0,3.5346906320603932,467.45973259139436
283 | 0,3.053863050792714,729.9286544265607
284 | 0,3.0541152421573674,546.7879040384777
285 | 0,2.9317743740835627,602.7660997424659
286 | 0,3.123533809868776,601.712258145448
287 | 0,3.1103483692914136,689.9908527026931
288 | 0,2.7120464741603847,552.9581208544721
289 | 0,3.179447896643857,565.9509317519418
290 | 0,2.8921325974796863,573.380010337578
291 | 0,2.4181432499390305,573.5534980354138
292 | 0,2.9879725020738594,651.6735696083878
293 | 0,3.1836508417844454,675.1724876065492
294 | 0,3.294160347394755,518.0216650756063
295 | 0,2.930620651696632,671.6181127850529
296 | 0,3.1668846000839967,486.6660612849265
297 | 0,2.8188781505937506,539.3802781918026
298 | 0,3.4872434221094357,539.756950728384
299 | 0,3.122478195610099,599.2643002439986
300 | 0,3.3161654937630085,628.225579612917
301 | 0,2.692225200067619,795.1141057468816
302 | 0,3.428633363600328,543.0634467660199
303 | 0,2.976055734060198,622.8771008165049
304 | 0,3.1557853172983235,624.0029254527861
305 | 0,3.2940712572150623,645.5846053429492
306 | 0,3.0760027895325117,680.9511059453022
307 | 0,3.365772472106905,599.9596893387775
308 | 0,3.38741288386679,508.5101297866829
309 | 0,2.7732135831969438,527.1616116269425
310 | 0,3.1711770389810225,497.84797344095495
311 | 0,3.3090697670207665,407.81804714884726
312 | 0,3.718314937856471,602.8456937770618
313 | 0,2.9098795687611667,629.5968772975292
314 | 0,3.2431883058980704,665.6193319584927
315 | 0,2.4843290350851346,599.4848298680416
316 | 0,2.7227358662359973,529.4512152338979
317 | 0,3.5114140969153644,589.3762519460926
318 | 0,2.9960576496328577,715.8516114358968
319 | 0,3.249891576847024,490.93205265435097
320 | 0,3.1592492228937323,674.5089061657111
321 | 0,2.9717414579977035,640.6284138936354
322 | 0,3.0120327549516537,639.4034197450676
323 | 0,3.264833989706168,616.6285091160705
324 | 0,3.3389320097132007,585.2441671521688
325 | 0,3.234733604837817,586.9923819713207
326 | 0,3.120419435524274,655.0623501786895
327 | 0,3.539818199863787,557.1010147874867
328 | 0,3.1893202517633417,595.6021310878699
329 | 0,2.8193167231829253,633.1271784726322
330 | 0,3.072290192123905,519.9061202677482
331 | 0,3.1672671601807387,572.8437849224691
332 | 0,2.9722922789354937,644.2230636618517
333 | 0,2.989888112335054,561.7855445882502
334 | 0,3.2876330623916807,496.5688521803074
335 | 0,3.4026997396726992,667.2703843801198
336 | 0,2.950833125394964,555.0940699455648
337 | 0,3.276402661635375,577.9009629396684
338 | 0,3.170932062963794,565.2243244798575
339 | 0,3.044940052528744,574.1726942732638
340 | 0,2.9959962706694716,555.2610409275838
341 | 0,3.3167040156307324,502.4789825766026
342 | 0,3.260018899238107,662.1077980965513
343 | 0,3.612613298385422,563.1616281024634
344 | 0,3.586434982124358,552.492928896503
345 | 0,3.2739716560560126,532.5026580042584
346 | 0,3.0321553510204966,526.4152515754101
347 | 0,3.4191789721591133,570.7889554458552
348 | 0,3.0629645139473345,707.6172171330733
349 | 0,3.1153300277364453,585.7448522970553
350 | 0,3.3161417091090315,480.0373582406042
351 | 0,3.202371705508738,481.42993496201734
352 | 0,2.9407768412424535,588.604902902459
353 | 0,3.5305982237534423,586.149180193082
354 | 0,3.127032325927773,625.5958593343428
355 | 0,3.1383263465533733,490.909706515307
356 | 0,2.8191945762931976,415.4059015075022
357 | 0,2.749544101219384,639.7581445917924
358 | 0,3.4264647209105115,589.238510616849
359 | 0,3.1073821409820352,600.1518846714529
360 | 0,2.718207320470571,541.3740672394533
361 | 0,3.091500668090021,638.814717617296
362 | 0,3.1841874147950686,683.3806001766577
363 | 0,3.042815140245387,605.0171094742558
364 | 0,2.8479327811616884,597.1674897607037
365 | 0,3.0923512837957436,656.186811769326
366 | 0,3.3487721937446246,605.9681968178552
367 | 0,3.000884628580684,598.5410341993
368 | 0,3.1351576927232783,568.4282742705723
369 | 0,3.2826468781927014,601.9100107003483
370 | 0,3.1041772761519306,653.8250196206143
371 | 0,3.292225286801472,587.6976688522053
372 | 0,3.2559309061662294,621.2672147773678
373 | 0,2.7469437492310846,529.9665550133667
374 | 0,2.5083675749785903,559.7298547181658
375 | 0,3.03266681817176,659.9210378347561
376 | 0,3.362794739226852,501.2180330286081
377 | 0,3.3231145199065386,666.035785417597
378 | 0,2.9096670928727764,604.4846798432587
379 | 0,3.09027981107464,633.9752703344527
380 | 0,3.0100663880355563,583.5157737633582
381 | 0,3.21266923986895,658.6124494529092
382 | 0,2.8948413726857964,555.0322548075663
383 | 0,3.2024380237822205,610.7964894051669
384 | 0,3.2550692976473536,593.1835985122461
385 | 0,3.462876518817073,577.7363084873801
386 | 0,3.141308864509726,650.0505593281126
387 | 0,2.923035859673336,560.0938807349033
388 | 0,2.863589539955226,568.3160480405631
389 | 0,3.3218991282199752,543.1748539505835
390 | 0,3.241255479718543,446.62910108820455
391 | 0,2.966607716952929,627.6293178907562
392 | 0,3.3690274298261387,681.2421948846064
393 | 0,3.278141800098453,661.8881620416721
394 | 0,3.2814872721314887,651.1313978772732
395 | 0,2.4898521613000844,585.5152827846857
396 | 0,3.1175911890624013,588.7163680895461
397 | 0,3.5402524696286863,524.6706244223262
398 | 0,3.5970775131136485,497.73332193563436
399 | 0,3.295048619548109,528.1946743247033
400 | 0,3.329859309366032,583.9598383858797
401 | 0,2.901478527569941,499.2614797768852
402 | 1,3.4143755678640737,704.9342165906876
403 | 1,3.6527328992904193,662.8542605108885
404 | 1,3.0405733620942,730.1355660668976
405 | 1,2.9022085576500523,664.9388125001002
406 | 1,3.307680965494676,715.0000755332914
407 | 1,3.1602081066714467,664.1481532909298
408 | 1,3.0524361620870457,661.4012287282864
409 | 1,3.3995811227914703,649.4829746820686
410 | 1,3.179445030857242,730.2488020078354
411 | 1,3.968276187732117,621.3547855257575
412 | 1,3.0220441595256435,614.5545267904547
413 | 1,3.5825254090639653,574.1386027880384
414 | 1,3.880944280632283,628.9127368933815
415 | 1,3.0849899199094453,617.2371089981863
416 | 1,2.9076524267267914,657.0922295517204
417 | 1,3.512115775063429,653.7442601255299
418 | 1,3.592225949647177,653.2780412889973
419 | 1,3.757647218478568,678.2653558144574
420 | 1,3.6631396581988596,649.3489115132752
421 | 1,3.1846990635346253,790.8941018707983
422 | 1,3.2745416447144686,625.6097947837492
423 | 1,3.406306304003645,750.9437652067552
424 | 1,3.265542482789616,624.2916858338888
425 | 1,3.360308467745994,662.9806397954503
426 | 1,3.4242737933342435,677.5552749972372
427 | 1,3.1209206291710947,608.9948641037889
428 | 1,3.194857613701637,696.1354442627533
429 | 1,3.509809806846138,635.4689043164838
430 | 1,3.5524899777269163,667.320643347074
431 | 1,3.4363895471681984,685.5746928036482
432 | 1,3.352374004978583,668.0344950666207
433 | 1,3.5560589123580164,589.0447560250312
434 | 1,3.076127189723157,742.8569718535479
435 | 1,3.31239623305311,647.0948200885787
436 | 1,3.742518423595786,593.2815499336033
437 | 1,3.0868398125153376,720.6970548800107
438 | 1,3.3322319122410016,612.5734278948088
439 | 1,3.0509051058261707,742.3779425700034
440 | 1,3.0004462052426644,628.0606164239127
441 | 1,3.3711696339665163,643.3409520206571
442 | 1,3.157379395707882,726.8808810120747
443 | 1,3.0587450157096345,669.3746627364902
444 | 1,3.1813604519715937,777.7969146445784
445 | 1,3.6421100444170897,589.7294212780134
446 | 1,3.6017191179956134,650.4175923463009
447 | 1,3.4133083201323204,603.2423715941798
448 | 1,3.747203324466127,620.4510653952323
449 | 1,3.4482063407062453,546.6460233685449
450 | 1,3.4769211572882015,713.373864642638
451 | 1,3.1554558502892585,784.7299350140622
452 | 1,3.4769665196885926,647.3620796744509
453 | 1,3.6364036895290064,694.6235950724953
454 | 1,3.5675948183463726,591.399737866069
455 | 1,3.5875186530033485,694.3606507662773
456 | 1,3.655778494974318,575.4612592707367
457 | 1,3.533454346249336,633.3281518413431
458 | 1,2.7144413027610916,612.685866620895
459 | 1,3.607529950659314,585.2814496905718
460 | 1,3.623911529484698,430.96484838841906
461 | 1,3.288242024466621,674.0601380527114
462 | 1,2.858359020459869,720.1438260853506
463 | 1,3.8047444234511456,681.4921957296752
464 | 1,3.6255026903216407,606.3706999779106
465 | 1,3.0643868094403324,659.9154927203423
466 | 1,3.1832032611528587,595.1955083855113
467 | 1,3.6318651646853435,561.2119420248914
468 | 1,3.2405483788521696,780.0340538431915
469 | 1,3.3481655177925096,604.2527845469037
470 | 1,3.6459784362370176,749.8778190554062
471 | 1,3.485071768584792,562.0432491628611
472 | 1,3.4458881910763832,710.0639097544556
473 | 1,3.3888585067560832,571.7222330554766
474 | 1,3.0495723448439502,738.6806833404939
475 | 1,3.4622207077089464,633.1228245209733
476 | 1,3.206376653733863,759.0379526932095
477 | 1,3.1915162596657667,712.0204838846261
478 | 1,2.8289734314810606,716.308308351018
479 | 1,2.948423344454233,677.9009407327892
480 | 1,3.6058458781160536,721.321934157599
481 | 1,3.5275884290363675,479.2127550531762
482 | 1,3.936366073949865,560.6429324794021
483 | 1,2.975315935439352,601.3920623267159
484 | 1,3.6091198690804664,645.4066608723332
485 | 1,2.9950072168050657,648.2487405242548
486 | 1,3.282829779929261,622.9613634976732
487 | 1,3.3149993909413342,687.7303450390593
488 | 1,3.5945408791324978,661.6344383556134
489 | 1,3.2564714327216624,601.8598739739124
490 | 1,3.4708238986314104,647.7065759244113
491 | 1,3.179945547519205,617.5683671046357
492 | 1,2.9349667287596453,611.606291761513
493 | 1,2.9352377300538777,658.9933511036351
494 | 1,3.0659957368350974,772.1072880088263
495 | 1,3.5013196382662954,587.9434351907263
496 | 1,3.0638611814144885,626.0189860273616
497 | 1,3.76328051116106,701.2206087282962
498 | 1,3.330791151844951,646.7152573961553
499 | 1,3.578241646307002,595.01652047999
500 | 1,3.3782991129113973,688.2482996822098
501 | 1,3.4717117990306097,733.5494646620375
502 | 1,2.9652769286751814,665.9588705465777
503 | 1,3.7805300716167056,577.1103131176145
504 | 1,3.8076182984475215,617.1073265655999
505 | 1,3.1468220571198766,525.3436108646617
506 | 1,2.945184616491542,594.7095991129943
507 | 1,3.3380365439304724,779.4355278877194
508 | 1,2.855784933430183,709.6897459007439
509 | 1,3.695103551802386,652.875374521447
510 | 1,3.3072567564464648,607.5248736546226
511 | 1,3.6216745056837056,646.1538686205406
512 | 1,3.4167757995679,778.1167169663548
513 | 1,3.4621062535234715,691.7741855120065
514 | 1,3.3159443917368736,698.1171059668588
515 | 1,3.5603694343941847,787.0900703704892
516 | 1,3.0804444912502134,566.8526187897844
517 | 1,3.6055762199610535,570.6175187523637
518 | 1,4.0,544.1593983087979
519 | 1,2.9837361527317,714.8280249787874
520 | 1,2.7706049922175247,695.2736843039114
521 | 1,3.3539925742252965,764.4304881136483
522 | 1,3.116340707754686,704.7278469133798
523 | 1,3.4596930491981523,781.5424119732379
524 | 1,3.3739701019160706,636.5759306757723
525 | 1,3.3300531578752817,723.4723962666197
526 | 1,3.3818510292825965,658.239880850328
527 | 1,2.879124031281484,659.555691026817
528 | 1,3.3145895377435006,738.2574552267555
529 | 1,3.2698007413845613,684.7226211033674
530 | 1,3.577178218543759,632.2563646118672
531 | 1,3.824678469559825,732.2462332483735
532 | 1,2.6776981322479507,671.372869297065
533 | 1,3.3676056339793963,658.2777255507223
534 | 1,3.0959291393222714,734.3402520817039
535 | 1,3.091111363532224,593.4661626515264
536 | 1,3.5057703325172764,590.5710902767631
537 | 1,3.192920230376372,695.7672179109671
538 | 1,3.3867324974050024,526.9968355215593
539 | 1,3.325837047222086,642.9547875408533
540 | 1,3.5984539423490216,626.4241552065006
541 | 1,3.3414857613856817,592.1489866264675
542 | 1,3.128130463467589,581.6117303197437
543 | 1,3.0826412642916856,701.4579241744708
544 | 1,2.9502441496464606,694.0831896556023
545 | 1,3.5604154992148915,631.7334282079545
546 | 1,3.1630683653947718,592.30365873083
547 | 1,3.277949496990405,720.0624341834638
548 | 1,3.581405648062276,559.7648777414078
549 | 1,4.0,574.4829117296581
550 | 1,3.298076034766804,771.8754873888499
551 | 1,3.297922156258404,800.0
552 | 1,2.5063903720997844,700.3049309668418
553 | 1,3.0688534056890804,754.1718940776117
554 | 1,3.0504292468905736,649.7597290747018
555 | 1,4.0,677.8995970061736
556 | 1,3.5690395067655727,699.7373559630878
557 | 1,3.0856310793085315,571.5052937667583
558 | 1,2.914923443399252,795.1823758806754
559 | 1,3.725918793159696,641.3727750404435
560 | 1,3.691227091714461,570.6229721344799
561 | 1,3.0678761162892845,699.3191994121077
562 | 1,3.173245195536452,739.4602544141898
563 | 1,3.1408636931013167,736.5979793092597
564 | 1,3.2997992413709216,542.2859575254771
565 | 1,2.9824775370194088,500.38038969461184
566 | 1,3.4155939874982075,597.6970788904964
567 | 1,3.080983425982171,696.9481474176625
568 | 1,3.5769248259129145,648.4117774644261
569 | 1,3.3157939653269937,573.2366260557218
570 | 1,3.0040079179170798,610.5567939966452
571 | 1,3.5912713511650716,673.5527526910898
572 | 1,3.5493224465485214,645.2619124614133
573 | 1,3.205236615810223,752.1908743120047
574 | 1,2.9187362302646878,636.1900191425016
575 | 1,3.213047177608677,742.7250004112483
576 | 1,3.673018915618541,649.6509312733161
577 | 1,3.46636796894968,800.0
578 | 1,3.540149725723517,615.9324010401582
579 | 1,3.5339266659481985,652.3318397054647
580 | 1,3.2789889070018496,709.5648204834382
581 | 1,3.6367201161888496,597.8255933750422
582 | 1,3.3792200142274536,590.7870544946585
583 | 1,3.999329105544843,553.3493001426217
584 | 1,3.4825223866752406,722.7731126060694
585 | 1,3.188329330512616,711.2617797523897
586 | 1,3.6607087507110863,635.7241937993489
587 | 1,3.6008230076140237,619.6721363388373
588 | 1,3.540075664949652,670.0362135401473
589 | 1,3.2113898684628635,700.9464067646021
590 | 1,3.817264799552303,620.4280420666639
591 | 1,3.709950741639704,580.0063642371272
592 | 1,3.743523500955469,616.0732087872764
593 | 1,2.8627108102626977,654.1408931536713
594 | 1,3.674243030178448,637.9225307389268
595 | 1,3.828585978161743,679.9437592572489
596 | 1,3.0148457457184024,774.6152137928534
597 | 1,3.6361856597440987,616.5253463437872
598 | 1,3.56573592273651,634.175654548505
599 | 1,2.9320250346530567,800.0
600 | 1,3.2032205548128063,726.3093818830646
601 | 1,3.208535859857635,737.1680758152162
602 | 1,3.621649566673407,689.8473738635932
603 | 1,3.431330190792516,750.68875325751
604 | 1,3.0652150597676338,674.4587921169917
605 | 1,3.077074659693926,713.3991466076882
606 | 1,3.0321216958292725,764.7901045699823
607 | 1,2.794908139969091,759.0548628718923
