└── logistic_regression.ipynb
/logistic_regression.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "id": "view-in-github",
7 | "colab_type": "text"
8 | },
9 | "source": [
10 | "
"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": null,
16 | "id": "a30110cd",
17 | "metadata": {
18 | "id": "a30110cd"
19 | },
20 | "outputs": [],
21 | "source": [
22 | "import numpy as np\n",
23 | "import pandas as pd\n",
24 | "import matplotlib.pyplot as plt\n"
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": null,
30 | "id": "b0308af8",
31 | "metadata": {
32 | "id": "b0308af8"
33 | },
34 | "outputs": [],
35 | "source": [
36 | "df=pd.read_csv(\"D:\\\\Jeyashri\\\\IBM\\\\Datasets\\\\results.csv\")\n"
37 | ]
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": null,
42 | "id": "77e274a4",
43 | "metadata": {
44 | "id": "77e274a4",
45 | "outputId": "2fd6e4e9-a461-4104-d757-4e9dd34f3b79"
46 | },
47 | "outputs": [
48 | {
49 | "data": {
50 | "text/html": [
51 | "
\n",
52 | "\n",
65 | "
\n",
66 | " \n",
67 | " \n",
68 | " | \n",
69 | " Hours | \n",
70 | " StudentId | \n",
71 | " Result | \n",
72 | "
\n",
73 | " \n",
74 | " \n",
75 | " \n",
76 | " | 0 | \n",
77 | " 1 | \n",
78 | " 10 | \n",
79 | " 0 | \n",
80 | "
\n",
81 | " \n",
82 | " | 1 | \n",
83 | " 1 | \n",
84 | " 15 | \n",
85 | " 0 | \n",
86 | "
\n",
87 | " \n",
88 | " | 2 | \n",
89 | " 1 | \n",
90 | " 21 | \n",
91 | " 0 | \n",
92 | "
\n",
93 | " \n",
94 | " | 3 | \n",
95 | " 1 | \n",
96 | " 16 | \n",
97 | " 0 | \n",
98 | "
\n",
99 | " \n",
100 | " | 4 | \n",
101 | " 2 | \n",
102 | " 14 | \n",
103 | " 0 | \n",
104 | "
\n",
105 | " \n",
106 | " | 5 | \n",
107 | " 2 | \n",
108 | " 5 | \n",
109 | " 1 | \n",
110 | "
\n",
111 | " \n",
112 | " | 6 | \n",
113 | " 2 | \n",
114 | " 7 | \n",
115 | " 0 | \n",
116 | "
\n",
117 | " \n",
118 | " | 7 | \n",
119 | " 2 | \n",
120 | " 2 | \n",
121 | " 1 | \n",
122 | "
\n",
123 | " \n",
124 | " | 8 | \n",
125 | " 2 | \n",
126 | " 17 | \n",
127 | " 0 | \n",
128 | "
\n",
129 | " \n",
130 | " | 9 | \n",
131 | " 3 | \n",
132 | " 18 | \n",
133 | " 1 | \n",
134 | "
\n",
135 | " \n",
136 | "
\n",
137 | "
"
138 | ],
139 | "text/plain": [
140 | " Hours StudentId Result\n",
141 | "0 1 10 0\n",
142 | "1 1 15 0\n",
143 | "2 1 21 0\n",
144 | "3 1 16 0\n",
145 | "4 2 14 0\n",
146 | "5 2 5 1\n",
147 | "6 2 7 0\n",
148 | "7 2 2 1\n",
149 | "8 2 17 0\n",
150 | "9 3 18 1"
151 | ]
152 | },
153 | "execution_count": 3,
154 | "metadata": {},
