├── Answers ├── M13.01-Answers-Chp01.tex ├── M13.02-Answers-Chp02.tex ├── M13.03-Answers-Chp03.tex ├── M13.04-Answers-Chp04.tex ├── M13.05-Answers-Chp05.tex ├── M13.06-Answers-Chp06.tex ├── M13.07-Answers-Chp07.tex ├── M13.08-Answers-Chp08.tex ├── M13.09-Answers-Chp09.tex └── M13.10-Answers-Chp10.tex ├── C.eight ├── M08.00-Elastic scattering.tex ├── M08.01-General description of the scattering process.tex ├── M08.02-Fractional sampling.tex ├── M08.03-Low energy scattering.tex ├── M08.04-Boehne approximation.tex └── M08.05-Exercises.tex ├── C.five ├── M05.00-Central Force Field.tex ├── M05.01-General concept of central force field.tex ├── M05.02-Free particle.tex ├── M05.03-Spherical potential well.tex ├── M05.04-Motion of a particle in a Coulomb field(bound state).tex ├── M05.05-Two-dimensional central force field.tex └── M05.06-Exercises.tex ├── C.four ├── M04.00-Representation Theory.tex ├── M04.01-Dirac Symbols.tex ├── M04.02-Quantum mechanics formula and its matrix representation.tex ├── M04.03-Coordinate Representation.tex ├── M04.04-Momentum Representation.tex ├── M04.05-Energy Representation.tex ├── M04.06-One-dimensional resonator(Ascending and descending arithmetic methods).tex ├── M04.07-Angular momentum.tex └── M04.08-Exercises.tex ├── C.nine ├── M09.00-Quantum leap.tex ├── M09.01-Time-related perturbation theory.tex ├── M09.02-A few typical leaps.tex ├── M09.03-Light absorption and stimulated radiation.tex ├── M09.04-Spontaneous radiation.tex ├── M09.05-Laser Principle.tex ├── M09.06-Energy-time uncertainty relationship.tex └── M09.07-Exercises.tex ├── C.one ├── M00.00-Intro.tex ├── M01.00-Introduction.tex ├── M01.01-Blackbody radiation and Planck's constant.tex ├── M01.02-Photon.tex ├── M01.03-Bohr's quantum theory.tex ├── M01.04-Characteristic quantities in atomic physics.tex ├── M01.05-De Broglie's matter wave hypothesis.tex └── M01.06-Exercises.tex ├── C.seven ├── M07.00-Spin.tex ├── M07.01-Electron Spin.tex ├── M07.02-Total angular momentum of electrons.tex ├── M07.03-Fine structure of alkali metal spectra.tex ├── M07.04-Motion of a particle in an electromagnetic field.tex ├── M07.05-The Seaman Effect.tex ├── M07.06-Magnetic Resonance.tex ├── M07.07-Coupling of two angular momentum.tex ├── M07.08-Spin wave function of two-electron system.tex └── M07.09-Exercises.tex ├── C.six ├── M06.00-Fixed-state perturbation theory and variational methods.tex ├── M06.01-Non-simple parallel state perturbation theory.tex ├── M06.02-Simple parallel state perturbation theory.tex ├── M06.03-Variable Score Method.tex └── M06.04-Exercises.tex ├── C.ten ├── M10.00-Multi-particle system.tex ├── M10.01-Two-particle system.tex ├── M10.02-Fully homogeneous particle system.tex ├── M10.03-Helium atoms.tex ├── M10.04-Hydrogen molecules.tex ├── M10.05-Chemical bond.tex ├── M10.06-Vibration and rotation of diatomic molecules.tex └── M10.07-Exercises.tex ├── C.three ├── M03.00-Fundamentals.tex ├── M03.01-Wave Functions and Operators.tex ├── M03.02-Principle of state superposition.tex ├── M03.03-Linear operators.tex ├── M03.04-Universal physical interpretation of the wave function.tex ├── M03.05-Momentum.tex ├── M03.06-The pairwise equation of the quantum mechanics operator.tex ├── M03.07-Common eigenstates of two quantum mechanics operators.tex ├── M03.08-Uncertainty relationship.tex ├── M03.09-Changes in state and mechanical quantities over time.tex ├── M03.10-Symmetry and conservation law.tex ├── M03.11-Heilman's Theorem and the Bit Force Theorem.tex └── M03.12-Exercises.tex ├── C.two ├── M02.00-Wave function and Schrödinger's equation.tex ├── M02.01-Schrödinger's equation.tex ├── M02.02-Statistical interpretation of the wave function.tex ├── M02.03-stationary state.tex ├── M02.04-Particles in a one-dimensional flat-bottom potential well.tex ├── M02.05-One-dimensional resonator.tex ├── M02.06-Momentum Throughout.tex └── M02.07-Exercises.tex ├── QM file └── figure │ ├── 1-1.pdf │ ├── 1-10.pdf │ ├── 1-2.pdf │ ├── 1-3.pdf │ ├── 1-4.pdf │ ├── 1-5.pdf │ ├── 1-6.pdf │ ├── 1-7.pdf │ ├── 1-8.pdf │ ├── 1-9.pdf │ ├── 10-1.pdf │ ├── 10-2.pdf │ ├── 10-3.pdf │ ├── 10-4.pdf │ ├── 10-5.pdf │ ├── 10-6.pdf │ ├── 10-7.pdf │ ├── 10-8.pdf │ ├── 2-1.pdf │ ├── 2-10.pdf │ ├── 2-11(a).pdf │ ├── 2-11(b).pdf │ ├── 2-12.pdf │ ├── 2-13.pdf │ ├── 2-14.pdf │ ├── 2-2.pdf │ ├── 2-3.pdf │ ├── 2-4.pdf │ ├── 2-5.pdf │ ├── 2-6.pdf │ ├── 2-7(a).pdf │ ├── 2-7(b).pdf │ ├── 2-7(c).pdf │ ├── 2-7(d).pdf │ ├── 2-8(a).pdf │ ├── 2-8(b).pdf │ ├── 2-9.pdf │ ├── 3-1.pdf │ ├── 3-2.pdf │ ├── 3-3.pdf │ ├── 3-4.pdf │ ├── 3-5.pdf │ ├── 5-1.pdf │ ├── 5-2.pdf │ ├── 5-3.pdf │ ├── 5-4.pdf │ ├── 5-5.pdf │ ├── 6-1.pdf │ ├── 7-1.pdf │ ├── 7-2.pdf │ ├── 7-3.pdf │ ├── 7-4.pdf │ ├── 8-1.pdf │ ├── 8-2.pdf │ ├── 8-3.pdf │ ├── 8-4(a).pdf │ ├── 8-4(b).pdf │ ├── 8-4.pdf │ ├── 8-5(a).pdf │ ├── 8-5(b).pdf │ ├── 8-5.pdf │ ├── 8-6.pdf │ ├── 8-7.pdf │ ├── 9-1.pdf │ ├── 9-2.pdf │ ├── 9-3.pdf │ ├── 9-4.pdf │ ├── 9-5.pdf │ ├── A-1,2.pdf │ ├── A-1.pdf │ ├── A-2.pdf │ └── A-3.pdf ├── QM.cls ├── Quantum Mechanics.aux ├── Quantum Mechanics.bbl ├── Quantum Mechanics.blg ├── Quantum Mechanics.fdb_latexmk ├── Quantum Mechanics.fls ├── Quantum Mechanics.log ├── Quantum Mechanics.pdf ├── Quantum Mechanics.synctex.gz ├── Quantum Mechanics.tex ├── Quantum Mechanics.toc ├── README.md ├── body ├── A01-Delta function and Fourier transform.tex ├── A02-Hermite Polynomials.tex ├── A03-Orbital angular momentum operator.tex ├── A04-Spherical harmonic function.tex ├── F00-Frontpage.pdf ├── F01-Titlepage.pdf ├── F01-Titlepage.tex └── F02-Publish Information.pdf ├── source.pdf └── 量子力学 by 钱伯初 (z-lib.org).pdf /Answers/M13.01-Answers-Chp01.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | \answer $n\approx\left(\dfrac{kT}{\hbar c}\right)^{3}\approx 440$ 3 | 4 | \answer $m_{e}c^{2}\approx 3kT,\quad T\approx 2.0\times10^{9}\si{K}$ 5 | 6 | \answer $\lambda^{\prime}-\lambda\approx(1-\cos\theta)\dfrac{h}{m_{e}c}$ 7 | 8 | \answer $\cos\theta=\dfrac{c}{nv}$ 9 | 10 | \answer $\dfrac{v}{v_{0}}=1-\dfrac{GM}{Rc^{2}},\quad$ $G$为引力常数. 11 | 12 | \answer $\theta\approx\dfrac{2GM}{Rc^{2}}\approx 4.2\times10^{-6}=0.87^{\prime\prime}$ 13 | 14 | \answer $\dfrac{\text{库仑力}}{\text{万有引力}}=\dfrac{\e^{2}}{Gm_{e}m_{p}}\approx2.3\times10^{39},\quad$ 半径$=\dfrac{\hbar^{2}}{Gm_{e}^{2}m_{n}}\approx1.2\times10^{31}\si{cm}$ 15 | 16 | \answer (a) $\mu$原子半径$r_{n}=\dfrac{n^{2}\hbar^{2}}{Z\e^{2}m_{\mu}},\quad n=1,2,3,\cdots;$ 17 | 18 | \quad $r_{1}=\dfrac{\hbar^{2}}{Z\e^{2}m_{\mu}}=\dfrac{a_{0}}{Z\times 207}$ 19 | 20 | (b) $Z_{0}\approx44$ 21 | 22 | \answer 总库仑能$=\dfrac{3Z^{2}\e^{2}}{5R}=Z^{\frac{5}{3}}\times\num{0.528}\si{MeV},\quad$ 临界$Z$值$\approx 59$ 23 | 24 | \answer $B\sim 17\si{T}$ 25 | 26 | \answer $kT\sim\dfrac{2\hbar^{2}}{m_{p}R^{2}},\quad T\sim\num{175}\si{K}$ 27 | 28 | \answer $F\sim\dfrac{\hbar c}{d^{4}}$ 29 | 30 | \answer (a) $\lambda\approx1.45\times10^{-8}\si{cm}\qquad$ (b)$\dfrac{\Delta\lambda}{\lambda}\approx -1.3\times10^{-6}$ 31 | 32 | \answer (a) 4倍\qquad (b) $\dfrac{1}{64}$倍\qquad (c) $\dfrac{1}{4}$倍 -------------------------------------------------------------------------------- /Answers/M13.02-Answers-Chp02.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | 3 | \stepcounter{answer} 4 | \stepcounter{answer} 5 | \stepcounter{answer} 6 | \stepcounter{answer} 7 | 8 | \answer $E_{n}=\dfrac{(n\pi\hbar)^{2}}{2ma^{2}},\quad \varPsi_{n}(x)=\sqrt{\dfrac{2}{a}}\sin\left(\dfrac{n\pi x}{a}\right),\quad n=1,2,3,\cdots$ 9 | 10 | \answer $E_{n}=\dfrac{n^{2}\hbar^{2}}{2mR^{2}},\quad \varPsi_{n}(\varphi)=\sqrt{\dfrac{1}{2\pi}}e^{in\varphi},\quad n=0,\pm1,\pm2,\cdots$ 11 | 12 | \answer $\Delta x=\sqrt{\dfrac{1}{12}}\text{(阱宽)}\sqrt{1-\dfrac{6}{n^{2}\pi^{2}}},\quad$ 经典力学$\Delta x=\sqrt{\dfrac{1}{12}}$(阱宽) 13 | 14 | \answer $\bar{V}=-2\bar{T}=2E,\quad \Delta x=\dfrac{1}{\sqrt{2}\beta},\quad \Delta p=\hbar\beta$ 15 | 16 | \answer $k\cot ka=-\beta$ 17 | 18 | \stepcounter{answer} 19 | 20 | \answer (偶宇称态) (a) 阱外概率 $W_{\text{外}}\approx\dfrac{\hbar(E_{n}+V_{0})}{aV_{0}\sqrt{2mV_{0}}}$ 21 | 22 | \qquad\qquad\quad (b) $\bar{V}=-V_{0}(1-W_{\text{外}}),\quad \bar{V^{2}}=V_{0}^{2}(1-W_{\text{外}})$ 23 | 24 | \answer (a) $\varPsi_{0},\quad \Delta x=\dfrac{x_{0}}{\sqrt{2}};$\qquad $\varPsi_{1},\quad \num{0.1116}$ 25 | 26 | (b) $\varPsi_{0},\quad 1-\erf(1)=\num{0.1573};$\quad $\varPsi_{1},\quad \Delta x=x_{0}\sqrt{\dfrac{3}{2}}$ 27 | 28 | \stepcounter{answer} 29 | 30 | \answer $\bar{T}=\bar{V}=\frac{E_{n}}{2},\quad \Delta x=x_{0}\sqrt{n+\dfrac{1}{2}},\quad \Delta p=\sqrt{n+\dfrac{1}{2}}\dfrac{\hbar}{x_{0}}$ 31 | 32 | \answer $E_{n}=(n_{1}+n_{2}+1)\hbar\omega=(n+1)\hbar\omega,\quad n_{1}n_{2}=0,1,2,\cdots$ 33 | 34 | $ E_{n}\text{简并度}(n+1).\quad \varPsi_{n_{1}n_{2}}=\varPsi_{n_{1}}(x)\varPsi_{n_{2}}(y) $ 35 | 36 | \answer $ E_{n}=\left(n_{1}+n_{2}+n_{3}+\dfrac{3}{2}\right)\hbar\omega=\left(n+\dfrac{3}{2}\right)\hbar\omega,\quad n_{1},n_{2},n_{3}=0,1,2,3,\cdots $ 37 | 38 | $ E_{n}\text{简并度}\dfrac{(n+1)(n+2)}{2}.\quad \varPsi_{n_{1}n_{2}n_{3}}=\varPsi_{n_{1}}(x)\varPsi_{n_{2}}(y)\varPsi_{n_{3}}(z) $ 39 | 40 | \answer $ E_{n}=\left(n+\dfrac{1}{2}\right)\hbar\omega,\quad n=1,3,5,\cdots $ 41 | 42 | \answer $ E_{n_{1}n_{2}}=\left(n_{1}+\dfrac{1}{2}\right)\hbar\omega_{1}+\left(n_{2}+\dfrac{1}{2}\right)\hbar\omega_{2},\quad n_{1},n_{2}=0,1,2,\cdots $ 43 | 44 | $\omega_{1}=\sqrt{\omega^{2}+\dfrac{\lambda}{m}},\quad \omega_{2}=\sqrt{\omega^{2}-\dfrac{\lambda}{m}}$ 45 | 46 | \answer $E>V_{0}$,透射系数$=\dfrac{4\alpha k}{(\alpha+k)^{2}}$,\quad 反射系数$=\dfrac{(k-\alpha)^{2}}{(k+\alpha)^{2}}$ 47 | 48 | \answer $\dfrac{E}{E+\dfrac{m\gamma^{2}}{2\hbar^{2}}}$ 49 | 50 | -------------------------------------------------------------------------------- /Answers/M13.03-Answers-Chp03.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | % 1 3 | \answer $ \varPsi(x,t)=\dfrac{1}{\sqrt{2}}[\varPsi_{1}(x)e^{-iE_{1}t/\hbar}+\varPsi_{2}(x)e^{-iE_{2}t/\hbar}], $ 4 | 5 | $ \bar{E}=\dfrac{1}{2}(E_{1}+E_{2})=\dfrac{5}{16}\cdot\dfrac{\pi^{2}\hbar^{2}}{ma^{2}}=\dfrac{5}{2}E_{1},\quad $ 6 | 7 | $\bar{E^{2}}=\dfrac{1}{2}(E_{1}^{2}+E_{2}^{2})=\dfrac{17}{128}\cdot\dfrac{\pi^{4}\hbar^{4}}{m^{2}a^{4}}=\dfrac{17}{2}E_{1}^{2} $ 8 | 9 | $ \bar{x}(t)=\dfrac{32a}{9\pi^{2}}\cos\omega_{21}t,\quad \omega_{21}=\dfrac{E_{2}-E_{1}}{\hbar} $ 10 | 11 | % 2 12 | \answer $ C=\sqrt{\dfrac{30}{a^{5}}},\quad\bar{E}=\displaystyle{\sum_{n}}E_{n}C_{n}^{2},\quad \bar{E^{2}}=\displaystyle{\sum_{n}}E_{n}^{2}C_{n}^{2}$ 13 | 14 | $ C_{n}=\int_{0}^{a}\varPsi\varPsi_{n}dx=[1-(-1)^{m}]\dfrac{4\sqrt{15}}{\pi^{3}n^{3}} $ 15 | 16 | $ \bar{E}=\dfrac{5\hbar^{2}}{ma^{2}}=\left(\dfrac{10}{\pi^{2}}\right)E_{1};$ 17 | 18 | $ \bar{E^{2}}=30\left(\dfrac{\hbar^{2}}{ma^{2}}\right)^{2},\quad \Delta E=(\bar{E^{2}}-\bar{E}^{2})^{\frac{1}{2}}=\sqrt{5}\dfrac{\hbar^{2}}{ma^{2}} $ 19 | 20 | % 3 21 | \answer $ \varPsi(\varphi,t)=\dfrac{1}{\sqrt{3\pi}}(1-\cos2\varphi e^{2i\hbar t/I}),\quad \bar{E}=\dfrac{2\hbar^{2}}{3I},\quad \Delta E=\dfrac{2\sqrt{2}\hbar^{2}}{3I}$ 22 | 23 | % 4 24 | \answer $ \varPsi(\varphi,t)=A\left[\dfrac{1}{2}+\cos k_{0}x\exp\left(-\dfrac{i\hbar k_{0}^{2}t}{2m}\right)-\dfrac{1}{2}\cos 2k_{0}x\exp\left(-\dfrac{2i\hbar k_{0}^{2}t}{m}\right) \right] $ 25 | 26 | 概率\quad$ \dfrac{2}{7}\quad \dfrac{2}{7}\quad \dfrac{2}{7}\quad \dfrac{1}{14}\quad \dfrac{1}{14} $ 27 | 28 | $ p_{x}\quad 0\quad \hbar k_{0}\quad -\hbar k_{0}\quad 2\hbar k_{0}\quad -2\hbar k_{0} $ 29 | 30 | $ \bar{p}_{x}=0\quad \bar{T}=\dfrac{4\hbar^{2}k_{0}^{2}}{7m} $ 31 | 32 | % 5 33 | \answer $ \varPsi(x,t)=\dfrac{\sqrt{3}}{2}\varPsi_{0}(x)e^{-i\omega t/2}+\dfrac{1}{2}\varPsi_{1}(x)e^{-3i\omega t/2},\quad \bar{E}(t)=\dfrac{3\hbar\omega}{4} $ 34 | 35 | $ \bar{x}(t)=\dfrac{\sqrt{3}}{2\sqrt{2}}x_{0}\cos\omega t,\quad \bar{p}_{x}(t)=-\dfrac{\sqrt{3}}{2\sqrt{2}}\sqrt{m\hbar\omega\sin\omega t}=m\dfrac{d}{dt}\bar{x}(t) $ 36 | 37 | % 6 38 | \answer $ c(p)=(\pi m\omega\hbar)^{-\frac{1}{4}}\exp\left(-\dfrac{p^{2}}{2m\omega\hbar}\right),\quad \bar{T}=\int_{-\infty}^{\infty}\dfrac{p^{2}}{2m}|c(p)|^{2}dp=\dfrac{\hbar\omega}{4},\quad $ 39 | 40 | $ \Delta p=\sqrt{\dfrac{m\hbar\omega}{2}} $ 41 | 42 | % 7 43 | \answer 新能级为原能级的$\sqrt{2}$倍. 44 | 45 | 概率$ =\dfrac{2^{\frac{5}{4}}}{1+\sqrt{2}}=\num{0.9852} $ 46 | 47 | % 8 48 | \answer 测值$ E_{n}=\dfrac{n^{2}\pi^{2}\hbar^{2}}{32ma^{2}},\quad n=1,3,5,\cdots;\quad $ 概率$ =\left(\dfrac{8}{3\pi}\right)^{2}=\num{0.7205} $ 49 | 50 | \stepcounter{answer} 51 | 52 | % 10 53 | \answer $ \bar{p}=\hbar k $ 54 | 55 | % 11 56 | \answer $ [p_{x},L_{y}]=i\hbar p_{z},\quad [p_{x},L_{z}]=-i\hbar L_{y} $ 57 | 58 | \stepcounter{answer} 59 | 60 | % 13 61 | \answer $ A=\dfrac{F^{+}+F}{2},\quad B=\dfrac{F-F^{+}}{2i} $ 62 | 63 | \stepcounter{answer} 64 | \stepcounter{answer} 65 | \stepcounter{answer} 66 | 67 | % 17 68 | \answer $ [A,B^{n}]=nCB^{n-1},\quad [A,e^{B}]=Ce^{B},\quad [A,f(B)]=C\dfrac{df}{dB} $ 69 | 70 | \stepcounter{answer} 71 | \stepcounter{answer} 72 | \stepcounter{answer} 73 | 74 | % 21 75 | \answer $\varPsi=Ce^{-\lambda x^{2}},\quad \lambda>0 $ 76 | 77 | \stepcounter{answer} 78 | 79 | % 23 80 | \answer $ \Delta x\sim\left(\dfrac{\hbar^{2}}{\nu mk}\right)^{\frac{1}{\nu+2}},\quad E\sim k^{\frac{2}{\nu+2}}\left(\dfrac{\hbar^{2}}{m}\right)^{\frac{\nu}{\nu+2}} $ 81 | 82 | % 24 83 | \answer 力程$\sim\Delta x\sim\dfrac{\hbar}{m_{\pi}c}\sim \num{1.4}\si{fm}$ 84 | 85 | % 25 86 | \answer $\bar{x}(t)=p_{0}t+q\mathscr{E}t^{2}/2,\quad \bar{p}_{x}(t)=p_{0}+q\mathscr{E}t$ 87 | 88 | % 26 89 | \answer $ \bar{p}_{x}(t)=p_{0}\cos\omega t,\quad \bar{p}_{y}(t)=-p_{0}\sin\omega t,\quad \bar{p}_{z}(t)=0 $ 90 | 91 | % 27 92 | \answer $\hat{x}(t)=\hat{x}\cos\omega t+\left(\dfrac{\hat{p}_{x}}{m\omega}\right)\sin\omega t,\quad \hat{p}_{x}(t)=\hat{p}_{x}\cos\omega t-\hat{x}m\omega\sin\omega t$ 93 | 94 | \stepcounter{answer} 95 | \stepcounter{answer} 96 | 97 | % 30 98 | \answer $ E_{n}=\left(n+\dfrac{1}{2}\right)\hbar\omega-\dfrac{\lambda^{2}}{2m},\quad \omega=\sqrt{\dfrac{k}{m}} $ 99 | 100 | -------------------------------------------------------------------------------- /Answers/M13.04-Answers-Chp04.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | 3 | % 1 4 | \answer $(b) A=\begin{bmatrix} 5 | 1 & 0 \\ 0 & -1 6 | \end{bmatrix},\quad B=\begin{bmatrix} 7 | 0 & e^{-i\alpha} \\ e^{i\alpha} & 0 8 | \end{bmatrix}\quad $ $ (d) S=\dfrac{1}{\sqrt{2}}\begin{bmatrix} 9 | 1 & 1 \\ e^{i\alpha} & -e^{i\alpha} 10 | \end{bmatrix} $ 11 | 12 | $ (e) A\rightarrow\begin{bmatrix} 13 | 0 & 1 \\ 1 & 0 14 | \end{bmatrix},\quad B\rightarrow\begin{bmatrix} 15 | 1 & 0 \\ 0 & -1 16 | \end{bmatrix} $ 17 | 18 | % 2 19 | \answer $ B=\begin{bmatrix} 20 | 0 & 0 \\ 0 & 1 21 | \end{bmatrix},\quad A=\begin{bmatrix} 22 | 0 & e^{i\alpha} \\ 0 & 0 23 | \end{bmatrix} $ 24 | 25 | % 3 26 | \answer $ U=\begin{bmatrix} 27 | \cos\omega e^{i\alpha} & \sin\omega e^{i\beta} \\ 28 | -\sin\omega e^{-i\beta} & \cos\omega e^{-i\alpha} 29 | \end{bmatrix} $ 30 | 31 | \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} 32 | 33 | % 8 34 | \answer $ \dfrac{p^{2}}{2m}\phi(p)-\dfrac{1}{2}m\omega^{2}\hbar^{2}\dfrac{d^{2}}{dp^{2}}\phi(p)=E\phi(p) $ 35 | 36 | % 9 37 | \answer $ \dfrac{p^{2}}{2m}\phi(p)-i\hbar F\dfrac{d}{dp}\phi(p)=E\phi(p),\quad \phi(p)=A\exp\left[\dfrac{i}{\hbar F}\left(E_{p}-\dfrac{p^{3}}{6m}\right)\right] $ 38 | 39 | \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} 40 | 41 | % 15 42 | \answer $ \bar{x}=\sqrt{\dfrac{\hbar}{2\mu\omega}}(\alpha+\alpha^{*}),\quad \Delta x=\sqrt{\dfrac{\hbar}{2\mu\omega}} $ 43 | 44 | $ \bar{p}=i(\alpha^{*}-\alpha)\sqrt{\dfrac{\mu\hbar\omega}{2}},\quad \Delta p=\sqrt{\dfrac{\mu\hbar\omega}{2}} $ 45 | 46 | $ \bar{n}=\alpha^{*}\alpha,\quad \Delta n=\sqrt{\bar{n}} $ 47 | 48 | $ \bar{E}=\left(\bar{n}+\dfrac{1}{2}\right)\hbar\omega,\quad \Delta E=\sqrt{\bar{n}}\hbar\omega $ 49 | 50 | % 16 51 | \answer $ E_{n}=n-\dfrac{1}{3},\quad n=0,1,2,\cdots;\quad \varPsi_{0}(q)=ce^{-\frac{3q^{2}}{2}} $ 52 | 53 | \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} 54 | 55 | % 21 56 | \answer $\bar{J_{x}^{2}}=\bar{J_{y}^{2}}=(\Delta J_{x})^{2}=\hbar^{2}\dfrac{[j(j+1)-m^{2}]}{2} $ 57 | 58 | 不确定关系为$ \Delta J_{x}\Delta J_{y}\geqslant\dfrac{\hbar}{2}|\bar{J_{z}}|=\hbar\dfrac{|m|}{2} $ 59 | 60 | % 22 61 | \answer $ \bar{J_{n}}=m\hbar\cos\theta $ 62 | 63 | % 23 64 | \answer $ L_{x}=\dfrac{1}{\sqrt{2}}\begin{bmatrix} 65 | 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 66 | \end{bmatrix},\quad L_{y}=\dfrac{1}{\sqrt{2}}\begin{bmatrix} 67 | 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \\ 68 | \end{bmatrix} $ 69 | 70 | % 24 71 | \answer $ Y_{l,-l}=c(\sin\theta)^{l}e^{-il\varphi} $ -------------------------------------------------------------------------------- /Answers/M13.05-Answers-Chp05.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | % \stepcounter{answer} 3 | 4 | % 1 5 | \answer $ \boldsymbol{L}^{2},L_{x}$ 共同本征态 6 | 7 | $ Z_{11}=\dfrac{1}{2}Y_{11}+\dfrac{1}{\sqrt{2}}Y_{10}+\dfrac{1}{2}Y_{1-1} $ 8 | 9 | $ Z_{10}=\dfrac{1}{\sqrt{2}}(Y_{11}-Y_{1-1}) $ 10 | 11 | $ Z_{1-1}=\dfrac{1}{2}Y_{11}-\dfrac{1}{\sqrt{2}}Y_{10}+\dfrac{1}{2}Y_{1-1} $ 12 | 13 | $ \boldsymbol{L}^{2},L_{y}$ 共同本征态 14 | 15 | $ X_{11}=\dfrac{1}{2}Y_{11}+\dfrac{i}{\sqrt{2}}Y_{10}-\dfrac{1}{2}Y_{1-1} $ 16 | 17 | $ X_{10}=\dfrac{1}{\sqrt{2}}(Y_{11}+Y_{1-1}) $ 18 | 19 | $ X_{1-1}=\dfrac{1}{2}Y_{11}-\dfrac{i}{\sqrt{2}}Y_{10}-\dfrac{1}{2}Y_{1-1} $ 20 | 21 | % 2 22 | \answer $Y_{10}$态$(L_{x}=\hbar),\bar{L_{x}^{2}}=\hbar^{2},\quad L_{x}=\pm\hbar,\quad $ 没有$L_{x}=0$本征态成分 23 | 24 | % 3 25 | \answer (a) $Y_{11}=\dfrac{1}{2}(Z_{11}+Z_{1-1})+\dfrac{1}{\sqrt{2}}Z_{10}$ 26 | 27 | \aindent $ L_{x}=\hbar,0,-\hbar \quad$ 概率$w_{1}=\dfrac{1}{4},\quad w_{0}=\dfrac{1}{2},\quad w_{-1}=\dfrac{1}{4}$ 28 | 29 | (b) $Y_{11}$态$\bar{L_{x}}=0,\quad \bar{L_{x}^{2}}=\dfrac{\hbar^{2}}{2}$ 30 | 31 | \aindent $ w_{1}-w_{-1}=0,\quad w_{1}+w_{-1}=\dfrac{1}{2},\quad $解出$w_{1}=w_{-1}=\dfrac{1}{4},\quad w_{0}=\dfrac{1}{2} $ 32 | 33 | % 4 34 | \answer (a) $2\hbar^{2}\qquad$ (b) 0\qquad (c)$ \dfrac{1}{6} $ 35 | 36 | (d) $L_{z}=0,$概率$\dfrac{1}{6};$\quad $L_{x}=\pm\hbar,$概率各为$\dfrac{5}{12}$ 37 | 38 | % 5 39 | \answer $ E\sim\dfrac{\mu\e^{4}}{2\hbar^{2}} $ 40 | 41 | % 6 42 | \answer $ E\sim\dfrac{0.84\mu^{3}\lambda^{4}}{\hbar^{6}} $ 43 | 44 | \stepcounter{answer} 45 | 46 | % 8 47 | \answer $ \Delta x_{0}=a_{0},\quad \Delta p_{x}=\dfrac{\hbar}{\sqrt{3}a_{0}} $ 48 | 49 | % 9 50 | \answer $ 13\times e^{-4}=\num{0.2381} $ 51 | 52 | % 10 53 | \answer $ w_{n}=\left[1+4n+\dfrac{(4n)^{2}}{2!}+\cdots+\dfrac{(4n)^{2n}}{(2n)!}\right]e^{-4n} $ 54 | 55 | $ w_{1}=\num{0.2381},\quad w_{2}=\num{0.0996},\quad w_{3}=\num{0.0458}, $ 56 | 57 | $ w_{4}=\num{0.0220},\quad w_{5}=\num{0.0108} $ 58 | 59 | % 11 60 | \answer $ r_{\text{概}}=n^{2}a_{0},\quad \bar{r}=\left(n^{2}+\dfrac{n}{2}\right)a_{0},\quad \bar{r^{2}}=n^{2}\left(n+\dfrac{1}{2}\right)(n+1)a_{0}^{2} $ 61 | 62 | $ \Delta r=(\bar{r^{2}}-\bar{r}^{2})^{\frac{1}{2}}=n\sqrt{\dfrac{n}{2}+\dfrac{1}{4}a_{0}},\quad \dfrac{\Delta r}{\bar{r}}=\dfrac{1}{\sqrt{2n+1}} $ 63 | 64 | % 12 65 | \answer $ \bigg|\int\varPsi_{100}(Z+1,r)\varPsi_{100}(Z,r)d\tau \bigg|^{2}=\dfrac{Z^{3}(Z+1)^{3}}{\left(Z+\dfrac{1}{2}\right)^{6}} $ 66 | 67 | % 13 68 | \answer $ E=-\dfrac{\e^{2}}{2a_{0}}(n_{r}+l^{\prime}+1)^{-2},\quad l^{\prime}\approx l-\dfrac{\lambda}{\left(l+\dfrac{1}{2}\right)}=l-\delta_{l} $ 69 | 70 | \stepcounter{answer} 71 | 72 | % 15 73 | \answer $ \langle\dfrac{1}{r}\rangle=\dfrac{Z}{n^{2}a_{0}},\quad \langle\dfrac{1}{r^{2}}\rangle=\dfrac{Z^{2}}{n^{3}\left(l+\dfrac{1}{2}\right)a_{0}^{2}},\quad \langle\dfrac{1}{r^{3}}\rangle=\dfrac{Z^{3}}{n^{3}l\left(l+\dfrac{1}{2}\right)(l+1)a_{0}^{3}} $ 74 | 75 | % 16 76 | \answer 条件$ \lambda>-(2l+1) $ 77 | 78 | % 17 79 | \answer $ \bar{r}=\dfrac{1}{2}[3n^{2}-l(l+1)]\dfrac{a_{0}}{2},\quad \bar{r^{2}}=\dfrac{1}{2}n^{2}[5n^{2}+1-3l(l+1)]\dfrac{a_{0}^{2}}{Z^{2}} $ 80 | 81 | % 18 82 | \answer $ \Delta x=\dfrac{a_{0}n\sqrt{5n^{2}+1}}{\sqrt{6}},\quad \Delta p_{x}=\dfrac{\hbar}{\sqrt{3}na_{0}} $ 83 | 84 | % 19 85 | \answer $ r_{l}=\dfrac{l(l+1)a_{0}}{Z},\quad V_{l}(r_{l})=-\dfrac{Z\e^{2}}{2r_{l}} $ 86 | 87 | $ V_{l}(r)\approx V_{l}(r_{l})+\dfrac{1}{2}\mu\omega_{l}^{2}(r-r_{l})^{2},\quad \omega_{l}^{2}=\dfrac{Z\e^{2}}{\mu r_{l}^{3}} $ 88 | 89 | $ E\approx V_{l}(r_{l})+\left(n_{r}+\dfrac{1}{2}\right)\hbar\omega_{l},\quad n_{r}=0,1,2,\cdots $ 90 | 91 | % 20 92 | \answer $ F(\xi)=F(-n_{\rho},|m|+1,\xi),\quad E_{N}=(N+1)\hbar\omega=(2n_{\rho}+|m|+1)\hbar\omega $ 93 | 94 | % 21 95 | \answer $ F(\xi)=F\left(-n_{r},l+\dfrac{3}{2},\xi\right),\quad E_{N}=\left(N+\dfrac{3}{2}\right)\hbar\omega,\quad N=l+2n $ 96 | 97 | % 22 98 | \answer 二维谐振子$E_{N}$简并度$(N+1)$; 三维谐振子$E_{N}$简并度$\dfrac{1}{2}(N+1)( N+2)$ 99 | 100 | % 23 101 | \answer $ r_{\text{概}}=\dfrac{1}{\alpha},\quad \bar{r}=\dfrac{2}{\sqrt{\pi}\alpha},\quad \Delta r=\dfrac{\sqrt{\dfrac{3}{2}}-\dfrac{4}{\pi}}{\alpha},\quad \dfrac{1}{\alpha}=\sqrt{\dfrac{\hbar}{\mu\omega}} $ 102 | 103 | % 24 104 | \answer $ \hbar\omega\dfrac{l(l+1)}{2I+1} $,与$n_{r}$无关. -------------------------------------------------------------------------------- /Answers/M13.06-Answers-Chp06.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | % \stepcounter{answer} 3 | 4 | % 1 5 | \answer $ E=\dfrac{1}{2}(E_{2}^{(0)}+E_{1}^{(0)})+\alpha\pm\dfrac{1}{2}\sqrt{E_{2}^{(0)}-E_{1}^{(0)}+4b^{2}} $ 6 | 7 | % 2 8 | \answer $ E_{n}=\dfrac{n^{2}\pi^{2}\hbar^{2}}{2ma^{2}}+\dfrac{V_{0}}{2} $ 9 | 10 | % 3 11 | \answer $ \Delta E_{n}=\dfrac{\gamma}{a},\quad n=1,3,5,\cdots;\quad $ 12 | 13 | $ \Delta E_{n}=0,\quad n=2,4,6,\cdots,\quad $条件$\gamma\ll\dfrac{\hbar^{2}}{ma}$ 14 | 15 | % 4 16 | \answer $ \Delta E=-\dfrac{\lambda^{2}I}{3\hbar^{2}} $ 17 | 18 | % 5 19 | \answer $ E_{n}=\left(n+\dfrac{1}{2}\right)\hbar\omega-\dfrac{\lambda^{2}}{2m} $ 20 | 21 | % 6 22 | \answer $ \Delta E_{000}=\dfrac{\lambda^{2}\hbar^{2}}{12m^{3}\omega^{4}} $ 23 | 24 | % 7 25 | \answer $ \Delta E=\dfrac{2Z^{4}\e^{2}R^{2}}{5a_{0}^{3}}=Z^{\frac{14}{3}}\times\num{1.04}\times10^{-8}\si{eV} $ 26 | 27 | % 8 28 | \answer $ E_{1S}^{(1)}=\dfrac{2\e^{2}r_{0}^{2}}{3a_{0}^{3}}=\dfrac{2}{3}m_{e}c^{2}\left(\dfrac{\e^{2}}{\hbar c}\right)^{6}=\num{5.1}\times10^{-8}\si{eV} $ 29 | 30 | % 9 31 | \answer (a)$ E_{lm}^{(0)}=l(l+1)K\hbar^{2}+m\hbar\omega,\quad E_{lm}^{(1)}=0,\quad E_{lm}^{(2)}=\dfrac{\lambda^{2}m\hbar}{2\omega} $ 32 | 33 | (b)$ E_{lm}=l(l+1)K\hbar^{2}+m\hbar\sqrt{\omega^{2}+\lambda^{2}} $ 34 | 35 | % 10 36 | \answer (a)$ E_{n_{1}n_{2}}^{(0)}=\dfrac{\pi^{2}\hbar^{2}}{2ma^{2}}(n_{1}^{2}+n_{2}^{2}),\quad \varPsi_{n_{1}n_{2}}^{(0)}=\dfrac{2}{a}\sin\dfrac{n_{1}\pi x}{a}\sin\dfrac{n_{2}\pi y}{a}\quad $ 37 | 38 | \aindent $ n_{1},n_{2}=1,2,3,\cdots $ 39 | 40 | (b)$ E_{11}^{(1)}=\dfrac{\lambda a^{2}}{4},\quad E_{12}^{(1)}=\dfrac{\lambda a^{2}(1\pm0.13)}{4} $ 41 | 42 | % 11 43 | \answer (a)$ E_{n}^{(0)}=\dfrac{n^{2}\hbar^{2}}{2mR^{2}},\quad \varPsi_{n}^{(0)}=\dfrac{1}{\sqrt{2\pi}}e^{in\varphi},\quad n=0,\pm1,\pm2,\cdots $ 44 | 45 | (b)$ E_{3}^{(1)}=\pm\dfrac{V_{0}}{2};\quad E_{n}^{(1)}=0,n\neq3 $ 46 | 47 | % 12 48 | \answer 分裂成三条等距离的能级 49 | 50 | % 13 51 | \answer 微扰论:$ E=E_{1}^{(0)},\quad E_{1}^{(0)}+\dfrac{a^{2}+b^{2}}{E_{1}^{(0)}-E_{2}^{(0)}},\quad E_{2}^{(0)}+\dfrac{a^{2}+b^{2}}{E_{2}^{(0)}-E_{1}^{(0)}} $ 52 | 53 | 精确值:$ E=E_{1}^{(0)},\quad \dfrac{1}{2}[E_{1}^{(0)}+E_{2}^{(0)}\pm\sqrt{(E_{1}^{(0)}-E_{2}^{(0)})^{2}}+4(a^{2}+b^{2})] $ 54 | 55 | % 14 56 | \answer (a)$ \bar{T}=\dfrac{\hbar^{2}\lambda^{2}}{2\mu}\quad $或$\quad \dfrac{3\hbar^{2}\lambda^{2}}{4\mu} $ 57 | 58 | (b)$ \sqrt{3}\hbar\omega $或$\quad \dfrac{3\hbar\omega}{2} $ 59 | 60 | % 15 61 | \answer (a) $ E\sim1.36\left(\dfrac{k\hbar^{4}}{\mu^{2}}\right)^{\frac{1}{3}}\qquad $ (b)$ E\sim\num{0.6814}\left(\dfrac{k\hbar^{4}}{\mu^{2}}\right)^{\frac{1}{3}} $ 62 | 63 | % 16 64 | \answer $ E(\lambda)=\left(\dfrac{\hbar^{2}}{4ma^{2}}\right)\dfrac{\num{253}\lambda^{2}+\num{1100}+\num{1540}}{5\lambda^{2}+32\lambda+60} $ 65 | 66 | $ \lambda_{0}=-\num{1.517},\quad E(\lambda_{0})=\num{4.938}\dfrac{\hbar^{2}}{ma^{2}}\approx\num{1.0006}E_{2} $ 67 | 68 | 69 | -------------------------------------------------------------------------------- /Answers/M13.07-Answers-Chp07.