├── .github
└── CODEOWNERS
├── star.jpeg
├── resources
├── Architectures.png
└── Summary_of_on-device_LLMs_evolution.jpeg
├── LICENSE
└── README.md
/.github/CODEOWNERS:
--------------------------------------------------------------------------------
1 | @zhiyuan8 @alexchen4ai
2 |
--------------------------------------------------------------------------------
/star.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NexaAI/Awesome-LLMs-on-device/HEAD/star.jpeg
--------------------------------------------------------------------------------
/resources/Architectures.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NexaAI/Awesome-LLMs-on-device/HEAD/resources/Architectures.png
--------------------------------------------------------------------------------
/resources/Summary_of_on-device_LLMs_evolution.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NexaAI/Awesome-LLMs-on-device/HEAD/resources/Summary_of_on-device_LLMs_evolution.jpeg
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2024 Jiajun Xu
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 🚀 Awesome LLMs on Device: A Must-Read Comprehensive Hub by Nexa AI
2 |
3 |
4 |
5 | [](https://discord.gg/thRu2HaK4D)
6 |
7 | [On-device Model Hub](https://model-hub.nexa4ai.com/) / [Nexa SDK Documentation](https://docs.nexaai.com/)
8 |
9 | [release-url]: https://github.com/NexaAI/nexa-sdk/releases
10 | [Windows-image]: https://img.shields.io/badge/windows-0078D4?logo=windows
11 | [MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
12 | [Linux-image]: https://img.shields.io/badge/-Linux-333?logo=ubuntu
13 |
14 |
15 |
16 |
17 |
18 |
19 |

20 |
Summary of On-device LLMs’ Evolution
21 |
22 |
23 |
24 |
25 | ## 🌟 About This Hub
26 | Welcome to the ultimate hub for on-device Large Language Models (LLMs)! This repository is your go-to resource for all things related to LLMs designed for on-device deployment. Whether you're a seasoned researcher, an innovative developer, or an enthusiastic learner, this comprehensive collection of cutting-edge knowledge is your gateway to understanding, leveraging, and contributing to the exciting world of on-device LLMs.
27 |
28 | ## 🚀 Why This Hub is a Must-Read
29 | - 📊 Comprehensive overview of on-device LLM evolution with easy-to-understand visualizations
30 | - 🧠 In-depth analysis of groundbreaking architectures and optimization techniques
31 | - 📱 Curated list of state-of-the-art models and frameworks ready for on-device deployment
32 | - 💡 Practical examples and case studies to inspire your next project
33 | - 🔄 Regular updates to keep you at the forefront of rapid advancements in the field
34 | - 🤝 Active community of researchers and practitioners sharing insights and experiences
35 |
36 |
37 |
38 | # 📚 What's Inside Our Hub
39 | - [Awesome LLMs on Device: A Comprehensive Survey](#-awesome-llms-on-device-a-must-read-comprehensive-hub)
40 | - [Contents](-whats-inside-our-hub)
41 | - [Foundations and Preliminaries](#foundations-and-preliminaries)
42 | - [Evolution of On-Device LLMs](#evolution-of-on-device-llms)
43 | - [LLM Architecture Foundations](#llm-architecture-foundations)
44 | - [On-Device LLMs Training](#on-device-llms-training)
45 | - [Limitations of Cloud-Based LLM Inference and Advantages of On-Device Inference](#limitations-of-cloud-based-llm-inference-and-advantages-of-on-device-inference)
46 | - [The Performance Indicator of On-Device LLMs](#the-performance-indicator-of-on-device-llms)
47 | - [Efficient Architectures for On-Device LLMs](#efficient-architectures-for-on-device-llms)
48 | - [Model Compression and Parameter Sharing](#model-compression-and-parameter-sharing)
49 | - [Collaborative and Hierarchical Model Approaches](#collaborative-and-hierarchical-model-approaches)
50 | - [Memory and Computational Efficiency](#memory-and-computational-efficiency)
51 | - [Mixture-of-Experts (MoE) Architectures](#mixture-of-experts-moe-architectures)
52 | - [Hybrid Architectures](#hybrid-architectures)
53 | - [General Efficiency and Performance Improvements](#general-efficiency-and-performance-improvements)
54 | - [Model Compression and Optimization Techniques for On-Device LLMs](#model-compression-and-optimization-techniques-for-on-device-llms)
55 | - [Quantization](#quantization)
