└── Linear_regression.ipynb /Linear_regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": null, 16 | "id": "9c4a3e9c", 17 | "metadata": { 18 | "scrolled": true, 19 | "id": "9c4a3e9c" 20 | }, 21 | "outputs": [], 22 | "source": [ 23 | "import pandas as pd\n", 24 | "import numpy as np\n", 25 | "import matplotlib.pyplot as plt" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": null, 31 | "id": "5059a90d", 32 | "metadata": { 33 | "id": "5059a90d", 34 | "outputId": "68ccf395-73f3-4cc4-98e3-bd0abde25796" 35 | }, 36 | "outputs": [ 37 | { 38 | "name": "stdout", 39 | "output_type": "stream", 40 | "text": [ 41 | " db full_path age gender\n", 42 | "0 UTKface part1/41_0_2_20170105164126307.jpg 41 1\n", 43 | "1 UTKface part1/80_1_0_20170110122217473.jpg 80 0\n", 44 | "2 UTKface part1/56_0_0_20170111202842202.jpg 56 1\n", 45 | "3 UTKface part1/82_1_0_20170110141329969.jpg 82 0\n", 46 | "4 UTKface part1/16_1_4_20170102234841875.jpg 16 0\n", 47 | "... ... ... ... ...\n", 48 | "24099 UTKface part3/31_1_3_20170119200101732.jpg 31 0\n", 49 | "24100 UTKface part3/24_1_1_20170116225255798.jpg 24 0\n", 50 | "24101 UTKface part3/39_0_3_20170119203757237.jpg 39 1\n", 51 | "24102 UTKface part3/44_1_3_20170119192758593.jpg 44 0\n", 52 | "24103 UTKface part3/78_1_0_20170120224727472.jpg 78 0\n", 53 | "\n", 54 | "[24104 rows x 4 columns]\n" 55 | ] 56 | } 57 | ], 58 | "source": [ 59 | "data=pd.read_csv('D:\\\\Jeyashri\\\\IBM\\\\Datasets\\\\age.csv')\n", 60 | "print(data)" 61 | ] 62 | }, 63 | { 64 | "cell_type": "code", 65 | "execution_count": null, 66 | "id": "7c97bbf9", 67 | "metadata": { 68 | "id": "7c97bbf9", 69 | "outputId": "847de9b6-1ee0-4a79-ffca-92bfc544a0e0" 70 | }, 71 | "outputs": [ 72 | { 73 | "data": { 74 | "text/html": [ 75 | "
\n", 76 | "\n", 89 | "\n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | "
dbfull_pathagegender
0UTKfacepart1/41_0_2_20170105164126307.jpg411
1UTKfacepart1/80_1_0_20170110122217473.jpg800
2UTKfacepart1/56_0_0_20170111202842202.jpg561
3UTKfacepart1/82_1_0_20170110141329969.jpg820
4UTKfacepart1/16_1_4_20170102234841875.jpg160
\n", 137 | "
" 138 | ], 139 | "text/plain": [ 140 | " db full_path age gender\n", 141 | "0 UTKface part1/41_0_2_20170105164126307.jpg 41 1\n", 142 | "1 UTKface part1/80_1_0_20170110122217473.jpg 80 0\n", 143 | "2 UTKface part1/56_0_0_20170111202842202.jpg 56 1\n", 144 | "3 UTKface part1/82_1_0_20170110141329969.jpg 82 0\n", 145 | "4 UTKface part1/16_1_4_20170102234841875.jpg 16 0" 146 | ] 147 | }, 148 | "execution_count": 9, 149 | "metadata": {}, 150 | "output_type": "execute_result" 151 | } 152 | ], 153 | "source": [ 154 | "data.head()" 155 | ] 156 | }, 157 | { 158 | "cell_type": "code", 159 | "execution_count": null, 160 | "id": "16deb7f9", 161 | "metadata": { 162 | "id": "16deb7f9", 163 | "outputId": "7179124f-d523-4b44-8e9a-d5bb5fa97938" 164 | }, 165 | "outputs": [ 166 | { 167 | "data": { 168 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEGCAYAAACO8lkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXm0lEQVR4nO3dfZBddZ3n8fe3OyEQAiYkTYh5MJkhgEFDxm1BHEEU5FnDDNYWqKOybFFUgTru1vJQujO7Y+2Wg7urzKLLIrKMzgzMLiCwiIIDIqsOIx0WAgSBXlDSPIQkPCUQyEN/9497E2761w+3Ozncvs37VZXqPr/zO+d8f0nnfvqc37n3RGYiSVKjjlYXIEkafwwHSVLBcJAkFQwHSVLBcJAkFSa1uoDRmjVrVi5cuLDVZUhSW1mxYsW6zOxqtn/bhcPChQvp6elpdRmS1FYi4nej6e9lJUlSwXCQJBUMB0lSwXCQJBUMB0lSobK7lSLiKuBU4PnMfM8g6wO4FDgZeA34fGbeV1U9Cy/60Zi2m7YHbNw8um1mTe1k3Wvbdnxt1AlsG3yzYQWQDV818ezZAa/3j9zW6JD9p/Kb51/bsXzgrL3oXbdppz5TAt7I2tf5M8v124+xZwe8d96+3Lf6FbY1/JAdf8gs7u5dz9EHzuT236zb0f7uOftw2tI5/Pe7e3lhUz9TAubsN5XlSw/g48vmcf/ql1g2fzof++bdO35mJ3XA4e+azj9//wJuefA5Tn3vAfzi8bX89JHn2WtSBy+9vrU4zoqvHkffi5tYt+F1Huh7maMXz6J70czm/lKHsH7jG/S9uIktW7fx2/WvsWz+dGbsvQd9L25i3oy9mDltyk79GtuGax9O75oNO/5ODpy9zy7V/1aIqj6VNSKOBjYC3x8iHE4GvkAtHI4ALs3MI0bab3d3d472VtaxBoOk8aEz2CmwjjpwJj/4lx8Y075uuv9pLrx+Jdv6ky0NOw1g2pRJbOnv55LTl5LAhdevZHJHx462Tyybu2P7ge3D+bMbH+T79zy1Y/mzRy7gL5a/d0z1j1VErMjM7mb7V3ZZKTPvBl4YpstyasGRmXkPMD0i5uzuOgwGqf1tG/A77P/pXU/Pk+tHvZ/1G9/gwutX8vqW/p2CAWpn5Bve2MrrW/r5N9