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | % \stepcounter{answer} 3 | 4 | \stepcounter{answer} 5 | 6 | % 2 7 | \answer $ \chi(\sigma_{x}=1)=\dfrac{1}{\sqrt{2}}\left[1 \\ 1\right],\quad \chi(\sigma_{x}=-1)=\dfrac{1}{\sqrt{2}}\left[1 \\ -1\right] $ 8 | 9 | $ \chi(\sigma_{y}=1)=\dfrac{1}{\sqrt{2}}\left[1 \\ i\right],\quad \chi(\sigma_{y}=-1)=\dfrac{1}{\sqrt{2}}\left[1 \\ -i\right] $ 10 | 11 | % 3 12 | \answer $ \sigma_{n}=\begin{bmatrix} 13 | \cos\theta & \sin\theta e^{-i\varphi} \\ 14 | \sin\theta e^{i\varphi} & -\cos\theta 15 | \end{bmatrix}=\begin{bmatrix} 16 | n_{z} & n_{x}-in_{y} \\ n_{x}+in_{y} & -n_{z} 17 | \end{bmatrix} $ 18 | 19 | $ \chi(\sigma_{n}=1)=\begin{bmatrix} 20 | \cos\dfrac{\theta}{2} \\ \sin\dfrac{\theta}{2}e^{i\varphi} 21 | \end{bmatrix},\dfrac{1}{\sqrt{2(1+n_{z})}}\begin{bmatrix} 22 | 1+n_{z} \\ n_{x}+in_{y} 23 | \end{bmatrix} $ 24 | 25 | 或$ \dfrac{1}{\sqrt{2}(1-n_{z})}\begin{bmatrix} 26 | n_{x}-in_{y} \\ 1-n_{z} 27 | \end{bmatrix} $ 28 | 29 | $ \chi(\sigma_{n}=-1)=\begin{bmatrix} 30 | \sin\dfrac{\theta}{2} \\ -\cos\dfrac{\theta}{2}e^{i\varphi} 31 | \end{bmatrix},\dfrac{1}{\sqrt{2(1+n_{z})}}\begin{bmatrix} 32 | n_{x}-in_{y} \\ -(1+n_{z}) 33 | \end{bmatrix} $ 34 | 35 | 或$ \dfrac{1}{\sqrt{2}(1-n_{z})}\begin{bmatrix} 36 | 1-n_{z} \\ -(n_{x}+in_{y}) 37 | \end{bmatrix} $ 38 | 39 | % 4 40 | \answer $ \sigma_{n}=1,\langle\boldsymbol{\sigma}\rangle=\boldsymbol{n}.\quad \sigma_{n}=-1,\quad \langle\boldsymbol{\sigma}\rangle=-\boldsymbol{n} $ 41 | 42 | $ \Delta S_{x}=\sqrt{1-n_{x}^{2}}\dfrac{\hbar}{2},\quad \Delta S_{y}=\sqrt{1-n_{y}^{2}}\dfrac{\hbar}{2},\quad \Delta S_{z}=\sqrt{1-n_{z}^{2}}\dfrac{\hbar}{2} $ 43 | 44 | \stepcounter{answer} 45 | 46 | % 6 47 | \answer $ (1+\sigma_{x})^{\frac{1}{2}}=\dfrac{1}{\sqrt{2}}(1+\sigma_{x}),\quad (1+\sigma_{x})^{-1} $ 不存在 48 | 49 | $ (1+\sigma_{x}+i\sigma_{y})^{\frac{1}{2}}=1+\dfrac{1}{2}(\sigma_{x}+i\sigma_{y}) $ 50 | 51 | \stepcounter{answer} \stepcounter{answer} 52 | 53 | % 9 54 | \answer $ T_{r}(\boldsymbol{A}\cdot\boldsymbol{\sigma})=0,\quad T_{r}[(\boldsymbol{A}\cdot\boldsymbol{\sigma})(\boldsymbol{B}\cdot\boldsymbol{\sigma})=2\boldsymbol{A}\times\boldsymbol{B}] $ 55 | 56 | $ T_{r}[(\boldsymbol{A}\cdot\boldsymbol{\sigma})(\boldsymbol{B}\cdot\boldsymbol{\sigma})(\boldsymbol{C}\cdot\boldsymbol{\sigma})]=2i\boldsymbol{A}\cdot(\boldsymbol{B}\times\boldsymbol{C})=2i(\boldsymbol{A}\times\boldsymbol{B})\cdot\boldsymbol{C} $ 57 | 58 | \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} \stepcounter{answer} 59 | 60 | % 14 61 | \answer $ \Lambda_{l}^{+}+\Lambda_{l}^{-}=1,\quad \Lambda_{l}^{+}\Lambda_{l}^{-}=\Lambda_{l}^{-}\Lambda_{l}^{+}=0,\quad (\Lambda_{l}^{+})^{2}=\Lambda_{l}^{+},\quad (\Lambda_{l}^{-})^{2}=\Lambda_{l}^{-} $ 62 | 63 | 当$ j=l+\dfrac{1}{2},\quad \Lambda_{l}^{+}\varPsi_{ljm_{j}}=\varPsi_{ljm_{j}},\quad \Lambda_{l}^{-}=0 $ 64 | 65 | 当$ j=l-\dfrac{1}{2},\quad \Lambda_{l}^{+}\varPsi_{ljm_{j}}=0,\quad \Lambda_{l}^{-}=\varPsi_{ljm_{j}} $ 66 | 67 | \stepcounter{answer} 68 | 69 | % 16 70 | \answer $ \dfrac{\langle ljj|\mu_{z}|ljj \rangle }{\mu_{B}}=-gj=\begin{dcases} 71 | -\left(j+\dfrac{1}{2}\right),\quad j=l+\dfrac{1}{2} \\ 72 | -\dfrac{j(2j+1)}{2j+2},\quad j=l-\dfrac{1}{2} 73 | \end{dcases} $ 74 | 75 | % 17 76 | \answer $ J_{x}=\dfrac{\hbar}{2}.\quad \langle\boldsymbol{J}^{2}\rangle=\left[l(l+1)+\dfrac{3}{4}\right]\hbar^{2} $ 77 | 78 | $ \boldsymbol{J}^{2}=\left(l+\dfrac{1}{2}\right)\left(l+\dfrac{3}{2}\right)\hbar^{2}$的概率为$\dfrac{(l+1)}{2l+1}, $ 79 | 80 | $ \boldsymbol{J}^{2}=\left(l-\dfrac{1}{2}\right)\left(l+\dfrac{1}{2}\right)\hbar^{2}$的概率为$\dfrac{l}{2l+1} $ 81 | 82 | % 18 83 | \answer (a)$ [\hat{v}_{x},\hat{v}_{y}]=\dfrac{i\hbar qB}{m^{2}c},\quad [\hat{v}_{x},\hat{v}_{z}]=0,\quad [\hat{v}_{y},\hat{v}_{z}]=0 $ 84 | 85 | (b)$ \hat{Q}=m\sqrt{\dfrac{c}{\hbar qB}}\hat{v}_{x},\quad \hat{P}=m\sqrt{\dfrac{c}{\hbar qB}}\hat{v}_{y} $ 86 | 87 | (c)$ E=\left(n+\dfrac{1}{2}\right)\hbar\omega+\dfrac{\hbar^{2}k^{2}}{2m_{c}},\quad, \omega=\dfrac{|q|B}{mc} $ 88 | 89 | \aindent$ n=0,1,2,\cdots\quad -\infty\dfrac{1}{ka},\quad \sigma(\theta)\approx\dfrac{1}{2}\left[\dfrac{\mu aB}{\hbar^{2}k\sin(\theta/2)}\right]^{2} $ 44 | 45 | % 7 46 | \answer $ a_{0}=\dfrac{\sqrt{2\mu\alpha}}{\hbar},\quad \delta_{0}=-\dfrac{k\sqrt{2\mu\alpha}}{\hbar} $ 47 | 48 | $ f(\theta)=-a_{0},\quad \sigma_{\text{总}}\approx 4\pi a_{0}^{2}=\dfrac{8\pi\mu\alpha}{\hbar^{2}} $ 49 | 50 | % 8 51 | \answer $ f_{0}=\dfrac{i}{k},\quad \sigma_{0}=4\pi|f_{0}|^{2}=\dfrac{2\pi\hbar^{2}}{\mu E} $ 52 | 53 | % 9 54 | \answer $ \sigma(0)=\bigg(\dfrac{m_{e}\e A}{3\hbar}\bigg)^{2} $ 55 | 56 | 基态氢原子,$ A=-3\e a_{0}^{2},\sigma(0)=a_{0}^{2},\quad a_{0}=\dfrac{\hbar^{2}}{m_{e}\e} $(玻尔半径) 57 | 58 | % 10 59 | \answer $ \rho(r)=\dfrac{1}{\pi a_{0}^{3}}e^{-2r/a_{0}},\quad F(q)=\dfrac{16}{(4+q^{2}a_{0^{2}})^{2}} $ 60 | 61 | $ \theta\ll\dfrac{1}{a_{0}k}$即$ qa_{0}\ll 1,\left[q=2k\sin\bigg(\dfrac{\theta}{2}\bigg)\right]$对于这种小散射角, 62 | 63 | $ F(q)\approx \dfrac{1-q^{2}a_{0}^{2}}{2},\quad f(\theta)\approx a_{0}\approx\dfrac{\hbar^{2}}{\mu \e^{2}},\sigma(\theta)\approx a_{0}^{2} $ -------------------------------------------------------------------------------- /Answers/M13.09-Answers-Chp09.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | % \stepcounter{answer } 3 | 4 | % 1 5 | \answer $ |c_{n}(\infty)|^{2}\approx\dfrac{\pi^{2}}{\hbar^{2}\tau^{2}}|F_{n}|^{2}e^{-2\tau\omega_{n1}} $ 6 | 7 | % 2 8 | \answer $ \varPsi(t)=\bigg[\bigg(\cos\dfrac{\lambda\omega t}{2}+\dfrac{i}{\lambda}\sin\dfrac{\lambda\omega t}{2}\bigg)\varPsi_{1}-i\dfrac{2\nu}{\lambda\omega}\bigg(\sin\dfrac{\lambda\omega t}{2}\bigg)^{2}\bigg]\exp\bigg[\dfrac{-i(E_{1}+E_{2})t}{2\hbar}\bigg] $ 9 | 10 | $ \lambda=\sqrt{1+\dfrac{4\nu^{2}}{\omega^{2}}}.\quad E=E_{2}\text{概率}\dfrac{4\nu^{2}}{\omega+4\nu^{2}}\bigg(\sin\dfrac{\lambda\omega t}{2}\bigg)^{2} $ 11 | 12 | % 3 13 | \answer $ \lambda\approx 1, |c_{2}(t)|^{2}\approx\bigg(\dfrac{4\nu^{2}}{\omega^{2}}\bigg)\sin^{2}\bigg(\dfrac{\omega t}{2}\bigg)\ll 1 $ 14 | 15 | % 4 16 | \answer $ t>0\text{时}S_{z}=-\dfrac{\hbar}{2}$概率$\omega^{2}t^{2}$.条件为$\omega t\ll 1$ 17 | 18 | % 5 19 | \answer (a) $ \Delta n=\pm1 \qquad $ (b) $ A_{n\ n-1}=\dfrac{2n e^{2}\omega^{2}}{3mc^{2}} $ 20 | 21 | % 6 22 | \answer (a) $ \Delta n_{1}=\pm1, \Delta n_{2}=\Delta n_{3}=0;\quad \Delta n_{2}=\pm1,\Delta n_{1}=\Delta n_{3}=0; $ 23 | 24 | $ \Delta n_{3}=\pm1,\Delta n_{1}=\Delta n_{2}=0 $ 25 | 26 | (b) $ A_{nnn,n-1\ n\ n}+A_{nnn,n\ n-1\ n}+A_{nnn,nn\ n-1}=2n\dfrac{e^{2}\omega^{2}}{mc^{3}} $ 27 | 28 | (c) $ \tau=\dfrac{mc^{2}}{2e^{2}\omega^{2}}.$电子,$\tau=2\cdot 3\times10^{-8}\si{s}.$ 质子,$ \tau=4.2\times 10^{-17}\si{s} $ 29 | 30 | % 7 31 | \answer $ \Delta n=2,4,6,\cdots $ 32 | 33 | \stepcounter{answer} 34 | 35 | % 9 36 | \answer $ (ljm_{j})=\bigg( \begin{smallmatrix} 37 | \displaystyle{1} & \dfrac{1}{2} & \dfrac{1}{2} 38 | \end{smallmatrix} \bigg),\bigg(\begin{smallmatrix} 39 | \displaystyle{1} & \dfrac{3}{2} & \dfrac{1}{2} 40 | \end{smallmatrix}\bigg) $ 41 | 42 | 分支比$ 2\ce{p}_{\frac{1}{2}}:2\ce{p}_{\frac{3}{2}}=1:2 $ 43 | 44 | % 10 45 | \answer $ \Delta l=0,\quad \Delta m=0,\pm1,\quad \Delta m_{s}=0,\pm1,\quad \Delta j=0,\pm1,\quad \Delta m_{j}=0,\pm1 $ 46 | 47 | -------------------------------------------------------------------------------- /Answers/M13.10-Answers-Chp10.tex: -------------------------------------------------------------------------------- 1 | \achapter 2 | % \stepcounter{answer} 3 | 4 | 5 | % 1 6 | \answer (a) $ H=H_{0}(x_{1})+H_{0}(x_{2}) $ 7 | 8 | \aindent $ =\bigg(-\dfrac{\hbar^{2}}{2m}\dfrac{\partial^{2}}{\partial x_{1}^{2}}+\dfrac{1}{2}kx_{1}^{2}\bigg)+\bigg(-\dfrac{\hbar^{2}}{2m}\dfrac{\partial^{2}}{\partial x_{2}^{2}}+\dfrac{1}{2}kx_{2}^{2}\bigg) $ 9 | 10 | \aindent $ =\bigg(-\dfrac{\hbar^{2}}{2m_{\text{总}}}\dfrac{\partial^{2}}{\partial X^{2}}+kX^{2}\bigg)+\bigg(-\dfrac{\hbar^{2}}{2\mu}\dfrac{\partial^{2}}{\partial x^{2}}+\dfrac{1}{4}kx^{2}\bigg) $ 11 | 12 | \aindent $ m_{\text{总}}=2m(\text{总质量}),\mu=\dfrac{m_{1}m_{2}}{m_{1}+m_{2}}(\text{折合质量}) $ 13 | 14 | \aindent $ \dfrac{k}{2}=\dfrac{m\omega^{2}}{2},\dfrac{\omega}{2\pi}$为单粒子振动频率 15 | 16 | \aindent $ k=\dfrac{m_{\text{总}}\omega^{2}}{2},\dfrac{k}{4}=\dfrac{\mu\omega^{2}}{2},$质心运动与相对运动都是谐振动, 17 | 18 | \aindent 频率都是$\dfrac{\omega}{2\pi}$ 19 | 20 | (b) $ \varPsi_{0}(x_{i})=\exp\bigg(-\dfrac{x_{i}^{2}}{2x_{0}^{2}}\bigg),\quad x_{0}^{2}=\dfrac{\hbar}{m\omega}=\dfrac{\hbar}{\sqrt{mk}} $ 21 | 22 | \aindent $ \varPsi_{1}(x_{i})=x_{i}\varPsi_{0}(x_{i}),i=1,2. $ 23 | 24 | \aindent $ \varPsi^{S}(x_{1},x_{2})=\varPsi_{1}(x_{1})\varPsi_{0}(x_{2})+\varPsi_{0}(x_{1})\varPsi_{1}(x_{2}) $ 25 | 26 | \aindent $ \quad\qquad\qquad=\varPsi_{1}(X)\varPsi_{0}(x) $ 27 | 28 | \aindent $ \varPsi^{A}(x_{1},x_{2})=\varPsi_{1}(x_{1})\varPsi_{0}(x_{2})-\varPsi_{0}(x_{1})\varPsi_{1}(x_{2}) $ 29 | 30 | \aindent $ \quad\qquad\qquad=\varPsi_{0}(X)\varPsi_{1}(x) $ 31 | 32 | % 2 33 | \answer $ E_{Nn}=\bigg(N+\dfrac{1}{2}\bigg)\hbar\omega_{1}+\bigg(n+\dfrac{1}{2}\bigg)\hbar\omega,\quad N,n=0,1,2,\cdots $ 34 | 35 | $ \omega_{1}=\sqrt{\dfrac{\alpha}{m}},\quad \omega_{2}=\sqrt{\dfrac{\alpha+2\beta}{m}} $ 36 | 37 | % 3 38 | \answer $ \Psi_{\alpha\alpha\alpha}=\varPsi_{\alpha}(1)\varPsi_{\alpha}(2)\varPsi_{\alpha}(3),\Psi_{\beta\beta\beta},\Psi_{\gamma\gamma\gamma}$类似 39 | 40 | $ \Psi_{\alpha\alpha\beta}=\dfrac{1}{\sqrt{3}}[\varPsi_{\alpha}(1)\varPsi_{\alpha}(2)\varPsi_{\beta}(3)+\varPsi_{\alpha}(2)\varPsi_{\alpha}(3)\varPsi_{\beta}(1)+\varPsi_{\alpha}(3)\varPsi_{\alpha}(1)\varPsi_{\beta}(2)] $ 41 | 42 | $ \Psi_{\alpha\alpha\gamma},\Psi_{\beta\beta\alpha},\Psi_{\beta\beta\gamma},\Psi_{\gamma\gamma\alpha},\Psi_{\gamma\gamma\beta}$类似 43 | 44 | $ \Psi_{\alpha\beta\gamma}=\dfrac{1}{\sqrt{6}}[\varPsi_{\alpha}(1)\varPsi_{\beta}(2)\varPsi_{\gamma}(3)+\varPsi_{\alpha}(2)\varPsi_{\beta}(1)\varPsi_{\gamma}(3)+\cdots\text{(共6项)}]$ 45 | 46 | % 4 47 | \answer $ \Psi_{0}(x_{1},x_{2})=\dfrac{2}{a}\sin\bigg(\dfrac{\pi x_{1}}{a}\bigg)\sin\bigg(\dfrac{\pi x_{2}}{a}\bigg) $ 48 | 49 | $ \bar{x}=0,\quad \Delta x=(\num{0.2556})a,\quad \bar{X}=\dfrac{a}{2},\quad \Delta X=(\num{0.1278})a $ 50 | 51 | $ \Psi_{1}(x_{1},x_{2}=\dfrac{\sqrt{2}}{a}\bigg[ \sin\bigg(\dfrac{\pi x_{1}}{a}\bigg)\sin\bigg(\dfrac{2\pi x_{2}}{a}\bigg)+\sin\bigg(\dfrac{2\pi x_{1}}{a}\bigg)\sin\bigg(\dfrac{\pi x_{2}}{a}\bigg) \bigg] $ 52 | 53 | % 5 54 | \answer $ E_{1}=\dfrac{\pi^{2}\hbar^{2}}{ma^{2}}+\dfrac{3V_{0}}{2},\quad E_{2}=\dfrac{5\pi^{2}\hbar^{2}}{2ma^{2}},\quad E_{3}=\dfrac{5\pi^{2}\hbar^{2}}{2ma^{2}}+2V_{0} $ 55 | 56 | % 6 57 | \answer (a) $ E=-Z\bigg(Z-\dfrac{5}{8}\bigg)\dfrac{\e^{2}}{a_{0}},\quad a_{0}=\dfrac{\hbar^{2}}{m_{e}\e^{2}} $ 58 | 59 | (b) $ E=-Z\bigg(Z-\dfrac{5}{16}\bigg)^{2}\dfrac{\e^{2}}{a_{0}} $ 60 | 61 | % 7 62 | \answer (a) $ E=-Z\bigg(Z-\dfrac{1}{2}\bigg)\dfrac{\e^{2}}{a_{0}} $ 63 | 64 | (b) $ E=-Z\bigg(Z-\dfrac{1}{4}\bigg)^{2}\dfrac{\e^{2}}{a_{0}} $ 65 | 66 | 67 | % 8 68 | \answer $ C(a,b)+C(b,c)+C(c,a)-J(a,b)+J(b,c)+J(c,a) $ 69 | 70 | $C,J$表示式类似于\eqref{eqx3.16}、\eqref{eqx3.17}式 71 | 72 | % 9 73 | \answer 对称态$(S+1)(2S+1)$种,反对称态$S(2S+1)$种 74 | 75 | % 10 76 | \answer (a) $ Z=4,20,36 \qquad$ (b) $ Z=6,12,18 $ 77 | 78 | \stepcounter{answer} \stepcounter{answer} 79 | 80 | % 13 81 | \answer (a) $ \chi(t)\left[\alpha(1)\beta(2)\cos\bigg(\dfrac{\omega t}{2}\bigg)-\beta(1)\alpha(2)\sin\bigg(\dfrac{\omega t}{2}\bigg) \right]e^{\frac{i\omega t}{4}} $ 82 | 83 | (b) $ \cos^{2}\bigg(\dfrac{\omega t}{2}\bigg)\quad $ (c)$ 0\quad $ (d) $ \dfrac{1}{2},\dfrac{1}{2} $ 84 | 85 | \stepcounter{answer} 86 | 87 | % 15 88 | \answer $\pi^{-}$介子宇称为奇 89 | -------------------------------------------------------------------------------- /C.eight/M08.00-Elastic scattering.tex: -------------------------------------------------------------------------------- 1 | \chapter{弹性散射}\label{chp:08} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 碰撞实验是研究物质结构的重要手段,分子、原子、原子核以及基本粒子的许多性质都是通过碰撞而研究清楚的.两个微观粒子(单纯的或复合的)相碰,可能发生弹性散射、非弹性散射、反应.反应是指粒子的结构发生了变化.非弹性散射是指粒子的结构虽然未变,但内部能级由于碰撞而发生了变化.弹性散射是最简单的一种碰撞过程,粒子的结构与内部能级在碰撞前后保持不变,仅质心运动发生动量、能量交换.本章只讨论弹性散射,其中某些概念也适用于更普遍的碰撞过程. 5 | 6 | % 散射过程的一般描述 7 | \input{QM file/body/C.eight/M08.01-General description of the scattering process} 8 | 9 | % 分波法 10 | \input{QM file/body/C.eight/M08.02-Fractional sampling} 11 | 12 | % 低能散射 13 | \input{QM file/body/C.eight/M08.03-Low energy scattering} 14 | 15 | % 玻恩近似 16 | \input{QM file/body/C.eight/M08.04-Boehne approximation} 17 | 18 | 19 | % 习题 20 | \input{QM file/body/C.eight/M08.05-Exercises} 21 | -------------------------------------------------------------------------------- /C.eight/M08.01-General description of the scattering process.tex: -------------------------------------------------------------------------------- 1 | \section[散射过程的一般描述]{散射过程的一般描述} \label{sec:08.01} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | {\heiti 1. 散射截面} 5 | 6 | 在弹性散射过程中,发生碰撞的两个粒子之间的相互作用可以用一个等效的势场$V$表示.在质心坐标系中,弹性散射过程相当于质量为$\mu$(二体问题中的折合质量)的粒子从远方入射,受势场$V(\boldsymbol{r})$作用而改变其运动方向(但能量不变),如图\ref{fig.8-1}所示. 7 | 8 | \begin{figure}[!h] 9 | \centering 10 | \small 11 | \includegraphics[width=6cm,clip]{QM file/figure/8-1} 12 | \caption{}\label{fig.8-1} 13 | \end{figure} 14 | 粒子运动方向的偏转角称为散射角,即图中$\theta$.考虑一束速度为$v$的入射粒子,入射流量(入射方向单位横截面上,单位时间内通过的粒子数)为$N_{0}$,单位时间内散射的(改变了运动方向的)粒子数为$N$,其中散射到角范围$d\Omega$内的粒子数为$dN$.显然$N$与$dN$均和$N_{0}$成正比,令 15 | \eqshort 16 | \begin{empheq}{align} 17 | dN &= N_{0}\sigma(\theta,\varphi)d\Omega \label{eq81.1} \\ 18 | N &= \int dN=\sigma_{\text{总}}N_{0} \label{eq81.2} 19 | \end{empheq} 20 | $\sigma(\theta.\varphi)$与$\sigma_{\text{总}}$的量纲均为面积,$\sigma_{\text{总}}$称为有效总散射截面,意义为,就散射的总效果而言,靶粒子(作用势$V$)相当于挡在入射粒子前进路上的一块横截面$\sigma_{\text{总}}$.$\sigma(\theta,\varphi)$称为有效微分散射截面,它和角元$d\Omega$所处的方向有关,其值取决于作用势$V$的性质.显然 21 | \begin{empheq}{equation}\label{eq81.3} 22 | \sigma_{\text{总}}=\int\sigma(\theta,\varphi)d\Omega 23 | \end{empheq} 24 | 在散射实验中,$N_{0}$和$dN/d\Omega$可以直接测量出来,再利用\eqref{eq81.1}式就得到$\sigma(\theta,\varphi)$的实验值,再由\eqref{eq81.3}式得到$\sigma$的实验值.散射理论的一项主要内容就是建立一套计算$\sigma(\theta,\varphi)$的理论方法,通过理论和实验的比较研究作用势$V$的性质. 25 | 26 | {\heiti 2. 散射振幅} 27 | 28 | 作为散射过程的量子力学描述,入射粒子束可以近似地用平面波描述.以入射方向为$z$轴方向,入射粒子的动量表示成 29 | \begin{empheq}{equation}\label{eq81.4} 30 | p=\mu v=\hbar k 31 | \end{empheq} 32 | 则入射波为 33 | \begin{empheq}{equation}\label{eq81.5} 34 | \varPsi_{i}=e^{ikz} 35 | \end{empheq}\eqnormal 36 | 入射粒子数流量规定成 37 | \begin{empheq}{align}\label{eq81.6} 38 | N_{0} &=j_{i}=-\frac{i\hbar}{2\mu}\bigg(\varPsi_{i}^{*}\frac{\partial}{\partial r}\varPsi_{i}-\varPsi_{i}\frac{\partial}{\partial r}\varPsi_{i}^{*}\bigg) \nonumber\\ 39 | &=\frac{\hbar k}{\mu}=v 40 | \end{empheq} 41 | ($\varPsi_{i}^{*}\varPsi_{i}=1$,即规定单位体积内入射粒子数为1) 42 | \noindent 散射过程的总波函数$\varPsi$可以表示成入射波$\varPsi_{i}$与散射波$\varPsi_{s}$之和, 43 | \begin{empheq}{equation}\label{eq81.7} 44 | \varPsi=\varPsi_{i}+\varPsi_{s}=e^{ikz}+\varPsi_{s} 45 | \end{empheq} 46 | 对于弹性散射,能量守恒,$\varPsi$满足定态薛定谔方程 47 | \begin{empheq}{equation}\label{eq81.8} 48 | -\frac{\hbar^{2}}{2\mu}\nabla^{2}\varPsi+V(\boldsymbol{r})\varPsi=E\varPsi 49 | \end{empheq} 50 | 其中$E=\frac{p^{2}}{2\mu}=\frac{\hbar^{2}k^{2}}{2\mu}$.通常,散射作用势$V$仅在小范围内起作用,$r\rightarrow\infty$处$V$迅速趋于0,这时\eqref{eq81.8}式变成自由粒子方程: 51 | \begin{empheq}{equation}\label{eq81.9} 52 | \nabla^{2}\varPsi+k^{2}\varPsi\approx0\quad (r\rightarrow\infty) 53 | \end{empheq} 54 | 入射波$\varPsi_{i}$是\eqref{eq81.9}式的一个严格解.$r\rightarrow\infty$处散射波$\varPsi_{s}$应该是\eqref{eq81.9}式的近似解,并取由散射中心$(r=0)$向外传播的球面波形式,即 55 | \begin{empheq}{equation}\label{eq81.10} 56 | \varPsi_{s}\sim f(\theta,\varphi)\frac{e^{ikr}}{r}\quad (r\rightarrow\infty) 57 | \end{empheq} 58 | 其中$f(\theta,\varphi)$称为散射振幅,它与方向$(\theta,\varphi)$有关.容易验证,当$r\rightarrow\infty$,如果略去$r^{-2}$以下小量,则不论$f(\theta,\varphi)$取什么函数形式,\eqref{eq81.10}式都能满足\eqref{eq81.9}式.这表明,在远离散射中心处$(r\rightarrow\infty)$,散射粒子又回到自由运动状态,\eqref{eq81.10}式正是自由粒子外向球面波波函数的一般近似表达式.(略去$r^{-2}$以下小量)一般需要解\eqref{eq81.8}式才能求得散射振幅$f(\theta,\varphi)$. 59 | 60 | 实验测量是在远离散射中心处进行的,相当于$r\rightarrow\infty$.如果略去$r^{-3}$以下小量,散射粒子数流量为 61 | \begin{empheq}{align*} 62 | j_{s} &=-\frac{i\hbar}{2\mu}\bigg(\varPsi_{s}^{*}\frac{\partial}{\partial r}\varPsi_{s}-\varPsi_{s}\frac{\partial}{\partial r}\varPsi_{s}^{*}\bigg) \\ 63 | &=v|f(\theta,\varphi)|^{2}\bigg/ r^{2} 64 | \end{empheq} 65 | 在角元$d\Omega$的横截面$r^{2}d\Omega$上单位时间内通过的散射粒子数为 66 | \begin{empheq}{equation}\label{eq81.11} 67 | dN=j_{s}r^{2}d\Omega=v|f(\theta,\varphi)|^{2}d\Omega 68 | \end{empheq} 69 | 与\eqref{eq81.1}式、\eqref{eq81.6}式比较,即得 70 | \begin{empheq}{equation}\label{eq81.12} 71 | \sigma(\theta,\varphi)=|f(\theta,\varphi)|^{2} 72 | \end{empheq} 73 | 散射理论的一项基本内容就是设法求出散射振幅$f(\theta,\varphi)$,从而算出微分散射截面$\sigma(\theta,\varphi)$. 74 | 75 | {\heiti 3. 散射过程的经典力学描述} 76 | 77 | 在经典力学中,每个粒子均有一条运动轨道.以中心力场$V(r)$造成的散射为例,粒子的运动轨迹是一条平面曲线($\varphi$角不变),入射方向与出射方向的夹角就是散射角$\sigma$,如图\ref{fig.8-2}所示.散射角$\sigma$由碰撞参数(瞄准距离)$\rho$决定.经由横截面元$|\rho d\varphi d\rho|$的入射粒子,散射后进入$\theta$方向附近$d\Omega$角范围内,亦即 78 | \begin{empheq}{equation}\label{eq81.13} 79 | dN=N_{0}|\rho d\rho d\varphi|=N_{0}\sigma(\theta)|d\Omega| 80 | \end{empheq} 81 | 82 | \begin{figure}[!h] 83 | \centering 84 | \small 85 | \includegraphics[width=4cm,clip]{QM file/figure/8-2} 86 | \caption{}\label{fig.8-2} 87 | \end{figure} 88 | 其中$d\Omega=\sin\theta d\theta d\varphi$.由上式可得微分散射截面$\sigma(\theta)$的经典力学公式 89 | \begin{empheq}{equation}\label{eq81.14} 90 | \sigma(\theta)=\left|\frac{\rho d\rho}{\sin\theta d\theta}\right| %\bigg|\frac{\rho d\rho}{\sin\theta d\theta}\bigg| 91 | \end{empheq} 92 | 经典散射理论的核心问题就是求碰撞参数$\rho$与散射角$\theta$的函数关系,从而得到$\sigma(\theta)$的公式. 93 | \pskip 94 | 95 | \example 速度为$v$的粒子束被半径为$a$的刚体球散射,求经典弹性散射截面. 96 | 97 | \solution 总散射截面显然等于刚球的几何截面$\pi a^{2}$.下面求微分散射截面$\sigma(\theta)$.粒子与刚球碰撞发生弹性散射,入射角等于反射角,由图\ref{fig.8-3}容易看出下列关系: 98 | 99 | \begin{figure}[!h] 100 | \centering 101 | \small 102 | \includegraphics[width=5cm,clip]{QM file/figure/8-3} 103 | \caption{}\label{fig.8-3} 104 | \end{figure} 105 | 106 | \eqshort 107 | \begin{empheq}{align*} 108 | &\theta+2\alpha=\pi \\ 109 | \rho= &a\sin\alpha=a \cos\frac{\theta}{2} 110 | \end{empheq}\eqnormal 111 | 因此 112 | \begin{empheq}{align*} 113 | \rho d\rho &=-\frac{a^{2}}{2}\cos\frac{\theta}{2}\sin\frac{\theta}{2}d\theta \\ 114 | &=-\frac{a^{2}}{4}\sin\theta d\theta 115 | \end{empheq} 116 | 代入\eqref{eq81.14}式,即得 117 | \eqshort 118 | \begin{empheq}{equation}\label{eq81.15} 119 | \sigma(\theta)=a^{2}/4 120 | \end{empheq}\eqnormal 121 | $\sigma(\theta)$与$\theta$无关,这表示散射是各方向均匀的.显然 122 | \begin{empheq}{align}\label{eq81.16} 123 | \sigma_{\text{总}} &=\int\sigma(\theta)d\Omega \nonumber\\ 124 | &= 4\pi\sigma(\theta)=\pi a^{2} 125 | \end{empheq} 126 | 127 | -------------------------------------------------------------------------------- /C.eight/M08.03-Low energy scattering.tex: -------------------------------------------------------------------------------- 1 | \starthis\section[低能散射]{低能散射$^{*}$} \label{sec:08.03} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | % \starthis 章节加星 4 | 5 | 继续上节的讨论,设散射作用势$V(r)$是短程的,在作用球(半径$a$)以外$V\approx0$.令$E=\frac{\hbar^{2}k^{2}}{2\mu}$,并考虑低能散射,$ka\ll 1$.这时第$l$级分波相移$\delta_{l}$大致与$(ka)^{2l+1}$成比例.[参看\eqref{eq82.26}式和\eqref{eq82.35}式,以及刚球散射.]可以只考虑s波$(l=0)$散射,而略去其他分波$(l\geqslant1)$的贡献.s波径向方程为 6 | \begin{empheq}{equation}\label{eq83.1} 7 | \frac{d^{2}}{dr^{2}}u_{0}+\bigg[k^{2}-\frac{2\mu}{\hbar^{2}}V(r)\bigg]u_{0}=0 8 | \end{empheq} 9 | 取低能极限$E\rightarrow0(k\rightarrow0)$,并研究$r>a$处(作用球外)$u_{0}$的表现形式.这时$V\approx0$,\eqref{eq83.1}式成为 10 | \eqshort 11 | \begin{empheq}{equation}\label{eq83.2} 12 | \frac{d^{2}}{dr^{2}}u_{0}=0 13 | \end{empheq} 14 | 解为 15 | \begin{empheq}{equation}\label{eq83.3} 16 | u_{0}(r)=c\bigg(1-\frac{r}{a_{0}}\bigg) 17 | \end{empheq}\eqnormal 18 | $c$及$a_{0}$为常数,$a_{0}$称为“散射长度”,其意义稍后再加以说明. 19 | 20 | 根据\eqref{eq82.11}式,在作用球外应该有渐近形式 21 | \begin{empheq}{align*} 22 | u_{0}(r) &\approx A_{0}\sin(kr+\delta_{0}) \\ 23 | &=A_{0}\sin\delta_{0}(\cos kr+\cot\delta_{0}\cdot\sin kr) 24 | \end{empheq} 25 | 在低能极限下,$k\rightarrow=,\cos kr\rightarrow1,\sin kr\rightarrow kr$,上式成为 26 | \begin{empheq}{equation*} 27 | u_{0}(r) \approx A_{0}\sin\delta_{0}(1+kr\cot\delta_{0}) 28 | \end{empheq} 29 | 与\eqref{eq83.3}式比较,可知 30 | \begin{empheq}{equation}\label{eq83.4} 31 | \boxed{k\cot\delta_{0}=-\frac{1}{a_{0}}\quad(k\rightarrow0)} 32 | \end{empheq} 33 | 散射振幅的低能极限为 34 | \begin{empheq}{align}\label{eq83.5} 35 | f(\theta) &\approx f_{0}=\frac{1}{k}\sin\delta_{0}e^{i\delta_{0}} \nonumber\\ 36 | &=\frac{1}{k\cot\delta_{0}-ik}=-\frac{a_{0}}{1+ika_{0}} 37 | \end{empheq} 38 | 如散射长度$a_{0}$取有限值,则当$k\rightarrow0,k|a_{0}|\ll1$,\eqref{eq83.5}式即 39 | \begin{empheq}{equation}\label{eq83.6} 40 | f(\theta) \approx-a_{0}\quad (k\rightarrow0) 41 | \end{empheq} 42 | 这时\eqref{eq83.4}式给出 43 | \begin{empheq}{equation}\label{eq83.7} 44 | -ka_{0}=\tan\delta_{0}\approx\sin\delta_{0}\approx\delta_{0} 45 | \end{empheq} 46 | 散射截面为 47 | \begin{empheq}{align}\label{eq83.8} 48 | \sigma(\theta)&=|f(\theta)|^{2}=a_{0}^{2} \nonumber\\ 49 | \sigma_{\text{总}}&=4\pi a_{0}^{2} 50 | \end{empheq} 51 | 这种情况下势场$V(r)$的散射效果相当于半径为$a_{0}$的刚球.注意$\delta_{0}$与$k$成正比,$f(\theta),\sigma(\theta)$均与$k$无关,即与能量$E$无关. 52 | 53 | 如$a_{0}\rightarrow\pm\infty$,则\eqref{eq83.4}式给出 54 | \begin{empheq}{equation}\label{eq83.9} 55 | k\cot\delta_{0}=0,\quad \delta_{0}=\frac{\pi}{2},\quad\text{或}\quad -\frac{\pi}{2} 56 | \end{empheq} 57 | 而\eqref{eq83.5}式给出 58 | \eqshort 59 | \begin{empheq}{equation}\label{eq83.10} 60 | f(\theta)=\frac{i}{k} 61 | \end{empheq}\eqnormal 62 | 因此 63 | \begin{empheq}{equation}\label{eq83.11} 64 | \sigma_{\text{总}}=4\pi\sigma(\theta)=\frac{4\pi}{k^{2}}=\frac{2\pi\hbar^{2}}{\mu E} 65 | \end{empheq} 66 | 散射截面与$E$成反比.当$E\rightarrow0,\sigma_{\text{总}}\rightarrow\infty$,称为“共振散射”. 67 | 68 | \begin{figure}[!h] 69 | \centering 70 | \small 71 | \includegraphics[width=7cm,clip]{QM file/figure/8-4} 72 | \caption{}\label{fig.8-4} 73 | \end{figure} 74 | 75 | 下面以势阱$(V<0)$散射为例,说明散射长度的意义.当$E\rightarrow0$,由\eqref{eq83.1}式可知$\frac{u_{0}^{\prime\prime}}{u_{0}}$,$u_{0}$随$r$的变化如图\ref{fig.8-4}所示.如果作用势$V(r)$较弱,以致当$r$达到$a$(作用球半径)时$u_{0}$尚在上升阶段,$u_{0}^{\prime}$为正,则散射长度$a_{0}<0$.这种势阱不能造成束缚态.如果作用势$V(r)$较强,当$r$达到$a$时$u_{0}$已经处于下降阶段,$u_{0}^{\prime}$为负,则散射长度$a_{0}>0$.这种势阱可以造成束缚态能级$(E_{n}<0)$.而$a_{0}=\pm\infty$相当于$r=a$处$u_{0}^{\prime}=0$,这刚好是阱口出现束缚态能级$(E=0_{-})$的条件,这种情况下粒子的入射能量$(E\geqslant0)$接近于阱口附近的束缚态能级,在入射波与阱口束缚态之间容易产生共振跃迁,所以散射截面特别大. 