608 | 1,3.345487452520995,721.4714684606591
609 | 1,3.2524820888555808,662.3408012795497
610 | 1,3.7743551360019865,717.4635975570807
611 | 1,3.6471335988073017,736.6831775614348
612 | 1,3.3106724399126906,670.3723189192015
613 | 1,3.5713138726681657,597.6881829153908
614 | 1,3.5112036251464214,618.9298753182849
615 | 1,3.4555765130529816,767.4773757815612
616 | 1,3.8659609469740097,758.2017324387714
617 | 1,3.302553295846791,650.4503241672437
618 | 1,3.045051711523985,711.2354356168112
619 | 1,3.922457519675651,593.8245779053727
620 | 1,3.0373956086333815,665.0905535801451
621 | 1,3.30763987510208,735.2718393360002
622 | 1,3.4124675785270955,724.1417826056046
623 | 1,3.7383249710008215,632.0761195005385
624 | 1,3.313218109769964,665.4750275757075
625 | 1,3.4921792766063278,590.0320193715174
626 | 1,3.410395206951492,551.3117109207159
627 | 1,3.532417879587625,677.0190505344343
628 | 1,3.486940614176957,667.265345655626
629 | 1,2.9293478485435247,749.6337399868179
630 | 1,3.7640318189691664,611.9457663654857
631 | 1,2.9444568279888794,624.2751404493055
632 | 1,3.583555845674331,657.6892111810195
633 | 1,3.5675029435808634,570.9974094677334
634 | 1,2.9488448553286184,683.3533042045509
635 | 1,3.088400323869408,644.0333202757157
636 | 1,3.785356308211432,633.6411879838121
637 | 1,2.9475452935565056,712.8226530773459
638 | 1,3.86857242207636,658.9120443896452
639 | 1,3.4401054458859868,702.4580994380807
640 | 1,3.257304440879534,689.7733758341961
641 | 1,3.38135879353843,720.71843772437
642 | 1,3.083956126572044,556.9180208609895
643 | 1,3.1144186775558467,734.2976791389383
644 | 1,3.549011869860685,604.6975034526945
645 | 1,3.532752648059922,588.9861748937776
646 |
--------------------------------------------------------------------------------
/college_admissions_prediction.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "college_admissions_prediction.ipynb",
7 | "provenance": [],
8 | "collapsed_sections": [],
9 | "toc_visible": true,
10 | "authorship_tag": "ABX9TyOfLxShZZWoTx5mUi8Z1IQC",
11 | "include_colab_link": true
12 | },
13 | "kernelspec": {
14 | "name": "python3",
15 | "display_name": "Python 3"
16 | }
17 | },
18 | "cells": [
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {
22 | "id": "view-in-github",
23 | "colab_type": "text"
24 | },
25 | "source": [
26 | "
"
27 | ]
28 | },
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {
32 | "id": "b43b6DNdUPru"
33 | },
34 | "source": [
35 | "# Predicting College Admission Chances for Candidates"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "metadata": {
41 | "id": "AZ5l6H6gSrel"
42 | },
43 | "source": [
44 | "import pandas as pd\n",
45 | "import numpy as np\n",
46 | "import matplotlib.pyplot as plt"
47 | ],
48 | "execution_count": 59,
49 | "outputs": []
50 | },
51 | {
52 | "cell_type": "markdown",
53 | "metadata": {
54 | "id": "GdHIJhT6aSdr"
55 | },
56 | "source": [
57 | "## College Admissions Dataset"
58 | ]
59 | },
60 | {
61 | "cell_type": "code",
62 | "metadata": {
63 | "colab": {
64 | "base_uri": "https://localhost:8080/",
65 | "height": 419
66 | },
67 | "id": "lMAc5d0WaOG5",
68 | "outputId": "66fa6e1a-d9bd-4c34-8f20-53adc5350fcd"
69 | },
70 | "source": [
71 | "admissions = pd.read_csv(\"admissions.csv\")\n",
72 | "admissions"
73 | ],
74 | "execution_count": 60,
75 | "outputs": [
76 | {
77 | "output_type": "execute_result",
78 | "data": {
79 | "text/html": [
80 | "
\n",
81 | "\n",
94 | "
\n",
95 | " \n",
96 | " \n",
97 | " | \n",
98 | " admit | \n",
99 | " gpa | \n",
100 | " gre | \n",
101 | "
\n",
102 | " \n",
103 | " \n",
104 | " \n",
105 | " | 0 | \n",
106 | " 0 | \n",
107 | " 3.177277 | \n",
108 | " 594.102992 | \n",
109 | "
\n",
110 | " \n",
111 | " | 1 | \n",
112 | " 0 | \n",
113 | " 3.412655 | \n",
114 | " 631.528607 | \n",
115 | "
\n",
116 | " \n",
117 | " | 2 | \n",
118 | " 0 | \n",
119 | " 2.728097 | \n",
120 | " 553.714399 | \n",
121 | "
\n",
122 | " \n",
123 | " | 3 | \n",
124 | " 0 | \n",
125 | " 3.093559 | \n",
126 | " 551.089985 | \n",
127 | "
\n",
128 | " \n",
129 | " | 4 | \n",
130 | " 0 | \n",
131 | " 3.141923 | \n",
132 | " 537.184894 | \n",
133 | "
\n",
134 | " \n",
135 | " | ... | \n",
136 | " ... | \n",
137 | " ... | \n",
138 | " ... | \n",
139 | "
\n",
140 | " \n",
141 | " | 639 | \n",
142 | " 1 | \n",
143 | " 3.381359 | \n",
144 | " 720.718438 | \n",
145 | "
\n",
146 | " \n",
147 | " | 640 | \n",
148 | " 1 | \n",
149 | " 3.083956 | \n",
150 | " 556.918021 | \n",
151 | "
\n",
152 | " \n",
153 | " | 641 | \n",
154 | " 1 | \n",
155 | " 3.114419 | \n",
156 | " 734.297679 | \n",
157 | "
\n",
158 | " \n",
159 | " | 642 | \n",
160 | " 1 | \n",
161 | " 3.549012 | \n",
162 | " 604.697503 | \n",
163 | "
\n",
164 | " \n",
165 | " | 643 | \n",
166 | " 1 | \n",
167 | " 3.532753 | \n",
168 | " 588.986175 | \n",
169 | "
\n",
170 | " \n",
171 | "
\n",
172 | "
644 rows × 3 columns
\n",
173 | "
"
174 | ],
175 | "text/plain": [
176 | " admit gpa gre\n",
177 | "0 0 3.177277 594.102992\n",
178 | "1 0 3.412655 631.528607\n",
179 | "2 0 2.728097 553.714399\n",
180 | "3 0 3.093559 551.089985\n",
181 | "4 0 3.141923 537.184894\n",
182 | ".. ... ... ...\n",
183 | "639 1 3.381359 720.718438\n",
184 | "640 1 3.083956 556.918021\n",
185 | "641 1 3.114419 734.297679\n",
186 | "642 1 3.549012 604.697503\n",
187 | "643 1 3.532753 588.986175\n",
188 | "\n",
189 | "[644 rows x 3 columns]"
190 | ]
191 | },
192 | "metadata": {
193 | "tags": []
194 | },
195 | "execution_count": 60
196 | }
197 | ]
198 | },
199 | {
200 | "cell_type": "code",
201 | "metadata": {
202 | "colab": {
203 | "base_uri": "https://localhost:8080/",
204 | "height": 265
205 | },
206 | "id": "ytZo7jztTGMw",
207 | "outputId": "7a3fe7be-0b2c-46e0-de2c-89c55875859f"
208 | },
209 | "source": [
210 | "plt.scatter(admissions['gpa'], admissions['admit'])\n",
211 | "plt.show()"
212 | ],
213 | "execution_count": 61,
214 | "outputs": [
215 | {
216 | "output_type": "display_data",
217 | "data": {
218 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUw0lEQVR4nO3dcZAed33f8ff3Hj2yT8bh5OpI7ZOEHI/ixMYIwdW4cSc1DYyEC5ICdiy1bqFD42mCaTpk1JrSMcRJh6Q3pWYSZ4hLMwUabIxDNAo1VZjETDuhdnxCGCq5AlUYrDMTXzByAhb4JH37x7OSHz167m5P9zx3p5/frxmNdn/7e/b3vdXuR8+zu89tZCaSpPPfwGIXIEnqDQNdkgphoEtSIQx0SSqEgS5JhVi2WAOvWrUq161bt1jDS9J5ae/evX+VmcPdli1aoK9bt47x8fHFGl6SzksR8a3plnnKRZIKYaBLUiEMdEkqhIEuSYUw0CWpELPe5RIRvw+8BXgmM1/VZXkAHwFuBJ4H3pmZX+51oaXbtW+CsT0HefroMS4bGmTnpivZtnFkUcasU0tnnzf81DAP/9/JWusa/9az/MEj3+bUr4W7YNkAg80Gzx2bYmhFkx9OneDY1Mm+/ux1NQfg+Elo/xV2wZnzc3H9FZdw8+haxvYcZOLosR5UWLaBgEbAqd0hAjJh5YommXD02FTtdV20vMHJzK771soVTT7w1qtP77Mf3L3/9LpPjTnScSyc2rcnjh6jEcGJzNN9gK7H0Js+/EW+8cwPTo+7/hUX8YX33nCOW+dsMdtvW4yInwW+D3ximkC/EXgPrUB/PfCRzHz9bAOPjo6mty227No3wfs++zWOTZ043TbYbPCht13Tt1Cfbsy3v26EP9w7MWMt3V7babp1DQSc9Bd8aglqNoJb/s4aPv0XTzE1zU566lgApj0Gmo2A5Ix1DDYb/NiFDf7yb144q/9cQz0i9mbmaLdls55yycz/CTw7Q5ettMI+M/MRYCgiLq1dnRjbc/CsHePY1AnG9hxc8DHve/SpWWvp9tpO063LMNdSNXUiue/R6cMcXjwWZjoGpk7kWes4NnWia5gDZ7xjn69efLFoBHiqbf5I1fadzo4RcRtwG8DatWt7MHQZnp7mo/d07f0c88Q0n9ja+9eta7p1SUtVnX22n8flfC3oRdHMvDczRzNzdHi46zdXX5IuGxqcU3s/x2xEzNq/bl3TrUtaqurss5cNDfb12JyPXgT6BLCmbX511aaadm66ksFm44y2wWbj9MWVhRxzx+vXzFpLt9d2mm5dA2a8lqhmI9jx+jU0Z9hJTx0LMx0DzUactY7BZoMfv3h51/7rX3HRuRfdoReBvhv4p9FyHfBcZp51ukXT27ZxhA+97RpGhgYJWlfT+3lBdKYxf2PbNbPW0u21t163tta6PvwLr+HW69bSvrtfsGyAocEmQetug8Hm0rmbtjkAnYf3fP5Puv6KS7j7ltcwskTf4S01A9H6Nzjl1BvolSuaDA0257Sui5Y3pt23Vq5oMnbTBn5j2zWM3bzhjHWfGrP9WGg/BuDFd/YjQ4OM3bSBsZs3nHU8PPr+N50V3otxl8t9wA3AKuAvgQ8ATYDM/Gh12+LvAJtp3bb4zzJz1ttXvMtFkuZuprtcZr0ompk7ZlmewLvPsTZJUo8snc+2kqR5MdAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIWoFekRsjoiDEXEoIu7osnxtRDwcEfsi4qsRcWPvS5UkzWTWQI+IBnAP8GbgKmBHRFzV0e3fAQ9k5kZgO/C7vS5UkjSzOu/QrwUOZebhzHwBuB/Y2tEngR+rpl8OPN27EiVJddQJ9BHgqbb5I1Vbuw8Ct0bEEeAh4D3dVhQRt0XEeESMT05OnkO5kqTp9Oqi6A7gv2bmauBG4JMRcda6M/PezBzNzNHh4eEeDS1JgnqBPgGsaZtfXbW1exfwAEBm/m/gQmBVLwqUJNVTJ9AfA9ZHxOURsZzWRc/dHX2+DfwcQET8NK1A95yKJC2gWQM9M48DtwN7gCdo3c2yPyLuiogtVbdfBX4xIh4H7gPemZnZr6IlSWdbVqdTZj5E62Jne9udbdMHgOt7W5okaS78pqgkFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqRK1Aj4jNEXEwIg5FxB3T9PmFiDgQEfsj4lO9LVOSNJtls3WIiAZwD/Am4AjwWETszswDbX3WA+8Drs/M70XEK/pVsCSpuzrv0K8FDmXm4cx8Abgf2NrR5xeBezLzewCZ+Uxvy5QkzaZOoI8AT7XNH6na2v0k8JMR8ecR8UhEbO62ooi4LSLGI2J8cnLy3CqWJHXVq4uiy4D1wA3ADuA/R8RQZ6fMvDczRzNzdHh4uEdDS5KgXqBPAGva5ldXbe2OALszcyozvwl8nVbAS5IWSJ1AfwxYHxGXR8RyYDuwu6PPLlrvzomIVbROwRzuYZ2SpFnMGuiZeRy4HdgDPAE8kJn7I+KuiNhSddsDfDciDgAPAzsz87v9KlqSdLbIzEUZeHR0NMfHxxdlbEk6X0XE3swc7bbMb4pKUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSIWoEeEZsj4mBEHIqIO2bo9/aIyIgY7V2JkqQ6Zg30iGgA9wBvBq4CdkTEVV36XQz8CvBor4uUJM2uzjv0a4FDmXk4M18A7ge2dun368BvAT/sYX2SpJrqBPoI8FTb/JGq7bSIeC2wJjP/+0wriojbImI8IsYnJyfnXKwkaXrzvigaEQPAh4Ffna1vZt6bmaOZOTo8PDzfoSVJbeoE+gSwpm1+ddV2ysXAq4AvRsSTwHXAbi+MStLCqhPojwHrI+LyiFgObAd2n1qYmc9l5qrMXJeZ64BHgC2ZOd6XiiVJXc0a6Jl5HLgd2AM8ATyQmfsj4q6I2NLvAiVJ9Syr0ykzHwIe6mi7c5q+N8y/LEnSXPlNUUkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklSIWoEeEZsj4mBEHIqIO7osf29EHIiIr0bEn0bEK3tfqiRpJrMGekQ0gHuANwNXATsi4qqObvuA0cx8NfAg8B96XagkaWZ13qFfCxzKzMOZ+QJwP7C1vUNmPpyZz1ezjwCre1umJGk2dQJ9BHiqbf5I1TaddwGf77YgIm6LiPGIGJ+cnKxfpSRpVj29KBoRtwKjwFi35Zl5b2aOZubo8PBwL4eWpJe8ZTX6TABr2uZXV21niIg3Au8H/n5m/qg35UmS6qrzDv0xYH1EXB4Ry4HtwO72DhGxEfg9YEtmPtP7MiVJs5k10DPzOHA7sAd4AnggM/dHxF0RsaXqNga8DPhMRHwlInZPszpJUp/UOeVCZj4EPNTRdmfb9Bt7XJckaY78pqgkFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYVYVqdTRGwGPgI0gI9l5m92LL8A+ATwOuC7wC2Z+WRvS4Vd+yYY23OQp48e47KhQXZuupJtG0d6Pcy8zKXGXfsm+ODu/Rw9NgXARcsbNBsDPHds6px/vl37Jvi1P97P956fOt22ckWTD7z1aoAzxpP6ZWiwyVs2XMrnHv9Orf3t+isu4ebRtWftn8sGguMn84y+AaxY3uAHL5xgIKBjMSuaA1zQbHD0+SmGVjTJZF7HFJx5XPdqnf0QmTlzh4gG8HXgTcAR4DFgR2YeaOvzy8CrM/NfRMR24Ocz85aZ1js6Oprj4+O1C921b4L3ffZrHJs6cbptsNngQ2+7ZslszLnUuGvfBDs/8zhTnXtjm7n+fLv2TbDzwceZOnH2OhsDQZ5MTtb8WaQSnUtmdDuu57vO+YiIvZk52m1ZnVMu1wKHMvNwZr4A3A9s7eizFfh4Nf0g8HMREedacDdjew6etUGPTZ1gbM/BXg4zL3OpcWzPwRnDfKbXzjR+tzAHOGGYS+eUGd2O6/mus1/qBPoI8FTb/JGqrWufzDwOPAf8rc4VRcRtETEeEeOTk5NzKvTpo8fm1L4Y5lJj3brn8vMtpW0hLVVzPU7q9F8qx96CXhTNzHszczQzR4eHh+f02suGBufUvhjmUmPduufy8y2lbSEtVXM9Tur0XyrHXp1AnwDWtM2vrtq69omIZcDLaV0c7Zmdm65ksNk4o22w2WDnpit7Ocy8zKXGnZuupDkw81mpuf58OzddSbPRfZ2NgfCWJr3knUtmdDuu57vOfqlzjD8GrI+IyyNiObAd2N3RZzfwjmr6JuDPcrarrXO0beMIH3rbNYwMDRLAyNDgkrogCnOrcdvGEcZu3sDQYPN020XLGwwNNs/559u2cYSxmzawckXzjPaVK5r8x5s38OFbXnPGeFK/DA02ufW6tbX3t+uvuIS7u+yfy7q86QlaxwpAt/dEK5oDrFzROo5WrmjO65iCs4/rXqyzX2a9ywUgIm4E7qZ12+LvZ+a/j4i7gPHM3B0RFwKfBDYCzwLbM/PwTOuc610ukqSZ73KpdR96Zj4EPNTRdmfb9A+Bm+dTpCRpfjytKkmFMNAlqRAGuiQVwkCXpELUusulLwNHTALfWqDhVgF/tUBjzYd19tb5UOf5UCNYZ6/Np85XZmbXb2YuWqAvpIgYn+42n6XEOnvrfKjzfKgRrLPX+lWnp1wkqRAGuiQV4qUS6PcudgE1WWdvnQ91ng81gnX2Wl/qfEmcQ5ekl4KXyjt0SSqegS5JhTivAz0i1kTEwxFxICL2R8SvdOnzjyPiqxHxtYj4UkRsaFv2ZNX+lYjo269+rFnnDRHxXFXLVyLizrZlmyPiYEQciog7FrnOnW01/p+IOBERl1TL+r49I+LCiPiLiHi8qvHXuvS5ICI+XW2vRyNiXduy91XtByNiUz9qnEOd76229Vcj4k8j4pVty060befOX1e90HW+MyIm2+r5523L3hER36j+vKPztQtc539qq/HrEXG0bdmCbM9qrEZE7IuIz3VZ1t99MzPP2z/ApcBrq+mLaT3M+qqOPj8DrKym3ww82rbsSWDVEqnzBuBzXV7bAP4f8BPAcuDxztcuZJ0d/d9K63ffL9j2pPXrsF9WTTeBR4HrOvr8MvDRano78Olq+qpq+10AXF5t18Yi1vkGYEU1/Uun6qzmv9/v/XIOdb4T+J0ur70EOFz9vbKaXrlYdXb0fw+tX/W9oNuzGuu9wKemOZ77um+e1+/QM/M7mfnlavpvgCfoeN5pZn4pM79XzT5C64lLC6pOnTOo85DuxapzB3BfP2qZTrZ8v5ptVn86r+xP99DyrcD9mfmjzPwmcIjW9l2UOjPz4cx8vppdrH2zzvaczibgC5n5bHWMfQHY3Icyz6XOBd83ASJiNfAPgY9N06Wv++Z5Hejtqo8uG2n9zz2ddwGfb5tP4E8iYm9E3Na/6l40S51/t/pI+fmIuLpqq/OQ7p6bbXtGxApaB+8ftjUvyPasPtJ+BXiGVqB01jjdQ8sXdFvWqLNd5755YbQeqP5IRGzrV41zqPPt1amhByPi1CMpl+T2rE5dXQ78WVvzQm3Pu4F/DZycZnlf980iAj0iXkYrWP5VZv71NH3eQOug+TdtzX8vM19L61TMuyPiZxexzi/T+h0NG4DfBnb1s5aZ1NmetE63/HlmPtvWtiDbMzNPZOZraL2jvTYiXtWPcearbp0RcSswCoy1Nb8yW18N/0fA3RFxxSLW+cfAusx8Na134R/vXMdCmMO/+3bgwcw80dbW9+0ZEW8BnsnMvb1ed13nfaBHRJNW+PxBZn52mj6vpvURaGtmnn54dWZOVH8/A/wRffr4XafOzPzrUx8ps/WEqGZErKLeQ7oXrM422+n4SLuQ27Ma5yjwMGd/zJ/uoeULui1r1ElEvBF4P7AlM3/U9ppT2/Iw8EVan5YWpc7M/G5bbR8DXldNL7ntWZlp3+zn9rwe2BIRT9I6NfoPIuK/dfTp777Zi4sAi/WH1oWSTwB3z9BnLa3zUT/T0X4RcHHb9JeAzYtY59/mxS96XQt8u3rdMloXmy7nxYuiVy9WnVW/l9N6duxFC709gWFgqJoeBP4X8JaOPu/mzAtPD1TTV3PmhafD9O+iaJ06N9K6+LW+o30lcEE1vQr4Bv27EF6nzkvbpn8eeKSavgT4ZlXvymr6ksWqs1r2U7QuzsdibM+2MW+g+0XRvu6btZ4puoRdD/wT4GvVuTWAf0srxMnMjwJ30jpH9butaw8cz9ZHrx8H/qhqWwZ8KjP/xyLWeRPwSxFxHDhG60HbCRyPiNuBPbz4kO79i1gntA7qP8nMH7S9dqG256XAxyOiQesT5gOZ+bloe2g58F+AT0bEIaqHllf174+IB4ADwHHg3Xnmx/KFrnMMeBnwmWq7fTsztwA/DfxeRJysXvubmXlgEev8lxGxhdY2e5bWXS9k5rMR8evAY9W67sozT8EtdJ3Q+re+vzp2TlnI7XmWhdw3/eq/JBXivD+HLklqMdAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIf4/b7cheHUivVAAAAAASUVORK5CYII=\n",
219 | "text/plain": [
220 | ""
221 | ]
222 | },
223 | "metadata": {
224 | "tags": [],
225 | "needs_background": "light"
226 | }
227 | }
228 | ]
229 | },
230 | {
231 | "cell_type": "markdown",
232 | "metadata": {
233 | "id": "FtdLm9dvUfoa"
234 | },
235 | "source": [
236 | "## Exploring the Logistic Function"
237 | ]
238 | },
239 | {
240 | "cell_type": "code",
241 | "metadata": {
242 | "colab": {
243 | "base_uri": "https://localhost:8080/",
244 | "height": 265
245 | },
246 | "id": "MvceOIR7Tl9v",
247 | "outputId": "419effb4-48db-4f7b-a5a5-2a5c46fa795d"
248 | },
249 | "source": [
250 | "# Logistic Function\n",
251 | "def logistic(x):\n",
252 | " # np.exp(x) raises x to the exponential power, ie e^x. e ~= 2.71828\n",
253 | " return np.exp(x) / (1 + np.exp(x)) \n",
254 | " \n",
255 | "# Generate 50 real values, evenly spaced, between -6 and 6.\n",
256 | "x = np.linspace(-6,6,50, dtype=float)\n",
257 | "\n",
258 | "# Transform each number in t using the logistic function.\n",
259 | "y = logistic(x)\n",
260 | "\n",
261 | "# Plot the resulting data.\n",
262 | "plt.plot(x, y)\n",
263 | "plt.ylabel(\"Probability\")\n",
264 | "plt.show()"
265 | ],
266 | "execution_count": 62,
267 | "outputs": [
268 | {
269 | "output_type": "display_data",
270 | "data": {