c9wAXX1fptb7vg+pX0rtmwY/vG9vUb3xjymL1rNuwUDADf/8en6F2zYdT1v5VaOecwF1jdsNxXbytExDkR0RMRPWvXrn1LipM0vt39+LqROw3Q9+ImJneM/LLXGR10dsRObZM7Orh/9UvF9pM7Ouh7cedLdY3uX/3SqNrHi1aGQwzSNug1rsy8IjO7M7O7q6vpd39LmsCOXjxr1NvMm7EXW/qHmcSp25b9bOvf+eVoS38/y+ZPL7bf0t/PvBl7DbmvZfOnj6p9vGhlOPQB8xuW5wHP7O6D/Pbrp+zuXUp6i3UO+FXyqANnjmlSeua0KVxy+lL2nNzB5AE7DWCfKZPYc3IH3/jkYXzjk7V+29suOX0pB87eZ8f2je3DTUofOHsfPnvkgp3aPnvkgnE/KV3ZhDRARCwEbhliQvoU4HzenJD+q8w8fKR9jmVCGrxbSeOfdyt5t1KVRjshXeXdStcAxwCzgDXAnwOTATLz8vqtrJcBJ1K7lfWszBzxVX+s4SBJb2ejDYfK3ueQmWeOsD6B86o6viRp7HyHtCSpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpYDhIkgqGgySpUGk4RMSJEfFoRPRGxEWDrH9HRPzviHggIh6OiLOqrEeS1JzKwiEiOoFvAycBS4AzI2LJgG7nAasy8zDgGOA/R8QeVdUkSWpOlWcOhwO9mflEZm4GrgWWD+iTwD4REcA04AVga4U1SZKaUGU4zAVWNyz31dsaXQa8G3gGeBD4Umb2D9xRRJwTET0R0bN27dqq6pUk1VUZDjFIWw5YPgG4H3gnsAy4LCL2LTbKvCIzuzOzu6ura3fXKUkaoMpw6APmNyzPo3aG0Ogs4Ias6QWeBA6psCZJUhOqDId7gcURsag+yXwGcPOAPk8BxwJExGzgYOCJCmuSJDVhUlU7zsytEXE+cBvQCVyVmQ9HxLn19ZcDXwOujogHqV2GujAz11VVkySpOZWFA0Bm3grcOqDt8obvnwGOr7IGSdLo+Q5pSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFQwHSVLBcJAkFSoNh4g4MSIejYjeiLhoiD7HRMT9EfFwRPy8ynokSc2ZVNWOI6IT+DbwMaAPuDcibs7MVQ19pgPfAU7MzKciYv+q6pEkNa/KM4fDgd7MfCIzNwPXAssH9PkUcENmPgWQmc9XWI8kqUlVhsNcYHXDcl+9rdFBwIyIuCsiVkTEZwfbUUScExE9EdGzdu3aisqVJG1XZTjEIG05YHkS8M+AU4ATgH8bEQcVG2VekZndmdnd1dW1+yuVJO2ksjkHamcK8xuW5wHPDNJnXWa+CrwaEXcDhwGPVViXJGkEVZ453AssjohFEbEHcAZw84A+NwFHRcSkiJgKHAE8UmFNkqQmVHbmkJlbI+J84DagE7gqMx+OiHPr6y/PzEci4ifASqAfuDIzH6qqJklScyJz4DTAgA61W1K/mJnffGtKGl53d3f29PS0ugxJaisRsSIzu5vtP+JlpczcRnkLqiRpAmv2stIvI+Iy4O+BV7c3ZuZ9lVQlSWqpZsPhg/Wvf9HQlsBHd285kqTxoKlwyMyPVF2IJGn8aOpW1oiYHRHfi4gf15eXRMTZ1ZYmSWqVZt/ncDW1W1LfWV9+DPjTCuqRJI0DzYbDrMz8n9Tei0BmbgW2VVaVJKmlmg2HVyNiJvXPRoqIDwAvV1aVJKmlmr1b6V9R++iL34+IXwJdwCcrq0qS1FLN3q10X0R8GDiY2qetPpqZWyqtTJLUMsOGQ0T88RCrDooIMvOGCmqSJLXYSGcOH69/3Z/aG+HurC9/BLgLMBwkaQIaNhwy8yyAiLgFWJKZz9aX51B7PrQkaQJq9m6lhduDoW4NtUd8SpImoGbvVrorIm4DrqF2O+sZwM8qq0qS1FLN3q10fn1y+qh60xWZ+cPqypIktVLTT4Kr35nkBLQkvQ00+8F7fxwRj0fEyxHxSkRsiIhXqi5OktQazZ45XAJ8PDMfqbIYSdL40OzdSmsMBkl6+2j2zKEnIv4euBF4Y3uj75CWpImp2XDYF3gNOL6hLXGCWpImpGZvZT2r6kIkSeNHs3crHRQRd0TEQ/XlpRHx1WpLkyS1SrMT0t8FLga2AGTmSmrvkpYkTUDNhsPUzPz1gLatu7sYSdL40Gw4rIuI3+fNx4R+Enh2+E0kSe2q2buVzgOuAA6JiKeBJ4FPV1aVJKmlmg2H04BbqX0SawfwKnBcRKzIzPurKU2S1CrNXlbqBs4FZgDTgXOAY4DvRsQFlVQmSWqZZs8cZgLvy8yNABHx58B1wNHACmqfvSRJmiCaPXNYAGxuWN4CvCszN9HwcRoDRcSJEfFoRPRGxEXD9Ht/RGyrT3RLklqs2TOHvwPuiYib6ssfB66JiL2BVYNtEBGd1J4z/TGgD7g3Im7OzFWD9PtL4LYx1C9JqkCzH5/xtYi4FfgQEMC5mdlTXz3UXUuHA72Z+QRARFwLLKcMky8A1wPvH2XtkqSKjOZJcCuozS80ay6wumG5DziisUNEzAX+CPgow4RDRJxDbRKcBQsWjKIESdJYNDvnMBYxSFsOWP4WcGFmbhtuR5l5RWZ2Z2Z3V1fX7qpPkjSEps8cxqAPmN+wPA94ZkCfbuDaiACYBZwcEVsz88YK65IkjaDKcLgXWBwRi4CnqX1Q36caO2Tmou3fR8TVwC0GgyS1XmXhkJlbI+J8anchdQJXZebDEXFuff3lVR1bkrRrqjxzIDNvpfaxG41tg4ZCZn6+ylokSc2rckJaktSmDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdJUqHScIiIEyPi0YjojYiLBln/6YhYWf/zq4g4rMp6JEnNqSwcIqIT+DZwErAEODMilgzo9iTw4cxcCnwNuKKqeiRJzavyzOFwoDczn8jMzcC1wPLGDpn5q8x8sb54DzCvwnokSU2qMhzmAqsblvvqbUM5G/jxYCsi4pyI6ImInrVr1+7GEiVJg6kyHGKQthy0Y8RHqIXDhYOtz8wrMrM7M7u7urp2Y4mSpMFMqnDffcD8huV5wDMDO0XEUuBK4KTMXF9hPZKkJlV55nAvsDgiFkXEHsAZwM2NHSJiAXAD8CeZ+ViFtUiSRqGyM4fM3BoR5wO3AZ3AVZn5cEScW19/OfBnwEzgOxEBsDUzu6uqSZLUnMgcdBpg3Oru7s6enp5WlyFJbSUiVozml2/fIS1JKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKhgOkqSC4SBJKkyqcucRcSJwKdAJXJmZXx+wPurrTwZeAz6fmfdVUcvCi35UxW7ZqxM2bdu5rRPY1vBVu9++U+CVN3ZtHwHkLmy/Zwe83r9z2/57T+L5V7fu+DrweB28+bMxs94ngI6A983fl3ufeqU4zvQ9g5deT6bvGWztTzZufnPdZGBLQ98PLprOr3/3Elv7B9/+qAO7uPOxdby6+c0Os6Z2su61bcya2sl73vkOfvXkC0wK2LQVDj1gb5YtmMGPH17DSYfO5m9+3bdju856zTOm7sHdveuZOXUyr29LTjp0Nv+wag3PbdzCAdMm89zGxgph0X57cvaHfo+bVj7L8qVzuOzOx3fqs2D6FJ576Q02A3sA//jV4+h7cRM/+NUT/OyxdZx06Gy6F+7HLQ8+x6nvPYDT3jcfgK/e8MCOOh96+iVWPr2RpXOnceMXPlz8nX7ztke4aeVzTJscPLthMycdOpsvH38IfS9uYt6MvZg5bUqxTaM7Vj3H7avWcPyS2Ry75IBh+w62zbIFM5o6Vs+T67n78XUcvXgWL2/aMupj7orI3JX/HsPsOKITeAz4GNAH3AucmZmrGvqcDHyBWjgcAVyamUcMt9/u7u7s6ekZVS1VBYOk1puz7x48+8rmYfv89uun7Ph+8