76 | \pskip 77 | 78 | \example 讨论球形势阱 79 | 80 | \begin{equation}\label{eq83.12} 81 | V(r)= 82 | \begin{cases} 83 | -V_{0}, & ra 85 | \end{cases} 86 | \end{equation} 87 | 造成的低能$(ka\ll1)$s波$(l=0)$散射. 88 | 89 | \solution 令 90 | \begin{empheq}{equation}\label{eq83.13} 91 | k=\frac{\sqrt{2\mu E}}{\hbar},\quad k_{0}=\frac{\sqrt{2\mu V_{0}}}{\hbar} 92 | \end{empheq} 93 | 在阱内$(ra)$,径向方程为 103 | \eqshort 104 | \begin{empheq}{equation*} 105 | u_{0}^{\prime\prime}+k^{2}u_{0}=0 106 | \end{empheq}\eqnormal 107 | 当$E\rightarrow0$,解为 108 | \begin{empheq}{equation}\label{eq83.16} 109 | u_{0}(r)=c\bigg(1-\frac{r}{a_{0}}\bigg)\quad (E\rightarrow0,r>a) 110 | \end{empheq} 111 | 在$r=a$处,$\frac{u_{0}}{u_{0}^{\prime}}$应该连续,据此求出 112 | \begin{empheq}{align}\label{eq83.17} 113 | \frac{1}{k}&\tan k_{0}a=a-a_{0} \nonumber\\ 114 | a_{0}=&-\frac{a(\tan k_{0}a-k_{0}a)}{k_{0}a} 115 | \end{empheq} 116 | $a_{0}$即散射长度.如$a_{0}$有限,由\eqref{eq83.8}式就得到散射截面(与$E$无关). 117 | 118 | 讨论:(i) 如势阱的性质($V_{0}$及$a$值)刚好使$\tan k_{0}a=k_{0}a$,这时$a_{0}=0$,低能极限下$(E\rightarrow0)\sigma_{\text{总}}\rightarrow0$,势阱是“透明”的. 119 | 120 | 121 | (ii) 如势阱深而宽,$k_{0}a\gg 1$,同时$\tan k_{0}a$并不太大(非共振散射),这时$a_{0}=a,\sigma_{\text{总}}\approx4\pi a^{2}$,势阱的低能散射效果类似于刚球. 122 | 123 | 124 | (iii) 如果$k_{0}a=\bigg(n+\frac{1}{2}\bigg)\pi(n=0,1,2,\cdots)$则当$E\rightarrow0$时出现共振散射$(a_{0}=\pm\infty)$.这时阱内区域粒子的德布罗意波长$\lambda_{0}\bigg(\approx\frac{2\pi}{k_{0}}\bigg)$与势阱半径$a$有关系 125 | \eqshort 126 | \begin{empheq}{equation}\label{eq83.18} 127 | 2a=\bigg(n+\frac{1}{2}\bigg)\lambda_{0} 128 | \end{empheq}\eqnormal 129 | 这也就是阱口出现束缚能级$(E=0_{-})$的条件. 130 | 131 | (iv) 如果势阱浅而窄,$k_{0}a\ll 1$,则可取 132 | \begin{empheq}{equation*} 133 | \tan k_{0}a\approx k_{0}a+\frac{1}{3}(k_{0}a)^{3} 134 | \end{empheq} 135 | 由\eqref{eq83.17}式求得散射长度为 136 | \begin{empheq}{equation}\label{eq83.19} 137 | a_{0}\approx -\frac{a}{3}(k_{0}a)^{2}=-\frac{2\mu V_{0}a^{3}}{3\hbar^{2}} 138 | \end{empheq} 139 | 再由\eqref{eq83.7}式、\eqref{eq83.8}式得出 140 | \begin{empheq}{align} 141 | \delta_{0}&=-k_{0}a=\bigg(\frac{2\mu V_{0}a^{2}}{3\hbar^{2}}\bigg)ak \label{eq83.20}\\ 142 | \sigma_{\text{总}}&=4\pi a_{0}^{2}=\frac{16\pi}{9}\bigg(\frac{\mu V_{0}a^{3}}{\hbar^{2}}\bigg)^{2} \label{eq83.21} 143 | \end{empheq} 144 | 如直接利用$\delta_{l}$的近似公式[\eqref{eq82.26}式],也可得到同样的结果. 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | -------------------------------------------------------------------------------- /C.eight/M08.05-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 粒子束被中心势场$V(r)=\dfrac{\alpha}{r^{2}}(\alpha>0)$散射,求各分波相移$\delta_{l}$.再在条件$\dfrac{\mu\alpha}{\hbar^{2}}\ll\dfrac{1}{8}$下,求$\delta_{l},f(\theta)$及$\sigma(\theta)$的近似公式. 4 | 5 | [提示:将$V(r)$与离心势能合成一项,$l$分波径向函数可以表示成$R_{l}(r)=\sqrt{\dfrac{\pi}{2kr}}J_{\nu+\frac{1}{2}}(kr)$的形式,找出$\nu$与$l$的关系. 6 | 7 | 近似处理时利用公式$\dfrac{1}{\sin\bigg(\dfrac{\theta}{2}\bigg)}=2\sum_{l=0}^{\infty}P_{l}(\cos\theta)$.] 8 | 9 | \exercise 势场同上题,用玻恩近似公式计算散射振幅及微分散射截面. 10 | 11 | \exercise 粒子束被球形势阱散射, 12 | \begin{equation*} 13 | V(r)=\begin{cases} 14 | -V_{0}, \quad&ra 16 | \end{cases} 17 | \end{equation*} 18 | 设$\dfrac{2\mu V_{0}a^{2}}{\hbar^{2}}\ll1$,并考虑低能散射$(ka\ll1)$. 19 | 20 | (a) 用\eqref{eq82.26}式计算s波$(l=0)$相移$\delta_{0}$及散射振幅,总散射截面. 21 | 22 | (b) 用玻恩近似公式计算散射振幅和总散射截面.玻恩近似公式适用的条件是什么? 23 | 24 | \exercise 在分波法计算中,如只需考虑$l=0,1$两个分波的散射,试写出$f(\theta)$及$\sigma(\theta)$的公式,并就$\delta_{0}=\dfrac{\pi}{9},\delta_{1}=\dfrac{\pi}{36}$,具体计算$\theta=0,\dfrac{\pi}{2},\pi$三种方向$\sigma(\theta)$的相对比率. 25 | 26 | \exercise 对于下列中心势场,用玻恩近似计算出$f(\theta)$,$\sigma(\theta)$. 27 | 28 | (a) $V(r)=A\delta(\boldsymbol{r})$ (b) $V(r)=V_{0}e^{-\alpha r}$ (c) $V(r)=V_{0}e^{-\alpha^{2}r^{2}}$ 29 | 30 | \exercise 高速粒子被球壳$\delta$势场$V(r)=B\delta(r-a)$散射,用玻恩近似求$f(\theta)$,$\sigma(\theta)$. 31 | 32 | \exercise 低速粒子束被势场$V(r)=\dfrac{\alpha}{r^{4}}(\alpha>0)$散射,求$E\rightarrow0$时s波$(l=0)$的散射长度,相移,散射振幅,散射截面. 33 | 34 | [提示:本题为长程力,相当于作用球半径为$\infty$,故需在$r\rightarrow\infty$处将$u_{0}(r)$表示成$c\bigg(1-\dfrac{r}{a_{0}}\bigg)$的形式.在这样做之前,先证明$E\rightarrow0$时s波径向方程之解为$u_{0}=xe^{-1/x},x=\dfrac{r\hbar}{\sqrt{2\mu\alpha}}$.] 35 | 36 | \exercise 粒子被势场$V(r)=-\dfrac{\hbar^{2}}{\mu}\left[\dfrac{\lambda}{\si{ch}(\lambda r)}\right]^{2}$($\lambda>0$,ch$(x)$为双曲余弦函数)散射,求低能$(E\rightarrow0)$s波散射截面. 37 | 38 | [提示:证明$u_{0}(r)=\dfrac{\si{sh}(\lambda r)}{\si{ch}(\lambda r)}$.本题为共振散射.] 39 | 40 | \exercise 某原子的电荷分布各向同性,电荷密度$\rho(r)$在$r\rightarrow+\infty$处迅速趋于0,而且$\int\rho(r)d^{3}\boldsymbol{r}$(总电量为0),$\int\rho(r)r^{2}d^{3}\boldsymbol{r}$(代表分布不均匀性)设有动量$\boldsymbol{p}=\hbar k$的电子束受到这电荷分布所生静电场作用而发生散射.试用玻恩近似公式计算$\theta\sim0$方向的微分散射截面$\sigma(0)$.如原子为基态氢原子,结果如何? 41 | 42 | [提示:$\int\cdots d^{3}\boldsymbol{r}$本为全空间积分,为便于处理,积分可在半径$R$($R$充分大)的球内进行.] 43 | 44 | \exercise 高速电子被原子散射,原子对入射电子的库仑作用势可以近似表示成 45 | \begin{empheq}{equation*} 46 | V(\boldsymbol{r})=-\frac{Z\e^{2}}{r}+\e^{2}\int\frac{\rho(r^{\prime})}{|\boldsymbol{r}-\boldsymbol{r}^{\prime}|}d^{3}\boldsymbol{r}^{\prime} 47 | \end{empheq} 48 | 其中第二项表示原子中的电子分布对入射电子的库仑作用,$(-\e)\rho(\boldsymbol{r}^{\prime})$为电子分布的电荷密度. 49 | 50 | (a) 试用玻恩近似公式求散射振幅和微分截面,证明 51 | \begin{empheq}{equation*} 52 | f(\theta)=\frac{2\mu \e^{2}}{\hbar^{2}q^{2}}[Z-F(q)],\quad F(q)=\int\rho(\boldsymbol{r}^{\prime})e^{-\boldsymbol{q}\cdot\boldsymbol{r}^{\prime}}d^{3}\boldsymbol{r}^{\prime} 53 | \end{empheq} 54 | 55 | (b) 电子被氢原子(基态)散射,利用上述公式求$f(\theta)$,并讨论$\theta\ll\dfrac{1}{ka_{0}}$($a_{0}$为玻尔半径)的情形,求$f(\theta),\sigma(\theta)$. 56 | 57 | \end{exercises} -------------------------------------------------------------------------------- /C.five/M05.00-Central Force Field.tex: -------------------------------------------------------------------------------- 1 | \chapter{中心力场}\label{chp:05} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | % 中心力场的一般概念 5 | \input{QM file/body/C.five/M05.01-General concept of central force field} 6 | 7 | % 自由粒子 8 | \input{QM file/body/C.five/M05.02-Free particle} 9 | 10 | % 球型势阱 11 | \input{QM file/body/C.five/M05.03-Spherical potential well} 12 | 13 | % 粒子在库仑场中的运动(束缚态) 14 | \input{QM file/body/C.five/M05.04-Motion of a particle in a Coulomb field(bound state)} 15 | 16 | % 二维中心力场 17 | \input{QM file/body/C.five/M05.05-Two-dimensional central force field} 18 | 19 | % 习题 20 | \input{QM file/body/C.five/M05.06-Exercises} 21 | 22 | -------------------------------------------------------------------------------- /C.five/M05.03-Spherical potential well.tex: -------------------------------------------------------------------------------- 1 | \starthis\section[球型势阱]{球型势阱} \label{sec:05.03} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | {\heiti 1. 无限深球形势阱} 5 | 6 | 设粒子被无限深球形势阱 7 | \begin{empheq}{equation}\label{eq53.1} 8 | {V(r)=} 9 | \begin{dcases} 10 | 0,\quad rl$,\eqref{eq53.10}式的近似程度就相当好,参看表\ref{lab.5-1}]因此 96 | \begin{empheq}{equation*} 97 | x_{nl}\approx x_{n+1,l-2}\approx x_{n+2,l-4}\approx \cdots 98 | \end{empheq} 99 | 能级出现近似简并的微妙情形.这种近似简并在$na 118 | \end{dcases} 119 | \end{empheq}\eqshort 120 | $a$为力程,$V_{0}$为作用强度.利用结合能的实验值可以求出$V_{0}$与$a$的依赖关系,如下. 121 | 122 | 氘核是稳定的,相当于基态,角量子数$l=0$,波函数可以写成(不考虑归一化) 123 | \begin{empheq}{equation}\label{eq53.12} 124 | \varPsi(r)=\frac{u(r)}{r} 125 | \end{empheq}\eqnormal 126 | $u(r)$满足径向方程[\eqref{eq51.14}式,$l=0$] 127 | \begin{empheq}{equation}\label{eq53.13} 128 | \bigg[-\frac{\hbar^{2}}{2\mu}\frac{d^{2}}{dr^{2}}+V(r)-E\bigg]u(r)=0 129 | \end{empheq} 130 | 亦即 131 | \begin{empheq}{equation*}\label{eq53.13'} 132 | {} 133 | \begin{dcases} 134 | \frac{d^{2}}{dr^{2}}u+k^{2}u=0,\quad r\leqslant a \\ 135 | \frac{d^{2}}{dr^{2}}u-\beta^{2}u=0,\quad r>a 136 | \end{dcases} 137 | \tag{$5.3.13^{\prime}$} 138 | \end{empheq} 139 | 其中 140 | \begin{empheq}{equation}\label{eq53.14} 141 | k=\frac{\sqrt{2\mu(V_{0}+E)}}{\hbar},\quad \beta=\frac{\sqrt{-2\mu E}}{\hbar}(E<0) 142 | \end{empheq} 143 | 边界条件为 144 | \begin{empheq}{equation}\label{eq53.15} 145 | r\rightarrow 0,\quad u\rightarrow 0;\quad r\rightarrow \infty,\quad u\rightarrow 0 146 | \end{empheq} 147 | \eqref{eq53.13'}式满足这边界条件的解为 148 | \begin{empheq}{equation}\label{eq53.16} 149 | {u(r)=} 150 | \begin{dcases} 151 | \sin kr,\quad r\leqslant a \\ 152 | Ce^{-\beta r}, \quad r>a 153 | \end{dcases} 154 | \end{empheq} 155 | $r=a$处,$\frac{u^{\prime}}{u}$应该连续,由此求得能级公式 156 | \begin{empheq}{equation}\label{eq53.17} 157 | \cot ka=-\frac{\beta}{k} 158 | \end{empheq} 159 | 这公式类似于一维方势阱奇宇称态的能级公式,上式等价于 160 | \begin{empheq}{equation}\label{eq53.18} 161 | \sin^{2}ka=\frac{k^{2}}{k^{2}+\beta^{2}}=1+\frac{E}{V_{0}} 162 | \end{empheq} 163 | 对于氘核,$E=-\num{2.237}\si{MeV}$,$\mu$应该取为质子-中子体系的约化质量, 164 | \begin{empheq}{align}\label{eq53.19} 165 | \mu=&\frac{m_{0}m_{p}}{m_{n}+m_{p}}\approx\frac{m_{p}}{2},\quad 2\mu c^{2}\approx 938\si{MeV} \nonumber\\ 166 | k^{2}&=\frac{2\mu(V_{0}+E)}{\hbar^{2}}=\frac{2\mu c^{2}(V_{0}+E)}{\hbar^{2}c^{2}} 167 | \end{empheq} 168 | \begin{table}[!h] 169 | \begin{center} 170 | \caption{}\label{lab.5-2} 171 | \setlength{\tabcolsep}{8mm} % 调节表格尺寸 172 | %\resizebox{h-length}{v-length}{text} 173 | \begin{tabular}{c|c|c|c} 174 | \hline 175 | $V_{0}/$\si{MeV} & 30 & 25 & 20 \\ \hline 176 | $a/$\si{fm} & 2.26 & 2.53 & 2.92 \\ \hline 177 | \end{tabular} 178 | \end{center} 179 | \end{table} 180 | 在\eqref{eq53.18}、\eqref{eq53.19}式中,取实验值$E=\num{-2.237} \si{MeV}$,再指定一个$V_{0}$值,由\eqref{eq53.19}式算出$k$,由\eqref{eq53.18}式算出$ka$,从而求出与$V_{0}$相应的$a$值.结果如表\ref{lab.5-2}. 181 | 182 | 其中前二组数据比较接近于用其他方法(例如散射实验)确定的数值. 183 | 184 | 185 | 186 | 187 | -------------------------------------------------------------------------------- /C.five/M05.05-Two-dimensional central force field.tex: -------------------------------------------------------------------------------- 1 | \starthis\section[二维中心力场]{二维中心力场} \label{sec:05.05} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 在二维问题中,常用的坐标系有直角坐标$(x,y)$和平面极坐标$(\rho,\varphi)$,如图5 -5所示,它们的关系是 5 | \begin{empheq}{align} 6 | x=\rho\cos\varphi,\quad y&=\rho\sin\varphi \label{eq55.1}\\ 7 | \rho=\sqrt{x^{2}+y^{2}},\quad \varphi&=\arctan\frac{y}{x} \label{eq55.2} 8 | \end{empheq} 9 | 粒子(质量$\mu$)受到二维中心力场作用时,势能$V$是径向距离$\rho$的函数,总能量算符可以表示成 10 | \begin{empheq}{equation}\label{eq55.3} 11 | \hat{H}=\hat{T}+\hat{V}=-\frac{\hbar^{2}}{2\mu}\nabla^{2}+V(\rho) 12 | \end{empheq} 13 | 14 | \begin{wrapfigure}[8]{r}{6em} 15 | \centering 16 | \small 17 | \includegraphics[width=2.5cm,clip]{QM file/figure/5-5} 18 | \caption{}\label{fig.5-5} 19 | \end{wrapfigure} 20 | \noindent 其中\eqllong 21 | \begin{empheq}{align}\label{eq55.4} 22 | \nabla^{2}&=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \nonumber\\ 23 | &=\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}}\frac{\partial^{2}}{\partial \varphi^{2}} 24 | \end{empheq} 25 | 角动量算符为 26 | \begin{empheq}{equation}\label{eq55.5} 27 | \hat{L}_{z}=x\hat{p}_{y}-y\hat{p}_{x}=-i\hbar\frac{\partial}{\partial \varphi} 28 | \end{empheq}\eqnormal 29 | 显然,$[\hat{L}_{z},\hat{H}]=0$,$\hat{L}_{z}$为守恒量.$\hat{H},\hat{L}_{z}$的共同本征函数可以表示成 30 | \begin{empheq}{equation}\label{eq55.6} 31 | \psi(\rho,\varphi)=W(\rho)e^{im\varphi},\quad m=0,\pm1,\pm2,\cdots 32 | \end{empheq} 33 | $\hat{L}_{z}$的本征值为$m\hbar$.将\eqref{eq55.6}式代入能量本征方程 34 | \eqshort 35 | \begin{empheq}{equation}\label{eq55.7} 36 | \hat{H}\psi=E\psi 37 | \end{empheq}\eqnormal 38 | 易得径向方程为 39 | \eqllong 40 | \begin{empheq}{equation}\label{eq55.8} 41 | \bigg[-\frac{\hbar^{2}}{2\mu}\bigg(\frac{d^{2}}{d\rho^{2}}+\frac{1}{\rho}\frac{d}{d\rho}\bigg)+\frac{m^{2}\hbar^{2}}{2\mu\rho^{2}}+V(\rho)\bigg]W(\rho)=EW(\rho) 42 | \end{empheq}\eqnormal 43 | 方括号中第一项可以解释成径向动能算符,第二项为离心势能.令 44 | \eqshort 45 | \begin{empheq}{equation}\label{eq55.9} 46 | W(\rho)=\rho^{-\frac{1}{2}}v(\rho) 47 | \end{empheq}\eqnormal 48 | 可得$v(\rho)$满足的方程为 49 | \eqlong 50 | \begin{empheq}{equation}\label{eq55.10} 51 | \bigg[-\frac{\hbar^{2}}{2\mu}\frac{d^{2}}{d\rho^{2}}+\bigg(m^{2}-\frac{1}{4}\bigg)\frac{\hbar^{2}}{2\mu\rho^{2}}+V(\rho) \bigg]v(\rho)=Ev(\rho) 52 | \end{empheq}\eqnormal 53 | 径向波函数及能级$E$原则上可从\eqref{eq55.8}式或\eqref{eq55.10}式解出. 54 | 55 | \eqref{eq55.10}式的构造与三维中心力场的径向方程[\eqref{eq51.14}式]有着高度的相似性,其对应关系为 56 | \eqindent{7} 57 | \begin{empheq}{alignat=6}\label{eq55.11} 58 | \text{三维} &\quad r &\quad V(r) &\quad u(r) & l &&\quad E \nonumber\\ 59 | \text{二维} &\quad \rho &\quad V(\rho) &\quad v(\rho) \quad |m|&-\frac{1}{2} &&\quad E 60 | \end{empheq}\eqnormal 61 | 因此,如已求得三维中心力问题的解,根据对应关系就可以写出二维中心力问题的解.反之亦然.就能级而言,在三维问题的能级公式中,将$l$换成$|m|-\frac{1}{2}$,就得到相应的二维问题能级公式.由于$l$只取正整数或0,而$|m|-\frac{1}{2}$则是半奇数,所以两种能级是不相同的.这一点和经典力学有着根本概念上的不同.在经典力学中,粒子在中心力场中运动时,其轨迹是一条平面曲线,因此,就轨道形状和能量而言,三维问题与二维问题的结果必然相同. 62 | 63 | \example 求二维类氢离子的束缚态$(E<0)$能级. 64 | 65 | \solution 二维类氢离子中,电子所受作用势为 66 | \begin{empheq}{equation}\label{eq55.12} 67 | V(\rho)=-\frac{Z\e^{2}}{\rho} 68 | \end{empheq} 69 | 按照上述一般理论,$\hat{H},\hat{L}_{z}$的共同本征函数可以写成 70 | \begin{empheq}{equation}\label{eq55.13} 71 | \varPsi=\rho^{-1/2}v(\rho)e^{im\varphi},\quad m=0,\pm1,\pm2,\cdots 72 | \end{empheq} 73 | 将三维类氢离子能级公式[\eqref{eq54.20}式]中$l$换成$|m|-\frac{1}{2}$,$n_{r}$改写成$n_{\rho}$(径向量子数),即得本题所求能级为 74 | \eqlong 75 | \begin{empheq}{equation}\label{eq55.14} 76 | E=\frac{Z^{2}\e^{2}}{2a_{0}\bigg(n_{\rho}+|m|+\frac{1}{2}\bigg)},\quad n_{\rho}=0,1,2,\cdots 77 | \end{empheq}\eqnormal 78 | 其中$a_{0}=\dfrac{\hbar^{2}}{\mu \e^{2}}$(玻尔半径),就能级序列而言,相当于三维能级公式中$n\rightarrow\bigg(n-\frac{1}{2}\bigg)$. 79 | 80 | \newpage 81 | 82 | 83 | 84 | -------------------------------------------------------------------------------- /C.five/M05.06-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | \exercise 限于$l=1$ $(\boldsymbol{L}^{2}=2\hbar^{2})$的情形,利用$Y_{lm}(m=1,0,-1)$具体函数形式,用坐标轮换$(x\rightarrow y,y\rightarrow z,z\rightarrow x)$法求$\boldsymbol{L}^{2},L_{x}$共同本征函数,表示成$Y_{lm}$的线性叠加.再求$\boldsymbol{L}^{2},L_{y}$共同本征函数. 3 | 4 | \exercise 限于$l=1$的情形.利用上题结果验证:$L_{x}=0$的本征函数,$L_{y}=0$的本征函数以及$L_{z}=0$的本征函数$(Y_{10})$三者互相正交.你能否不依赖本征函数的具体函数形式而对此结果给予理论的证明? 5 | 6 | [提示:利用升降算符方法,求$Y_{10}$态$L_{x}^{2}$及平均值,从而论证$Y_{10}$态下$L_{z}=0$的概率为0.] 7 | 8 | \exercise 求$Y_{11}$态下$L_{x}$的可能测值及相应概率,用下述两种方法. 9 | 10 | (a) 将$Y_{11}$按$\boldsymbol{L}^{2},L_{x}$,共同本征函数(5-1题)展开. 11 | 12 | (b) 对$Y_{11}$态计算$L_{x}$及$L_{x}^{2}$平均值. 13 | 14 | \exercise 设粒子状态为$\varPsi=A(x+y+2z)e^{-\lambda r}$,$(\lambda>0)$求 15 | 16 | (a) $\boldsymbol{L}^{2}$的取值\quad(b)$\bar{L}_{z}$\quad(c)$L_{z}$等于$\hbar$的概率\quad(d)$L_{x}$的可能取值及相关概率. 17 | 18 | \exercise 用不确定关系估算氢原子基态能量. 19 | 20 | $\bigg[$提示:取$\Delta r\Delta p\sim\hbar,\sim\dfrac{1}{\Delta r}$$\bigg]$ 21 | 22 | \exercise 质量为$\mu$的粒子在中心力场$V(r)=-\lambda r^{-\frac{3}{2}}(\lambda>0)$中运动,试用不确定度关系估算基态能量. 23 | 24 | \exercise 中心力问题的径向方程 25 | \begin{empheq}{equation*} 26 | \bigg[-\frac{\hbar^{2}}{2\mu}\frac{d^{2}}{dr^{2}}+\frac{l(l+1)\hbar^{2}}{2\mu r^{2}}+V(r)\bigg]u(r)=Eu(r) 27 | \end{empheq} 28 | 可以等效地当作一维能量本征方程,$u(r)$相当于波函数,等效能量算符为 29 | \begin{empheq}{equation*} 30 | H(l,r)=-\frac{\hbar^{2}}{2\mu}\frac{d^{2}}{dr^{2}}+\frac{l(l+1)\hbar^{2}}{2\mu r^{2}}+V(r) 31 | \end{empheq} 32 | 能级记为$E_{ln}(E_{l1},\nu=-1,-2,-3$. 62 | 63 | $\bigg[$ 提示:利用海尔曼定理求出$\bigg\langle\dfrac{1}{r}\bigg\rangle$,$\bigg\langle\dfrac{1}{r^{2}}\bigg\rangle$,再利用上题证明的公式求$\bigg\langle\dfrac{1}{r^{3}}\bigg\rangle$.注意$l=0$时$\bigg\langle\dfrac{1}{r^{3}}\bigg\rangle\rightarrow\infty$ $\bigg]$. 64 | 65 | \exercise 对于类氢离子(核电荷$Ze$)的$nlm$态,证明Kramers公式: 66 | \eqindent{1} 67 | \begin{empheq}{equation*} 68 | \frac{\lambda+1}{n^{2}}-(2\lambda+1)\frac{a_{0}}{Z}+\frac{\lambda}{4}[(2l+1)^{2}-\lambda^{2}]\frac{a_{0}^{2}}{Z^{2}}=0 69 | \end{empheq}\eqnormal 70 | 71 | 求出公式成立的条件 72 | 73 | [提示:以$r^{\lambda}u$乘径向方程,逐项积分.再以$2r^{\lambda+1}u^{\prime}$乘径向方程,逐项积分将两种结果合并,即可达到目的.] 74 | 75 | \exercise 利用上题证明的公式,计算$nlm$态的$,$. 76 | 77 | \exercise 对于氢原子的各s态$(nlm=nOO)$,计算$\Delta x,\Delta p_{x}$,并讨论经典极限$(n\geqslant1)$情况. 78 | 79 | [提示:s态各向同性,$\overline{x^{2}}=\dfrac{1}{3}\overline{r^{2}},\overline{p_{z}^{2}}=\dfrac{1}{3}<\boldsymbol{p}^{2}>$.] 80 | 81 | \exercise 类氢离子(核电荷$Ze$)$l\geqslant1$的情形下,按下列步骤对径向方程作近似处理:(a)求等效势能$V_{l}=V(r)+\dfrac{l(l+1)\hbar^{2}}{2\mu r^{2}}$极小值及相应距离$r_{l}$.(b)将$V_{l}$在$r_{l}$附近作泰勒展开,保留$(r-r_{l})^{2}$项.(c)视电子的径向运动为$r\sim r_{l}$附近的小振动,给定$l$,求最低能级与低激发能级,并和精确值比较. 82 | 83 | \exercise 二维各向同性谐振子是指在势场 84 | \begin{empheq}{equation*} 85 | V=\frac{1}{2}k(x^{2}+y^{2})=\frac{1}{2}\mu\omega^{2}\rho^{2},\quad \omega=\sqrt{\frac{k}{\mu}} 86 | \end{empheq} 87 | 中运动的粒子.$\hat{H},\hat{L}_{z}$共同本征函数表示成$\varPsi=W(\rho)e^{im\varphi}$.写出$W(\rho)$满足的径向方程,并按下列步骤求解. 88 | 89 | (a) 令$W(\rho)=u(\rho)\rho^{|m|}e^{-\alpha^{2}\rho^{2}/2}$,$\alpha=\sqrt{\dfrac{\mu\omega}{\hbar}}$ 90 | 91 | (b) 令$\dfrac{E}{\hbar\omega}=\varepsilon$,$\alpha^{2}\rho^{2}=\xi,u(\rho)=F(\xi)$,证明$F(\xi)$满足合流超几何方程. 92 | 93 | (c) 仿照$\S$\ref{sec:05.04},论证$F(\xi)$必须是$n_{p}$次多项式. 94 | 95 | (d) 确定能级. 96 | 97 | \exercise 三维各向同性谐振子 98 | \begin{empheq}{equation*} 99 | V=\frac{1}{2}k(x^{2}+y^{2}+z^{2})=\frac{1}{2}\mu\omega^{2}r^{2},\omega=\sqrt{\frac{k}{\mu}} 100 | \end{empheq} 101 | 102 | $H,\boldsymbol{L}^{2},L_{z}$共同本征函数表示成 103 | \begin{empheq}{equation*} 104 | \varPsi=R(r)Y_{lm}(\theta,\varphi)=\frac{u(r)}{r}Y_{lm}(\theta,\varphi) 105 | \end{empheq} 106 | 107 | 写出径向方程,并仿照上题方法求解. 108 | 109 | [提示:令$u(r)=F(\xi)\xi^{(l+1)/2}e^{-\xi/2},\xi=\alpha^{2}r^{2}$.] 110 | 111 | \exercise 讨论5-20,5-21题中能级的简并度,与2-15,2-16题的结果对照. 112 | 113 | \exercise 对于三维各向同性谐振子的基态波函数,计算最概然半径,$\bar{r}$及$\Delta r$. 114 | 115 | \exercise 仿照$\S$\ref{sec:05.04}例题所用方法,对于三维各向同性谐振子的$(n,lm)$态,计算离心势能$\dfrac{\boldsymbol{L}^{2}}{2\mu r^{2}}$的平均值. 116 | 117 | 118 | \end{exercises} -------------------------------------------------------------------------------- /C.four/M04.00-Representation Theory.tex: -------------------------------------------------------------------------------- 1 | \chapter{表象理论}\label{chp:04} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | % 狄拉克符号 5 | \input{QM file/body/C.four/M04.01-Dirac Symbols} 6 | 7 | % 量子力学公式及其矩阵表示 8 | \input{QM file/body/C.four/M04.02-Quantum mechanics formula and its matrix representation} 9 | 10 | % 坐标表象 11 | \input{QM file/body/C.four/M04.03-Coordinate Representation} 12 | 13 | % 动量表象 14 | \input{QM file/body/C.four/M04.04-Momentum Representation} 15 | 16 | % 能量表象 17 | \input{QM file/body/C.four/M04.05-Energy Representation} 18 | 19 | % 一维谐振子(升降算符方法) 20 | \input{QM file/body/C.four/M04.06-One-dimensional resonator(Ascending and descending arithmetic methods)} 21 | 22 | % 角动量 23 | \input{QM file/body/C.four/M04.07-Angular momentum} 24 | 25 | % 习题 26 | \input{QM file/body/C.four/M04.08-Exercises} 27 | -------------------------------------------------------------------------------- /C.four/M04.03-Coordinate Representation.tex: -------------------------------------------------------------------------------- 1 | \starthis\section[坐标表象]{坐标表象} \label{sec:04.03} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 以一维运动为例,粒子的位置(坐标)算符记为$\hat{x}$,其本征值记为$x,x^{\prime},x^{\prime\prime}$,相应本征矢记为$|x \rangle ,|x^{\prime} \rangle $,满足本征方程: 5 | \begin{empheq}{equation}\label{eq43.1} 6 | \hat{x}|x \rangle =x|x \rangle ,\quad \hat{x}|x^{\prime} \rangle =x^{\prime}|x^{\prime} \rangle 7 | \end{empheq} 8 | 由于本征值$x$可以连续变化,本征矢的正交归一与完备性条件规定成 9 | \begin{empheq}{equation}\label{eq43.2} 10 | \langle x|x^{\prime} \rangle =\delta(x-x^{\prime}) 11 | \end{empheq} 12 | \begin{empheq}{equation}\label{eq43.3} 13 | \int_{-\infty}^{\infty}dx|x \rangle\langle x|=\int_{-\infty}^{\infty}|x \rangle dx\langle x|=1 14 | \end{empheq} 15 | 将\eqref{eq43.3}式作用于任何$|x^{\prime} \rangle $,容易验证结果仍得$|x^{\prime} \rangle $,可见\eqref{eq43.2}、\eqref{eq43.3}式的规定是合理而且自洽的.这两个公式是$\S$\ref{sec:04.02}中\eqref{eq42.3}、\eqref{eq42.3}式对连续谱的推广.注意\eqref{eq43.2}式就是本征矢$|x^{\prime} \rangle $在$x$表象中的波函数$\varPsi_{x^{\prime}}(x)$. 16 | 17 | 任意态矢量$|\varPsi \rangle $可以展开成$|x \rangle $的线性叠加: 18 | \begin{empheq}{equation}\label{eq43.4} 19 | |\varPsi \rangle =\int dx|x \rangle\langle x|\varPsi \rangle =\int dx |x \rangle \varPsi(x) 20 | \end{empheq} 21 | 其中$\varPsi(x)=\langle x|\varPsi \rangle $就是$|\varPsi \rangle $在无表象中的波函数.上式以及以下各式中,$\int\cdots dx$表示全空间积分,即$\int_{-\infty}^{\infty}\cdots dx$.如果$|\varPsi \rangle $已经归一化,$\langle \varPsi|\varPsi \rangle$,利用恒等变换\eqref{eq43.3}式,可得 22 | \begin{empheq}{align*} 23 | \langle\varPsi|\varPsi\rangle &=\langle \varPsi|\int|x \rangle dx\langle x|\varPsi \rangle \\ 24 | &=\int\langle \varPsi|x \rangle dx\langle x|\varPsi \rangle \\ 25 | &=\int dx\varPsi^{*}(x)\varPsi(x)=1 26 | \end{empheq} 27 | 其中 28 | \eqindent{4} 29 | \begin{empheq}{equation*} 30 | \varPsi^{*}(x)\varPsi(x)dx=|\varPsi \rangle \text{态下$\hat{x}$本征值在$(x,x+dx)$间的概率} 31 | \end{empheq}\eqnormal 32 | 这正是波函数$\varPsi(x)$的统计诠释. 33 | 34 | 以下讨论动量算符$\hat{\boldsymbol{p}}$(即$\hat{p}_{x}$)对于基矢$\langle x|$的作用规则.$\hat{\boldsymbol{p}}$的本征矢记为$|p \rangle $,$p$为本征值.本征方程为 35 | \begin{empheq}{equation}\label{eq43.5} 36 | \hat{p}|p \rangle =p|p \rangle 37 | \end{empheq} 38 | 动量本征矢$|p \rangle $在$x$表象中的波函数为 39 | \begin{empheq}{equation}\label{eq43.6} 40 | \langle x|p \rangle=\varPsi_{p}(x)=(2\pi\hbar)^{-\frac{1}{2}}e^{ipx/\hbar} 41 | \end{empheq} 42 | 以$\langle x|$左乘\eqref{eq43.5}式,得到 43 | \begin{empheq}{align}\label{eq43.7} 44 | \langle x|\hat{p}|p \rangle &=p\langle x|p \rangle =p\varPsi_{p}(x) \nonumber\\ 45 | &=-i\hbar\frac{\partial}{\partial x}\varPsi_{p}(x)=-i\hbar\frac{\partial}{\partial x}\langle x|p \rangle 46 | \end{empheq} 47 | 上式对于任何$|p \rangle $成立, 因此 48 | \begin{empheq}{equation}\label{eq43.8} 49 | \langle x|\hat{p}\cdots=-i\hbar\frac{\partial}{\partial x}\langle x|\cdots 50 | \end{empheq} 51 | 这就是动量算符$\hat{p}(\hat{p}_{x})$对$\langle x|$的一个有效作用规则,如能恰当运用,常能简化计算.注意算符$\frac{\partial}{\partial x}$只能对$x$表象中的波函数作用. 52 | 53 | 对于由$x$,$p$构成的力学量$F(x,p)$及其算符$\hat{F}=\hat{F}(\hat{x},\hat{p})$,在任意归一化的$|\varPsi \rangle $态下,$F$的平均值公式为 54 | \begin{empheq}{equation*} 55 | \bar{F}=\langle \varPsi|\hat{F}|\varPsi \rangle 56 | \end{empheq} 57 | 利用恒等变换\eqref{eq43.3}式, 就可以变化成 58 | \eqindent{4} 59 | \begin{empheq}{align}\label{eq43.9} 60 | \bar{F}&=\int dx\langle \varPsi|x \rangle \langle x|\hat{F}|\varPsi \rangle \nonumber\\ 61 | &=\int dx\langle \varPsi|x \rangle \hat{F}(x,-\hbar\frac{\partial}{\partial x})\langle x|\varPsi \rangle \quad\text{再利用\eqref{eq43.8}式子} \nonumber\\ 62 | &=\int dx\varPsi^{*}(x) \hat{F}(x,-\hbar\frac{\partial}{\partial x})\varPsi(x) 63 | \end{empheq}\eqnormal 64 | 这就是通过波函数$\varPsi(x)$表示的平均值公式,其中$\hat{F}$只对右方的$\varPsi(x)$作用,$\hat{F}$中$\hat{p}(\hat{p}_{x})\rightarrow-i\hbar\frac{\partial}{\partial x}$ 65 | 66 | 又如$\hat{F}$的矩阵元公式 67 | \begin{empheq}{equation}\label{eq43.10} 68 | F_{kn}=\langle k|\hat{F}|n \rangle =\langle \varPsi_{k}|\varPsi_{n} \rangle 69 | \end{empheq} 70 | 可以变化成 71 | \eqindent{6} 72 | \begin{empheq}{align}\label{eq43.11} 73 | F_{kn}&=\int dx\langle \varPsi_{k}|x \rangle\langle x|\hat{F}|\varPsi_{n} \rangle \nonumber\\ 74 | &=\int dx\langle \varPsi_{k}|x \rangle \hat{F}(x,-\hbar\frac{\partial}{\partial x})\langle x|\varPsi_{n} \rangle \nonumber\\ 75 | &=\int dx\varPsi_{k}^{*}(x)\hat{F}(x,-\hbar\frac{\partial}{\partial x})\varPsi_{n}(x) 76 | \end{empheq}\eqnormal 77 | 其中$\hat{F}$只对$\varPsi_{n}(x)$作用. 78 | 79 | 粒子在一维势场$V(x)$中运动时,哈密顿算符为 80 | \begin{empheq}{equation*} 81 | \hat{H}=\frac{\hat{p}^{2}}{2m}+\hat{V}(x) 82 | \end{empheq} 83 | 薛定谔方程为 84 | \eqindent{6} 85 | \begin{empheq}{equation}\label{eq43.12} 86 | i\hbar\frac{partial}{\partial t}|\varPsi(t) \rangle =\hat{H}|\varPsi(t) \rangle =\bigg(\frac{\hat{p}^{2}}{2m}+\hat{V}\bigg)|\varPsi(t) \rangle 87 | \end{empheq}\eqnormal 88 | 以$\langle x|$左乘上式(取内积),并令 89 | \begin{empheq}{equation}\label{eq43.13} 90 | \varPsi(x,t)\equiv \langle x|\varPsi(t) \rangle 91 | \end{empheq} 92 | 得到 93 | \eqindent{4} 94 | \begin{empheq}{align}\label{eq43.14} 95 | i\hbar\langle x|\frac{\partial}{\partial t}|\varPsi(t) \rangle 96 | &=i\hbar\frac{\partial}{\partial t}\varPsi(x,t) \nonumber\\ 97 | &=\frac{1}{2m}\langle x|\hat{p}^{2}|\varPsi(t) \rangle +\langle x|\hat{V}(x)|\varPsi(t) \rangle 98 | \end{empheq}\eqnormal 99 | 其中 100 | \eqindent{6} 101 | \begin{empheq}{align*} 102 | \langle x|\hat{p}^{2}|\varPsi(t) \rangle &=\bigg(-i\hbar\frac{\partial}{\partial x}\bigg)^{2}\langle x|\varPsi(t) \rangle =-\hbar^{2}\frac{\partial^{2}}{\partial x^{2}}\varPsi(x,t) \\ 103 | \hat{V}(x)|x \rangle &=V(x)|x \rangle,\quad \langle x|\hat{V}(x) \rangle =V(x)\langle x|\\ 104 | \langle x|\hat{V}|\varPsi(t) \rangle &=V(x)\langle x|\varPsi(t) \rangle =V(x)\varPsi(x,t) 105 | \end{empheq} 106 | 代入\eqref{eq43.14}式,即得 107 | \begin{empheq}{equation}\label{eq43.15} 108 | i\hbar\frac{\partial}{\partial t}\varPsi(x,t)=\bigg[-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V(x)\bigg]\varPsi(x,t) 109 | \end{empheq} 110 | 这就是薛定谔方程\eqref{eq43.12}在$x$表象中的表示式.