├── .gitignore
├── LICENSE-DeepSlice
├── MANIFEST.in
├── README.md
├── constructor
├── environment.yml
└── src
├── 0. Register And Save State.ipynb
├── 1. Open State.ipynb
├── 2. Register To BrainGlobe Atlas.ipynb
├── 3. Open State and Use Transforms.ipynb
├── 4. Register QuPath Project.ipynb
├── Playground - Adding a python registration method.ipynb
└── abba_python
├── Abba.py
├── __init__.py
├── abba_private
├── AbbaAtlas.py
├── AbbaMap.py
├── AbbaOntology.py
├── DeepSliceProcessor.py
└── __init__.py
├── deepslice
├── DeepSlice.py
├── LICENSE
├── README.md
├── __init__.py
└── utilities
│ ├── QuickNII_functions.py
│ ├── __init__.py
│ ├── neuron_tools.py
│ ├── plane_alignment.py
│ ├── plane_alignment_rat.py
│ └── render_tools.py
├── itk
├── __init__.py
└── abba_itk.py
├── run-abba-local-fiji.py
├── run-abba.py
└── scijava_python_command
├── __init__.py
├── command.py
├── jupyter_ui.py
└── magic.py
/.gitignore:
--------------------------------------------------------------------------------
1 | /images/
2 | /src/images/
3 | /.idea/
4 | /dist/
5 | *.iml
6 | .ipynb_checkpoints/
7 | /src/abba_python/deepslice/NN_weights/
8 | /src/temp/
9 | *.log
10 | *.json
11 | /notebooks/.ipynb_checkpoints/
12 | __pycache__/
13 | /constructor/abba_python/
14 | /constructor/abba-pack-win.tar.gz
15 | /constructor/*.exe
16 | /temp/
17 | /src/temp/
18 | /constructor/win/elastix-5.0.1-win64/
19 | /constructor/win/Fiji.app/
20 | /constructor/Fiji.app/
21 | /notebooks/images/
22 | /notebooks/temp/
23 |
--------------------------------------------------------------------------------
/LICENSE-DeepSlice:
--------------------------------------------------------------------------------
1 | DeepSlice source code © [2022] Macquarie University patent pending in Australia, and contact Macquarie University for other countries. Macquarie University
2 | grants users a non-exclusive, non-transferable, non-sublicenseable licence to copy, reproduce and adapt DeepSlice only for use for non-commercial research
3 | purposes and not for other purposes without Macquarie University's prior written consent. DeepSlice is made available on the basis that it is released as a test
4 | version, 'as is', and should only be used for coronal images of the adult mouse brain, and may contain errors or produce results that are incorrect. DeepSlice
5 | or its derivatives should not be used or released for commercial use and cannot at present be reliably used to analyse brain images from species other than the
6 | mouse. Users agree that if they adapt DeepSlice, and make those adaptations available for others to use, they will release the adapted source code to GitHub on
7 | the same terms as this licence
8 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 |
2 | include src/abba_python/deepslice/*.h5
3 | include src/abba_python/deepslice/*.hdf5
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # This repository is now replaced by [https://github.com/BIOP/abba_python](https://github.com/BIOP/abba_python)
2 |
3 |
4 | # [ABBA](https://biop.github.io/ijp-imagetoatlas/)-Python
5 |
6 | This repository demoes how to use [ABBA](https://biop.github.io/ijp-imagetoatlas/) with python by using [PyImageJ](https://github.com/imagej/pyimagej) and [JPype](https://github.com/jpype-project/jpype).
7 |
8 | For the documentation, please check the relevant sections within [https://biop.github.io/ijp-imagetoatlas/](https://biop.github.io/ijp-imagetoatlas/).
9 |
10 | # [DeepSlice](https://github.com/PolarBean/DeepSlice)
11 |
12 | If you want to register mouse brain sections to the Allen Brain Atlas, ABBA-Python also includes [DeepSlice](https://github.com/PolarBean/DeepSlice), a powerful deep learning tool which can be used for automatic registration of coronal sections of mouse brains.
13 |
14 | DeepSlice is completely independent from ABBA and has been developped by [Harry Carey](https://twitter.com/harrycarey2) and colleagues. Please check [its license](https://github.com/PolarBean/DeepSlice/blob/master/LICENSE) and cite [its preprint](https://www.biorxiv.org/content/10.1101/2022.04.28.489953v1?) if you are using it.
15 |
16 | ### DEEPSLICE IS INDEPENDENT FROM ABBA AND WAS NOT WRITTEN BY THE BIOP
17 |
18 | But because of my lack of skills in dependency management in python, copying the code is the only way I found to make it run with ABBA.
