├── .DS_Store
├── Rplot.pdf
├── .gitignore
├── img
├── 2022-08-16 17_02_41_NL.pdf
├── 2022-08-17 12_14_54_NL.pdf
├── 2022-08-18 18_49_44_NL.pdf
├── 2022-08-19 15_20_48_NL.pdf
├── 2022-08-19 15_21_52_NL.pdf
├── 2022-08-22 17_33_23_NL.pdf
├── 2022-08-22 17_45_29_NL.pdf
├── 2022-08-24 09_57_09_NL.pdf
├── 2022-08-25 14_23_30_NL.pdf
├── 2022-08-29 09_54_44_NL.pdf
├── 2022-08-29 16_28_17_NL.pdf
├── 2022-08-29 16_28_50_NL.pdf
├── 2022-08-29 16_29_04_NL.pdf
├── 2022-08-29 20_38_33_NL.pdf
├── 2022-08-29 21_58_01_NL.pdf
├── 2022-08-29 21_58_18_NL.pdf
├── 2022-08-29 21_59_15_NL.pdf
├── 2022-08-30 15_20_30_NL.pdf
├── 2022-08-31 12_41_39_NL.pdf
├── 2022-08-31 12_44_08_NL.pdf
├── 2022-10-10 18_33_39_NL.svg
├── 2022-10-14 18_13_38_NL.svg
├── 2022-10-10 18_28_58_NL.svg
└── 2022-10-21 14_16_13_NL.svg
├── pesquisas-presidenciais-2022.Rproj
├── download.R
├── CODE_2T.R
├── CODE_NL.R
├── README.md
├── CODE_NL_com_Tebet.R
├── pesquisas_2t.csv
└── pesquisas_1t.csv
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/.DS_Store
--------------------------------------------------------------------------------
/Rplot.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/Rplot.pdf
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | .Rproj.user
2 | .Rhistory
3 | .RData
4 | .Ruserdata
5 | CODE_DOWN.R
6 | CODE_ANTIGAS.R
7 | CODE_METODO.R
8 | bolsonaro.R
--------------------------------------------------------------------------------
/img/2022-08-16 17_02_41_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-16 17_02_41_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-17 12_14_54_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-17 12_14_54_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-18 18_49_44_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-18 18_49_44_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-19 15_20_48_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-19 15_20_48_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-19 15_21_52_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-19 15_21_52_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-22 17_33_23_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-22 17_33_23_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-22 17_45_29_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-22 17_45_29_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-24 09_57_09_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-24 09_57_09_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-25 14_23_30_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-25 14_23_30_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 09_54_44_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 09_54_44_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 16_28_17_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 16_28_17_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 16_28_50_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 16_28_50_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 16_29_04_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 16_29_04_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 20_38_33_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 20_38_33_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 21_58_01_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 21_58_01_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 21_58_18_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 21_58_18_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-29 21_59_15_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-29 21_59_15_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-30 15_20_30_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-30 15_20_30_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-31 12_41_39_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-31 12_41_39_NL.pdf
--------------------------------------------------------------------------------
/img/2022-08-31 12_44_08_NL.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/Nexo-Dados/pesquisas-presidenciais-2022/HEAD/img/2022-08-31 12_44_08_NL.pdf
--------------------------------------------------------------------------------
/pesquisas-presidenciais-2022.Rproj:
--------------------------------------------------------------------------------
1 | Version: 1.0
2 |
3 | RestoreWorkspace: Default
4 | SaveWorkspace: Default
5 | AlwaysSaveHistory: Default
6 |
7 | EnableCodeIndexing: Yes
8 | UseSpacesForTab: Yes
9 | NumSpacesForTab: 2
10 | Encoding: UTF-8
11 |
12 | RnwWeave: Sweave
13 | LaTeX: pdfLaTeX
14 |
--------------------------------------------------------------------------------
/download.R:
--------------------------------------------------------------------------------
1 | # download
2 | library(googlesheets4)
3 | library(tidyverse)
4 |
5 | # url (LINK NAO É PUBLICO)
6 | url = "https://docs.google.com/spreadsheets/d/1VBOhutLq4geLNQ7UzK5wUfx2TKaFVstsvr0rJEuGtik/edit#gid=0"
7 |
8 | # download
9 | pesq <- read_sheet(url, sheet="2-turno") %>%
10 | mutate(Data = as.Date(Data))
11 |
12 | write_csv(pesq, file="pesquisas_2t.csv")
--------------------------------------------------------------------------------
/CODE_2T.R:
--------------------------------------------------------------------------------
1 |
2 | # Configurar --------------------------------------------------------------
3 |
4 | #-- bibliotecas
5 | library(readxl)
6 | library(tidyverse)
7 | library(lubridate)
8 |
9 | #-- lista de pesquisas
10 | pesq <- read_csv("pesquisas_2t.csv") %>%
11 | select(-`Data Divulgação`, -VV13, -VV22) %>%
12 | filter(Data>=dmy("01-09-2022"))
13 |
14 | exp = T
15 |
16 | # Grafico -----------------------------------------------------------------
17 |
18 | #-- argumento que controla o quão suave é a linah
19 | span=.50
20 |
21 | #-- gerar estimativas
22 | results <- pesq %>%
23 | drop_na() %>%
24 | mutate(Data = as.Date(Data)) %>%
25 | pivot_longer(cols=c(Lula:BNI)) %>%