从形式上看,相当于\eqref{eq43.12}式中作下列替换: 111 | \begin{empheq}{equation}\label{eq43.16} 112 | |\varPsi(t) \rangle \rightarrow\varPsi(x,t),\quad \hat{V}\rightarrow V(x),\quad \hat{p}\rightarrow -i\hbar\frac{\partial}{\partial x} 113 | \end{empheq}\eqnormal -------------------------------------------------------------------------------- /C.four/M04.08-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 设力学量算符(厄密算符)$A,B$满足关系 4 | \begin{empheq}{equation*} 5 | A^{2}=B^{2}=1,\quad AB+BA=0 6 | \end{empheq} 7 | 8 | (a) 求$A,B$的本征值.[提示:利用3-19题证明的结论.] 9 | 10 | (b) 在$A$表象中,求$A,B$的矩阵表示. 11 | 12 | (c) 在$A$表象中,求$B$的特征矢量. 13 | 14 | (d) 写出由$A$表象到$B$表象的变换矩阵$S$. 15 | 16 | (e) 利用么正变换公式,将矩阵$A,B$由$A$表象变到$B$表象. 17 | 18 | \exercise 二阶矩阵$A,B$满足关系 19 | \begin{empheq}{equation*} 20 | A^{2}=0,\quad AA^{+}+A^{+}A=1,\quad A^{+}A=B 21 | \end{empheq} 22 | 试证明$B^{2}=B$,并在$B$表象中求出矩阵$A,B$. 23 | 24 | \exercise 满足条件$U^{+}U=UU^{+}=1$,$\det U=1$的$n$阶矩阵$U$称为$SU_{n}$矩阵.试求$SU_{n}$的一般表示式. 25 | 26 | \exercise 设$|\varPsi\rangle$,$|\phi\rangle$是代表不同状态的态矢量(未归一化),证明施瓦茨(Schwarz)不等式 27 | \begin{empheq}{equation*} 28 | |\langle \varPsi|\phi \rangle |^{2} < \langle \varPsi|\varPsi \rangle \langle \phi|\phi \rangle 29 | \end{empheq} 30 | 31 | [提示: 作$|x \rangle=|\phi \rangle+\lambda|\varPsi \rangle $,必有$\langle x|x \rangle >0$,再找一个特殊的$\lambda$值.] 32 | 33 | \exercise 利用上题证明的施瓦茨不等式证明不确定度关系式. 34 | 35 | [提示:取$|\phi \rangle=\langle \hat{A}+i\xi\hat{B} \rangle|\varPsi\rangle $] 36 | 37 | \exercise 设$|\varPsi_{n} \rangle$,$|\varPsi_{k} \rangle $是厄密算符$F$的本征态矢量,相应于不同本征值.设算符$G$与$F$对易. 38 | \prove $\langle \varPsi_{k}|G|\varPsi_{n} \rangle =0$ 39 | 40 | \exercise 设$|n\rangle$是厄密算符$H$的本征态矢量,$A$是另一个算符. 41 | \prove $\langle n|[A,H]|n\rangle=0$.又,如$|n^{\prime}\rangle$,$|n\rangle$是简并态(相应于$H$的同一个本征值),证明$\langle n|[A,H]|n^{\prime}\rangle=0$. 42 | 43 | \exercise 写出动量表象中一维谐振子的定态薛定谔方程,与无表象中的方程$(\S\ref{sec:02.05})$比较,从而写出基态与第一激发态波函数(动量表象). 44 | 45 | \exercise 粒子在均匀力场$(F)$中作一维运动,$V(x)=-Fx$.写出并求解动量表象中的定态薛定谔方程. 46 | 47 | \exercise 质量为$\mu$的粒子在势场$V(x)$作用下作一维运动,设能级是分立的.算符$F(x)$是$x$的解析函数.证明能量表象中求和规则 48 | \begin{empheq}{equation*} 49 | \sum_{n}(E_{n}-E_{k})|F_{nk}|^{2}=\frac{\hbar^{2}}{2\mu}\langle k|\bigg|\frac{dF}{dtx}\bigg|^{2}|k \rangle 50 | \end{empheq} 51 | 52 | \exercise 同上题,设$\lambda$为实数,证明求和规则 53 | 54 | \exercise 设$F(\boldsymbol{r},\boldsymbol{p})$为力学量算符(厄密算符),证明能量表象中求和规则 55 | 56 | \exercise 同4-10题,设$V(x)$与质量$\mu$无关证明求和规则. 57 | 58 | \exercise 一维谐振子,对于能量本征态$|n\rangle$,利用升、降算符$(a^{+},a)$计算动能平均值、势能平均值,以及$\Delta x,\Delta p$. 59 | 60 | \exercise 对于谐振子相干态$|\alpha\rangle$,计算$\overline{n},\Delta n\overline{E},\overline{x},\Delta x,\overline{p},\Delta p$.特别注意$\alpha$是实数时的结果. 61 | 62 | \exercise 某体系的能量算符(已经无量纲化)为 63 | \begin{empheq}{equation*} 64 | H=\frac{5}{3}a^{+}a+\frac{2}{3}(a^{2}+a^{+2}) 65 | \end{empheq} 66 | 其中$a=\frac{q+ip}{\sqrt{2}}$,$a^{+}=\frac{q-ip}{\sqrt{2}}$,$q,p$满足对易式$[q,p]=i$.试求体系的能谱及基态波函数(q表象). 67 | 68 | \exercise 考虑谐振子升降算符$a^{+},a$的线性变换 69 | \begin{empheq}{equation*} 70 | b=\lambda a+\nu a^{+},\quad b^{+}=\lambda a^{+}+\nu a 71 | \end{empheq} 72 | $\lambda$,$\nu$为实数,并满足关系$\lambda^{2}-\nu^{2}=1$.证明:对于算符$b$的任何一个本征态$|\beta\rangle$,(满足本征方程$b|\beta\rangle=\beta|\beta\rangle$)有$\Delta x\cdot \Delta p=\frac{\hbar}{2}$ 73 | 74 | [提示:证明$[b,b^{+}]=1,a=\lambda b-\nu b^{+},a^{+}=\lambda b^{+}-\nu b$,再将$x,p$用$b,b^{+}$表示.] 75 | 76 | \exercise 对于角动量算符$\boldsymbol{J}$和常矢量$\boldsymbol{n}$,证明 77 | \begin{empheq}{equation*} 78 | [\boldsymbol{J},\boldsymbol{n}\cdot\boldsymbol{J}]=i\hbar\boldsymbol{n}\times\boldsymbol{J} 79 | \end{empheq} 80 | 81 | \exercise 对于角动量算符$\boldsymbol{J}$,参数$\lambda$,证明公式(取$\hbar=1$) 82 | \begin{empheq}{align*} 83 | J_{z}^{n}J_{\pm}=J_{\pm}(J_{z}\pm &1)^{n},\quad n=1,2,3,\cdots \\ 84 | e^{i\lambda J_{z}}J_{x}e^{-\lambda J_{z}} &=J_{x}\cos\lambda-J_{y}\sin\lambda \\ 85 | e^{i\lambda J_{z}}J_{y}e^{-\lambda J_{z}} &=J_{x}\cos\lambda+J_{y}\sin\lambda 86 | \end{empheq} 87 | 88 | \exercise 证明:在$\hat{\boldsymbol{L}}^{2}$,$L_{z}$共同本征态$|jm \rangle $下,$\overline{J_{x}}=0,\overline{J_{y}}=0$.再进一步证明$J_{x}$和$J_{y}$的奇幕次式($J_{x}^{2},J_{x}^{2}J_{y}$等等)平均值也等于0. 89 | 90 | \exercise 对于$|jm \rangle $态,计算$\overline{J_{x}}^{2},\overline{J_{y}}^{2},\Delta J_{x},\Delta J_{y}$,并与$J_{x}$,$J_{y}$之间的不确定度关系作比较. 91 | 92 | \exercise 设$\boldsymbol{n}$方向与$z$轴成$\theta$角,对于$|jm\rangle$态计算$\overline{J_{n}}$. 93 | 94 | \exercise 以$|lm\rangle$表示$\hat{\boldsymbol{L}}^{2}$,$L_{z}$共同本征态,限定$l=1$,取基矢为$|11 \rangle $,$|10\rangle$,$1-1$,在这态矢量子空间建立$\hat{\boldsymbol{L}}^{2}-\hat{L}_{z}$表象.求$L_{x},L_{y}$ 的矩阵(3阶)表示以及本征值和本征矢量(取$\hbar=1$). 95 | 96 | \exercise 在坐标表象中,$\hat{\boldsymbol{L}}^{2}$,$L_{z}$,共同本征函数记为$Y_{bm}(\theta,\varphi)$,即$|lm\rangle $态的波函数.试根据公式$(L_{x}-iL_{y})Y_{l,-l}=0$,求$Y_{l,-l}$的具体函数形式. 97 | 98 | \end{exercises} 99 | -------------------------------------------------------------------------------- /C.nine/M09.00-Quantum leap.tex: -------------------------------------------------------------------------------- 1 | \chapter{量子跃迁}\label{chp:09} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | % 与时间有关的微扰论 5 | \input{QM file/body/C.nine/M09.01-Time-related perturbation theory} 6 | 7 | % 几种典型跃迁 8 | \input{QM file/body/C.nine/M09.02-A few typical leaps} 9 | 10 | % 光的吸收与受激辐射 11 | \input{QM file/body/C.nine/M09.03-Light absorption and stimulated radiation} 12 | 13 | % 自发辐射 14 | \input{QM file/body/C.nine/M09.04-Spontaneous radiation} 15 | 16 | % 激光原理 17 | \input{QM file/body/C.nine/M09.05-Laser Principle} 18 | 19 | % 能量-时间不确定度关系 20 | \input{QM file/body/C.nine/M09.06-Energy-time uncertainty relationship} 21 | 22 | % 习题 23 | \input{QM file/body/C.nine/M09.07-Exercises} 24 | -------------------------------------------------------------------------------- /C.nine/M09.01-Time-related perturbation theory.tex: -------------------------------------------------------------------------------- 1 | \section[与时间有关的微扰论]{与时间有关的微扰论} \label{sec:09.01} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 考虑一个物理体系(例如一个原子),其能量算符为$H_{0}$(不显含$t$),$H_{0}$的正交归一化的本征函数记为$\varPsi_{n}(x)$,相应的能级记为$E_{n}$.[$x$代表波函数所涉及的全体独立变量,也可以理解为某种守恒量完全集($H_{0}$在内)的共同本征函数,$n$代表全体量子数.]设开始时体系处于定态$\varPsi_{k}$.如果没有外界作用,体系将继续处于$\varPsi_{k}$态,波函数的时间变化表现为一个位相因子, 5 | \begin{empheq}{equation}\label{eq91.1} 6 | \varPsi_{k}(x,t)=\varPsi_{k}(x)e^{-iE_{k}t/\hbar} 7 | \end{empheq} 8 | 这就是定态. 9 | 10 | 设$t>0$时体系受到外界作用,作用势$H^{\prime}(x,t)$,即体系的总能量算符变成 11 | \eqshort 12 | \begin{empheq}{equation}\label{eq91.2} 13 | H=H_{0}+H^{\prime} 14 | \end{empheq}\eqnormal 15 | 设$[H_{0},H^{\prime}]\neq0$,因此$t>0$时$H_{0}$不再是守恒量.与此相应,波函数满足薛定谔方程: 16 | \begin{empheq}{equation}\label{eq91.3} 17 | i\hbar\frac{\partial}{\partial t}\varPsi(x,t)=H\varPsi=(H_{0}+H^{\prime})\varPsi(x,t) 18 | \end{empheq} 19 | 按照态叠加原理,$\varPsi(x,t)$可以表示成$H_{0}$的本征函数的线性叠加,即 20 | \begin{empheq}{equation}\label{eq91.4} 21 | \varPsi(x,t)=\sum_{n}C_{n}(t)\varPsi_{n}(x)e^{-iE_{n}t/\hbar} 22 | \end{empheq} 23 | 初始条件为 24 | \begin{empheq}{equation}\label{eq91.5} 25 | \varPsi(x,0)=\varPsi_{k}(x)\quad\text{即}\quad C_{n}(0)=\delta_{nk} 26 | \end{empheq} 27 | 如求出了各$C_{n}(t)$,也就是求出了$\varPsi(x,t)$.设在$t=T$时去除外界作用$H^{\prime}$,并随即测量体系的能量,即测量$H_{0}$,按照波函数的普遍概率解释,测得$H_{0}=E_{f}$的概率为$C_{f}^{*}(T)C_{f}(T)$,这也就是$t=T$时体系处于$\varPsi_{f}$态的概率.或者说,$C_{f}^{*}(T)C_{f}(T)$就是到时刻$T$为止体系已由原先的$\varPsi_{k}$态跃迁到$\varPsi_{f}$态的概率.$C_{f}^{*}C_{f}$的时间变化率称为由$\varPsi_{k}$态变到$\varPsi_{f}$态的跃迁速率,记为 28 | \begin{empheq}{equation}\label{eq91.6} 29 | w_{k\rightarrow f}(t)=\frac{d}{dt}[C_{f}^{*}(t)C_{f}(t)] 30 | \end{empheq} 31 | $\varPsi_{k}$称为初态,$\varPsi_{f}$称为终态. 32 | 33 | 为了求出$C_{f}(t)$,将\eqref{eq91.4}式代入\eqref{eq91.3}式,得到 34 | \begin{empheq}{equation*} 35 | i\hbar\sum_{n}\frac{dC_{n}}{dt}\varPsi_{n}e^{-iE_{n}t/\hbar}=\sum_{n}H^{\prime}\varPsi_{n}C_{n}e^{-iE_{n}t/\hbar} 36 | \end{empheq} 37 | 以$\varPsi_{f}^{\prime}$左乘上式,对全空间积分,并注意利用正交归一化条件 38 | \begin{empheq}{equation}\label{eq91.7} 39 | \int\varPsi_{f}^{*}(x)\varPsi_{n}(x)dx=\delta_{fn} 40 | \end{empheq} 41 | 可得 42 | \begin{empheq}{equation}\label{eq91.8} 43 | i\hbar\frac{dC_{f}}{dt}e^{-E_{f}t/\hbar}=\sum_{n}H_{fn}^{\prime}C_{n}e^{-iE_{n}t/\hbar} 44 | \end{empheq} 45 | 其中 46 | \begin{empheq}{equation}\label{eq91.9} 47 | H_{fn}^{\prime}=\int\varPsi_{f}^{*}H^{\prime}\varPsi_{n}dx=\langle \varPsi_{f}|H^{\prime}|\varPsi_{n} \rangle 48 | \end{empheq} 49 | 是$H_{0}$表象中$H^{\prime}$的矩阵元,它与时间$t$有关. 50 | 51 | \eqref{eq91.8}式是严格的,它代表一组联立方程$(f=1,2,\cdots)$,如能严格解出,当然很好.但一般\eqref{eq91.8}式不易严格解出,需用近似解法.本节只介绍微扰论解法,条件是$H^{\prime}$较弱而且作用时间也不长,时刻$t$时体系已由初态$\varPsi_{k}$跃迁到各个可能终态的总概率远小于1,即 52 | \begin{empheq}{equation}\label{eq91.10} 53 | \sum_{n}^{\prime}C_{n}^{*}(t)C_{n}(t)\ll 1 54 | \end{empheq} 55 | 在这条件下可以略去\eqref{eq91.8}式右端所有$n\neq k$的$C_{n}$,并取$C_{k}(t)\approx1$,从而将\eqref{eq91.8}式近似为 56 | \begin{empheq}{equation}\label{eq91.11} 57 | i\hbar\frac{d}{dt}C_{f}=H_{fk}^{\prime}(t)e^{i\omega_{fk}t} 58 | \end{empheq} 59 | 积分,即得满足初始条件\eqref{eq91.5}式的解为 60 | \begin{empheq}{equation}\label{eq91.12} 61 | \boxed{C_{f}(t)=\frac{1}{i\hbar}\int_{0}^{t}H_{fk}^{\prime}e^{i\omega_{fk}t}dt} 62 | \end{empheq} 63 | 其中$\omega_{fk}=\frac{E_{f}-E_{k}}{\hbar}$.这个结果相当于视$H^{\prime}$为微扰而求出的一级近似.如将\eqref{eq91.12}式再代入\eqref{eq91.8}式右端(令$f\rightarrow n$),就可求出$C_{f}(t)$的二级近似.不过通常只取一级近似,即\eqref{eq91.12}式,这是本章的基本公式. 64 | 65 | 从\eqref{eq91.12}式可知,如果$H_{fk}^{\prime}(t)=0(00$时受到外来微扰$H^{\prime}(x,t)=F(x)e^{-t/\tau}$的作用.试用微扰论(一级近似)求$t\gg\tau$时$(t\rightarrow\infty)$体系处于各激发态$(\varPsi_{n},E_{n}>E_{1})$的概率. 71 | 72 | \solution 微扰$H^{\prime}$的矩阵元($H_{0}$表象)为 73 | \begin{empheq}{align*} 74 | H_{n1}^{\prime}(t) &=e^{-t/\tau}\int\varPsi_{n}^{*}(x)F(x)\varPsi_{1}(x)dx \\ 75 | &=F_{n1}e^{-t/\tau} 76 | \end{empheq} 77 | 如$F_{n1}\neq0$,$H^{\prime}$将引起由$\varPsi_{k}$向$\varPsi_{n}$的跃迁,所求概率等于$C_{n}^{*}(\infty)C_{n}(\infty)$.按照\eqref{eq91.12}式, 78 | \begin{empheq}{align*} 79 | C_{n}(t) &=\frac{F_{n1}}{i\hbar}\int_{0}^{t}\exp\left(i\omega_{n1}t-\frac{t}{\tau}\right)dt \\ 80 | &=\frac{\frac{F_{n1}}{i\hbar}\left[\exp\left(i\omega_{n1}t-\frac{t}{\tau}\right)-1\right]}{i\omega_{n1}-\frac{1}{\tau}} 81 | \end{empheq} 82 | 当$t\rightarrow\infty(t\gg\tau)$,即得 83 | \begin{empheq}{equation*} 84 | C_{n}(\infty)=\frac{F_{n1}}{E_{n}-E_{1}+\frac{i\hbar}{\tau}} 85 | \end{empheq} 86 | 体系处于$\varPsi_{n}$态的概率为 87 | \begin{empheq}{equation*} 88 | |C_{n}(\infty)|^{2}=\frac{|F_{n1}|^{2}}{(E_{n}-E_{1})^{2}+\frac{\hbar^{2}}{\tau^{2}}} 89 | \end{empheq} 90 | 微扰论适用条件为$\sum^{\prime}|C_{n}|^{2}\gg1(n\neq1)$,为此必须$|C_{n}|^{2}\gg1$,即 91 | \begin{empheq}{equation*} 92 | |F_{n1}|\gg E_{n}-E_{1}\quad\text{或}\quad |F_{n1}|\gg\frac{\hbar}{\tau} 93 | \end{empheq} 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | -------------------------------------------------------------------------------- /C.nine/M09.05-Laser Principle.tex: -------------------------------------------------------------------------------- 1 | \starthis\section[激光原理]{激光原理} \label{sec:09.05} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 激光是受激辐射的光虽然爱因斯坦早在1917年就提出了原子受激辐射的概念,但在长时期内受激辐射并未得到技术上的应用,因为普通的光源都是利用原子自发辐射,受激辐射虽然同时存在,但其强度远小于自发辐射,微不足道.20世纪50年代出现了微波量子放大器(maser)后,受激辐射受到重视,并很快发明了红宝石激光器(1960 年).从此以后,激光(Laser)在技术应用和理论研究两方面都得到了迅速发展.本节对激光的原理作简单的定性介绍. 5 | 6 | 回顾$\S$\ref{sec:09.04}讨论过的原子在能级$E_{k}$和$E_{f}$之间的三种跃迁,设$E_{k}0)$设在$t=0$制备好大量处于初态$\varPsi_{2}$的原子,然后就测量辐射的光子能量$E=\hbar\omega$.设跃迁$\varPsi_{2}\rightarrow\varPsi_{1}$的平均寿命为$\tau$,有效测量大致在$t=\tau$前完成,可取$\Delta t\sim\tau$.被测量的光子,其空间分布范围大致是$\Delta x\lesssim c\tau$,因此有动量不定值$\Delta p\sim\frac{\hbar}{\Delta x}\gtrsim\frac{\hbar}{c\tau}$,和能量不定值$\Delta E=c\Delta p\gtrsim\frac{\hbar}{\tau}$.结论是:测到的光子能量$\hbar\omega$并不严格地等于原子跃迁前后的能级差$(E_{2}-E_{1})$,而有不确定度$\Delta E$,而$\Delta E$,$\Delta t$满足\eqref{eq96.1}式. 17 | 18 | 表面看来,以上结论与能量守恒定律有矛盾,其实不然.到测得光子时为止,原子在终态$\varPsi_{1}$中停留的时间是有限的$(t\lesssim\tau)$所以终态并非严格意义下的定态,其能量值并不严格等于$E_{1}$,而有分布宽$\Delta E\gtrsim\frac{\hbar}{\tau}$,初态也有类似的能级宽度.初、终态的能级宽度正是光子能量不确定度的来由.总之,如某状态只在有限时间内存在,它就不是严格的定态,而有能量分布$\Delta E$. 19 | 20 | \exa 在粒子物理研究中发现,能够自行蜕变的不稳定粒子,其质量都有不确定度$\Delta m$,它与蜕变的平均寿命$\tau$有关系 21 | \begin{empheq}{equation}\label{eq96.3} 22 | \Delta m\cdot\tau\sim\frac{\hbar}{c^{2}} 23 | \end{empheq}\eqnormal 24 | 用能量-时间不确定关系\eqref{eq96.1}式容易解释这个关系,因为粒子质量与相对论性质的能量有关系$E=mc^{2}$,所以$\Delta E=c^{2}\Delta m$,而寿命$\tau$正是时间不确定度$(\Delta t\sim\tau)$. 25 | 26 | \exa 在单频微扰作用下原子从初态$\varPsi_{k}$(能级$E_{k}$)向终态$\varPsi_{f}$(能级$E_{f}$)跃迁.跃迁概率由\eqref{eq92.5}式表示.考虑终态能量连续的情形,对于$F_{fk}$相同而能量互相不同的终态,跃迁概率与初终态能级差$(E_{f}-E_{k})=\hbar\omega_{fk}$有关系 27 | \begin{empheq}{align*} 28 | |C_{f}(t)|^{2} &\propto\frac{[1-\cos(\omega_{fk}-\omega_{o})t]}{(\omega_{fk}-\omega_{o})^{2}} \\ 29 | &\propto \frac{\sin^{2}[(\omega_{fk}-\omega_{o})t/2]}{(\omega_{fk}-\omega_{o})^{2}} 30 | \end{empheq}\eqshort 31 | $|C_{f}(t)|^{2}-\omega_{fk}$关系如图\ref{fig.9-5}所示.$\omega_{fk}$的有效分布宽度大致可以确定为$\Delta\omega_{fk}\sim\frac{2\pi}{t}$,因此终态能量不确定度约为$\Delta E_{f}\sim\frac{2\pi\hbar}{t}$,即 32 | \begin{empheq}{equation}\label{eq96.4} 33 | \Delta E_{f}\cdot\sim2\pi\hbar 34 | \end{empheq}\eqnormal 35 | 36 | \begin{figure}[!h] 37 | \centering 38 | \small 39 | \includegraphics[width=5cm,clip]{QM file/figure/9-5} 40 | \caption{}\label{fig.9-5} 41 | \end{figure} 42 | \noindent 这里$t$相当于终态存在时间的不确定度,即$\Delta t$.造成终态能量不完全确定的原因是:微扰$H^{\prime}$既然只在有限时间内起作用,它实质上不是严格的单频微扰,其频谱宽度$\Delta\omega\gtrsim\frac{2\pi}{t}$,因此原子从$H^{\prime}$吸收的能量量子并不严格等于$\hbar\omega$,而有不确定度$\hbar\Delta\omega\gtrsim\frac{2\pi\hbar}{t}$,所以终态能量也有同样的不确定度. 43 | 44 | 在例1和例3中,$\Delta E$都很小,常可略去不计.例如例3,取$t\sim10^{-10}\si{s}$,则$\Delta E_{f}\sim\frac{\hbar}{t}\sim4\times10^{-5}\si{eV}$.$\S$\ref{sec:09.02}正是在忽略$\Delta E_{f}$的条件下,对跃迁速率作了近似处理,从而得出$E_{f}=E_{k}+\hbar\omega$的结论.但是例2中$\tau$有时非常小,$\Delta m$可以达到$m$的量级. 45 | 46 | 能量-时间不确定度关系的正确性是肯定的,对它的论证却并不统一.常见的一种论证是,取能量算符为$\hat{E}=i\hbar\frac{\partial}{\partial t}$,于是就有 47 | \begin{empheq}{equation}\label{eq96.5} 48 | [t,\hat{E}]=[t,i\hbar\frac{\partial}{\partial t}]=-i\hbar 49 | \end{empheq}\eqshort 50 | 再仿照$x-p_{x}$不确定关系的推导,得到 51 | \begin{empheq}{equation*} 52 | \Delta E\cdot\Delta t\geqslant\frac{\hbar}{2} 53 | \end{empheq}\eqnormal 54 | 这种论证显然不妥.我们姑且不去争论$t$是否可以作为算符对待,至少可以指出将$i\hbar\frac{\partial}{\partial t}$作为能量算符用于对易式的计算是不妥的,容易引申出种种谬论.例如,对于任何不显含$t$的算符$\hat{F}(\boldsymbol{r},\boldsymbol{p}$,显然有$\left[\hat{F},\frac{\partial}{\partial t}\right]=\frac{\partial\hat{F}}{\partial t}$,因此$F$是守恒量,等等. 55 | 56 | 利用狭义相对论中四维协变矢量的概念来论证能量-时间不确定关系也许是较好的办法.在相对论中, 57 | \begin{empheq}{equation*} 58 | x_{\mu}=(x,y,z,ict),\quad p_{\mu}=\left(p_{x},p_{y},p_{z},\frac{iE}{c}\right) 59 | \end{empheq}\eqshort 60 | 众所周知,利用$\hat{p_{x}}=-i\hbar\frac{\partial}{\partial x}$可以证明$x-p_{x}$不确定度关系: 61 | \begin{empheq}{equation}\label{eq96.6} 62 | \Delta x\cdot\Delta p_{x}\geqslant\frac{\hbar}{2} 63 | \end{empheq} 64 | 由于$\hat{p_{x}}=-i\hbar\frac{\partial}{\partial x}$也适用于相对论情形,所以\eqref{eq96.6}式也适用于相对论情形.$y-p_{y},z-p_{z}$间也有类似的不确定度关系.据此类推,$x_{4}=ict$与$p_{4}=\frac{iE}{c}$之间也应有不确定度关系: 65 | \begin{empheq}{equation*} 66 | \Delta x_{4}\cdot\Delta p_{4}\geqslant\frac{\hbar}{2} 67 | \end{empheq} 68 | 亦即 69 | \begin{empheq}{equation} \label{eq96.7} 70 | \Delta t\cdot\Delta E\geqslant\frac{\hbar}{2} 71 | \end{empheq}\eqnormal 72 | 在量级的意义上,\eqref{eq96.7}式与\eqref{eq96.1}式并无不同 73 | 74 | -------------------------------------------------------------------------------- /C.nine/M09.07-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 设$t<0$时体系处于基态$\varPsi_{1}$,$t>0$时受到逐渐增强再逐渐消退的外来微扰$H^{\prime}(x,t)$作用, 4 | \begin{empheq}{equation*} 5 | H^{\prime}(x,t)=\frac{F(x)}{[\tau^{2}+(t-t_{0})^{2}]},\quad \frac{t_{0}}{\tau}\gg1 6 | \end{empheq} 7 | 8 | 设$t_{0}$很大,满足$\dfrac{(E_{2}-E_{1})t_{0}}{\hbar}\gg2\pi$.求微扰消退后$(t\rightarrow\infty)$体系处于各激发态$[\varPsi_{n}(x)]$的概率. 9 | 10 | \exercise 某体系(能量算符$H_{0}$)只有两个能级(非简并的),$E_{2}-E_{1}=\hbar\omega>0$,设$t<0$时处于基态$\varPsi_{1}$.$t>0$时受到外来作用,能量算符变成$H=H_{0}+H^{\prime}$,设$H^{\prime}$不含$t$,矩阵元为 11 | \begin{empheq}{align*} 12 | \langle\varPsi_{1}|H^{\prime}|\varPsi_{1}\rangle&=\langle\varPsi_{2}|H^{\prime}|\varPsi_{2}\rangle=0, \\ 13 | \langle\varPsi_{1}|H^{\prime}|\varPsi_{2}\rangle&=\langle\varPsi_{2}|H^{\prime}|\varPsi_{1}\rangle=\hbar\nu 14 | \end{empheq} 15 | 16 | 试严格求解薛定谔方程,求$\varPsi(t)$.如在任意$t>0$时刻测量$H_{0}$之值,测得$H_{0}=E_{2}$的概率等于什么? 17 | 18 | [提示:先求出$H$的本征函数$\varPsi_{\alpha},\varPsi_{\beta}$,本征值$E_{\alpha},E_{\beta}$,再将$\varPsi(t)$表示成也$\varPsi_{\alpha},\varPsi_{\beta}$的叠加,求出$\varPsi(t)$后,再表示成$\varPsi_{1},\varPsi_{2}$的叠加.] 19 | 20 | \exercise 上题中,设$H^{\prime}$是微扰,即设$\nu\ll\omega$,求$t>0$时刻测得$H_{0}=E_{2}$的概率,与微扰论结果[\eqref{eq91.12}式]比较. 21 | 22 | \exercise $t=0$时电子的自旋取值为$S_{z}=\dfrac{\hbar}{2}$,$t>0$时受到沿正$x$轴方向的磁场$(\boldsymbol{B})$作用,作用势为 23 | \begin{empheq}{equation*} 24 | H^{\prime}=\frac{e B}{m_{e}c}S_{z}=\hbar\omega\sigma_{x},\quad \omega=\frac{e B}{2m_{e}c} 25 | \end{empheq} 26 | 27 | 视$H^{\prime}$为微扰,用\eqref{eq91.12}式计算$t>0$时测得$S_{z}=-\dfrac{\hbar}{2}$的概率.微扰论计算公式成立的条件是什么?(本题是在简并态之间的跃迁问题,请与7-20题结果对照.) 28 | 29 | \exercise 电荷为$e$(或$-e$)质量为$m$的一维谐振子,(a) 写出电偶极跃迁选择定则.(b) 求自发跃迁速率公式(初态$\varPsi_{n}$). 30 | 31 | \exercise 电荷为$e$(或$-e$)质量为$m$的三维各向同性谐振子,[用直角坐标系,以$\varPsi_{n1}(x)\varPsi_{n2}(x)\varPsi_{n3}(x)$作为能量本征函数.](a) 求电偶极跃迁选择定则,(b) 求自发跃迁速率公式.(设初态量子数$n_{1}=n_{2}=n_{3}=n$,考虑向一切可能的终态跃迁速率之和.)(c) 取$n_{1}=n_{2}=n_{3}=1$,如谐振子是电子,$\hbar\omega=1\si{eV}$,求初态平均寿命.如谐振子是质子,$\hbar\omega=1\si{MeV}$,求初态平均寿命. 32 | 33 | \exercise 处于无限深平底势阱中的带电粒子,求其电偶极跃迁选择定则. 34 | 35 | \exercise 考虑自旋轨道耦合,原子中价电子(最外层电子)定态波函数取$(H,\boldsymbol{L}^{2},\boldsymbol{J}^{2},J_{z})$共同本征函数,量子数$(nljm_{j})$.对于价电子的自发跃迁(电偶极跃迁),证明选择定则是 36 | \begin{empheq}{equation*} 37 | \Delta l=\pm1,\quad \Delta j=0,\pm1,\quad \Delta m_{j}=0,\pm1 38 | \end{empheq} 39 | 40 | [提示:利用公式$\boldsymbol{\sigma}(\boldsymbol{\sigma}\cdot\boldsymbol{r})+(\boldsymbol{\sigma}\cdot\boldsymbol{r})\boldsymbol{\sigma}=2r$,以及7-15题证明的公式.注意$\boldsymbol{r},\boldsymbol{\sigma}\cdot\boldsymbol{r}$及$Y_{lm}$的宇称性.要着重证明$\Delta j=\pm2$的跃迁是禁止的.] 41 | 42 | \exercise 大量氢原子均处于基态,而且电子自旋均沿正$z$轴方向极化,即电子处于$(n,l,m,m_{s})=\left(1,0,0,\dfrac{1}{2}\right)$状态,亦即$(n,l,j,m_{j})=\left(1,0,\dfrac{1}{2},\dfrac{1}{2}\right)$状态.今用电场沿$\pm z$轴方向偏振的线偏振光照射这些原子,造成1s$\rightarrow$2p能级跃迁,忽略2p$_{1/2}$态与2p$_{3/2}$态的能量差.[取相同的径向波函数$R_{21}(r)$]试利用上题证明的选择定则确定终态$(n=2)$量子数$ljm_{j}$的可能取值,并计算终态为2p$_{1/2}$和2p$_{3/2}$的分支比(原子数之比). 43 | 44 | \exercise 以磁场$\boldsymbol{B}(t)$作用于原子,引起价电子状态的跃迁,求量子数$(lmm_{s})$及$(ljm_{j})$的选择定则. 45 | 46 | \end{exercises} -------------------------------------------------------------------------------- /C.one/M00.00-Intro.tex: -------------------------------------------------------------------------------- 1 | \ctexset{chapter={number={\quad},name={}}} % 应放于cls文件中,chapter计数始 2 | \chapter{致读者}\label{chp:0} 3 | \ctexset{chapter={number={\chinese{chapter}},name={第,章}}} 4 | 5 | 高等教育自学考试物理专业本科阶段设有理论力学、热力学与统计物理学、电动力学、量子力学以及数学物理方法等课程。这些课程理论要求较高,全日制高校的学生学习起来,也是不轻松的。对这些课程,国内已先后出版了许多很好的教科书,但这些教科书都是与系统讲授并辅之以其他教学环节这种教学方式相适应的,对自学不尽合用。自学高考的学生及有志于提高自己物理素养的各方面读者,切望有一套与现有教材相比有不同特点的、比较适合于自学的理论物理自学教材供他们使用。值得高兴的是、许多高校有经验的教师、专家和出版社都热情支持理论物理自学教材的出版工作。课程的自学考试大纲只规定了每门课程的自学和考试的要求,不同的作者根据大纲编写的教材,还能反映作者对课程内容的理解和体会,还有自己的讲述方式和自己的特点。我们认为,发动社会力量编写和出版符合大纲要求的,不同风格的理论物理自学教材供读者选用,无疑是有益的,电子工业出版社组织的这套《理论物理自学丛书》将是最早出版的一套,《丛书》的内容符合自学考试大纲的要求,并力求适应自学的特点。 6 | 7 | 物理专业委员会将这套《理论物理自学丛书》作为自学考试“建议试用”教材之一,愿这套自学丛书对自学考试、成人教育,对工程技术人员和全日制高校的教师和学生都有裨益。 8 | 9 | 10 | %\hspace{6.8cm}\zihao{-5}\kaishu{全国高等教育自学考试指导委员会 \\ 物理专业委员会} 11 | %\hspace{5cm}\normalfont{} \zihao{-5}一九八八年四月\normalsize 12 | 13 | \mbox{} 14 | 15 | \leftskip=45mm 全国高等教育自学考试指导委员会 16 | 17 | \leftskip=70mm 物理专业委员会 18 | 19 | \pskip 20 | \leftskip=70mm 一九八八年四月 21 | 22 | \leftskip=0mm 23 | \clearpage -------------------------------------------------------------------------------- /C.one/M01.00-Introduction.tex: -------------------------------------------------------------------------------- 1 | \setcounter{chapter}{0} 2 | \chapter{绪论}\label{chp:01} 3 | % \makebox[5em][s]{} % 短题目拉间距 4 | 5 | 量子力学是20世纪物理学最重要的发展,它和相对论一起,构成近代物理学的主要理论基础. 6 | 7 | 本章将扼要叙述量子力学诞生前早期量子论的要点,为系统叙述量子力学原理做些概念上的准备.有关史实及实验详情大都已在“原子物理学”课程中讲过,我们尽量从简,而将叙述的重点放在某些理论概念上. 8 | % 黑体辐射与普朗克常数 9 | \input{QM file/body/C.one/M01.01-Blackbody radiation and Planck's constant} 10 | 11 | % 光子 12 | \input{QM file/body/C.one/M01.02-Photon} 13 | 14 | % 玻尔的量子论 15 | \input{QM file/body/C.one/M01.03-Bohr's quantum theory} 16 | 17 | % 原子物理中的特征量 18 | \input{QM file/body/C.one/M01.04-Characteristic quantities in atomic physics} 19 | 20 | % 德布罗意的“物质波”假设 21 | \input{QM file/body/C.one/M01.05-De Broglie's matter wave hypothesis} 22 | 23 | % 习题 24 | \input{QM file/body/C.one/M01.06-Exercises} 25 | 26 | -------------------------------------------------------------------------------- /C.one/M01.02-Photon.tex: -------------------------------------------------------------------------------- 1 | \section[光子]{\makebox[5em][s]{光子}}\label{sec:01.02} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | % \setlength{\mathindent}{9em} 本文标准公式缩进 4 | 5 | 1905年,爱因斯坦将普朗克的量子假设发展成光量子(光子)的概念也正是这一年,爱因斯坦创立了狭义相对论. 6 | 7 | 爱因斯坦认为,电磁波(光波)的结构应该是量子化的,其最小单元即一个光子,每个光子均以同样的速度$c$(光速)运动频率为$v$的光波,其光子的能量和动量为 8 | \begin{align} 9 | E=h\nu=\hbar\omega \label{eqn:01.02.01} \\ 10 | p\approx \frac{E}{c}=\frac{h\nu}{c}=\frac{h}{\lambda} \label{eqn:01.02.02} 11 | \end{align} 12 | $\lambda$为光波的波长,光子的运动方向应该和光波的传播方向一致. 13 | 14 | 对于单色平面波,如引入“波矢量”$\boldsymbol{k}$,其方向为波的传播方向,其数值为$k=| \boldsymbol{k}|=\frac{2\pi}{\lambda}$,则光子的动量可以表示成 15 | \eqindent{12} 16 | \begin{equation}\label{eqn:01.02.03} 17 | \boldsymbol{p}=\hbar \boldsymbol{k} 18 | \end{equation}\eqnormal 19 | 20 | 光和其他物质发生相互作用时,基元过程通常表现为光子-电子作用或者光子-原子作用,利用光子的概念并对作用过程应用能量守恒定律,一般就能够得出某些(但不是全部)重要结论. 21 | 22 | \textsf{1. 光电效应} 23 | 24 | 某些金属受到光的照射后,能够发射出电子,形成电流,这就是光电效应其物理机理可用光子概念解释如下金属中的“自由电子”要逸出金属表面,需要克服“逸出功”,$W$当金属受到频率为$v$的光照射时,自由电子即可吸收光子,从而获得能量(电子同时或在短时间内连续吸收两个以上光子的机会极小,可以不考虑这种可能性.)如$h\nu>W$,电子就可以从金属中逸出,并具有动能 25 | \begin{equation}\label{eqn:01.02.04} 26 | \boxed{\frac{1}{2}m_{c}v^{2}=h\nu-W} 27 | \end{equation} 28 | 由此可见,光电子的动能完全由逸出功$W$(由金属性质决定)和入射光的频率$v$所决定,而与光的强度无关光电子的数目则与入射光的强度成正比,即和入射光子的总数成正比对光电子动能的实验测量完全证实了爱因斯坦公式\eqref{eqn:01.02.04}的正确性由\eqref{eqn:01.02.04}式还可看出,当逸出功$W$给定后,入射光的频率$v$必须超过$W/h$,才能产生光电效应;如$v<\frac{W}{h}$,尽管光很强,也不会产生光电子这个结论也已为实验证实. 29 | 30 | \textsf{2. 康普顿散射} 31 | 32 | 关于光子能量和动量的爱因斯坦公式\eqref{eqn:01.02.01}、\eqref{eqn:01.02.03},于l923年被康普顿(A.H.Compton)散射所证实实验发现,X射线被石蜡等轻物质散射时,波长增大经典电磁理论很难解释这现象康普顿利用光子的概念,并假定在光子-电子作用过程中,能量守恒定律和动量守恒定律成立,利用相对论力学,对散射过程作出了成功的理论分析. 