155 | "output_type": "execute_result"
156 | }
157 | ],
158 | "source": [
159 | "df.head(10)"
160 | ]
161 | },
162 | {
163 | "cell_type": "code",
164 | "execution_count": null,
165 | "id": "620cb0e1",
166 | "metadata": {
167 | "id": "620cb0e1",
168 | "outputId": "479da38f-2ca1-4927-8008-2932c8b37d0d"
169 | },
170 | "outputs": [
171 | {
172 | "data": {
173 | "text/plain": [
174 | "Text(0, 0.5, 'Pass')"
175 | ]
176 | },
177 | "execution_count": 4,
178 | "metadata": {},
179 | "output_type": "execute_result"
180 | },
181 | {
182 | "data": {
183 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAASoUlEQVR4nO3df4xd913m8fez42Rb+itQD2yw08Zow4IDTbcdsikFNsXexWlA3i6VSChEDZWs/IIuQmwDEkUFJEAsq7bkl7ytlXqXNlqJFrJNSiBeILsbhWRcpUmcksrrtI1xdzOh0NIGkdr98Mc9DrfXd8Z33Dn3jv19v6SR7/meM3cen3wzj889956TqkKS1K5/MusAkqTZsggkqXEWgSQ1ziKQpMZZBJLUuA2zDrBaGzdurPPPP3/WMSTptLJ///5nqmp+3LrTrgjOP/98FhcXZx1Dkk4rST6z3DpfGpKkxlkEktQ4i0CSGmcRSFLjLAJJalxvRZBkT5Knkzy2zPokeW+Sg0keSfKavrJIfbvuruvY8CsbyLvChl/ZwHV3XTfrSDqDbN+7nbwrz39t37t9TZ+/zyOC24EdK6y/DLig+9oF3NpjFqk31911Hbcu3sqxOgbAsTrGrYu3WgZaE9v3bmffk/u+Zmzfk/vWtAx6K4Kqug/4/Aqb7AT21sADwDlJzu0rj9SX3ft3r2pcWo3REjjZ+KmY5TmCTcBTQ8uHu7ETJNmVZDHJ4tLS0lTCSZM6fiQw6bi03syyCDJmbOxdcqpqd1UtVNXC/PzYT0hLMzOXuVWNS+vNLIvgMHDe0PJm4MiMskinbNdrd61qXFqNbVu2rWr8VMyyCO4ErurePXQJ8IWq+twM80in5JbLb+HahWufPwKYyxzXLlzLLZffMuNkOhPce9W9J/zS37ZlG/dede+a/Yz0dc/iJB8CLgU2Av8f+GXgLICqui1JgJsYvLPoWeDqqjrp1eQWFhbKi85J0uok2V9VC+PW9Xb10aq68iTrC7i+r58vSZqMnyyWpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxvRZBkh1JnkhyMMmNY9a/LMn/SPKJJAeSXN1nHknSiXorgiRzwM3AZcBW4MokW0c2ux54vKouAi4FfjvJ2X1lkiSdqM8jgouBg1V1qKqeA+4Ado5sU8BLkgR4MfB54GiPmSRJI/osgk3AU0PLh7uxYTcB3wkcAR4F3l5VXx19oiS7kiwmWVxaWuorryQ1qc8iyJixGln+IeBh4FuBVwM3JXnpCd9UtbuqFqpqYX5+fq1zSlLT+iyCw8B5Q8ubGfzLf9jVwIdr4CDwJPAdPWaSJI3oswgeAi5IsqU7AXwFcOfINp8FtgEk+RbgXwCHeswkSRqxoa8nrqqjSW4A7gHmgD1VdSDJNd3624BfBW5P8iiDl5LeUVXP9JVJknSi3ooAoKruBu4eGbtt6PER4N/2mUGStDI/WSxJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIa12sRJNmR5IkkB5PcuMw2lyZ5OMmBJH/WZx5J0ok29PXESeaAm4F/AxwGHkpyZ1U9PrTNOcAtwI6q+mySb+4rjyRpvD6PCC4GDlbVoap6DrgD2DmyzY8DH66qzwJU1dM95pEkjdFnEWwCnhpaPtyNDft24BuT/GmS/UmuGvdESXYlWUyyuLS01FNcSWpTn0WQMWM1srwBeC1wOfBDwC8l+fYTvqlqd1UtVNXC/Pz82ieVpIb1do6AwRHAeUPLm4EjY7Z5pqq+DHw5yX3ARcCneswlSRrS5xHBQ8AFSbYkORu4ArhzZJs/AL4/yYYk3wD8K+CTPWaSJI3o7Yigqo4muQG4B5gD9lTVgSTXdOtvq6pPJvlD4BHgq8D7quqxvjJJkk6UqtGX7de3hYWFWlxcnHUMSTqtJNlfVQvj1vnJYklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktS4iYogyeuTvKh7/BNJ/nOSV/YbTZI0DZMeEdwKPJvkIuA/Ap8B9vaWSpI0NZMWwdEafPJsJ/CeqnoP8JL+YkmSpmXSS0z8bZJfAH4C+IHupjNn9RdLkjQtkx4R/Bjw98Dbqur/MbivwG/1lkqSNDUTHxEweEnoWHe/gO8APtRfLEnStEx6RHAf8E+TbAL2AVcDt/cVSpI0PZMWQarqWeDfA79TVW8CLuwvliRpWiYugiSvA94C3NWNzfUTSZI0TZMWwduBXwA+0t1c5tuAP+kvliRpWiY6WVxV9zE4T3B8+RDwM32FkiRNz0RFkGSewSeKLwRecHy8qn6wp1ySpCmZ9KWh3wX+AtgCvAv4NIOb00uSTnOTFsHLq+r9wFeq6s+q6qeAS3rMJUmakkk/UPaV7s/PJbkcOAJs7ieSJGmaJi2CX0vyMuDngN8BXgr8bG+pJElTs2IRJHkBcA3wzxlcX+j9VfWGaQSTJE3Hyc4RfABYAB4FLgN+u/dEkqSpOtlLQ1ur6rsBkrwfeLD/SJKkaTrZEcHxk8RU1dGes0iSZuBkRwQXJfli9zjAC7vlAFVVL+01nSSpdysWQVV5YTlJOsNN+oEySdIZyiKQpMZZBJLUuF6LIMmOJE8kOZjkxhW2+54kx5K8uc88kqQT9VYESeaAmxl8EG0rcGWSrcts95vAPX1lkSQtr88jgouBg1V1qKqeA+4Ado7Z7qeB3wOe7jGLJGkZfRbBJuCpoeXD3djzkmwC3gTcttITJdmVZDHJ4tLS0poHlaSW9VkEGTNWI8vvBt5RVcdWeqKq2l1VC1W1MD8/v1b5JElMfhnqU3EYOG9oeTOD+xgMWwDuSAKwEXhjkqNV9fs95pIkDemzCB4CLkiyBfhL4Argx4c3qKotxx8nuR34qCUgSdPVWxFU1dEkNzB4N9AcsKeqDiS5plu/4nkBSdJ09HlEQFXdDdw9Mja2AKrqrX1mkSSN5yeLJalxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuN6LYIkO5I8keRgkhvHrH9Lkke6r/uTXNRnHknSiXorgiRzwM3AZcBW4MokW0c2exL411X1KuBXgd195ZEkjdfnEcHFwMGqOlRVzwF3ADuHN6iq+6vqr7vFB4DNPeaRJI3RZxFsAp4aWj7cjS3nbcDHxq1IsivJYpLFpaWlNYwoSeqzCDJmrMZumLyBQRG8Y9z6qtpdVQtVtTA/P7+GESVJG3p87sPAeUPLm4EjoxsleRXwPuCyqvqrHvNIksbo84jgIeCCJFuSnA1cAdw5vEGSVwAfBn6yqj7VYxZJ0jJ6OyKoqqNJbgDuAeaAPVV1IMk13frbgHcCLwduSQJwtKoW+sokSTpRqsa+bL9uLSws1OLi4qxjSNJpJcn+5f6h7SeLJalxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklq3IY+nzzJDuA9wBzwvqr6jZH16da/EXgWeGtVfXytc1x484U8/szjzy9v3biVA9cfWOsfo4Zt37udfU/ue35525Zt3HvVvTNMJE2utyOCJHPAzcBlwFbgyiRbRza7DLig+9oF3LrWOUZLAODxZx7nwpsvXOsfpUaNlgDAvif3sX3v9hklklanz5eGLgYOVtWhqnoOuAPYObLNTmBvDTwAnJPk3LUMMVoCJxuXVmu0BE42Lq03fRbBJuCpoeXD3dhqtyHJriSLSRaXlpbWPKgktazPIsiYsTqFbaiq3VW1UFUL8/PzaxJOkjTQZxEcBs4bWt4MHDmFbb4uWzeOnpZYeVxarW1btq1qXFpv+iyCh4ALkmxJcjZwBXDnyDZ3Aldl4BLgC1X1ubUMceD6Ayf80vddQ1pL91517wm/9H3XkE4nvb19tKqOJrkBuIfB20f3VNWBJNd0628D7mbw1tGDDN4+enUfWfylr775S1+ns14/R1BVdzP4ZT88dtvQ4wKu7zODJGllfrJYkhpnEUhS4ywCSWqcRSBJjcvgfO3pI8kS8JlT/PaNwDNrGGetrNdcsH6zmWt1zLU6Z2KuV1bV2E/knnZF8PVIslhVC7POMWq95oL1m81cq2Ou1Wktly8NSVLjLAJJalxrRbB71gGWsV5zwfrNZq7VMdfqNJWrqXMEkqQTtXZEIEkaYRFIUuPOiCJIsifJ00keW2Z9krw3ycEkjyR5zdC6HUme6NbdOOVcb+nyPJLk/iQXDa37dJJHkzycZHHKuS5N8oXuZz+c5J1D62a5v35+KNNjSY4l+aZuXZ/767wkf5Lkk0kOJHn7mG2mPscmzDX1OTZhrqnPsQlzTX2OJXlBkgeTfKLL9a4x2/Q7v6rqtP8CfgB4DfDYMuvfCHyMwR3RLgH+vBufA/4v8G3A2cAngK1TzPW9wDd2jy87nqtb/jSwcUb761Lgo2PGZ7q/Rrb9EeB/Tml/nQu8pnv8EuBTo3/vWcyxCXNNfY5NmGvqc2ySXLOYY92ceXH3+Czgz4FLpjm/zogjgqq6D/j8CpvsBPbWwAPAOUnOBS4GDlbVoap6Drij23Yquarq/qr6627xAQZ3aOvdBPtrOTPdXyOuBD60Vj97JVX1uar6ePf4b4FPcuK9tac+xybJNYs5NuH+Ws5M99eIqcyxbs58qVs8q/safRdPr/PrjCiCCWwCnhpaPtyNLTc+C29j0PjHFfBHSfYn2TWDPK/rDlU/luTCbmxd7K8k3wDsAH5vaHgq+yvJ+cC/ZPCvtmEznWMr5Bo29Tl2klwzm2Mn21/TnmNJ5pI8DDwN/HFVTXV+9XpjmnUkY8ZqhfGpSvIGBv+Tft/Q8Our6kiSbwb+OMlfdP9inoaPM7guyZeSvBH4feAC1sn+YnDI/n+qavjooff9leTFDH4x/Ieq+uLo6jHfMpU5dpJcx7eZ+hw7Sa6ZzbFJ9hdTnmNVdQx4dZJzgI8k+a6qGj5X1uv8auWI4DBw3tDyZuDICuNTk+RVwPuAnVX1V8fHq+pI9+fTwEcYHAJORVV98fihag3uMndWko2sg/3VuYKRQ/a+91eSsxj88vjdqvrwmE1mMscmyDWTOXayXLOaY5Psr87U51j33H8D/CmDo5Fh/c6vtTjZsR6+gPNZ/uTn5XztiZYHu/ENwCFgC/94ouXCKeZ6BYP7NX/vyPiLgJcMPb4f2DHFXP+Mf/yw4cXAZ7t9N9P91a1/GYPzCC+a1v7q/u57gXevsM3U59iEuaY+xybMNfU5NkmuWcwxYB44p3v8QuB/AT88zfl1Rrw0lORDDN6FsDHJYeCXGZxwoQb3SL6bwVn3g8CzwNXduqNJbgDuYXD2fU9Vrdmd7ifI9U7g5cAtSQCO1uDKgt/C4PAQBv+hP1hVfzjFXG8Grk1yFPg74IoazLpZ7y+ANwF/VFVfHvrWXvcX8HrgJ4FHu9dxAX6RwS/ZWc6xSXLNYo5NkmsWc2ySXDD9OXYu8IEkcwxepfnvVfXRJNcM5ep1fnmJCUlqXCvnCCRJy7AIJKlxFoEkNc4ikKTGWQSS1DiLQBojyZdGlt+a5KZZ5ZH6ZBFIU9S9V1xaVywCaZWSvDLJvu668PuSvKIbvz3Jm4e2+1L356XddfA/yODDTC9Kcld3wbXHkvzYjP4qEtDOReek1Xrh0KdPAb4JuLN7fBODSwJ/IMlPAe8F/t1Jnu9i4Luq6skkPwocqarLAZK8bE2TS6vkEYE03t9V1auPfzG4VMNxrwM+2D3+r3ztFT2X82BVPdk9fhTYnuQ3k3x/VX1hzVJLp8AikL5+x6/TcpTu/6kMLkpz9tA2z1+3pqo+BbyWQSH8eoZu0yjNgkUgrd79DC5TDPAW4H93jz/N4Bc8DO4Sdda4b07yrcCzVfXfgP/E4Pac0sx4jkBavZ8B9iT5eWCJ7kqQwH8B/iDJg8A+ho4CRnw38FtJvgp8Bbi257zSirz6qCQ1zpeGJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklq3D8AtIIYExNeysIAAAAASUVORK5CYII=\n",
184 | "text/plain": [
185 | ""
186 | ]
187 | },
188 | "metadata": {
189 | "needs_background": "light"
190 | },
191 | "output_type": "display_data"
192 | }
193 | ],
194 | "source": [
195 | "plt.scatter(df.Hours,df.Result,color='green')\n",
196 | "plt.xlabel(\"Hours\")\n",
197 | "plt.ylabel(\"Pass\")"
198 | ]
199 | },
200 | {
201 | "cell_type": "code",
202 | "execution_count": null,
203 | "id": "609e5016",
204 | "metadata": {
205 | "id": "609e5016"
206 | },
207 | "outputs": [],
208 | "source": [
209 | "df.dropna(inplace=True)"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": null,
215 | "id": "4d8e2540",
216 | "metadata": {
217 | "id": "4d8e2540",
218 | "outputId": "8e0bd9cb-1565-475d-86df-6cb8721f928c"
219 | },
220 | "outputs": [
221 | {