cU/YssQL3v7TJnElv5+Ljl9KZ9YNnfQPsd/8y4eW/PqjuWDZ+/NbV8+ZtjjD9ymmWN95sp7+EXv+kH318wxB4qIFZnZ3Wz/Ki8rHQ70ZuYTmbkZuBZYPqDPcuD7WXMPMD0i5uzOIgwGaWIbKRgATvuvPwdqZwxDBQPAhje28vqWfi64fiXrN5anpneseq54kX90zavcseq5Ifc52DYjHavnyfVDBkMzx9wdqgyHucDqhuW+etto+xAR50RET0T0rF27drcXKmliW/n0RgBuWtncC+rkjg76XtxUtN++as2g/YdqH2ndUMe6+/F1I9Y40n53VZXhEIO0DczsZvqQmVdkZndmdnd1de2W4iS9fSydOw2A5Uubu1a/pb+feTP2KtqPXzJ70P5DtY+0bqhjHb141og1jrTfXVVlOPQB8xuW5wHPjKHPLmm81ihp4pmz7x4j9tk+Kf3lE97N5MF+Ja3bZ8ok9pzcwSWnLx10ovjYJQdw8Oy9d2o7ePbew04QD7bNSMfqXjSTow6cOeQ+Rzrm7lDlhPQkahPSxwJPU5uQ/lRmPtzQ5xTgfN6ckP6rzDx8uP2OZUIavFtpovFupRrvVvJupWaNdkK6snCoF3My8C1q/xeuysz/EBHnAmTm5fVbWS8DTqR2K+tZmTnsK/9Yw0GS3s5GGw6Vvs8hM28Fbh3QdnnD9wmcV2UNkqTR8x3SkqSC4SBJKhgOkqSC4SBJKlR6t1IVImIt8LtRbjYLGPkth+3FMbUHxzT+TbTxwOBjeldmNv0u4rYLh7GIiJ7R3MLVDhxTe3BM499EGw/snjF5WUmSVDAcJEmFt0s4XNHqAirgmNqDYxr/Jtp4YDeM6W0x5yBJGp23y5mDJGkUDAdJUmFCh0NEnBgRj0ZEb0Rc1Op6xiIi5kfEzyLikYh4OCK+VG/fLyJ+GhGP17/OaHWtoxURnRHxfyPilvpyW48pIqZHxHUR8Zv6v9eRE2BMX67/3D0UEddExJ7tNqaIuCoino+IhxrahhxDRFxcf814NCJOaE3VwxtiTN+o/+ytjIgfRsT0hnWjHtOEDYeI6AS+DZwELAHOjIglra1qTLYC/zoz3w18ADivPo6LgDsyczFwR3253XwJeKRhud3HdCnwk8w8BDiM2tjadkwRMRf4ItCdme+h9tH7Z9B+Y7qa2mMBGg06hvr/rTOAQ+vbfKf+WjLeXE05pp8C78nMpdSepXMxjH1MEzYcgMOB3sx8IjM3A9cCy1tc06hl5rOZeV/9+w3UXnDmUhvLX9e7/TVwWksKHKOImAecAlzZ0Ny2Y4qIfYGjge8BZObmzHyJNh5T3SRgr/rDu6ZSe1JjW40pM+8GXhjQPNQYlgPXZuYbmfkk0EvttWRcGWxMmXl7Zm5/wtQ91J6sCWMc00QOh7nA6oblvnpb24qIhcAfAP8EzM7MZ6EWIMD+LSxtLL4FXAA0Pkutncf0e8Ba4H/UL5VdGRF708Zjysyngf8EPAU8C7ycmbfTxmNqMNQYJsrrxr8Aflz/fkxjmsjhMNiTYtv2vt2ImAZcD/xpZpbPkmwjEXEq8Hxmrmh1LbvRJOB9wH/LzD8AXmX8X24ZVv06/HJgEfBOYO+I+Exrq6pc279uRMRXqF2O/tvtTYN0G3FMEzkc+oD5DcvzqJ0St52ImEwtGP42M2+oN6+JiDn19XOA51tV3xj8IfCJiPgttct9H42Iv6G9x9QH9GXmP9WXr6MWFu08puOAJzNzbWZuAW4APkh7j2m7ocbQ1q8bEfE54FTg0/nmm9jGNKaJHA73AosjYlFE7EFtQubmFtc0avXnbH8PeCQz/0vDqpuBz9W//xxw01td21hl5sWZOS8zF1L7d7kzMz9De4/pOWB1RBxcbzoWWEUbj4na5aQPRMTU+s/hsdTmvNp5TNsNNYabgTMiYkpELAIWA79uQX2jFhEnAhcCn8jM1xpWjW1MmTlh/wAnU5u1/3/AV1pdzxjH8CFqp4Argfvrf04GZlK7y+Lx+tf9Wl3rGMd3DHBL/fu2HhOwDOip/1vdCMyYAGP698BvgIeAHwBT2m1MwDXU5ky2UPst+uzhxgB8pf6a8ShwUqvrH8WYeqnNLWx/nbh8V8bkx2dIkgoT+bKSJGmMDAdJUsFwkCQVDAdJUsFwkCQVDAdJUsFwkCQVDAdpFCLixohYUX/GwTn1trMj4rGIuCsivhsRl9XbuyLi+oi4t/7nD1tbvdQ83wQnjUJE7JeZL0TEXtQ+ouUE4JfUPkdpA3An8EBmnh8Rfwd8JzN/ERELgNuy9lwOadyb1OoCpDbzxYj4o/r384E/AX6emS8ARMT/Ag6qrz8OWFL7WCIA9o2IfbL2XA5pXDMcpCZFxDHUXvCPzMzXIuIuap9VM9TZQEe976a3pEBpN3LOQWreO4AX68FwCLXHtk4FPhwRM+pPSzu9of/twPnbFyJi2VtZrLQrDAepeT8BJkXESuBr1B7F+DTwH6k9ne8fqH1M98v1/l8EuusPfF8FnPvWlyyNjRPS0i6KiGmZubF+5vBD4KrM/GGr65J2hWcO0q77dxFxP7VnHjxJ7VkOUlvzzEGSVPDMQZJUMBwkSQXDQZJUMBwkSQXDQZJU+P9pZ12fBdCIZgAAAABJRU5ErkJggg==\n", 169 | "text/plain": [ 170 | "
" 171 | ] 172 | }, 173 | "metadata": { 174 | "needs_background": "light" 175 | }, 176 | "output_type": "display_data" 177 | } 178 | ], 179 | "source": [ 180 | "data.plot.scatter(x='age', y='gender');" 181 | ] 182 | }, 183 | { 184 | "cell_type": "code", 185 | "execution_count": null, 186 | "id": "eba049a9", 187 | "metadata": { 188 | "id": "eba049a9", 189 | "outputId": "678fea26-633c-4956-893b-940fa5024ab2" 190 | }, 191 | "outputs": [ 192 | { 193 | "data": { 194 | "text/plain": [ 195 | "(7, 4)" 196 | ] 197 | }, 198 | "execution_count": 5, 199 | "metadata": {}, 200 | "output_type": "execute_result" 201 | } 202 | ], 203 | "source": [ 204 | "data.shape" 205 | ] 206 | }, 207 | { 208 | "cell_type": "markdown", 209 | "id": "4fd41d26", 210 | "metadata": { 211 | "id": "4fd41d26" 212 | }, 213 | "source": [ 214 | "# Data Preprocessing dividing dependent and independent values" 215 | ] 216 | }, 217 | { 218 | "cell_type": "code", 219 | "execution_count": null, 220 | "id": "b508fc71", 221 | "metadata": { 222 | "id": "b508fc71" 223 | }, 224 | "outputs": [], 225 | "source": [ 226 | "x=data['age'].values.reshape(-1,1)\n", 227 | "y=data['gender'].values.reshape(-1,1)#depending" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": null, 233 | "id": "be67843d", 234 | "metadata": { 235 | "id": "be67843d", 236 | "outputId": "3cc7523c-52b5-4dfa-abf6-053d493ca793" 237 | }, 238 | "outputs": [ 239 | { 240 | "data": { 241 | "text/plain": [ 242 | "(24104, 1)" 243 | ] 244 | }, 245 | "execution_count": 12, 246 | "metadata": {}, 247 | "output_type": "execute_result" 248 | } 249 | ], 250 | "source": [ 251 | "x.shape" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": null, 257 | "id": "9b90ff4a", 258 | "metadata": { 259 | "id": "9b90ff4a" 260 | }, 261 | "outputs": [], 262 | "source": [ 263 | "SEED = 30" 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "execution_count": null, 269 | "id": "6bc22e00", 270 | "metadata": { 271 | "id": "6bc22e00" 272 | }, 273 | "outputs": [], 274 | "source": [ 275 | "from sklearn.model_selection import train_test_split\n", 276 | "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 30)" 277 | ] 278 | }, 279 | { 280 | "cell_type": "code", 281 | "execution_count": null, 282 | "id": "e515405a", 283 | "metadata": { 284 | "id": "e515405a", 285 | "outputId": "d82db757-50ad-47a2-c02b-441690f77e8e" 286 | }, 287 | "outputs": [ 288 | { 289 | "name": "stdout", 290 | "output_type": "stream", 291 | "text": [ 292 | "[[23]\n", 293 | " [ 1]\n", 294 | " [24]\n", 295 | " ...\n", 296 | " [54]\n", 297 | " [29]\n", 298 | " [52]]\n", 299 | "[[0]\n", 300 | " [0]\n", 301 | " [0]\n", 302 | " ...\n", 303 | " [1]\n", 304 | " [0]\n", 305 | " [1]]\n" 306 | ] 307 | } 308 | ], 309 | "source": [ 310 | "print(x_train)\n", 311 | "print(y_train)" 312 | ] 313 | }, 314 | { 315 | "cell_type": "code", 316 | "execution_count": null, 317 | "id": "34119934", 318 | "metadata": { 319 | "id": "34119934" 320 | }, 321 | "outputs": [], 322 | "source": [ 323 | "from sklearn.linear_model import LinearRegression\n", 324 | "regressor = LinearRegression()" 325 | ] 326 | }, 327 | { 328 | "cell_type": "code", 329 | "execution_count": null, 330 | "id": "22911b97", 331 | "metadata": { 332 | "id": "22911b97", 333 | "outputId": "a9d34f25-cd84-4473-a8f9-10778c96dcff" 334 | }, 335 | "outputs": [ 336 | { 337 | "data": { 338 | "text/plain": [ 339 | "LinearRegression()" 340 | ] 341 | }, 342 | "execution_count": 16, 343 | "metadata": {}, 344 | "output_type": "execute_result" 345 | } 346 | ], 347 | "source": [ 348 | "regressor.fit(x_train, y_train)" 349 | ] 350 | }, 351 | { 352 | "cell_type": "code", 353 | "execution_count": null, 354 | "id": "e0cb27ed", 355 | "metadata": { 356 | "id": "e0cb27ed" 357 | }, 358 | "outputs": [], 359 | "source": [ 360 | "y_pred = regressor.predict(x_test)" 361 | ] 362 | }, 363 | { 364 | "cell_type": "code", 365 | "execution_count": null, 366 | "id": "079abf66", 367 | "metadata": { 368 | "id": "079abf66", 369 | "outputId": "3c147ec0-4aaf-4f9a-a03a-e9f3813e66d4" 370 | }, 371 | "outputs": [ 372 | { 373 | "name": "stdout", 374 | "output_type": "stream", 375 | "text": [ 376 | " Actual Predicted\n", 377 | "0 1 0.496964\n", 378 | "1 0 0.493954\n", 379 | "2 1 0.512011\n", 380 | "3 0 0.496964\n", 381 | "4 1 0.617343\n", 382 | "... ... ...\n", 383 | "4816 0 0.505992\n", 384 | "4817 0 0.475897\n", 385 | "4818 1 0.496964\n", 386 | "4819 1 0.509002\n", 387 | "4820 1 0.484926\n", 388 | "\n", 389 | "[4821 rows x 2 columns]\n" 390 | ] 391 | } 392 | ], 393 | "source": [ 394 | "df_preds = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})\n", 395 | "print(df_preds)" 396 | ] 397 | }, 398 | { 399 | "cell_type": "code", 400 | "execution_count": null, 401 | "id": "d6df4ee5", 402 | "metadata": { 403 | "id": "d6df4ee5" 404 | }, 405 | "outputs": [], 406 | "source": [ 407 | "from sklearn.metrics import mean_absolute_error, mean_squared_error\n", 408 | "mae = mean_absolute_error(y_test, y_pred)\n", 409 | "mse = mean_squared_error(y_test, y_pred)\n", 410 | "rmse = np.sqrt(mse)" 411 | ] 412 | }, 413 | { 414 | "cell_type": "code", 415 | "execution_count": null, 416 | "id": "5d631858", 417 | "metadata": { 418 | "id": "5d631858", 419 | "outputId": "9eab3900-e6e1-4dca-f386-f098c51691cc" 420 | }, 421 | "outputs": [ 422 | { 423 | "name": "stdout", 424 | "output_type": "stream", 425 | "text": [ 426 | "Mean absolute error: 7.59\n", 427 | "Mean squared error: 82.12\n", 428 | "Root mean squared error: 9.06\n" 429 | ] 430 | } 431 | ], 432 | "source": [ 433 | "print(f'Mean absolute error: {mae:.2f}')\n", 434 | "print(f'Mean squared error: {mse:.2f}')\n", 435 | "print(f'Root mean squared error: {rmse:.2f}')" 436 | ] 437 | }, 438 | { 439 | "cell_type": "code", 440 | "execution_count": null, 441 | "id": "8512e8df", 442 | "metadata": { 443 | "id": "8512e8df", 444 | "outputId": "35b423b1-5f21-490d-d4ef-1d0612d7c78f" 445 | }, 446 | "outputs": [ 447 | { 448 | "data": { 449 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAGDCAYAAADtZ0xmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAArm0lEQVR4nO3de3xc5X3n8e9PN9vyBdtIlke+YBMbYxsNgSiEJJBAbMAwSshmd1sSurm1ZUmTtsmrTZPsJW23yzbdtmnSJZR4U5qk0NA0zaZEMhAgoSFNIJZDGGEbG2Pjm8a25Du+6fbbP87BjIWkmSPPmRlJn/frNS/pnPM8z/kdPdj6+vDMHHN3AQAAAMhfRakLAAAAAMYaQjQAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAaBMmNkfmdn9pa5jtMzs62b2P8PvrzWzLUU6r5vZkmKcCwBeRYgGgJCZPWlmh81sUp7tP2xmP4m7rkIys5fN7JSZvWJm+83s78xsWqHP4+5PufuyPOoZcz9DAJAI0QAgSTKzRZKuleSS3lPaamL3bnefJulKSW+W9N8GNzCzqqJXBQBjCCEaAAIflPS0pK9L+lD2ATNbYGbfNbMuMztoZneb2XJJ90p6a3hX90jY9kkz+42svufcaTWzL5vZbjM7ZmYbzOzafIozs81m1pK1XWVm3WZ2pZlNNrP7w9qOmNl6M2vINaa775X0sKTLwjHdzD5uZi9KejHc12JmvwzH/amZJbNquMLMfmFmx83sHyVNzjp2nZntGeXPcJKZ/YWZ7Qrvlt9rZlOyxvq0mWXMrNPMPprPzw8ACo0QDQCBD0p6IHzd9GoINbNKSa2SdkpaJGmepAfdfbOkOyX9zN2nufvMPM+zXtIbJc2W9A+S/snMJo/YI/AtSe/P2r5JUre7/0JB6L9A0gJJF4Z1nco1oJktkHSLpGezdr9X0lskrTCzKyXdJ+k/h+N+VdJDYcitkfQ9SX8fXss/Sfr3w5wn6s/wzyRdouDntCRs//lwrDWSfl/SDZKWSlqd6zoBIA6EaAATnpldI+kiSd929w2SXpL0gfDwVZIaJX3a3U+4+2l3H/UaXne/390Punufu/+lpEmScq4dVhC432NmteH2B8J9ktSrIOQucfd+d9/g7sdGGOt74V3fn0j6V0n/K+vYn7r7IXc/Jek3JX3V3Z8Jx/2GpDOSrg5f1ZK+5O697v4dBf9AGEreP0Mzs/C8nwrrOB7Wd1vY5Fck/Z27P+/uJyT90QjXCQCxIUQDQHAn9wfu3h1u/4NeW9KxQNJOd+8rxInM7PfCpRlHwyB7gaS6XP3cfZukzZLeHQbp9+i1EP33kh6V9GC4xOF/m1n1CMO9191nuvtF7v5bYWB+1e6s7y+S9HvhUo4jYb0LFATiRkl73d2z2u8c5nxRfob1kmolbcg65yPhfoXnza5xuHMCQKx44wiACS1ca/srkirNbF+4e5KkmWZ2uYLAttDMqoYIga7XO6EgBL5qbta5rpX0GUmrJG109wEzOyzJ8iz31SUdFZI2hcFa7t4r6Y8l/XH4Bsl1krZI+ts8x82WfU27Jd3l7ncNbmRm75Q0z8wsK0gvVHAXf7AoP8NuBUtRVoZrtgfLKAjlr1o4/KUAQHy4Ew1gonuvpH5JKxSswX2jpOWSnlKwTvrnCoLbF8xsavgmvreHffdLmh+uD37VLyW9z8xqw88u/vWsY9Ml9UnqklRlZp+XNCNCrQ9KulHSx/TaXWiZ2fVm1hSuPT6mYHlHf4Rxh/N/Jd1pZm+xwFQzS5nZdEk/C6/ld8I3Ob5PwbKNoeT9M3T3gfC8f2Vmc8Lrm2dmN4Xtvy3pw2a2Irwj/4cFuE4AiIwQDWCi+5CCNba73H3fqy9Jd0u6XcFd4ncreIPbLkl7JP1q2PeHkjZK2mdmry4F+StJPQrC4TcUvFHxVY8q+DSMrQqWIZzWuUsTRuTuGQXh9W2S/jHr0FxJ31EQoDcrWOd83g9tcfd2BeuT75Z0WNI2SR8Oj/VIel+4fVjBz+S7w4zTr2g/w8+E53razI5JelzhunF3f1jSl8J+28KvAFB0du5yNgAAAAC5cCcaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIjG3MNW6urqfNGiRaUuAwAAAOPchg0but29fqhjYy5EL1q0SO3t7aUuAwAAAOOcme0c7hjLOQAAAICICNEAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiGIL0WZ2n5kdMLPnhzluZvbXZrbNzNJmdmVctZw3s9G/zrd/HGOOx5rG4zVR08S9pnKsaTxeUznWFKV/be3I29lj1tScu6+mRvqt35KqqoLtqqpgO0pN8+aNvD2a63zgAWnRIqmiIvj6wAPS6tXntlm9erjf1sUzVJ3S0D/T4dpGGXe07QphqGtCwN1jeUl6h6QrJT0/zPFbJD0sySRdLemZfMZ905ve5EUl8eLFixcvXrxK8aqoGHr/qlXFzQLZ7r/fvbb23Hpqa4Oa8rmG2tpgjHzHHdw233aF8LGPDX1NH/tY4c9VpiS1uw+dSS04Hg8zWySp1d0vG+LYVyU96e7fCre3SLrO3TMjjdnc3Ozt7e1xlDu0V//FDAAAykeM+WVEixZJO3ee3xgXXSS9/HJ+4w5um2+7Qqiqkvr7X7+/slLq6yvsucqUmW1w9+ahjpVyTfQ8SbuztveE+17HzO4ws3Yza+/q6ipKcQAAAK+za1c8Yww37uD9+bYrhKEC9Ej7J5hShuihbvEO+c9Kd1/r7s3u3lxfXx9zWQAAAMNYuDCeMYYbd/D+fNsVQmVltP0TTClD9B5JC7K250vqLFEtAACg3FQME1NWrSpuHdnuuit4E2e22trhaxp8DbW1wRj5jju4bb7tCuGOO6Ltn2BKGaIfkvTB8FM6rpZ0NNd66JI43zVXcazZoqbC949jTGoaG/3jGHM81jQerymOMYvZf8qUkbezx6yuPndfdbX0sY+9dkexsjLYjlJTY+PI2yMZbsz77w/W9poFX7/5zdeH01WrpMcfz/9chXb77dLatefWuXZtUNNQP9NvfvP1bW+/Pf9xB7fNt10h3HPP0Nd0zz2FP9cYFNsbC83sW5Kuk1Qnab+kP5RULUnufq+ZmaS7Ja2RdFLSR9w95zsGi/7GQgAAAExII72xsCquk7r7+3Mcd0kfj+v8AAAAQFx4YiEAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiAjRAAAAQESEaAAAACAiQjQAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiAjRAAAAQESEaAAAACAiQjQAAAAQESEaAAAAiCjWEG1ma8xsi5ltM7PPDnH8AjP7vpk9Z2YbzewjcdYDAAAAFEJsIdrMKiV9RdLNklZIer+ZrRjU7OOSNrn75ZKuk/SXZlYTV00AAABAIcR5J/oqSdvcfbu790h6UNKtg9q4pOlmZpKmSTokqS/GmgAAAIDzFmeInidpd9b2nnBftrslLZfUKalD0u+6+0CMNQEAAADnLc4QbUPs80HbN0n6paRGSW+UdLeZzXjdQGZ3mFm7mbV3dXUVuk4AAAAgkjhD9B5JC7K25yu445ztI5K+64FtknZIunTwQO6+1t2b3b25vr4+toIBAACAfMQZotdLWmpmi8M3C94m6aFBbXZJWiVJZtYgaZmk7THWBAAAAJy3qrgGdvc+M/uEpEclVUq6z903mtmd4fF7Jf2JpK+bWYeC5R+fcffuuGoCAAAACiG2EC1J7r5O0rpB++7N+r5T0o1x1gAAAAAUGk8sBAAAACIiRAMAAAAREaIBAABQdg6d6NG3fr5LP9pyoNSlDCnWNdEAAADASI6e6tVjm/arNd2pJ7cM/TyQbXfdrKrK8rr3S4gGAABA7F4506cnNu9Xazqjxzbtz9m+qsKUSib00bcvLrsALRGiAQAAUECnevr1oy0H1Jru1LqOfXn1STUl1JJM6LplczSlpjLmCguDEA0AAIDIzvT168dbu9Wa7lRbOqO+Ac/Z54YVDWpJJrRqeYOmTRrbMXRsVw8AAIBY9fYP6N+2das1nVFbOqNTvf05+1y/rF6pZKNuWN6gC2qri1Bl8RGiAQAAoP4B19PbD4ZhuVPHTvfl7HPNkjqlkgndtHKuZk+tKUKV5YMQDQAAMIEMDLjadx5WW7pTbR0Zdb/Sk7PPVYtnqyWZ0JqVczVnxuQiVFn+CNEAAADjkLvrl7uPqC2dUVtHRpmjp3P2uWLhTKWaErqlKaHGmVOKUOXYRYgGAAAYw9xdGzuPqa0jWLO869DJnH0umzdDqaZGpZoSWnhhbRGqHH8I0QAAAGPE1v3Hz65ZfqnrRM72yxqmK5UM7iwvmTOtCBVOHIRoAACAMrOj+4Ta0p1qTWf0wr7jOdtfXDdVqWRCqWRCyxqmy8yKUOXERogGAAAokd2HTmpdR7BmOb3naM7282dNUSqZUEtToy6bN4OwXEKEaAAAgJjtO3r6bFjesPNwzvYNMyYFa5aTCV2xYKYqKgjL5YYQDQAAUCBdx8/okY371Ppcp57ZcShn+9lTa84+8rp50WxVEpbHDEI0AABARIdP9OgHm/apNZ3RUy9252w/fVJVsAwj2airL56tqsqKIlSJOBGiAQAAhnHsdK8e27hfrelO/WhLV872k6oqlEom9O5ko96+pE41VYTl8YoQDQAAJrwTZ/r0xAsH1Ppcp36waX/O9hUmpZKNakkm9M5L6jW5urIIVaKcEKIBAMCEcbq3Xz964YBawweT5OPmy+aqJdmo6y+tV20N0QkB/ksAAADjzpm+fj21tfvsU/x6+gdy9lm9fI5ako1atXyOpk+uLkKVGMsI0QAAYMzq7R/QT186qLZ0p9rSGZ3o6c/Z5x2X1KslmdCNKxo0s7amCFViPCJEAwCAstc/4Hpmx0G1pYPPWj5ysjdnn7e94UKlkgndtHKu6qZNKkKVmEgI0QAAoGwMDLh+seuwWsOw3HX8TM4+b140S6mmhG5uSqhhxuQiVAkQogEAQAm4u9J7jp5ds7z3yKmcfS5fMFMtTQnd3DRX82fVFqFKYHiEaAAAEBt31+bMcbV1BGuWXz54MmefFYkZSiUTSjUltKhuahGqBKIjRAMAgILYduB4sAwjndGLB17J2X7pnGlnw/LShulFqBAoHEI0AACIZOfBE2pNZ9Sazmhz5ljO9osurA3DcqOWJ6bLzIpQJRAvQjQAABjS3iOn1JbuVGs6o/Seoznbz5s55eyd5eT8CwjLGNcI0QAATHD7j53Wuo7gzvKGnYdztq+fPkmppoRakglduXCWKioIy5h4CNEAAEwQB185o4ef36fWdKee3n4oZ/uZtdVhWG7UVYtnq5KwDJxFiAYAYJw5erJXj27cp++nO/XUi90520+tqVQqGYTlt77hQlVXVhShSmBsI0QDADBGHT/dq8c27VdbOqMnXjiQs31NZUUYlhO6ZmmdJlVVFqFKYHwiRAMAUOZO9vTpic0H1JbO6JGN+/Lqk0om9O5kQtctm6PJ1YRloNAI0QAAlInTvf16cktX+BS/Tg147j43rWxQS7JR77p0jqZO4tc6UCz8aQMAoMh6+gb0k21dZx9McqZvIGefd106Ry3JhFavaNCMydVFqBLASAjRAADEpK9/QD/bflBtYVg+fqYvZ59rl9apJZnQjSvmatbUmiJUCWA0CNEAAJyn/gHX+pcPBWG5I6NDJ3py9rn64tlKJRu1ZuVc1U+fVIQqARQSIRoAgDwNDLie3X1EbemMWtOdOnD8TM4+b7pollJNCd3cNFeJC6YUoUoAxUCIBgBgEHfX83uPqbWjU63PZbT3yKmcfZLzL1CqKaFbmhJaMLu2CFUCKCVCNABgwnJ3bdl/PLyznNGO7hM5+1w6d7pakkFYvrh+WhGqBFCOCNEAgAnhpa5Xzi7D2Lr/lZzt31A/Valko1qSCV3SML0IFQIYSwjRAIBxZdfBk2eXYWzKHMvZfuHsWqWSCaWaElrZOENmVoQqAYx1hGgAwJjUeeRUcGe5I6Pndh/J2T5xwWSlmhJKJRN644KZhGUA54UQDQAoaweOnda6juCj49a/fDhn+7ppNWFYblTzRbNUUUFYBlB4hGgAQFk4+MoZPbJxn9rSGf30pYM528+YXKVUslHvTiZ01eLZqqqsKEKVABAgRAMAiuroyV49uikIy/+6tStn+ynVlUolE2pJJvT2JXWqJiwDKAOEaABALF4506fHN+1Xazqjxzfvz9m+qsLCsNyoa5fWaXJ1ZRGqBIDRIUQDAM7LqZ5+/fCFA2rr6NS6jn159bmlaa5ako26ftkcTakhLAMYewjRAIC8nO7t14+3dqmtI6O2dEZ9A56zzw0rGtSSTGjV8gZNm8SvHADjR6x/o5nZGklfllQp6Wvu/oUh2lwn6UuSqiV1u/s746wJADCynr4B/dtL3WpLB2H5VG9/zj7XL6tXKtmoG5Y36ILa6iJUCQClFVuINrNKSV+RdIOkPZLWm9lD7r4pq81MSfdIWuPuu8xsTlz1AADO1dc/oGd2HFJr+BS/46f7cva5ZkmdUsmEblo5V7On1hShSgAoT3Heib5K0jZ33y5JZvagpFslbcpq8wFJ33X3XZLk7gdirAcAJqSBAVf7zsNqS3eqNZ3RwRM9OftctXi2WpIJrVk5V3NmTC5ClQAwtsQZoudJ2p21vUfSWwa1uURStZk9KWm6pC+7+zcHD2Rmd0i6Q5IWLlwYS7EAMNa5u365+4haw2UY+46dztnnioUzlWpK6JamhBpnTilClQAwPsQZood6RNTgd6FUSXqTpFWSpkj6mZk97e5bz+nkvlbSWklqbm7O/U4WABjH3F0bO4+dXYax5/CpnH0umzdDqaZGpZoSWnhhbRGqBIDxLc4QvUfSgqzt+ZI6h2jT7e4nJJ0wsx9LulzSVgEAtHX/cbU+FyzD2N59Imf7ZQ3TlUoGd5aXzJlWhAoBYGKKM0Svl7TUzBZL2ivpNgVroLP9i6S7zaxKUo2C5R5/FWNNAFCWtne9cnYZxpb9x3O2v7huqlLJhFLJhJY1TJfZUP/zDwAQl9hCtLv3mdknJD2q4CPu7nP3jWZ2Z3j8XnffbGaPSEpLGlDwMXjPx1UTAJTa7kMng7Dc0ann9x7L2X7+rCnBU/yaGnXZvBmEZQAoE+Y+tpYYNzc3e3t7e6nLAIARZY6eCj5nuSOjZ3cdydm+YcakYM1yMqErFsxURQVhGQBKzcw2uHvzUMd4fBQAnIcDx0/rkef3qTWd0c93HMrZfvbUGqWagmUYb140W5WEZQAYkwjRAJCHwyd69MjGfWpLZ/STbd0520+fVBUsw0g26uqLZ6