56 | - [Pruning](#pruning)
57 | - [Knowledge Distillation](#knowledge-distillation)
58 | - [Low-Rank Factorization](#low-rank-factorization)
59 | - [Hardware Acceleration and Deployment Strategies](#hardware-acceleration-and-deployment-strategies)
60 | - [Popular On-Device LLMs Framework](#popular-on-device-llms-framework)
61 | - [Hardware Acceleration](#hardware-acceleration)
62 | - [Applications](#applications)
63 | - [Tutorials and Learning Resources](#tutorials-and-learning-resources)
64 | - [Citation](#-cite-our-work)
65 |
66 | ## Foundations and Preliminaries
67 |
68 | ### Evolution of On-Device LLMs
69 |
70 | - Tinyllama: An open-source small language model
arXiv 2024 [[Paper]](https://arxiv.org/abs/2401.02385) [[Github]](https://github.com/jzhang38/TinyLlama)
71 | - MobileVLM V2: Faster and Stronger Baseline for Vision Language Model
arXiv 2024 [[Paper]](https://arxiv.org/abs/2402.03766) [[Github]](https://github.com/Meituan-AutoML/MobileVLM)
72 | - MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases
arXiv 2024 [[Paper]](https://arxiv.org/abs/2406.10290)
73 | - Octopus series papers
arXiv 2024 [[Octopus]](https://arxiv.org/abs/2404.01549) [[Octopus v2]](https://arxiv.org/abs/2404.01744) [[Octopus v3]](https://arxiv.org/abs/2404.11459) [[Octopus v4]](https://arxiv.org/abs/2404.19296) [[Github]](https://github.com/NexaAI)
74 | - The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
arXiv 2024 [[Paper]](https://arxiv.org/abs/2402.17764)
75 | - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
arXiv 2023 [[Paper]](https://arxiv.org/abs/2306.00978) [[Github]](https://github.com/mit-han-lab/llm-awq)
76 | - Small Language Models: Survey, Measurements, and Insights
arXiv 2024 [[Paper]](https://arxiv.org/pdf/2409.15790)
77 |
78 |
79 | ### LLM Architecture Foundations
80 |
81 | - The case for 4-bit precision: k-bit inference scaling laws
ICML 2023 [[Paper]](https://arxiv.org/abs/2212.09720)
82 | - Challenges and applications of large language models
arXiv 2023 [[Paper]](https://arxiv.org/abs/2307.10169)
83 | - MiniLLM: Knowledge distillation of large language models
ICLR 2023 [[Paper]](https://arxiv.org/abs/2306.08543) [[github]](https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs)
84 | - Gptq: Accurate post-training quantization for generative pre-trained transformers
ICLR 2023 [[Paper]](https://arxiv.org/abs/2210.17323) [[Github]](https://github.com/IST-DASLab/gptq)
85 | - Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale
NeurIPS 2022 [[Paper]](https://arxiv.org/abs/2208.07339)
86 |
87 | ### On-Device LLMs Training
88 |
89 | - OpenELM: An Efficient Language Model Family with Open Training and Inference Framework
ICML 2024 [[Paper]](https://arxiv.org/abs/2404.14619) [[Github]](https://github.com/apple/corenet)
90 |
91 | ### Limitations of Cloud-Based LLM Inference and Advantages of On-Device Inference
92 |
93 | - Ferret-v2: An Improved Baseline for Referring and Grounding with Large Language Models
arXiv 2024 [[Paper]](https://arxiv.org/abs/2404.07973)
94 | - Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone
arXiv 2024 [[Paper]](https://arxiv.org/abs/2404.14219)
95 | - Exploring post-training quantization in llms from comprehensive study to low rank compensation
AAAI 2024 [[Paper]](https://arxiv.org/abs/2303.08302)
96 | - Matrix compression via randomized low rank and low precision factorization
NeurIPS 2023 [[Paper]](https://arxiv.org/abs/2310.11028) [[Github]](https://github.com/pilancilab/matrix-compressor)
97 |
98 | ### The Performance Indicator of On-Device LLMs
99 |
100 | - MNN: A lightweight deep neural network inference engine
2024 [[Github]](https://github.com/alibaba/MNN)
101 | - PowerInfer-2: Fast Large Language Model Inference on a Smartphone
arXiv 2024 [[Paper]](https://arxiv.org/abs/2406.06282) [[Github]](https://github.com/SJTU-IPADS/PowerInfer)
102 | - llama.cpp: Lightweight library for Approximate Nearest Neighbors and Maximum Inner Product Search
2023 [[Github]](https://github.com/ggerganov/llama.cpp)
103 | - Powerinfer: Fast large language model serving with a consumer-grade gpu
arXiv 2023 [[Paper]](https://arxiv.org/abs/2312.12456) [[Github]](https://github.com/SJTU-IPADS/PowerInfer)
104 |