222 | "data": {
223 | "text/html": [
224 | "\n",
225 | "\n",
238 | "
\n",
239 | " \n",
240 | " \n",
241 | " | \n",
242 | " Hours | \n",
243 | " Result | \n",
244 | "
\n",
245 | " \n",
246 | " \n",
247 | " \n",
248 | " | 0 | \n",
249 | " 1 | \n",
250 | " 0 | \n",
251 | "
\n",
252 | " \n",
253 | " | 1 | \n",
254 | " 1 | \n",
255 | " 0 | \n",
256 | "
\n",
257 | " \n",
258 | " | 2 | \n",
259 | " 1 | \n",
260 | " 0 | \n",
261 | "
\n",
262 | " \n",
263 | " | 3 | \n",
264 | " 1 | \n",
265 | " 0 | \n",
266 | "
\n",
267 | " \n",
268 | " | 4 | \n",
269 | " 2 | \n",
270 | " 0 | \n",
271 | "
\n",
272 | " \n",
273 | "
\n",
274 | "
"
275 | ],
276 | "text/plain": [
277 | " Hours Result\n",
278 | "0 1 0\n",
279 | "1 1 0\n",
280 | "2 1 0\n",
281 | "3 1 0\n",
282 | "4 2 0"
283 | ]
284 | },
285 | "execution_count": 7,
286 | "metadata": {},
287 | "output_type": "execute_result"
288 | }
289 | ],
290 | "source": [
291 | "x=df.drop(\"StudentId\",axis=1)\n",
292 | "x.head()"
293 | ]
294 | },
295 | {
296 | "cell_type": "code",
297 | "execution_count": null,
298 | "id": "4d26e8c5",
299 | "metadata": {
300 | "id": "4d26e8c5",
301 | "outputId": "879b8db7-3019-471d-921a-1ff9601a5fcc"
302 | },
303 | "outputs": [
304 | {
305 | "data": {
306 | "text/html": [
307 | "\n",
308 | "\n",
321 | "
\n",
322 | " \n",
323 | " \n",
324 | " | \n",
325 | " 0 | \n",
326 | " 1 | \n",
327 | "
\n",
328 | " \n",
329 | " \n",
330 | " \n",
331 | " | 0 | \n",
332 | " 1 | \n",
333 | " 0 | \n",
334 | "
\n",
335 | " \n",
336 | " | 1 | \n",
337 | " 1 | \n",
338 | " 0 | \n",
339 | "
\n",
340 | " \n",
341 | " | 2 | \n",
342 | " 1 | \n",
343 | " 0 | \n",
344 | "
\n",
345 | " \n",
346 | "
\n",
347 | "
"
348 | ],
349 | "text/plain": [
350 | " 0 1\n",
351 | "0 1 0\n",
352 | "1 1 0\n",
353 | "2 1 0"
354 | ]
355 | },
356 | "execution_count": 8,
357 | "metadata": {},
358 | "output_type": "execute_result"
359 | }
360 | ],
361 | "source": [
362 | "result=pd.get_dummies(df[\"Result\"])\n",
363 | "result.head(3)"
364 | ]
365 | },
366 | {
367 | "cell_type": "code",
368 | "execution_count": null,
369 | "id": "d2c0f4a4",
370 | "metadata": {
371 | "id": "d2c0f4a4",
372 | "outputId": "59a36a48-188d-497f-fe61-1baa9a20addc"
373 | },
374 | "outputs": [
375 | {
376 | "data": {
377 | "text/html": [
378 | "\n",
379 | "\n",
392 | "
\n",
393 | " \n",
394 | " \n",
395 | " | \n",
396 | " Hours | \n",
397 | " Result | \n",
398 | " 0 | \n",
399 | " 1 | \n",
400 | "
\n",
401 | " \n",