uqsqIIVQIAioUQDQBZjp7q1WOb9qst3akfbenK2X5SVUUYlhO6Zkm9aqoIywAwERCiAUxIJ8706fHN+9WWzugHm/bnbF9hUirZqJZkQu+8pF6TqyuLUCUAoFwRogGMa6d6+vXklgNq7Qg+Pi4fa1bOVcvlCb3r0jmqreGvSQDA6/HbAcC4cKavX09t7VZbR/AUv97+3J88tHr5HLUkG7Vq+RxNn1xdhCoBAOMFIRrAmNLbP6CfvnRQrc91qq0jo5M9/Tn7vOOSerUkE7pxRYNm1tYUoUoAwHhHiAZQlvoHXM/sOKjWdEatz3Xq2Om+nH3e9oYLlUomdNPKuaqbNqkIVQIAJipCNICSGhhw/WLX4SAspzvV/UpPzj5vXjRLqaaEbm5KqGHG5CJUCQDAuQjRAIrC3fXcnqNnl2Fkjp7O2efyBTPV0pTQzU1zNX9WbRGqBAAgP4RoAAXl7tqUOabWdPBpGLsOnczZZ0VihlLJhFJNCS2qm1qEKgEAOD+EaACj9uL+4/p+OqO2dKde6jqRs/3SOdPOhuWlDdOLUCEAAPEgRAPIaUf3CbWlO9WazuiFfcdztl90YW0Ylhu1PDFdZlaEKgEAKB5CNICzdh86qXUdGbV1ZJTeczRn+3kzp5y9s5ycfwFhGQAwYRCigQlo39HTZ8Pyhp2Hc7avnz5JqaaEWpIJXblwlioqCMsAgImNEA2MY92vnNHDz+9TW7pTT28/lLP9zNpqpZoSSiUTesviC1VJWAYAYEiEaGAcOHKyR49u3KfWdEZPvdids/3Umkqlkgm1JBv11jdcqOrKiiJUCQDA+EGIBsaQY6d79fim/WpLZ/TECwdytq+prDi7ZvnaS+o0qaqyCFUCADD+EaKBMnSyp09PbD6g1nSnHt24P68+qWRC704mdN2yOZpcTVgGACBOhGighE739uvJLV1qTQdP8XPP3eemlQ1qSTbqXZfO0dRJ/BEGAKAU+A0MFEFP34B+sq1Lrc9l1JrOqKd/IGefd106Ry3JhFavaNCMydVFqBIAAOSLEA0UUF//gH62/WAYljt1oqc/Z59rl9apJZnQjSvmatbUmiJUCQAAzlfOEG1mn5D0gLvn/jBZYILoH3D9fMehs8swjpzszdnn6otnK5Vs1JqVc1U/fVIRqgQAAHHJ5070XEnrzewXku6T9Kh7Pis3gbFvYMDV1pHRj144oKe2davr+Jmcfd500SylmhK6uWmuEhdMKUKVAACg2HKGaHf/b2b23yXdKOkjku42s29L+lt3fynuAoFicHc9vvmAvvjYVm3OHMurT3L+BUo1JXRLU0ILZtfGXCEAACgnea2Jdnc3s32S9knqkzRL0nfM7DF3/4M4CwQKyd31k23d+uJjW/XsriN593vflfP0ieuX6OL6afEVBwAAxox81kT/jqQPSeqW9DVJn3b3XjOrkPSiJEI0ytL6lw/piz/Yqp9tP5h3n6sWzdYnb1iqt72hLsbKAADAWJfPneg6Se9z953ZO919wMxa4ikLyN+ugyf1/XSn/s8PX9Tp3twfHScFSzE+dcMluu6SeplZzBUCAIDxJp810Z8f4djmwpYDDG/vkVNal86otSOj53YfyavPsobp+tQNS3XjirmqqCAsAwCAwuBzolF2Dhw7rXUdGbV1ZLT+5dyfrFg3rebsG/yaF81WJWEZAADEjBCNkjn4yhk9snGf2tIZ/fSl3OuWZ0yuUsvljWppSuiqxbNVVVlRhCoBAABejxCN2B092atHNwVh+V+3duVsP6W6UqlkQi3JhN6+pE7VhGUAAFBmCNEomOOne/XE5gNqTWf0+Ob9OdtXVZhakgmlko26dmmdJldXFqFKAACA80eIRmSnevr1wxcOqK2jU+s69uXVJ9WUUCqZ0PXL5mhKDWEZAACMbYRoDOt0b79+vLVLbR0ZtaYz6h/I/bT3G1Y0qCWZ0KrlDZo2if+8AADA+ETKgXr6BvRvL3Wr9bmMWtOdOtOX+7OWr1tWr5Zko25Y3qALaquLUCUAAED5IERPIH39A3pmxyG1pjvV+lxGx8/05ezz9iUXqiXZqJtWztXsqTVFqBIAAKD8EaLHoYEBV/vOw0FYTmd06ERPzj5XLZ6tlmRCa1bO1ZwZk4tQJQAAwNhFiB7D3F3P7j6i1ucyauvo1P5jZ3L2uWLhzLMPJmmcOaUIVQIAAIw/hOgxwN31/N5jau3oVFs6oz2HT+Xsc9m8GUo1NSrVlNDCC2uLUCUAAMDEQYguM1v2HVdrOgjL27tP5Gy/rGG6UsngzvKSOdOKUCEAAAAI0SXyUtcraktn1JbOaMv+4znbX1w3Valk8FnLyxqmy8yKUCUAAACGQoiO2e5DJ9WaDtYsP7/3WM7282dNCR553dSoy+bNICwDAACUIUJ0gWSOngruLHdk9OyuIznbN8yYFKxZTiZ0xYKZqqggLAMAAIwVhOiIDhw/rUee36fWdEY/33EoZ/vZU2vOPvL6zYtmq5KwDAAAMOYRovPQ1z+gK/7HYyM+nGT6pKpgGUayUVdfPFtVlRVFrBAAAADFRIjOQ2WFadrkKh0/06dJVRVhWE7omiX1qqkiLAMAAEw0hOg8mJl+9rlVpS4DAAAAZYLbqAAAAEBEhGgAAAAgolhDtJmtMbMtZrbNzD47Qrs3m1m/mf2HOOsBAAAACiG2EG1mlZK+IulmSSskvd/MVgzT7s8kPRpXLQAAAEAhxXkn+ipJ29x9u7v3SHpQ0q1DtPttSf8s6UCMtQAAAAAFE2eInidpd9b2nnDfWWY2T9K/k3TvSAOZ2R1m1m5m7V1dXQUvFAAAAIgizhA91KP5fND2lyR9xt37RxrI3de6e7O7N9fX1xeqPgAAAGBU4vyc6D2SFmRtz5fUOahNs6QHzUyS6iTdYmZ97v69GOsCAAAAzkucIXq9pKVmtljSXkm3SfpAdgN3X/zq92b2dUmtBGgAAACUu9hCtLv3mdknFHzqRqWk+9x9o5ndGR4fcR00AAAAUK5ifey3u6+TtG7QviHDs7t/OM5aAAAAgELhiYUAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiAjRAAAAQESEaAAAACAiQjQAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiAjRAAAAQESEaAAAACAiQjQAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAIKJYQ7SZrTGzLWa2zcw+O8Tx280sHb5+amaXx1kPAAAAUAixhWgzq5T0FUk3S1oh6f1mtmJQsx2S3unuSUl/ImltXPUAAAAAhRLnneirJG1z9+3u3iPpQUm3Zjdw95+6++Fw82lJ82OsBwAAACiIOEP0PEm7s7b3hPuG8+uSHo6xHgAAAKAgqmIc24bY50M2NLteQYi+Zpjjd0i6Q5IWLlxYqPoAAACAUYnzTvQeSQuytudL6hzcyMySkr4m6VZ3PzjUQO6+1t2b3b25vr4+lmIBAACAfMUZotdLWmpmi82sRtJtkh7KbmBmCyV9V9J/cvetMdYCAAAAFExsyzncvc/MPiHpUUmVku5z941mdmd4/F5Jn5d0oaR7zEyS+ty9Oa6aAAAAgEIw9yGXKZet5uZmb29vL3UZAAAAGOfMbMNwN3h5YiEAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiAjRAAAAQESEaAAAACAiQjQAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBgAAACIiRAMAAAAREaIBAACAiAjRAAAAQESEaAAAACAiQjQAAAAQESEaAAAAiIgQDQAAAEQUa4g2szVmtsXMtpnZZ4c4bmb21+HxtJldGWc9o2Y2+tf59o9jzPFY03i8JmqauNdUjjWNx2sqx5rG0jXNmjXy9mjGfOABadEiqaIi+PrAA8P3nzfv3H3z5