26 | mutate(value = value/100) %>%
27 | # retirar institutos de pesquisa
28 | filter(!(Instituto%in%c("Sigma", "Brasmarket",
29 | "Verita", "IFP"))) %>%
30 | mutate(Data=as.numeric(Data)) %>%
31 | nest(-name) %>%
32 | mutate(
33 | # loess calculation
34 | m = purrr::map(data, loess,
35 | formula = value ~ Data, span = span),
36 | # valores previstos
37 | fitted = purrr::map(m, `[[`, "fitted")) %>%
38 | select(-m) %>%
39 | unnest()
40 |
41 |
42 |
43 | # Cores dos candidatos
44 | col=c( "#fd6166", "#6973ad",
45 | "#8E8E8E","#000000","#FECE43", "#c05b5e")
46 |
47 | results %>%
48 | mutate(Data = as.Date(Data, origin="1970/1/1"),
49 | name = fct_relevel(name, "Lula", "Bolsonaro",
50 | "Outros", "BNI", "Tebet", "Ciro")) %>%
51 | ggplot(aes(x = Data, y = value, group = name, color = name)) +
52 | geom_point(alpha=.66, size=.85) +
53 | #-- line e smooth geram a mesma linha aqui
54 | #-- smooth até gerar o s.e. automaticamente
55 | #geom_line(aes(y = fitted), size=1) +
56 | geom_smooth(se=T, alpha=.33, span=span, aes(fill=name)) +
57 | scale_fill_manual(
58 | values=col) +
59 | scale_color_manual(values=col) +
60 | geom_vline(xintercept = dmy("02/10/2022"), linetype="dashed") +
61 | scale_y_continuous(limits=c(0,.60), labels=scales::percent) +
62 | scale_x_date(date_breaks = "1 month", date_labels = "%m/%y") +
63 | theme_minimal()
64 |
65 | if(exp) {
66 | ggsave(paste0("./img/",
67 | str_replace_all(Sys.time(), ":", "_"), "_NL.svg"),
68 | width=400*10, height=167*10, unit="px")
69 | }
70 |
71 | #-- validos
72 | results %>%
73 | filter(Data==max(Data)) %>%
74 | mutate(Data = as.Date(Data, origin="1970/1/1")) %>%
75 | mutate(name = fct_relevel(name, "Lula", "Bolsonaro", "BNI")) %>%
76 | group_by(name) %>%
77 | summarise(mean=mean(fitted)) %>%
78 | filter(name!="BNI") %>%
79 | mutate(mean = mean/sum(mean)) %>%
80 | mutate(mean=paste0(round(mean*100,1), "%"))
81 |
82 | #-- totais
83 | results %>%
84 | filter(Data==max(Data)) %>%
85 | mutate(Data = as.Date(Data, origin="1970/1/1")) %>%
86 | mutate(name = fct_relevel(name, "Lula", "Bolsonaro",
87 | "BNI")) %>%
88 | group_by(name) %>%
89 | summarise(mean=mean(fitted)) %>%
90 | mutate(mean = mean/sum(mean)) %>%
91 | mutate(mean=paste0(round(mean*100,1), "%"))
92 |
93 |
94 |
95 |
--------------------------------------------------------------------------------
/CODE_NL.R:
--------------------------------------------------------------------------------
1 |
2 | # Configurar --------------------------------------------------------------
3 |
4 | #-- bibliotecas
5 | library(readxl)
6 | library(tidyverse)
7 | library(lubridate)
8 |
9 | #-- lista de pesquisas
10 | pesq <- read_csv("pesquisas_1t.csv")
11 |
12 | exp = T
13 |
14 | # Grafico -----------------------------------------------------------------
15 |
16 | #-- argumento que controla o quão suave é a linah
17 | span=.90
18 |
19 | #-- gerar estimativas
20 | results <- pesq %>%
21 | drop_na() %>%
22 | mutate(Data = as.Date(Data),
23 | Outros = Tebet+Outros) %>%
24 | select(-Tebet) %>%
25 | pivot_longer(cols=c(Lula:Ciro, Outros:BNI)) %>%
26 | mutate(value = value/100) %>%
27 | # retirar institutos de pesquisa
28 | filter(!(Instituto%in%c("Sigma", "Brasmarket",
29 | "Futura", "Gerp"))) %>%
30 | mutate(Data=as.numeric(Data)) %>%
31 | nest(-name) %>%
32 | mutate(
33 | # loess calculation
34 | m = purrr::map(data, loess,
35 | formula = value ~ Data, span = span),
36 | # valores previstos
37 | fitted = purrr::map(m, `[[`, "fitted")) %>%
38 | select(-m) %>%
39 | unnest()
40 |
41 | # Cores dos candidatos
42 | col=c( "#fd6166", "#6973ad",
43 | "#8E8E8E","#000000","#c05b5e")
44 |
45 | results %>%
46 | mutate(Data = as.Date(Data, origin="1970/1/1"),
47 | name = fct_relevel(name, "Lula", "Bolsonaro",
48 | "Outros", "BNI", "Ciro")) %>%
49 | ggplot(aes(x = Data, y = value, group = name, color = name)) +
50 | geom_point(alpha=.66, size=.85) +
51 | # geom_point(data=pesq %>%
52 | # mutate(Data = as.Date(Data),
53 | # Outros = Tebet+Outros) %>%
54 | # select(-Tebet) %>%
55 | # pivot_longer(cols=c(Lula:Ciro, Outros:BNI)) %>%
56 | # mutate(value = value/100) %>%
57 | # mutate(name=fct_relevel(name, "Lula", "Bolsonaro",
58 | # "Outros", "BNI", "Ciro")),
59 | # aes(x=Data,y=value, group=name, color=name),
60 | # alpha=.66, size=.85) +
61 | #-- line e smooth geram a mesma linha aqui
62 |
63 |
64 | #-- smooth até gerar o s.e. automaticamente
65 | #geom_line(aes(y = fitted), size=1) +
66 | geom_smooth(se=T, alpha=.33, span=span, aes(fill=name)) +
67 | scale_fill_manual(
68 | values=col) +
69 | scale_color_manual(values=col) +
70 | scale_y_continuous(limits=c(0,.5), labels=scales::percent) +
71 | scale_x_date(date_breaks = "1 month", date_labels = "%m/%y") +
72 | theme_minimal()
73 |
74 | if(exp) {
75 | ggsave(paste0("./img/",
76 | str_replace_all(Sys.time(), ":", "_"), "_NL.svg"),
77 | width=400*10, height=167*10, unit="px")
78 | }
79 |
80 | #-- resultados gerais
81 | results %>%
82 | filter(Data==max(Data)) %>%
83 | mutate(Data = as.Date(Data, origin="1970/1/1")) %>%
84 | mutate(name = fct_relevel(name, "Lula", "Bolsonaro",
85 | "Ciro", "BNI", "Outros")) %>%
86 | group_by(name) %>%
87 | summarise(mean=mean(fitted)) %>%
88 | mutate(mean=paste0(round(mean*100,1), "%"))
89 |
90 | #-- mais recentes
91 | pesq %>%
92 | mutate(r = rank(-as.numeric(Data))) %>%
93 | filter(r <10) %>%
94 | arrange(r) %>%
95 | select(Data, Instituto, Registro, Lula:BNI) %>%
96 | mutate(text = paste(Data, Instituto, Registro, Lula, Bolsonaro, Ciro, Tebet, Outros, BNI, sep=" | ")) %>%
97 | select(text)
98 |
99 |
100 |
101 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Pesquisas para presidente - 2022
2 |
3 | Repositório para o gráfico de pesquisas eleitorais da newsletter 'Durma com essa', do Nexo Jornal.
4 |
5 | ## Dados
6 |
7 |
8 | ### Dados completos
9 |
10 | Acesse todos os registros no arquivo [pesquisas_1t.csv](https://github.com/Nexo-Dados/pesquisas-presidenciais-2022/blob/main/pesquisas_1t.csv).