402 | " \n",
403 | " \n",
404 | " | 0 | \n",
405 | " 1 | \n",
406 | " 0 | \n",
407 | " 1 | \n",
408 | " 0 | \n",
409 | "
\n",
410 | " \n",
411 | " | 1 | \n",
412 | " 1 | \n",
413 | " 0 | \n",
414 | " 1 | \n",
415 | " 0 | \n",
416 | "
\n",
417 | " \n",
418 | " | 2 | \n",
419 | " 1 | \n",
420 | " 0 | \n",
421 | " 1 | \n",
422 | " 0 | \n",
423 | "
\n",
424 | " \n",
425 | " | 3 | \n",
426 | " 1 | \n",
427 | " 0 | \n",
428 | " 1 | \n",
429 | " 0 | \n",
430 | "
\n",
431 | " \n",
432 | " | 4 | \n",
433 | " 2 | \n",
434 | " 0 | \n",
435 | " 1 | \n",
436 | " 0 | \n",
437 | "
\n",
438 | " \n",
439 | " | 5 | \n",
440 | " 2 | \n",
441 | " 1 | \n",
442 | " 0 | \n",
443 | " 1 | \n",
444 | "
\n",
445 | " \n",
446 | " | 6 | \n",
447 | " 2 | \n",
448 | " 0 | \n",
449 | " 1 | \n",
450 | " 0 | \n",
451 | "
\n",
452 | " \n",
453 | " | 7 | \n",
454 | " 2 | \n",
455 | " 1 | \n",
456 | " 0 | \n",
457 | " 1 | \n",
458 | "
\n",
459 | " \n",
460 | " | 8 | \n",
461 | " 2 | \n",
462 | " 0 | \n",
463 | " 1 | \n",
464 | " 0 | \n",
465 | "
\n",
466 | " \n",
467 | " | 9 | \n",
468 | " 3 | \n",
469 | " 1 | \n",
470 | " 0 | \n",
471 | " 1 | \n",
472 | "
\n",
473 | " \n",
474 | " | 10 | \n",
475 | " 3 | \n",
476 | " 1 | \n",
477 | " 0 | \n",
478 | " 1 | \n",
479 | "
\n",
480 | " \n",
481 | " | 11 | \n",
482 | " 3 | \n",
483 | " 1 | \n",
484 | " 0 | \n",
485 | " 1 | \n",
486 | "
\n",
487 | " \n",
488 | "
\n",
489 | "
"
490 | ],
491 | "text/plain": [
492 | " Hours Result 0 1\n",
493 | "0 1 0 1 0\n",
494 | "1 1 0 1 0\n",
495 | "2 1 0 1 0\n",
496 | "3 1 0 1 0\n",
497 | "4 2 0 1 0\n",
498 | "5 2 1 0 1\n",
499 | "6 2 0 1 0\n",
500 | "7 2 1 0 1\n",
501 | "8 2 0 1 0\n",
502 | "9 3 1 0 1\n",
503 | "10 3 1 0 1\n",
504 | "11 3 1 0 1"
505 | ]
506 | },
507 | "execution_count": 9,
508 | "metadata": {},
509 | "output_type": "execute_result"
510 | }
511 | ],
512 | "source": [
513 | "x=pd.concat([x,result],axis=1)\n",
514 | "x.head(15)"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": null,
520 | "id": "0de58cc4",
521 | "metadata": {
522 | "id": "0de58cc4"
523 | },
524 | "outputs": [],
525 | "source": [
526 | "x=df.drop(\"Result\",axis=1)\n"
527 | ]
528 | },
529 | {
530 | "cell_type": "code",
531 | "execution_count": null,
532 | "id": "0aff5e01",
533 | "metadata": {
534 | "id": "0aff5e01"
535 | },
536 | "outputs": [],
537 | "source": [
538 | "from sklearn.model_selection import train_test_split\n"
539 | ]
540 | },
541 | {