33 | 34 | $X$射线的光子能量,约在$10^{3}\si{eV}$以上轻物质中外层电子的原子能级仅几个电子伏,可以当作自由电子设$X$射线的入射波长为$\lambda$,则入射光子的能量、动量为 35 | \begin{equation} 36 | \begin{aligned} \notag 37 | E=h\nu=\frac{hc}{\lambda} \\ 38 | p=\frac{E}{c}=\frac{h\nu}{c}=\frac{h}{\lambda} 39 | \end{aligned} 40 | \end{equation} 41 | \begin{wrapfigure}[7]{r}{9em} 42 | \centering 43 | \includegraphics[width=3cm]{QM file/figure/1-3} 44 | \caption{} 45 | \label{fig.1-3} 46 | \end{wrapfigure} 47 | 电子初始动量为0,初始能量为$m_{c}c^{2}$散射(碰撞)后,设光子沿$\theta$方向射出,如图\ref{fig.1-3},波长变为$\lambda^{\prime}$,能量及动量变为 48 | \setlength{\mathindent}{6em} 49 | \begin{equation} 50 | \begin{aligned} \notag 51 | E^{\prime}=h\nu^{\prime}=\frac{hc}{\lambda^{\prime}} \\ 52 | p^{\prime}=\frac{E^{\prime}}{c}=\frac{h\nu^{\prime}}{c}=\frac{h}{\lambda^{\prime}} 53 | \end{aligned} 54 | \end{equation} 55 | \eqnormal 56 | 电子的反冲角设为$\varphi$能量和动量设为$E_{e}$和$p_{e}$,按照相对论力学 57 | \begin{equation}\label{eqn:01.02.05} 58 | E_{e}^2=c^{2}p_{e}^{2}+m_{e}^{2}c^{4} 59 | \end{equation} 60 | 对散射过程应用能量守恒定律,得到 61 | \begin{equation*} 62 | h\nu+m_{e}c^{2}=h\nu^{\prime}+E_{e}^{2} 63 | \end{equation*} 64 | 亦即 65 | \begin{equation}\label{eqn:01.02.06} 66 | h(\nu-\nu^{\prime})=E_{e}-m_{e}c^{2} 67 | \end{equation} 68 | 对散射过程应用动量守恒定律,得到 69 | \begin{equation}\label{eqn:01.02.07} 70 | \boldmath p-p^{\prime}=p_{e} 71 | \end{equation} 72 | 取平方,得到 73 | \begin{equation*} 74 | p^{2}+p^{\prime 2}-2\boldsymbol{p}\cdot\boldsymbol{p^{\prime}}=p_{e}^{2} 75 | \end{equation*} 76 | 亦即 77 | \begin{equation}\label{eqn:01.02.08} 78 | h^{2}(\nu+\nu^{\prime}-2\nu\nu^{\prime}\cos\theta)=E_{e}^{2}-m_{e}^{2}c^{4} 79 | \end{equation} 80 | \eqref{eqn:01.02.06}式取平方,则得 81 | \begin{equation*} 82 | h^{2}(\nu+\nu^{\prime}-2v\nu^{\prime})=(E_{e}-m_{e}c^{2})^{2} 83 | \end{equation*} 84 | 与\eqref{eqn:01.02.08}式相消,得到 85 | \begin{equation} 86 | \begin{aligned} 87 | 2h^{2}\nu\nu^{\prime}(1-\cos\theta) &=2m_{e}c^{2}(E_{e}-m_{e}c^{2}) \\ 88 | &=2m_{e}c^{2}h(\nu-\nu^{\prime}) 89 | \end{aligned} 90 | \end{equation} 91 | 因此, 92 | \begin{equation*} 93 | \frac{1}{\nu}-\frac{1}{\nu^{\prime}}=\frac{h}{m_{e}c^{2}}(1-\cos\theta) 94 | \end{equation*} 95 | 亦即 96 | \begin{equation}\label{eqn:01.02.09} 97 | \boxed{\lambda^{\prime}-\lambda=\frac{h}{m_{e}c}(1-\cos\theta)} 98 | \end{equation} 99 | 经过散射,X射线得波长有所增加,增量$(\lambda^{\prime}-\lambda)$与散射角有关,并与$\frac{h}{m_{e}c}$成比例,后者称为康普顿波长,记为$\lambda_{c}$, 100 | \begin{equation}\label{eqn:01.02.10} 101 | \lambda_{c}=\frac{h}{m_{e}c}=2.43\times10^{-12} \si{m} 102 | \end{equation} 103 | 对散射光波长的实验证实了\eqref{eqn:01.02.09}式的正确性因此,康普顿散射证实了:(i)光子的能量、动量公式\eqref{eqn:01.02.01}、\eqref{eqn:01.02.02}、\eqref{eqn:01.02.03}是正确的;(ii)微观基元过程中,能量守恒定律和动量守恒定律成立;(iii)相对论力学是正确的. 104 | 105 | \textsf{3. 粒子-反粒子对的湮没与产生} 106 | 107 | 实验发现,电子($e^{-}$)及其反粒子(正电子,$e^{+}$)相碰,可以湮没而产生两个$\gamma$光子,即 108 | \begin{equation*} 109 | e^{-}+e^{+}\rightarrow \gamma+\gamma 110 | \end{equation*} 111 | 根据相对论力学及能量、动量守恒定律,每个$\gamma$光子的能量至少等于电子的静能,即$E_{r}\geqslant m_{e}c^{2}$,相应的$\gamma$射线波长为 112 | \begin{equation*} 113 | \lambda=\frac{hc}{E_{r}}\leqslant\frac{h}{m_{e}c}=\lambda_{c} 114 | \end{equation*} 115 | 这个关系已为实验所证实粒子物理的理论分析表明,能够产生上述湮没过程的电子、正电子距离,大致也是康普顿波长的量级. 116 | 117 | 在温度$T$下,热辐射光子的平均能量约为$3kT$(k为玻尔兹曼常数)按照近代天体物理理论,在宇宙形成的初期,温度极高,两个光子相碰,可能转变成(质子、反质子)对或(中子,反中子)对,按照能量守恒定律,有 118 | \begin{equation*} 119 | E_{\gamma}\approx3kT\approx m_{p}c^{2}=938 \si{MeV} 120 | \end{equation*} 121 | 因此当时温度约为 122 | \begin{equation*} 123 | T\approx m_{p}c^{2} \big/ 3k\approx3.6\times10^{12} \si{K} 124 | \end{equation*} 125 | 126 | 127 | -------------------------------------------------------------------------------- /C.one/M01.05-De Broglie's matter wave hypothesis.tex: -------------------------------------------------------------------------------- 1 | \section[德布罗意的“物质波”假设]{德布罗意的“物质波”假设}\label{sec:01.05} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | % \setlength{\mathindent}{9em} 本文标准公式缩进 4 | % \eqnormal % 恢复标准缩进 5 | 6 | 玻尔量子论的建立,极大地推动了原子物理学的发展.但随着研究的深入,玻尔量子论的局限性也逐渐暴露出来.例如任何一种原子光谱,各条谱线的相对强度表现出很好的规律性,玻尔量子论未能对此作出满意的解释.氨原子光谱表现出某些奇特的规律(似乎是由两套光谱混杂而成),玻尔量子论对此也无力解释长期以来,许多化学和物理理论中,从来认为原子的形状像一个小球,这个概念早已被多种实验事实所肯定. 但在玻尔量子论中,电子作平面轨道运动,因此原子(尤其是氢原子)的形状更像一个饼. 7 | 8 | 1924年,德布罗意提出了“物质波” 的假设.德布罗意注意到了几何光学(光的宏观传播规律)和质点力学有着惊人的相似性.光在均匀介质中沿直线传播的定律,在两种介质的分界面处光的反射和折射定律,以及在不均匀介质中光沿曲线传播的规律,可以统一为“最小光程原理(费马原理)”, 即 9 | \eqshort 10 | \begin{equation}\label{eq15.1} 11 | \delta\int_{A}^{B} ndl = 0 12 | \end{equation}\eqnormal 13 | 光由A点传播到B点,$\int_{A}^{B}\cdots dl$表示由A到B的线积分,n为折射率,(A,B)间任何一条可能的路径的光程即$\int_{A}^{B}ndl$,光程最小的路径就是实际的光线.牛顿质点力学定律可以表示成“最小作用量原理”,即 14 | \begin{equation}\label{eq15.2} 15 | \delta\int_{A}^{B}pdl=\delta\int_{A}^{B}\sqrt{2m(E\sim V)}dl 16 | \end{equation}\eqlong 17 | \begin{wrapfigure}[5]{r}{8em} 18 | \centering 19 | \includegraphics[width=2.5cm,clip]{QM file/figure/1-7} 20 | \caption{} 21 | \label{fig.1-7} 22 | \end{wrapfigure} 23 | 其$m,p,E,V$表示质点的质量,动量,总能和势能,$\int pdl$称为作用量,质点由A至B的实际路径是作用量最小的路径. 24 | 25 | 德布罗意注意到光的本质包含者粒子和波动两个方面,光具有量子化的结构,每个光子具有一定的能量和动量: 26 | \begin{equation}\label{eq15.3} 27 | E=\hbar\omega,\quad p=\frac{h}{\lambda},\quad \boldsymbol{p}=\hbar\boldsymbol{k}\quad 28 | (k=\frac{2\pi}{\lambda}) 29 | \end{equation}\eqnormal 30 | 在传播过程中,光表现出波动性,干涉、衍射等现象就是波动性的典型特征.但在宏观尺度上光的传播可以用光线概念来表述,波动光学表现为几何光学,波动规律以类似于力学规律的形式表现出来.德布罗意认为,电子以及其他物质粒子也都应该具有波动$\sim$粒子二重性.电子在结构上的量子性已为汤姆孙荷质比实验(测量$\frac{e}{m_{e}}$)所证实,电子在宏观尺度的运动遵守牛顿质点力学的规律,这早已被实验肯定.德布罗意认为,电子运动规律本质上应该是波动规律,这种波动性只有在微观尺度(量级和波长接近的尺度)才能表现出来,而在宏观尺度则表现为牛顿力学规律.德布罗意认为爱因斯坦公式\eqref{eq15.3}也适用于一切物质粒子,它们的力学性质$(E,p)$和波动性质$(\omega,\lambda)$通过普朗克常数$\hbar$互相联系. 31 | \begin{wrapfigure}[8]{r}{8em} 32 | \centering 33 | \includegraphics[width=2.5cm,clip]{QM file/figure/1-8} 34 | \caption{} 35 | \label{fig.1-8} 36 | \end{wrapfigure} 37 | 38 | 德布罗意提出上述“物质波”设想时,并无直接的实验根据,而是一种科学假设.他希望这种未经证实的电子的波动性能够解释玻尔量子论所无法解释的那些困难问题.他指出,玻尔量子论中的量子化条件(这是玻尔理论中最难理解的一条)的实质很容易用波动的观点给以解释,如下.电子沿轨道运动,相当于物质波沿轨道传播,如果轨道周长不等于波长的整数倍,物质波将自行干涉而消失,亦即这种轨道是不允许的;如果轨道周长等于波长的整数倍,则物质波就能形成谐波而稳定存在,相应的轨道为稳定轨道形成谐波的条件为 39 | \begin{equation}\label{eq15.4} 40 | \oint\frac{dq}{\lambda}=n,\quad n=1,2,3,\cdots 41 | \end{equation} 42 | 以$\lambda=\frac{h}{p}$代入上式,即得 43 | \begin{equation}\label{eq15.5} 44 | \oint pdq=nh,\quad n=1,2,3,\cdots 45 | \end{equation} 46 | 这正是量子化条件. 47 | 48 | 德布罗意的物质波思想直接导致了量子力学的诞生.相隔不到2年,薛定谔(E.Schr\"{o}dinger)就以“波动力学”的形式建立了量子力学(1926).稍早几个月,海森伯(W.Heisenberg)以“矩阵力学”的形式建立了量子力学(1925). 49 | 50 | 1927 年正式做了电子衍射实验,证实了电子确实具有波动性.接着又做了中子衍射实验,各种原子束和分子束的衍射实验,20世纪90年代还做了$C_{60}$分子(由60个碳原子形成的足球状大分子)束衍射实验,这些实验无一例外地都证实了公式$p=\frac{h}{\lambda}$的正确性,证实了实物粒子确实具有波动性. 51 | 52 | 当实物粒子在某种尺度的空间范围内运动时,如相应的物质波波长远小于空间尺度,一般可以不考虑粒子的波动性,而用经典力学处理粒子的运动.如波长接近或大于空间尺度,则波动性表现为粒子运动规律的主要方面,这时必须用量子力学来处理粒子的运动.下面举几个典型例子. 53 | 54 | (1)气体分子的热运动.温度T下气体分子的热运动(平移)动能为$\frac{3kT}{2}$,$T=300 \si{K}$(室温)时,分子动能约为\num{0.039}\si{eV},相应的物质波波长为 55 | \begin{equation*} 56 | \lambda=\frac{h}{p}=\frac{hc}{\sqrt{2m_{\text{分子}}\times\num{0.039}\si{eV}}} 57 | \end{equation*}\eqshort 58 | 对于氧分子($O_{2}$),$m_{O_{2}}\approx32m_{p}\approx32\times938\times10^{6}\si{eV/c^{2}}$,波长$\lambda\approx0.026\si{nm}$,远小于分子的平均自由程,所以分子的热运动可作经典力学处理. 59 | 60 | (2)原子中的电子运动电子动能的量级约10\si{eV},容易求得波长的量级为 61 | \begin{equation*} 62 | \lambda\sim\frac{hc}{\sqrt{2m_{e}c^{2}E}}\sim 0.39\si{nm} 63 | \end{equation*}\eqnormal 64 | $\frac{\lambda}{2\pi}$和原子半径量级(0.1\si{nm})相同,所以要用量子力学来处理. 65 | 66 | 氢原子的基态,电子动能和动量为 67 | \begin{equation*} 68 | \frac{p^{2}}{2m_{e}}=\frac{\e^{2}}{2a_{0}},\quad \boldsymbol{p}=\sqrt{\frac{m_{e}\e^{2}}{a_{0}}}=\frac{m_{e}\e^{2}}{\hbar}=\frac{\hbar}{a_{0}} 69 | \end{equation*}\eqshort 70 | 波长为 71 | \begin{equation*} 72 | \lambda=\frac{h}{p}=2\pi a_{0} 73 | \end{equation*}\eqnormal 74 | $a_{0}$为玻尔半径. 75 | 76 | (3)原子核中核子的运动.核子(质子和中子)的动能约为$E\sim20 \si{MeV}$,相应的波长约为 77 | 78 | \begin{equation} 79 | \begin{aligned} 80 | \lambda &\sim \frac{hc}{\sqrt{2m_{p}c^{2}E}} \notag \\ 81 | &\sim \frac{1.24\times10^{3} \si{MeV\cdot fm}}{\sqrt{2\times938\times20(\si{MeV})^{2}}} 82 | \approx 6.4 \si{fm}. \notag 83 | \end{aligned} 84 | \end{equation} 85 | 核子的物质波波长$\lambda$和原子核半径同数量级,所以核子的运动也要用量子力学来处理. -------------------------------------------------------------------------------- /C.one/M01.06-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 远离恒星的宇宙空间充满了温度$T=2.8\si{K}$的热辐射(称为宇宙背景辐射),这是宇宙发展早期“大爆炸"的遗迹. 试估算这种“背景辐射”的光子数密度. 4 | 5 | \exercise 在宇宙发展的早期,温度极高,热辐射光子互相碰撞,可以转变成一对正负电子.试估算当时温度的量级. 6 | 7 | \exercise 对于光子被自由电子散射(康普锁散射)问题,设光子能量远小于$m_{e}c^{2}$,则散射过程中电子的能量、动量变化可以用牛顿力学处理.试作出相应的计算,求光的波长变化与散射角的关系. 8 | 9 | \begin{wrapfigure}[6]{r}{10em} 10 | \centering 11 | \includegraphics[width=3.5cm,clip]{QM file/figure/1-9} 12 | \caption{1-4题图} 13 | \label{fig.1-9} 14 | \end{wrapfigure} 15 | \exercise 高能带电粒子在介质中运动,如其速度$v$超过电磁波在介质中的传播速度,就产生切仑科夫辐射.设介质的折射率为$n$,辐射光与粒子运动方向的夹角为$\theta$.试利用光子的能量,动量公式($E_{\gamma}=\hbar\omega,p_{\gamma}=\hbar k$)以及能量守恒及动量守恒定律,求$\theta$与$n,v$的关系 16 | 17 | $\big[\text{提示:光在介质中传播时,}\omega=\dfrac{ck}{n}. \big]$ 18 | 19 | \exercise 从质量为$m$,半径为$R$的星球表面辐射出频率为$\nu_{0}$的光,当这种光在远离星球处被观测到时,测得的频率$\nu<\nu_{0}$,这种现象称为恒星光谱的“引力红移”.设光子可以当作“质点”,引力质量$m_{\text{光}}=\dfrac{h\nu}{c^{2}}$下,光子离开星球时,必须克服星球对它的万有引力.试根据这种通俗模型导出$\dfrac{\nu}{\nu_{0}}$的公式. 20 | 21 | \exercise 来自其他恒星的光掠过太阳(质量$M$,半径$R$)表面时,光线方向发生微小的偏转($\theta$).这个现象曾是广义相对论的实验支柱之一.试利用$1\sim 5$题中光子的“质点”模型对偏转角$\theta$作出量级估算. 22 | \begin{figure}[!h] 23 | \centering 24 | \includegraphics[width=3.5cm,clip]{QM file/figure/1-10} 25 | \caption{1-6题图} \label{fig.1-10} 26 | \end{figure} 27 | \exercise 氢原子中电子-质子间库仑吸引力远大于万有引力.求这两种力的比率.理论上,电子与中子间的万有引力也可以使它们形成类似于氢原子的构造,试求这种“引力原子” 的基态半径公式及数值. 28 | 29 | \exercise (a) $\mu^{-1}$子电荷为$-e$,质量$m_{\mu}=207m_{e}$,$\mu^{-1}$子与原子核(电荷$Ze$)由于库仑吸引力的作用而形成类似氢原子的构造.称为$\mu$原子.视原子核为点电荷,求$\mu$原子半径公式. 30 | 31 | \quad (b) 原子核可视为电荷均匀分布的球体, 核半径的经验公式为 32 | \begin{equation*} 33 | R=r_{0p}Z^{1/3},\quad r_{0p}=1.635\si{fm} 34 | \end{equation*} 35 | 对于较大的原子序数$Z$,核半径$R$有可能大于$\mu$原子半径.求出现这种情况的$Z$的临界值$Z_{0}$. 36 | 37 | \exercise 计算原子核(电荷$Ze$,半径$R$)中各质子间库仑排斥能的总和及(按质子)平均值.原子核半径公式见1-8题.当$Z$取多大数值时,每个质子的平均库仑能达到核力结合能(每个核子约8\si{MeV})的量级? 38 | 39 | \exercise 电子自旋磁矩等于$\mu_{B}$=$\dfrac{\e\hbar}{2m_{\e}c}$(玻尔磁子).在磁场$(B)$中电子获得的磁作用能大致为$B\mu_{B}$量级.如$B\mu_{B}\sim10^{-3}\si{eV}$,求磁场$B$的量级. 40 | 41 | \exercise 估算氢分子转动能级的“解冻温度”.氢分子键长$R=0.74\times10^{-8}\si{cm}$. 42 | 43 | \exercise 由于电磁场的真空量子效应,两块相隔距离$d$的不带电大导体平板间产生微弱吸引力设单位面积受力F,试用量纲分析法确定$F$与各基本普适常数及距离$d$的关系. 44 | 45 | \exercise { (a) 求室温(T=300 \si{K})下中子的德布罗意波长. 46 | 47 | \quad (b) 如上述中子在地面附近垂直下落1\si{m},求波长变化的比率. 48 | } 49 | 50 | \exercise 如普朗克常数的值变成现有值的2倍,而其他基本常数之值不变,下列各项数值变为现有值的多少倍? 51 | 52 | (a)原子半径 \quad (b)晶体密度 \quad (c)蓄电池的电压 53 | 54 | \exercise 质量为$m$的粒子受弹性力$F=-kx(k>0)$作用而作一维简谐振动,按照经典力学可以求出其运动规律为 55 | \begin{equation*} 56 | x(t)=A\sin(\omega t+\alpha),\quad \omega=\sqrt{\frac{k}{m}} 57 | \end{equation*} 58 | A为振幅谐振子的能量为$E=\dfrac{1}{2}kA^{2}$.以上请读者自行验证.试再利用玻尔-索末菲量子化条件或对应原理证明能量及振幅的量子化结果: 59 | \begin{equation*} 60 | E_{n}=n\hbar\omega,\quad A_{n}=\sqrt{\frac{2n\hbar}{m\omega}},\quad n=0,1,2,\cdots 61 | \end{equation*} 62 | $\big[$提示:宏观的谐振动电荷,辐射的电磁波频率与振动频率相同.据此,再利用对应原理,很容易得出结论.$\big]$ 63 | 64 | \exercise 质量为$m$的粒子在大小一定的向心力$\boldsymbol{F}=-\dfrac{k\boldsymbol{r}}{r}$作用下作圆周运动.先用经典力学证明轨道半径$r$,角速度$\omega$,总能量$E$有如下关系: 65 | \begin{equation*} 66 | r\omega^{2}=\frac{k}{m},\quad \boldsymbol{E}=\frac{3}{2}k\boldsymbol{r}=\frac{3}{2}\frac{k^{2}}{m\omega^{2}} 67 | \end{equation*} 68 | 再利用量子化条件或对应原理证明能级的量子化公式: 69 | \begin{equation*} 70 | E_{n}=\frac{3}{2}\bigg(\frac{\hbar^{2}k^{2}n^{2}}{m} \bigg)^{\frac{1}{3}},\quad n=1,2,3,\cdots 71 | \end{equation*} 72 | 73 | \end{exercises} -------------------------------------------------------------------------------- /C.seven/M07.00-Spin.tex: -------------------------------------------------------------------------------- 1 | \chapter{自旋}\label{chp:07} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | % 电子自旋 5 | \input{QM file/body/C.seven/M07.01-Electron Spin} 6 | 7 | % 电子的总角动量 8 | \input{QM file/body/C.seven/M07.02-Total angular momentum of electrons} 9 | 10 | % 碱金属光谱的精细结构 11 | \input{QM file/body/C.seven/M07.03-Fine structure of alkali metal spectra} 12 | 13 | % 粒子在电磁场中的运动 14 | \input{QM file/body/C.seven/M07.04-Motion of a particle in an electromagnetic field} 15 | 16 | % 塞曼效应 17 | \input{QM file/body/C.seven/M07.05-The Seaman Effect} 18 | 19 | % 磁共振 20 | \input{QM file/body/C.seven/M07.06-Magnetic Resonance} 21 | 22 | % 两个角动量的耦合 23 | \input{QM file/body/C.seven/M07.07-Coupling of two angular momentum} 24 | 25 | % 二电子体系的自旋波函数 26 | \input{QM file/body/C.seven/M07.08-Spin wave function of two-electron system} 27 | 28 | % 习题 29 | \input{QM file/body/C.seven/M07.09-Exercises} 30 | -------------------------------------------------------------------------------- /C.seven/M07.03-Fine structure of alkali metal spectra.tex: -------------------------------------------------------------------------------- 1 | \section[碱金属光谱的精细结构]{碱金属光谱的精细结构} \label{sec:07.03} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 碱金属的原子价为1.价电子(最外层的一个电子)在原子核及内层电子的综合库仑场作用下运动,作用势可以近似地用一个中心势$V(r)$表示,这是决定价电子能级的主要物理因素.而能级与光谱的精细结构则来自更微弱的相对论性的物理因素,其中主要的一项称为自旋轨道耦合能,表现形式是 5 | \begin{empheq}{equation}\label{eq73.1} 6 | \hat{H}^{\prime}=\xi(r)\boldsymbol{S}\cdot\boldsymbol{L} 7 | \end{empheq} 8 | $\boldsymbol{S},\boldsymbol{L}$是价电子的自旋及轨道角动量算符,$\xi(r)$是径向函数,按照相对论性的狄拉克方程,$\xi(r)$的函数形式是 9 | \begin{empheq}{equation}\label{eq73.2} 10 | \xi(r)=\frac{1}{2m_{e}^{2}c^{2}}\frac{1}{r}\frac{dV}{dr} 11 | \end{empheq} 12 | 对于类氢原子, 13 | \begin{empheq}{equation}\label{eq73.3} 14 | V(r)=-\frac{Z\e^{2}}{r},\quad \xi(r)=\frac{Z\e^{2}}{2m_{e}^{2}c^{2}}\frac{1}{r^{3}} 15 | \end{empheq} 16 | 例如氢原子$(Z=1)$,自旋轨道耦合能为 17 | \begin{empheq}{equation}\label{eq73.4} 18 | \hat{H}^{\prime}=\frac{\e^{2}}{2m_{e}c^{2}}\frac{1}{r^{3}}\boldsymbol{S}\cdot\boldsymbol{L} 19 | \end{empheq} 20 | 对于\eqref{eq73.4}式,常给予下述形式上的解释:电子在中心力场$V(r)$作用下形成的“轨道”运动(波函数$\varPsi_{nlm}$)造成空间电流,产生磁场,其电磁学效果可以用位于力心处$(r=0)$的“轨道磁矩” 21 | \begin{empheq}{equation}\label{eq73.5} 22 | \boldsymbol{\mu}_{L}=-\frac{\e}{2m_{e}c}\boldsymbol{L} 23 | \end{empheq} 24 | 来代替.电子又有自旋磁矩 25 | \begin{empheq}{equation}\label{eq73.6} 26 | \boldsymbol{\mu}_{s}=-\frac{\e}{m_{e}c}\boldsymbol{S} 27 | \end{empheq} 28 | 这两个磁矩(相距$\boldsymbol{r}$)之间的作用势为 29 | \begin{empheq}{equation*} 30 | H^{\prime}=\frac{\boldsymbol{\mu}_{s}\cdot\boldsymbol{\mu}_{L}}{r^{3}}-\frac{3}{r^{5}}(\boldsymbol{\mu}_{s}\cdot\boldsymbol{r})(\boldsymbol{\mu}_{L}\cdot\boldsymbol{r}) 31 | \end{empheq} 32 | 由于$\boldsymbol{L}=\boldsymbol{r}\times\boldsymbol{p}=-\boldsymbol{p}\times\boldsymbol{r}$,所以$\boldsymbol{L}\cdot\boldsymbol{r}=0$,因此$\mu_{L}\cdot\boldsymbol{r}$,上式就变成\eqref{eq73.4}式.当然,这只能当作一种通俗的解释. 33 | 34 | \eqref{eq73.4}式中,$\boldsymbol{S},\boldsymbol{L}$的量级为$\hbar$,$r$的量级为玻尔半径$a_{0}$,因此 35 | \eqlong 36 | \begin{empheq}{equation*} 37 | H^{\prime}\sim\frac{\e^{2}\hbar^{2}}{m_{e}^{2}c^{2}a_{0}^{3}}\sim\frac{\e^{2}}{a_{0}}\bigg(\frac{\e^{2}}{\hbar c}\bigg)^{2}\sim\frac{27\si{eV}}{(137)^{2}}\sim\num{1.4}\times 10^{-3}\si{eV} 38 | \end{empheq}\eqnormal 39 | 按量级说,自旋轨道耦合能$H^{\prime}$约为电子能级的$10^{-4}\sim10^{-3}$倍,所以可以作为微扰处理.价电子的总能量算符表示成 40 | \begin{empheq}{equation}\label{eq73.7} 41 | H=H_{0}+H^{\prime},\quad H_{0}=\frac{\boldsymbol{p}^{2}}{2m_{e}}+V(r) 42 | \end{empheq} 43 | 与$H$对易的力学量(守恒量)有$H,\boldsymbol{L}^{2},\boldsymbol{J}^{2},J_{x},J_{y},J_{z}$.注意,不考虑自旋轨道耦合作用时(取$H\sim H_{0}$),$\boldsymbol{L},\boldsymbol{S}$都是守恒量.由于$H^{\prime}$的存在,$\boldsymbol{L},\boldsymbol{S}$已经不是守恒量,守恒的是能量,总角动量$\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$,以及$\boldsymbol{L}^{2}$. 44 | 45 | 守恒量完全集可以取为$(H,\boldsymbol{L}^{2},\boldsymbol{J}^{2},J_{z})$,它们的共同本征函数记为$\Psi_{nljm_{j}}(r,\theta,\varphi,S_{z})$,相应于本征值$H=E_{nlj}$以及 46 | \eqlong 47 | \begin{empheq}{equation}\label{eq73.8} 48 | \boldsymbol{L}^{2}=l(l+1)\hbar^{2},\quad \boldsymbol{J}^{2}=j(j+1)\hbar^{2},\quad J_{z}=m_{j}\hbar 49 | \end{empheq}\eqnormal 50 | 一般的中心力场,能级记为$E_{nl}$,现在由于存在自旋轨道耦合能,能级也与之值有关,亦即与$j$有关.但$\boldsymbol{S}\cdot\boldsymbol{L}$之值与$m_{j}$无关,所以能级也与$m_{j}$无关.能级$E_{nlj}$的简并度为$(2j+1)$,相应于$(2j+1)$种$m_{j}$的取值 51 | \begin{empheq}{equation}\label{eq73.9} 52 | m_{j}=j,j-1,\cdots,(-j) 53 | \end{empheq} 54 | 能级的计算可以用微扰论.由于$H_{0}$与$\boldsymbol{L},\boldsymbol{J}$均可对易,可以取$(H_{0},\boldsymbol{L}^{2},\boldsymbol{J}^{2},J_{z})$的共同本征函数作为微扰论的零级近似波函数,记为 55 | \begin{empheq}{equation}\label{eq73.10} 56 | \Psi_{nljm_{j}}^{(0)}=R_{nl}^{(0)}(r)\varPsi_{ljm_{j}}(\theta,\varphi,S_{z}) 57 | \end{empheq} 58 | $\varPsi_{ljm_{j}}$就是$\S$\ref{sec:07.02}讨论过的$(\boldsymbol{L}^{2},\boldsymbol{J}^{2},J_{z})$共同本征函数.$R_{nl}^{(0)}$是径向波函数,与能级的零级近似(记为$E_{nl}^{(0)}$)一起由径向方程(势能$V$)解出.由于微扰$H^{\prime}$与$(\boldsymbol{L}^{2},\boldsymbol{J}^{2},J_{z})$均对易,按照简并态微扰论,\eqref{eq73.10}式就是正确的零级波函数,能级的一级修正等于$H^{\prime}$的平均值,即 59 | \eqlong 60 | \begin{empheq}{align}\label{eq73.11} 61 | E_{nlj}^{(1)}&=\langle H^{\prime}\rangle=\int\Psi_{nljm_{j}}^{(0)+}\xi(r)\boldsymbol{S}\cdot\boldsymbol{L}\Psi_{nljm_{j}}^{(0)}d\tau \nonumber\\ 62 | &=\langle\xi(r)\rangle(\boldsymbol{S}\cdot\boldsymbol{L}\text{本征值}) 63 | \end{empheq} 64 | 其中 65 | \begin{empheq}{equation}\label{eq73.12} 66 | \langle\xi(r)\rangle=\int_{0}^{\infty}\xi(r)[R_{nl}^{(0)}(r)]^{2}r^{2}dr>0 67 | \end{empheq} 68 | \begin{empheq}{equation}\label{eq73.13} 69 | {\boldsymbol{S}\cdot\boldsymbol{L}\text{本征值}=} 70 | \begin{dcases} 71 | \quad \frac{l\hbar^{2}}{2},\qquad j=l+\frac{1}{2} \\ 72 | -\frac{(l+1)\hbar^{2}}{2},\quad j=l-\frac{1}{2} 73 | \end{dcases} 74 | \end{empheq}\eqnormal 75 | 准确到一级近似,能级($H$的本征值)可以表示成 76 | \begin{empheq}{equation}\label{eq73.14} 77 | E_{nlj}\approx E_{nl}^{(0)}+E_{nlj}^{(0)} 78 | \end{empheq} 79 | \begin{wrapfigure}[8]{r}{7em} 80 | \centering 81 | \small 82 | \includegraphics[width=3cm,clip]{QM file/figure/7-1} 83 | \caption{}\label{fig.7-1} 84 | \end{wrapfigure} 85 | 由于自旋轨道耦合作用,能级$E_{nl}^{(0)}$分裂成两个能级,$j=l+\frac{1}{2}$者较高$(E_{nlj}^{(1)}>0)$,$j=l-\frac{1}{2}$者较低$(E_{nlj}^{(1)}<0)$,裂距 86 | \eqllong 87 | \begin{empheq}{align}\label{eq73.15} 88 | \Delta E&=E_{nl,l+\frac{1}{2}}^{(1)}-E_{nl,l-\frac{1}{2}}^{(1)} \nonumber\\ 89 | &=\bigg(l+\frac{1}{2}\bigg)\hbar^{2}\langle\xi(r)\rangle 90 | \end{empheq}\eqnormal 91 | 但s态例外,s态$\boldsymbol{S}\cdot\boldsymbol{L}\text{(本征值)}=0$,没有自旋轨道耦合能,能级不分裂. 92 | 93 | 能级分裂的示意图见图\ref{fig.7-1},图中画出了3p$(n=3,l=1)$能级的分裂情况与此相应,跃迁3p$\rightarrow$3s造成的光谱线也分裂成两条,这就是光谱线的精细结构. 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | -------------------------------------------------------------------------------- /C.seven/M07.06-Magnetic Resonance.tex: -------------------------------------------------------------------------------- 1 | \starthis\section[磁共振]{磁共振} \label{sec:07.06} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 磁共振的基本原理是利用粒子的磁矩在交变磁场中作周期性变化的规律,对磁矩或磁场作精密测量. 5 | 6 | 以自旋为$\frac{\hbar}{2}$的粒子为例,自旋磁矩算符可以表示成 7 | \eqshort 8 | \begin{empheq}{equation}\label{eq76.1} 9 | \boldsymbol{\mu}=\mu_{0}\boldsymbol{\sigma} 10 | \end{empheq}\eqnormal 11 | $\boldsymbol{\sigma}$为泡利算符,$\mu_{0}$由粒子性质决定,对于电子,$\mu_{0}=-\frac{e\hbar}{2m_{e}c}$.将粒子置于恒定磁场$B_{0}$中,(以磁场方向为$z$轴方向)则磁作用势(略去与自旋无关的项)为 12 | \begin{empheq}{equation}\label{eq76.2} 13 | \hat{H}_{0}=-B_{0}\cdot\boldsymbol{\mu}=-B_{0}\mu_{0}\sigma_{z} 14 | \end{empheq} 15 | 这时$\sigma_{z}$是守恒量(和$H_{0}$对易),它的本征态$\chi_{1/2}$及$\chi_{-1/2}$也是$H_{0}$的本征态,相应的能级为 16 | \begin{empheq}{equation}\label{eq76.3} 17 | E_{\pm}=\mp B_{0}\mu_{0}=\mp\hbar\omega,\quad \omega=\frac{B_{0}\mu_{0}}{\hbar} 18 | \end{empheq} 19 | 现在再加上一个和$B_{0}$垂直的交变磁场$B_{1}(t)$, 20 | \begin{empheq}{equation}\label{eq76.4} 21 | B_{1x}=B_{1}\cos\nu t,\quad B_{1y}=-B_{1}\sin\nu t,\quad B_{1z}=0 22 | \end{empheq} 23 | 磁作用势变成 24 | \begin{empheq}{align}\label{eq76.5} 25 | \hat{H} &=-(B_{0}+B_{1})\cdot\boldsymbol{\mu} \nonumber\\ 26 | &=-B_{0}\mu_{0}\sigma_{z}+B_{1}\mu_{0}(\sigma_{y}\sin\nu t-\sigma_{x}\cos\nu t) 27 | \end{empheq} 28 | 如将$H$在$\sigma_{z}$表象中写成矩阵形式,就是 29 | \begin{empheq}{equation*}\label{eq76.5'} 30 | \hat{H}=-\mu_{0}\begin{bmatrix} 31 | B_{0} & B_{1}e^{i\nu t} \\ 32 | B_{1}e^{-i\nu t} & -B_{0} \\ 33 | \end{bmatrix} 34 | \end{empheq} 35 | 36 | 设在$t=0$时粒子自旋指向$z$方向,即初始自旋波函数为 37 | \eqshort 38 | \begin{empheq}{equation}\label{eq76.6} 39 | \chi(t=0)=\chi_{1/2}=\begin{bmatrix} 40 | 1 \\ 0 41 | \end{bmatrix} 42 | \end{empheq} 43 | 在$t>0$时,由于$B_{1}$场的存在,$\sigma_{z}$不再是守恒量,自旋波函数将按照薛定谔方程 44 | \begin{empheq}{equation}\label{eq76.7} 45 | i\hbar\frac{d}{dt}\chi(t)=\hat{H}\chi(t) 46 | \end{empheq}\eqnormal 47 | 随$t$变化,$\chi(t)$可以表示成 48 | \begin{empheq}{equation}\label{eq76.8} 49 | \chi(t)=C_{1}(t)\chi_{1/2}+C_{2}(t)\chi_{-1/2}=\begin{bmatrix} 50 | C_{1}(t) \\ C_{2}(t) 51 | \end{bmatrix} 52 | \end{empheq} 53 | 将\eqref{eq76.5'}及\eqref{eq76.8}式代入\eqref{eq76.7}式,得到$C_{1},C_{2}$的联立方程 54 | \begin{empheq}{equation}\label{eq76.9} 55 | {}\begin{dcases} 56 | i\hbar\dot{C_{1}}=-\mu_{0}B_{0}C_{1}-\mu_{0}B_{1}e^{i\nu t}C_{2} \\ 57 | i\hbar\dot{C_{2}}=\mu_{0}B_{0}C_{2}-\mu_{0}B_{1}e^{-i\nu t}C_{1} 58 | \end{dcases} 59 | \end{empheq} 60 | 令 61 | \begin{empheq}{equation}\label{eq76.10} 62 | C_{1}=a(t)e^{i\nu t/2},\quad C_{2}=b(t)e^{-i\nu t/2} 63 | \end{empheq} 64 | 可将\eqref{eq76.9}式简化成 65 | \eqlong 66 | \begin{empheq}{equation}\label{eq76.11} 67 | {}\begin{dcases} 68 | \dot{a}=i\bigg(\omega-\frac{\nu}{2}\bigg)a+i\gamma\omega b 69 | \dot{b}=-i\bigg(\omega-\frac{\nu}{2}\bigg)b+i\gamma\omega a 70 | \end{dcases}\eqnormal 71 | \end{empheq} 72 | 其中 73 | \eqshort 74 | \begin{empheq}{equation}\label{eq76.12} 75 | \omega=\frac{\mu_{0}B_{0}}{\hbar},\quad \gamma=\frac{B_{1}}{B_{0}} 76 | \end{empheq}\eqnormal 77 | 实验测量是在“共振条件”$\nu=2\omega$情况下进行,这时\eqref{eq76.11}式成为 78 | \begin{empheq}{equation}\label{eq76.13} 79 | {}\begin{dcases} 80 | \dot{a}=i\gamma\omega b 81 | \dot{b}=i\gamma\omega a 82 | \end{dcases}\quad (\nu=2\omega) 83 | \end{empheq} 84 | 解为 85 | \begin{empheq}{equation*} 86 | a(t)\pm b(t)=[a(0)\pm b(0)]e^{\pm i\gamma\omega t} 87 | \end{empheq} 88 | 根据初始条件\eqref{eq76.6}式,$a(0)=1,b(0)=0$,因此 89 | \eqshort 90 | \begin{empheq}{equation*} 91 | a(t)\pm b(t)=e^{\pm i\gamma\omega t} 92 | \end{empheq}\eqnormal 93 | 解出 94 | \begin{empheq}{equation}\label{eq76.14} 95 | a(t)=\cos\gamma\omega t,\quad b(t)=i\sin\gamma\omega t 96 | \end{empheq} 97 | 代入\eqref{eq76.8}式、\eqref{eq76.10}式,就得到自旋波函数 98 | \begin{empheq}{align}\label{eq76.15} 99 | \chi(t) &=\cos\gamma\omega e^{i\omega t}\chi_{1/2}+i\sin\gamma\omega t e^{-i\omega t}\chi_{-1/2} \nonumber\\ 100 | &=\begin{bmatrix} 101 | \cos\gamma\omega te^{i\omega t} \\ 102 | i\sin\gamma\omega te^{-i\omega t} 103 | \end{bmatrix} 104 | \end{empheq} 105 | 以$t=0$时粒子的初始自旋方向(正$z$轴方向,$\sigma_{z}=1$)为标准,在时刻$t$自旋方向反转$(\sigma_{z}=-1)$的概率为 106 | \eqshort 107 | \begin{empheq}{equation}\label{eq76.16} 108 | |C_{2}|^{2}=\sin^{2}\gamma\omega t 109 | \end{empheq}\eqnormal 110 | 当$t=\frac{\pi}{2\gamma\omega}=\frac{\pi\hbar}{2\mu_{0}B_{1}}$,粒子自旋方向刚好完全反转.