19 |
--------------------------------------------------------------------------------
/constructor/LICENCE.txt:
--------------------------------------------------------------------------------
1 | This installer packages the following core software components:
2 |
3 | - Aligning Big Brains and Atlases (ABBA) components (https://github.com/BIOP/ijp-imagetoatlas) | BSD-3
4 | - ImageJ/Fiji (https://imagej.net/) | see sub-components
5 | - DeepSlice (https://github.com/PolarBean/DeepSlice) and dependencies | GPL-v3
6 | - PyImageJ (https://github.com/imagej/pyimagej) and dependencies | Apache-2
7 |
8 | ------------------ Aligning Big Brains and Atlases
9 |
10 | (c) All rights reserved. ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, Switzerland, BioImaging And Optics Platform (BIOP), 2023
11 |
12 | Licensed under the BSD-3-Clause License:
13 | Redistribution and use in source and binary forms, with or without modification, are permitted provided
14 | that the following conditions are met:
15 | 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
16 | 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
17 | in the documentation and/or other materials provided with the distribution.
18 | 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products
19 | derived from this software without specific prior written permission.
20 |
21 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
22 | BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 | IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 | STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 | ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 |
29 |
30 | ------------------ ImageJ
31 |
32 | see https://imagej.net/licensing/
33 |
34 | ------------------ PyImageJ
35 |
36 | Copyright (C) 2013 - 2020 Board of Regents of the University of
37 | Wisconsin-Madison.
38 |
39 | Licensed under the Apache License, Version 2.0 (the "License");
40 | you may not use this file except in compliance with the License.
41 | You may obtain a copy of the License at
42 |
43 | http://www.apache.org/licenses/LICENSE-2.0
44 |
45 | Unless required by applicable law or agreed to in writing, software
46 | distributed under the License is distributed on an "AS IS" BASIS,
47 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
48 | See the License for the specific language governing permissions and
49 | limitations under the License.
50 |
51 | ------------------ DeepSlice
52 |
53 | GNU GENERAL PUBLIC LICENSE
54 | Version 3, 29 June 2007
55 |
56 | Copyright (C) 2007 Free Software Foundation, Inc.
57 | Everyone is permitted to copy and distribute verbatim copies
58 | of this license document, but changing it is not allowed.
59 |
60 | Preamble
61 |
62 | The GNU General Public License is a free, copyleft license for
63 | software and other kinds of works.
64 |
65 | The licenses for most software and other practical works are designed
66 | to take away your freedom to share and change the works. By contrast,
67 | the GNU General Public License is intended to guarantee your freedom to
68 | share and change all versions of a program--to make sure it remains free
69 | software for all its users. We, the Free Software Foundation, use the
70 | GNU General Public License for most of our software; it applies also to
71 | any other work released this way by its authors. You can apply it to
72 | your programs, too.
73 |
74 | When we speak of free software, we are referring to freedom, not
75 | price. Our General Public Licenses are designed to make sure that you
76 | have the freedom to distribute copies of free software (and charge for
77 | them if you wish), that you receive source code or can get it if you
78 | want it, that you can change the software or use pieces of it in new
79 | free programs, and that you know you can do these things.
80 |
81 | To protect your rights, we need to prevent others from denying you
82 | these rights or asking you to surrender the rights. Therefore, you have
83 | certain responsibilities if you distribute copies of the software, or if
84 | you modify it: responsibilities to respect the freedom of others.
85 |
86 | For example, if you distribute copies of such a program, whether
87 | gratis or for a fee, you must pass on to the recipients the same
88 | freedoms that you received. You must make sure that they, too, receive
89 | or can get the source code. And you must show them these terms so they
90 | know their rights.
91 |
92 | Developers that use the GNU GPL protect your rights with two steps:
93 | (1) assert copyright on the software, and (2) offer you this License
94 | giving you legal permission to copy, distribute and/or modify it.
95 |
96 | For the developers' and authors' protection, the GPL clearly explains
97 | that there is no warranty for this free software. For both users' and
98 | authors' sake, the GPL requires that modified versions be marked as
99 | changed, so that their problems will not be attributed erroneously to
100 | authors of previous versions.
101 |
102 | Some devices are designed to deny users access to install or run
103 | modified versions of the software inside them, although the manufacturer
104 | can do so. This is fundamentally incompatible with the aim of
105 | protecting users' freedom to change the software. The systematic
106 | pattern of such abuse occurs in the area of products for individuals to
107 | use, which is precisely where it is most unacceptable. Therefore, we
108 | have designed this version of the GPL to prohibit the practice for those
109 | products. If such problems arise substantially in other domains, we
110 | stand ready to extend this provision to those domains in future versions
111 | of the GPL, as needed to protect the freedom of users.
112 |
113 | Finally, every program is threatened constantly by software patents.
114 | States should not allow patents to restrict development and use of
115 | software on general-purpose computers, but in those that do, we wish to
116 | avoid the special danger that patents applied to a free program could
117 | make it effectively proprietary. To prevent this, the GPL assures that
118 | patents cannot be used to render the program non-free.
119 |
120 | The precise terms and conditions for copying, distribution and
121 | modification follow.
122 |
123 | TERMS AND CONDITIONS
124 |
125 | 0. Definitions.
126 |
127 | "This License" refers to version 3 of the GNU General Public License.
128 |
129 | "Copyright" also means copyright-like laws that apply to other kinds of
130 | works, such as semiconductor masks.
131 |
132 | "The Program" refers to any copyrightable work licensed under this
133 | License. Each licensee is addressed as "you". "Licensees" and
134 | "recipients" may be individuals or organizations.
135 |
136 | To "modify" a work means to copy from or adapt all or part of the work
137 | in a fashion requiring copyright permission, other than the making of an
138 | exact copy. The resulting work is called a "modified version" of the
139 | earlier work or a work "based on" the earlier work.
140 |
141 | A "covered work" means either the unmodified Program or a work based
142 | on the Program.
143 |
144 | To "propagate" a work means to do anything with it that, without
145 | permission, would make you directly or secondarily liable for
146 | infringement under applicable copyright law, except executing it on a
147 | computer or modifying a private copy. Propagation includes copying,
148 | distribution (with or without modification), making available to the
149 | public, and in some countries other activities as well.
150 |
151 | To "convey" a work means any kind of propagation that enables other
152 | parties to make or receive copies. Mere interaction with a user through
153 | a computer network, with no transfer of a copy, is not conveying.
154 |
155 | An interactive user interface displays "Appropriate Legal Notices"
156 | to the extent that it includes a convenient and prominently visible
157 | feature that (1) displays an appropriate copyright notice, and (2)
158 | tells the user that there is no warranty for the work (except to the
159 | extent that warranties are provided), that licensees may convey the
160 | work under this License, and how to view a copy of this License. If
161 | the interface presents a list of user commands or options, such as a
162 | menu, a prominent item in the list meets this criterion.
163 |
164 | 1. Source Code.
165 |
166 | The "source code" for a work means the preferred form of the work
167 | for making modifications to it. "Object code" means any non-source
168 | form of a work.
169 |
170 | A "Standard Interface" means an interface that either is an official
171 | standard defined by a recognized standards body, or, in the case of
172 | interfaces specified for a particular programming language, one that
173 | is widely used among developers working in that language.
174 |
175 | The "System Libraries" of an executable work include anything, other
176 | than the work as a whole, that (a) is included in the normal form of
177 | packaging a Major Component, but which is not part of that Major
178 | Component, and (b) serves only to enable use of the work with that
179 | Major Component, or to implement a Standard Interface for which an
180 | implementation is available to the public in source code form. A
181 | "Major Component", in this context, means a major essential component
182 | (kernel, window system, and so on) of the specific operating system
183 | (if any) on which the executable work runs, or a compiler used to
184 | produce the work, or an object code interpreter used to run it.
185 |
186 | The "Corresponding Source" for a work in object code form means all
187 | the source code needed to generate, install, and (for an executable
188 | work) run the object code and to modify the work, including scripts to
189 | control those activities. However, it does not include the work's
190 | System Libraries, or general-purpose tools or generally available free
191 | programs which are used unmodified in performing those activities but
192 | which are not part of the work. For example, Corresponding Source
193 | includes interface definition files associated with source files for
194 | the work, and the source code for shared libraries and dynamically
195 | linked subprograms that the work is specifically designed to require,
196 | such as by intimate data communication or control flow between those
197 | subprograms and other parts of the work.
198 |
199 | The Corresponding Source need not include anything that users
200 | can regenerate automatically from other parts of the Corresponding
201 | Source.
202 |
203 | The Corresponding Source for a work in source code form is that
204 | same work.
205 |
206 | 2. Basic Permissions.
207 |
208 | All rights granted under this License are granted for the term of
209 | copyright on the Program, and are irrevocable provided the stated
210 | conditions are met. This License explicitly affirms your unlimited
211 | permission to run the unmodified Program. The output from running a
212 | covered work is covered by this License only if the output, given its
213 | content, constitutes a covered work. This License acknowledges your
214 | rights of fair use or other equivalent, as provided by copyright law.
215 |
216 | You may make, run and propagate covered works that you do not
217 | convey, without conditions so long as your license otherwise remains
218 | in force. You may convey covered works to others for the sole purpose
219 | of having them make modifications exclusively for you, or provide you
220 | with facilities for running those works, provided that you comply with
221 | the terms of this License in conveying all material for which you do
222 | not control copyright. Those thus making or running the covered works
223 | for you must do so exclusively on your behalf, under your direction
224 | and control, on terms that prohibit them from making any copies of
225 | your copyrighted material outside their relationship with you.