105 | ## Efficient Architectures for On-Device LLMs
106 |
107 | | Model | Performance | Computational Efficiency | Memory Requirements |
108 | |---------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|
109 | | **[MobileLLM](https://arxiv.org/abs/2402.14905)** | High accuracy, optimized for sub-billion parameter models | Embedding sharing, grouped-query attention | Reduced model size due to deep and thin structures |
110 | | **[EdgeShard](https://arxiv.org/abs/2405.14371)** | Up to 50% latency reduction, 2× throughput improvement | Collaborative edge-cloud computing, optimal shard placement | Distributed model components reduce individual device load |
111 | | **[LLMCad](https://arxiv.org/abs/2309.04255)** | Up to 9.3× speedup in token generation | Generate-then-verify, token tree generation | Smaller LLM for token generation, larger LLM for verification |
112 | | **[Any-Precision LLM](https://arxiv.org/abs/2402.10517)** | Supports multiple precisions efficiently | Post-training quantization, memory-efficient design | Substantial memory savings with versatile model precisions |
113 | | **[Breakthrough Memory](https://ieeexplore.ieee.org/abstract/document/10477465)** | Up to 4.5× performance improvement | PIM and PNM technologies enhance memory processing | Enhanced memory bandwidth and capacity |
114 | | **[MELTing Point](https://arxiv.org/abs/2403.12844)** | Provides systematic performance evaluation | Analyzes impacts of quantization, efficient model evaluation | Evaluates memory and computational efficiency trade-offs |
115 | | **[LLMaaS on device](https://arxiv.org/abs/2403.11805)** | Reduces context switching latency significantly | Stateful execution, fine-grained KV cache compression | Efficient memory management with tolerance-aware compression and swapping |
116 | | **[LocMoE](https://arxiv.org/abs/2401.13920)** | Reduces training time per epoch by up to 22.24% | Orthogonal gating weights, locality-based expert regularization | Minimizes communication overhead with group-wise All-to-All and recompute pipeline |
117 | | **[EdgeMoE](https://arxiv.org/abs/2308.14352)** | Significant performance improvements on edge devices | Expert-wise bitwidth adaptation, preloading experts | Efficient memory management through expert-by-expert computation reordering |
118 | |**[JetMoE](https://arxiv.org/abs/2404.07413)**| Outperforms Llama27B and 13B-Chat with fewer parameters | Reduces inference computation by 70% using sparse activation | 8B total parameters, only 2B activated per input token |
119 | |**[Pangu-$`\pi`$ Pro](https://arxiv.org/abs/2402.02791)**| Neural architecture, parameter initialization, and optimization strategy for billion-level parameter models | Embedding sharing, tokenizer compression | Reduced model size via architecture tweaking |
120 | |**[Zamba2](https://www.zyphra.com/post/zamba2-small)**| 2x faster time-to-first-token, a 27% reduction in memory overhead, and a 1.29x lower generation latency compared to Phi3-3.8B. | Hybrid Mamba2/Attention architecture and shared transformer block | 2.7B parameters, fewer KV-states due to reduced attention |
121 |
122 |
123 | ### Model Compression and Parameter Sharing
124 |
125 | - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
arXiv 2024 [[Paper]](https://arxiv.org/abs/2306.00978) [[Github]](https://github.com/mit-han-lab/llm-awq)
126 | - MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases
arXiv 2024 [[Paper]](https://arxiv.org/abs/2402.14905) [[Github]](https://github.com/facebookresearch/MobileLLM)
127 |
128 | ### Collaborative and Hierarchical Model Approaches
129 |
130 | - EdgeShard: Efficient LLM Inference via Collaborative Edge Computing
arXiv 2024 [[Paper]](https://arxiv.org/abs/2405.14371)
131 | - Llmcad: Fast and scalable on-device large language model inference
arXiv 2023 [[Paper]](https://arxiv.org/abs/2309.04255)
132 |
133 | ### Memory and Computational Efficiency
134 |
135 | - The Breakthrough Memory Solutions for Improved Performance on LLM Inference
IEEE Micro 2024 [[Paper]](https://ieeexplore.ieee.org/document/10477465)
136 | - MELTing point: Mobile Evaluation of Language Transformers
arXiv 2024 [[Paper]](https://arxiv.org/abs/2403.12844) [[Github]](https://github.com/brave-experiments/MELT-public)