542 | "cell_type": "code",
543 | "execution_count": null,
544 | "id": "fcf945a2",
545 | "metadata": {
546 | "id": "fcf945a2"
547 | },
548 | "outputs": [],
549 | "source": [
550 | "X1 = df.drop ('Hours', axis = 1)\n",
551 | "y = df ['Hours']\n",
552 | "X1_train, X1_test, y_train, y_test = train_test_split (X1, y, test_size = 2, random_state = 5)\n"
553 | ]
554 | },
555 | {
556 | "cell_type": "code",
557 | "execution_count": null,
558 | "id": "f3974c3e",
559 | "metadata": {
560 | "id": "f3974c3e"
561 | },
562 | "outputs": [],
563 | "source": [
564 | "from sklearn.linear_model import LogisticRegression"
565 | ]
566 | },
567 | {
568 | "cell_type": "code",
569 | "execution_count": null,
570 | "id": "50dba9ef",
571 | "metadata": {
572 | "id": "50dba9ef",
573 | "outputId": "5ba1fecb-3da1-4696-b720-917dfd6759dd"
574 | },
575 | "outputs": [
576 | {
577 | "data": {
578 | "text/plain": [
579 | "LogisticRegression()"
580 | ]
581 | },
582 | "execution_count": 18,
583 | "metadata": {},
584 | "output_type": "execute_result"
585 | }
586 | ],
587 | "source": [
588 | "model = LogisticRegression()\n",
589 | "model.fit(X1_train, y_train)"
590 | ]
591 | },
592 | {
593 | "cell_type": "code",
594 | "execution_count": null,
595 | "id": "c3ae326c",
596 | "metadata": {
597 | "id": "c3ae326c",
598 | "outputId": "e0ee0837-f832-4dd3-d143-87ce9d5b0700"
599 | },
600 | "outputs": [
601 | {
602 | "data": {
603 | "text/plain": [
604 | "array([3, 3], dtype=int64)"
605 | ]
606 | },
607 | "execution_count": 19,
608 | "metadata": {},
609 | "output_type": "execute_result"
610 | }
611 | ],
612 | "source": [
613 | "predic=model.predict(X1_test)\n",
614 | "predic"
615 | ]
616 | },
617 | {
618 | "cell_type": "code",
619 | "execution_count": null,
620 | "id": "7d46e6e8",
621 | "metadata": {
622 | "id": "7d46e6e8",
623 | "outputId": "dcdffb9d-b64a-4033-f485-deaf2693ffa1"
624 | },
625 | "outputs": [
626 | {
627 | "name": "stdout",
628 | "output_type": "stream",
629 | "text": [
630 | "[[0 2]\n",
631 | " [0 0]]\n"
632 | ]
633 | }
634 | ],
635 | "source": [
636 | "from sklearn.metrics import confusion_matrix, accuracy_score\n",
637 | "cm=confusion_matrix(y_test,predic)\n",
638 | "print (cm)"
639 | ]
640 | },
641 | {
642 | "cell_type": "code",
643 | "execution_count": null,
644 | "id": "c56fa5c4",
645 | "metadata": {
646 | "id": "c56fa5c4",
647 | "outputId": "5550214a-52e8-4021-a16e-93b15cf2d9ee"
648 | },
649 | "outputs": [
650 | {
651 | "name": "stdout",