11 |
12 | ## Metodologia
13 |
14 | A metodologia de coleta e agregação é detalhada aqui. Qualquer alteração no procedimento também será registrada nesta página.
15 |
16 | ### Linha de tendência
17 |
18 | A linha de tendência foi gerada a partir do método de regressão local. Como o objetivo é apresentar tendências mais gerais, o argumento span, que determina o quão suave será a curva, foi de .90 (que tende a dar bastante suavidade para a linha).
19 |
20 | O intervalo de confiança se refere ao intervalo do erro padrão em torno de linha, gerado pelo método de regressão local.
21 |
22 | ### Pesquisas consideradas
23 |
24 | Foram consideradas as pesquisas, com registro no TSE, publicadas ao longo do ano de divulgação.
25 |
26 | A princípio, todos os institutos foram considerados, independente do tamanho amostral e método de entrevista. Algumas considerações:
27 |
28 | * A pesquisa do Sigma e Brasmarket está na tabela mas não é utilizada nos gráficos. Os resultados deste instituto são completamente divergentes dos demais. Os testes realizados pelo **Nexo** de viés dos institutos justifica a exclusão dessa pesquisa.
29 |
30 | * As pesquisas dos institutos Gerp e Futura apresentam o candidato Jair Bolsonaro (PL) consistentemente mais bem posicionado nas pesquisas do que os demais institutos. No entanto, um critério objetivo para retirar essas pesquisas iria remover as pesquisas de institutos, como o Datafolha, que apontam Lula (PT) melhor do que nos demais institutos. Por ora, essas pesquisas foram todas mantidas.
31 |
32 | * Quando havia mais de um cenário pesquisado (isso ocorreu sobretudo nas pesquisas do primeiro semestre), foi considerado apenas o cenário A ou cenário 1, por ser entendido como o cenário principal.
33 |
34 | ### Padronização dos dados
35 |
36 | A maioria dos institutos disponibiliza o resultado da pesquisa sem nenhuma casa decimal. Para padronizar os valores na tabela, os dados dos que disponibilizam os percentuais com decimal foram arredondados para o número inteiro mais próximo. Quando o decimal terminava em 5, foi arrendodado para cima (ex: 1,5% ficou 2%).
37 |
38 | A data na tabela se refere ao último dia de coleta das entrevistas.
39 |
40 | ### Candidatos considerados
41 |
42 | Os quatro primeiros candidatos (Lula, Bolsonaro, Ciro e Tebet) estão inclusos no gráfico.
43 |
44 | Os dados BNI se referem à soma de brancos, nulos e indeciso. A categoria Outros se refere à soma dos candidatos que não são exibidos no gráfico (guardada a consideração acima exposta sobre o percentual de Tebet).
45 |
46 | A soma foi aferida pela subtração de todos os outros valores de 100 nas pesquisas coletadas até setembro. Exemplo:
47 |
48 | * Lula 40%
49 | * Bolsonaro 30%
50 | * Ciro 5%
51 | * Tebet 3%
52 | * BNI 15%
53 | * Outros = 100% - (40%+30%+5%+3%+15%) = 7%
54 |
55 | ### Alterações na metodologia
56 |
57 | - 31/08/2022: As pesquisas da Futura/Modalmais foram retiradas do gráfico e do resultado agregado. Isso foi feito por conta da decisão de uma decisão do TSE (PJe 0600876-28.2022.6.00.000) que põe em dúvida a metodologia do instituto. Os dados de todos os institutos, como sempre, continuam disponíveis na planilha csv dispinibilizada pelo **Nexo**.
58 |
59 | ## Uso e contato
60 |
61 | Os dados originais são dos institutos de pesquisa. A coleta deles é feita sob responsabilidade da equipe de Gráficos do **Nexo Jornal**. O uso deles é autorizado, desde que seja citado o **Nexo**.
62 |
63 | Em caso de dúvidas ou sugestões, contatar:
64 |
65 | * Equipe de Gráficos:
66 | dados@nexojornal.com.br
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
--------------------------------------------------------------------------------
/CODE_NL_com_Tebet.R:
--------------------------------------------------------------------------------
1 |
2 | # Configurar --------------------------------------------------------------
3 |
4 | #-- bibliotecas
5 | library(readxl)
6 | library(tidyverse)
7 | library(lubridate)
8 |
9 | #-- lista de pesquisas
10 | pesq <- read_csv("pesquisas_1t.csv") %>%
11 | select(-`Data divulgação`)
12 | exp = T
13 |
14 | # Grafico -----------------------------------------------------------------
15 |
16 | #-- argumento que controla o quão suave é a linah
17 | span=.50
18 |
19 | #-- gerar estimativas
20 | results <- pesq %>%
21 | drop_na() %>%
22 | mutate(Data = as.Date(Data)) %>%
23 | pivot_longer(cols=c(Lula:BNI)) %>%
24 | mutate(value = value/100) %>%
25 | # retirar institutos de pesquisa
26 | filter(!(Instituto%in%c("Sigma", "Brasmarket"))) %>%