137 |
138 | ### Mixture-of-Experts (MoE) Architectures
139 |
140 | - LLM as a system service on mobile devices
arXiv 2024 [[Paper]](https://arxiv.org/abs/2403.11805)
141 | - Locmoe: A low-overhead moe for large language model training
arXiv 2024 [[Paper]](https://arxiv.org/abs/2401.13920)
142 | - Edgemoe: Fast on-device inference of moe-based large language models
arXiv 2023 [[Paper]](https://arxiv.org/abs/2308.14352)
143 |
144 | ### Hybrid Architectures
145 |
146 | - Zamba2: Hybrid Mamba2 and attention models for on-device
2024 [[Zamba2-2.7B]](https://www.zyphra.com/post/zamba2-small) [[Zamba2-1.2B]](https://www.zyphra.com/post/zamba2-mini)
147 |
148 | ### General Efficiency and Performance Improvements
149 |
150 | - Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
arXiv 2024 [[Paper]](https://www.arxiv.org/pdf/2402.10517) [[Github]](https://github.com/SNU-ARC/any-precision-llm)
151 | - On the viability of using llms for sw/hw co-design: An example in designing cim dnn accelerators
IEEE SOCC 2023 [[Paper]](https://arxiv.org/abs/2306.06923)
152 |
153 | ## Model Compression and Optimization Techniques for On-Device LLMs
154 |
155 | ### Quantization
156 |
157 | - The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
arXiv 2024 [[Paper]](https://arxiv.org/abs/2402.17764)
158 | - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
arXiv 2024 [[Paper]](https://arxiv.org/abs/2306.00978) [[Github]](https://github.com/mit-han-lab/llm-awq)
159 | - Gptq: Accurate post-training quantization for generative pre-trained transformers
ICLR 2023 [[Paper]](https://arxiv.org/abs/2210.17323) [[Github]](https://github.com/IST-DASLab/gptq)
160 | - Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale
NeurIPS 2022 [[Paper]](https://arxiv.org/abs/2208.07339)
161 |
162 | ### Pruning
163 |
164 | - Challenges and applications of large language models
arXiv 2023 [[Paper]](https://arxiv.org/abs/2307.10169)
165 |
166 | ### Knowledge Distillation
167 |
168 | - MiniLLM: Knowledge distillation of large language models
ICLR 2024 [[Paper]](https://arxiv.org/abs/2306.08543)
169 |
170 | ### Low-Rank Factorization
171 |
172 | - Exploring post-training quantization in llms from comprehensive study to low rank compensation
AAAI 2024 [[Paper]](https://arxiv.org/abs/2303.08302)
173 | - Matrix compression via randomized low rank and low precision factorization
NeurIPS 2023 [[Paper]](https://arxiv.org/abs/2310.11028) [[Github]](https://github.com/pilancilab/matrix-compressor)
174 |
175 | ## Hardware Acceleration and Deployment Strategies
176 |
177 | ### Popular On-Device LLMs Framework
178 |
179 | - llama.cpp: A lightweight library for efficient LLM inference on various hardware with minimal setup. [[Github]](https://github.com/ggerganov/llama.cpp)
180 | - MNN: A blazing fast, lightweight deep learning framework. [[Github]](https://github.com/alibaba/MNN)
181 | - PowerInfer: A CPU/GPU LLM inference engine leveraging activation locality for device. [[Github]](https://github.com/SJTU-IPADS/PowerInfer)
182 | - ExecuTorch: A platform for On-device AI across mobile, embedded and edge for PyTorch. [[Github]](https://github.com/pytorch/executorch)
183 | - MediaPipe: A suite of tools and libraries, enables quick application of AI and ML techniques. [[Github]](https://github.com/google-ai-edge/mediapipe)
184 | - MLC-LLM: A machine learning compiler and high-performance deployment engine for large language models. [[Github]](https://github.com/mlc-ai/mlc-llm)
185 | - VLLM: A fast and easy-to-use library for LLM inference and serving. [[Github]](https://github.com/vllm-project/vllm)
186 | - OpenLLM: An open platform for operating large language models (LLMs) in production. [[Github]](https://python.langchain.com/v0.2/docs/integrations/llms/openllm/)
187 | - mllm: Fast and lightweight multimodal LLM inference engine for mobile and edge devices. [[Github]](https://github.com/UbiquitousLearning/mllm)
188 |
189 |
190 | ### Hardware Acceleration
191 |
192 | - The Breakthrough Memory Solutions for Improved Performance on LLM Inference
IEEE Micro 2024 [[Paper]](https://ieeexplore.ieee.org/document/10477465)
193 | - Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML accelerators and beyond