226 |
227 | Conveying under any other circumstances is permitted solely under
228 | the conditions stated below. Sublicensing is not allowed; section 10
229 | makes it unnecessary.
230 |
231 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
232 |
233 | No covered work shall be deemed part of an effective technological
234 | measure under any applicable law fulfilling obligations under article
235 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
236 | similar laws prohibiting or restricting circumvention of such
237 | measures.
238 |
239 | When you convey a covered work, you waive any legal power to forbid
240 | circumvention of technological measures to the extent such circumvention
241 | is effected by exercising rights under this License with respect to
242 | the covered work, and you disclaim any intention to limit operation or
243 | modification of the work as a means of enforcing, against the work's
244 | users, your or third parties' legal rights to forbid circumvention of
245 | technological measures.
246 |
247 | 4. Conveying Verbatim Copies.
248 |
249 | You may convey verbatim copies of the Program's source code as you
250 | receive it, in any medium, provided that you conspicuously and
251 | appropriately publish on each copy an appropriate copyright notice;
252 | keep intact all notices stating that this License and any
253 | non-permissive terms added in accord with section 7 apply to the code;
254 | keep intact all notices of the absence of any warranty; and give all
255 | recipients a copy of this License along with the Program.
256 |
257 | You may charge any price or no price for each copy that you convey,
258 | and you may offer support or warranty protection for a fee.
259 |
260 | 5. Conveying Modified Source Versions.
261 |
262 | You may convey a work based on the Program, or the modifications to
263 | produce it from the Program, in the form of source code under the
264 | terms of section 4, provided that you also meet all of these conditions:
265 |
266 | a) The work must carry prominent notices stating that you modified
267 | it, and giving a relevant date.
268 |
269 | b) The work must carry prominent notices stating that it is
270 | released under this License and any conditions added under section
271 | 7. This requirement modifies the requirement in section 4 to
272 | "keep intact all notices".
273 |
274 | c) You must license the entire work, as a whole, under this
275 | License to anyone who comes into possession of a copy. This
276 | License will therefore apply, along with any applicable section 7
277 | additional terms, to the whole of the work, and all its parts,
278 | regardless of how they are packaged. This License gives no
279 | permission to license the work in any other way, but it does not
280 | invalidate such permission if you have separately received it.
281 |
282 | d) If the work has interactive user interfaces, each must display
283 | Appropriate Legal Notices; however, if the Program has interactive
284 | interfaces that do not display Appropriate Legal Notices, your
285 | work need not make them do so.
286 |
287 | A compilation of a covered work with other separate and independent
288 | works, which are not by their nature extensions of the covered work,
289 | and which are not combined with it such as to form a larger program,
290 | in or on a volume of a storage or distribution medium, is called an
291 | "aggregate" if the compilation and its resulting copyright are not
292 | used to limit the access or legal rights of the compilation's users
293 | beyond what the individual works permit. Inclusion of a covered work
294 | in an aggregate does not cause this License to apply to the other
295 | parts of the aggregate.
296 |
297 | 6. Conveying Non-Source Forms.
298 |
299 | You may convey a covered work in object code form under the terms
300 | of sections 4 and 5, provided that you also convey the
301 | machine-readable Corresponding Source under the terms of this License,
302 | in one of these ways:
303 |
304 | a) Convey the object code in, or embodied in, a physical product
305 | (including a physical distribution medium), accompanied by the
306 | Corresponding Source fixed on a durable physical medium
307 | customarily used for software interchange.
308 |
309 | b) Convey the object code in, or embodied in, a physical product
310 | (including a physical distribution medium), accompanied by a
311 | written offer, valid for at least three years and valid for as
312 | long as you offer spare parts or customer support for that product
313 | model, to give anyone who possesses the object code either (1) a
314 | copy of the Corresponding Source for all the software in the
315 | product that is covered by this License, on a durable physical
316 | medium customarily used for software interchange, for a price no
317 | more than your reasonable cost of physically performing this
318 | conveying of source, or (2) access to copy the
319 | Corresponding Source from a network server at no charge.
320 |
321 | c) Convey individual copies of the object code with a copy of the
322 | written offer to provide the Corresponding Source. This
323 | alternative is allowed only occasionally and noncommercially, and
324 | only if you received the object code with such an offer, in accord
325 | with subsection 6b.