27 | mutate(Data=as.numeric(Data)) %>%
28 | nest(-name) %>%
29 | mutate(
30 | # loess calculation
31 | m = purrr::map(data, loess,
32 | formula = value ~ Data, span = span),
33 | # valores previstos
34 | fitted = purrr::map(m, `[[`, "fitted")) %>%
35 | select(-m) %>%
36 | unnest()
37 |
38 |
39 |
40 | # Cores dos candidatos
41 | col=c( "#fd6166", "#6973ad",
42 | "#8E8E8E","#000000","#FECE43", "#c05b5e")
43 |
44 | results %>%
45 | mutate(Data = as.Date(Data, origin="1970/1/1"),
46 | name = fct_relevel(name, "Lula", "Bolsonaro",
47 | "BNI")) %>%
48 | ggplot(aes(x = Data, y = value, group = name, color = name)) +
49 | geom_point(alpha=.66, size=.85) +
50 | geom_smooth(se=T, alpha=.33, span=span, aes(fill=name)) +
51 | scale_fill_manual(
52 | values=col) +
53 | scale_color_manual(values=col) +
54 | scale_y_continuous(limits=c(0,.5), labels=scales::percent) +
55 | scale_x_date(date_breaks = "1 month", date_labels = "%m/%y") +
56 | theme_minimal()
57 |
58 | if(exp) {
59 | ggsave(paste0("./img/",
60 | str_replace_all(Sys.time(), ":", "_"), "_NL.svg"),
61 | width=400*10, height=167*10, unit="px")
62 | }
63 |
64 | #-- resultados gerais
65 | results %>%
66 | filter(Data==max(Data)) %>%
67 | mutate(Data = as.Date(Data, origin="1970/1/1")) %>%
68 | mutate(name = fct_relevel(name, "Lula", "Bolsonaro",
69 | "Ciro", "BNI", "Outros")) %>%
70 | group_by(name) %>%
71 | summarise(mean=mean(fitted)) %>%
72 | filter(name!="BNI") %>%
73 | mutate(mean = mean/sum(mean)) %>%
74 | mutate(mean=paste0(round(mean*100,1), "%"))
75 |
76 | span=.60
77 | results %>%
78 | mutate(Data = as.Date(Data, origin="1970/1/1"),
79 | name = fct_relevel(name, "Lula", "Bolsonaro",
80 | "Outros", "BNI", "Tebet", "Ciro")) %>%
81 | filter(name%in%c("Ciro", "Tebet")) %>%
82 | ggplot(aes(x = Data, y = value, group = name, color = name)) +
83 | geom_point(alpha=.66, size=.85) +
84 | geom_smooth(se=T, alpha=.33, span=span, aes(fill=name)) +
85 | scale_fill_manual(
86 | values=c("#f15a24", "#662d91")) +
87 | scale_color_manual(values=c("#f15a24", "#662d91")) +
88 | scale_y_continuous(limits=c(0,.12), labels=scales::percent) +
89 | scale_x_date(date_breaks = "1 month", date_labels = "%m/%y") +
90 | theme_minimal()
91 |
92 | pesq %>%
93 | mutate(week = week(Data)) %>%
94 | filter(Data>=dmy("15-08-2022")) %>%
95 | group_by(week, Ciro) %>%
96 | #summarise(Ciro = mean(Ciro, na.rm=T)) %>%
97 | summarise(Cirop = n()) %>%
98 | ggplot(aes(x=week, y=Ciro, fill=Cirop)) +
99 | geom_tile() +
100 | scale_fill_distiller(palette="Purples", direction=1)
101 |
102 |
103 | pesq %>%
104 | mutate(week = week(Data)) %>%
105 | filter(Data>=dmy("15-08-2022")) %>%
106 | group_by(week, Tebet) %>%
107 | #summarise(Ciro = mean(Ciro, na.rm=T)) %>%
108 | summarise(Cirop = n()) %>%
109 | ggplot(aes(x=week, y=Tebet, fill=Cirop)) +
110 | geom_tile() +
111 | scale_fill_distiller(palette="Purples", direction=1)
112 |
113 |
114 |
115 |
116 |
117 |
118 |
--------------------------------------------------------------------------------
/pesquisas_2t.csv:
--------------------------------------------------------------------------------
1 | Instituto,Data,Data Divulgação,Registro,Lula,Bolsonaro,BNI,VV13,VV22
2 | Datafolha,2022-10-27,2022-10-27T00:00:00Z,BR-04208/2022,49,44,7,0.5268817204301075,0.4731182795698925
3 | Atlas,2022-10-25,2022-10-27T00:00:00Z,BR-01560/2022,52,46,2,0.5306122448979592,0.46938775510204084
4 | Gerp,2022-10-26,2022-10-27T00:00:00Z,BR-05418/2022,43,47,10,0.4777777777777778,0.5222222222222223
5 | Quaest,2022-10-25,2022-10-26T00:00:00Z,BR-00470/2022,48,42,10,0.5333333333333333,0.4666666666666667
6 | PoderData,2022-10-25,2022-10-26T00:00:00Z,BR-01159/2022,49,44,7,0.5268817204301075,0.4731182795698925
7 | Brasmarket,2022-10-25,2022-10-26T00:00:00Z,BR-08584/2022,42,48,10,0.4666666666666667,0.5333333333333333
8 | Ipespe,2022-10-24,2022-10-25T00:00:00Z,BR-08044/2022,50,44,6,0.5319148936170213,0.46808510638297873
9 | Paraná Pesquisas,2022-10-24,2022-10-25T00:00:00Z,BR-00525/2022,46,46,8,0.5,0.5
10 | Brasmarket,2022-10-23,2022-10-24T00:00:00Z,BR-08487/2022,42,48,10,0.4666666666666667,0.5333333333333333
11 | Ipec,2022-10-24,2022-10-24T00:00:00Z,BR-06043/2022,50,43,7,0.54,0.46
12 | IFP,2022-10-21,2022-10-23T00:00:00Z,BR-01775/2022,44,47,9,0.4835164835164835,0.5164835164835165
13 | Atlas,2022-10-22,2022-10-23T00:00:00Z,BR-06415/2022,52,46,2,0.53,0.47
14 | Futura,2022-10-19,2022-10-21T00:00:00Z,BR-08523/2022,46,47,7,0.4946236559139785,0.5053763440860215
15 | Ideia,2022-10-19,2022-10-20T00:00:00Z,BR-00053/2022,50,46,4,0.5208333333333334,0.4791666666666667
