└── logistic_regression.ipynb /logistic_regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": null, 16 | "id": "a30110cd", 17 | "metadata": { 18 | "id": "a30110cd" 19 | }, 20 | "outputs": [], 21 | "source": [ 22 | "import numpy as np\n", 23 | "import pandas as pd\n", 24 | "import matplotlib.pyplot as plt\n" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": null, 30 | "id": "b0308af8", 31 | "metadata": { 32 | "id": "b0308af8" 33 | }, 34 | "outputs": [], 35 | "source": [ 36 | "df=pd.read_csv(\"D:\\\\Jeyashri\\\\IBM\\\\Datasets\\\\results.csv\")\n" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": null, 42 | "id": "77e274a4", 43 | "metadata": { 44 | "id": "77e274a4", 45 | "outputId": "2fd6e4e9-a461-4104-d757-4e9dd34f3b79" 46 | }, 47 | "outputs": [ 48 | { 49 | "data": { 50 | "text/html": [ 51 | "
\n", 52 | "\n", 65 | "\n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | "
HoursStudentIdResult
01100
11150
21210
31160
42140
5251
6270
7221
82170
93181
\n", 137 | "
" 138 | ], 139 | "text/plain": [ 140 | " Hours StudentId Result\n", 141 | "0 1 10 0\n", 142 | "1 1 15 0\n", 143 | "2 1 21 0\n", 144 | "3 1 16 0\n", 145 | "4 2 14 0\n", 146 | "5 2 5 1\n", 147 | "6 2 7 0\n", 148 | "7 2 2 1\n", 149 | "8 2 17 0\n", 150 | "9 3 18 1" 151 | ] 152 | }, 153 | "execution_count": 3, 154 | "metadata": {}, 155 | "output_type": "execute_result" 156 | } 157 | ], 158 | "source": [ 159 | "df.head(10)" 160 | ] 161 | }, 162 | { 163 | "cell_type": "code", 164 | "execution_count": null, 165 | "id": "620cb0e1", 166 | "metadata": { 167 | "id": "620cb0e1", 168 | "outputId": "479da38f-2ca1-4927-8008-2932c8b37d0d" 169 | }, 170 | "outputs": [ 171 | { 172 | "data": { 173 | "text/plain": [ 174 | "Text(0, 0.5, 'Pass')" 175 | ] 176 | }, 177 | "execution_count": 4, 178 | "metadata": {}, 179 | "output_type": "execute_result" 180 | }, 181 | { 182 | "data": { 183 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAASoUlEQVR4nO3df4xd913m8fez42Rb+itQD2yw08Zow4IDTbcdsikFNsXexWlA3i6VSChEDZWs/IIuQmwDEkUFJEAsq7bkl7ytlXqXNlqJFrJNSiBeILsbhWRcpUmcksrrtI1xdzOh0NIGkdr98Mc9DrfXd8Z33Dn3jv19v6SR7/meM3cen3wzj889956TqkKS1K5/MusAkqTZsggkqXEWgSQ1ziKQpMZZBJLUuA2zDrBaGzdurPPPP3/WMSTptLJ///5nqmp+3LrTrgjOP/98FhcXZx1Dkk4rST6z3DpfGpKkxlkEktQ4i0CSGmcRSFLjLAJJalxvRZBkT5Knkzy2zPokeW+Sg0keSfKavrJIfbvuruvY8CsbyLvChl/ZwHV3XTfrSDqDbN+7nbwrz39t37t9TZ+/zyOC24EdK6y/DLig+9oF3NpjFqk31911Hbcu3sqxOgbAsTrGrYu3WgZaE9v3bmffk/u+Zmzfk/vWtAx6K4Kqug/4/Aqb7AT21sADwDlJzu0rj9SX3ft3r2pcWo3REjjZ+KmY5TmCTcBTQ8uHu7ETJNmVZDHJ4tLS0lTCSZM6fiQw6bi03syyCDJmbOxdcqpqd1UtVNXC/PzYT0hLMzOXuVWNS+vNLIvgMHDe0PJm4MiMskinbNdrd61qXFqNbVu2rWr8VMyyCO4ErurePXQJ8IWq+twM80in5JbLb+HahWufPwKYyxzXLlzLLZffMuNkOhPce9W9J/zS37ZlG/dede+a/Yz0dc/iJB8CLgU2Av8f+GXgLICqui1JgJsYvLPoWeDqqjrp1eQWFhbKi85J0uok2V9VC+PW9Xb10aq68iTrC7i+r58vSZqMnyyWpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxvRZBkh1JnkhyMMmNY9a/LMn/SPKJJAeSXN1nHknSiXorgiRzwM3AZcBW4MokW0c2ux54vKouAi4FfjvJ2X1lkiSdqM8jgouBg1V1qKqeA+4Ado5sU8BLkgR4MfB54GiPmSRJI/osgk3AU0PLh7uxYTcB3wkcAR4F3l5VXx19oiS7kiwmWVxaWuorryQ1qc8iyJixGln+IeBh4FuBVwM3JXnpCd9UtbuqFqpqYX5+fq1zSlLT+iyCw8B5Q8ubGfzLf9jVwIdr4CDwJPAdPWaSJI3oswgeAi5IsqU7AXwFcOfINp8FtgEk+RbgXwCHeswkSRqxoa8nrqqjSW4A7gHmgD1VdSDJNd3624BfBW5P8iiDl5LeUVXP9JVJknSi3ooAoKruBu4eGbtt6PER4N/2mUGStDI/WSxJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIa12sRJNmR5IkkB5PcuMw2lyZ5OMmBJH/WZx5J0ok29PXESeaAm4F/AxwGHkpyZ1U9PrTNOcAtwI6q+mySb+4rjyRpvD6PCC4GDlbVoap6DrgD2DmyzY8DH66qzwJU1dM95pEkjdFnEWwCnhpaPtyNDft24BuT/GmS/UmuGvdESXYlWUyyuLS01FNcSWpTn0WQMWM1srwBeC1wOfBDwC8l+fYTvqlqd1UtVNXC/Pz82ieVpIb1do6AwRHAeUPLm4EjY7Z5pqq+DHw5yX3ARcCneswlSRrS5xHBQ8AFSbYkORu4ArhzZJs/AL4/yYYk3wD8K+CTPWaSJI3o7Yigqo4muQG4B5gD9lTVgSTXdOtvq6pPJvlD4BHgq8D7quqxvjJJkk6UqtGX7de3hYWFWlxcnHUMSTqtJNlfVQvj1vnJYklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktS4iYogyeuTvKh7/BNJ/nOSV/YbTZI0DZMeEdwKPJvkIuA/Ap8B9vaWSpI0NZMWwdEafPJsJ/CeqnoP8JL+YkmSpmXSS0z8bZJfAH4C+IHupjNn9RdLkjQtkx4R/Bjw98Dbqur/MbivwG/1lkqSNDUTHxEweEnoWHe/gO8APtRfLEnStEx6RHAf8E+TbAL2AVcDt/cVSpI0PZMWQarqWeDfA79TVW8CLuwvliRpWiYugiSvA94C3NWNzfUTSZI0TZMWwduBXwA+0t1c5tuAP+kvliRpWiY6WVxV9zE4T3B8+RDwM32FkiRNz0RFkGSewSeKLwRecHy8qn6wp1ySpCmZ9KWh3wX+AtgCvAv4NIOb00uSTnOTFsHLq+r9wFeq6s+q6qeAS3rMJUmakkk/UPaV7s/PJbkcOAJs7ieSJGmaJi2CX0vyMuDngN8BXgr8bG+pJElTs2IRJHkBcA3wzxlcX+j9VfWGaQSTJE3Hyc4RfABYAB4FLgN+u/dEkqSpOtlLQ1ur6rsBkrwfeLD/SJKkaTrZEcHxk8RU1dGes0iSZuBkRwQXJfli9zjAC7vlAFVVL+01nSSpdysWQVV5YTlJOsNN+oEySdIZyiKQpMZZBJLUuF6LIMmOJE8kOZjkxhW2+54kx5K8uc88kqQT9VYESeaAmxl8EG0rcGWSrcts95vAPX1lkSQtr88jgouBg1V1qKqeA+4Ado7Z7qeB3wOe7jGLJGkZfRbBJuCpoeXD3djzkmwC3gTcttITJdmVZDHJ4tLS0poHlaSW9VkEGTNWI8vvBt5RVcdWeqKq2l1VC1W1MD8/v1b5JElMfhnqU3EYOG9oeTOD+xgMWwDuSAKwEXhjkqNV9fs95pIkDemzCB4CLkiyBfhL4Argx4c3qKotxx8nuR34qCUgSdPVWxFU1dEkNzB4N9AcsKeqDiS5plu/4nkBSdJ09HlEQFXdDdw9Mja2AKrqrX1mkSSN5yeLJalxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuN6LYIkO5I8keRgkhvHrH9Lkke6r/uTXNRnHknSiXorgiRzwM3AZcBW4MokW0c2exL411X1KuBXgd195ZEkjdfnEcHFwMGqOlRVzwF3ADuHN6iq+6vqr7vFB4DNPeaRJI3RZxFsAp4aWj7cjS3nbcDHxq1IsivJYpLFpaWlNYwoSeqzCDJmrMZumLyBQRG8Y9z6qtpdVQtVtTA/P7+GESVJG3p87sPAeUPLm4EjoxsleRXwPuCyqvqrHvNIksbo84jgIeCCJFuSnA1cAdw5vEGSVwAfBn6yqj7VYxZJ0jJ6OyKoqqNJbgDuAeaAPVV1IMk13frbgHcCLwduSQJwtKoW+sokSTpRqsa+bL9uLSws1OLi4qxjSNJpJcn+5f6h7SeLJalxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklq3IY+nzzJDuA9wBzwvqr6jZH16da/EXgWeGtVfXytc1x484U8/szjzy9v3biVA9cfWOsfo4Zt37udfU/ue35525Zt3HvVvTNMJE2utyOCJHPAzcBlwFbgyiRbRza7DLig+9oF3LrWOUZLAODxZx7nwpsvXOsfpUaNlgDAvif3sX3v9hklklanz5eGLgYOVtWhqnoOuAPYObLNTmBvDTwAnJPk3LUMMVoCJxuXVmu0BE42Lq03fRbBJuCpoeXD3dhqtyHJriSLSRaXlpbWPKgktazPIsiYsTqFbaiq3VW1UFUL8/PzaxJOkjTQZxEcBs4bWt4MHDmFbb4uWzeOnpZYeVxarW1btq1qXFpv+iyCh4ALkmxJcjZwBXDnyDZ3Aldl4BLgC1X1ubUMceD6Ayf80vddQ1pL91517wm/9H3XkE4nvb19tKqOJrkBuIfB20f3VNWBJNd0628D7mbw1tGDDN4+enUfWfylr775S1+ns14/R1BVdzP4ZT88dtvQ4wKu7zODJGllfrJYkhpnEUhS4ywCSWqcRSBJjcvgfO3pI8kS8JlT/PaNwDNrGGetrNdcsH6zmWt1zLU6Z2KuV1bV2E/knnZF8PVIslhVC7POMWq95oL1m81cq2Ou1Wktly8NSVLjLAJJalxrRbB71gGWsV5zwfrNZq7VMdfqNJWrqXMEkqQTtXZEIEkaYRFIUuPOiCJIsifJ00keW2Z9krw3ycEkjyR5zdC6HUme6NbdOOVcb+nyPJLk/iQXDa37dJJHkzycZHHKuS5N8oXuZz+c5J1D62a5v35+KNNjSY4l+aZuXZ/767wkf5Lkk0kOJHn7mG2mPscmzDX1OTZhrqnPsQlzTX2OJXlBkgeTfKLL9a4x2/Q7v6rqtP8CfgB4DfDYMuvfCHyMwR3RLgH+vBufA/4v8G3A2cAngK1TzPW9wDd2jy87nqtb/jSwcUb761Lgo2PGZ7q/Rrb9EeB/Tml/nQu8pnv8EuBTo3/vWcyxCXNNfY5NmGvqc2ySXLOYY92ceXH3+Czgz4FLpjm/zogjgqq6D/j8CpvsBPbWwAPAOUnOBS4GDlbVoap6Drij23Yquarq/qr6627xAQZ3aOvdBPtrOTPdXyOuBD60Vj97JVX1uar6ePf4b4FPcuK9tac+xybJNYs5NuH+Ws5M99eIqcyxbs58qVs8q/safRdPr/PrjCiCCWwCnhpaPtyNLTc+C29j0PjHFfBHSfYn2TWDPK/rDlU/luTCbmxd7K8k3wDsAH5vaHgq+yvJ+cC/ZPCvtmEznWMr5Bo29Tl2klwzm2Mn21/TnmNJ5pI8DDwN/HFVTXV+9XpjmnUkY8ZqhfGpSvIGBv+Tft/Q8Our6kiSbwb+OMlfdP9inoaPM7guyZeSvBH4feAC1sn+YnDI/n+qavjooff9leTFDH4x/Ieq+uLo6jHfMpU5dpJcx7eZ+hw7Sa6ZzbFJ9hdTnmNVdQx4dZJzgI8k+a6qGj5X1uv8auWI4DBw3tDyZuDICuNTk+RVwPuAnVX1V8fHq+pI9+fTwEcYHAJORVV98fihag3uMndWko2sg/3VuYKRQ/a+91eSsxj88vjdqvrwmE1mMscmyDWTOXayXLOaY5Psr87U51j33H8D/CmDo5Fh/c6vtTjZsR6+gPNZ/uTn5XztiZYHu/ENwCFgC/94ouXCKeZ6BYP7NX/vyPiLgJcMPb4f2DHFXP+Mf/yw4cXAZ7t9N9P91a1/GYPzCC+a1v7q/u57gXevsM3U59iEuaY+xybMNfU5NkmuWcwxYB44p3v8QuB/AT88zfl1Rrw0lORDDN6FsDHJYeCXGZxwoQb3SL6bwVn3g8CzwNXduqNJbgDuYXD2fU9Vrdmd7ifI9U7g5cAtSQCO1uDKgt/C4PAQBv+hP1hVfzjFXG8Grk1yFPg74IoazLpZ7y+ANwF/VFVfHvrWXvcX8HrgJ4FHu9dxAX6RwS/ZWc6xSXLNYo5NkmsWc2ySXDD9OXYu8IEkcwxepfnvVfXRJNcM5ep1fnmJCUlqXCvnCCRJy7AIJKlxFoEkNc4ikKTGWQSS1DiLQBojyZdGlt+a5KZZ5ZH6ZBFIU9S9V1xaVywCaZWSvDLJvu668PuSvKIbvz3Jm4e2+1L356XddfA/yODDTC9Kcld3wbXHkvzYjP4qEtDOReek1Xrh0KdPAb4JuLN7fBODSwJ/IMlPAe8F/t1Jnu9i4Luq6skkPwocqarLAZK8bE2TS6vkEYE03t9V1auPfzG4VMNxrwM+2D3+r3ztFT2X82BVPdk9fhTYnuQ3k3x/VX1hzVJLp8AikL5+x6/TcpTu/6kMLkpz9tA2z1+3pqo+BbyWQSH8eoZu0yjNgkUgrd79DC5TDPAW4H93jz/N4Bc8DO4Sdda4b07yrcCzVfXfgP/E4Pac0sx4jkBavZ8B9iT5eWCJ7kqQwH8B/iDJg8A+ho4CRnw38FtJvgp8Bbi257zSirz6qCQ1zpeGJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklq3D8AtIIYExNeysIAAAAASUVORK5CYII=\n", 184 | "text/plain": [ 185 | "