326 |
327 | d) Convey the object code by offering access from a designated
328 | place (gratis or for a charge), and offer equivalent access to the
329 | Corresponding Source in the same way through the same place at no
330 | further charge. You need not require recipients to copy the
331 | Corresponding Source along with the object code. If the place to
332 | copy the object code is a network server, the Corresponding Source
333 | may be on a different server (operated by you or a third party)
334 | that supports equivalent copying facilities, provided you maintain
335 | clear directions next to the object code saying where to find the
336 | Corresponding Source. Regardless of what server hosts the
337 | Corresponding Source, you remain obligated to ensure that it is
338 | available for as long as needed to satisfy these requirements.
339 |
340 | e) Convey the object code using peer-to-peer transmission, provided
341 | you inform other peers where the object code and Corresponding
342 | Source of the work are being offered to the general public at no
343 | charge under subsection 6d.
344 |
345 | A separable portion of the object code, whose source code is excluded
346 | from the Corresponding Source as a System Library, need not be
347 | included in conveying the object code work.
348 |
349 | A "User Product" is either (1) a "consumer product", which means any
350 | tangible personal property which is normally used for personal, family,
351 | or household purposes, or (2) anything designed or sold for incorporation
352 | into a dwelling. In determining whether a product is a consumer product,
353 | doubtful cases shall be resolved in favor of coverage. For a particular
354 | product received by a particular user, "normally used" refers to a
355 | typical or common use of that class of product, regardless of the status
356 | of the particular user or of the way in which the particular user
357 | actually uses, or expects or is expected to use, the product. A product
358 | is a consumer product regardless of whether the product has substantial
359 | commercial, industrial or non-consumer uses, unless such uses represent
360 | the only significant mode of use of the product.
361 |
362 | "Installation Information" for a User Product means any methods,
363 | procedures, authorization keys, or other information required to install
364 | and execute modified versions of a covered work in that User Product from
365 | a modified version of its Corresponding Source. The information must
366 | suffice to ensure that the continued functioning of the modified object
367 | code is in no case prevented or interfered with solely because
368 | modification has been made.
369 |
370 | If you convey an object code work under this section in, or with, or
371 | specifically for use in, a User Product, and the conveying occurs as
372 | part of a transaction in which the right of possession and use of the
373 | User Product is transferred to the recipient in perpetuity or for a
374 | fixed term (regardless of how the transaction is characterized), the
375 | Corresponding Source conveyed under this section must be accompanied
376 | by the Installation Information. But this requirement does not apply
377 | if neither you nor any third party retains the ability to install
378 | modified object code on the User Product (for example, the work has
379 | been installed in ROM).
380 |
381 | The requirement to provide Installation Information does not include a
382 | requirement to continue to provide support service, warranty, or updates
383 | for a work that has been modified or installed by the recipient, or for
384 | the User Product in which it has been modified or installed. Access to a
385 | network may be denied when the modification itself materially and
386 | adversely affects the operation of the network or violates the rules and
387 | protocols for communication across the network.
388 |
389 | Corresponding Source conveyed, and Installation Information provided,
390 | in accord with this section must be in a format that is publicly
391 | documented (and with an implementation available to the public in
392 | source code form), and must require no special password or key for
393 | unpacking, reading or copying.
394 |
395 | 7. Additional Terms.
396 |
397 | "Additional permissions" are terms that supplement the terms of this
398 | License by making exceptions from one or more of its conditions.
399 | Additional permissions that are applicable to the entire Program shall
400 | be treated as though they were included in this License, to the extent
401 | that they are valid under applicable law. If additional permissions
402 | apply only to part of the Program, that part may be used separately
403 | under those permissions, but the entire Program remains governed by
404 | this License without regard to the additional permissions.
405 |
406 | When you convey a copy of a covered work, you may at your option
407 | remove any additional permissions from that copy, or from any part of
408 | it. (Additional permissions may be written to require their own
409 | removal in certain cases when you modify the work.) You may place
410 | additional permissions on material, added by you to a covered work,
411 | for which you have or can give appropriate copyright permission.
412 |
413 | Notwithstanding any other provision of this License, for material you
414 | add to a covered work, you may (if authorized by the copyright holders of
415 | that material) supplement the terms of this License with terms:
416 |
417 | a) Disclaiming warranty or limiting liability differently from the
418 | terms of sections 15 and 16 of this License; or
419 |
420 | b) Requiring preservation of specified reasonable legal notices or
421 | author attributions in that material or in the Appropriate Legal
422 | Notices displayed by works containing it; or
423 |
424 | c) Prohibiting misrepresentation of the origin of that material, or
425 | requiring that modified versions of such material be marked in
426 | reasonable ways as different from the original version; or
427 |
428 | d) Limiting the use for publicity purposes of names of licensors or
429 | authors of the material; or
430 |
431 | e) Declining to grant rights under trademark law for use of some
432 | trade names, trademarks, or service marks; or
433 |
434 | f) Requiring indemnification of licensors and authors of that
435 | material by anyone who conveys the material (or modified versions of
436 | it) with contractual assumptions of liability to the recipient, for
437 | any liability that these contractual assumptions directly impose on
438 | those licensors and authors.