16 | Brasmarket,2022-10-19,2022-10-20T00:00:00Z,BR-05389/2022,41,46,13,0.47126436781609193,0.5287356321839081
17 | Paraná Pesquisas,2022-10-19,2022-10-20T00:00:00Z,BR-02276/2022,47,45,8,0.5108695652173914,0.4891304347826087
18 | Verita,2022-10-20,2022-10-20T00:00:00Z,BR-04043/2022,47,49,4,0.4895833333333333,0.5104166666666666
19 | Datafolha,2022-10-19,2022-10-19T00:00:00Z,BR-07340/2022,49,45,5,0.52,0.48
20 | PoderData,2022-10-18,2022-10-19T00:00:00Z,BR-08917/2022,48,44,8,0.52,0.48
21 | Quaest,2022-10-18,2022-10-19T00:00:00Z,BR-04387/2022,47,42,11,0.53,0.47
22 | Ipespe,2022-10-18,2022-10-18T00:00:00Z,BR-06307/2022,49,43,8,0.53,0.47
23 | Ipec,2022-10-17,2022-10-17T00:00:00Z,BR-02707/2022,50,43,7,0.54,0.46
24 | MDA,2022-10-16,2022-10-17T00:00:00Z,BR-05514/2022,48,42,10,0.54,0.4666666666666667
25 | Verita,2022-10-15,2022-10-16T00:00:00Z,BR-04850/2022,46,49,5,0.49,0.51
26 | Datafolha,2022-10-14,2022-10-14T00:00:00Z,BR-01682/2022,49,44,7,0.5268817204301075,0.4731182795698925
27 | Ipespe,2022-10-12,2022-10-14T00:00:00Z,BR-07942/2022,49,43,8,0.532608695652174,0.4673913043478261
28 | Futura,2022-10-12,2022-10-13T00:00:00Z,BR-06280/2022,47,47,6,0.5,0.5
29 | Quaest,2022-10-12,2022-10-13T00:00:00Z,BR-07106/2022,49,41,10,0.5444444444444444,0.45555555555555555
30 | Atlas,2022-10-12,2022-10-13T00:00:00Z,BR-06012/2022,51,47,2,0.52,0.48
31 | Paraná Pesquisas,2022-10-12,2022-10-13T00:00:00Z,BR-08438/2022,48,44,8,0.5217391304347826,0.4782608695652174
32 | PoderData,2022-10-11,2022-10-12T00:00:00Z,BR-09241/2022,48,44,8,0.5217391304347826,0.4782608695652174
33 | Gerp,2022-10-11,2022-10-11T00:00:00Z,BR-02322/2022,48,46,6,0.5106382978723404,0.48936170212765956
34 | Ipespe,2022-10-11,2022-10-11T00:00:00Z,BR-01120/2022,50,43,7,0.5376344086021505,0.46236559139784944
35 | Ipec,2022-10-10,2022-10-10T00:00:00Z,BR-02853/2022,51,42,7,0.5483870967741935,0.45161290322580644
36 | Datafolha,2022-10-07,2022-10-07T00:00:00Z,BR-02012/2022,49,44,7,0.5268817204301075,0.4731182795698925
37 | PoderData,2022-10-05,2022-10-06T00:00:00Z,BR-08253/2022,48,44,8,0.5217391304347826,0.4782608695652174
38 | Quaest,2022-10-05,2022-10-06T00:00:00Z,BR-07940/2022,48,41,11,0.55,0.45
39 | Futura,2022-09-30,2022-10-06T00:00:00Z,BR-08263/2022,49,46,5,0.5157894736842106,0.4842105263157895
40 | Ipec,2022-10-05,2022-10-05T00:00:00Z,BR-02736/2022,51,43,6,0.55,0.45
41 | Ipec,2022-10-01,NA,BR-00999/2022,52,37,11,0.5842696629213483,0.4157303370786517
42 | Atlas,2022-09-30,NA,BR-07338/2022,53,43,4,0.5520833333333334,0.4479166666666667
43 | Ipespe,2022-09-30,NA,BR-05007/2022,55,38,7,0.5913978494623656,0.40860215053763443
44 | MDA,2022-09-30,NA,BR-02944/2022,50,41,9,0.5494505494505495,0.45054945054945056
45 | Datafolha,2022-09-29,NA,BR-09479/2022,54,39,7,0.5806451612903226,0.41935483870967744
46 | Atlas,2022-09-28,NA,BR-01318/2022,52,42,6,0.5531914893617021,0.44680851063829785
47 | Futura,2022-09-28,NA,BR-06743/2022,48,43,9,0.5274725274725275,0.4725274725274725
48 | Ideia Big Data,2022-09-28,NA,BR-09782/2022,52,41,7,0.5591397849462365,0.44086021505376344
49 | PoderData,2022-09-27,NA,BR-01426/2022,51,39,10,0.5666666666666667,0.43333333333333335
50 | Quaest,2022-09-27,NA,BR-04371/2022,52,38,10,0.5777777777777777,0.4222222222222222
51 | Atlas,2022-09-26,NA,BR-02714/2022,51,44,5,0.5368421052631579,0.4631578947368421
52 | Ipec,2022-09-26,NA,BR-01640/2022,54,35,11,0.6067415730337079,0.39325842696629215
53 | FSB,2022-09-25,NA,BR-08123/2022,52,40,8,0.5652173913043478,0.43478260869565216
54 | Ipespe,2022-09-23,NA,BR-01897/2022,54,38,8,0.5869565217391305,0.41304347826086957
55 | Datafolha,2022-09-22,NA,BR-04180/2022,54,38,8,0.5869565217391305,0.41304347826086957
56 | Ipespe,2022-09-21,NA,BR-08425/2022,54,37,9,0.5934065934065934,0.4065934065934066
57 | Futura,2022-09-21,NA,BR-02650/2022,47,44,9,0.5164835164835165,0.4835164835164835
58 | Opinião,2022-09-20,NA,BR-09430/2022,51,37,12,0.5795454545454546,0.42045454545454547
59 | Atlas,2022-09-20,NA,BR-01204/2022,53,41,6,0.5638297872340425,0.43617021276595747
60 | Quaest,2022-09-20,NA,BR-04459/2022,50,40,10,0.5555555555555556,0.4444444444444444
61 | Ipec,2022-09-19,NA,BR-00073/2022,54,35,11,0.6067415730337079,0.39325842696629215
62 | FSB,2022-09-18,NA,BR-07560/2022,52,39,9,0.5714285714285714,0.42857142857142855
63 | Ipespe,2022-09-16,NA,BR-08883/2022,53,38,9,0.5824175824175825,0.4175824175824176
64 | Datafolha,2022-09-15,NA,BR-04099/2022,54,38,8,0.5869565217391305,0.41304347826086957
65 | Futura,2022-09-14,NA,BR-00745/2022,45,46,9,0.4945054945054945,0.5054945054945055