271 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3yV9f3+8dc7GwIJewUQkA2KaMTVuge4sN9qlQ61tdXaarW1Q2sntb+qtdVqbZU6a7VoUVtaN+7aooAgSBiGsBJWWEnIzjnv3x/naCMCCSEn9xnX8/E4j3POfe6ccx1IznXu9bnN3RERkdSVFnQAEREJlopARCTFqQhERFKcikBEJMWpCEREUlxG0AH2V69evXzIkCFBxxARSSgLFizY6u699/RYwhXBkCFDmD9/ftAxREQSipmt3dtjWjUkIpLiVAQiIilORSAikuJUBCIiKU5FICKS4mJWBGb2gJltMbP39/K4mdmdZlZsZovN7PBYZRERkb2L5RLBQ8DkfTw+BRgRvVwO/DGGWUREZC9idhyBu79hZkP2MctU4M8eGQd7rpl1M7P+7r4xVplERDqau1PfFKauMURdY/S6KUR9Y5iGUJiGpjD1TaHodeR+Y8hpCje7HQrTGApzypi+TBjUrd0zBnlAWQGwvtn90ui0TxSBmV1OZKmBwYMHd0g4EUlt7k5tY4gdNY3srGlgZ00jO2saqaxrpKqukV11TVTWNVFV10RVXSM1DSGqG5qobX5dH6K2MdRumfrm5yRdEbSau88AZgAUFhbqTDoi0mahsLOlqo6yHbVsqqyjvKr+f5ddkeutu+rZUdNIQ1N4r89jBl2yMuiak0HXnExys9PJzcqgd5dscrMz6JSVTm5WOp0y08nOjFznZKaTk5lGTmY62RlpZGekk5WRFrmkR66zM9LITE8jM93ISI9Mz0w30tMMM4vJv0mQRVAGDGp2f2B0mojIAamsa2R1eTWrt1ZTUr6L9TtqKdtZS9mOWjZX1tEU/vj3yYw0o1eXbHp3zaZvXg5j++fRIzeLbp2z6NY5k+6dMz+6nZeTSdecDHKzMkhLi80Hc0cLsghmA1eZ2UzgKKBC2wdEZH/UNDSxbGMVRRsrKdpQyaryXZSUV7N1V/1H86QZ9M/vREG3Thw5pDsF3TsxoFvk0j8/hz5dc+jWKTNpPtTbImZFYGZ/BU4EeplZKfBTIBPA3e8BngXOBIqBGuDLscoiIomvvinE4tIKFqzdwftlFRRtrGT11mo+PO16fqdMRvbtwsmjezOsdxeG9splWK9cBvfsTHZGerDh41ws9xqa1sLjDnwzVq8vIomtqq6Rd9ft5J3V25i3egeLSnd+tM6+oFsnxg3I49wJAxg3IJ+xA/IYkJ8Ts3XoyS4hNhaLSPJzd1aV72LOsi28vGwzC9buIOyQnmaMH5DHxUcfxJFDe1B4UHd6dskOOm5SURGISGAaQ2HeWb2dOcs28/KyLazbXgPAuAF5fOPE4Rw9rCcTB3cjN1sfVbGkf10R6XBFGyqZtaCUfywqY1t1A1kZaRx3cE8uP34Yp4zpQ//8TkFHTCkqAhHpENt21fOPRRuYtaCUoo2VZKYbp47py9TDCjh+ZC86Z+njKCj6lxeRmFq0ficz3ljFi0s30xR2DinI5+fnjuPcCQPonpsVdDxBRSAiMeDuvL6ynHteX8Xcku3k5WRw6bFDOL9wIKP75QUdT3ajIhCRdtMUCvPMko3c83oJyzZW0i8vhxvPHMO0owbTRRt845b+Z0TkgLk7z7+/iZufX87abTUc3DuXW88/lPMOKyArQ+e/incqAhE5IEs3VDD9n0W8vXo7o/p25d4vHcFpY/qm9JANiUZFICJtsnVXPb95cQUz562nW6dMbjpvPBcdOYiMdC0BJBoVgYjsl8ZQmAffWs1dLxdT2xjiK8cN5VunjCC/U2bQ0aSNVAQi0mol5bv49uOLeK+0gpNH9+HGs8ZwcO8uQceSA6QiEJEWuTuPvbOOm/61jOzMNP7whcM585D+QceSdqIiEJF9Kq+q5/onF/Py8i18ekQvbrtgAn3zcoKOJe1IRSAiezWnaDM/eHIxVfVN/PScsVxyzBDtDZSEVAQi8gmhsHPzc8v405urGds/j79edBgj+3YNOpbEiIpARD6mur6Ja2YuYs6yzVx8zEHceNYYneEryakIROQjGytqueyh+SzfVMnPzx3HJccOCTqSdAAVgYgAsKS0gq/+eR7V9SHuv/RIThrVJ+hI0kFUBCLCC0s3ce3MRfTIzeLJK49iVD9tD0glKgKRFPfAv1fzi2eKmDCwGzMuPoI+XbVraKpREYiksPveLOGmZ5YxeVw/7rjoMHIytVE4FakIRFLUQ2+t5qZnljFlfD/unDaRTA0Wl7L0Py+Sgh757xp+9s8izhjXVyUgKgKRVPPo22v58T+WcuqYvtw17XCVgKgIRFLJzHfWcePT73Py6D7c/YWJOnuYACoCkZTxt/nrueHpJZwwsjd/+MLhOlpYPqIiEEkBr68s5wdPLuZTw3tx75eO0N5B8jEqApEk98HmKq569F1G9u3KPV9UCcgnqQhEktj26gYue3g+2Zlp3H/pkeRma49x+aSYFoGZTTazFWZWbGbX7+HxwWb2qpktNLPFZnZmLPOIpJL6phBff2QBmyrrmHFxIQXdOgUdSeJUzIrAzNKBu4EpwFhgmpmN3W22HwFPuPtE4CLgD7HKI5JK3J0fPf0+76zZzq/PP5TDB3cPOpLEsVguEUwCit29xN0bgJnA1N3mcSAvejsf2BDDPCIpY8YbJfxtQSnfOnk4Uw8rCDqOxLlYFkEBsL7Z/dLotOZ+BnzRzEqBZ4Gr9/REZna5mc03s/nl5eWxyCqSNF4q2szNzy/nrEP6c+2pI4OOIwkg6I3F04CH3H0gcCbwiJl9IpO7z3D3Qncv7N27d4eHFEkUxVt2cc3MhRxSkM9tF0zQ+YWlVWJZBGXAoGb3B0anNXcZ8ASAu/8XyAF6xTCTSNKqawxx9V8Xkp2RxowvFdIpS7uJSuvEsgjmASPMbKiZZRHZGDx7t3nWAacAmNkYIkWgdT8ibXDzc8tZtrGS2y6YQL98nVNAWi9mReDuTcBVwAvAMiJ7By01s+lmdm50tuuAr5nZe8BfgUvd3WOVSSRZzSnazEP/WcOXjxvCKWP6Bh1HEkxMjy5x92eJbARuPu0nzW4XAcfFMoNIsttcWcf3Zr3H2P55XD9ldNBxJAEFvbFYRA5AKOxcO3MRdY1h7pw2UQPJSZvoeHORBHbP66v4b8k2bv3soQzv0yXoOJKgtEQgkqAWrN3Bb19ayTkTBnBB4cCg40gCUxGIJKDKukaumbmQ/vk5/PIz4zHT8QLSdlo1JJKA/t8zy9iws5ZZVx5LXk5m0HEkwWmJQCTB/GfVVmbOW8/XPj1Mg8lJu1ARiCSQusYQNzy1hIN6dtY4QtJutGpIJIHcPmcla7fV8NjXjtIQEtJutEQgkiDeL6vgvjdXc2HhII49WENySftREYgkgMZQmO/PWkyP3Cx+eOaYoONIktGqIZEE8Kc3SyjaWMk9Xzyc/M7aS0jal5YIROJcSfku7pjzAZPH9WPy+P5Bx5EkpCIQiWPhsHPDU0vIzkjj51PHBR1HkpSKQCSOPTF/PW+v3s6NZ46hb57OMSCxoSIQiVMVNY3c8vxyJg3pwYVHDmr5B0TaSEUgEqdun7OSitpGfnruWI0lJDGlIhCJQys2VfHI3LVMmzSYcQPyg44jSU5FIBJn3J3p/1pKblY6150+Kug4kgJUBCJx5oWlm3mreBvXnT6KHrlZQceRFKAiEIkjdY0hfvlsEaP6duULRw0OOo6kCB1ZLBJH7nuzhPXba3nsq0eRka7vadIx9JsmEic2VtRy96urmDK+H8cO16By0nFUBCJx4lfPLifsrkHlpMOpCETiwLw125n93gauOOFgBvXoHHQcSTEqApGAhcPO9H8WMSA/hytPODjoOJKCVAQiAfvXko0sKavgu2eM0lnHJBAqApEANTSFue2FFYzpn8d5hxUEHUdSlIpAJECPvr2WddtruH7KaNLSNJ6QBENFIBKQqrpG7nqlmOOG9+T4EdpdVIKjIhAJyL2vl7C9uoHrJ4/R6KISqFYVgZmdY2YqDZF2srmyjvv+XcK5EwZwyECNLirBau2H+4XAB2Z2q5mNbu2Tm9lkM1thZsVmdv1e5vmcmRWZ2VIze6y1zy2SyO6Ys5JQ2PneGRpdVILXqrGG3P2LZpYHTAMeMjMHHgT+6u5Ve/oZM0sH7gZOA0qBeWY2292Lms0zArgBOM7dd5hZnwN7OyLxr3hLFY/PW88lxw7RwWMSF1q9usfdK4FZwEygP/AZ4F0zu3ovPzIJKHb3EndviP7c1N3m+Rpwt7vviL7Glv3ML5Jwbnl+BZ2zMrj65BFBRxEBWr+NYKqZPQ28BmQCk9x9CjABuG4vP1YArG92vzQ6rbmRwEgze8vM5prZ5L28/uVmNt/M5peXl7cmskhcmr9mOy8VbebrJwzTuQYkbrR2GOr/A2539zeaT3T3GjO77ABffwRwIjAQeMPMDnH3nbu9zgxgBkBhYaEfwOuJBMbd+dVzy+nTNZuvfGpo0HFEPtLaVUObdi8BM7sFwN1f3svPlAGDmt0fGJ3WXCkw290b3X01sJJIMYgknVeWb2HB2h1ce+pIOmfpVCASP1pbBKftYdqUFn5mHjDCzIaaWRZwETB7t3n+TmRpADPrRWRVUUkrM4kkjHDYue3FlRzUszMXFA4MOo7Ix+zza4mZXQl8AzjYzBY3e6gr8Na+ftbdm8zsKuAFIB14wN2Xmtl0YL67z44+drqZFQEh4Hvuvq3tb0ckPj37/kaWbazk9gsnkKkzj0mcMfe9r3I3s3ygO/AroPlxAFXuvj3G2faosLDQ58+fH8RLi7RJUyjM6Xe8QboZz197POkaU0gCYGYL3L1wT4+19NXE3X0N8E2gqtkFM+vRniFFktXfF22gpLya604fqRKQuNTSFqvHgLOBBYADzX+LHRgWo1wiSaGhKcwdc1ZySEE+Z4zrF3QckT3aZxG4+9nRa+3rJtIGj89fT+mOWm46b7wGlpO41dLG4sP39bi7v9u+cUSSR11jiN+/8gFHDunOCSN7Bx1HZK9aWjX0m3085sDJ7ZhFJKk88t+1bK6s53cXTdTSgMS1llYNndRRQUSSya76Jv74+io+PaIXRw/rGXQckX1qadXQye7+ipn9354ed/enYhNLJLE9+O/VbK9u4LrTNcy0xL+WVg2dALwCnLOHxxxQEYjspqKmkRlvlnDa2L4cNqhb0HFEWtTSqqGfRq+/3DFxRBLfn94soaquie+cNjLoKCKt0tphqHua2Z1m9q6ZLTCz35mZVnyK7GZ7dQMPvrWasw7tz5j+eUHHEWmV1g56MhMoBz4LnB+9/XisQokkqntfX0VtY4hvn6pBdCVxtHYs3P7u/otm928yswtjEUgkUW2pquPh/65h6mEFDO/TNeg4Iq3W2iWCF83sIjNLi14+R2TkUBGJ+uNrq2gMOdecoqUBSSwt7T5axf/GGLoW+Ev0oTRgF/DdmKYTSRAbK2p59O11fPbwAob0yg06jsh+aWmvIS3firTC3a8W4+46Ib0kpFafL8/MuhM5jWTOh9N2P32lSCoq3VHD4/PW87nCQQzq0TnoOCL7rVVFYGZfBa4hct7hRcDRwH/RWEMi3PVyMWbGVScPDzqKSJu0dmPxNcCRwNro+EMTgZ0xSyWSINZsrWbWu6V8ftJg+ud3CjqOSJu0tgjq3L0OwMyy3X05oEFUJOXd+fIHZKYb3zjp4KCjiLRZa7cRlJpZN+DvwEtmtgNYG7tYIvGveMsu/r6ojK9+ehh9uua0/AMicapVReDun4ne/JmZvQrkA8/HLJVIArh9zkpyMtO54nidsVUS2/7sNXQ48CkixxW85e4NMUslEueWbqjgmcUbueqk4fTskh10HJED0tpB534CPAz0BHoBD5rZj2IZTCSe3f7SSvJyMvialgYkCbR2ieALwIRmG4xvJrIb6U2xCiYSr95dt4M5y7bwvTNGkd8pM+g4IgestXsNbaDZgWRANlDW/nFE4t9vXlxBry5ZXHrskKCjiLSLlsYauovINoEKYKmZvRS9fxrwTuzjicSX/6zaylvF2/jx2WPJzW71JjaRuNbSb/L86PUC4Olm01+LSRqROObu3PbCCvrl5fCFowYHHUek3bQ06NzDH942syzgw3PvrXD3xlgGE4k3r67YwrvrdvLLz4wnJzM96Dgi7aa1Yw2dSGSvoTVEhqQeZGaXaNA5SRXhsHPbCysZ3KMznyscFHQckXbV2pWcvwFOd/cVAGY2EvgrcESsgonEk+eXbqJoYyW//dwEMtNbu4+FSGJo7W905oclAODuKwHtNycpIRR2fvvSSkb06cLUwwqCjiPS7lpbBAvM7D4zOzF6+RP/25C8V2Y22cxWmFmxmV2/j/k+a2ZuZoWtDS7SUf6+sIziLbv4zmkjSU+zoOOItLvWFsHXgSLgW9FLEXDlvn7AzNKBu4EpwFhgmpmN3cN8XYkMc/1262OLdIy6xhC/fWkl4wvymDy+X9BxRGKixW0E0Q/099x9NPDb/XjuSUCxu5dEn2cmMJVIiTT3C+AW4Hv78dwiHeIvc9dStrOWW88/FDMtDUhyanGJwN1DwAoz298dpwuA9c3ul0anfSQ6kN0gd39mX09kZpeb2Xwzm19eXr6fMUTapqK2kd+/WszxI3tz3PBeQccRiZnW7jXUnciRxe8A1R9OdPdz2/rCZpZGZAnj0pbmdfcZwAyAwsJCb+triuyPP762ioraRn4wWedgkuTW2iL4cRueuwxovsP1QD4+PlFXYDzwWnSRux8w28zOdfcWN0SLxNKGnbU8+NZqzjusgHED8oOOIxJTLY01lENkQ/FwYAlwv7s3tfK55wEjzGwokQK4CPj8hw+6ewWRIa0/fK3XgO+qBCQe3P7SStzhO6eNbHlmkQTX0jaCh4FCIiUwhciBZa0SLYyrgBeAZcAT7r7UzKabWZtXKYnE2opNVTz5bikXH3MQg3p0DjqOSMy1tGporLsfAmBm97OfI466+7PAs7tN+8le5j1xf55bJFZueX45udkZfPOk4UFHEekQLS0RfDSw3H6sEhJJWHNLtvHK8i1848ThdM/NCjqOSIdoaYlggplVRm8b0Cl63wB397yYphPpQO7Or55bTr+8HL583JCg44h0mJaGodZYu5Iynnt/E++t38mtnz1Uw0xLStEwiiJAfVOIW55fzsi+XfjsEQODjiPSoVQEIsD9/17N2m01/OissRpYTlKOikBS3ubKOn7/SjGnjunL8SN7Bx1HpMOpCCTl3fLccppCzo/PHhN0FJFAqAgkpS1Yu4OnFpbx1U8P5aCeuUHHEQmEikBSVjjs/PyfS+mbl62DxySlqQgkZc1aUMri0gpumDKG3OzWjr8oknxUBJKSKusaufWF5RxxUHemHjYg6DgigdLXIElJd875gG3VDTx46SSdeUxSnpYIJOUUb9nFQ/9Zw4WFgzhkoM41IKIikJTi7kz/VxGdstL57hk685gIqAgkxfxz8UbeWFnOtaeOpFeX7KDjiMQFFYGkjB3VDfx89lIOHZjPJcccFHQckbihjcWSMn7xTBEVtY385atHkZGu70AiH9Jfg6SE11eW89S7ZXz9hIMZ01+n0RBpTkUgSa+6vokfPrWEYb1zuepkHUEssjutGpKk95sXV1K2s5YnrjhGJ5wR2QMtEUhSW7huBw/+ZzVfPHowk4b2CDqOSFxSEUjSamgKc/2TS+iXl8MPJo8OOo5I3NKqIUla97y+ihWbq7j/kkK65mQGHUckbmmJQJLS8k2V/P6VYs6ZMIBTxvQNOo5IXFMRSNKpbQjxrb8uJK9TJj89Z2zQcUTinlYNSdL5xTNFrNy8iz9/ZZKGkRBpBS0RSFJ5bslGHnt7HVecMEwnohdpJRWBJI2ynbX84MnFTBiYz3WnaWRRkdZSEUhSaAqFuXbmQsIOd06bSFaGfrVFWkvbCCQp3PVKMfPW7OCOCw/joJ65QccRSSj62iQJb27JNu565QP+7/ACzptYEHQckYQT0yIws8lmtsLMis3s+j08/h0zKzKzxWb2splpkHjZLztrGvj244sY3KMz06eODzqOSEKKWRGYWTpwNzAFGAtMM7Pdd+peCBS6+6HALODWWOWR5NMYCnPVYwvZuqueu6YdTpdsrekUaYtYLhFMAordvcTdG4CZwNTmM7j7q+5eE707FxgYwzySRNydn/9zKf8u3sovP3OITkIvcgBiWQQFwPpm90uj0/bmMuC5PT1gZpeb2Xwzm19eXt6OESVRPfyfNfxl7jquOH4YnyscFHQckYQWFxuLzeyLQCHw6z097u4z3L3Q3Qt799ZBQqnutRVbmP6vIk4d05fva1RRkQMWy5WqZUDzr2oDo9M+xsxOBW4ETnD3+hjmkSTwweYqrn5sIaP65fG7iw4jPc2CjiSS8GK5RDAPGGFmQ80sC7gImN18BjObCNwLnOvuW2KYRZLA9uoGLnt4PtmZ6dx3SSG52jgs0i5iVgTu3gRcBbwALAOecPelZjbdzM6NzvZroAvwNzNbZGaz9/J0kuLqm0J8/ZEFbKqs408XH0FBt05BRxJJGjH9SuXuzwLP7jbtJ81unxrL15fkEAo735+1mHfWbOfOaROZOLh70JFEkkpcbCwW2ZtQ2PnerPf4x6INfH/yKM6dMCDoSCJJR0UgcSscdq5/cjFPvVvGd04byTdOHB50JJGkpCKQuBQOOz98egl/W1DKNaeM4FunjAg6kkjSUhFI3AmHnR/9431mzlvP1ScP59pTVQIisaQikLji7vx09lIee3sdV554MN85bSRmOlZAJJZUBBI3QmHnJ/9YyiNz13LF8cP4/hmjVAIiHUBH5EhcqK5v4pqZC5mzbAtXHD+M66eMVgmIdBAVgQRuY0Utlz00n+WbKpk+dRwXHzMk6EgiKUVFIIFaUlrBZQ/Po6YhxAOXHsmJo/oEHUkk5agIJDDPv7+Jbz++iB65WTx55VGM6tc16EgiKUlFIB3O3bn3jRJueX45EwZ2408XF9K7a3bQsURSlopAOtSWqjq+P2sxr60o56xD+/ObCyaQk5kedCyRlKYikA7zwtJN3PDUEqrrm5g+dRxfOvog7RkkEgdUBBJz1fVNTP9nEY/PX8/4gjzuuPAwhvfR9gCReKEikJhasHYH33liEeu21/CNEw/m2lNHkpWh4xhF4omKQGJiR3UDd8xZySNz19I/vxOPX34Mk4b2CDqWiOyBikDaVWMozKNz13L7nA+oqmvkC0cdxPcmjyIvJzPoaCKyFyoCaTevrdjCTc8so3jLLj41vBc/Pnusjg0QSQAqAjlgyzZWcuvzy3l1RTlDenbmvosLOWVMH+0RJJIgVATSJu7O26u3c8/rq3htRTldszP44ZmjufTYodoYLJJgVASyX8Jh58Wizdzz+ioWrd9Jz9wsvnv6SL509BDyO2s7gEgiUhFIq1TUNDJ78QYefGs1JeXVDO7RmV+cN54LjhioI4NFEpyKQPaqKRTmzeKtzFpQyktFm2loCjNuQB53TZvIlPH9yEjXKiCRZKAikI9xd1Zu3sVTC0t5+t0ytlTV061zJp+fNJjzjxjIuAF52ggskmRUBEJDU5i3V2/j5WVbeHn5ZtZvryU9zThpVB/OP6KAk0b3ITtDq39EkpWKIEWV7qhhbsl2Xlm+mTdWbmVXfRPZGWl8angvvn7CwZw+tp+GhhZJESqCFBAOO8Xlu3hn9XbmrdnOvNXb2VBRB0CfrtmcM6E/p4zuy3HDe9EpS9/8RVKNiiDJhMLO6q27WLqhkqINlRRtrGRJWQU7axqByAf/kUN7cMWQHhw5pAej+3UlLU3r/EVSmYogQdU3hVi3rYaSrdWs3lpNSfkuVm7exfJNldQ1hgHISk9jZL8unDG2H0cM6c5RQ3swuEdnbewVkY9REcSphqYwmyrqKNtZS9nOWjbsrKVsRy0bKmpZu62G0h01hP1/8/fums3BvXP5/KSDGDcgj7ED8hjepwuZ2sVTRFoQ0yIws8nA74B04D53v3m3x7OBPwNHANuAC919TSwzBaWhKczO2gZ21jSyo7qBnbWN7KxpYEdNI1ur6infVU95VfSyq/6jVTnN9eqSTUH3Thw6MJ/zJhYwrFcuw3rnMqRXrkb3FJE2i1kRmFk6cDdwGlAKzDOz2e5e1Gy2y4Ad7j7czC4CbgEujFWmfXF3GkJhGpoil/pm17WNIeo+uoSpbwpR0xC91DdR0xi5rm4IUV3fRFVdE1V1jVQ1u/3h6po96ZSZTu+u2dFv9V04elhPenXJpn+3HAq6daKgWyf65efoCF4RiYlYLhFMAordvQTAzGYCU4HmRTAV+Fn09izg92Zm7u60syfmrefeN1bRGHKaQmEaQk5jKExTKExjKFICbZWZbnTOyqBzVjq52Rl0zckgr1MmA7t3pmtORvSSSffOmXTrnEW3zpl0b3adm601dCISnFh+AhUA65vdLwWO2ts87t5kZhVAT2Br85nM7HLgcoDBgwe3KUz33CxG988jM83ITE8jIz2NrPRmtzPSyI5esjLSyIpOy8lMJyczjZyMdLI/vJ2ZTuesdDpnZtApK12jbYpIQkuIr6LuPgOYAVBYWNimpYXTxvbltLF92zWXiEgyiOVX2TJgULP7A6PT9jiPmWUA+UQ2GouISAeJZRHMA0aY2VAzywIuAmbvNs9s4JLo7fOBV2KxfUBERPYuZquGouv8rwJeILL76APuvtTMpgPz3X02cD/wiJkVA9uJlIWIiHSgmG4jcPdngWd3m/aTZrfrgAtimUFERPZNu7uIiKQ4FYGISIpTEYiIpDgVgYhIirNE21vTzMqBtW388V7sdtRyAtN7iT/J8j5A7yVeHch7Ocjde+/pgYQrggNhZvPdvTDoHO1B7yX+JMv7AL2XeBWr96JVQyIiKU5FICKS4lKtCGYEHaAd6b3En2R5H6D3Eq9i8l5SahuBiIh8UqotEYiIyG5UBCIiKZTlKAUAAANLSURBVC4li8DMrjaz5Wa21MxuDTrPgTKz68zMzaxX0Fnawsx+Hf3/WGxmT5tZt6Az7S8zm2xmK8ys2MyuDzpPW5nZIDN71cyKon8f1wSd6UCYWbqZLTSzfwWd5UCYWTczmxX9O1lmZse05/OnXBGY2UlEzpU8wd3HAbcFHOmAmNkg4HRgXdBZDsBLwHh3PxRYCdwQcJ79YmbpwN3AFGAsMM3Mxgabqs2agOvcfSxwNPDNBH4vANcAy4IO0Q5+Bzzv7qOBCbTze0q5IgCuBG5293oAd98ScJ4DdTvwfSBht/q7+4vu3hS9O5fI2ewSySSg2N1L3L0BmEnky0bCcfeN7v5u9HYVkQ+cgmBTtY2ZDQTOAu4LOsuBMLN84Hgi52/B3RvcfWd7vkYqFsFI4NNm9raZvW5mRwYdqK3MbCpQ5u7vBZ2lHX0FeC7oEPupAFjf7H4pCfrh2ZyZDQEmAm8Hm6TN7iDyJSkcdJADNBQoBx6Mrua6z8xy2/MFEuLk9fvLzOYA/fbw0I1E3nMPIou9RwJPmNmweD1FZgvv5YdEVgvFvX29D3f/R3SeG4msmni0I7PJJ5lZF+BJ4Fp3rww6z/4ys7OBLe6+wMxODDrPAcoADgeudve3zex3wPXAj9vzBZKOu5+6t8fM7ErgqegH/ztmFiYykFN5R+XbH3t7L2Z2CJFvCu+ZGURWp7xrZpPcfVMHRmyVff2fAJjZpcDZwCnxWsr7UAYManZ/YHRaQjKzTCIl8Ki7PxV0njY6DjjXzM4EcoA8M/uLu38x4FxtUQqUuvuHS2aziBRBu0nFVUN/B04CMLORQBYJODKhuy9x9z7uPsTdhxD5ZTk8HkugJWY2mcgi/LnuXhN0njaYB4wws6FmlkXk3NuzA87UJhb5VnE/sMzdfxt0nrZy9xvcfWD0b+Mi4JUELQGif9PrzWxUdNIpQFF7vkZSLhG04AHgATN7H2gALknAb6DJ5vdANvBSdOlmrrt/PdhIrefuTWZ2FfACkA484O5LA47VVscBXwKWmNmi6LQfRs8/LsG5Gng0+kWjBPhyez65hpgQEUlxqbhqSEREmlERiIikOBWBiEiKUxGIiKQ4FYGISIpTEYiIpDgVgYhIivv/V35c8aka8Y8AAAAASUVORK5CYII=\n",
272 | "text/plain": [
273 | ""
274 | ]
275 | },
276 | "metadata": {
277 | "tags": [],
278 | "needs_background": "light"
279 | }
280 | }
281 | ]
282 | },
283 | {
284 | "cell_type": "markdown",
285 | "metadata": {
286 | "id": "inj-lXuhUqHx"
287 | },
288 | "source": [
289 | "## Linear Regression vs. Logistic Regression"
290 | ]
291 | },
292 | {
293 | "cell_type": "markdown",
294 | "metadata": {
295 | "id": "Ta70oULrU09M"
296 | },
297 | "source": [
298 | "### Linear Regression"
299 | ]
300 | },
301 | {
302 | "cell_type": "code",
303 | "metadata": {
304 | "colab": {
305 | "base_uri": "https://localhost:8080/"
306 | },
307 | "id": "lKicAKsYTvV7",
308 | "outputId": "166f3bb8-46a6-411a-ca0f-ad16ef73ce83"
309 | },
310 | "source": [
311 | "from sklearn.linear_model import LinearRegression\n",
312 | "linear_model = LinearRegression()\n",
313 | "linear_model.fit(admissions[[\"gpa\"]], admissions[\"admit\"])"
314 | ],
315 | "execution_count": 63,
316 | "outputs": [
317 | {
318 | "output_type": "execute_result",
319 | "data": {
320 | "text/plain": [
321 | "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)"
322 | ]
323 | },
324 | "metadata": {
325 | "tags": []
326 | },
327 | "execution_count": 63
328 | }
329 | ]
330 | },
331 | {
332 | "cell_type": "markdown",
333 | "metadata": {
334 | "id": "cb0xGeGTU49z"
335 | },
336 | "source": [
337 | "### Logistic Regression"
338 | ]
339 | },
340 | {
341 | "cell_type": "code",
342 | "metadata": {
343 | "colab": {
344 | "base_uri": "https://localhost:8080/"
345 | },
346 | "id": "JYzbu9uTVD9K",
347 | "outputId": "db25c771-ec99-4311-bcdf-1691bfad6676"
348 | },
349 | "source": [
350 | "from sklearn.linear_model import LogisticRegression\n",
351 | "logistic_model = LogisticRegression()\n",
352 | "logistic_model.fit(admissions[[\"gpa\"]], admissions[\"admit\"])"
353 | ],
354 | "execution_count": 64,
355 | "outputs": [
356 | {
357 | "output_type": "execute_result",
358 | "data": {
359 | "text/plain": [
360 | "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
361 | " intercept_scaling=1, l1_ratio=None, max_iter=100,\n",
362 | " multi_class='auto', n_jobs=None, penalty='l2',\n",
363 | " random_state=None, solver='lbfgs', tol=0.0001, verbose=0,\n",
364 | " warm_start=False)"
365 | ]
366 | },
367 | "metadata": {
368 | "tags": []
369 | },
370 | "execution_count": 64
371 | }
372 | ]
373 | },
374 | {
375 | "cell_type": "markdown",
376 | "metadata": {
377 | "id": "0fC2y-lJWFaK"
378 | },
379 | "source": [
380 | "## Use Logistic Regression and Predict Probabilities"
381 | ]
382 | },
383 | {
384 | "cell_type": "markdown",
385 | "metadata": {
386 | "id": "EKAZmXwUWMMC"
387 | },
388 | "source": [
389 | "Used the LogisticRegression method `predict_proba` to return the predicted probabilities for the data in the gpa column. Then the returned probabilities were assigned to `pred_probs_gpa`.\n",
390 | "Here is a scatter plot of predicted probability vs. gpa."