($C_{1}=0$,\eqref{eq76.15}式中只有$\chi_{-1/2}$几项) 111 | 112 | 在非共振条件下,即$\nu\neq\omega$时,\eqref{eq76.11}式仍存在振动解,令 113 | \begin{empheq}{equation}\label{eq76.17} 114 | {}\begin{dcases} 115 | a(t)=a_{1}e^{i\Omega t}+a_{2}e^{-i\Omega t} \\ 116 | b(t)=b_{1}e^{i\Omega t}+b_{2}e^{-i\Omega t} 117 | \end{dcases} 118 | \end{empheq} 119 | 代入\eqref{eq76.11}式,容易得到存在非平庸解($a_{1},a_{2},b_{1},b_{2}$不全为0)的条件为 120 | \begin{empheq}{equation*} 121 | \begin{vmatrix} 122 | \omega+\bigg(\omega-\frac{\nu}{2}\bigg) & \gamma\omega \\ 123 | \gamma\omega & \Omega-\bigg(\omega-\frac{\nu}{2}\bigg) 124 | \end{vmatrix}=0 125 | \end{empheq} 126 | 解出 127 | \begin{empheq}{equation}\label{eq76.18} 128 | \Omega=\bigg[\bigg(\omega-\frac{\nu}{2}\bigg)^{2}+\gamma^{2}\omega^{2}\bigg]^{1/2} 129 | \end{empheq} 130 | 考虑到初始条件\eqref{eq76.6}式,即$a(0)=1,b(0)=0$,\eqref{eq76.17}式可以写成 131 | \begin{empheq}{equation*}\label{eq76.17'} 132 | {}\begin{dcases} 133 | a(t)=\cos\Omega t+a_{3}\sin\Omega t \\ 134 | b(t)=b_{3}\sin\Omega t 135 | \end{dcases} 136 | \end{empheq} 137 | 代入\eqref{eq76.11}式,并利用\eqref{eq76.18}式,求出 138 | \begin{empheq}{equation*} 139 | a_{3}=i\frac{\omega-\frac{\nu}{2}}{\Omega},\quad b_{3}=i\frac{\gamma\omega}{\Omega} 140 | \end{empheq} 141 | \begin{empheq}{equation}\label{eq76.19} 142 | {}\begin{dcases} 143 | a(t)=\cos\Omega t+i\frac{\omega-\frac{\nu}{2}}{\Omega}\sin\Omega t \\ 144 | b(t)=i\frac{\gamma\omega}{\Omega}\sin\Omega t 145 | \end{dcases} 146 | \end{empheq} 147 | 注意,在共振条件$(\nu=2\omega)$下,$\Omega=\gamma\omega$,\eqref{eq76.19}式变成\eqref{eq76.14}式.由\eqref{eq76.8}式、\eqref{eq76.10}式、\eqref{eq76.19}式可知,非共振条件下,时刻$t$自旋方向反转概率 148 | \begin{empheq}{equation}\label{eq76.20} 149 | |b(t)|^{2}=\bigg(\frac{\gamma\omega}{\Omega}\bigg)^{2}\sin^{2}\Omega t 150 | \end{empheq} 151 | 显然 152 | \begin{empheq}{equation}\label{eq76.21} 153 | |b(t)|_{\text{极大}}^{2}=\bigg(\frac{\gamma\omega}{\Omega}\bigg)^{2}<1 154 | \end{empheq} 155 | 而在共振条件下$(\nu=2\omega)$自旋方向反转概率最大可以达到1. 156 | 157 | 粒子自旋方向的反转,相当于在磁能级$E_{+},E_{-}$间的跃迁,与此相应,粒子从电磁波(交变磁场)中吸收能量 158 | \begin{empheq}{equation}\label{eq76.22} 159 | \hbar\nu=2\hbar\omega=E_{-}-E_{+}=2B_{0}\mu_{0} 160 | \end{empheq} 161 | 在磁共振实验中,交变磁场的频率$\nu$可以调整,当达到共振条件$(\nu=2\omega)$时,出现交变场功率的吸收峰.如$B_{0}$已经精确给定,利用\eqref{eq76.22}式就可测出粒子磁矩$\mu_{0}$.反之,如$\mu_{0}$已知,则可测定$B_{0}$.由于$2\omega$是在射频至微波频段,测量可以达到很高的精度. 162 | 163 | 对于化合物或凝聚态物质,由于存在自旋轨道耦合作用以及原子间互作用,磁矩结构及磁能级较为复杂,利用磁共振技术可以获得物质结构单元的磁矩信息,有助于了解材料的结构. 164 | -------------------------------------------------------------------------------- /C.seven/M07.08-Spin wave function of two-electron system.tex: -------------------------------------------------------------------------------- 1 | \section[二电子体系的自旋波函数]{二电子体系的自旋波函数} \label{sec:07.08} % 2 | 3 | 4 | 以$\boldsymbol{S}_{1}$和$\boldsymbol{S}_{2}$表示电子1和2的自旋角动量,体系的总自旋为 5 | \eqshort 6 | \begin{empheq}{equation}\label{eq78.1} 7 | \boldsymbol{S}=\boldsymbol{S}_{1}+\boldsymbol{S}_{2} 8 | \end{empheq} 9 | 其分量为 10 | \begin{empheq}{equation}\label{eq78.2} 11 | S_{z}=S_{1z}+S_{2z} 12 | \end{empheq}\eqnormal 13 | 等等总自旋平方为 14 | \begin{empheq}{equation}\label{eq78.3} 15 | \boldsymbol{S}^{2}=\boldsymbol{S}_{1}^{2}+\boldsymbol{S}_{2}^{2}+2\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2} 16 | \end{empheq} 17 | 根据实验事实, 18 | \eqshort 19 | \begin{empheq}{equation}\label{eq78.4} 20 | \boldsymbol{S}_{1}^{2}=\boldsymbol{S}_{2}^{2}=\frac{3}{4}\hbar^{2} 21 | \end{empheq}\eqnormal 22 | 这相当于$j_{1}=j_{2}=\frac{1}{2}$的情形.$\boldsymbol{S}^{2}$及$S_{z}$的本征值记为 23 | \begin{empheq}{equation*} 24 | \boldsymbol{S}^{2}——S(S+1)\hbar^{2},\quad S_{z}--M_{s}\hbar 25 | \end{empheq} 26 | 按照角动量耦合理论,总自旋量子数$S$的可能取值为1和0,$M_{s}$的取值为 27 | \begin{empheq}{equation}\label{eq78.5} 28 | \boxed{\begin{aligned} 29 | S=1, &&M_{s}=1,0,-1 \\ 30 | S=0, &&M_{s}=0 31 | \end{aligned}} 32 | \end{empheq} 33 | 现在还需要确定$\boldsymbol{S}^{2},S_{z}$的共同本征态. 34 | 35 | 电子$1,2$各有两种独立自旋态$\chi_{1/2}$,$\chi_{-1/2}$,在这里记为$\alpha,\beta$.非耦合表象中的基矢$|j_{1}m_{1},j_{2}m_{2}\rangle$共有4个,它们是 36 | \begin{empheq}{equation}\label{eq78.6} 37 | \alpha(1)\alpha(2),\alpha(1)\beta(2),\beta(1)\alpha(2),\beta(1)\beta(2) 38 | \end{empheq} 39 | 它们都是总$S_{z}$的本征态,$M_{s}$依次为$1,0,0,-1$.按照\eqref{eq78.5}式,$M_{s}$等于1和-1时,$S$必然为1.因此可以判断$\alpha(1)\alpha(2)$和$\beta(1)\beta(2)$都已经是$\boldsymbol{S}^{2},S_{z}$的共同本征态$|S,M_{S}\rangle$,在这里记成$\chi_{SM_{S}}$,即 40 | \begin{empheq}{equation}\label{eq78.7} 41 | \chi_{11}=\alpha(1)\alpha(2),\quad \chi_{1-1}=\beta(1)\beta(2) 42 | \end{empheq} 43 | $S=1$时,$\boldsymbol{S}^{2},S_{z}$还有一个共同本征态$(M_{S}=0)$,它应该由\eqref{eq78.6}式中第二、三项叠加而成.按照角动量一般理论[\eqref{eq47.26}式] 44 | \begin{empheq}{equation}\label{eq78.8} 45 | (S_{x}-iS_{y})\chi_{11}=\sqrt{2}\hbar\chi_{10} 46 | \end{empheq} 47 | 其中$(S_{x}-iS_{y})=(S_{1x}-iS_{1y})+(S_{2x}-iS_{2y})$.利用\eqref{eq71.19}式容易算出 48 | \begin{empheq}{equation*} 49 | (S_{x}-iS_{y})\chi_{11}=\hbar\alpha(1)\beta(2)+\hbar\beta(1)\alpha(2) 50 | \end{empheq} 51 | 代入\eqref{eq78.8}式,即得 52 | \begin{empheq}{equation}\label{eq78.9} 53 | \chi_{10}=\frac{1}{\sqrt{2}}[\alpha(1)\beta(2)+\beta(1)\alpha(2)] 54 | \end{empheq} 55 | 按照角动量一般理论,$\chi_{10}$与$\chi_{1-1}$有关系 56 | \begin{empheq}{equation}\label{eq78.10} 57 | (S_{x}-iS_{y})\chi_{10}=\sqrt{2}\hbar\chi_{1-1} 58 | \end{empheq} 59 | 请读者自行验证. 60 | 61 | $\boldsymbol{S}^{2},S_{z}$还有一个共同本征态$\chi_{00}(S=0,M_{S}=0)$,它应该由\eqref{eq78.6}式中第二、三项叠加而成,并与$\chi_{10}$正交(因为量子数$S$之值不同),设 62 | \begin{empheq}{equation*} 63 | \chi_{00}=C_{1}\alpha(1)\beta(2)+C_{2}\beta(1)\alpha(2) 64 | \end{empheq} 65 | 由正交条件 66 | \eqshort 67 | \begin{empheq}{equation*} 68 | \chi_{10}^{+}\chi_{00}=0 69 | \end{empheq}\eqnormal 70 | 容易得出$C_{2}=-C_{1}$.取$C_{1}>0$.并将$\chi_{00}$归一化,最后得到 71 | \begin{empheq}{equation}\label{eq78.11} 72 | \chi_{00}=\frac{1}{\sqrt{2}}[\alpha(1)\beta(2)-\beta(1)\alpha(2)] 73 | \end{empheq} 74 | 利用\eqref{eq71.17}式容易验证$S_{\chi_{00}},S_{\chi_{00}}^{2}=0$. 75 | 76 | 总结以上计算,我们已经求出二电子体系总自旋平方$\boldsymbol{S}^{2}$和$S_{z}$的全部共同本征函数$\chi_{SM_{S}}$,它们是 77 | \begin{empheq}{equation}\label{eq78.12} 78 | \begin{aligned} 79 | \chi_{11} &=\alpha(1)\alpha(2) \\ 80 | \chi_{10} &=\frac{1}{\sqrt{2}}[\alpha(1)\beta(2)+\beta(1)\alpha(2)] \\ 81 | \chi_{1-1}&=\beta(1)\beta(2) \\ 82 | \chi_{00} &=\frac{1}{\sqrt{2}}[\alpha(1)\beta(2)-\beta(1)\alpha(2)] 83 | \end{aligned} 84 | \end{empheq} 85 | 容易验证,它们和表\ref{lab.7-1}列出的C.G.系数是一致的.\eqref{eq78.12}式适用于任何由两个自旋$\frac{1}{2}$粒子组成的体系,应用极广,读者应该牢记. 86 | 87 | 作为二粒子体系自旋自由度的波函数,\eqref{eq78.6}式4个波函数都能够表示成单粒子波函数的乘积,称为“分离态”.反之,\eqref{eq78.9}式和\eqref{eq78.11}式则为“纠缠态”.近年来由于量子信息论的迅速发展,纠缠态日益引人注目.对于本节讨论的自旋波函数,典型的纠缠态除$\chi_{10}$、$\chi_{00}$外,还有 88 | \begin{empheq}{equation}\label{eq78.13} 89 | \frac{1}{\sqrt{2}}[\alpha(1)\alpha(2)\pm\beta(1)\beta(2)] 90 | \end{empheq} 91 | 它们都是$\sigma_{1x},\sigma_{2x},\sigma_{1z},\sigma_{2z}$的共同本征函数. 92 | 93 | 94 | 95 | 96 | 97 | 98 | -------------------------------------------------------------------------------- /C.six/M06.00-Fixed-state perturbation theory and variational methods.tex: -------------------------------------------------------------------------------- 1 | \chapter{定态微扰论与变分法}\label{chp:06} 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 在量子力学中,薛定谔方程能够精确求解的情形不多,因此近似方法具有特殊的重要性.本章介绍处理定态问题的两种主要近似方法,即定态微扰论与变分法.半个多世纪以来,量子力学在应用方面已经有了许多进展,这些近似方法也有了许多发展、限于篇幅,我们只能对这些方法作初步介绍. 5 | 6 | % 非简并态微扰论 7 | \input{QM file/body/C.six/M06.01-Non-simple parallel state perturbation theory} 8 | 9 | % 简并态微扰论 10 | \input{QM file/body/C.six/M06.02-Simple parallel state perturbation theory} 11 | 12 | % 变分法 13 | \input{QM file/body/C.six/M06.03-Variable Score Method} 14 | 15 | 16 | % 习题 17 | \input{QM file/body/C.six/M06.04-Exercises} 18 | -------------------------------------------------------------------------------- /C.six/M06.04-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 某物理体系只有两个能级.$H_{0}$在表象中$H$的矩阵表示为 4 | \begin{empheq}{equation*} 5 | H=H_{0}+H^{\prime}=\begin{bmatrix} 6 | E_{1}^{(0)}+a & b \\ 7 | b E_{2}^{(0)}+a \\ 8 | \end{bmatrix} 9 | \end{empheq} 10 | $a,b$为实数,并且远小于$(E_{2}^{(0)}-E_{1}^{(0)})$.试求能级的精确值.再按照微扰论公式写出能级(二级近似).比较两种结果. 11 | 12 | \exercise 粒子在势阱 13 | \begin{empheq}{equation*} 14 | {V(x)=} 15 | \begin{dcases} 16 | V_{0}x/a,\quad 0R 46 | \end{dcases} 47 | \end{empheq} 48 | 以$H^{\prime}=V(r)-\bigg(-\dfrac{Z\e^{2}}{r}\bigg)$作为微扰.注意$R\ll\dfrac{a_{0}}{Z}$. 49 | $\bigg]$ 50 | \exercise 在静电场中,如点电荷获得的静电势能是$V(\boldsymbol{r})$,则将点电荷换成电荷均匀分布的小球(半径$r_{0}$)时,静电势能是 51 | \begin{empheq}{equation*} 52 | U(\boldsymbol{r})=V(\boldsymbol{r})+\frac{1}{6}r_{0}^{2}\nabla^{2}V(\boldsymbol{r})+\cdots 53 | \end{empheq} 54 | 其中$\boldsymbol{r}$为球心位置对于氢原子,(原子核即质子,视为点电荷)视电子为点电核时,库仑势能为$V(\boldsymbol{r})=-\dfrac{\ell^{2}}{r}$.如视电子为电荷均匀分布的小球,$r_{0}=\dfrac{\e^{2}}{m_{e}C^{2}}$(经典电子半径),库仑势能改为上述$U(\boldsymbol{r})$,求1s和2p能级的一级微扰修正.[相当于兰姆移位(Lamb shift)] 55 | 56 | [提示:$H^{\prime}=V-V,\nabla^{2}\dfrac{1}{r}=-4\pi\delta(\boldsymbol{r})$] 57 | 58 | \exercise 有一个在磁场中的三维转子,能量算符为 59 | \begin{empheq}{equation*} 60 | H=k\boldsymbol{L}^{2}+\omega L_{z}+\lambda L_{x},\quad k,\omega\gg\lambda 61 | \end{empheq} 62 | 63 | (a) 视$\lambda$项为微扰,求能级的零级近似、一级修正、二级修正. 64 | 65 | (b) 求能级的精确值,并与微扰论结果比较. 66 | 67 | [提示:找一个方向$\boldsymbol{n}$,使$\omega L_{z}+\lambda L_{x}=\omega^{\prime}L_{n}$,而$\boldsymbol{L}^{2},L_{n}$有共同本征态,$L_{n}$本征值为$m\hbar$.] 68 | 69 | \exercise (a) 粒子在二维无限深方势阱$(00)$中运动,用变分法求基态能级近似值.试探波函数(未归一化)取为 100 | 101 | (a) $\varPsi(\lambda,x)=e^{-\lambda|x|}$ 102 | 103 | (b) $\varPsi(\lambda,x)=e^{-\lambda^{2}r^{2}/2}$.解释(a)项结果较差的原因. 104 | 105 | \exercise 粒子在无限深势阱$(-a0) 13 | \end{empheq}\eqnormal 14 | 15 | 求体系的能谱. 16 | \pskip 17 | \exercise 某体系由3个自旋为0的全同粒子组成,限定单粒子状态只能是$\varPsi_{\alpha},\varPsi_{\beta},\varPsi_{\gamma}$,试写出体系的所有可能状态的波函数. 18 | 19 | \exercise 两个自旋为0的全同粒子在无限深势阱$(02$)及两个电子构成.如略去核运动,二电子体系总能量算符可以写成 26 | \begin{empheq}{equation*} 27 | H=-\frac{\hbar^{2}}{2m_{e}}(\nabla_{1}^{2}+\nabla_{2}^{2})-Z\e^{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{\e^{2}}{r_{12}} 28 | \end{empheq}\eqllong 29 | 30 | (a) 视$\dfrac{\e^{2}}{r_{12}}$为微扰,求基态能级的粗略近似. 31 | 32 | (b) 用变分法求基态能级近似值. 33 | \pskip 34 | \exercise 有-种简化的“一维类氦离子”模型,原子核-电子和电子-电子作用势均用“接触作用”表示.略去核运动后,电子体系总能量算符表示成 35 | \begin{empheq}{equation*} 36 | H=-\frac{\hbar^{2}}{2m_{e}}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)-Z\e^{2}[\delta(x_{1})+\delta(x_{2})]+\e^{2}\delta(x_{1}-x_{2}) 37 | \end{empheq}\eqlong 38 | 39 | 如距离以$\dfrac{a_{0}}{Z}$为单位,能量以$\dfrac{Z^{2}\e^{2}}{a_{0}}$为单位,$H$可以简化成 40 | \begin{empheq}{equation*} 41 | H=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}\right)-\delta(x_{1})-\delta(x_{2})+\frac{1}{Z}\delta(x_{1}-x_{2}) 42 | \end{empheq} 43 | 44 | (a) 视电子-电子作用势为微扰,求体系束缚态能级(只有一个). 45 | 46 | (b) 用变分法求体系能级. 47 | 48 | 你将发现本题结果与10-6题结果惊人地接近. 49 | \pskip 50 | \exercise 某个三电子体系,单电子轨道态为$\varPsi_{a},\varPsi_{b},\varPsi_{c}$.当体系总自旋量子数$S=\dfrac{3}{2}$时,写出体系的轨道波函数,求相互作用能$\left(\dfrac{\e^{2}}{r_{12}}+\dfrac{\e^{2}}{r_{23}}+\dfrac{\e^{2}}{r_{31}}\text{的平均值}\right)$,将其表示成“库仑能”和“交换能”. 51 | \pskip 52 | \exercise 由两个全同粒子组成的体系,如单粒子自旋量子数为S,$[\boldsymbol{S}^{2}=S(S+1)\hbar^{2}]$体系总自旋态有多少种独立的交换对称态、反对称态? 53 | \pskip 54 | \exercise (a) 如原子中的电子换成某种电荷为$(-e)$,自旋量子数为$\dfrac{3}{2}$的粒子,求前三种惰性气体的原子序数($Z$,核中质子数) 55 | 56 | (b) 如原子中的电子换成某种电荷为$(-\dfrac{e}{3})$,自旋量子数为$\dfrac{1}{2}$的费密子,求前三种惰性气体的原子序数. 57 | \pskip 58 | \exercise 两电子体系,定义“自旋交换算符”$P_{12},P_{12}\chi(S_{1z},S_{2z})=\chi(S_{2z},S_{1z})$,证明:$P_{12}=\dfrac{1}{2}(1+\boldsymbol{\sigma}_{1}\cdot\boldsymbol{\sigma}_{2})=\boldsymbol{S}^{2}-1$.($\boldsymbol{S}$为总自旋,取$\hbar=1$) 59 | \pskip 60 | \exercise 设粒子1,2自旋量子数均为$\dfrac{1}{2}$,以$\boldsymbol{S}=\boldsymbol{S}_{1}+\boldsymbol{S}_{2}$表示总自旋算符,取$\hbar=1$.证明以下算符关系: 61 | 62 | \begin{empheq}{alignat*=2} 63 | [\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2},\boldsymbol{S}_{1}]=i\boldsymbol{S}_{1}\times\boldsymbol{S}_{2}, &\quad [\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2},\boldsymbol{S}_{2}]=-i\boldsymbol{S}_{1}\times\boldsymbol{S}_{2} \\ 64 | [\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2},\boldsymbol{S}]=0, &\quad \boldsymbol{S}\boldsymbol{S}^{2}=\boldsymbol{S}^{2}\boldsymbol{S}=2\boldsymbol{S} \\ 65 | \end{empheq}\eqnormal 66 | 67 | \exercise 两个自旋量子数为$\dfrac{1}{2}$的非全同粒子,位置固定,相互作用能(算符)为$H=\dfrac{\omega}{\hbar}\boldsymbol{S}_{1}\cdot\boldsymbol{S}_{2}$时粒子1自旋$(\boldsymbol{S}_{1})$沿正$z$轴方向极化,粒子2自旋$(\boldsymbol{S}_{2})$极化方向正好相反.对于任意$t>0$时刻, 68 | 69 | (a) 求体系总自旋波函数$\chi(t)$,用单粒子自旋态$\alpha(1),\beta(1),\alpha(2),\beta(2)$表示出来,[提示:将初始总自旋态展开成$H$的本征态的叠加.] 70 | 71 | (b) 求$\boldsymbol{S}_{1}$极化方向与初始指向相同的概率. 72 | 73 | (c) 求$\boldsymbol{S}_{1}$和$\boldsymbol{S}_{2}$极化方向均指向正$z$轴的概率. 74 | 75 | (d) 总自旋量子数$S=1,0$的各自概率. 76 | \pskip 77 | \exercise 如原子的最外层是两个单粒子能级为$E_{nl}$的电子,作为二电子体系,讨论其总$L,S,J$的可能取值组合,证明$L+S=$偶数. 78 | 79 | [提示:注意波函数的交换对称性,同时参看$\S$\ref{sec:10.02}例题.] 80 | \pskip 81 | \exercise 已知氘核(d)自旋为$\hbar$,宇称为偶;中子(n)自旋为$\dfrac{\hbar}{2}$;$\pi^{-}$介子自旋为0.试根据反应 82 | \begin{empheq}{equation*} 83 | \pi^{-}\text{(静止)}+\ce{d}\rightarrow \ce{n}+\ce{n} 84 | \end{empheq} 85 | 86 | 决定$\pi^{-}$介子的内禀宇称. 87 | 88 | [提示:反应前后角动量守恒,宇称守恒.反应后为费密子体系.] 89 | \pskip 90 | \exercise 考虑一个多电子原子或分子,总能量包括各个电子及原子核的动能以及粒子间的库仑势能.(忽略自旋和相对论效应)体系的基态能级记为$E_{0}$,基态波函数记为$\varPsi_{0}$,预备用变分法找$E_{0}$,$\varPsi_{0}$的近似.设己找到$\varPsi_{0}$的粗略近似$\phi(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\cdots,\boldsymbol{r}_{N})$,并已求出体系动能平均值$W$,势能平均值$U<0$,再取试探波函数为$\varPsi(\lambda)=\lambda^{\dfrac{3N}{2}}\phi(\lambda\boldsymbol{r}_{1},\cdots,\lambda\boldsymbol{r}_{N})$.证明: 91 | 92 | (a) $\lambda$最佳值为$\lambda_{0}=-\dfrac{U}{2W}$,$E_{0}$近似值$E(\lambda_{0})=-\dfrac{U^{2}}{4W}$. 93 | 94 | (b) 如$\phi(\boldsymbol{r}_{1},\cdots,\boldsymbol{r}_{N})$刚好就是$\varPsi_{0}$,则$U=-2W,E_{0}=W+U$(即位力定理结论)试将本题结论用于氦原子,利用微扰论结果直接得出变分法结果. 95 | 96 | \end{exercises} -------------------------------------------------------------------------------- /C.three/M03.00-Fundamentals.tex: -------------------------------------------------------------------------------- 1 | \chapter{基本原理}\label{chp:03} % Fundamentals 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 本章将全面阐述捏子力学的基本原理和基本概念,侧重点将放在力学量的算符表示方面. 5 | 6 | % 波函数和算符 7 | \input{QM file/body/C.three/M03.01-Wave Functions and Operators} 8 | 9 | % 态叠加原理 10 | \input{QM file/body/C.three/M03.02-Principle of state superposition} 11 | 12 | % 线性算符 13 | \input{QM file/body/C.three/M03.03-Linear operators} 14 | 15 | % 波函数的普遍物理诠释 16 | \input{QM file/body/C.three/M03.04-Universal physical interpretation of the wave function} 17 | 18 | % 动量 19 | \input{QM file/body/C.three/M03.05-Momentum} 20 | 21 | % 力学量算符的对易关系式 22 | \input{QM file/body/C.three/M03.06-The pairwise equation of the quantum mechanics operator} 23 | 24 | % 两个力学量算符的共同本征态 25 | \input{QM file/body/C.three/M03.07-Common eigenstates of two quantum mechanics operators} 26 | 27 | % 不确定度关系 28 | \input{QM file/body/C.three/M03.08-Uncertainty relationship} 29 | 30 | % 状态和力学量随时间的变化 31 | \input{QM file/body/C.three/M03.09-Changes in state and mechanical quantities over time} 32 | 33 | % 对称性和守恒定律 34 | \input{QM file/body/C.three/M03.10-Symmetry and conservation law} 35 | 36 | % 海尔曼定理和位力定理 37 | \input{QM file/body/C.three/M03.11-Heilman's Theorem and the Bit Force Theorem} 38 | 39 | % 习题 40 | \input{QM file/body/C.three/M03.12-Exercises} 41 | -------------------------------------------------------------------------------- /C.three/M03.02-Principle of state superposition.tex: -------------------------------------------------------------------------------- 1 | \section[态叠加原理]{态叠加原理} \label{sec:03.02} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 不同波动状态之间,常有一定联系.例如光栅衍射,衍射光束可以用分光镜分解成各种单色平面光.因此,有理由认为,即使是在分解前,该光束也是由各种单色平面光波叠加而成,表现在波函数上,就是 5 | \setlength{\mathindent}{6em} 6 | \begin{empheq}{equation}\label{eq32.1} 7 | \varPsi(\boldsymbol{r},t)=\sum_{n}C_{n}\varPsi_{n}(\boldsymbol{r},t)=\sum_{n}C_{n}e^{i\boldsymbol{k}_{n}\cdot\boldsymbol{r}-\omega_{n}t} 8 | \end{empheq}\eqnormal 9 | 这里$\varPsi$表示$\boldsymbol{k}=\boldsymbol{k}_{n}$,$\omega=\omega_{n}$的单色平面光波波函数. 10 | 11 | 波函数之间的这种线件叠加关系,在量子力学中具有根本意义.作为一项基本假设,量子力学认为: 12 | 13 | (1) 物理体系的任何一种状态(波函数$\varPsi$)总可以认为是由某些其他状态(波函数$\varPsi_{1},\varPsi_{2},\cdots$)线性叠加而成,即 14 | \begin{empheq}{equation}\label{eq32.2} 15 | \varPsi=C_{1}\varPsi_{1}+C_{2}\varPsi_{2}+\cdots 16 | \end{empheq} 17 | $C_{1},C_{2},\cdots$为常数(可以是复数). 18 | 19 | (2) 如果$\varPsi_{1},\varPsi_{2},\cdots$是可以实现的状态(波函数),则它们的任何线性叠加式\eqref{eq32.2}总是表示一种可以实现的状态(波函数). 20 | 21 | (3) 当物理体系处于叠加态\eqref{eq32.2}式,可以认为该体系部分地处于$\varPsi_{1}$态,部分地处于$\varPsi_{2}$态,等等. 22 | 23 | 以上各点,常被称为“态叠加原理”. 24 | 25 | 从实际应用来说,最重要的一种情况是,$\varPsi_{1},\varPsi_{2},\cdots$是某个力学量算符$\hat{A}$的本征函数,这时叠加式\eqref{eq32.2}具有特别重要的物理意义,将在$\S$\ref{sec:03.04}阐述. 26 | 27 | 注意以上所说的叠加都是指\eqref{eq32.2}式那样的线性叠加.至于波函数之间的非线性关系,例如: 28 | \begin{empheq}{equation*} 29 | \varPsi=\varPsi_{1}+|\varPsi_{2}|+(\varPsi_{3})^{2}+\sqrt{\varPsi_{4}}+\cdots 30 | \end{empheq} 31 | 即使这种关系在数学上确实存在,也不认为它有任何物理意义. 32 | 33 | 在整个量子力学理论中,态叠加原理起着统制全局的作用,为了和它协调,量子力学的基本方程——薛定谔方程就是一个线性方程,表示力学量的算符都是线性算符,等等.量子力学理论为什么要以态叠加原理作为基础,采取线性结构,并没有什么先验的理由,但是半个多世纪以来量子力学在各方面获得的巨大成功表明这样做是正确的.也有人进行着建立非线性量子力学的工作,但还远远没有获得成功. 34 | 35 | 必须指出,量子力学中态叠加的含义和经典物理中波的叠加含义是不同的.例如一个态自身和自身叠加: 36 | \setlength{\mathindent}{11em} 37 | \begin{empheq}{equation*} 38 | \varPsi_{1}+\varPsi_{1}=2\varPsi_{1}=\varPsi 39 | \end{empheq}\eqnormal 40 | 根据波函数的统计诠释,必须认为$\varPsi=2\varPsi_{1}$也$\varPsi_{1}$也代表同一种状态.而对于经典波动,$2\varPsi_{1}$的振幅为$\varPsi_{1}$的2倍,二者具有不同的物理性质,例如前者的能量是后者的4倍,因此代表两种不同的波动状态. -------------------------------------------------------------------------------- /C.three/M03.07-Common eigenstates of two quantum mechanics operators.tex: -------------------------------------------------------------------------------- 1 | \section[两个力学量算符的共同本征态]{两个力学量算符的共同本征态} \label{sec:03.07} % 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 考虑物理体系(最简单的情况就是一个粒子)的两种力学量(可观测量)$A$,$B$.设在某种状态下,$A$和$B$都有确定的取值,$A=a_{n},B=b_{k}$.(为了叙述方便,设本征值谱是分立的)根据本征态和本征值的物理解释,可知这个状态既是算符$\hat{A}$的本征态,又是$\hat{B}$的本征态,亦即是$\hat{A}$和$\hat{B}$的共同本征态.相应的波函数记为$\varPsi_{nk}$,满足本征方程 5 | \begin{empheq}{equation}\label{eq37.1} 6 | \hat{A}\varPsi_{nk}=a_{n}\varPsi_{nk},\quad \hat{B}\varPsi_{nk}=b_{k}\varPsi_{nk} 7 | \end{empheq} 8 | 因此 9 | \begin{empheq}{equation}\label{eq37.2} 10 | (\hat{A}\hat{B}-\hat{B}\hat{A})\varPsi_{nk}=(a_{n}b_{k}-b_{k}a_{n})\varPsi_{nk}=0 11 | \end{empheq} 12 | 这结果提示我们,$\hat{A}$和$\hat{B}$可能是对易算符.但是,如$\hat{A},\hat{B}$仅存在个别的共同本征态,并不能由此得出$\hat{A},\hat{B}$是对易算符的结论. 13 | 14 | 如果$\hat{A},\hat{B}$存在一系列共同本征函数,构成完备函数系,情况就不同了.这时任何波函数$\varPsi$都可以表示成这些共同本征函数的线性叠加: 15 | \begin{empheq}{equation}\label{eq37.3} 16 | \varPsi=\sum_{n,k}C_{nk}\varPsi_{nk} 17 | \end{empheq} 18 | 从而 19 | \begin{empheq}{equation*} 20 | (\hat{A}\hat{B}-\hat{B}\hat{A})\varPsi=\sum_{n,k}C_{nk}(\hat{A}\hat{B}-\hat{B}\hat{A})\varPsi_{nk}=0 21 | \end{empheq} 22 | 由此可得 23 | \begin{empheq}{equation}\label{eq37.4} 24 | \hat{A}\hat{B}-\hat{B}\hat{A}=[\hat{A},\hat{B}]=0 25 | \end{empheq} 26 | 即$\hat{A},\hat{B}$为对易算符. 27 | 28 | 反过来,如果力学量算符$\hat{A},\hat{B}$对易,即$\hat{A}\hat{B}=\hat{B}\hat{A}$,则$\hat{A}$和$\hat{B}$必定存在一系列共同本征函数,并构成完全函数系证明如下. 29 | 30 | 由于$\hat{A}$和$\hat{B}$都是力学量算符,它们各自存在一组完备的本征函数系,记为$|\varPsi_{n}|$和$|\Phi_{k}|$,满足本征方程: 31 | \begin{empheq}{align}%5,6 32 | \hat{A}\varPsi_{n}&=a_{n}\varPsi_{n},\quad n=1,2,3,\cdots \label{eq37.5}\\ 33 | \hat{B}\Phi_{k}&=b_{k}\Phi_{k},\quad k=1,2,3,\cdots \label{eq37.5} 34 | \end{empheq} 35 | $n$和$k$为本征函数的编号数,对于简并态,本征值重复出现.任取一个$\hat{A}$的本征函数$\varPsi_{n}$,将它表示成$\hat{B}$的本征函数的线性叠加: 36 | \begin{empheq}{equation}\label{eq37.7} 37 | \varPsi_{n}=\sum_{k}C_{nk}\Phi_{k}=\sum_{i}\tilde{\Phi_{i}} 38 | \end{empheq} 39 | 考虑到可能存在的简并化,上式中$\tilde{\Phi_{i}}$表示$\sum_{k}$中相应于$\hat{B}$的同一个本征值$b_{i}$的各项之和(对于$\sum_{k}$中的非简并项,$\tilde{\Phi_{i}}$就是$C_{ni}\Phi_{i}$),因此 40 | \begin{empheq}{equation}\label{eq37.8} 41 | \hat{B}\tilde{\Phi_{i}}=b_{i}\tilde{\Phi_{i}} 42 | \end{empheq} 43 | \eqref{eq37.7}式中各$\tilde{\Phi_{i}}$,相应于$\hat{B}$的不同本征值,因而是互相线性独立的.下面证明每个$\tilde{\Phi_{i}}$都是$\hat{A}$的本征函数.将\eqref{eq37.7}式代入\eqref{eq37.5}式,得到 44 | \begin{empheq}{equation}\label{eq37.9} 45 | (\hat{A}-a_{n})\varPsi_{n}=\sum_{i}(\hat{A}-a_{n})\tilde{\Phi_{i}}=0 46 | \end{empheq} 47 | 以算符$\hat{B}$作用于上式中每一项,由于$\hat{A},\hat{B}$对易,得到 48 | \begin{empheq}{equation*} 49 | \hat{B}(\hat{A}-a_{n})\tilde{\Phi_{i}}=(\hat{A}-a_{n})\hat{B}\tilde{\Phi_{i}}=b_{i}(\hat{A}-a_{n})\tilde{\Phi_{i}} 50 | \end{empheq} 51 | 上式表明,$(\hat{A}-a_{n})\tilde{\Phi_{i}}$如果不等于0,它就是$\hat{B}$的本征函数,相应于本征值$b_{i}$;而\eqref{eq37.9}式意味着相应于$\hat{B}$的不同本征值的本征函数是线性相关的!这当然是不可能的.为了避免这个矛盾,必须 52 | \begin{empheq}{equation}\label{eq37.10} 53 | (\hat{A}-a_{n})\tilde{\Phi_{i}}=0 54 | \end{empheq} 55 | 因此$\tilde{\Phi_{i}}$是$\hat{A}$的本征函数,相应于本征值$a_{n}$.至此已经证明了$\tilde{\Phi_{i}}$是$\hat{A},\hat{B}$的共同本征函数.这就是说,$\hat{A}$的每一个本征函数$\varPsi_{n}$都可以分解成若干个$\hat{A},\hat{B}$的共同本征函数$\tilde{\Phi_{i}}$.由于全体$|\varPsi_{n}|$是完备函数系,显然全体$\tilde{\Phi_{i}}$也是完备函数系.证明完毕. 56 | 57 | 从上面的论证可以得出一个直接的推论,即, 如$\hat{A},\hat{B}$对易, 而$\hat{A}$或$\hat{B}$具有某些非简并本征函数,则它们必然是$\hat{A},\hat{B}$的共同本征函数. 58 | 59 | 如果算符$\hat{A}$的全部本征函数都是非简并的,而算符$\hat{B}$和$\hat{A}$对易,则$\hat{A}$的每一个本征函数同时也是$\hat{B}$的本征函数,因此$\hat{B}$的本征值逐个取决于$\hat{A}$的本征值,从而可以认为力学量$B$是力学量$A$的函数.这样,凡是与$\hat{A}$对易的厄密算符,必定是$\hat{A}$的函数.如力学量$B$不是$A$的函数,则称$\hat{B}$独立于$\hat{A}$,显然$\hat{B}$和$\hat{A}$必定是不可对易的. 60 | 61 | 如果$\hat{A}$的一部分或全部本征函数是简并的,则给定$\hat{A}$的本征值并不足以完全确定波函数.这种情况下必然存在独立于$\hat{A}$而又与$\hat{A}$对易的其他力学量算符$\hat{B}$,它们存在共同本征函数,并构成完备函数系.如果$\hat{A},\hat{B}$的共同本征函数仍有简并,则给定$\hat{A},\hat{B}$的本征值仍不足以完全确定波函数,这时必定还存在独立于$\hat{A},\hat{B}$而又与$\hat{A},\hat{B}$对易的其他力学量算符.依此类推. 62 | 63 | 一组互相对易而又互相独立的力学量算符,如它们的共同本征函数是非简并的,并且构成完备函数系,则这组力学量称为力学量完全集,它们的一组本征值唯一地确定出一个共同本征态.构成完全集的独立力学量数目,称为物理体系的自由度.例如,一维谐振子,总能量算符$\hat{H}$的本征函数全部是非简并的,因此$H$本身就是力学量完全集,自由度为1.又如三维自由粒子,力学量完全集可以取为$(p_{x},p_{y},p_{z})$,总能量算符$\hat{H}=\hat{\boldsymbol{p}}^{2}/2m$是它们的函数,它们的共同本征函数$\varPsi_{\boldsymbol{p}}$[\eqref{eq35.10}式]就是通常说的平面波波函数;也可以选取别的力学量完全集,如$(\boldsymbol{p}^{2},\boldsymbol{L}^{2},L_{z})$,它们的共同本征态俗称自由粒子球面波,将在$\S$\ref{sec:05.02}讨论. 64 | 65 | 必须指出,两个或多个互不对易的力学量算符,也可能存在个别的共同本征函数,但是不足以构成完备函数系.设$\hat{A},\hat{B}$为力学量算符(厄密算符),不对易,设 66 | \begin{empheq}{equation}\label{eq37.11} 67 | [\hat{A},\hat{B}]=\hat{A}\hat{B}-\hat{B}\hat{A}=i\hat{C} 68 | \end{empheq} 69 | 容易证明$\hat{C}$是厄密算符.设$\varPsi_{ab}$是$\hat{A},\hat{B}$的共同本征函数,相应于本征值$A=a$,$B=b$.将\eqref{eq37.11}式作用于$\varPsi_{ab}$,易得 70 | \begin{empheq}{equation}\label{eq37.12} 71 | \hat{C}\varPsi_{ab}=0 72 | \end{empheq} 73 | 即$\varPsi_{ab}$也是算符$\hat{C}$的本征函数,本征值为0.所以,如果算符$\hat{C}$的本征值谱中不包含0,$\hat{A},\hat{B}$就没有共同本征函数.例如$\hat{A}=\hat{x},\hat{B}=\hat{p_{x}}$,$[\hat{x},\hat{p_{x}}]=i\hbar$,即$\hat{C}=\hbar$,$\hat{C}$的唯一本征值就是$\hbar$,所以$\hat{x}$和$\hat{p_{x}}$没有共同本征函数.注意,\eqref{eq37.12}式仅是$\hat{A},\hat{B}$的共同本征函数所必须满足的必要条件,并非充分条件. 74 | 75 | \example 讨论轨道角动量$\boldsymbol{L}=\boldsymbol{r}\times\boldsymbol{p}$的任何两个分量存在共同本征函数的可能性,并求出这种共同本征函数. 76 | 77 | \solution 算符$\hat{\boldsymbol{L}}$的三个分量互不对易,满足对易式: 78 | \eqindent{4} 79 | \begin{empheq}{equation}\label{eq37.13} 80 | [\hat{L_{x}},\hat{L_{y}}]=i\hbar\hat{L_{z}},\quad[\hat{L_{y}},\hat{L_{x}}]=i\hbar\hat{L_{x}},\quad[\hat{L_{z}},\hat{L_{x}}]=i\hbar\hat{L_{y}} 81 | \end{empheq}\eqnormal 82 | 设$\varPsi$为$\hat{L_{x}}$,$\hat{L_{y}}$的共同本征征函数,以\eqref{eq37.13}第一式作用于$\varPsi$,得到 83 | \begin{empheq}{equation}\label{eq37.14} 84 | \hat{L_{z}}\varPsi=0 85 | \end{empheq} 86 | 再以\eqref{eq37.13}第二式和第三式作用于$\varPsi$,得到 87 | \begin{empheq}{equation*}\label{eq37.14'} 88 | \hat{L_{x}}\varPsi=0,\quad\hat{L_{y}}\varPsi=0 89 | \end{empheq} 90 | 所以,$\hat{\boldsymbol{L}}$的任何两个分量的共同本征函数,必为三个分量的共同本征函数,本征值全部等于0,亦即$\varPsi$满足 91 | \begin{empheq}{equation}\label{eq37.15} 92 | \hat{\boldsymbol{L}}\varPsi=-i\hbar\boldsymbol{r}\times\nabla\varPsi=0 93 | \end{empheq} 94 | 因此$\nabla\varPsi$的方向和$\boldsymbol{r}$平行.满足这条件的$\varPsi$必须是径向函数,即 95 | \begin{empheq}{equation}\label{eq37.16} 96 | \varPsi=\varPsi(r)\quad\text{(与$\theta,\varphi$无关)} 97 | \end{empheq} 98 | 这就是$\hat{\boldsymbol{L}}$的三个分量的共同本征函数.显然,\eqref{eq37.16}式并不构成完全函数系,它不 99 | 能表示与方向$(\theta,\varphi)$有关的波函数. 