" 186 | ] 187 | }, 188 | "metadata": { 189 | "needs_background": "light" 190 | }, 191 | "output_type": "display_data" 192 | } 193 | ], 194 | "source": [ 195 | "plt.scatter(df.Hours,df.Result,color='green')\n", 196 | "plt.xlabel(\"Hours\")\n", 197 | "plt.ylabel(\"Pass\")" 198 | ] 199 | }, 200 | { 201 | "cell_type": "code", 202 | "execution_count": null, 203 | "id": "609e5016", 204 | "metadata": { 205 | "id": "609e5016" 206 | }, 207 | "outputs": [], 208 | "source": [ 209 | "df.dropna(inplace=True)" 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "execution_count": null, 215 | "id": "4d8e2540", 216 | "metadata": { 217 | "id": "4d8e2540", 218 | "outputId": "8e0bd9cb-1565-475d-86df-6cb8721f928c" 219 | }, 220 | "outputs": [ 221 | { 222 | "data": { 223 | "text/html": [ 224 | "
\n", 225 | "\n", 238 | "\n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | "
HoursResult
010
110
210
310
420
\n", 274 | "
" 275 | ], 276 | "text/plain": [ 277 | " Hours Result\n", 278 | "0 1 0\n", 279 | "1 1 0\n", 280 | "2 1 0\n", 281 | "3 1 0\n", 282 | "4 2 0" 283 | ] 284 | }, 285 | "execution_count": 7, 286 | "metadata": {}, 287 | "output_type": "execute_result" 288 | } 289 | ], 290 | "source": [ 291 | "x=df.drop(\"StudentId\",axis=1)\n", 292 | "x.head()" 293 | ] 294 | }, 295 | { 296 | "cell_type": "code", 297 | "execution_count": null, 298 | "id": "4d26e8c5", 299 | "metadata": { 300 | "id": "4d26e8c5", 301 | "outputId": "879b8db7-3019-471d-921a-1ff9601a5fcc" 302 | }, 303 | "outputs": [ 304 | { 305 | "data": { 306 | "text/html": [ 307 | "
\n", 308 | "\n", 321 | "\n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | "
01
010
110
210
\n", 347 | "
" 348 | ], 349 | "text/plain": [ 350 | " 0 1\n", 351 | "0 1 0\n", 352 | "1 1 0\n", 353 | "2 1 0" 354 | ] 355 | }, 356 | "execution_count": 8, 357 | "metadata": {}, 358 | "output_type": "execute_result" 359 | } 360 | ], 361 | "source": [ 362 | "result=pd.get_dummies(df[\"Result\"])\n", 363 | "result.head(3)" 364 | ] 365 | }, 366 | { 367 | "cell_type": "code", 368 | "execution_count": null, 369 | "id": "d2c0f4a4", 370 | "metadata": { 371 | "id": "d2c0f4a4", 372 | "outputId": "59a36a48-188d-497f-fe61-1baa9a20addc" 373 | }, 374 | "outputs": [ 375 | { 376 | "data": { 377 | "text/html": [ 378 | "
\n", 379 | "\n", 392 | "\n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | "
HoursResult01
01010
11010
21010
31010
42010
52101
62010
72101
82010
93101
103101
113101
\n", 489 | "
" 490 | ], 491 | "text/plain": [ 492 | " Hours Result 0 1\n", 493 | "0 1 0 1 0\n", 494 | "1 1 0 1 0\n", 495 | "2 1 0 1 0\n", 496 | "3 1 0 1 0\n", 497 | "4 2 0 1 0\n", 498 | "5 2 1 0 1\n", 499 | "6 2 0 1 0\n", 500 | "7 2 1 0 1\n", 501 | "8 2 0 1 0\n", 502 | "9 3 1 0 1\n", 503 | "10 3 1 0 1\n", 504 | "11 3 1 0 1" 505 | ] 506 | }, 507 | "execution_count": 9, 508 | "metadata": {}, 509 | "output_type": "execute_result" 510 | } 511 | ], 512 | "source": [ 513 | "x=pd.concat([x,result],axis=1)\n", 514 | "x.head(15)" 515 | ] 516 | }, 517 | { 518 | "cell_type": "code", 519 | "execution_count": null, 520 | "id": "0de58cc4", 521 | "metadata": { 522 | "id": "0de58cc4" 523 | }, 524 | "outputs": [], 525 | "source": [ 526 | "x=df.drop(\"Result\",axis=1)\n" 527 | ] 528 | }, 529 | { 530 | "cell_type": "code", 531 | "execution_count": null, 532 | "id": "0aff5e01", 533 | "metadata": { 534 | "id": "0aff5e01" 535 | }, 536 | "outputs": [], 537 | "source": [ 538 | "from sklearn.model_selection import train_test_split\n" 539 | ] 540 | }, 541 | { 542 | "cell_type": "code", 543 | "execution_count": null, 544 | "id": "fcf945a2", 545 | "metadata": { 546 | "id": "fcf945a2" 547 | }, 548 | "outputs": [], 549 | "source": [ 550 | "X1 = df.drop ('Hours', axis = 1)\n", 551 | "y = df ['Hours']\n", 552 | "X1_train, X1_test, y_train, y_test = train_test_split (X1, y, test_size = 2, random_state = 5)\n" 553 | ] 554 | }, 555 | { 556 | "cell_type": "code", 557 | "execution_count": null, 558 | "id": "f3974c3e", 559 | "metadata": { 560 | "id": "f3974c3e" 561 | }, 562 | "outputs": [], 563 | "source": [ 564 | "from sklearn.linear_model import LogisticRegression" 565 | ] 566 | }, 567 | { 568 | "cell_type": "code", 569 | "execution_count": null, 570 | "id": "50dba9ef", 571 | "metadata": { 572 | "id": "50dba9ef", 573 | "outputId": "5ba1fecb-3da1-4696-b720-917dfd6759dd" 574 | }, 575 | "outputs": [ 576 | { 577 | "data": { 578 | "text/plain": [ 579 | "LogisticRegression()" 580 | ] 581 | }, 582 | "execution_count": 18, 583 | "metadata": {}, 584 | "output_type": "execute_result" 585 | } 586 | ], 587 | "source": [ 588 | "model = LogisticRegression()\n", 589 | "model.fit(X1_train, y_train)" 590 | ] 591 | }, 592 | { 593 | "cell_type": "code", 594 | "execution_count": null, 595 | "id": "c3ae326c", 596 | "metadata": { 597 | "id": "c3ae326c", 598 | "outputId": "e0ee0837-f832-4dd3-d143-87ce9d5b0700" 599 | }, 600 | "outputs": [ 601 | { 602 | "data": { 603 | "text/plain": [ 604 | "array([3, 3], dtype=int64)" 605 | ] 606 | }, 607 | "execution_count": 19, 608 | "metadata": {}, 609 | "output_type": "execute_result" 610 | } 611 | ], 612 | "source": [ 613 | "predic=model.predict(X1_test)\n", 614 | "predic" 615 | ] 616 | }, 617 | { 618 | "cell_type": "code", 619 | "execution_count": null, 620 | "id": "7d46e6e8", 621 | "metadata": { 622 | "id": "7d46e6e8", 623 | "outputId": "dcdffb9d-b64a-4033-f485-deaf2693ffa1" 624 | }, 625 | "outputs": [ 626 | { 627 | "name": "stdout", 628 | "output_type": "stream", 629 | "text": [ 630 | "[[0 2]\n", 631 | " [0 0]]\n" 632 | ] 633 | } 634 | ], 635 | "source": [ 636 | "from sklearn.metrics import confusion_matrix, accuracy_score\n", 637 | "cm=confusion_matrix(y_test,predic)\n", 638 | "print (cm)" 639 | ] 640 | }, 641 | { 642 | "cell_type": "code", 643 | "execution_count": null, 644 | "id": "c56fa5c4", 645 | "metadata": { 646 | "id": "c56fa5c4", 647 | "outputId": "5550214a-52e8-4021-a16e-93b15cf2d9ee" 648 | }, 649 | "outputs": [ 650 | { 651 | "name": "stdout", 652 | "output_type": "stream", 653 | "text": [ 654 | "0.0\n" 655 | ] 656 | } 657 | ], 658 | "source": [ 659 | "acc=accuracy_score(y_test,predic)\n", 660 | "print(acc)" 661 | ] 662 | }, 663 | { 664 | "cell_type": "code", 665 | "execution_count": null, 666 | "id": "00203d18", 667 | "metadata": { 668 | "id": "00203d18", 669 | "outputId": "169ca0ee-41a6-4381-de30-4468cc0b1244" 670 | }, 671 | "outputs": [ 672 | { 673 | "name": "stderr", 674 | "output_type": "stream", 675 | "text": [ 676 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", 677 | " _warn_prf(average, modifier, msg_start, len(result))\n", 678 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n", 679 | " _warn_prf(average, modifier, msg_start, len(result))\n", 680 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", 681 | " _warn_prf(average, modifier, msg_start, len(result))\n", 682 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n", 683 | " _warn_prf(average, modifier, msg_start, len(result))\n", 684 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n", 685 | " _warn_prf(average, modifier, msg_start, len(result))\n", 686 | "C:\\Users\\Lenovo\\anaconda3\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n", 687 | " _warn_prf(average, modifier, msg_start, len(result))\n" 688 | ] 689 | }, 690 | { 691 | "data": { 692 | "text/plain": [ 693 | "' precision recall f1-score support\\n\\n 2 0.00 0.00 0.00 2.0\\n 3 0.00 0.00 0.00 0.0\\n\\n accuracy 0.00 2.0\\n macro avg 0.00 0.00 0.00 2.0\\nweighted avg 0.00 0.00 0.00 2.0\\n'" 694 | ] 695 | }, 696 | "execution_count": 22, 697 | "metadata": {}, 698 | "output_type": "execute_result" 699 | } 700 | ], 701 | "source": [ 702 | "from sklearn.metrics import classification_report\n", 703 | "classification_report(y_test,predic)" 704 | ] 705 | } 706 | ], 707 | "metadata": { 708 | "kernelspec": { 709 | "display_name": "Python 3 (ipykernel)", 710 | "language": "python", 711 | "name": "python3" 712 | }, 713 | "language_info": { 714 | "codemirror_mode": { 715 | "name": "ipython", 716 | "version": 3 717 | }, 718 | "file_extension": ".py", 719 | "mimetype": "text/x-python", 720 | "name": "python", 721 | "nbconvert_exporter": "python", 722 | "pygments_lexer": "ipython3", 723 | "version": "3.9.12" 724 | }, 725 | "colab": { 726 | "provenance": [], 727 | "include_colab_link": true 728 | } 729 | }, 730 | "nbformat": 4, 731 | "nbformat_minor": 5 732 | } --------------------------------------------------------------------------------