439 |
440 | All other non-permissive additional terms are considered "further
441 | restrictions" within the meaning of section 10. If the Program as you
442 | received it, or any part of it, contains a notice stating that it is
443 | governed by this License along with a term that is a further
444 | restriction, you may remove that term. If a license document contains
445 | a further restriction but permits relicensing or conveying under this
446 | License, you may add to a covered work material governed by the terms
447 | of that license document, provided that the further restriction does
448 | not survive such relicensing or conveying.
449 |
450 | If you add terms to a covered work in accord with this section, you
451 | must place, in the relevant source files, a statement of the
452 | additional terms that apply to those files, or a notice indicating
453 | where to find the applicable terms.
454 |
455 | Additional terms, permissive or non-permissive, may be stated in the
456 | form of a separately written license, or stated as exceptions;
457 | the above requirements apply either way.
458 |
459 | 8. Termination.
460 |
461 | You may not propagate or modify a covered work except as expressly
462 | provided under this License. Any attempt otherwise to propagate or
463 | modify it is void, and will automatically terminate your rights under
464 | this License (including any patent licenses granted under the third
465 | paragraph of section 11).
466 |
467 | However, if you cease all violation of this License, then your
468 | license from a particular copyright holder is reinstated (a)
469 | provisionally, unless and until the copyright holder explicitly and
470 | finally terminates your license, and (b) permanently, if the copyright
471 | holder fails to notify you of the violation by some reasonable means
472 | prior to 60 days after the cessation.
473 |
474 | Moreover, your license from a particular copyright holder is
475 | reinstated permanently if the copyright holder notifies you of the
476 | violation by some reasonable means, this is the first time you have
477 | received notice of violation of this License (for any work) from that
478 | copyright holder, and you cure the violation prior to 30 days after
479 | your receipt of the notice.
480 |
481 | Termination of your rights under this section does not terminate the
482 | licenses of parties who have received copies or rights from you under
483 | this License. If your rights have been terminated and not permanently
484 | reinstated, you do not qualify to receive new licenses for the same
485 | material under section 10.
486 |
487 | 9. Acceptance Not Required for Having Copies.
488 |
489 | You are not required to accept this License in order to receive or
490 | run a copy of the Program. Ancillary propagation of a covered work
491 | occurring solely as a consequence of using peer-to-peer transmission
492 | to receive a copy likewise does not require acceptance. However,
493 | nothing other than this License grants you permission to propagate or
494 | modify any covered work. These actions infringe copyright if you do
495 | not accept this License. Therefore, by modifying or propagating a
496 | covered work, you indicate your acceptance of this License to do so.
497 |
498 | 10. Automatic Licensing of Downstream Recipients.
499 |
500 | Each time you convey a covered work, the recipient automatically
501 | receives a license from the original licensors, to run, modify and
502 | propagate that work, subject to this License. You are not responsible
503 | for enforcing compliance by third parties with this License.
504 |
505 | An "entity transaction" is a transaction transferring control of an
506 | organization, or substantially all assets of one, or subdividing an
507 | organization, or merging organizations. If propagation of a covered
508 | work results from an entity transaction, each party to that
509 | transaction who receives a copy of the work also receives whatever
510 | licenses to the work the party's predecessor in interest had or could
511 | give under the previous paragraph, plus a right to possession of the
512 | Corresponding Source of the work from the predecessor in interest, if
513 | the predecessor has it or can get it with reasonable efforts.
514 |
515 | You may not impose any further restrictions on the exercise of the
516 | rights granted or affirmed under this License. For example, you may
517 | not impose a license fee, royalty, or other charge for exercise of
518 | rights granted under this License, and you may not initiate litigation
519 | (including a cross-claim or counterclaim in a lawsuit) alleging that
520 | any patent claim is infringed by making, using, selling, offering for
521 | sale, or importing the Program or any portion of it.
522 |
523 | 11. Patents.
524 |
525 | A "contributor" is a copyright holder who authorizes use under this
526 | License of the Program or a work on which the Program is based. The
527 | work thus licensed is called the contributor's "contributor version".
528 |
529 | A contributor's "essential patent claims" are all patent claims
530 | owned or controlled by the contributor, whether already acquired or
531 | hereafter acquired, that would be infringed by some manner, permitted
532 | by this License, of making, using, or selling its contributor version,
533 | but do not include claims that would be infringed only as a
534 | consequence of further modification of the contributor version. For
535 | purposes of this definition, "control" includes the right to grant
536 | patent sublicenses in a manner consistent with the requirements of
537 | this License.