391 | ]
392 | },
393 | {
394 | "cell_type": "code",
395 | "metadata": {
396 | "colab": {
397 | "base_uri": "https://localhost:8080/",
398 | "height": 296
399 | },
400 | "id": "gH8wpdSKVJLq",
401 | "outputId": "530a982d-dc55-4c98-c604-1ce439627da2"
402 | },
403 | "source": [
404 | "pred_probs_gpa = logistic_model.predict_proba(admissions[[\"gpa\"]])\n",
405 | "plt.scatter(admissions[\"gpa\"], pred_probs_gpa[:,1])\n",
406 | "plt.xlabel('gpa')\n",
407 | "plt.ylabel('Admission Probability')"
408 | ],
409 | "execution_count": 65,
410 | "outputs": [
411 | {
412 | "output_type": "execute_result",
413 | "data": {
414 | "text/plain": [
415 | "Text(0, 0.5, 'Admission Probability')"
416 | ]
417 | },
418 | "metadata": {
419 | "tags": []
420 | },
421 | "execution_count": 65
422 | },
423 | {
424 | "output_type": "display_data",
425 | "data": {
426 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfZRddX3v8fcnkwmECCYpwUpCTIQUChLAjgQbtWiN0ApBUSE8uIoPTa9XqkgbJRcuT5aCpgZcLX1ApJdbwYAIQzDRyLqCehVoJk4gTTQSA0JGryAQRIghCd/7x94DJyczZ/aemX2e9ue11qw5e+/fOefL5uR85/esiMDMzMprTKMDMDOzxnIiMDMrOScCM7OScyIwMys5JwIzs5Ib2+gA8tp///1jxowZjQ7DzKylrFmz5tcRMWWgay2XCGbMmEFPT0+jwzAzaymSfj7YNTcNmZmVnBOBmVnJORGYmZWcE4GZWck5EZiZlVzLjRoyMyubeUvv5eEnnn/5eNYBE7j7/ONH7fVdIzAza2LVSQDg4SeeZ97Se0ftPZwIzMyaWHUSGOr8cDgRmJmVnPsIzMyaRHdvH0tWbeQXW7dx4MTxLDrh0Lq8r2sEZmZNoLu3j8W3r6Nv6zYC6Nu6jcW3r+M1+44bsPysAyaM2ns7EZiZNYElqzaybceu3c5t27GLsR0de3zpj/aoITcNmZk1gV9s3Tbo+Ueueneh7+1EYGbWANX9Aa8e38nWbTv2KHfgxPGFx+JEYGZWR929fVx213qeeeGVL/2+rdvo7BCdY8SOl+Ll8+M7O+rSYexEYGZWJ/0dwtV9AQA7dgWT9ulkn3Fjdxs19J5jphYelxOBmVkddPf28Te3PsiuiEHLbH1hB70Xv6uOUSU8asjMrGD9NYFaSQDq0x8wENcIzMwK0t8h3DfIiKBK9eoPGIgTgZlZAWr1B1SbOL6TS+cfUZf+gIE4EZiZjbIs/QEAHRJfOO2ohiWAfoUmAkknAl8EOoDrI+KqqutXA29PD/cBDoiIiUXGZGZWlIGGhg5mfGcHV556ZMOTABSYCCR1ANcC84AtwGpJyyNiQ3+ZiPhURfm/Bo4pKh4zsyJd1L2Om+5/jNp1gMTUOg4NzaLIGsGxwKaI2AwgaRlwCrBhkPJnAJcUGI+ZWSG6e/syJYFmqgVUKnL46FTg8YrjLem5PUh6HTAT+M4g1xdK6pHU8+STT456oGZmI7Fk1cYhk0CH1JRJAJpnHsEC4LaIGLB7PSKui4iuiOiaMmVKnUMzM6ttsAXj+o3v7GiKTuHBFJkI+oCDKo6npecGsgD4aoGxmJkVptZEsInjO5u2JtCvyD6C1cAsSTNJEsAC4MzqQpIOAyYB9xUYi5nZiHX39nHp8vUvrxI6aZ9OLjn5CBadcOgecwYEnHXcdP7uPUc2KNrsCqsRRMRO4FxgFfBj4NaIWC/pcknzK4ouAJZFDDHg1sysgS7qXsd5t6zdbanoZ17YwaLbHgTgylOPZOrE8YhkVNDVpx/dEkkAQK32/dvV1RU9PT2NDsPMSuSi7nV85f7HBr0+deJ4fnDBO+oYUX6S1kRE10DXmqWz2MysKQ2VBGDozuJm50RgZjaI/vkBQ2nUqqGjxWsNmZlVybNqaGeHGrZq6GhxIjAzq5ClKajfhHEdXPHe5h4amoUTgZlZKk8SOLtFhoZm4URgZqXX3dvHhXes4/kXh947oJXmB2TlRGBmpZanFtBsq4aOFicCMyut7t6+zElg0j6dTT9XYLicCMyslPLUBDrGiEtOPqLgiBrHicDMSmfe0nt5+InnM5Vtl5FBtTgRmFmpnPWl+zIngXYaGVSLZxabWWlc1L2OH/zs6Uxly5IEwDUCMyuJrH0CElx92tFt3RRUzYnAzNpad28fl921nmde2DF0YcqXBMCJwMza2EXd6zJtKt9v7sGTS5cEwInAzNpUnuGhUK4+gWpOBGbWduZccTe/eu7FTGXLnAD6ORGYWVuZt/TeTEmgHdcMGi4nAjNrC3n2EJg4vpNL5x9Ryv6AgRSaCCSdCHwR6ACuj4irBihzGnApEMCDEXFmkTGZWfvJ0x8wvnMMay95V8ERtZbCEoGkDuBaYB6wBVgtaXlEbKgoMwtYDMyNiGckHVBUPGbWnvIkgTHAlafOLjagFlTkzOJjgU0RsTkiXgSWAadUlflL4NqIeAYgIp4oMB4zazN5koCApaeXb45AFkU2DU0FHq843gLMqSrzBwCSfkDSfHRpRHyr+oUkLQQWAkyfPr2QYM2steRZQnrWARO4+/zjiw2ohTW6s3gsMAs4HpgGfE/SkRGxtbJQRFwHXAfQ1dWVdW6ImbWp7t4+zrtl7ZDlBDxy1buLD6jFFZkI+oCDKo6npecqbQEeiIgdwCOSfkqSGFYXGJeZtbA8S0ifdZxbELIoso9gNTBL0kxJ44AFwPKqMt0ktQEk7U/SVLS5wJjMrIUdduFKLyFdgCETgaQ1kj4uaVKeF46IncC5wCrgx8CtEbFe0uWS5qfFVgFPSdoA3AMsioin8v0nmFm7u6h7HTMuWMHvdmVrGXYSyEcRtW+spEOADwGnAz3AvwPfjqGeWJCurq7o6elpxFubWQPkXTNo7sGTuekv31xgRK1J0pqI6Bro2pA1gojYFBEXkjTb3AzcAPxc0mWSJo9uqGZmr8gzMgicBIYrU2expNkktYI/B74O3AS8BfgOcHRh0ZlZaXn10PoZMhFIWgNsBb4MXBAR29NLD0iaW2RwZlZOZ33pvsxbSu7dIX5yxZ8XHFF7y1Ij+EBE7DaSR9LMiHgkIk4tKC4zK6k8SWC/vTp46LITC46o/WUZPnpbxnNmZiOSJwnMPXiyk8AoGbRGIOkw4Ajg1ZIq//LfD9i76MDMrFy8mUzj1GoaOhQ4CZgInFxx/jmSxeLMzEZFniTwmn3HOQmMskETQUTcCdwp6c0RcV8dYzKzEpl9ybf4zfZdmcru3SEeuHBewRGVT62moU9HxOeBMyWdUX09Ij5RaGRm1vYOWbyCnRmnpnoF0eLUahr6cfrb03jNbFR5tnBzqdU0dFf6+8b6hWNm7c5JoPnUahq6i2Qf4QFFxPzBrpmZDSbPjmJXe0exuqjVNPQPdYvCzNpenpqAJ4rVV62moe/WMxAza195ksBY4SRQZ7Wahm6NiNMkrWP3JiIBERGzC4/OzFpenhVEX7PvOA8PbYBaTUOfTH+fVI9AzKz95NlW8hr3BzTMoGsNRcQv098/B7YDRwGzge3pOTOzQeVJAnt3yEmggbJsVflR4D+BU4H3A/dL+nDRgZlZ68qTBAAvI91gWZahXgQc07+XsKTfA35IslOZmdlu8swW9uig5pBlGeqnSBaa6/dcem5Ikk6UtFHSJkkXDHD9HElPSlqb/nw0W9hm1oxmXJA9CZx93HQngSZRa9TQ+enDTSS7kd1JMnroFOChoV5YUgdwLTAP2AKslrQ8IjZUFb0lIs4dTvBm1jwOWbwic1l3DDeXWk1D+6a/f5b+9Lsz42sfC2zq391M0jKSJFKdCMyshXX39nHeLWszl3cSaD61JpRdNsLXngo8XnG8BZgzQLn3SXob8FPgUxHxeHUBSQuBhQDTp08fYVhmNlryTBTrEHzhNCeBZpRl8/opwKdJdit7eWeyiHjHKLz/XcBXI2K7pL8CbgT2eN2IuA64DqCrqytjC6SZFSnPtpJjBZuufHfBEdlwZeksvgn4CTATuAx4FFid4Xl9wEEVx9PScy+LiKciYnt6eD3wRxle18wa7KLudZmTADgJNLssieD3IuLLwI6I+G5EfJgB/mofwGpglqSZksYBC4DllQUkvbbicD6v7IFgZk0qz5IRYwWPXuUk0OyyzCPYkf7+paR3A78AJg/1pIjYKelcYBXQAdwQEeslXQ70RMRy4BOS5gM7gaeBc4bx32BmdZKnT2DvDnmiWItQRO0md0knAd8naeb5R2A/4LL0i7zuurq6oqfHm6aZ1VveDWVcE2guktZERNdA14asEUTEN9KHzwJvH83AzKw15OkYFvCIk0BLybLW0Osl3SXp15KekHSnpNfXIzgza7x5S+/NnAT226vDSaAFZeksvhm4Ffh94EDga8BXiwzKzJrDIYtXZF487jX7jvOSES0qSyLYJyL+IyJ2pj9foWI+gZm1p8MuXJl53SBvKNPaaq011D8y6JvpgnHLSNYaOh1YWYfYzKxB5lxxN7/blS0LOAm0vlqdxWtIvviVHv9VxbUAFhcVlJk1zpwr7uZXz72YqayTQHuotdbQzHoGYmaN1d3bx6KvrWXHS9nKzzpgAneff3yhMVl9ZFlrqBP4GPC29NS9wL9FxI5Bn2RmLSXvjmJzD57MTX/55gIjsnrKMrP4X4BO4J/T4w+m57yJjFkbyNMUBElNwEmgvWRJBG+KiKMqjr8j6cGiAjKz+pm39N5cScA1gfaUJRHsknRwRPwMkglmwK5iwzKzop31pfsyNweNESz1XgJtK0si+FvgHkmbSUYQvQ74UKFRmVmhunv7Ms8Wdi2g/dVMBOm+w0cBs4BD09MbK/YQMLMWk2fxOPcHlEPNRBARuySdERFXk2HDejNrbodduDLzRDEPDy2PLE1DP5D0T8AtwMsNihHxo8KiMrNRN+OCFZnLujmoXLIkgqPT35dXnAuy7VJmZk3AScBqyZIIPhARvy48EjMbdd29fZx3y9rM5Z0EyqnWonMnAzcAOyS9BJwWET+sW2RmNiJ5+gPAHcNlVmsZ6iuAt0bEgcD7gCvrE5KZjdSMC1bkSgJzD57sjuESq5UIdkbETwAi4gFg37wvLulESRslbUqXsh6s3PskhaQB99M0s+wOWZy9PwDgmtOPdk2g5Gr1ERwg6fzBjiNiaa0XTucgXAvMA7YAqyUtj4gNVeX2BT4JPJA3eDPb3exLvpV5MxlIkoBnC1utRPAldq8FVB8P5VhgU0RsBpC0DDgF2FBV7rPA54BFOV7bzKocsnhFriTwqPcWtlSt/QguG+FrTwUerzjeAsypLCDpjcBBEbFC0qCJQNJCYCHA9OnTRxiWWfuZecEKsuaA/fbq8N7CtpssexYXQtIYYCnwN0OVjYjrIqIrIrqmTJlSfHBmLaK7t48ZOZLA3h1yErA9ZJlHMFx9wEEVx9PSc/32Bd4A3CsJ4PeB5ZLmR0RPgXGZtYU8awZBkgR+csWfFxiRtaoiawSrgVmSZkoaBywAlvdfjIhnI2L/iJgRETOA+wEnAbMMunv7ciWBWQdMcBKwQWXZqnIvknkEMyrLR8Tlgz0nvb5T0rnAKqADuCEi1ku6HOiJiOW1nm9mAzvrS/dlXkIaPFvYhpalaehO4FlgDZBr+emIWAmsrDp38SBlj8/z2mZlNPuSb/Gb7dn3hTr7uOn83XuOLDAiawdZEsG0iHDvklmD5V0ywsNDLassfQQ/lOQ/Kcwa6JDF+ZaMcBKwPLLUCN4CnCPpEZKmIQEREbMLjczMgHxLSI8VbLrSScDyyZII/qzwKMxsD3mHh4KTgA3PkIkgIn4u6Sjgremp70fEg8WGZVZuc664m18992Lm8p4jYCMxZB+BpE8CNwEHpD9fkfTXRQdmVlaHLF6RKwnMPXiyk4CNSJamoY8AcyLieQBJnwPuA/6xyMDMyijPmkHg1UNtdGQZNSSgcuDyrvScmY2iQxY7CVhjZKkR/DvwgKQ70uP3AF8uLiSzcsk7U1jAIx4eaqMoS2fxUkn3kgwjBfhQRPQWGpVZScxbei8PP/F85vJeLsKKUGvz+v0i4jeSJgOPpj/91yZHRPY/YcxsD3lHBnlzeStKrRrBzcBJJGsMVTZdKj1+fYFxmbW1vGsGzTpggjeXt8LU2qHspPT3zPqFY9beunv7OO+Wtbme44XjrGhZlqGeC6yNiOclnQ28EbgmIvJNeTQrOW8kY80qy/DRfwFeSGcX/w3wM+A/Co3KrM3MueLuXElgrHASsLrJkgh2RkQApwD/FBHXkmwzaWYZ5J0pvN9eHV4zyOoqSyJ4TtJi4GxgRbrpfGexYZm1vv6N5XfmmCU29+DJ3lze6i7LhLLTgTOBj0TE/5M0HVhSbFhmrS3vJDFwp7A1TpZE8BzwxYjYJekPgMOArxYbllnr8kxhazVZmoa+B+wlaSrwbeCDwP/K8uKSTpS0UdImSRcMcP2/SVonaa2k/yvp8DzBmzWbOVfcnSsJzDpggpOANVymReci4gXgVOCfI+IDwBuGfJLUAVxLsrHN4cAZA3zR3xwRR0bE0cDngaW5ojdrEv39AXk6hc8+broniVlTyNI0JElvBs4iWZIasiWQY4FNEbE5fZFlJCOPNvQXiIjfVJSfALkWXzRrCnlnCYNXDrXmkiURnAcsBu6IiPWSXg/ck+F5U4HHK463AHOqC0n6OHA+MA54R4bXNWsaefYT7ueN5a3ZDPmXfUR8NyLmR8Tn0uPNEfGJ0QogIq6NiIOBzwAXDVRG0kJJPZJ6nnzyydF6a7MRcRKwdlFr9dFrIuI8SXcxQJNNRMwf4rX7gIMqjqel5wazjGQW8x4i4jrgOoCuri43H1lDDWdo6H57dXh+gDWtWk1D/ctI/MMwX3s1MEvSTJIEsIBkPsLLJM2KiIfTw3cDD2PWxIbTH+D5Adbsaq0+uib9/d3hvHBE7JR0LrAK6ABuSPsYLgd6ImI5cK6kdwI7gGeAvxjOe5nVQ96moLHCS0VYS8iy+uhJwGeB16XlBURE7DfUcyNiJbCy6tzFFY8/mTdgs3obTlMQOAlY68gyaugakjkE69LF58xKYzhNQV4+2lpNlkTwOPBfTgJWJt29fXzqlrW5J7Z4foC1oiyJ4NPASknfBbb3n4wIzwK2tjScpiD3B1gry5IIrgB+C+xNMunLrG3l3VAekqWjvam8tbIsieDAiBhybSGzVnfI4nx7B4CHhlp7yJIIVkp6V0R8u/BozBrATUFWdlkSwceAv5W0nWS8f+bho2bNzk1BZhkSQUR4f2JrO/OW3svDTzyf6zleJsLaVa21ht5Y64kR8aPRD8esWN29fZx3y9rcz3MSsHZWq0bwhfT33kAX8CBJs9BsoAdw3dhaykXd6/jK/Y/lfp47hK3d1Vpr6O0Akm4H3hgR69LjNwCX1iU6s1Ew3ATgvYStLLJ0Fh/anwQAIuK/JP1hgTGZjZrh9AVAspewt5G0ssiSCB6SdD3wlfT4LOCh4kIyGx0zL1iRe4mI1+w7jgcunFdIPGbNKksi+BDJENL+lUK/yyAbyJg1g+E2BbkWYGWVZfjo74Cr0x8kvRVYCny82NDM8hlJX8DVXizOSixLjQBJxwBnAKcBjwC3FxmUWV7DmRgGXi3UDGrPI/gDki//M4BfA7cA6h9NZNYshpMEPCLI7BW1agQ/Ab4PnBQRmwAkfaouUZllcFH3Om66/7HcHcJeIsJsd7USwakkG87fI+lbwDKSP6TMGm6420c+6lqA2R5qTSjrBrolTQBOAc4DDpD0L8AdWVYjlXQi8EWSzeuvj4irqq6fD3wU2Ak8CXw4In4+3P8Ya2/D7QwG1wLMaskyauh54GbgZkmTgA8AnwFqJgJJHcC1wDxgC7Ba0vKI2FBRrBfoiogXJH0M+Dxw+rD+S6xtjSQBeI0gs6GNyVM4Ip6JiOsi4k8zFD8W2BQRmyPiRZKmpVOqXu+eiHghPbwfmJYnHmt/I0kC15x+tJOAWQaZho8O01SSje/7bQHm1Cj/EeCbBcZjLWS4fQDgReLM8ioyEWQm6WySFU7/ZJDrC4GFANOnT69jZFZvw10mGtwPYDZcuZqGcuoDDqo4npae242kdwIXAvMjYvtAL5Q2R3VFRNeUKVMKCdYa76LudcNOAmcfN91JwGyYiqwRrAZmSZpJkgAWAGdWFkhnLP8bcGJEPFFgLNakunv7uOyu9Tzzwo5hPb9zDCz5gGcHm41EYYkgInZKOhdYRTJ89IaIWC/pcqAnIpYDS4BXAV+TBPBYRMwvKiZrLiPpCJ4wroMr3nukE4DZKCi0jyAiVgIrq85dXPH4nUW+vzWn7t4+PvP1h9i+86Xcz520TyeXnHyEE4DZKGqKzmIrh+7ePhbf/hDbduRPAOAF4syK4kRghevu7ePCO9bx/Iu7hvV87xNgViwnAivMSGsATgBm9eFEYKOuu7ePS5evZ+u24Y0EAs8JMKsnJwIbNSPpBO7nWcFm9edEYCPmGoBZa3MisGEbyTyAfhPHd3LpfA8HNWskJwLLbaSjgMZ3juHKU2f7y9+sSTgRWC4jWRXUk8HMmpMTgQ1ppH0Abv83a25OBFZTd28fi772IDteyrtFfMJJwKz5ORHYy6r/8p+0TycRDCsJTJ04nkUnHOpmILMW4ERgwMAjgIazNLRnA5u1HicCo7u3j5tGOAzUNQCz1uVEYCxZtZHh9ACMEZw5xzOBzVqdE4Hxi63bal7v7yuo7DvwMFCz9uFEYBw4cTx9gySDzg75S9+szRW5eb21iEUnHMr4zo49zk8Y18GS9x/lJGDW5lwjsJe/6Jes2sgvtm7jQHf8mpWKE0GL6+7t47K71r881HO4i7i955ip/uI3K6lCE4GkE4EvAh3A9RFxVdX1twHXALOBBRFxW5HxtItaSz5s3baDRV97EMBf7GaWSWF9BJI6gGuBPwMOB86QdHhVsceAc4Cbi4qj3fQv+VBr3Z8dLwVLVm2sY1Rm1sqKrBEcC2yKiM0AkpYBpwAb+gtExKPpteFvaVUyS1ZtzLTkw1BDQs3M+hWZCKYCj1ccbwHmDOeFJC0EFgJMnz595JE1oe7evkydtVm/4A+cOH60QzSzNtUSw0cj4rqI6IqIrilTpjQ6nFHX3dvH4tvX0bd1GwH0bd3G4tvX0d3bt0fZLF/wnWPEohMOLSBSM2tHRSaCPuCgiuNp6TmrsmTVRrbt2H23r207dg3Yzr/ohEPpHKNBX2vi+E6WfMBj/80suyKbhlYDsyTNJEkAC4AzC3y/ljVYc89A5/u/4KuXi/bsXzMbrsISQUTslHQusIpk+OgNEbFe0uVAT0Qsl/Qm4A5gEnCypMsi4oiiYmpWgy3xMFgzkMf8m9loKnQeQUSsBFZWnbu44vFqkiajUlt0wqEsvn3dbs1D4zs73M5vZnXhmcVNwEs8mFkjORE0CTf3mFmjtMTwUTMzK44TgZlZyZWiaSjrrF0zszJq+0TQP2u3f0RO/6xd8OqcZmZQgqahPLN2zczKqO0TQZ5Zu2ZmZdT2iWCw2blendPMLNH2iWCgjdk9a9fM7BVt31nsWbtmZrW1fSIAz9o1M6ul7ZuGzMysNicCM7OScyIwMys5JwIzs5JzIjAzKzlFRKNjyEXSk8DP6/R2+wO/rtN7jYTjHF2tEGcrxAiOc7SNJM7XRcSUgS60XCKoJ0k9EdHV6DiG4jhHVyvE2QoxguMcbUXF6aYhM7OScyIwMys5J4Larmt0ABk5ztHVCnG2QozgOEdbIXG6j8DMrORcIzAzKzknAjOzkitlIpB0kKR7JG2QtF7SJwcoc5akhyStk/RDSUdVXHs0Pb9WUk+D4zxe0rNpLGslXVxx7URJGyVtknRBg+NcVBHjf0naJWlyeq3w+ylpb0n/KenBNMbLBiizl6Rb0vv1gKQZFdcWp+c3SjqhiBhzxHl+eq8fkvR/JL2u4tquivu8vMFxniPpyYp4Plpx7S8kPZz+/EWD47y6IsafStpaca0u9zN9rw5JvZK+McC1Yj+bEVG6H+C1wBvTx/sCPwUOryrzx8Ck9PGfAQ9UXHsU2L9J4jwe+MYAz+0Afga8HhgHPFj93HrGWVX+ZOA79byfgIBXpY87gQeA46rK/HfgX9PHC4Bb0seHp/dvL2Bmel87Ghjn24F90scf648zPf5t0Z/LHHGeA/zTAM+dDGxOf09KH09qVJxV5f8auKHe9zN9r/OBmwf591zoZ7OUNYKI+GVE/Ch9/BzwY2BqVZkfRsQz6eH9wLT6RpktzhqOBTZFxOaIeBFYBpzSJHGeAXy1iFgGE4nfpoed6U/1SIlTgBvTx7cBfypJ6fllEbE9Ih4BNpHc34bEGRH3RMQL6WGjPptZ7udgTgDujoin039jdwMnFhDmcOKs+2cTQNI04N3A9YMUKfSzWcpEUCmtYh1D8pfCYD4CfLPiOIBvS1ojaWFx0b1iiDjfnFZ9vynpiPTcVODxijJbyJ5Ehm2o+ylpH5J/9F+vOF2X+5lWvdcCT5B8EVXH+PI9i4idwLPA71Hne5khzkrVn829JfVIul/Se4qKMUec70ubsG6TdFB6rinvZ9rENhP4TsXpet3Pa4BPAy8Ncr3Qz2apE4GkV5F8IZ0XEb8ZpMzbSf6xfabi9Fsi4o0kTUYfl/S2Bsb5I5I1RI4C/hHoLjKWWrLcT5JmoR9ExNMV5+pyPyNiV0QcTfIX9LGS3lDE+4xU1jglnQ10AUsqTr8ukiUIzgSukXRwA+O8C5gREbNJ/uq/sfo16iHH//cFwG0RsaviXOH3U9JJwBMRsWa0Xzur0iYCSZ0kX1o3RcTtg5SZTVJVOyUinuo/HxF96e8ngDsoqJkgS5wR8Zv+qm9ErAQ6Je0P9AEHVRSdlp5rSJwVFlBV9a7n/UzfZytwD3s2R7x8zySNBV4NPEWd72WGOJH0TuBCYH5EbK94Tv+93AzcS1I7a0icEfFURWzXA3+UPm66+5mq9dks8n7OBeZLepSkCfcdkr5SVabYz+ZodHK02g9JB9L/Bq6pUWY6SXvbH1ednwDsW/H4h8CJDYzz93llYuCxwGPp88aSdMLN5JXO4iMaFWda7tXA08CEet9PYAowMX08Hvg+cFJVmY+ze4fcrenjI9i9Q24zxXUWZ4nzGJJOwVlV5ycBe6WP9wceprgBAlnifG3F4/cC96ePJwOPpPFOSh9PblSc6bXDSAYtqBH3s+I9j2fgzuJCP5ul2Lx+AHOBDwLr0rZDgP9B8uVPRPwrcDFJG9w/J30y7Iykivga4I703Fjg5oj4VgPjfD/wMUk7gW3Agkg+ITslnQusIhlBdENErG9gnJB8GXw7Ip6veG697udrgRsldZDUhG+NiG9IuhzoiYjlwJeB/5C0iSRhLUjjXy/pVmADsBP4eOzefBCnbVEAAAHESURBVFDvOJcArwK+lt63xyJiPvCHwL9Jeil97lURsaGBcX5C0nySe/Y0ySgiIuJpSZ8FVqevdXns3lRY7zgh+X+9LP2306+e93MP9fxseokJM7OSK20fgZmZJZwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5Mo6ocxsWCT9T+Bs4EmSxb7WACeRzO78E5J/Ux+OiP+UdCzwRWBvksl+H4qIjQ0J3KwGJwKzjCS9CXgfcBTJcsY/IkkEkOwPcHS6YN4NwBuAnwBvjYid6dpAf58+36ypOBGYZTcXuDMifgf8TtJdFde+ChAR35O0n6SJJJv03ChpFslS2511j9gsA/cRmI2O6rVaAvgscE9EvIFk+e296x6VWQZOBGbZ/QA4Od0H91UkfQP9TgeQ9Bbg2Yh4lmS11f4lgc+pZ6BmebhpyCyjiFidbmD+EPArYB3JTlGQNBX1kjT/fDg993mSpqGLgBX1jtcsK68+apaDpFdFxG/TLTe/BywElgJ/GxE9jY3ObHhcIzDL5zpJh5O0998YET9K9wQwa1muEZiZlZw7i83MSs6JwMys5JwIzMxKzonAzKzknAjMzEru/wNeIi9ZPFZE2QAAAABJRU5ErkJggg==\n",