66 | MDA,2022-09-14,NA,BR-06984/2022,49,31,20,0.6125,0.3875
67 | PoderData,2022-09-13,NA,BR-02955/2022,51,42,7,0.5483870967741935,0.45161290322580644
68 | Quaest,2022-09-13,NA,BR-03420/2022,48,40,12,0.5454545454545454,0.45454545454545453
69 | Ipec,2022-09-12,NA,BR-01390/2022,53,36,11,0.5955056179775281,0.4044943820224719
70 | Paraná Pesquisas,2022-09-12,NA,BR-05388/2022,47,41,12,0.5340909090909091,0.4659090909090909
71 | FSB,2022-09-11,NA,BR-06321/2022,51,38,11,0.5730337078651685,0.42696629213483145
72 | Datafolha,2022-09-09,NA,BR-07422/2022,53,39,8,0.5760869565217391,0.42391304347826086
73 | Ipespe,2022-09-09,NA,BR-07606/2022,52,39,9,0.5714285714285714,0.42857142857142855
74 | Futura,2022-09-07,NA,BR-02618/2022,45,46,9,0.4945054945054945,0.5054945054945055
75 | PoderData,2022-09-06,NA,BR-03760/2022,52,40,8,0.5652173913043478,0.43478260869565216
76 | Ipec,2022-09-05,NA,BR-00922/2022,52,36,12,0.5909090909090909,0.4090909090909091
77 | Paraná Pesquisas,2022-09-05,NA,BR-09446/2022,47,40,13,0.5402298850574713,0.45977011494252873
78 | FSB,2022-09-04,NA,BR-01786/2022,53,40,7,0.5698924731182796,0.43010752688172044
79 | Quaest,2022-09-04,NA,BR-00807/2022,51,39,10,0.5666666666666667,0.43333333333333335
80 | Datafolha,2022-09-01,NA,BR-00433/2022,55,38,7,0.5913978494623656,0.40860215053763443
81 | Ipespe,2022-09-01,NA,BR-09344/2022,53,38,9,0.5824175824175825,0.4175824175824176
82 | Paraná Pesquisas,2022-08-30,NA,BR-03492/2022,48,41,11,0.5393258426966292,0.4606741573033708
83 | PoderData,2022-08-30,NA,BR-06922/2022,50,41,9,0.5494505494505495,0.45054945054945056
84 | Ipec,2022-08-29,NA,BR-01979/2022,50,37,13,0.5747126436781609,0.42528735632183906
85 | Ipespe,2022-08-29,NA,BR-04347/2022,53,38,9,0.5824175824175825,0.4175824175824176
86 | FSB,2022-08-28,NA,BR-08934/2022,52,39,9,0.5714285714285714,0.42857142857142855
87 | Quaest,2022-08-28,NA,BR-00585/2022,51,37,12,0.5795454545454546,0.42045454545454547
88 | MDA,2022-08-28,NA,BR-00950/2022,50,39,11,0.5617977528089888,0.43820224719101125
89 | Futura,2022-08-25,NA,BR-07568/2022,45,44,11,0.5056179775280899,0.4943820224719101
90 | Ideia Big Data,2022-08-24,NA,BR-02405/2022,52,38,10,0.5777777777777777,0.4222222222222222
91 | Atlas,2022-08-24,NA,BR-00848/2022,52,41,7,0.5591397849462365,0.44086021505376344
92 | Paraná Pesquisas,2022-08-23,NA,BR-03138/2022,48,40,12,0.5454545454545454,0.45454545454545453
93 | FSB,2022-08-21,NA,BR-00244/2022,52,39,9,0.5714285714285714,0.42857142857142855
94 | PoderData,2022-08-16,NA,BR-02548/2022,52,38,10,0.5777777777777777,0.4222222222222222
95 | Datafolha,2022-08-16,NA,BR-09404/2022,54,37,9,0.5934065934065934,0.4065934065934066
96 | Ipec,2022-08-15,NA,BR-03980/2022,51,35,14,0.5930232558139535,0.4069767441860465
97 | Quaest,2022-08-14,NA,BR-01167/2022,51,38,11,0.5730337078651685,0.42696629213483145
98 |
--------------------------------------------------------------------------------
/pesquisas_1t.csv:
--------------------------------------------------------------------------------
1 | "Instituto","Data","Data divulgação","Registro","Lula","Bolsonaro","Ciro","Tebet","Outros","BNI"
2 | "Datafolha",2022-10-01,2022-10-01,"BR-00245/2022",48,34,6,5,2,5
3 | "Ipec",2022-10-01,2022-10-01,"BR-00999/2022",47,34,5,5,2,7
4 | "Quaest",2022-10-01,2022-10-01,"BR-02444/2022",49,38,6,5,2,NA
5 | "Verita",2022-10-01,2022-10-01,"BR-05793/2022",NA,NA,NA,NA,NA,NA
6 | "Atlas",2022-09-30,2022-10-01,"BR-07338/2022",50,41,4,3,1,1
7 | "Ipespe",2022-09-30,2022-10-01,"BR-05007/2022",46,33,7,6,4,4
8 | "MDA",2022-09-30,2022-10-01,"BR-02944/2022",44,36,5,4,3,8
9 | "Datafolha",2022-09-29,2022-09-29,"BR-09479/2022",48,34,6,5,2,5
10 | "Paraná Pesquisas",2022-09-29,2022-09-30,"BR-07917/2022",44,37,5,6,1,7
11 | "Verita",2022-09-29,2022-09-30,"BR-05980/2022",42,45,4,4,3,2
12 | "Atlas",2022-09-28,2022-09-30,"BR-01318/2022",49,40,4,3,1,3
13 | "Brasmarket",2022-09-28,2022-09-30,"BR-08847/2022",31,45,6,5,2,11
14 | "Futura",2022-09-28,2022-09-29,"BR-06743/2022",41,38,6,7,1,7
15 | "Ideia",2022-09-28,2022-09-29,"BR-09782/2022",47,37,6,5,1,4
16 | "PoderData",2022-09-27,2022-09-28,"BR-01426/2022",45,36,6,4,4,5
17 | "Quaest",2022-09-27,2022-09-28,"BR-04371/2022",46,33,6,5,1,9
18 | "Atlas",2022-09-26,2022-09-26,"BR-02714/2022",48,41,4,2,3,2
19 | "Ipec",2022-09-26,2022-09-26,"BR-01640/2022",48,31,6,5,2,8
20 | "Paraná Pesquisas",2022-09-26,2022-09-27,"BR-03928/2022",43,36,6,5,1,9
21 | "FSB",2022-09-25,2022-09-26,"BR-08123/2022",45,35,7,4,3,6
22 | "Ipespe",2022-09-23,2022-09-24,"BR-01897/2022",46,35,6,4,0,9
23 | "Verita",2022-09-23,2022-09-18,"BR-06580/2022",42,43,5,4,3,3