538 |
539 | Each contributor grants you a non-exclusive, worldwide, royalty-free
540 | patent license under the contributor's essential patent claims, to
541 | make, use, sell, offer for sale, import and otherwise run, modify and
542 | propagate the contents of its contributor version.
543 |
544 | In the following three paragraphs, a "patent license" is any express
545 | agreement or commitment, however denominated, not to enforce a patent
546 | (such as an express permission to practice a patent or covenant not to
547 | sue for patent infringement). To "grant" such a patent license to a
548 | party means to make such an agreement or commitment not to enforce a
549 | patent against the party.
550 |
551 | If you convey a covered work, knowingly relying on a patent license,
552 | and the Corresponding Source of the work is not available for anyone
553 | to copy, free of charge and under the terms of this License, through a
554 | publicly available network server or other readily accessible means,
555 | then you must either (1) cause the Corresponding Source to be so
556 | available, or (2) arrange to deprive yourself of the benefit of the
557 | patent license for this particular work, or (3) arrange, in a manner
558 | consistent with the requirements of this License, to extend the patent
559 | license to downstream recipients. "Knowingly relying" means you have
560 | actual knowledge that, but for the patent license, your conveying the
561 | covered work in a country, or your recipient's use of the covered work
562 | in a country, would infringe one or more identifiable patents in that
563 | country that you have reason to believe are valid.
564 |
565 | If, pursuant to or in connection with a single transaction or
566 | arrangement, you convey, or propagate by procuring conveyance of, a
567 | covered work, and grant a patent license to some of the parties
568 | receiving the covered work authorizing them to use, propagate, modify
569 | or convey a specific copy of the covered work, then the patent license
570 | you grant is automatically extended to all recipients of the covered
571 | work and works based on it.
572 |
573 | A patent license is "discriminatory" if it does not include within
574 | the scope of its coverage, prohibits the exercise of, or is
575 | conditioned on the non-exercise of one or more of the rights that are
576 | specifically granted under this License. You may not convey a covered
577 | work if you are a party to an arrangement with a third party that is
578 | in the business of distributing software, under which you make payment
579 | to the third party based on the extent of your activity of conveying
580 | the work, and under which the third party grants, to any of the
581 | parties who would receive the covered work from you, a discriminatory
582 | patent license (a) in connection with copies of the covered work
583 | conveyed by you (or copies made from those copies), or (b) primarily
584 | for and in connection with specific products or compilations that
585 | contain the covered work, unless you entered into that arrangement,
586 | or that patent license was granted, prior to 28 March 2007.
587 |
588 | Nothing in this License shall be construed as excluding or limiting
589 | any implied license or other defenses to infringement that may
590 | otherwise be available to you under applicable patent law.
591 |
592 | 12. No Surrender of Others' Freedom.
593 |
594 | If conditions are imposed on you (whether by court order, agreement or
595 | otherwise) that contradict the conditions of this License, they do not
596 | excuse you from the conditions of this License. If you cannot convey a
597 | covered work so as to satisfy simultaneously your obligations under this
598 | License and any other pertinent obligations, then as a consequence you may
599 | not convey it at all. For example, if you agree to terms that obligate you
600 | to collect a royalty for further conveying from those to whom you convey
601 | the Program, the only way you could satisfy both those terms and this
602 | License would be to refrain entirely from conveying the Program.
603 |
604 | 13. Use with the GNU Affero General Public License.
605 |
606 | Notwithstanding any other provision of this License, you have
607 | permission to link or combine any covered work with a work licensed
608 | under version 3 of the GNU Affero General Public License into a single
609 | combined work, and to convey the resulting work. The terms of this
610 | License will continue to apply to the part which is the covered work,
611 | but the special requirements of the GNU Affero General Public License,
612 | section 13, concerning interaction through a network will apply to the
613 | combination as such.
614 |
615 | 14. Revised Versions of this License.
616 |
617 | The Free Software Foundation may publish revised and/or new versions of
618 | the GNU General Public License from time to time. Such new versions will
619 | be similar in spirit to the present version, but may differ in detail to
620 | address new problems or concerns.
621 |
622 | Each version is given a distinguishing version number. If the
623 | Program specifies that a certain numbered version of the GNU General
624 | Public License "or any later version" applies to it, you have the
625 | option of following the terms and conditions either of that numbered
626 | version or of any later version published by the Free Software
627 | Foundation. If the Program does not specify a version number of the
628 | GNU General Public License, you may choose any version ever published
629 | by the Free Software Foundation.
630 |
631 | If the Program specifies that a proxy can decide which future
632 | versions of the GNU General Public License can be used, that proxy's
633 | public statement of acceptance of a version permanently authorizes you
634 | to choose that version for the Program.