427 | "text/plain": [
428 | ""
429 | ]
430 | },
431 | "metadata": {
432 | "tags": [],
433 | "needs_background": "light"
434 | }
435 | }
436 | ]
437 | },
438 | {
439 | "cell_type": "markdown",
440 | "metadata": {
441 | "id": "DNzZfMUmXp6H"
442 | },
443 | "source": [
444 | "Here, the scatter plot suggests a linear relationship between the gpa values and the probability of being admitted. This is because logistic regression is an adapted version of linear regression for classification problems. Both logistic and linear regression are used to capture linear relationships between the independent variables and the dependent variable. \n",
445 | "\n",
446 | "Next is predicting whether the students based on the gpa is admitted."
447 | ]
448 | },
449 | {
450 | "cell_type": "code",
451 | "metadata": {
452 | "colab": {
453 | "base_uri": "https://localhost:8080/",
454 | "height": 296
455 | },
456 | "id": "jIxQMarZXSTC",
457 | "outputId": "376d882c-af9a-421d-83e5-b540c492d66e"
458 | },
459 | "source": [
460 | "fitted_labels_gpa = logistic_model.predict(admissions[[\"gpa\"]])\n",
461 | "plt.scatter(admissions[\"gpa\"], fitted_labels_gpa)\n",
462 | "plt.xlabel('gpa')\n",
463 | "plt.ylabel('Predicted Admission Result')"
464 | ],
465 | "execution_count": 66,
466 | "outputs": [
467 | {
468 | "output_type": "execute_result",
469 | "data": {
470 | "text/plain": [
471 | "Text(0, 0.5, 'Predicted Admission Result')"
472 | ]
473 | },
474 | "metadata": {
475 | "tags": []
476 | },
477 | "execution_count": 66
478 | },
479 | {
480 | "output_type": "display_data",
481 | "data": {
482 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbUklEQVR4nO3df5wddX3v8dc7mwUCBBLM0hvyw6Q2FxuQCK78tBRUTEQggCAJ2sqPklpBsGiuUCki1ittrgqleCUiF7AKAoU0YDCAArYgkA3hx01oMIYfSeBCJARQAuTH5/4xszBZds/OyZ6Zk915Px+P8zgz3/nOzOdMTs5n5zsz368iAjMzq65BzQ7AzMyay4nAzKzinAjMzCrOicDMrOKcCMzMKm5wswOo14gRI2LcuHHNDsPMrF9ZuHDh7yKirbtl/S4RjBs3jo6OjmaHYWbWr0h6uqdlbhoyM6s4JwIzs4pzIjAzqzgnAjOzinMiMDOruMLuGpJ0JXAE8EJE7NnNcgGXAIcDrwEnRcRDRcVjZsXb75t38PyrbzY7jIYSMHgQrN/0zmXDt2/la0fuwdF7j2LOolVcMHcxa9etT9YTRECLxMYIhm/fSgSsXbf+rbLO91HDhjBz8u4AzJq/lGfXrmO3tOzovUdx2Hfu5jcv/OGt/U7YdQfuOPuQxn3GonoflXQw8Hvgmh4SweHAF0gSwX7AJRGxX2/bbW9vD98+arb1GYhJII/WFnHCB8fw0wdXsH7Tlv+etrYIgs22MaS1hZ22a+n2uNabDCQtjIj27pYV1jQUEb8C1tSoMpUkSURE3A8MkzSyqHjMrFhVTAIA6zcG1z7QtyTQuZ2u21i3fmOPxzV7htBXzbxGMApYkZlfmZa9g6QZkjokdaxevbqU4MzM8trYz8d16RcXiyNidkS0R0R7W1u3T0ibmTVNi9TsEPqkmYlgFTAmMz86LTOzfuiPhm7T7BCaorVFTN9vDK2D+pYMWlv0jm0MaW3p8bhO2HWHPu0vq5mJYC7wl0rsD7wcEc81MR4z64MHvnrYgEwGAlp7+KUcvn0rs46bxD8c/T5mHT+JYUNa314v/U3vPFsYvn3rW8s7yzrfRw0bwqzjJjHr+EmMGjYEpWXfOvZ9PPDVw97xo9+f7hq6FjgEGAE8D3wNaAWIiO+nt4/+CzCF5PbRkyOi19uBfNeQmVn9at01VNhzBBExvZflAZxe1P7NzCyffnGx2MzMiuNEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV12sikHRQnjIzM+uf8pwRXJqzzMzM+qHBPS2QdABwINAm6ezMop2AlqIDMzOzcvSYCIBtgB3TOkMz5a8AxxUZlJmZlafHRBAR9wD3SLoqIp7eko1LmgJcQnIGcUVEXNRl+VjgamBYWueciJi3JfsyM7MtU6tp6BYg0ul3LI+Io2ptWFILcBlwGLASWCBpbkQsyVQ7D7g+Iv63pInAPGBcnZ/BzMz6oFbT0P/q47b3BZZFxHIASdcBU4FsIgiSaw4AOwPP9nGfZmZWp96ahvpiFLAiM78S2K9LnQuA2yV9AdgB+Gh3G5I0A5gBMHbs2D6GZWZmWXmeI3hS0vKurwbtfzpwVUSMBg4HfiTpHTFFxOyIaI+I9ra2tgbt2szMoHbTUKf2zPR2wPHALjnWWwWMycyPTsuyTgWmAETEryVtB4wAXsixfTMza4Bezwgi4sXMa1VEXAx8Ise2FwATJI2XtA0wDZjbpc4zwEcAJP0pSaJZXdcnMDOzPun1jEDSPpnZQSRnCL2uFxEbJJ0BzCe5NfTKiFgs6UKgIyLmAl8CfiDpb0kuHJ8UEbEFn8PMzLZQnqahb2emNwBPAZ/Ks/H0mYB5XcrOz0wvAdxvkZlZE+X5y/7QMgIxM7PmyHPX0FmSdlLiCkkPSfpYGcGZmVnx8vQ+ekpEvAJ8DHgX8BfARbVXMTOz/iJPIujsX+Jw4JqIWJwpMzOzfi5PIlgo6XaSRDBf0lBgU7FhmZlZWfLcNXQq8H5geUS8JuldwMnFhmVmZmXJc0YQwETgzHR+B5IHv8zMbADIkwi+BxxA0i8QwKsk3UubmdkAkKdpaL+I2EfSIoCIeCntMsLMzAaAPGcE69NBZjoHqWnDF4vNzAaMPIngn4GbgV0lfRP4T+BbhUZlZmalydPFxI8lLSTpJVTA0SS9hpqZ2QBQMxFIGgWMBB6NiP+StCvwReAkYLfiwzMzs6L12DQk6YvAw8ClwP2S/gp4HBgCfKCc8MzMrGi1zghmALtHxBpJY4EngIMiYmE5oZmZWRlqXSx+PSLWAETEM8BSJwEzs4Gn1hnBaEn/nJkfmZ2PiDO7WcfMzPqZWolgZpd5nw2YmQ1APSaCiLi6zEDMzKw58jxQZmZmA5gTgZlZxTkRmJlVXK9dTKSdzJ0GjMvWj4hTigvLzMzKkqcb6n8H/gO4E9hYbDhmZla2PIlg+4j4SuGRmJlZU+S5RnCrpMMLj8TMzJoiTyI4iyQZvC7p1fT1StGBmZlZOfKMRzC0jEDMzKw58lwjQNJRwMHp7N0RcWtxIZmZWZl6bRqSdBFJ89CS9HWWJA9VaWY2QOS5RnA4cFhEXBkRVwJTgE/k2bikKZKWSlom6Zwe6nxK0hJJiyX9JH/oZmbWCLmahoBhwJp0euc8K0hqAS4DDgNWAgskzY2IJZk6E4BzSQa8eSkdCtPMzEqUJxF8C1gk6S6SwesPBrr9676LfYFlEbEcQNJ1wFSS5qVOpwGXRcRLABHxQh2xm5lZA+S5a+haSXcDH0yLvhIR/y/HtkcBKzLzK4H9utT57wCS7gVagAsi4uddNyRpBsnQmYwdOzbHrs3MLK9ag9e/N33fBxhJ8kO+EtgtLWuEwcAE4BBgOvADScO6VoqI2RHRHhHtbW1tDdq1mZlB7TOCs0n+Cv92N8sC+HAv214FjMnMj07LslYCD0TEeuBJSU+QJIYFvWzbzMwapNYIZTPS90O3cNsLgAmSxpMkgGnAiV3qzCE5E/g/kkaQNBUt38L9mZnZFsjzHMHxkoam0+dJuknS3r2tFxEbgDOA+cDjwPURsVjShekDaqTLXpS0BLgLmBkRL27phzEzs/opImpXkB6NiL0kfQj4B2AWcH5EdL3wW4r29vbo6Ohoxq7NzPotSQsjor27ZXkeKOscg+ATwOyI+BmwTaOCMzOz5sqTCFZJuhw4AZgnaduc65mZWT+Q5wf9UyRt+ZMjYi2wCzCz0KjMzKw0eZ4sHgn8LCLekHQIsBdwTaFRmZlZafKcEfwbsFHSnwCzSZ4NcOdwZmYDRJ5EsCm9FfRY4NKImElylmBmZgNAnkSwXtJ04C+BzgFpWosLyczMypQnEZwMHAB8MyKeTJ8U/lGxYZmZWVny9D66BDgzM/8k8I9FBmVmZuXpMRFIuj4iPiXpMZJO5t5aBERE7FV4dGZmVrhaZwRnpe9HlBGImZk1R63eR59L358GkLRTrfpmZtY/9frDLumvga8Dr/N2E1EAf1xgXGZmVpI8f+F/GdgzIn5XdDBmZla+PLeP/hZ4rehAzMysOfKcEZwL3CfpAeCNzsKIOLPnVczMrL/IkwguB34JPAZsKjYcMzMrW55E0BoRZxceiZmZNUWeawS3SZohaaSkXTpfhUdmZmalyHNGMD19PzdT5ttHzcwGiDx9DY0vIxAzM2uOWn0NHVtrxYi4qfHhmJlZ2WqdERyZvu8KHEhy5xDAocB9gBOBmdkAUKuvoZMBJN0OTOzse0jSSOCqUqIzM7PC5blraExnEkg9D4wtKB4zMytZnruGfiFpPnBtOj8NuLO4kMzMrEx57ho6Q9IxwMFp0eURcXOxYZmZWVnyNA0RETdHxN8C5wE7SvpZsWGZmVlZek0EkraRdIykG4DngA8D3y88MjMzK0Wt5wg+RvJU8ceAu4BrgA923k1kZmYDQ60zgp+TdCPxoYj4TETcgnsfNTMbcGolgn2AXwN3SrpD0qlASz0blzRF0lJJyySdU6PeJyWFpPZ6tm9mZn3XYyKIiIcj4pyIeA/wNeD9QKuk2yTN6G3DklqAy4CPAxOB6ZImdlNvKHAW8MAWfgYzM+uDvHcN3RcRXwBGA98F9s+x2r7AsohYHhFvAtcBU7up9w3gH4HX84VsZmaNlCsRdIqITRFxe0SckqP6KGBFZn5lWvYWSfuQPLlc83bUdDyEDkkdq1evridkMzPrRV2JoJEkDQK+A3ypt7oRMTsi2iOiva2trfjgzMwqpMhEsAoYk5kfnZZ1GgrsCdwt6SmS5qa5vmBsZlauWs8R1ByOMiLW9LLtBcAESeNJEsA04MTM+i8DIzL7uxv4ckR09B62mZk1Sq2+hhaSDEkpkt5GX0qnhwHPADVHLouIDZLOAOaT3HZ6ZUQslnQh0BERcxsQv5mZ9VGt8QjGA0j6AXBzRMxL5z8OHJ1n4+k687qUnd9D3UPyhWxmZo2U5xrB/p1JACAibiMZsczMzAaAPOMRPCvpPOBf0/lPA88WF5KZmZUpzxnBdKANuJlknOK2tMzMzAaAPAPTrAHOkrRDRPyhhJjMzKxEecYjOFDSEuDxdH6SpO8VHpmZmZUiT9PQd4HJwIsAEfEIbw9baWZm/VzeTudWdCnaWEAsZmbWBHnuGloh6UAgJLWSdBn9eLFhmZlZWfKcEXwOOJ2k59BVJOMSfL7IoMzMrDx5zgh2j4hPZwskHQTcW0xIZmZWpjxnBJfmLDMzs36oVu+jB5B0JdEm6ezMop2oc+xiMzPbetVqGtoG2DGtMzRT/gpwXJFBmZlZeWr1PnoPcI+kqyLi6RJjMjOzEuW5RnCFpGGdM5KGS5pfYExmZlaiPIlgRESs7ZyJiJeAXYsLyczMypQnEWySNLZzRtK7SUYuMzOzASDPcwRfBf5T0j0kQ1X+GTCj0KjMzKw0ebqh/rmkfYD906IvRsTvig3LzMzK0mPTkKT3pu/7kAxe/2z6GpuWmZnZAFDrjOBLwGnAt7tZFsCHC4nIzMxKVes5gtPS90PLC8fMzMpWq4uJY2utGBE3NT4cMzMrW62moSPT911J+hz6ZTp/KHAfyUD2ZmbWz9VqGjoZQNLtwMSIeC6dHwlcVUp0ZmZWuDwPlI3pTAKp50nuIjIzswEgzwNlv0j7Fro2nT8BuLO4kMzMrEx5Hig7Q9IxwMFp0eyIuLnYsMzMrCx5zggAHgJejYg7JW0vaWhEvFpkYGZmVo5erxFIOg24Ebg8LRoFzCkyKDMzK0+ei8WnAweRjExGRPyGnN1QS5oiaamkZZLO6Wb52ZKWSHpU0i/Snk3NzKxEeRLBGxHxZueMpMHk6IZaUgtwGfBxYCIwXdLELtUWAe0RsRfJWcc/5Q3czMwaI08iuEfS3wFDJB0G3ADckmO9fYFlEbE8TSTXAVOzFSLiroh4LZ29HxidP3QzM2uEPIngK8Bq4DHgr4F5wHk51hsFrMjMr0zLenIqcFt3CyTNkNQhqWP16tU5dm1mZnnVvGsobd5ZHBHvBX5QVBCSPgO0A3/e3fKImA3MBmhvb/foaGZmDVTzjCAiNgJLs0NV1mEVMCYzPzot24ykj5KMgnZURLyxBfsxM7M+yPMcwXBgsaQHgT90FkbEUb2stwCYIGk8SQKYBpyYrSBpb5LbUqdExAv1BG5mZo2RJxH8/ZZsOCI2SDoDmA+0AFdGxGJJFwIdETEXmAXsCNwgCeCZHAnGzMwaqNZ4BNsBnwP+hORC8Q8jYkM9G4+IeSQXl7Nl52emP1pXtGZm1nC1rhFcTXIB9zGSZwG6G7LSzMz6uVpNQxMj4n0Akn4IPFhOSGZmVqZaZwTrOyfqbRIyM7P+o9YZwSRJr6TTInmy+JV0OiJip8KjMzOzwtUaqrKlzEDMzKw58nQxYWZmA5gTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxQ0ucuOSpgCXAC3AFRFxUZfl2wLXAB8AXgROiIinGh3HnEWrmDV/Kc+uXcduw4Ywc/LuHL33qEbvpk/qiXHOolVcMHcxa9etB0BApMuGDWnlgqP2qPvzzVm0iq/fspiXXlv/Vtnw7Vv52pF7AGy2P7M8DnrPLvz4tAOaHYbloIjovdaWbFhqAZ4ADgNWAguA6RGxJFPn88BeEfE5SdOAYyLihFrbbW9vj46OjtxxzFm0inNveox16ze+VTaktYVvHfu+rSYZ1BPjnEWrmHnDI6zf1PO/W+sgMev4Sbk/35xFq5h54yOs3/jObbYMErEp2JTzs5hlORlsPSQtjIj27pYV2TS0L7AsIpZHxJvAdcDULnWmAlen0zcCH5GkRgYxa/7SzX5gAdat38is+UsbuZs+qSfGWfOX1kwCAOs3RV2fb9b8pd0mAYCNTgLWB/f+dk2zQ7AcikwEo4AVmfmVaVm3dSJiA/Ay8K6uG5I0Q1KHpI7Vq1fXFcSza9fVVd4M9cSYN+56Pt/WdCzMrHz94mJxRMyOiPaIaG9ra6tr3d2GDamrvBnqiTFv3PV8vq3pWJhZ+YpMBKuAMZn50WlZt3UkDQZ2Jrlo3DAzJ+/OkNaWzcqGtLYwc/LujdxNn9QT48zJu9M6qHbrWesg1fX5Zk7endaW7rfZMkj9468F2yod9J5dmh2C5VDkXUMLgAmSxpP84E8DTuxSZy7wWeDXwHHAL6PBV687L5huzXcN1RNjZ1kj7xrqrOu7hqyRfKG4/yjsriEASYcDF5PcPnplRHxT0oVAR0TMlbQd8CNgb2ANMC0iltfaZr13DZmZWe27hgp9jiAi5gHzupSdn5l+HTi+yBjMzKw2N/+amVWcE4GZWcU5EZiZVZwTgZlZxRV611ARJK0Gni5pdyOA35W0r75wnI3VH+LsDzGC42y0vsT57ojo9oncfpcIyiSpo6fbrbYmjrOx+kOc/SFGcJyNVlScbhoyM6s4JwIzs4pzIqhtdrMDyMlxNlZ/iLM/xAiOs9EKidPXCMzMKs5nBGZmFedEYGZWcZVMBJLGSLpL0hJJiyWd1U2dT0t6VNJjku6TNCmz7Km0/GFJhXWFmjPOQyS9nMbysKTzM8umSFoqaZmkc5oc58xMjP9X0kZJu6TLCj+ekraT9KCkR9IYv95NnW0l/TQ9Xg9IGpdZdm5avlTS5CJirCPOs9Nj/aikX0h6d2bZxsxxntvkOE+StDoTz19lln1W0m/S12ebHOd3MzE+IWltZlkpxzPdV4ukRZJu7WZZsd/NiKjcCxgJ7JNODwWeACZ2qXMgMDyd/jjwQGbZU8CIrSTOQ4Bbu1m3Bfgt8MfANsAjXdctM84u9Y8kGXuitONJMmzDjul0K/AAsH+XOp8Hvp9OTwN+mk5PTI/ftsD49Li2NDHOQ4Ht0+m/6Ywznf990d/LOuI8CfiXbtbdBVievg9Pp4c3K84u9b9A0mV+qccz3dfZwE96+P9c6HezkmcEEfFcRDyUTr8KPE6X8ZQj4r6IeCmdvZ9khLVS5Ymzhn2BZRGxPCLeBK4Dpm4lcU4Hri0ilp5E4vfpbGv66nqnxFTg6nT6RuAjkpSWXxcRb0TEk8AykuPblDgj4q6IeC2dbdZ3M8/x7Mlk4I6IWJP+H7sDmFJAmFsSZ+nfTQBJo4FPAFf0UKXQ72YlE0FWeoq1N8lfCj05FbgtMx/A7ZIWSppRXHRv6yXOA9JT39sk7ZGWjQJWZOqsJH8S2WK9HU9J25P8p/+3THEpxzM99X4YeIHkh6hrjG8ds4jYALwMvIuSj2WOOLO6fje3k9Qh6X5JRxcVYx1xfjJtwrpRUufQtVvl8Uyb2MYDv8wUl3U8Lwb+B7Cph+WFfjcrnQgk7Ujyg/TFiHilhzqHkvxn+0qm+EMRsQ9Jk9Hpkg5uYpwPkfQhMgm4FJhTZCy15DmeJM1C90bEmkxZKcczIjZGxPtJ/oLeV9KeReynr/LGKekzQDswK1P87ki6IDgRuFjSe5oY5y3AuIjYi+Sv/qu7bqMMdfy7TwNujIiNmbLCj6ekI4AXImJho7edV2UTgaRWkh+tH0fETT3U2YvkVG1qRLzYWR4Rq9L3F4CbKaiZIE+cEfFK56lvJCPCtUoaQTJO9JhM1dFpWVPizJhGl1PvMo9nup+1wF28sznirWMmaTCwM/AiJR/LHHEi6aPAV4GjIuKNzDqdx3I5cDfJ2VlT4oyIFzOxXQF8IJ3e6o5nqtZ3s8jjeRBwlKSnSJpwPyzpX7vUKfa72YiLHP3tRXIB6Rrg4hp1xpK0tx3YpXwHYGhm+j5gShPj/G+8/WDgvsAz6XqDSS7Cjefti8V7NCvOtN7OJGNT71D28QTagGHp9BDgP4AjutQ5nc0vyF2fTu/B5hfkllPcxeI8ce5NclFwQpfy4cC26fQI4DcUd4NAnjhHZqaPAe5Pp3cBnkzjHZ5O79KsONNl7yW5aUHNOJ6ZfR5C9xeLC/1uFjpm8VbsIOAvgMfStkOAvyP58Scivg+cT9IG973kmgwbIjlF/CPg5rRsMPCTiPh5E+M8DvgbSRuAdcC0SL4hGySdAcwnuYPoyohY3MQ4IfkxuD0i/pBZt6zjORK4WlILyZnw9RFxq6QLgY6ImAv8EPiRpGUkCWtaGv9iSdcDS4ANwOmxefNB2XHOAnYEbkiP2zMRcRTwp8Dlkjal614UEUuaGOeZko4iOWZrSO4iIiLWSPoGsCDd1oWxeVNh2XFC8m99Xfp/p1OZx/MdyvxuuosJM7OKq+w1AjMzSzgRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxVX1gTKzLSLp74HPAKtJOvtaCBxB8nTnn5P8nzolIh6UtC9wCbAdycN+J0fE0qYEblaDE4FZTpI+CHwSmETSnfFDJIkAkvEB3p92mHclsCfwX8CfRcSGtG+g/5mub7ZVcSIwy+8g4N8j4nXgdUm3ZJZdCxARv5K0k6RhJIP0XC1pAklX262lR2yWg68RmDVG175aAvgGcFdE7EnS/fZ2pUdlloMTgVl+9wJHpuPg7khybaDTCQCSPgS8HBEvk/S22tkl8EllBmpWDzcNmeUUEQvSAcwfBZ4HHiMZKQqSpqJFJM0/p6Rl/0TSNHQe8LOy4zXLy72PmtVB0o4R8ft0yM1fATOA7wBfjoiO5kZntmV8RmBWn9mSJpK0918dEQ+lYwKY9Vs+IzAzqzhfLDYzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6u4/w9M+Rk8O7FmeQAAAABJRU5ErkJggg==\n",