24 | "Datafolha",2022-09-22,2022-09-22,"BR-04180/2022",47,33,7,5,2,6
25 | "Futura",2022-09-21,NA,"BR-02650/2022",39,39,7,6,2,7
26 | "Ipespe",2022-09-21,2022-09-23,"BR-08425/2022",46,35,7,4,1,7
27 | "Atlas",2022-09-20,2022-09-20,"BR-01204/2022",48,39,6,4,2,1
28 | "Brasmarket",2022-09-20,NA,"BR-00580/2022",31,45,7,5,0,12
29 | "Opinião",2022-09-20,2022-09-21,"BR-09430/2022",45,33,7,5,2,8
30 | "PoderData",2022-09-20,2022-09-21,"BR-00407/2022",44,37,7,4,3,5
31 | "Quaest",2022-09-20,2022-09-21,"BR-04459/2022",44,34,6,5,2,10
32 | "Ipec",2022-09-19,2022-09-19,"BR-00073/2022",47,31,7,5,1,9
33 | "Paraná Pesquisas",2022-09-19,2022-09-20,"BR-09417/2022",40,36,7,5,2,10
34 | "FSB",2022-09-18,2022-09-19,"BR-07560/2022",44,35,7,5,1,7
35 | "Ipespe",2022-09-16,2022-09-17,"BR-08883/2022",45,35,7,5,2,5
36 | "Datafolha",2022-09-15,2022-09-15,"BR-04099/2022",45,33,8,5,2,6
37 | "Brasmarket",2022-09-14,2022-09-15,"BR-01527/2022",31,44,8,5,1,12
38 | "Futura",2022-09-14,2022-09-15,"BR-00745/2022",39,42,4,3,1,12
39 | "MDA",2022-09-14,2022-09-16,"BR-06984/2022",43,35,6,5,1,10
40 | "PoderData",2022-09-13,2022-09-14,"BR-02955/2022",43,37,8,5,2,5
41 | "Quaest",2022-09-13,2022-09-14,"BR-03420/2022",42,34,7,4,2,11
42 | "FSB",2022-09-12,2022-09-12,"BR-06321/2022",41,35,9,7,2,6
43 | "Ipec",2022-09-12,2022-09-12,"BR-01390/2022",46,31,7,4,2,10
44 | "Paraná Pesquisas",2022-09-12,2022-09-13,"BR-05388/2022",40,37,7,5,1,10
45 | "Ipespe",2022-09-10,2022-09-10,"BR-07606/2022",44,36,8,5,2,5
46 | "Datafolha",2022-09-09,2022-09-09,"BR-07422/2022",45,34,7,5,2,7
47 | "Futura",2022-09-08,2022-09-08,"BR-02618/2022",36,42,8,5,2,7
48 | "PoderData",2022-09-06,2022-09-07,"BR-03760/2022",43,37,8,5,2,5
49 | "Ipec",2022-09-05,2022-09-05,"BR-00922/2022",44,31,8,4,2,11
50 | "Paraná Pesquisas",2022-09-05,2022-09-06,"BR-09446/2022",40,36,7,4,3,10
51 | "FSB",2022-09-04,2022-09-05,"BR-01786/2022",42,34,8,6,3,7
52 | "Quaest",2022-09-04,2022-09-07,"BR-00807/2022",44,34,7,4,2,9
53 | "Datafolha",2022-09-01,2022-09-01,"BR-00433/2022",45,32,9,5,3,6
54 | "Gerp",2022-09-01,2022-09-04,"BR-09102/2022",38,39,11,6,1,5
55 | "Ipespe",2022-09-01,2022-09-03,"BR-09344/2022",44,35,9,5,2,5
56 | "Paraná Pesquisas",2022-08-30,2022-08-31,"BR-03492/2022",41,37,8,2,2,10
57 | "PoderData",2022-08-30,2022-08-31,"BR-06922/2022",44,36,8,4,3,5
58 | "Ipec",2022-08-29,2022-08-29,"BR-01979/2022",44,32,7,3,1,13
59 | "Ipespe",2022-08-29,2022-08-31,"BR-04347/2022",43,35,9,5,2,6
60 | "FSB",2022-08-28,2022-08-29,"BR-08934/2022",43,36,9,4,1,7
61 | "MDA",2022-08-28,2022-08-30,"BR-00950/2022",42,34,7,2,2,13
62 | "Quaest",2022-08-28,2022-08-31,"BR-00585/2022",44,32,8,3,2,11
63 | "Futura",2022-08-25,2022-08-31,"BR-07568/2022",37,40,10,2,2,9
64 | "Atlas",2022-08-24,2022-08-25,"BR-00848/2022",47,38,6,4,3,2
65 | "Ideia Big Data",2022-08-24,2022-08-25,"BR-02405/2022",44,36,9,4,2,5
66 | "Paraná Pesquisas",2022-08-23,NA,"BR-03138/2022",42,37,7,3,1,10
67 | "Brasmarket",2022-08-22,NA,"BR-07901/2022",33,41,4,3,2,17
68 | "FSB",2022-08-21,NA,"BR-00244/2022",45,36,6,3,5,5
69 | "Datafolha",2022-08-16,NA,"BR-09404/2022",47,32,7,2,4,8
70 | "PoderData",2022-08-16,NA,"BR-02548/2022",44,37,6,4,2,7
71 | "Ipec",2022-08-15,NA,"BR-03980/2022",44,32,6,2,1,15
72 | "FSB",2022-08-14,NA,"BR-00603/2022",45,34,8,2,3,8
73 | "Quaest",2022-08-14,NA,"BR-01167/2022",45,33,6,2,2,12
74 | "FSB",2022-08-07,NA,"BR-08028/2022",41,34,7,3,4,11
75 | "Gerp",2022-08-05,NA,"BR-009327/2022",38,38,10,3,4,7
76 | "Sigma",2022-08-05,NA,"BR-04937/2022",28,38,8,3,2,21
77 | "PoderData",2022-08-02,NA,"BR-08398/2022",43,35,5,4,7,6
78 | "Paraná Pesquisas",2022-08-01,NA,"BR-05251/2022",41,36,8,2,3,10
79 | "Quaest",2022-07-31,NA,"BR-02546/2022",44,32,5,2,5,12
80 | "Datafolha",2022-07-28,NA,"BR-01192/2022",47,29,8,2,5,9
81 | "Futura",2022-07-25,NA,"BR-07639/2022",40,38,7,1,3,11
82 | "FSB",2022-07-24,NA,"BR-05938/2022",44,31,9,2,4,10
83 | "Ipespe",2022-07-22,NA,"BR-08220/2022",44,35,9,4,0,8
84 | "Ideia Big Data",2022-07-20,NA,"BR-09608-2022",44,33,8,4,4,7
85 | "PoderData",2022-07-19,NA,"BR-07122/2022",43,37,6,3,3,8
86 | "FSB",2022-07-10,NA,"BR-09292/2022",41,32,9,4,6,8
87 | "Paraná Pesquisas",2022-07-05,NA,"BR-09408/2022",41,35,7,2,5,10
88 | "PoderData",2022-07-05,NA,"BR-06550/2022",44,36,6,1,4,9
89 | "Quaest",2022-07-02,NA,"BR-01763/2022",45,31,6,2,4,12
90 | "FSB",2022-06-26,NA,"BR-05022/2022",43,33,8,3,5,8
91 | "Datafolha",2022-06-23,NA,"BR-09088/2022",47,28,8,1,5,11
92 | "Ideia Big Data",2022-06-22,NA,"BR-02845/2022",45,36,7,3,2,7
93 | "PoderData",2022-06-21,NA,"BR-07003/2022",44,34,5,1,7,9
94 | "FSB",2022-06-12,NA,"BR-03958/2022",44,32,9,2,4,9