652 | "output_type": "stream",
653 | "text": [
654 | "0.0\n"
655 | ]
656 | }
657 | ],
658 | "source": [
659 | "acc=accuracy_score(y_test,predic)\n",
660 | "print(acc)"
661 | ]
662 | },
663 | {
664 | "cell_type": "code",
665 | "execution_count": null,
666 | "id": "00203d18",
667 | "metadata": {
668 | "id": "00203d18",
669 | "outputId": "169ca0ee-41a6-4381-de30-4468cc0b1244"
670 | },
671 | "outputs": [
672 | {
673 | "name": "stderr",
674 | "output_type": "stream",
675 | "text": [
676 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
677 | " _warn_prf(average, modifier, msg_start, len(result))\n",
678 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
679 | " _warn_prf(average, modifier, msg_start, len(result))\n",
680 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
681 | " _warn_prf(average, modifier, msg_start, len(result))\n",
682 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
683 | " _warn_prf(average, modifier, msg_start, len(result))\n",
684 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
685 | " _warn_prf(average, modifier, msg_start, len(result))\n",
686 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
687 | " _warn_prf(average, modifier, msg_start, len(result))\n"
688 | ]
689 | },
690 | {
691 | "data": {
692 | "text/plain": [
693 | "' precision recall f1-score support\\n\\n 2 0.00 0.00 0.00 2.0\\n 3 0.00 0.00 0.00 0.0\\n\\n accuracy 0.00 2.0\\n macro avg 0.00 0.00 0.00 2.0\\nweighted avg 0.00 0.00 0.00 2.0\\n'"
694 | ]
695 | },
696 | "execution_count": 22,
697 | "metadata": {},
698 | "output_type": "execute_result"
699 | }
700 | ],
701 | "source": [
702 | "from sklearn.metrics import classification_report\n",
703 | "classification_report(y_test,predic)"
704 | ]
705 | }
706 | ],
707 | "metadata": {
708 | "kernelspec": {
709 | "display_name": "Python 3 (ipykernel)",
710 | "language": "python",
711 | "name": "python3"
712 | },
713 | "language_info": {
714 | "codemirror_mode": {
715 | "name": "ipython",
716 | "version": 3
717 | },
718 | "file_extension": ".py",
719 | "mimetype": "text/x-python",
720 | "name": "python",
721 | "nbconvert_exporter": "python",
722 | "pygments_lexer": "ipython3",
723 | "version": "3.9.12"
724 | },
725 | "colab": {
726 | "provenance": [],
727 | "include_colab_link": true
728 | }
729 | },
730 | "nbformat": 4,
731 | "nbformat_minor": 5
732 | }
--------------------------------------------------------------------------------