483 | "text/plain": [
484 | ""
485 | ]
486 | },
487 | "metadata": {
488 | "tags": [],
489 | "needs_background": "light"
490 | }
491 | }
492 | ]
493 | },
494 | {
495 | "cell_type": "markdown",
496 | "metadata": {
497 | "id": "7fiRjDu7Yi8T"
498 | },
499 | "source": [
500 | "Based on the above scatterplot, looks like any student with a gpa >= 3.5 has a chance of being admitted."
501 | ]
502 | },
503 | {
504 | "cell_type": "markdown",
505 | "metadata": {
506 | "id": "8ibvONAtcPyA"
507 | },
508 | "source": [
509 | "## For fun, repeat the process again, this time with GRE score"
510 | ]
511 | },
512 | {
513 | "cell_type": "code",
514 | "metadata": {
515 | "id": "ndjyD1E-aylu"
516 | },
517 | "source": [
518 | "logistic_model2 = LogisticRegression()\n",
519 | "logistic_model2.fit(admissions[[\"gre\"]], admissions[\"admit\"])\n",
520 | "pred_probs_gre = logistic_model2.predict_proba(admissions[[\"gre\"]])\n",
521 | "fitted_labels_gre = logistic_model2.predict(admissions[[\"gre\"]])"
522 | ],
523 | "execution_count": 67,
524 | "outputs": []
525 | },
526 | {
527 | "cell_type": "code",
528 | "metadata": {
529 | "colab": {
530 | "base_uri": "https://localhost:8080/",
531 | "height": 296
532 | },
533 | "id": "ku4fgE0AcyZD",
534 | "outputId": "bd7afc09-e541-463c-c418-dcbf8acd7e1e"
535 | },
536 | "source": [
537 | "plt.scatter(admissions[\"gre\"], pred_probs_gre[:,1])\n",
538 | "plt.xlabel('gre')\n",
539 | "plt.ylabel('Admission Probability')"
540 | ],
541 | "execution_count": 68,
542 | "outputs": [
543 | {
544 | "output_type": "execute_result",
545 | "data": {
546 | "text/plain": [
547 | "Text(0, 0.5, 'Admission Probability')"
548 | ]
549 | },
550 | "metadata": {
551 | "tags": []
552 | },
553 | "execution_count": 68
554 | },
555 | {
556 | "output_type": "display_data",
557 | "data": {
558 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfP0lEQVR4nO3de5hU9Z3n8feXprkGRWJ0ItoBlehoxEt6bFiyGXMh4niNiUECs2PihH3mGScaExxYWBE3HU1MCM7E+AQSZ7LeL6slKiNho5h9XGQEW+lAZIN3WqMmijoKcvvuH+c0Fk1X1e9016nb+byep5+qc+pU9Zdje751fpfvz9wdERHJrgHVDkBERKpLiUBEJOOUCEREMk6JQEQk45QIREQybmC1A0jqwAMP9DFjxlQ7DBGRurJ27do/uvtHenut7hLBmDFjWLNmTbXDEBGpK2b2QqHX1DQkIpJxSgQiIhmnRCAiknFKBCIiGadEICKScXU3akhEJGumL1nFo8+8sWd70hGjuPkbE8v2+UoEIiI1Zl6uk1tXv8SuAtWhH33mDaYvWVW2ZKBEICJSQ+blOrnpsRdLHpd/h9BfSgQiIjUg19HFNcs30rVla8V/txKBiEiF5V/0m8zY5Y4B1VomTIlARKRCch1dLLhvPW++t2PPvu5+gKRJYNIRo8oWlxKBiEiKerv495dGDYmI1IlcRxffvvMpdu3ue6NPkxnT2g7ju+ccV8bI9qZEICJSRuXq9B3a3MRV5x7HOSeOLlNkhSkRiIiUSa6ji1l3PsWOPt4BdHcYjx45lFmnHlWRJABKBCIi/dJ9B/Dylq1gUGAOWEHVuvjnUyIQEemDeblObn7sxb1H+yRMAjMmtKTa9h9KiUBEJKHQ2b+FDGsewPfOHV+Vb/+9USIQEUno1tUv9el9I4c2c8VZx9ZMAuimRCAiEqBnBdAkDhjWzPwzay8BdFMiEBEpIUkSaG4yhg8ayFtbd3BIFTuAk1AiEBEpIOmcgOGDmmj/YmXG/peTEoGISJ55uU5uXv1iomGglZj9myYlAhGRWFv7Cl59Z3ui9zx/9ekpRVM5WrNYRISoHyBpEihnBdBqUiIQESH5il/lrgBaTWoaEpFM6stw0EoWgqsk3RGISOb0JQmMHNrckEkAdEcgIhmS6+jiiqXr2bI1fJEYA3489YSGTADdlAhEJBP6Uh+okfoBilEiEJGGlyQJjB45lEdnfzbliGqLEoGINKxcRxeX3v4kuxO8Z9apR6UWT61SIhCRhpS0Kah5AFxzXmP3BRSSaiIwsynAtUAT8HN3v7rH6y3AL4GR8TGz3X1ZmjGJSOObvHAlv3/t3eDjFzV4Z3ApqQ0fNbMm4DrgNOAYYJqZHdPjsHnAHe5+InA+8NO04hGRbJi+ZFWiJDBjQkumkwCke0dwMrDJ3Z8FMLPbgLOBDXnHOLBf/Hx/4OUU4xGRBpa0UihEo4LqtVBcOaWZCEYD+cv4bAbaehxzBfArM/sHYDjw+RTjEZEGlevoYtadT7Fjd3jJ0FpZL7gWVLuzeBrwr+7+IzObCNxoZp9w9706+c1sJjAToKWlpQphikitStopnJW5AUmkmQi6gMPytg+N9+W7EJgC4O6rzGwIcCDwWv5B7r4YWAzQ2tqaoEq4iDSyJKUixh00nBWXnpJuQHUqzVpDjwPjzGysmQ0i6gxe2uOYF4HPAZjZnwNDgNdTjElEGkRb+4rgJDDpiFFKAkWkdkfg7jvN7CJgOdHQ0Bvcfb2ZXQmscfelwLeBJWb2LaKO4wvck6wLJCJZNH7+g7z9/q6Sxx0wrJmOy79QgYjqW6p9BPGcgGU99l2e93wDMCnNGESkceQ6uph7Tyfvbi+dBJqbjPlnHluBqOpftTuLRUSCJOkPGNY8gO+dOz7z8wNCKRGISM1LMlNYo4KS08I0IlLTkiSBg0cMUhLoAyUCEalZScpF7De4idVzJ6ccUWNSIhCRmpTr6ArqEzCiWcLrFkxJP6gGpT4CEak5uY4uLrn9yaBjn7v69JSjaXxKBCJSU5KUjJgxQSVnykFNQyJSM3IdXdwcmARUObR8lAhEpCbkOrq49I4nCSktMGNCi0YHlZESgYhUXXcSCKkirTuB8lMfgYhUVZI+gXEHDdedQAqUCESkatraV/DqO9uDjtVCMulRIhCRqpi8cGVQEhg5tJkn56uCaJrURyAiFZfr6AqeMXzFWaogmraSicDM1prZ35vZAZUISEQa32V3PRV03IwJLaogWgEhdwRTgUOAx83sNjM71cws5bhEpAHlOro4Ys4DbN9VeniQ+gQqp2QicPdN7j4X+DhwC3AD8IKZLTCzUWkHKCKNobtsREAOYNHUE5QEKiioj8DMxgM/Aq4B/hdwHvA28FB6oYlIo0hSO2jR1BPUHFRhJUcNmdlaYAvwC2C2u78fv7TazLTMpIgUlSQJqE+gOkKGj57n7s/m7zCzse7+nLufm1JcItIgLg1MApoxXD0hTUN3Be4TEdnL5IUr2R1wnGYMV1fBOwIzOxo4FtjfzPK/+e8HDEk7MBGpb/NynUFzBQ4eMYgVl56SfkBSULGmoaOAM4CRwJl5+98BvpFmUCJS33IdXUH1g7S8ZG0omAjc/V7gXjOb6O6rKhiTiNSx0CJyB48YpCRQI4o1DV3m7j8Avmpm03q+7u7fTDUyEak7oXcC4w4aruagGlKsaeh38eOaSgQiIvVv1p2lRwgNHGBKAjWmWNPQffHjLysXjojUq8kLV7IjYIjQD887Pv1gJJFiTUP3QeFV49z9rFQiEpG6EzpCSBPGalOxpqEfViwKEalboZ3DmjBWu4o1DT1SyUBEpP5MX7KKR595o+Rxk44YpQljNaxY09Ad7v4VM+tk7yYiA9zdx6cenYjULCWBxlGsaeji+PGMSgQiIvVjXq4zKAmodER9KFhryN1fiR9fAN4HjgfGA+/H+0Qko0L6BIY1D9Aw0ToRslTl3wL/DpwLfBl4zMy+nnZgIlKbJi9cGXTc985V63G9CKk+Ogs40d0vcPe/AT4J/GPIh5vZFDPbaGabzGx2gWO+YmYbzGy9md0SHrqIVNr4+Q8GDRMdd9BwDROtIyHrEfyJqNBct3fifUWZWRNwHTAZ2Ey05vFSd9+Qd8w4YA4wyd3fNLODkgQvIpXT1r6Ct9/fVfI4dQ7Xn2Kjhi6Nn24iWo3sXqLRQ2cD6wI++2RgU/eiNmZ2W/zeDXnHfAO4zt3fBHD31xL/C0QkdfNynbz6zvaSxykJ1KdidwQj4sdn4p9u9wZ+9mjgpbztzUBbj2M+DmBmjwJNwBXu/mDPDzKzmcBMgJaWlsBfLyLlEFpI7uARg5QE6lSxCWULKvT7xwGnAIcCvzGz49x9S49YFgOLAVpbWwuWvRCR8gtZalLVROtbyOL1HwEuI1qtbM/KZO7+2RJv7QIOy9s+NN6XbzOw2t13AM+Z2f8jSgyPlw5dRNI2fcmqoKUmlQTqW8iooZuBp4GxwALgecIu1I8D48xsrJkNAs4HlvY4Jkd0N4CZHUjUVPRsSOAikq629hVBk8ZmTFBzbb0LSQQfdvdfADvc/RF3/zpQ6m4Ad98JXAQsJ1rb4A53X29mV5pZd+XS5cCfzGwD8DAwy91LjkgSkXS1ta8I7hxWIbn6FzJ8dEf8+IqZnQ68DIwK+XB3XwYs67Hv8rznDlwa/4hIDch1dAUlgRkTWpQEGkRIIviume0PfBv4Z2A/4FupRiUiVZHr6OKSwM5hJYHGUTIRuPv98dO3gM+kG46IVNN37nyq5DHNA9Q53GhCag0dbmb3mdkfzew1M7vXzA6vRHAiUjnj5z/Izt2lR2dfc94JFYhGKimks/gW4A7gz4BDgDuBW9MMSkQqa/LClUHlIxZNPUE1hBpQSCIY5u43uvvO+Ocm8uYTiEj9UyG5bCtWa6h7ZNC/xZVDbyOqNTSVHiOBRKR+HT239P/O+w1uUr9AAyvWWbyW6MJv8fZ/zXvNiaqGikgdO3LOA+ws0S0wAFi3YEpF4pHqKFZraGwlAxGRyho//8GSSQBg4VR1Dje6kFpDzcDfAZ+Od60EfhbXBxKROjR9yaqgzmH1C2RDyISy64Fm4Kfx9l/H+/42raBEJF0hNYQOHjFI/QIZEZII/sLdj8/bfsjMSs86EZGaFNI5PKTJWD13cgWikVoQMnx0l5kd0b0RTyYrfU8pIjVn7OwH2LareMfAQIOn2/+qQhFJLQi5I/gO8LCZPUs0guhjwNdSjUpEyq6tfQUhqzptuur01GOR2lI0EcQL0B9PtFjMUfHuje7+ftqBiUj5TF64Mqii6CKNEMqkok1D7r4LmObu77v7uvhHSUCkjszLdQbNHJ4xoUUjhDIqpGnoUTP7CXA7sOevyd2fSC0qESmbkIXnhzSZykpnWEgi6L5XvDJvnxOwSpmIVFfICCFDncNZF5IIznP3P6YeiYiU1eSFK0uOEAJ47mp1DmddwT4CMzvTzF4H1pnZZjP7TxWMS0T6IUm/gEixzuJ24D+7+yHAl4CrKhOSiPRHrqMrqF9goKF+AQGKJ4Kd7v40gLuvBkZUJiQR6Y+QNYdB8wXkA8X6CA4ys0sLbbv7wvTCEpG+mL5kVdBxahKSfMUSwRL2vgvouS0iNSTX0RVUTG7SEaPUJCR7KbYewYJKBiIifTcv1xnULzDuoOHc/I2JFYhI6klI0TkRqWFJOodVVlp6o0QgUudm3anOYekfJQKROtbWvoIdu0sfp2JyUkzIUpWDieYRjMk/3t2vLPQeEUnf+PkParlJKYuQEhP3Am8BawFVHhWpAW3tK4KSgJablBAhieBQd5+SeiQiEmT6klVBawuMO2i4koAECekj+L9mpkHHIjUidK6AkoCECrkj+BRwgZk9R9Q0ZIC7+/hUIxORfRw554Gg4zRXQJIISQSnpR6FiJQ0fckqdgYsOqzyEZJUyaYhd38BGAmcGf+MjPeJSIWofISkqWQiMLOLgZuBg+Kfm8zsH0I+3MymmNlGM9tkZrOLHPclM3Mzaw0NXCQr5uU6gyqK7je4SU1C0ichTUMXAm3u/i6AmX0fWAX8c7E3mVkTcB0wGdgMPG5mS919Q4/jRgAXA6uThy/S2EJrCAGsW6DBfdI3IaOGDMgfsLwr3lfKycAmd3/W3bcDtwFn93Lc/wC+D2wL+EyRTAlNApo5LP0Rkgj+BVhtZleY2RXAY8AvAt43Gngpb3tzvG8PMzsJOMzdiw6FMLOZZrbGzNa8/vrrAb9apP6Nn/9g0HGLpp6gmcPSLyWbhtx9oZmtJBpGCvA1d+/o7y82swHAQuCCgBgWA4sBWltbA8ZNiNS3o+cuC1p4fsaEFiUB6beCicDM9nP3t81sFPB8/NP92ih3LzWEoQs4LG/70HhftxHAJ4CVZgbwZ8BSMzvL3dck+UeINJK29hVBSUBrDku5FLsjuAU4g6jGUP5fpcXbh5f47MeBcWY2ligBnA98tftFd38LOHDPh0Z3Hd9REpAsm5frDCofMaTJeLr9ryoQkWRBsRXKzogfx/blg919p5ldBCwHmoAb3H29mV0JrHH3pX35XJFGFbrAjGoISbmFlKGeBDzp7u+a2QzgJGCRu5f8i3X3ZcCyHvsuL3DsKUERizSokLkCoFXGpPxCRg1dD7xnZscD3waeAW5MNSqRjEkyQkik3EISwU53d6I5AD9x9+uIOnpFpAxC1xaYdMQojRCSVITMLH7HzOYAM4BPx8M+m9MNSyQbkqwtoPIRkpaQO4KpROWnL3T3PxANA70m1ahEMiC0kNyQJlO/gKQq6I4AuNbdd5nZx4GjgVvTDUuksbW1rwi6EzDQMFFJXcgdwW+AwWY2GvgV8NfAv6YZlEgjm7xwZVASAHju6tNTjkYksOicu78HnAv81N3PI5oRLCJ98PvX3g06TgvMSKUEJQIzmwhMB7qLw4W8T0R6aGtfEXScFpiRSgq5oF8CzAHuiWcGHw48nG5YIo1HI4SkVoVUH30EeCRv+1ngm2kGJdJokiw1qSQglVas+ugid7/EzO5j76JzALj7WalGJtIgQlcZO3jEICUBqYpidwTdZSR+WIlARBrR+PkPBs0aHtJkrJ47uQIRieyrWPXRtfHjI4WOEZHCxs5+YN9b6V4cPGKQkoBUVcnOYjM7w8w6zOwNM3vbzN4xs7crEZxIvTp67rKgJAAoCUjVhcwsXkQ0h6AzLj4nIkVMXrgyaIUx0FwBqQ0hw0dfAn6rJCBS2rxcZ/CEMc0VkFoRckdwGbDMzB4hKj4HRIvapxaVSB2avHBloiSgEUJSK0ISQTvwH8AQYFC64YjUp+lLVikJSN0KSQSHuLtqC4kUMH3JqqDJYhD1Cag5SGpNSB/BMjP7QuqRiNShtvYVSgJS90ISwd8BD5rZVg0fFflAaO0giCaMKQlIrQqpNaT1iUV6CK0dBDDQtLiM1LZitYZOKvZGd3+i/OGI1L7Q2kEQVRLVMpNS64rdEfwofhwCtAJPEa2cNx5YA2jYg2ROko7hg0cMUhKQulCwj8DdP+PunwFeAU5y91Z3/yRwItBVqQBFakWSJLDf4CaVjpC6ETJ89Ch37+zecPffmtmfpxiTSM05eu6y4LIRAw3WLZiSckQi5ROSCNaZ2c+Bm+Lt6cC69EISqS1JksCQJlPHsNSdkETwNaIhpBfH248A16cWkUgNSVJATklA6lXJeQTuvs3df+zuX3T3LwJrAdUZkobX1r4iuGwEaIio1K+QOwLM7ERgGvAV4Dng7jSDEqm20JXFIOoT2HTV6SlHJJKeYvMIPk508Z8G/BG4HbB4JJFIQ8p1dHHJ7U8GH68CctIIit0RPA38H+AMd98EYGbfqkhUIlWQNAmodpA0imJ9BOcSzSF42MyWmNnniCaUiTQcJQHJsmKL1+eAnJkNB84GLgEOMrPrgXvc/VcVilEkVUn6AwAWTT2Bc04cnWJEIpUVMmroXXe/xd3PBA4FOoB/DPlwM5tiZhvNbJOZze7l9UvNbIOZrTOzX5vZxxL/C0T6YczsB5QEJPNCylDv4e5vuvtid/9cqWPNrAm4DjgNOAaYZmbH9DisA2h19/HAXcAPksQj0h9jZj+Q6HglAWlUQcNH++hkYJO7PwtgZrcRNTFt6D7A3R/OO/4xYEaK8YjscfTcZYmOf/5qDQ+VxpVmIhgNvJS3vRloK3L8hcC/9faCmc0EZgK0tLSUKz7JoCSF4yCqIKricdLo0kwEwcxsBlGp67/s7XV3XwwsBmhtbQ2b7y+SJ+moIFASkOxIMxF0AYflbR9KL+WrzezzwFzgL939/RTjkYzqSxLQRDHJkjQTwePAODMbS5QAzge+mn9AXLriZ8AUd38txVgko5I2BYE6hSV7UksE7r7TzC4ClgNNwA3uvt7MrgTWuPtS4BrgQ8CdZgbworuflVZMki1Jykd3UxKQLEq1j8DdlwHLeuy7PO/559P8/ZJNkxeuTFQ1FNQfINlWE53FIuVy5JwH2JlwOIEWmJesUyKQhtCXvgBQzSARUCKQBpC0VhBE1ROf0yQxEUCJQOpYX/oCQEtKivSkRCB1Z16uk5see7FP79WoIJF9KRFIXWlrX8Gr72xP/D5NEBMpTIlA6oLuAkTSo0QgNa2vo4FAw0JFQikRSE3qzx3AoCbjB18+XncBIoGUCKTm9OcuQH0BIskpEUjN6GtHcDclAZG+USKQqsp1dDHn7nVs3bG7z5+h2cEi/aNEIFWR6+jisrueYnvC6qD51BksUh5KBFJx/ekD6KYhoSLlo0QgFTEv18mtq19il/dvpVE1A4mUnxKBpKoc3/5BCUAkTUoEUnbluviDRgKJVIISgZRFrqOLK5auZ8vWHWX5PN0BiFSOEoH0W1/LQfdGCUCk8pQIJJH+lH4oZPigJtq/eJxGAYlUiRKBlFTONv9uavsXqR1KBNKrXEcX/+3udbzXjxm/vVFBOJHao0Qge6TR7AP69i9S65QIMirX0cXcezp5d3uyRd9DNRn86Cua/StSD5QIMiLX0cWsO5+kzC09vdIdgEh9USJoUGk18xQycmgzV5x1rO4AROqQEkGdy6/hY8CwQU2pNff0NKx5AN87d7wu/iJ1TomgTuQ6urhm+UZe3rKVQ0YOZdapR7HmhTf2+tbvkHoSGNo8gKt08RdpKEoENST/Yj9sUBPvbd+FAwMMcOhu3u/aspU5d3eybWe6F30Dpmumr0jDUyKogvwL/shhzWzbsWufFbryv9nv7qVy89Yd6SSBA4Y1M/9MtfWLZIkSQT/01lyTfwHt7XWAOXd37rmQv/leeYq09ZUu/CKiRFBAoYt8oQVWuptrAM45cXS8Fu8HF/zu1wcPHFC2b/PDmgcknvnbZMa0tsPU3CMie5j3c8WoSmttbfU1a9Ykek+pb+69HZ9/EQcY2tzESS37l6y5M3rkUB6d/VkmXf0QXVu2JooziaHNTVx17nGseeGNfUYNvbd9V9C/U0Syw8zWuntrb681/B1BoW/mQMGL5DXLN+7zrX3rjl1Bhddeji/+L6eQBIY2D2Dbjt17XeTPOXG0vt2LSL+kmgjMbApwLdAE/Nzdr+7x+mDgfwKfBP4ETHX358sZQ6GL+