g31GzxaTfmqqTm3b01NtGs6XytXnnuOlSvPf8wo54rjmlavPvc8q1cX9zpHwdw9noHNKiVtlXSDpD2S1kt6v7tvympzi6TflnSLpLdI+rK7v2WkcZubm729vT2WmocU9Q8WAAAojcZGae/e17aj/g7PJxPV1Ei9vdHGzVZbK61dK91+++j6r1wpbdr0+v0rVkgbN46+rijnGux8r2n1aumJJ/JrG8d1jsDMNrh785DHYgzRb5X0R+5+U7j9OUly9z/NavNVSU+6+7fC7S2SrnP3zHDjEqIBAMCwsnNNHCG6ELngooukl18eXd+Rzl/oTBflWuO6pqHElF2HMlKIjnM5xzxJu7O294T7oraRmd1hZu1m1t7V1VXwQgEAAIpm165SV1B44/GacogzRA/1z4rB/3TIp43cfa27N7t7c319fUGKAwAAKImFC0tdQeGNx2vKIc4QvUfSgqzt+ZI6R9EGAAAgt8bG+M9RXX1+/WtrpbvuGn3/FSui7T8f+Y55vte0alX+beO4zlGKM0Svl7TUzBabWY2k2yQ9NKjNQ5I+GH5Kx9WSjo60HrokznfdTRzrdqip8P3jGJOaxkb/OMYcjzWNx2uKY8xS949jzOH6z5w58vZoxrz//mBtrVnw9f77h+8/ODAPflPhSOeJUtNgPT2vD9LV1flf0/m8AU8K3lQ3OEjG9Wa74c5V6Gt6/PHXB+lVq4p3naMU2xsLpbOfvvElSZWS7nP3u8zsTkly93vNzCTdLWmNpJOSPuLuI75rsOhvLAQAAMCENNIbC6viPLG7r5O0btC+e7O+d0kfj7MGAAAAoNB4YiEAAAAQESEaAAAAiIgQDQAAAEREiAYAAAAiIkQDAAAAERGiAQAAgIgI0QAAAEBEhGgAAAAgIkI0AAAAEFGsj/2Og5l1SdoZ82nqJHXHfA6cP+ZpbGCexgbmaWxgnsYG5mlsyGeeLnL3+qEOjLkQXQxm1j7cc9JRPpinsYF5GhuYp7GBeRobmKex4XznieUcAAAAQESEaAAAACAiQvTQ1pa6AOSFeRobmKexgXkaG5insYF5GhvOa55YEw0AAABExJ1oAAAAICJC9CBmtsbMtpjZNjP7bKnrQcDMFpjZj8xss5ltNLPfDffPNrPHzOzF8OusUtc60ZlZpZk9a2at4TZzVGbMbKaZfcfMXgj/TL2VeSo/Zvap8O+7583sW2Y2mXkqPTO7z8wOmNnzWfuGnRcz+1yYKbaY2U2lqXriGWae/jz8ey9tZv/PzGZmHYs8T4ToLGZWKekrkm6WtELS+81sRWmrQqhP0u+5+3JJV0v6eDg3n5X0hLsvlfREuI3S+l1Jm7O2maPy82VJj7j7pZIuVzBfzFMZMbN5kn5HUrO7XyapUtJtYp7KwdclrRm0b8h5CX9P3SZpZdjnnjBrIH5f1+vn6TFJl7l7UtJWSZ+TRj9PhOhzXSVpm7tvd/ceSQ9KurXENUGSu2fc/Rfh98cV/NKfp2B+vhE2+4ak95akQEiSzGy+pJSkr2XtZo7KiJnNkPQOSX8rSe7e4+5HxDyVoypJU8ysSlKtpE4xTyXn7j+WdGjQ7uHm5VZJD7r7GXffIWmbgqyBmA01T+7+A3fvCzefljQ//H5U80SIPtc8SbuztveE+1BGzGyRpCskPSOpwd0zUhC0Jc0pYWmQviTpDyQNZO1jjsrLxZK6JP1duOzma2Y2VcxTWXH3vZL+QtIuSRlJR939B2KeytVw80KuKF8flfRw+P2o5okQfS4bYh8fX1JGzGyapH+W9El3P1bqevAaM2uRdMDdN5S6FoyoStKVkv7G3a+QdEIsCSg74ZraWyUtltQoaaqZ/Vppq8IokCvKkJn9VwXLRB94ddcQzXLOEyH6XHskLcjanq/gf5+hDJhZtYIA/YC7fzfcvd/MEuHxhKQDpaoPeruk95jZywqWQr3LzO4Xc1Ru9kja4+7PhNvfURCqmafyslrSDnfvcvdeSd+V9DYxT+VquHkhV5QZM/uQpBZJt/trn/M8qnkiRJ9rvaSlZrbYzGoULDJ/qMQ1QZKZmYI1nJvd/YtZhx6S9KHw+w9J+pdi14aAu3/O3ee7+yIFf3Z+6O6/JuaorLj7Pkm7zWxZuGuVpE1insrNLklXm1lt+PffKgXvBWGeytNw8/KQpNvMbJKZLZa0VNLPS1AfFHwCm6TPSHqPu5/MOjSqeeJhK4OY2S0K1nVWSrrP3e8qbUWQJDO7RtJTkjr02nrb/6JgXfS3JS1U8EvnP7r74Dd8oMjM7DpJv+/uLWZ2oZijsmJmb1Tw5s8aSdslfUTBTRXmqYyY2R9L+lUF/9v5WUm/IWmamKeSMrNvSbpOUp2k/ZL+UNL3NMy8hEsHPqpgHj/p7g+/flQU2jDz9DlJkyQdDJs97e53hu0jzxMhGgAAAIiI5RwAAABARIRoAAAAICJCNAAAABARIRoAAACIiBANAAAARESIBoBxyswWmNkOM5sdbs8Kty8qdW0AMNYRogFgnHL33ZL+RtIXwl1fkLTW3XeWrioAGB/4nGgAGMfMrFrSBkn3SfpNSVe4e09pqwKAsa+q1AUAAOLj7r1m9mlJj0i6kQANAIXBcg4AGP9ulpSRdFmpCwGA8YIQDQDjmJm9UdINkq6W9CkzS5S2IgAYHwjRADBOmZkpeGPhJ919l6Q/l/QXpa0KAMYHQjQAjF+/KWmXuz8Wbt8j6VIze2cJawKAcYFP5wAAAAAi4k40AAAAEBEhGgAAAIiIEA0AAABERIgGAAAAIiJEAwAAABERogEAAICICNEAAABARIRoAAAAIKL/D6D76XeqKcwRAAAAAElFTkSuQmCC\n", 450 | "text/plain": [ 451 | "
" 452 | ] 453 | }, 454 | "metadata": { 455 | "needs_background": "light" 456 | }, 457 | "output_type": "display_data" 458 | } 459 | ], 460 | "source": [ 461 | "plt.figure(figsize=(12, 6))\n", 462 | "plt.plot(x,y,'ro') # regression line\n", 463 | "plt.plot(x_test,y_pred) # scatter plot showing actual data\n", 464 | "plt.title('Actual vs Predicted')\n", 465 | "plt.xlabel('X')\n", 466 | "plt.ylabel('y')\n", 467 | "plt.show()" 468 | ] 469 | } 470 | ], 471 | "metadata": { 472 | "kernelspec": { 473 | "display_name": "Python 3 (ipykernel)", 474 | "language": "python", 475 | "name": "python3" 476 | }, 477 | "language_info": { 478 | "codemirror_mode": { 479 | "name": "ipython", 480 | "version": 3 481 | }, 482 | "file_extension": ".py", 483 | "mimetype": "text/x-python", 484 | "name": "python", 485 | "nbconvert_exporter": "python", 486 | "pygments_lexer": "ipython3", 487 | "version": "3.9.12" 488 | }, 489 | "colab": { 490 | "provenance": [], 491 | "include_colab_link": true 492 | } 493 | }, 494 | "nbformat": 4, 495 | "nbformat_minor": 5 496 | } --------------------------------------------------------------------------------