IEEE Hot Chips 2021 [[Paper]](https://ieeexplore.ieee.org/abstract/document/9567191)
194 |
195 | ## Applications
196 | - Text Generating For Messaging: [Gboard smart reply](https://developer.android.com/ai/aicore#gboard-smart)
197 | - Translation: [LLMCad](https://arxiv.org/abs/2309.04255)
198 | - Meeting Summarizing
199 | - Healthcare application: [BioMistral-7B](https://arxiv.org/abs/2402.10373), [HuatuoGPT](https://arxiv.org/abs/2311.09774)
200 | - Research Support
201 | - Companion Robot
202 | - Disability Support: [Octopus v3](https://arxiv.org/abs/2404.11459), [Talkback with Gemini Nano](https://store.google.com/intl/en/ideas/articles/gemini-nano-google-pixel/)
203 | - Autonomous Vehicles: [DriveVLM](https://arxiv.org/abs/2402.12289)
204 |
205 | ## Model Reference
206 |
207 | | Model | Institute | Paper |
208 | | :-------------------: | :-----------------: | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
209 | | Gemini Nano | Google | [Gemini: A Family of Highly Capable Multimodal Models](https://arxiv.org/pdf/2312.11805.pdf) |
210 | | Octopus series model | Nexa AI | [Octopus v2: On-device language model for super agent](https://arxiv.org/pdf/2404.01744.pdf)
[Octopus v3: Technical Report for On-device Sub-billion Multimodal AI Agent](https://arxiv.org/pdf/2404.11459.pdf)
[Octopus v4: Graph of language models](https://arxiv.org/pdf/2404.19296.pdf)
[Octopus: On-device language model for function calling of software APIs](https://arxiv.org/pdf/2404.01549.pdf) |
211 | | OpenELM and Ferret-v2 | Apple | [OpenELM is a significant large language model integrated within iOS to enhance application functionalities.](https://arxiv.org/abs/2404.14619)
[Ferret-v2 significantly improves upon its predecessor, introducing enhanced visual processing capabilities and an advanced training regimen.](https://arxiv.org/abs/2404.07973) |
212 | | Phi series | Microsoft | [Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone](https://arxiv.org/pdf/2404.14219.pdf) |
213 | | MiniCPM | Tsinghua University | [A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone](https://huggingface.co/openbmb/MiniCPM-V-2_6) |
214 | | Gemma2-9B | Google | [Gemma 2: Improving Open Language Models at a Practical Size](https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf) |
215 | | Qwen2-0.5B | Alibaba Group | [Qwen Technical Report](https://arxiv.org/pdf/2309.16609.pdf) |
216 | | GLM-Edge | THUDM | [GLM-Edge Github Page](https://github.com/THUDM/GLM-Edge) |
217 |
218 | ## Tutorials and Learning Resources
219 |
220 | - MIT: [TinyML and Efficient Deep Learning Computing](https://efficientml.ai)
221 | - Harvard: [Machine Learning Systems](https://mlsysbook.ai/)
222 | - Deep Learning AI : [Introduction to on-device AI](https://www.deeplearning.ai/short-courses/introduction-to-on-device-ai/)
223 |
224 | # 🤝 Join the On-Device LLM Revolution
225 |
226 | We believe in the power of community! If you're passionate about on-device AI and want to contribute to this ever-growing knowledge hub, here's how you can get involved:
227 | 1. Fork the repository
228 | 2. Create a new branch for your brilliant additions
229 | 3. Make your updates and push your changes
230 | 4. Submit a pull request and become part of the on-device LLM movement
231 |
232 | # ⭐ Star History ⭐
233 |
234 | [](https://star-history.com/#NexaAI/Awesome-LLMs-on-device&Timeline)
235 |
236 | # 📖 Cite Our Work
237 | If our hub fuels your research or powers your projects, we'd be thrilled if you could cite our paper [here](https://arxiv.org/abs/2409.00088):
238 |
239 | ```bibtex
240 | @article{xu2024device,
241 | title={On-Device Language Models: A Comprehensive Review},
242 | author={Xu, Jiajun and Li, Zhiyuan and Chen, Wei and Wang, Qun and Gao, Xin and Cai, Qi and Ling, Ziyuan},
243 | journal={arXiv preprint arXiv:2409.00088},
244 | year={2024}
245 | }
246 | ```
247 |
248 | # 📄 License
249 |
250 | This project is open-source and available under the MIT License. See the [LICENSE](LICENSE) file for more details.
251 |
252 | Don't just read about the future of AI – be part of it. Star this repo, spread the word, and let's push the boundaries of on-device LLMs together! 🚀🌟
253 |
--------------------------------------------------------------------------------