jXLNxZMBP25iB8ycuiex97uCA4Y1sy2HbtLNg8NHjiA7Tt346g5R0TSlVoiMLMm4DpgMrAZeNzMlrr7hrzDLgTedPcjzex84PvA1HLGUeiiXuxiX+giXsrQ5qY9HcKzTj2q1+al+WceC1Bw1JA6b0Wk0tK8IzgZ2OTuzwKY2W3A2UB+IjgbuCJ+fhfwEzMzL2PHRaGLevc3994UuogX6yMY3aNNvvuxUN+ELvQiUivSTASjgZfytjcDbYWOcfedZvYW8GHgj/kHmdlMYCZAS0tLoiAKXdS7v7n3pthFPH/UUKkmm+42fBGRWlYXncXuvhhYDNGooSTvLfXNvNj7ejvmu+ccp7Z6EWkoaSaCLuCwvO1D4329HbPZzAYC+xN1GpeVvpmLiBQ2IMXPfhwYZ2ZjzWwQcD6wtMcxS4G/iZ9/GXionP0DIiJSWmp3BHGb/0XAcqLhoze4+3ozuxJY4+5LgV8AN5rZJuANomQhIiIVlGofgbsvA5b12Hd53vNtwHlpxiAiIsWl2TQkIiJ1QIlARCTj6q7onJm9DryQwkcfSI/5C1KQzlUYnacwOk/h+nOuPubuH+nthbpLBGkxszWFKvPJ3nSuwug8hdF5CpfWuVLTkIhIxikRiIhknBLBBxZXO4A6onMVRucpjM5TuFTOlfoIREQyTncEIiIZp0QgIpJxmUsEZtZkZh1mdn+8PdbMVpvZJjO7PS6Qh5kNjrc3xa+PqWbclWRmz5tZp5k9aWZr4n2jzGyFmf0+fjwg3m9m9k/xeVpnZidVN/rKMbORZnaXmT1tZr8zs4k6T/sys6Piv6Xun7fN7BKdq32Z2bfMbL2Z/dbMbjWzIZW4RmUuEQAXA7/L2/4+8GN3PxJ4k2j5TMhbRhP4cXxclnzG3U/IG7M8G/i1u48Dfh1vA5wGjIt/ZgLXVzzS6rkWeNDdjwaOJ/q70nnqwd03xn9LJxCtT/4ecA86V3sxs9HAN4FWd/8EUbHO7iV8071GuXtmfojWRPg18FngfsCIZukNjF+fCCyPny8HJsbPB8bHWbX/DRU6T88DB/bYtxH4aPz8o8DG+PnPgGm9HdfIP0RrZzzX829C56nkefsC8KjOVa/npnvFxlHxNed+4NRKXKOydkewCLgM2B1vfxjY4u474+3NRP8xoMcymkD3MppZ4MCvzGxtvEwowMHu/kr8/A/AwfHz3pYkzcIqQGOB14F/iZsaf25mw9F5KuV84Nb4uc5VHnfvAn4IvAi8QnTNWUsFrlGZSQRmdgbwmruvrXYsdeBT7n4S0S3635vZp/Nf9OgrSNbHHQ8ETgKud/cTgXf5oGkD0HnqKW7bPgu4s+drOlcQ95GcTfQl4xBgODClEr87M4kAmAScZWbPA7cRNQ9dC4yMl8mEvZfT3LPUZprLaNai+JsJ7v4aUVvuycCrZvZRgPjxtfjwkCVJG9FmYLO7r4637yJKDDpPhZ0GPOHur8bbOld7+zzwnLu/7u47gLuJrlupX6MykwjcfY67H+ruY4huTx9y9+nAw0TLZEK0bOa98fNMLqNpZsPNbET3c6I23d+y9/noeZ7+SzzSYwLwVt7tfsNy9z8AL5nZUfGuzwEb0HkqZhofNAuBzlVPLwITzGyYmRkf/E2lf42qdgdJlTplTgHuj58fDvw7sInolnVwvH9IvL0pfv3wasddoXNzOPBU/LMemBvv/zBRR/vvgf8NjIr3G3Ad8AzQSTTioer/jgqdqxOANcA6IAccoPNU8FwNJ/q2un/ePp2rfc/TAuBpoi9fNwKDK3GNUokJEZGMy0zTkIiI9E6JQEQk45QIREQyTolARCTjlAhERDJOiUBEJOOUCETKLG8WqEhd0DwCkYTM7L8DM4iKzr1EVBjsDOBJ4FNEs2dXAguBDxFVhbzAszE7VuqQvrmIJGBmfwF8iWj9gWbgCaJEADDI3VvNrBl4BDjb3V83s6lAO/D1asQsUooSgUgyk4B73X0bsM3M7st77fb48SjgE8CKqGQMTURlhUVqkhKBSPm8Gz8asN7dJ1YzGJFQ6iwWSeZR4Mx4LdkPEfUN9LQR+IiZTQQws2YzO7aSQYokoTsCkQTc/XEzW0pUcfRVouqYb/U4ZruZfRn4JzPbn+j/s0VE1VxFao5GDYkkZGYfcvf/MLNhwG+Ame7+RLXjEukr3RGIJLfYzI4hqgf/SyUBqXe6IxARyTh1FouIZJwSgYhIxikRiIhknBKBiEjGKRGIiGTc/wcjMlUSygFqmwAAAABJRU5ErkJggg==\n",
559 | "text/plain": [
560 | ""
561 | ]
562 | },
563 | "metadata": {
564 | "tags": [],
565 | "needs_background": "light"
566 | }
567 | }
568 | ]
569 | },
570 | {
571 | "cell_type": "code",
572 | "metadata": {
573 | "colab": {
574 | "base_uri": "https://localhost:8080/",
575 | "height": 296
576 | },
577 | "id": "K2iuGk39c-jt",
578 | "outputId": "a4917795-aade-48c3-fcff-8ec158b070d6"
579 | },
580 | "source": [
581 | "plt.scatter(admissions[\"gre\"], fitted_labels_gre)\n",
582 | "plt.xlabel('gre')\n",
583 | "plt.ylabel('Predicted Admission Result')"
584 | ],
585 | "execution_count": 69,
586 | "outputs": [
587 | {
588 | "output_type": "execute_result",
589 | "data": {
590 | "text/plain": [
591 | "Text(0, 0.5, 'Predicted Admission Result')"
592 | ]
593 | },
594 | "metadata": {
595 | "tags": []
596 | },
597 | "execution_count": 69
598 | },
599 | {
600 | "output_type": "display_data",
601 | "data": {
602 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZYUlEQVR4nO3df5gdVX3H8fcnmw0kIRBCFp6QH03AFJsCQlwhMZaCCgRUgoiSKLUiJfWpFBRLhZbSluqjllpFS5WAFLA2VC1gxGiQn21RYjZgSROMhvAjCQgLCT9KEtkk3/4xs+Rms3vv3M2duezO5/U8+9yZM2fmfvdkc7/3zI9zFBGYmVl5DWl2AGZm1lxOBGZmJedEYGZWck4EZmYl50RgZlZyQ5sdQL3Gjh0bkydPbnYYZmYDyvLly5+LiLbetg24RDB58mQ6OjqaHYaZ2YAi6Ym+tvnUkJlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWcnldteQpOuBdwPPRsThvWwXcBVwKrAZ+EhEPJhXPGZld9ltK/jXB55sdhivW61DYPLYkfzq2Vf63N61Y+f6QaOG8dz/dbG9YuDO8aOHM/mA4TywdtMu5b2RIAJaJLZHsP+IViLgxS1dDG8dwpZtO17bPnafVp55+dXX9p116Bi+dd7MPfuFK+TZI7gBmF1l+ynA1PRnPvC1HGMxKzUngdq6dtBnEujeXumZl1/d7cN+wwtbuP/RjTWTACRJAHit7qbNXbywpYsANnft2GV7ZRIAuP/RjXzo2p/WfI+scksEEfGfwMYqVeYAN0XiAWC0pHF5xWNWZguXrmt2CNZg9z9a7eO1Ps28RjAeqPzrXJ+W7UbSfEkdkjo6OzsLCc5sMMnyDdXKa0BcLI6IBRHRHhHtbW29PiFtZlW0SM0OwV7HmpkINgATK9YnpGVm1mDzjp1Yu5INKLMOHdOwYzUzESwCPqzEDODFiHi6ifGYDVqfOf0Izp4xqdlhvK61DoGpB46sur3SQaOG7dbTGj96OLMOHZOpB9Zdpbvu/iNaGT28FQEjWofssv2gUcN22bfRdw0przmLJS0EjgfGAs8Afw20AkTE19PbR/+J5M6izcA5EVFzNLn29vbwoHNmZvWRtDwi2nvblttzBBExr8b2AD6e1/ubmVk2A+JisZmZ5ceJwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKzonAzKzknAjMzErOicDMrOScCMzMSs6JwMys5JwIzMxKrmYikDQrS5mZmQ1MWXoEX81YZmZmA9DQvjZImgm8FWiTdFHFpn2BlrwDMzOzYvSZCIBhwD5pnVEV5S8BZ+YZlJmZFafPRBAR9wH3SbohIp7oz8ElzQauIulBXBcRn++xfRJwIzA6rXNJRCzuz3uZmVn/VDs19H0g0uXdtkfEadUOLKkFuBo4EVgPLJO0KCJWVVS7DPh2RHxN0jRgMTC5zt/BzMz2QLVTQ/+wh8c+BlgTEWsBJN0MzAEqE0GQXHMA2A94ag/f08zM6lTr1NCeGA+sq1hfDxzbo87fAHdI+lNgJPDO3g4kaT4wH2DSpEl7GJaZmVXK8hzBY5LW9vxp0PvPA26IiAnAqcA3Je0WU0QsiIj2iGhva2tr0FubmRlUPzXUrb1ieW/g/cCYDPttACZWrE9IyyqdC8wGiIifStobGAs8m+H4ZmbWADV7BBHxfMXPhoj4MvCuDMdeBkyVNEXSMGAusKhHnSeBdwBI+h2SRNNZ129gZmZ7pGaPQNL0itUhJD2EmvtFxDZJ5wNLSG4NvT4iVkq6AuiIiEXAp4BrJX2S5MLxRyIi+vF7mJlZP2U5NfTFiuVtwOPAB7IcPH0mYHGPsssrllcBHrfIzKyJsnyzP6GIQMzMrDmy3DV0oaR9lbhO0oOSTioiODMzy1+W0Uc/GhEvAScBBwB/AHy++i5mZjZQZEkE3eNLnArcFBErK8rMzGyAy5IIlku6gyQRLJE0CtiRb1hmZlaULHcNnQscBayNiM2SDgDOyTcsMzMrSpYeQQDTgAvS9ZEkD36ZmdkgkCUR/DMwk2RcIICXSYaXNjOzQSDLqaFjI2K6pIcAImJTOmSEmZkNAll6BF3pJDPdk9S04YvFZmaDRpZE8BXgVuBASZ8F/hv4XK5RmZlZYbIMMfEtSctJRgkVcDrJqKFmZjYIVE0EksYD44CHI+IXkg4EPgF8BDg4//DMzCxvfZ4akvQJ4OfAV4EHJP0R8AgwHHhzMeGZmVneqvUI5gOHRcRGSZOAXwKzImJ5MaGZmVkRql0s3hoRGwEi4klgtZOAmdngU61HMEHSVyrWx1WuR8QFvexjZmYDTLVEcHGPdfcGzMwGoT4TQUTcWGQgZmbWHFkeKDMzs0HMicDMrOScCMzMSq7mEBPpIHPnAZMr60fER/MLy8zMipJlGOrvAf8F3AlszzccMzMrWpZEMCIiPp17JGZm1hRZrhHcLunU3CMxM7OmyJIILiRJBlslvZz+vJR3YGZmVows8xGMKiIQMzNrjizXCJB0GnBcunpvRNyeX0hmZlakmqeGJH2e5PTQqvTnQkmeqtLMbJDIco3gVODEiLg+Iq4HZgPvynJwSbMlrZa0RtIlfdT5gKRVklZK+rfsoZuZWSNkOjUEjAY2psv7ZdlBUgtwNXAisB5YJmlRRKyqqDMVuJRkwptN6VSYZmZWoCyJ4HPAQ5LuIZm8/jig12/3PRwDrImItQCSbgbmkJxe6nYecHVEbAKIiGfriN3MzBogy11DCyXdC7wlLfp0RPw6w7HHA+sq1tcDx/ao89sAku4HWoC/iYgf9TyQpPkkU2cyadKkDG9tZmZZVZu8/o3p63RgHMkH+Xrg4LSsEYYCU4HjgXnAtZJG96wUEQsioj0i2tva2hr01mZmBtV7BBeRfAv/Yi/bAnh7jWNvACZWrE9IyyqtB5ZGRBfwmKRfkiSGZTWObWZmDVJthrL56esJ/Tz2MmCqpCkkCWAu8MEedW4j6Qn8i6SxJKeK1vbz/czMrB+yPEfwfkmj0uXLJN0i6eha+0XENuB8YAnwCPDtiFgp6Yr0ATXSbc9LWgXcA1wcEc/395cxM7P6KSKqV5AejogjJb0N+AxwJXB5RPS88FuI9vb26OjoaMZbm5kNWJKWR0R7b9uyPFDWPQfBu4AFEfEDYFijgjMzs+bKkgg2SLoGOAtYLGmvjPuZmdkAkOUD/QMk5/JPjogXgDHAxblGZWZmhcnyZPE44AcR8RtJxwNHAjflGpWZmRUmS4/gP4Dtkt4ALCB5NsCDw5mZDRJZEsGO9FbQM4CvRsTFJL0EMzMbBLIkgi5J84APA90T0rTmF5KZmRUpSyI4B5gJfDYiHkufFP5mvmGZmVlRsow+ugq4oGL9MeALeQZlZmbF6TMRSPp2RHxA0gqSQeZe2wRERByZe3RmZpa7aj2CC9PXdxcRiJmZNUe10UefTl+fAJC0b7X6ZmY2MNX8YJf0x8DfAlvZeYoogENyjMvMzAqS5Rv+nwGHR8RzeQdjZmbFy3L76KPA5rwDMTOz5sjSI7gU+ImkpcBvugsj4oK+dzEzs4EiSyK4BrgbWAHsyDccMzMrWpZE0BoRF+UeiZmZNUWWawQ/lDRf0jhJY7p/co/MzMwKkaVHMC99vbSizLePmpkNElnGGppSRCBmZtYc1cYaOqPajhFxS+PDMTOzolXrEbwnfT0QeCvJnUMAJwA/AZwIzMwGgWpjDZ0DIOkOYFr32EOSxgE3FBKdmZnlLstdQxO7k0DqGWBSTvGYmVnBstw1dJekJcDCdH0ucGd+IZmZWZGy3DV0vqT3AselRddExK35hmVmZkXJcmqIiLg1Ij4JXAbsI+kH+YZlZmZFqZkIJA2T9F5J3wGeBt4OfD33yMzMrBDVniM4ieSp4pOAe4CbgLd0301kZmaDQ7UewY9IhpF4W0ScHRHfx6OPmpkNOtUSwXTgp8Cdkn4s6VygpZ6DS5otabWkNZIuqVLvfZJCUns9xzczsz3XZyKIiJ9HxCURcSjw18BRQKukH0qaX+vAklqAq4FTgGnAPEnTeqk3CrgQWNrP38HMzPZA1ruGfhIRfwpMAL4EzMiw2zHAmohYGxGvAjcDc3qp93fAF4Ct2UI2M7NGypQIukXEjoi4IyI+mqH6eGBdxfr6tOw1kqaTPLlc9XbUdD6EDkkdnZ2d9YRsZmY11JUIGknSEOAfgU/VqhsRCyKiPSLa29ra8g/OzKxE8kwEG4CJFesT0rJuo4DDgXslPU5yummRLxibmRWr2nMEVaejjIiNNY69DJgqaQpJApgLfLBi/xeBsRXvdy/wZxHRUTtsMzNrlGpjDS0nmZJSJKONbkqXRwNPAlVnLouIbZLOB5aQ3HZ6fUSslHQF0BERixoQv5mZ7aFq8xFMAZB0LXBrRCxO108BTs9y8HSfxT3KLu+j7vHZQjYzs0bKco1gRncSAIiIH5LMWGZmZoNAlvkInpJ0GfCv6fqHgKfyC8nMzIqUpUcwD2gDbiWZp7gtLTMzs0Egy8Q0G4ELJY2MiFcKiMnMzAqUZT6Ct0paBTySrr9J0j/nHpmZmRUiy6mhLwEnA88DRMT/sHPaSjMzG+CyDjq3rkfR9hxiMTOzJshy19A6SW8FQlIryZDRj+QblpmZFSVLj+BjwMdJRg7dQDIvwZ/kGZSZmRUnS4/gsIj4UGWBpFnA/fmEZGZmRcrSI/hqxjIzMxuAqo0+OpNkKIk2SRdVbNqXOucuNjOz169qp4aGAfukdUZVlL8EnJlnUGZmVpxqo4/eB9wn6YaIeKLAmMzMrEBZrhFcJ2l094qk/SUtyTEmMzMrUJZEMDYiXuheiYhNwIH5hWRmZkXKkgh2SJrUvSLpt0hmLjMzs0Egy3MEfwn8t6T7SKaq/D1gfq5RmZlZYbIMQ/0jSdOBGWnRJyLiuXzDMjOzovR5akjSG9PX6SST1z+V/kxKy8zMbBCo1iP4FHAe8MVetgXw9lwiMjOzQlV7juC89PWE4sIxM7OiVRti4oxqO0bELY0Px8zMilbt1NB70tcDScYcujtdPwH4CclE9mZmNsBVOzV0DoCkO4BpEfF0uj4OuKGQ6MzMLHdZHiib2J0EUs+Q3EVkZmaDQJYHyu5KxxZamK6fBdyZX0hmZlakLA+UnS/pvcBxadGCiLg137DMzKwoWXoEAA8CL0fEnZJGSBoVES/nGZiZmRWj5jUCSecB3wWuSYvGA7flGZSZmRUny8XijwOzSGYmIyJ+RcZhqCXNlrRa0hpJl/Sy/SJJqyQ9LOmudGRTMzMrUJZE8JuIeLV7RdJQMgxDLakFuBo4BZgGzJM0rUe1h4D2iDiSpNfx91kDNzOzxsiSCO6T9BfAcEknAt8Bvp9hv2OANRGxNk0kNwNzKitExD0RsTldfQCYkD10MzNrhCyJ4NNAJ7AC+GNgMXBZhv3GA+sq1tenZX05F/hhbxskzZfUIamjs7Mzw1ubmVlWVe8aSk/vrIyINwLX5hWEpLOBduD3e9seEQuABQDt7e2eHc3MrIGq9ggiYjuwunKqyjpsACZWrE9Iy3Yh6Z0ks6CdFhG/6cf7mJnZHsjyHMH+wEpJPwNe6S6MiNNq7LcMmCppCkkCmAt8sLKCpKNJbkudHRHP1hO4mZk1RpZE8Ff9OXBEbJN0PrAEaAGuj4iVkq4AOiJiEXAlsA/wHUkAT2ZIMGZm1kDV5iPYG/gY8AaSC8XfiIht9Rw8IhaTXFyuLLu8YvmddUVrZmYNV+0awY0kF3BXkDwL0NuUlWZmNsBVOzU0LSKOAJD0DeBnxYRkZmZFqtYj6OpeqPeUkJmZDRzVegRvkvRSuiySJ4tfSpcjIvbNPTozM8tdtakqW4oMxMzMmiPLEBNmZjaIORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgZlZyTkRmJmVnBOBmVnJORGYmZXc0DwPLmk2cBXQAlwXEZ/vsX0v4CbgzcDzwFkR8Xij47jtoQ1cuWQ1T72whYNHD+fikw/j9KPH92ufy25bwcKl69gewRDBXkOHsLVrR6/H7esYleWjR7SytWs7W7p2ADBEsCNg5LAWNr+6nQBaJGYcsj+PP7+lajwCRqT7jRjWwiuvbm90U9ogcvaMSXzm9COaHYa9Digi8jmw1AL8EjgRWA8sA+ZFxKqKOn8CHBkRH5M0F3hvRJxV7bjt7e3R0dGROY7bHtrApbesYEvXzg/F4a0tfO6MI/pMBn3tM33Sftz/6MY+36vyuH0d431vHs9/LN+wS3l/ZInHrBYng/KQtDwi2nvbluepoWOANRGxNiJeBW4G5vSoMwe4MV3+LvAOSWpkEFcuWb3bh+6Wru1cuWR13fvU+tCtPG5fx1i4dN0eJ4Gs8ZjVsnDpumaHYK8DeSaC8UDlX9n6tKzXOhGxDXgROKDngSTNl9QhqaOzs7OuIJ56YUtd5bW2ZX2/vo6xPacemFl/+O/RYIBcLI6IBRHRHhHtbW1tde178OjhdZXX2pb1/fo6RktjOzxme8R/jwb5JoINwMSK9QlpWa91JA0F9iO5aNwwF598GMNbW3YpG97awsUnH1b3PrMOHVP1vSqP29cx5h07cbfy/sgSj1kt846dWLuSDXp5JoJlwFRJUyQNA+YCi3rUWQT8Ybp8JnB3NPjq9elHj+dzZxzB+NHDETB+9PCqF4qr7fOt82Zy9oxJr32LGiIY3jqk1+P2dYzPnH7ELuX7j2hleOvOf4Yh6Re0kcNa6P6u1iIx69AxNeNRxX4jh+15srHBzReKrVtudw0BSDoV+DLJ7aPXR8RnJV0BdETEIkl7A98EjgY2AnMjYm21Y9Z715CZmVW/ayjX5wgiYjGwuEfZ5RXLW4H35xmDmZlVNyAuFpuZWX6cCMzMSs6JwMys5JwIzMxKLte7hvIgqRN4IodDjwWey+G4g5HbKhu3UzZup+z2pK1+KyJ6fSJ3wCWCvEjq6OvWKtuV2yobt1M2bqfs8mornxoyMys5JwIzs5JzIthpQbMDGEDcVtm4nbJxO2WXS1v5GoGZWcm5R2BmVnJOBGZmJVe6RCCpRdJDkm5P16dIWippjaR/T4fMRtJe6fqadPvkZsZdJEmPS1oh6eeSOtKyMZJ+LOlX6ev+abkkfSVtp4clTW9u9MWRNFrSdyX9QtIjkma6nXYn6bD0b6n75yVJn3Bb7U7SJyWtlPS/khZK2ruIz6jSJQLgQuCRivUvAF+KiDcAm4Bz0/JzgU1p+ZfSemVyQkQcVXHP8iXAXRExFbgrXQc4BZia/swHvlZ4pM1zFfCjiHgj8CaSvyu3Uw8RsTr9WzoKeDOwGbgVt9UuJI0HLgDaI+JwkuH751LEZ1RElOaHZJa0u4C3A7eTzOXyHDA03T4TWJIuLwFmpstD03pq9u9QUDs9DoztUbYaGJcujwNWp8vXAPN6qzeYf0hm03us59+E26lmu50E3O+26rVtuudwH5N+5twOnFzEZ1TZegRfBv4c2JGuHwC8EBHb0vX1JP8YsPMfhXT7i2n9MgjgDknLJc1Pyw6KiKfT5V8DB6XLr7VTqrINB7MpQCfwL+mpxuskjcTtVMtcYGG67LaqEBEbgH8AngSeJvnMWU4Bn1GlSQSS3g08GxHLmx3LAPC2iJhO0kX/uKTjKjdG8hWk7PcdDwWmA1+LiKOBV9h5agNwO/WUnts+DfhOz21uK0ivkcwh+ZJxMDASmF3Ee5cmEQCzgNMkPQ7cTHJ66CpgtKTumdomABvS5Q3ARIB0+37A80UG3CzpNxMi4lmSc7nHAM9IGgeQvj6bVn+tnVKVbTiYrQfWR8TSdP27JInB7dS3U4AHI+KZdN1ttat3Ao9FRGdEdAG3kHxu5f4ZVZpEEBGXRsSEiJhM0j29OyI+BNwDnJlW+0Pge+nyonSddPvd6beWQU3SSEmjupdJzun+L7u2R892+nB6p8cM4MWK7v6gFRG/BtZJOiwtegewCrdTNfPYeVoI3FY9PQnMkDRCktj5N5X/Z1SzL5A06aLM8cDt6fIhwM+ANSRd1r3S8r3T9TXp9kOaHXdBbXMI8D/pz0rgL9PyA0gutP8KuBMYk5YLuBp4FFhBcsdD03+PgtrqKKADeBi4Ddjf7dRnW40k+ba6X0WZ22r3dvpb4BckX76+CexVxGeUh5gwMyu50pwaMjOz3jkRmJmVnBOBmVnJORGYmZWcE4GZWck5EZiZlZwTgVmDVTwFajYg+DkCszpJ+ivgbJJB59aRDAz2buDnwNtInp69F/hHYB+SUSE/EuV4OtYGIH9zMauDpLcA7yOZf6AVeJAkEQAMi4h2Sa3AfcCciOiUdBbwWeCjzYjZrBYnArP6zAK+FxFbga2Svl+x7d/T18OAw4EfJ0PG0EIyrLDZ65ITgVnjvJK+ClgZETObGYxZVr5YbFaf+4H3pHPJ7kNybaCn1UCbpJkAklol/W6RQZrVwz0CszpExDJJi0hGHH2GZHTMF3vUeVXSmcBXJO1H8v/syySjuZq97viuIbM6SdonIv5P0gjgP4H5EfFgs+My6y/3CMzqt0DSNJLx4G90ErCBzj0CM7OS88ViM7OScyIwMys5JwIzs5JzIjAzKzknAjOzkvt/jk9+XQ4gQ78AAAAASUVORK5CYII=\n",