95 | "PoderData",2022-06-07,NA,"BR-01975/2022",43,35,6,1,5,10
96 | "Quaest",2022-06-05,NA,"BR-03552/2022",46,30,7,1,4,12
97 | "Gerp",2022-06-03,NA,"BR-00123/2022",39,37,7,2,6,9
98 | "Ipespe",2022-06-01,NA,"BR-02893/2022",45,34,9,3,0,9
99 | "Paraná Pesquisas",2022-05-30,NA,"BR-04618/2022",41,35,8,1,5,10
100 | "FSB",2022-05-29,NA,"BR-03196/2022",46,32,9,2,3,8
101 | "Datafolha",2022-05-26,NA,"BR-05166/2022",48,27,7,2,5,11
102 | "Ipespe",2022-05-25,NA,"BR-07856/2022",45,34,8,3,5,5
103 | "PoderData",2022-05-24,NA,"BR-05638/2022",43,35,7,1,4,10
104 | "Real Time Big Data",2022-05-24,NA,"BR-07451/2022",39,31,8,2,6,14
105 | "Futura",2022-05-19,NA,"BR-05658/2022",41,36,6,1,5,11
106 | "Ideia Big Data",2022-05-19,NA,"BR-01734/2022",41,32,9,1,5,12
107 | "Ipespe",2022-05-18,NA,"BR-08011/2022",44,32,8,2,6,8
108 | "Ranking",2022-05-14,NA,"BR-06764/2022",39,34,6,1,5,15
109 | "Ipespe",2022-05-11,NA,"BR-02603/2022",44,32,8,1,5,10
110 | "PoderData",2022-05-10,NA,"BR-08423/2022",42,35,5,0,9,9
111 | "Quaest",2022-05-08,NA,"BR-01603/2022",46,29,7,1,8,9
112 | "MDA",2022-05-07,NA,"BR-05757/2022",41,32,7,2,6,12
113 | "Ipespe",2022-05-04,NA,"BR-03473/2022",44,31,8,1,6,10
114 | "Paraná Pesquisas",2022-05-03,NA,"BR-09280/2022",40,35,7,1,6,11
115 | "PoderData",2022-04-26,NA,"BR-07167/2022",41,36,6,1,9,7
116 | "Futura",2022-04-25,NA,"BR-08858/2022",41,35,7,3,4,10
117 | "FSB",2022-04-24,NA,"BR-04676/2022",41,32,9,1,8,9
118 | "Ideia Big Data",2022-04-20,NA,"BR-02495/2022",42,33,10,1,7,7
119 | "Ipespe",2022-04-20,NA,"BR-05747/2022",45,31,8,2,4,10
120 | "PoderData",2022-04-12,NA,"BR-00368/2022",40,35,5,2,7,11
121 | "Sensus",2022-04-11,NA,"BR-01631/2022",43,29,6,1,6,15
122 | "Gerp",2022-04-05,NA,"BR-02346/2022",37,35,5,0,9,14
123 | "Ipespe",2022-04-05,NA,"BR-03874/2022",44,30,9,2,3,12
124 | "Paraná Pesquisas",2022-04-05,NA,"BR-08065/2022",40,33,5,1,10,11
125 | "Quaest",2022-04-03,NA,"BR-00372/2022",44,29,5,1,11,10
126 | "PoderData",2022-03-29,NA,"BR-06661/2022",41,32,7,1,12,7
127 | "Futura",2022-03-25,NA,"BR-00758/2022",39,36,5,1,10,9
128 | "Datafolha",2022-03-23,NA,"BR-08967/2022",43,26,6,1,16,8
129 | "Ideia Big Data",2022-03-23,NA,"BR-04244/2022",40,29,9,1,15,6
130 | "Ipespe",2022-03-23,NA,"BR-04222/2022",44,26,7,1,13,9
131 | "FSB",2022-03-20,NA,"BR-09630/2022",43,29,9,1,13,5
132 | "PoderData",2022-03-15,NA,"BR-00835/2022",40,30,7,2,13,8
133 | "Quaest",2022-03-13,NA,"BR-06693/2022",44,26,7,1,11,11
134 | "Ranking",2022-03-12,NA,"BR-04724/2022",38,31,6,1,12,12
135 | "Gerp",2022-03-10,NA,"BR-07402/2022",38,31,5,0,10,16
136 | "Ipespe",2022-03-09,NA,"BR-03573/2022",43,28,8,1,11,9
137 | "Paraná Pesquisas",2022-03-08,NA,"BR-06682/2022",39,30,7,0,13,11
138 | "Ipespe",2022-02-23,NA,"BR-05015/2022",43,26,7,1,14,9
139 | "Ideia Big Data",2022-02-22,NA,"BR-05955/2022",42,27,8,0,16,7
140 | "MDA",2022-02-19,NA,"BR-09751/2022",42,28,7,1,10,12
141 | "Futura",2022-02-17,NA,"BR-03014/2022",35,35,6,1,12,11
142 | "PoderData",2022-02-15,NA,"BR-06942/2022",40,32,7,0,13,8
143 | "Ipespe",2022-02-09,NA,"BR-03828/2022",43,25,8,1,11,12
144 | "Quaest",2022-02-06,NA,"BR-08857/2022",45,23,7,1,11,13
145 | "Paraná Pesquisas",2022-02-01,NA,"BR-09055/2022",40,29,6,1,14,10
146 | "PoderData",2022-02-01,NA,"BR-09445/2022",41,30,7,1,13,8
147 | "Ipespe",2022-01-25,NA,"BR-06408/2022",44,24,8,1,11,12
148 | "Futura",2022-01-21,NA,"BR-08869/2022",37,31,6,1,14,11
149 | "PoderData",2022-01-18,NA,"BR-02137/2022",42,28,3,1,14,12
150 | "Ideia Big Data",2022-01-13,NA,"BR-03460/2022",40,30,7,0,12,11
151 | "Ipespe",2022-01-12,NA,"BR-09080/2022",44,24,7,1,12,12
152 | "Quaest",2022-01-09,NA,"BR-00075/2022",45,23,5,1,13,13
153 |
--------------------------------------------------------------------------------
/img/2022-10-10 18_33_39_NL.svg:
--------------------------------------------------------------------------------
1 |
2 |
205 |
--------------------------------------------------------------------------------
/img/2022-10-14 18_13_38_NL.svg:
--------------------------------------------------------------------------------
1 |
2 |
230 |
--------------------------------------------------------------------------------
/img/2022-10-10 18_28_58_NL.svg:
--------------------------------------------------------------------------------
1 |
2 |
251 |
--------------------------------------------------------------------------------
/img/2022-10-21 14_16_13_NL.svg:
--------------------------------------------------------------------------------
1 |
2 |
254 |
--------------------------------------------------------------------------------