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | -------------------------------------------------------------------------------- /C.three/M03.12-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 粒子在一维无限深势阱[$\S$\ref{sec:02.04}(1.)]中运动,已知初始波函数,$\varPsi(x,0)=\frac{1}{\sqrt{2}}[\varPsi_{1}(x)+\varPsi_{2}(x)]$,求$\varPsi(x,t)$,$\bar{E}$,$\overline{E^{2}}$,$\bar{x}(t)$. 4 | 5 | \exercise 粒子在一维无限深势阱($00)$中运动,利用不确定度关系估算基态能级及$\Delta x$的量级. 85 | 86 | \exercise 核子(质子,中子)间的核力(强作用)通过吞吐$\pi$介子而传递,$m_{\pi}\approx 270m_{e}$.试利用不确定度关系估算核力力程. 87 | 88 | \exercise 质量$m$,电荷$q$的粒子在均匀电场(场强$\mathscr{E}$,沿正$x$轴方向)中运动,能量算符为$H=\frac{p_{x}^{2}}{2m}=-q\mathscr{E}x$.已知$t=0$时$\bar{x}=0,\bar{p}_{x}=p_{0}$,试利用海森堡方程计算$\bar{x}(t),\bar{p}_{x}(t)$. 89 | 90 | \exercise 带电粒子在均匀磁场(沿$z$轴方向)中运动时,哈密顿算符可以近似表示成$H=\frac{\boldsymbol{p}^{2}}{2m}-\omega\boldsymbol{L}$,$\omega=\frac{qB}{2mc}$,$q$为粒子的电荷,$B$为场强.已知$t=0$时$\bar{p}_{x}=p_{0}$,$\bar{p}_{y}=\bar{p}_{z}$,试求$t>0$时$\bar{p}_{x}(t),\bar{p}_{y}(t),\bar{p}_{z}(t)$.又,本题有哪些重要的守恒力学量? 91 | 92 | \exercise 对于一维谐振子,求海森堡图像中算符$\hat{x}(t)$,$\hat{p}_{x}(t)$,将它们用$\hat{x},\hat{p}_{x},t$表示出来. 93 | 94 | \exercise 粒子在势场$V(\boldsymbol{r})$中运动,设$V$与粒子的质量无关.证明:如粒子的质量增大,则束缚态能级下降. 95 | 96 | [提示:利用海尔曼定理.] 97 | 98 | \exercise 质量为$m$的粒子在对数函数型中心力场$V(\boldsymbol{r})=V_{0}\ln\bigg(\frac{r}{r_{0}})$中运动,$V_{0},r_{0}>0$并与质量$m$无关.试利用海尔曼定理和位力定理,证明:(a) 各个束缚态的能量虽然不同,但动能平均值相同. (b) 如改变粒子的质量,任何两个能级的间距不受影响. 99 | 100 | \exercise 粒子作一维运动,哈密顿算符为$H=\frac{p^{2}}{2m}+\frac{\lambda}{m}p+\frac{k}{2}x^{2}$($p$即$p_{x},\lambda,k>0$)求能谱. 101 | 102 | [提示:利用海尔曼定理和谐振子的结果.] 103 | 104 | 105 | 106 | \end{exercises} 107 | -------------------------------------------------------------------------------- /C.two/M02.00-Wave function and Schrödinger's equation.tex: -------------------------------------------------------------------------------- 1 | \chapter{波函数和薛定谔方程}\label{chp:02} % Wave function and Schrödinger's equation 2 | % \makebox[5em][s]{} % 短题目拉间距 3 | 4 | 量子力学的发展过程,错综复杂,我们不拟作详细的历史叙述,而将用尽量简明的逻辑,通过简单的对比分析,建立量子力学的基本方程—薛定谔方程,并围绕若薛定谔方程初步阐明波函数的含义然后讨论几种典型的一维定态问题. 5 | 6 | 第三章将全面地叙述量子力学的基本原理. 7 | % 薛定谔方程 8 | \input{QM file/body/C.two/M02.01-Schrödinger's equation} 9 | 10 | % 波函数的统计诠释 11 | \input{QM file/body/C.two/M02.02-Statistical interpretation of the wave function} 12 | 13 | % 定态 14 | \input{QM file/body/C.two/M02.03-stationary state} 15 | 16 | % 一维平底势阱中的粒子 17 | \input{QM file/body/C.two/M02.04-Particles in a one-dimensional flat-bottom potential well} 18 | 19 | % 一维谐振子 20 | \input{QM file/body/C.two/M02.05-One-dimensional resonator} 21 | 22 | % 势垒贯穿 23 | \input{QM file/body/C.two/M02.06-Momentum Throughout} 24 | 25 | % 习题 26 | \input{QM file/body/C.two/M02.07-Exercises} 27 | -------------------------------------------------------------------------------- /C.two/M02.07-Exercises.tex: -------------------------------------------------------------------------------- 1 | \begin{exercises} 2 | 3 | \exercise 设$\varPsi_{1}(\boldsymbol{r},t)$和$\varPsi_{2}(\boldsymbol{r},t)$是两个真实的运动态波函数,满足薛定谔方程.证明$\int_{\text{全}}\varPsi_{1}^{*}\varPsi_{2}d\tau$之值与时间无关. 4 | 5 | \exercise 证明从单粒子薛定谔方程解出的速度场是无旋的,即$\nabla\times \boldsymbol{v}=0$,其中$\boldsymbol{v}=\dfrac{\boldsymbol{j}}{\rho}$,$\rho$为概率密度,$\boldsymbol{j}$为概率流密度. 6 | 7 | \exercise 粒子在一维势场$V(x)$中运动,$V(x)$无奇点.设$\varPsi_{n}(x)$,$\varPsi_{m}(x)$为束缚态波函数,$E_{n}\neq E_{m}$.证明$\varPsi_{n}$与$\varPsi_{m}$正交,即证明 8 | \begin{empheq}{equation*} 9 | \int_{-\infty}^{\infty}\varPsi_{n}(x)\varPsi_{m}(x)dx=0 10 | \end{empheq} 11 | 12 | \exercise 同上题,证明方程$\varPsi_{n}(x)=0$的根都是单根. 13 | 14 | $\big[$提示:利用泰勒展开,并对薛定谔方程求导,证明:如$\varPsi_{n}(x)$有2级以上零点,则$\varPsi_{n}(x)$恒等于0.$\big]$ 15 | 16 | \exercise\label{ex2.5} 质量为$m$的粒子被限制在$0\frac{\hbar^{2}\pi^{2}}{8m} 62 | \end{empheq}\eqnormal 63 | 时,才能存在束缚态($E<0$).并求能级方程. 64 | \pskip 65 | \exercise 对于$\S$\ref{sec:02.04}中(2.)所讲有限深平底势阱,求 66 | 67 | (a)阱口刚好出现一个束缚态能级($E\approx0$)的条件. 68 | 69 | (b)束缚态能级总数,并和无限深势阱作比较. 70 | \pskip 71 | \exercise 对于有限深平底势阱的第$n$个束缚态$\varPsi_{n}$,$E_{n}$,设$V_{0}\leqslant E_{n}+V_{0}$,计算 72 | 73 | (a)粒子在阱外出现概率. 74 | 75 | (b)$V(x)$和$V^{2}(x)$的平均值,并与$E_{n}$比较. 76 | \pskip 77 | \exercise 对于谐振子的基态($\varPsi_{0}$)与第一激发态($\varPsi_{1}$),计算 78 | 79 | (a)分布宽度$\Delta x$(定义见2-7题). 80 | 81 | (b)粒子出现在经典禁区的概率. 82 | \pskip 83 | \exercise 对于谐振子的能量本征态,证明下列公式 84 | \begin{empheq}{equation*} 85 | x\varPsi_{n}=\frac{x_{0}}{2}(\sqrt{n}\varPsi_{n-1}+\sqrt{n+1}\varPsi_{n+1}) 86 | \end{empheq} 87 | \begin{empheq}{equation*} 88 | \frac{d}{dx}\varPsi_{n}=\frac{1}{\sqrt{2}x_{0}}(\sqrt{n}\varPsi_{n-1}-\sqrt{n+1}\varPsi_{n+1}) 89 | \end{empheq} 90 | 91 | \exercise 利用上题中公式,求$\varPsi_{n}$的$\bar{T},\bar{V},\Delta x,\Delta \boldsymbol{p}$.$\Delta \boldsymbol{p}$定义为 92 | \begin{empheq}{equation*} 93 | \Delta \boldsymbol{p}=(\bar{p_{x}^{2}}-\bar{p}_{x}^{2})^{\frac{1}{2}} 94 | \end{empheq} 95 | 96 | \exercise 二维各向同性谐振子,$\hat{H}=-\dfrac{\hbar^{2}}{2m}\bigg(\dfrac{\partial^{2}}{\partial x^{2}}+\dfrac{\partial^{2}}{\partial y^{2}}\bigg)+\dfrac{k}{2}(x^{2}+y^{2})$,试用分离变量法求能级和定态波函数,并求各能级的简并度. 97 | \pskip 98 | \exercise 三维各向同性谐振子,$\hat{H}=-\dfrac{\hbar^{2}}{2m}\nabla^{2}+\dfrac{k}{2}(x^{2}+y^{2}+z^{2})$,试用分离变量法求能级和定态波函数,并讨论各能级的简并度. 99 | \pskip 100 | \exercise 粒子在下列“切割谐振子势阱”中运动, 101 | \begin{empheq}{equation*} 102 | V(x)= 103 | \begin{dcases}\notag 104 | \infty, & x\geqslant 0 \\ 105 | \frac{kx^{2}}{2}, & x>0 106 | \end{dcases} 107 | \end{empheq} 108 | 109 | 求能级和定态波函数. 110 | 111 | [提示:利用谐振子的结果.] 112 | 113 | \pskip 114 | \exercise 二维耦合谐振子的能量算符为 115 | \setlength{\mathindent}{5em} 116 | \begin{empheq}{equation*} 117 | \hat{H}=\hat{T}+V=-\frac{\hbar^{2}}{2m}\bigg(\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2}m\omega^{2}(x^{2}+y^{2}\bigg)+\lambda xy 118 | \end{empheq}\eqnormal 119 | 120 | 其中$|\lambda|0 138 | \end{dcases} 139 | \end{empheq} 140 | 141 | 求反射系数和透射系数.($E>V_{0}$及$E0$,求透射系数. 145 | \end{exercises} -------------------------------------------------------------------------------- /QM file/figure/1-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-1.pdf -------------------------------------------------------------------------------- /QM file/figure/1-10.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-10.pdf -------------------------------------------------------------------------------- /QM file/figure/1-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-2.pdf -------------------------------------------------------------------------------- /QM file/figure/1-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-3.pdf -------------------------------------------------------------------------------- /QM file/figure/1-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-4.pdf -------------------------------------------------------------------------------- /QM file/figure/1-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-5.pdf -------------------------------------------------------------------------------- /QM file/figure/1-6.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-6.pdf -------------------------------------------------------------------------------- /QM file/figure/1-7.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-7.pdf -------------------------------------------------------------------------------- /QM file/figure/1-8.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-8.pdf -------------------------------------------------------------------------------- /QM file/figure/1-9.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/1-9.pdf -------------------------------------------------------------------------------- /QM file/figure/10-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-1.pdf -------------------------------------------------------------------------------- /QM file/figure/10-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-2.pdf -------------------------------------------------------------------------------- /QM file/figure/10-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-3.pdf -------------------------------------------------------------------------------- /QM file/figure/10-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-4.pdf -------------------------------------------------------------------------------- /QM file/figure/10-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-5.pdf -------------------------------------------------------------------------------- /QM file/figure/10-6.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-6.pdf -------------------------------------------------------------------------------- /QM file/figure/10-7.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-7.pdf -------------------------------------------------------------------------------- /QM file/figure/10-8.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/10-8.pdf -------------------------------------------------------------------------------- /QM file/figure/2-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-1.pdf -------------------------------------------------------------------------------- /QM file/figure/2-10.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-10.pdf -------------------------------------------------------------------------------- /QM file/figure/2-11(a).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-11(a).pdf -------------------------------------------------------------------------------- /QM file/figure/2-11(b).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-11(b).pdf -------------------------------------------------------------------------------- /QM file/figure/2-12.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-12.pdf -------------------------------------------------------------------------------- /QM file/figure/2-13.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-13.pdf -------------------------------------------------------------------------------- /QM file/figure/2-14.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-14.pdf -------------------------------------------------------------------------------- /QM file/figure/2-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-2.pdf -------------------------------------------------------------------------------- /QM file/figure/2-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-3.pdf -------------------------------------------------------------------------------- /QM file/figure/2-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-4.pdf -------------------------------------------------------------------------------- /QM file/figure/2-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-5.pdf -------------------------------------------------------------------------------- /QM file/figure/2-6.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-6.pdf -------------------------------------------------------------------------------- /QM file/figure/2-7(a).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-7(a).pdf -------------------------------------------------------------------------------- /QM file/figure/2-7(b).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-7(b).pdf -------------------------------------------------------------------------------- /QM file/figure/2-7(c).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-7(c).pdf -------------------------------------------------------------------------------- /QM file/figure/2-7(d).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-7(d).pdf -------------------------------------------------------------------------------- /QM file/figure/2-8(a).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-8(a).pdf -------------------------------------------------------------------------------- /QM file/figure/2-8(b).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-8(b).pdf -------------------------------------------------------------------------------- /QM file/figure/2-9.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/2-9.pdf -------------------------------------------------------------------------------- /QM file/figure/3-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/3-1.pdf -------------------------------------------------------------------------------- /QM file/figure/3-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/3-2.pdf -------------------------------------------------------------------------------- /QM file/figure/3-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/3-3.pdf -------------------------------------------------------------------------------- /QM file/figure/3-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/3-4.pdf -------------------------------------------------------------------------------- /QM file/figure/3-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/3-5.pdf -------------------------------------------------------------------------------- /QM file/figure/5-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/5-1.pdf -------------------------------------------------------------------------------- /QM file/figure/5-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/5-2.pdf -------------------------------------------------------------------------------- /QM file/figure/5-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/5-3.pdf -------------------------------------------------------------------------------- /QM file/figure/5-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/5-4.pdf -------------------------------------------------------------------------------- /QM file/figure/5-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/5-5.pdf -------------------------------------------------------------------------------- /QM file/figure/6-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/6-1.pdf -------------------------------------------------------------------------------- /QM file/figure/7-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/7-1.pdf -------------------------------------------------------------------------------- /QM file/figure/7-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/7-2.pdf -------------------------------------------------------------------------------- /QM file/figure/7-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/7-3.pdf -------------------------------------------------------------------------------- /QM file/figure/7-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/7-4.pdf -------------------------------------------------------------------------------- /QM file/figure/8-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-1.pdf -------------------------------------------------------------------------------- /QM file/figure/8-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-2.pdf -------------------------------------------------------------------------------- /QM file/figure/8-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-3.pdf -------------------------------------------------------------------------------- /QM file/figure/8-4(a).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-4(a).pdf -------------------------------------------------------------------------------- /QM file/figure/8-4(b).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-4(b).pdf -------------------------------------------------------------------------------- /QM file/figure/8-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-4.pdf -------------------------------------------------------------------------------- /QM file/figure/8-5(a).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-5(a).pdf -------------------------------------------------------------------------------- /QM file/figure/8-5(b).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-5(b).pdf -------------------------------------------------------------------------------- /QM file/figure/8-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-5.pdf -------------------------------------------------------------------------------- /QM file/figure/8-6.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-6.pdf -------------------------------------------------------------------------------- /QM file/figure/8-7.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/8-7.pdf -------------------------------------------------------------------------------- /QM file/figure/9-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/9-1.pdf -------------------------------------------------------------------------------- /QM file/figure/9-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/9-2.pdf -------------------------------------------------------------------------------- /QM file/figure/9-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/9-3.pdf -------------------------------------------------------------------------------- /QM file/figure/9-4.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/9-4.pdf -------------------------------------------------------------------------------- /QM file/figure/9-5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/9-5.pdf -------------------------------------------------------------------------------- /QM file/figure/A-1,2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/A-1,2.pdf -------------------------------------------------------------------------------- /QM file/figure/A-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/A-1.pdf -------------------------------------------------------------------------------- /QM file/figure/A-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/A-2.pdf -------------------------------------------------------------------------------- /QM file/figure/A-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/QM file/figure/A-3.pdf -------------------------------------------------------------------------------- /Quantum Mechanics.bbl: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/Quantum Mechanics.bbl -------------------------------------------------------------------------------- /Quantum Mechanics.blg: -------------------------------------------------------------------------------- 1 | This is BibTeX, Version 0.99d (TeX Live 2022) 2 | Capacity: max_strings=200000, hash_size=200000, hash_prime=170003 3 | The top-level auxiliary file: Quantum Mechanics.aux 4 | I found no \citation commands---while reading file Quantum Mechanics.aux 5 | I found no \bibdata command---while reading file Quantum Mechanics.aux 6 | I found no \bibstyle command---while reading file Quantum Mechanics.aux 7 | You've used 0 entries, 8 | 0 wiz_defined-function locations, 9 | 83 strings with 508 characters, 10 | and the built_in function-call counts, 0 in all, are: 11 | = -- 0 12 | > -- 0 13 | < -- 0 14 | + -- 0 15 | - -- 0 16 | * -- 0 17 | := -- 0 18 | add.period$ -- 0 19 | call.type$ -- 0 20 | change.case$ -- 0 21 | chr.to.int$ -- 0 22 | cite$ -- 0 23 | duplicate$ -- 0 24 | empty$ -- 0 25 | format.name$ -- 0 26 | if$ -- 0 27 | int.to.chr$ -- 0 28 | int.to.str$ -- 0 29 | missing$ -- 0 30 | newline$ -- 0 31 | num.names$ -- 0 32 | pop$ -- 0 33 | preamble$ -- 0 34 | purify$ -- 0 35 | quote$ -- 0 36 | skip$ -- 0 37 | stack$ -- 0 38 | substring$ -- 0 39 | swap$ -- 0 40 | text.length$ -- 0 41 | text.prefix$ -- 0 42 | top$ -- 0 43 | type$ -- 0 44 | warning$ -- 0 45 | while$ -- 0 46 | width$ -- 0 47 | write$ -- 0 48 | (There were 3 error messages) 49 | -------------------------------------------------------------------------------- /Quantum Mechanics.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/Quantum Mechanics.pdf -------------------------------------------------------------------------------- /Quantum Mechanics.synctex.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/Quantum Mechanics.synctex.gz -------------------------------------------------------------------------------- /Quantum Mechanics.tex: -------------------------------------------------------------------------------- 1 | \documentclass{QM} 2 | \usepackage[justification=centering]{caption} 3 | 4 | %置于此为易于TeXStudio环境识别,美观 5 | 6 | \usepackage{siunitx} 7 | \usepackage{empheq} 8 | \usepackage{cases} 9 | \usepackage{array} 10 | \usepackage{tabularx} 11 | \usepackage{diagbox} 12 | \usepackage{chngcntr} % 更改公式编号 13 | \usepackage{physics} 14 | \usepackage{multirow} 15 | \usepackage{extarrows} 16 | \usepackage{makecell} 17 | 18 | \begin{document} 19 | %\widowpenalty0 20 | %\clubpenalty0 21 | 22 | %\renewcommand{\Re}{\operatorname{Re}} 23 | 24 | % 封面 25 | \includepdf{QM file/body/F00-Frontpage.pdf} 26 | \bookmark[page=1,level=0]{封面} 27 | %\clearpage\thispagestyle{empty}\cleardoublepage % 留白页 28 | 29 | % 标题页 30 | %\includepdf{QM file/body/F01-Titlepage.pdf} 31 | \input{QM file/body/F01-Titlepage} 32 | \bookmark[page=2,level=0]{封页} 33 | 34 | % 出版信息页 35 | %\includepdf{QM file/body/F02-Publish Information.pdf} 36 | \input{QM file/body/F02-Publish Information} 37 | 38 | 39 | % 前言 40 | \input{QM file/body/F03-Foreword} 41 | 42 | % 目录 43 | \clearpage 44 | \setcounter{page}{1} 45 | \pdfbookmark{目录}{Contents} 46 | \tableofcontents 47 | 48 | % 正文 49 | \clearpage 50 | \pagestyle{heading} 51 | \setcounter{page}{1} 52 | \setcounter{chapter}{-1} 53 | 54 | % 公式与上下文本距离调整 55 | \baselineskip=1.5em 56 | \lineskip=0.25em 57 | \lineskiplimit=0.25em 58 | \abovedisplayskip=0.25em plus 0.25em minus 0.25em % 公式同上文间距 59 | \belowdisplayskip=\abovedisplayskip % 公式同下文间距 60 | \abovedisplayshortskip=0em plus 0.25em minus 0.25em 61 | \belowdisplayshortskip=\abovedisplayshortskip 62 | \belowcaptionskip=-0.8em % 原为-0.8em 63 | \def\int{\mathop{\vcenter{\hbox{\scaleto[1.3ex]{\symbol{"222B}}{2em}}}}\nolimits} 64 | \def\sum{\mathop{\vcenter{\hbox{\scaleto{\symbol{"2211}}{1.2em}}}}} 65 | 66 | 67 | % 第一章 绪论 68 | \input{QM file/body/C.one/M01.00-Introduction} 69 | 70 | % 第二章 波函数和薛定谔方程 71 | \input{QM file/body/C.two/M02.00-Wave function and Schrödinger's equation} 72 | 73 | % 第三章 基本原理 74 | \input{QM file/body/C.three/M03.00-Fundamentals} 75 | 76 | % 第四章 表象理论 77 | \input{QM file/body/C.four/M04.00-Representation Theory} 78 | 79 | % 第五章 中心力场 80 | \input{QM file/body/C.five/M05.00-Central Force Field} 81 | 82 | 83 | % 第六章 定态微扰论与变分法 84 | \input{QM file/body/C.six/M06.00-Fixed-state perturbation theory and variational methods} 85 | 86 | % 第七章 自旋 87 | \input{QM file/body/C.seven/M07.00-Spin} 88 | 89 | % 第八章 弹性散射 90 | \input{QM file/body/C.eight/M08.00-Elastic scattering} 91 | 92 | % 第九章 量子跃迁 93 | \input{QM file/body/C.nine/M09.00-Quantum leap} 94 | 95 | % 第十章 多粒子体系 96 | \input{QM file/body/C.ten/M10.00-Multi-particle system} 97 | 98 | % 附录1 δ函数和傅里叶变换 99 | \input{QM file/body/A01-Delta function and Fourier transform} 100 | 101 | % 附录2 厄密多项式 102 | \input{QM file/body/A02-Hermite Polynomials} 103 | 104 | % 附录3 轨道角动量算符 105 | \input{QM file/body/A03-Orbital angular momentum operator} 106 | 107 | % 附录4 球谐函数 108 | \input{QM file/body/A04-Spherical harmonic function} 109 | 110 | % 物理常数表 111 | \input{QM file/body/Z01-Physical constants table} 112 | 113 | % 习题答案 114 | \input{QM file/body/Z02-Answers} 115 | 116 | % 我的教学生涯 117 | \input{QM file/body/Z03-Teaching career} 118 | 119 | % 重排后记 120 | \input{QM file/body/Z04-Afterword} 121 | 122 | \end{document} 123 | -------------------------------------------------------------------------------- /Quantum Mechanics.toc: -------------------------------------------------------------------------------- 1 | \contentsline {chapter}{\numberline {第一章\hspace {.3em}}绪论}{1}{chapter.1}% 2 | \contentsline {section}{\numberline {$\S $1.1}黑体辐射与普朗克常数}{1}{section.1.1}% 3 | \contentsline {section}{\numberline {$\S $1.2}光子}{6}{section.1.2}% 4 | \contentsline {section}{\numberline {$\S $1.3}玻尔的量子论}{9}{section.1.3}% 5 | \contentsline {section}{\numberline {$\S $1.4}原子物理中的特征量}{16}{section.1.4}% 6 | \contentsline {section}{\numberline {$\S $1.5}德布罗意的“物质波”假设}{21}{section.1.5}% 7 | \contentsline {section}{习题}{24}{section.1.6}% 8 | \contentsline {chapter}{\numberline {第二章\hspace {.3em}}波函数和薛定谔方程}{27}{chapter.2}% 9 | \contentsline {section}{\numberline {$\S $2.1}薛定谔方程}{27}{section.2.1}% 10 | \contentsline {section}{\numberline {$\S $2.2}波函数的统计诠释}{32}{section.2.2}% 11 | \contentsline {section}{\numberline {$\S $2.3}定态}{37}{section.2.3}% 12 | \contentsline {section}{\numberline {$\S $2.4}一维平底势阱中的粒子}{43}{section.2.4}% 13 | \contentsline {section}{\numberline {$\S $2.5}一维谐振子}{52}{section.2.5}% 14 | \contentsline {section}{\numberline {$\S $2.6}势垒贯穿}{58}{section.2.6}% 15 | \contentsline {section}{习题}{63}{section.2.7}% 16 | \contentsline {chapter}{\numberline {第三章\hspace {.3em}}基本原理}{67}{chapter.3}% 17 | \contentsline {section}{\numberline {$\S $3.1}波函数和算符}{67}{section.3.1}% 18 | \contentsline {section}{\numberline {$\S $3.2}态叠加原理}{71}{section.3.2}% 19 | \contentsline {section}{\numberline {$\S $3.3}线性算符}{72}{section.3.3}% 20 | \contentsline {section}{\numberline {$\S $3.4}波函数的普遍物理诠释}{78}{section.3.4}% 21 | \contentsline {section}{\numberline {$\S $3.5}动量}{84}{section.3.5}% 22 | \contentsline {section}{\numberline {$\S $3.6}力学量算符的对易关系式}{90}{section.3.6}% 23 | \contentsline {section}{\numberline {$\S $3.7}两个力学量算符的共同本征态}{93}{section.3.7}% 24 | \contentsline {section}{\numberline {$\S $3.8}不确定度关系}{96}{section.3.8}% 25 | \contentsline {section}{\numberline {$\S $3.9}状态和力学量随时间的变化}{100}{section.3.9}% 26 | \contentsline {section}{\numberline {$\S $3.10}对称性和守恒定律}{107}{section.3.10}% 27 | \contentsline {section}{\numberline {$\S $3.11}海尔曼定理和位力定理}{114}{section.3.11}% 28 | \contentsline {section}{习题}{121}{section.3.12}% 29 | \contentsline {chapter}{\numberline {第四章\hspace {.3em}}表象理论}{124}{chapter.4}% 30 | \contentsline {section}{\numberline {$\S $4.1}狄拉克符号}{124}{section.4.1}% 31 | \contentsline {section}{\numberline {$\S $4.2}量子力学公式及其矩阵表示}{129}{section.4.2}% 32 | \contentsline {section}{\numberline {$\S $4.3*}坐标表象}{136}{section.4.3}% 33 | \contentsline {section}{\numberline {$\S $4.4*}动量表象}{139}{section.4.4}% 34 | \contentsline {section}{\numberline {$\S $4.5}能量表象}{143}{section.4.5}% 35 | \contentsline {section}{\numberline {$\S $4.6}一维谐振子(升降算符方法)}{148}{section.4.6}% 36 | \contentsline {section}{\numberline {$\S $4.7}角动量}{154}{section.4.7}% 37 | \contentsline {section}{习题}{159}{section.4.8}% 38 | \contentsline {chapter}{\numberline {第五章\hspace {.3em}}中心力场}{162}{chapter.5}% 39 | \contentsline {section}{\numberline {$\S $5.1}中心力场的一般概念}{162}{section.5.1}% 40 | \contentsline {section}{\numberline {$\S $5.2}自由粒子}{168}{section.5.2}% 41 | \contentsline {section}{\numberline {$\S $5.3*}球型势阱}{172}{section.5.3}% 42 | \contentsline {section}{\numberline {$\S $5.4}粒子在库仑场中的运动(束缚态)}{176}{section.5.4}% 43 | \contentsline {section}{\numberline {$\S $5.5*}二维中心力场}{186}{section.5.5}% 44 | \contentsline {section}{习题}{188}{section.5.6}% 45 | \contentsline {chapter}{\numberline {第六章\hspace {.3em}}定态微扰论与变分法}{191}{chapter.6}% 46 | \contentsline {section}{\numberline {$\S $6.1}非简并态微扰论}{191}{section.6.1}% 47 | \contentsline {section}{\numberline {$\S $6.2}简并态微扰论}{195}{section.6.2}% 48 | \contentsline {section}{\numberline {$\S $6.3}变分法}{201}{section.6.3}% 49 | \contentsline {section}{习题}{204}{section.6.4}% 50 | \contentsline {chapter}{\numberline {第七章\hspace {.3em}}自旋}{208}{chapter.7}% 51 | \contentsline {section}{\numberline {$\S $7.1}电子自旋}{208}{section.7.1}% 52 | \contentsline {section}{\numberline {$\S $7.2}电子的总角动量}{214}{section.7.2}% 53 | \contentsline {section}{\numberline {$\S $7.3}碱金属光谱的精细结构}{219}{section.7.3}% 54 | \contentsline {section}{\numberline {$\S $7.4*}粒子在电磁场中的运动}{222}{section.7.4}% 55 | \contentsline {section}{\numberline {$\S $7.5}塞曼效应}{226}{section.7.5}% 56 | \contentsline {section}{\numberline {$\S $7.6*}磁共振}{231}{section.7.6}% 57 | \contentsline {section}{\numberline {$\S $7.7}两个角动量的耦合}{234}{section.7.7}% 58 | \contentsline {section}{\numberline {$\S $7.8}二电子体系的自旋波函数}{237}{section.7.8}% 59 | \contentsline {section}{习题}{239}{section.7.9}% 60 | \contentsline {chapter}{\numberline {第八章\hspace {.3em}}弹性散射}{243}{chapter.8}% 61 | \contentsline {section}{\numberline {$\S $8.1}散射过程的一般描述}{243}{section.8.1}% 62 | \contentsline {section}{\numberline {$\S $8.2}分波法}{247}{section.8.2}% 63 | \contentsline {section}{\numberline {$\S $8.3*}低能散射}{254}{section.8.3}% 64 | \contentsline {section}{\numberline {$\S $8.4}玻恩近似}{257}{section.8.4}% 65 | \contentsline {section}{习题}{267}{section.8.5}% 66 | \contentsline {chapter}{\numberline {第九章\hspace {.3em}}量子跃迁}{270}{chapter.9}% 67 | \contentsline {section}{\numberline {$\S $9.1}与时间有关的微扰论}{270}{section.9.1}% 68 | \contentsline {section}{\numberline {$\S $9.2}几种典型跃迁}{273}{section.9.2}% 69 | \contentsline {section}{\numberline {$\S $9.3}光的吸收与受激辐射}{277}{section.9.3}% 70 | \contentsline {section}{\numberline {$\S $9.4}自发辐射}{282}{section.9.4}% 71 | \contentsline {section}{\numberline {$\S $9.5*}激光原理}{286}{section.9.5}% 72 | \contentsline {section}{\numberline {$\S $9.6*}能量-时间不确定度关系}{289}{section.9.6}% 73 | \contentsline {section}{习题}{291}{section.9.7}% 74 | \contentsline {chapter}{\numberline {第十章\hspace {.3em}}多粒子体系}{294}{chapter.10}% 75 | \contentsline {section}{\numberline {$\S $10.1}二粒子体系}{294}{section.10.1}% 76 | \contentsline {section}{\numberline {$\S $10.2}全同粒子体系}{298}{section.10.2}% 77 | \contentsline {section}{\numberline {$\S $10.3}氦原子}{301}{section.10.3}% 78 | \contentsline {section}{\numberline {$\S $10.4}氢分子}{307}{section.10.4}% 79 | \contentsline {section}{\numberline {$\S $10.5}化学键}{314}{section.10.5}% 80 | \contentsline {section}{\numberline {$\S $10.6*}双原子分子的振动和转动}{316}{section.10.6}% 81 | \contentsline {section}{习题}{319}{section.10.7}% 82 | \contentsline {chapter}{\numberline {附录 A\hspace {.3em}}δ函数和傅里叶变换}{323}{appendix.A}% 83 | \contentsline {chapter}{\numberline {附录 B\hspace {.3em}}厄密多项式}{327}{appendix.B}% 84 | \contentsline {chapter}{\numberline {附录 C\hspace {.3em}}轨道角动量算符}{330}{appendix.C}% 85 | \contentsline {chapter}{\numberline {附录 D\hspace {.3em}}球谐函数}{332}{appendix.D}% 86 | \contentsline {chapter}{物理常数表}{340}{appendix.E}% 87 | \contentsline {chapter}{习题答案}{341}{appendix.F}% 88 | \contentsline {chapter}{我的教学生涯}{355}{appendix.K}% 89 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Quantum-Mechanics 2 | 量子力学-钱伯初(高等教育出版社) 重排 3 | 4 | ### 字体使用 5 | 6 | 中文字体:思源宋体、思源黑体、方正楷体、霞鹜文楷 7 | 8 | 英文字体:Times New Roman 9 | 10 | ### 重置说明 11 | 12 | 《量子力学》由钱伯初先生所著作,电子工业出版社出版。1993年3月第一次出版 13 | 14 | 本书制作之初是为参加高等教育自学考试的读者所写的教材,内容上集作者教书授学之精华,严谨考究;形式上深入浅出,通俗易懂,对初学者十分友善,出版多年以来广受读者好评,是一本十分不错的量子力学学习书。 15 | 16 | 本书近年来曾被高等教育出版社再版印刷,但在排版内容上仍有许多错误未能甄改,加之近年来智能设备的普及,许多大学生逐渐热衷于使用电子书进行学习,辅之以个人兴趣,故进行电子化重置。 17 | 18 | 由于原书铅字人工排版印刷,与\LaTeX 排版相比,存在较大差异,且碍于本人水准过低,在重排过 19 | 程中,无法实现完全相同的效果,只能在可能的情况下,尽量按照原书页码安排内容。文中图片本人尽量以原书格式进行重置,部分图片未能如愿更改,待后续学习精进后再做调整。 20 | 21 | 当然个人精力、水平有限,亦难免遗漏或者改错之处。读者如有发现,可 22 | 前往上述网址讨论或提交相关信息。如有兴趣者,亦可在上述项目网址下载源码进行修订。 23 | 24 | 感谢诸多网友对本人在重置过程中遇到问题时的悉心帮助。特别感谢科大钱进教授对本人重置初期的支持与鼓励。 25 | 26 | 同时欢迎有同志意愿参与重置书籍的工作,让更多书籍在信息时代光芒不减。 27 | 28 | ### 下载注意 29 | 30 | 因本人初次使用Github,上传多显粗拙,请下载后依据主`tex`文档内文件所属位置进行放置。十分抱歉 31 | -------------------------------------------------------------------------------- /body/A01-Delta function and Fourier transform.tex: -------------------------------------------------------------------------------- 1 | \clearpage 2 | \appendix 3 | 4 | %\renewcommand\chaptername{Appendix} 5 | %\renewcommand\thechapter{\arabic{chapter}} 6 | 7 | 8 | %\renewcommand\chaptername{Appendix} % hereafter, chapters are called "Appendix" 9 | %\renewcommand\thechapter{\Alph{chapter}} % chapter number in alph letters 10 | %\renewcommand\thesection{\Alph{chapter}.\Roman{section}} % make sections "A.I" 11 | 12 | %\renewcommand{\appendixname}{Appendix~\arabic{section}} 13 | 14 | \setcounter{chapter}{0} 15 | \setcounter{figure}{0} 16 | \chapter{δ函数和傅里叶变换} \label{A01} 17 | 18 | % 更改公式标号格式 19 | \counterwithout{equation}{chapter} % 移除于chapter关联 20 | 21 | 22 | % 正文 23 | 24 | 在这里我们不准备叙述$\delta$函数的严格数学理论,而只是将它作为一种方便的数学工具介绍给读者. 25 | 26 | {\heiti 1. $\delta$函数的定义及基本性质} 27 | 28 | 以$f(x)$表示任何具有良好解析性质的函数.规定$\delta$函数的基本性质(也就是定义)为 29 | \eqlong 30 | \begin{empheq}{equation}\label{eqA1.1} 31 | \boxed{ \int_{a}^{b}f(x)\delta(x-x_{0})dx=f(x_{0}),\quad a\frac{\pi}{\alpha}$区域,由于迅速振荡,对积分无贡献.而全空间积分等于1: 69 | \begin{empheq}{equation*} 70 | \int_{-\infty}^{\infty}\frac{\sin\alpha x}{\pi x}dx=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\sin t}{t}dt=1. 71 | \end{empheq}\eqllong 72 | \begin{figure}[!h] 73 | \centering 74 | \small 75 | \includegraphics[width=8cm,clip]{QM file/figure/A-1,2} 76 | \caption*{}\label{fig.A-1,2} 77 | \end{figure} 78 | \begin{empheq}{equation}\label{eqA1.8} 79 | (\ce{iii})\qquad\qquad\qquad \boxed{\delta(x)=\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{ikx}dk } 80 | \end{empheq}\eqnormal 81 | 由于$e^{ikx}=\cos kx+i\sin kx$,如将\eqref{eqA1.8}式中积分上下限改写为$\pm\alpha(\alpha\rightarrow\infty)$,立即可以发现\eqref{eqA1.8}式与\eqref{eqA1.7}式是等价的. 82 | 83 | {\heiti 3. 傅里叶变换} 84 | 85 | 将任何具有良好解析性质的函数$f(x)$表示成傅里叶积分的形式 86 | \begin{empheq}{equation}\label{eqA1.9} 87 | f(x)=\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty}g(k)e^{ikx}dk 88 | \end{empheq}\eqlllong 89 | $g(k)$称为$f(x)$的傅里叶变换式.利用$\delta$函数很容易导出$g(k)$的公式,如下.利用\eqref{eqA1.8}式,将$f(x)$表示成 90 | \begin{empheq}{align*} 91 | f(x)&=\int_{-\infty}^{\infty}f(x^{\prime})\delta(x-x^{\prime})dx^{\prime} 92 | &=\frac{1}{2\pi}\iint_{-\infty}^{\infty}f(x^{\prime})e^{ik(x-x^{\prime})}dkdx^{\prime} 93 | \end{empheq}\eqnormal 94 | 与\eqref{eqA1.9}式比较,即得 95 | \begin{empheq}{align}\label{eqA1.10} 96 | g(k)&=\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty}f(x^{\prime})e^{-ikx^{\prime}}dx^{\prime} \nonumber\\ 97 | &=\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx 98 | \end{empheq} 99 | 此即傅里叶变换式.注意\eqref{eqA1.9}、\eqref{eqA1.10}式结构的对称性. 100 | 101 | {\heiti 4. 三维情形} 102 | 103 | 三维$\delta$函数定义为 104 | \begin{empheq}{equation}\label{eqA1.11} 105 | \delta(\boldsymbol{r}-\boldsymbol{r}_{0})=\delta(x-x_{0})\delta(y-y_{0})\delta(z-z_{0}) 106 | \end{empheq} 107 | 其中 108 | \begin{empheq}{equation*} 109 | \boldsymbol{r}=(x,y,z),\quad \boldsymbol{r}_{0}=(x_{0},y_{0},z_{0}) 110 | \end{empheq} 111 | 基本积分性质为 112 | \begin{empheq}{equation}\label{eqA1.12} 113 | \boxed{ \iiint_{-\infty}^{\infty}f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_{0})d^{3}\boldsymbol{r}=f(\boldsymbol{r}_{0}) 114 | } 115 | \end{empheq} 116 | 与\eqref{eqA1.4}式相应,有关系 117 | \begin{empheq}{equation}\label{eqA1.13} 118 | \delta(\lambda\boldsymbol{r}-\lambda\boldsymbol{r}_{0})=\frac{1}{|\lambda^{3}|}\delta(\boldsymbol{r}-\boldsymbol{r}_{0}) 119 | \end{empheq} 120 | \eqref{eqA1.8}式推广成 121 | \begin{empheq}{equation}\label{eqA1.14} 122 | \delta(\boldsymbol{r})=\frac{1}{(2\pi)^{3}}\iiint_{-\infty}^{\infty}e^{i\boldsymbol{k}\cdot\boldsymbol{r}}d^{3}\boldsymbol{k} 123 | \end{empheq} 124 | 利用此式容易导出三维傅里叶变换公式 125 | \begin{empheq}{equation}\label{eqA1.15} 126 | \boxed{\begin{aligned} 127 | f(\boldsymbol{r})=\left(\frac{1}{2\pi}\right)^{\frac{3}{2}}\iiint_{-\infty}^{\infty}g(\boldsymbol{k})e^{i\boldsymbol{k}\cdot\boldsymbol{r}}d^{3}\boldsymbol{k} \\ 128 | g(\boldsymbol{k})=\left(\frac{1}{2\pi}\right)^{\frac{3}{2}}\iiint_{-\infty}^{\infty}f(\boldsymbol{r})e^{i\boldsymbol{k}\cdot\boldsymbol{r}}d^{3}\boldsymbol{r} 129 | \end{aligned}} 130 | \end{empheq} 131 | 132 | 采用球坐标$(r,\theta,\varphi)$时,当$r\rightarrow0$,角$\theta,\varphi$失去意义,这时常用径向$\delta$函数$\delta(r)$代替$\delta(\boldsymbol{r})$.考虑到$r$的变化范围是$0\leqslant r<\infty$,$\delta$函数是偶函数,以及$d^{3}\boldsymbol{r}\Rightarrow r^{2}drd\Omega$, 133 | \begin{empheq}{align*} 134 | &\iiint_{-\infty}^{\infty}\delta(\boldsymbol{r})d^{3}\boldsymbol{r}=1=2\int_{0}^{\infty}\delta(r)dr \\ 135 | =&\frac{1}{2\pi}\int d\Omega\int_{0}^{\infty}\frac{\delta(r)}{r^{2}}r^{2}dr \\ 136 | =&\frac{1}{2\pi}\iiint_{-\infty}^{\infty}\frac{\delta(r)}{r^{2}}d^{3}\boldsymbol{r} 137 | \end{empheq}\eqshort 138 | 因此 139 | \begin{empheq}{equation}\label{eqA1.16} 140 | \delta(\boldsymbol{r})=\frac{1}{2\pi r^{2}}\delta(r) 141 | \end{empheq}\eqnormal 142 | 注意 143 | \begin{empheq}{equation}\label{eqA1.17} 144 | \int_{-\infty}^{\infty}f(r)\delta(r)dr=\frac{1}{2}f(0) 145 | \end{empheq} 146 | 147 | -------------------------------------------------------------------------------- /body/A02-Hermite Polynomials.tex: -------------------------------------------------------------------------------- 1 | \clearpage 2 | \chapter{厄密多项式} \label{A02} 3 | 4 | 令$\xi,\eta$为独立的复变数,考虑下列在整个复平面解析的二元函数 5 | \eqshort 6 | \begin{empheq}{equation}\label{eqA2.1} 7 | W(\xi,\eta)=e^{2\xi\eta-\eta^{2}} 8 | \end{empheq} 9 | 将它展开成$\eta$的幕级数,表示成 10 | \begin{empheq}{equation}\label{eqA2.2} 11 | W(\xi,\eta)=\sum_{n=0}^{\infty}H_{n}(\xi)\frac{\eta^{n}}{n!} 12 | \end{empheq} 13 | 则 14 | \begin{empheq}{equation*} 15 | H_{n}(\xi)=\frac{\partial^{n}W}{\partial\eta^{n}}\bigg|_{\eta=0} 16 | \end{empheq}\eqlong 17 | 由于 18 | \begin{empheq}{align*} 19 | W&=e^{2\xi\eta-\eta^{2}}=e^{\eta^{2}-t^{2}},\quad t=\xi-\eta \\ 20 | \frac{\partial^{n}W}{\partial\eta^{n}}=&(-1)^{n}\frac{\partial^{n}W}{\partial t^{n}}=(-1)^{n}e^{\xi^{2}}\left(\frac{d}{dt}\right)^{n}e^{-t^{2}} \\ 21 | &\left(\frac{d}{dt}\right)^{n}e^{-t^{2}}|_{\eta=0}=\left(\frac{d}{d\xi}\right)^{n}e^{-\xi^{2}} 22 | \end{empheq}\eqnormal 23 | 所以 24 | \begin{empheq}{equation}\label{eqA2.3} 25 | H_{n}(\xi)=(-1)^{n}e^{\xi^{2}}\left(\frac{d}{d\xi}\right)^{n}e^{-\xi^{2}} 26 | \end{empheq} 27 | 显然$H_{n}(\xi)$是$n$次多项式,称为厄密(Hermite)多项式.上式就是它的微分表达式.$W(\xi,\eta)$称为$H_{n}(\xi)$的生成函数或母函数. 28 | 29 | \eqref{eqA2.2}式对$\xi$求导,得到 30 | \begin{empheq}{align*} 31 | \sum_{n}H_{n}^{\prime}(\xi)\frac{\eta^{n}}{n!}&=2\eta W(\xi,\eta) \\ 32 | &=\sum_{n}2H_{n}(\xi)\frac{\eta^{n+1}}{n!} 33 | \end{empheq}\eqshort 34 | 比较上式两端$\eta^{n}$系数,即得 35 | \begin{empheq}{equation}\label{eqA2.4} 36 | H_{n}^{\prime}(\xi)=2nH_{n-1}(\xi) 37 | \end{empheq}\eqnormal 38 | \eqref{eqA2.2}式对$\eta$求导,经过类似的步骤,得到 39 | \begin{empheq}{equation}\label{eqA2.5} 40 | 2\xi H_{n}(\xi)=H_{n+1}(\xi)+2nH_{n-1}(\xi) 41 | \end{empheq} 42 | 以上二式是厄密多项式的基本递推关系.由\eqref{eqA2.4}、\eqref{eqA2.5}式消去$H_{n-1}$,再对$\xi$求导,再利用\eqref{eqA2.4}式消去$H_{n+1}^{\prime}$,就得$H_{n}$满足的微分方程 43 | \begin{empheq}{equation}\label{eqA2.6} 44 | H_{n}^{\prime\prime}(\xi)-2\xi H_{n}^{\prime}(\xi)+2nH_{n}(\xi)=0 45 | \end{empheq} 46 | 称为厄密方程.\eqref{eqA2.3}式是这个方程的唯一多项式解. 47 | 48 | 将\eqref{eqA2.2}式中$\eta$换成另一个变数$s$, 49 | \begin{empheq}{equation*} 50 | e^{2\xi s-s^{2}}=\sum_{m=0}^{\infty}H_{m}(\xi)\frac{s^{m}}{m!} 51 | \end{empheq} 52 | 与\eqref{eqA2.2}式相乘,得到 53 | \begin{empheq}{align*} 54 | &\sum_{n}\sum_{m}H_{n}(\xi)H_{m}(\xi)\frac{\eta^{n}s^{m}}{n!m!} \\ 55 | =&\exp(2\xi\eta+2\xi s-\eta^{2}-s^{2}) \\ 56 | =&\exp[\eta^{2}+2\eta s-(\xi-\eta-s)^{2}] 57 | \end{empheq} 58 | 以$e^{-\xi^{2}}$乘上式两端,并积分$\int_{-\infty}^{\infty}\cdots d\xi$,得到 59 | \begin{empheq}{align*} 60 | &\sum_{n}\sum_{m}\frac{\eta^{n}s^{m}}{n!m!}\int_{-\infty}^{\infty}e^{-\xi^{2}}H_{n}(\xi)H_{m}(\xi)d\xi \\ 61 | =& e^{2\eta s}\int_{-\infty}^{\infty}e^{-(\xi-\eta-s)^{2}}d\xi \\ 62 | =& e^{2\eta s}\int_{-\infty}^{\infty}e^{-x^{2}}dx=\sqrt{\pi}e^{2\eta s} \\ 63 | =& \sqrt{\pi}\sum_{n=0}^{\infty}2^{n}\frac{(\eta s)^{n}}{n!} 64 | \end{empheq} 65 | 比较上式两端,即得厄密多项式的正交归一化公式 66 | \begin{empheq}{equation}\label{eqA2.7} 67 | \int_{-\infty}^{\infty}e^{-\xi^{2}}H_{n}(\xi)H_{m}(\xi)d\xi=2^{n}n!\sqrt{\pi}\delta_{nm} 68 | \end{empheq} 69 | 其中$e^{-\xi^{2}}$为权函数.换言之,下列函数系$\{\phi_{n}(\xi)\}$是$-\infty<\xi<\infty$区域的正交归一化完备函数系: 70 | \begin{empheq}{equation}\label{eqA2.8} 71 | \phi_{n}(\xi)=(2^{n}n!\sqrt{\pi})^{-\frac{1}{2}}e^{-\xi^{2}/2}H_{n}(\xi) 72 | \end{empheq} 73 | 由\eqref{eqA2.3}式可知,$H_{n}(\xi)$及$\phi_{n}(\xi)$的宇称为$(-1)^{n}$,即 74 | \begin{empheq}{align} 75 | H_{n}(-\xi)=(-1)^{n}H_{n}(\xi) \label{eqA2.9}\\ 76 | \phi_{n}(-\xi)=(-1)^{n}\phi_{n}(\xi) \label{eqA2.10} 77 | \end{empheq}\eqlong 78 | 前几种厄密多项式是 79 | \begin{empheq}{equation}\label{eqA2.11} 80 | \begin{aligned} 81 | H_{0}&(\xi)=1,\quad H_{1}(\xi)=2\xi \\ 82 | H_{2}(\xi)=&4\xi^{2}-2,\quad H_{3}(\xi)=8\xi^{3}-12\xi \\ 83 | H_{4}&(\xi)=16\xi^{4}-48\xi^{2}+12 84 | \end{aligned} 85 | \end{empheq}\eqnormal 86 | 注意,$H_{n}(\xi)$中最高次项是$(2\xi)^{n}$,这一点可从\eqref{eqA2.3}式直接看出. 87 | 88 | $H_{n}(\xi)$还有另一种微分表达式,即 89 | \begin{empheq}{equation}\label{eqA2.12} 90 | H_{n}(\xi)=e^{\eta^{2}/2}\left(\xi-\frac{d}{d\xi}\right)^{n}e^{-\xi^{2}/2} 91 | \end{empheq} 92 | 用数学归纳法容易证明\eqref{eqA2.12}式与\eqref{eqA2.3}式是等价的,读者可自行证明之. -------------------------------------------------------------------------------- /body/A03-Orbital angular momentum operator.tex: -------------------------------------------------------------------------------- 1 | \clearpage 2 | \chapter{轨道角动量算符} \label{A03} 3 | 4 | 在直角坐标系中,以$\boldsymbol{e}_{1},\boldsymbol{e}_{2},\boldsymbol{e}_{3}$表示$x,y,z$轴方向单位矢量.粒子的位置矢量和梯度算符可以表示成 5 | \begin{empheq}{align} 6 | &\boldsymbol{r}=x\boldsymbol{e}_{1}+y\boldsymbol{e}_{2}+z\boldsymbol{e}_{3} \label{eqA3.1}\\ 7 | \nabla&=\boldsymbol{e}_{1}\frac{\partial}{\partial x}+\boldsymbol{e}_{2}\frac{\partial}{\partial y}+\boldsymbol{e}_{3}\frac{\partial}{\partial z} \label{eqA3.2} 8 | \end{empheq}\eqlong 9 | \begin{wrapfigure}[15]{r}{0.3\textwidth} 10 | \centering 11 | \small 12 | \includegraphics[width=3.5cm,clip]{QM file/figure/A-3} 13 | \caption*{附录图3}\label{fig.A-3} 14 | \end{wrapfigure} 15 | 16 | \noindent 轨道角动量算符为 17 | \begin{empheq}{equation}\label{eqA3.3} 18 | \boldsymbol{L}=\boldsymbol{r}\times\boldsymbol{p}=-i\hbar\boldsymbol{r}\times\nabla 19 | \end{empheq}\eqindent{1} 20 | 21 | 在球坐标系中,以$\boldsymbol{e}_{r},\boldsymbol{e}_{\theta},\boldsymbol{e}_{\varphi}$分别表示沿径向,经线切线方向,纬线切线方向单位矢量(附录图3),三者有关系 22 | \begin{equation}\label{eqA3.4} 23 | \boldsymbol{e}_{r}\times\boldsymbol{e}_{\theta}=\boldsymbol{e}_{\varphi},\quad \boldsymbol{e}_{\theta}\times\boldsymbol{e}_{\varphi}=\boldsymbol{e}_{r},\quad \boldsymbol{e}_{\varphi}\times\boldsymbol{e}_{r}=\boldsymbol{e}_{\theta} 24 | \end{equation}\eqlllong 25 | 梯度$\nabla$的球坐标表示为 26 | \begin{equation}\label{eqA3.5} 27 | \nabla=\boldsymbol{e}_{r}\frac{\partial}{\partial r}+\boldsymbol{e}_{\theta}\frac{1}{r}\frac{\partial}{\partial\theta}+\boldsymbol{e}_{\varphi}\frac{1}{r\sin\theta}\frac{\partial}{\partial\varphi} 28 | \end{equation}\eqnormal 29 | 因此,轨道角动量算符可以表示成 30 | \begin{empheq}{align}\label{eqA3.6} 31 | \boldsymbol{L}&=-i\hbar r\boldsymbol{e}_{r}\times\nabla \nonumber\\ 32 | &=-i\hbar\left(\boldsymbol{e}_{\varphi}\frac{\partial}{\partial\theta}-\boldsymbol{e}_{\theta}\frac{1}{\sin\theta}\frac{\partial}{\partial\varphi}\right) 33 | \end{empheq} 34 | 分别取上式与$\boldsymbol{e}_{1},\boldsymbol{e}_{2},\boldsymbol{e}_{3}$的内积,并注意到 35 | \begin{empheq}{align}\label{eqA3.7} 36 | \boldsymbol{e}_{1}\cdot\boldsymbol{e}_{\theta}=&\cos\theta\cos\varphi,\quad \boldsymbol{e}_{1}\cdot\boldsymbol{e}_{\varphi}=-\sin\varphi \nonumber\\ 37 | \boldsymbol{e}_{2}\cdot\boldsymbol{e}_{\theta}=&\cos\theta\sin\varphi,\quad \boldsymbol{e}_{2}\cdot\boldsymbol{e}_{\varphi}=\cos\varphi \nonumber\\ 38 | (&\boldsymbol{e}_{1}\pm i\boldsymbol{e}_{2})\cdot\boldsymbol{e}_{\theta}=\cos\theta\boldsymbol{e}^{\pm i\varphi} \nonumber\\ 39 | &(\boldsymbol{e}_{1}\pm i\boldsymbol{e}_{2})\cdot\boldsymbol{e}_{\varphi}=\pm i\boldsymbol{e}^{\pm i\varphi} \nonumber\\ 40 | \boldsymbol{e}_{3}\cdot\boldsymbol{e}_{\theta}=&-\sin\theta,\quad \boldsymbol{e}_{3}\cdot\boldsymbol{e}_{\varphi}=0 41 | \end{empheq}\eqindent{8} 42 | 即得 43 | \begin{empheq}{align} 44 | L_{x}&=i\hbar\left(\sin\varphi\frac{\partial}{\partial\theta}+\cot\theta\cos\varphi\frac{\partial}{\partial\varphi}\right) \nonumber\\ 45 | L_{y}&=i\hbar\left(-\cos\varphi\frac{\partial}{\partial\theta}+\cot\theta\sin\varphi\frac{\partial}{\partial\varphi}\right) \label{eqA3.8}\\ 46 | L_{x}&\pm iL_{y}=\hbar e^{\pm i\varphi}\left(\pm\frac{\partial}{\partial\theta}+i\cot\theta\frac{\partial}{\partial\varphi}\right) \label{eqA3.9}\\ 47 | L_{z}&=-i\hbar\frac{\partial}{\partial\varphi} \label{eqA3.10} 48 | \end{empheq} 49 | 另外,$\boldsymbol{L}^{2}$可以表示成 50 | \begin{empheq}{align}\label{eqA3.11} 51 | \boldsymbol{L}^{2}&=L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \nonumber\\ 52 | &(L_{x}-iL_{y})(L_{z}+iL_{y})+\hbar L_{z}+L_{z}^{2} 53 | \end{empheq} 54 | (利用$L_{x}L_{y}-L_{y}L_{x}=i\hbar L_{z}$)将\eqref{eqA3.9}、\eqref{eqA3.10}式代入上式,经过化简,即得 55 | \begin{empheq}{align}\label{eqA3.12} 56 | \boldsymbol{L}^{2}&=-\hbar^{2}\left(\frac{\partial^{2}}{\partial\theta^{2}}+\cot\theta\frac{\partial}{\partial\theta}+\frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\varphi^{2}}\right) \\ 57 | &=-\hbar^{2}\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta}+\frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\varphi^{2}}\right) 58 | \end{empheq}\eqlong 59 | 采用球坐标时,常令$\cos\theta=\xi$,而以$(r,\xi,\varphi)$作为坐标变量,这时\eqref{eqA3.9}式及\eqref{eqA3.12}式变成 60 | \begin{empheq}{align} 61 | L_{x}\pm iL_{y}=\hbar e^{\pm i\varphi}\left[\mp(1-\xi^{2})^{\frac{1}{2}}\frac{\partial}{\partial\xi}+i\xi(1-\xi^{2})^{-\frac{1}{2}}\frac{\partial}{\partial\varphi}\right] \label{eqA3.13}\\ 62 | \boldsymbol{L}^{2}=-\hbar^{2}\left[(1-\xi^{2})\frac{\partial^{2}}{\partial\xi^{2}}-2\xi\frac{\partial}{\partial\xi}+(1-\xi^{2})^{-1}\frac{\partial^{2}}{\partial\varphi^{2}}\right] \label{eqA3.14} 63 | \end{empheq}\eqnormal -------------------------------------------------------------------------------- /body/F00-Frontpage.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/body/F00-Frontpage.pdf -------------------------------------------------------------------------------- /body/F01-Titlepage.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/body/F01-Titlepage.pdf -------------------------------------------------------------------------------- /body/F01-Titlepage.tex: -------------------------------------------------------------------------------- 1 | % 标题页 2 | \begin{center} 3 | 4 | \pskip 5 | 6 | \Large{Quantum \quad Mechanics} \par 7 | \Huge{\heiti 量~~子~~力~~学} \pskip 8 | 9 | \normalfont{} 10 | \normalsize 11 | 12 | 13 | \large \kaishu{钱伯初} 14 | 15 | \vfill 16 | %\zihao{5} 17 | \large{高~~~~等~~~~教~~~~育~~~~出~~~~版~~~~社} 18 | 19 | \end{center} 20 | \normalsize 21 | \thispagestyle{empty} 22 | \clearpage -------------------------------------------------------------------------------- /body/F02-Publish Information.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/body/F02-Publish Information.pdf -------------------------------------------------------------------------------- /source.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/source.pdf -------------------------------------------------------------------------------- /量子力学 by 钱伯初 (z-lib.org).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/NanFeng683/Quantum-Mechanics-/a9b179d273f6d8e64d02e7de67c07976ae148aa1/量子力学 by 钱伯初 (z-lib.org).pdf --------------------------------------------------------------------------------