603 | "text/plain": [
604 | ""
605 | ]
606 | },
607 | "metadata": {
608 | "tags": [],
609 | "needs_background": "light"
610 | }
611 | }
612 | ]
613 | },
614 | {
615 | "cell_type": "markdown",
616 | "metadata": {
617 | "id": "FXZVpcJFd6eo"
618 | },
619 | "source": [
620 | "Based on the above scatterplot, looks like any student with a GRE >= 660 has a chance of being admitted."
621 | ]
622 | },
623 | {
624 | "cell_type": "markdown",
625 | "metadata": {
626 | "id": "jNwln7VMeSvI"
627 | },
628 | "source": [
629 | "## Let's use both GPA and GRE"
630 | ]
631 | },
632 | {
633 | "cell_type": "code",
634 | "metadata": {
635 | "id": "4wUoJJQvdCHS"
636 | },
637 | "source": [
638 | "logistic_model3 = LogisticRegression()\n",
639 | "logistic_model3.fit(admissions[[\"gpa\",\"gre\"]], admissions[\"admit\"])\n",
640 | "pred_probs_gre_gpa = logistic_model3.predict_proba(admissions[[\"gpa\",\"gre\"]])\n",
641 | "fitted_labels_gre_gpa = logistic_model3.predict(admissions[[\"gpa\",\"gre\"]])"
642 | ],
643 | "execution_count": 70,
644 | "outputs": []
645 | },
646 | {
647 | "cell_type": "markdown",
648 | "metadata": {
649 | "id": "9MHUoodxgNDd"
650 | },
651 | "source": [
652 | "# Comparing Logistic Models' Accuracy"
653 | ]
654 | },
655 | {
656 | "cell_type": "code",
657 | "metadata": {
658 | "colab": {
659 | "base_uri": "https://localhost:8080/"
660 | },
661 | "id": "FNUZ6wZne05w",
662 | "outputId": "6b2f2d36-3412-44c4-e3dd-6bc2f937ebdd"
663 | },
664 | "source": [
665 | "sum(fitted_labels_gpa == admissions['admit'])/admissions.shape[0]"
666 | ],
667 | "execution_count": 71,
668 | "outputs": [
669 | {
670 | "output_type": "execute_result",
671 | "data": {
672 | "text/plain": [
673 | "0.6847826086956522"
674 | ]
675 | },
676 | "metadata": {
677 | "tags": []
678 | },
679 | "execution_count": 71
680 | }
681 | ]
682 | },
683 | {
684 | "cell_type": "code",
685 | "metadata": {
686 | "colab": {
687 | "base_uri": "https://localhost:8080/"
688 | },
689 | "id": "FLMOkvYUfKMo",
690 | "outputId": "ebf9aef7-0398-477e-dc06-a61c8d3e3b2a"
691 | },
692 | "source": [
693 | "sum(fitted_labels_gre == admissions['admit'])/admissions.shape[0]"
694 | ],
695 | "execution_count": 72,
696 | "outputs": [
697 | {
698 | "output_type": "execute_result",
699 | "data": {
700 | "text/plain": [
701 | "0.7267080745341615"
702 | ]
703 | },
704 | "metadata": {
705 | "tags": []
706 | },
707 | "execution_count": 72
708 | }
709 | ]
710 | },
711 | {
712 | "cell_type": "code",
713 | "metadata": {
714 | "colab": {
715 | "base_uri": "https://localhost:8080/"
716 | },
717 | "id": "7q3Ql7thgd-L",
718 | "outputId": "4c70c5e8-63b8-4164-c105-5b41a051974e"
719 | },
720 | "source": [
721 | "sum(fitted_labels_gre_gpa == admissions['admit'])/admissions.shape[0]"
722 | ],
723 | "execution_count": 73,
724 | "outputs": [
725 | {
726 | "output_type": "execute_result",
727 | "data": {
728 | "text/plain": [
729 | "0.7872670807453416"
730 | ]
731 | },
732 | "metadata": {
733 | "tags": []
734 | },
735 | "execution_count": 73
736 | }
737 | ]
738 | },
739 | {
740 | "cell_type": "markdown",
741 | "metadata": {
742 | "id": "CGM05kiAg2V0"
743 | },
744 | "source": [
745 | "GPA and GRE together can predict admission chances of a candidate better than either solely GPA or solely GRE."
746 | ]
747 | },
748 | {
749 | "cell_type": "markdown",
750 | "metadata": {
751 | "id": "4pXq2KN4R-jg"
752 | },
753 | "source": [
754 | "## Evaluating Specificity and Sensitivity of these Models"
755 | ]
756 | },
757 | {
758 | "cell_type": "markdown",
759 | "metadata": {
760 | "id": "f__sKfekScpw"
761 | },
762 | "source": [
763 | "\r\n",
764 | "* **True Positive (TP)**: model correctly predicted that a candidate would be admitted.\r\n",
765 | "* **True Negative (TN)**: model correctly predicted that a candidate would not be admitted.\r\n",
766 | "* **False Positive (FP)** model incorrectly predicted that a candidate would be admitted even though the student got rejected.\r\n",
767 | "* **False Negative (FN)**: model incorrectly predicted that a candidate would not be admitted even though the student got admitted."
768 | ]
769 | },
770 | {
771 | "cell_type": "markdown",
772 | "metadata": {
773 | "id": "Q9viFzi0C9MQ"
774 | },
775 | "source": [
776 | "**Calculating Sensitivity or True Positive Rate (TPR)**\r\n",
777 | "\r\n",
778 | "\\begin{equation*}\r\n",
779 | "TPR = \\frac{TP}{TP+FN}\r\n",
780 | "\\end{equation*}\r\n",
781 | "\r\n",
782 | "**Calculating Specificity or True Negative Rate (TNR)**\r\n",
783 | "\r\n",
784 | "\\begin{equation*}\r\n",
785 | "TNR = \\frac{TN}{TN+FP}\r\n",
786 | "\\end{equation*}\r\n"
787 | ]
788 | },
789 | {
790 | "cell_type": "code",
791 | "metadata": {
792 | "id": "QsYHzS-4sRhk"
793 | },
794 | "source": [
795 | "def build_logReg(df, cols, target):\r\n",
796 | " model = LogisticRegression()\r\n",
797 | " model.fit(df[cols], df[target])\r\n",
798 | " return model.predict(df[cols])"
799 | ],
800 | "execution_count": 74,
801 | "outputs": []
802 | },
803 | {
804 | "cell_type": "code",
805 | "metadata": {
806 | "colab": {
807 | "base_uri": "https://localhost:8080/",
808 | "height": 419
809 | },
810 | "id": "SU4TlX6wjxzX",
811 | "outputId": "926b9ae0-6a72-4b5f-a2d1-b3749be441c3"
812 | },
813 | "source": [
814 | "admissions['predicted_by_gpa'] = build_logReg(admissions, ['gpa'], 'admit')\r\n",
815 | "admissions['predicted_by_gre'] = build_logReg(admissions, ['gre'], 'admit')\r\n",
816 | "admissions['predicted_by_gre_gpa'] = build_logReg(admissions, ['gpa','gre'], 'admit')\r\n",
817 | "admissions"
818 | ],
819 | "execution_count": 75,
820 | "outputs": [
821 | {
822 | "output_type": "execute_result",
823 | "data": {
824 | "text/html": [
825 | "\n",
826 | "\n",
839 | "
\n",
840 | " \n",
841 | " \n",
842 | " | \n",
843 | " admit | \n",
844 | " gpa | \n",
845 | " gre | \n",
846 | " predicted_by_gpa | \n",
847 | " predicted_by_gre | \n",
848 | " predicted_by_gre_gpa | \n",
849 | "
\n",
850 | " \n",
851 | " \n",
852 | " \n",
853 | " | 0 | \n",
854 | " 0 | \n",
855 | " 3.177277 | \n",
856 | " 594.102992 | \n",
857 | " 0 | \n",
858 | " 0 | \n",
859 | " 0 | \n",
860 | "
\n",
861 | " \n",
862 | " | 1 | \n",
863 | " 0 | \n",
864 | " 3.412655 | \n",
865 | " 631.528607 | \n",
866 | " 0 | \n",
867 | " 0 | \n",
868 | " 1 | \n",
869 | "
\n",
870 | " \n",
871 | " | 2 | \n",
872 | " 0 | \n",
873 | " 2.728097 | \n",
874 | " 553.714399 | \n",
875 | " 0 | \n",
876 | " 0 | \n",
877 | " 0 | \n",
878 | "
\n",
879 | " \n",
880 | " | 3 | \n",
881 | " 0 | \n",
882 | " 3.093559 | \n",
883 | " 551.089985 | \n",
884 | " 0 | \n",
885 | " 0 | \n",
886 | " 0 | \n",
887 | "
\n",
888 | " \n",
889 | " | 4 | \n",
890 | " 0 | \n",
891 | " 3.141923 | \n",
892 | " 537.184894 | \n",
893 | " 0 | \n",
894 | " 0 | \n",
895 | " 0 | \n",
896 | "
\n",
897 | " \n",
898 | " | ... | \n",
899 | " ... | \n",
900 | " ... | \n",
901 | " ... | \n",
902 | " ... | \n",
903 | " ... | \n",
904 | " ... | \n",
905 | "
\n",
906 | " \n",
907 | " | 639 | \n",
908 | " 1 | \n",
909 | " 3.381359 | \n",
910 | " 720.718438 | \n",
911 | " 0 | \n",
912 | " 1 | \n",
913 | " 1 | \n",
914 | "
\n",
915 | " \n",
916 | " | 640 | \n",
917 | " 1 | \n",
918 | " 3.083956 | \n",
919 | " 556.918021 | \n",
920 | " 0 | \n",
921 | " 0 | \n",
922 | " 0 | \n",
923 | "
\n",
924 | " \n",
925 | " | 641 | \n",
926 | " 1 | \n",
927 | " 3.114419 | \n",
928 | " 734.297679 | \n",
929 | " 0 | \n",
930 | " 1 | \n",
931 | " 1 | \n",
932 | "
\n",
933 | " \n",
934 | " | 642 | \n",
935 | " 1 | \n",
936 | " 3.549012 | \n",
937 | " 604.697503 | \n",
938 | " 1 | \n",
939 | " 0 | \n",
940 | " 1 | \n",
941 | "
\n",
942 | " \n",
943 | " | 643 | \n",
944 | " 1 | \n",
945 | " 3.532753 | \n",
946 | " 588.986175 | \n",
947 | " 1 | \n",
948 | " 0 | \n",
949 | " 0 | \n",
950 | "
\n",
951 | " \n",
952 | "
\n",
953 | "
644 rows × 6 columns
\n",
954 | "
"
955 | ],
956 | "text/plain": [
957 | " admit gpa ... predicted_by_gre predicted_by_gre_gpa\n",
958 | "0 0 3.177277 ... 0 0\n",
959 | "1 0 3.412655 ... 0 1\n",
960 | "2 0 2.728097 ... 0 0\n",
961 | "3 0 3.093559 ... 0 0\n",
962 | "4 0 3.141923 ... 0 0\n",
963 | ".. ... ... ... ... ...\n",
964 | "639 1 3.381359 ... 1 1\n",
965 | "640 1 3.083956 ... 0 0\n",
966 | "641 1 3.114419 ... 1 1\n",
967 | "642 1 3.549012 ... 0 1\n",
968 | "643 1 3.532753 ... 0 0\n",
969 | "\n",
970 | "[644 rows x 6 columns]"
971 | ]
972 | },
973 | "metadata": {
974 | "tags": []
975 | },
976 | "execution_count": 75
977 | }
978 | ]
979 | },
980 | {
981 | "cell_type": "code",
982 | "metadata": {
983 | "colab": {
984 | "base_uri": "https://localhost:8080/"
985 | },
986 | "id": "VV1gwooTRYaP",
987 | "outputId": "3fe549e6-8db2-4e01-cc09-441f47e70c17"
988 | },
989 | "source": [
990 | "def TPTN(df, prediction, actual):\r\n",
991 | " true_positive_filter = (df[prediction] == 1) & (df[actual] == 1)\r\n",
992 | " true_positives = len(df[true_positive_filter])\r\n",
993 | " true_negative_filter = (df[prediction] == 0) & (df[actual] == 0)\r\n",
994 | " true_negatives = len(df[true_negative_filter])\r\n",
995 | " false_positive_filter = (df[prediction] == 1) & (df[actual] == 0)\r\n",
996 | " false_positives = len(df[false_positive_filter])\r\n",
997 | " false_negative_filter = (df[prediction] == 0) & (df[actual] == 1)\r\n",
998 | " false_negatives = len(df[false_negative_filter])\r\n",
999 | "\r\n",
1000 | " TPR = true_positives/(true_positives+false_negatives)\r\n",
1001 | " TNR = true_negatives/(true_negatives+false_positives)\r\n",
1002 | "\r\n",
1003 | " print(\"Sensitivity = {}, Specificity = {}\".format(TPR,TNR))\r\n",
1004 | "\r\n",
1005 | "TPTN(admissions, \"predicted_by_gpa\", \"admit\")\r\n",
1006 | "TPTN(admissions, \"predicted_by_gre\", \"admit\")\r\n",
1007 | "TPTN(admissions, \"predicted_by_gre_gpa\", \"admit\")"
1008 | ],
1009 | "execution_count": 76,
1010 | "outputs": [
1011 | {
1012 | "output_type": "stream",
1013 | "text": [
1014 | "Sensitivity = 0.36475409836065575, Specificity = 0.88\n",
1015 | "Sensitivity = 0.5409836065573771, Specificity = 0.84\n",
1016 | "Sensitivity = 0.6721311475409836, Specificity = 0.8575\n"
1017 | ],
1018 | "name": "stdout"
1019 | }
1020 | ]
1021 | },
1022 | {
1023 | "cell_type": "markdown",
1024 | "metadata": {
1025 | "id": "aK6HgMcSFRbw"
1026 | },
1027 | "source": [
1028 | "For all of these models, their sensitivity values are unacceptably high. This indicates that the metrics of GPA and GRE scores are not enough information to accurately predict whether or not a candidate would earn admission into the university."
1029 | ]
1030 | }
1031 | ]
1032 | }
--------------------------------------------------------------------------------