635 |
636 | Later license versions may give you additional or different
637 | permissions. However, no additional obligations are imposed on any
638 | author or copyright holder as a result of your choosing to follow a
639 | later version.
640 |
641 | 15. Disclaimer of Warranty.
642 |
643 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
644 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
645 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
646 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
647 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
648 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
649 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
650 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
651 |
652 | 16. Limitation of Liability.
653 |
654 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
655 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
656 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
657 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
658 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
659 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
660 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
661 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
662 | SUCH DAMAGES.
663 |
664 | 17. Interpretation of Sections 15 and 16.
665 |
666 | If the disclaimer of warranty and limitation of liability provided
667 | above cannot be given local legal effect according to their terms,
668 | reviewing courts shall apply local law that most closely approximates
669 | an absolute waiver of all civil liability in connection with the
670 | Program, unless a warranty or assumption of liability accompanies a
671 | copy of the Program in return for a fee.
672 |
673 | END OF TERMS AND CONDITIONS
674 |
675 | How to Apply These Terms to Your New Programs
676 |
677 | If you develop a new program, and you want it to be of the greatest
678 | possible use to the public, the best way to achieve this is to make it
679 | free software which everyone can redistribute and change under these terms.
680 |
681 | To do so, attach the following notices to the program. It is safest
682 | to attach them to the start of each source file to most effectively
683 | state the exclusion of warranty; and each file should have at least
684 | the "copyright" line and a pointer to where the full notice is found.
685 |
686 |
687 | Copyright (C)
688 |
689 | This program is free software: you can redistribute it and/or modify
690 | it under the terms of the GNU General Public License as published by
691 | the Free Software Foundation, either version 3 of the License, or
692 | (at your option) any later version.
693 |
694 | This program is distributed in the hope that it will be useful,
695 | but WITHOUT ANY WARRANTY; without even the implied warranty of
696 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
697 | GNU General Public License for more details.
698 |
699 | You should have received a copy of the GNU General Public License
700 | along with this program. If not, see .
701 |
702 | Also add information on how to contact you by electronic and paper mail.
703 |
704 | If the program does terminal interaction, make it output a short
705 | notice like this when it starts in an interactive mode:
706 |
707 | Copyright (C)
708 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
709 | This is free software, and you are welcome to redistribute it
710 | under certain conditions; type `show c' for details.
711 |
712 | The hypothetical commands `show w' and `show c' should show the appropriate
713 | parts of the General Public License. Of course, your program's commands
714 | might be different; for a GUI interface, you would use an "about box".
715 |
716 | You should also get your employer (if you work as a programmer) or school,
717 | if any, to sign a "copyright disclaimer" for the program, if necessary.
718 | For more information on this, and how to apply and follow the GNU GPL, see
719 | .
720 |
721 | The GNU General Public License does not permit incorporating your program
722 | into proprietary programs. If your program is a subroutine library, you
723 | may consider it more useful to permit linking proprietary applications with
724 | the library. If this is what you want to do, use the GNU Lesser General
725 | Public License instead of this License. But first, please read
726 | .
727 |
--------------------------------------------------------------------------------
/constructor/README.md:
--------------------------------------------------------------------------------
1 | # MAKING AN INSTALLER
2 |
3 | This folder contains some files which can be used to create an installer for ABBA by using https://github.com/conda/constructor
4 |
5 | The yaml file contains the dependencies required to make the installer, but that's not all. Each OS has it own requirements.
6 |
7 | Normally you won't need to use the content of this folder. It's just there for the main dev (Nico) that has to make releases from times to time. But if you're sufficiently knowledgable in python, you won't need the installer and will just run ABBA from source and by using the env yaml file in the parent directory.
8 |
9 | ## All OS
10 |
11 | This folder:
12 |
13 | - needs to contains an up-to-date `Fiji.app` folder, but without Java (take it from https://imagej.net/software/fiji/downloads, choose no JRE)
14 | - then, in this Fiji, put ABBA, for instance by installing it from intellij and specifying the Fiji directory and maven build it.
15 |
16 |
17 | ## Windows
18 |
19 | The win folder should also contain the elastix executable. Version 5.0.1: `win\elastix-5.0.1-win64`
20 |
21 | Then run `prepare_win.bat` which copies the abba-python code in the same folder (that's because I do not know how to tar properly from another folder) and zips everything into a abba-pack-win.tar.gz file which will be included in the installer.
22 |
23 | Then create a conda env, install conda constructor in it, and run `constructor .` once your current directory is there. After a few minutes, an executable file should be created. That's the installer!
24 |
25 | It is big because it contains a pretty big conda environment, some models, java, and an almost complete Fiji.
26 |
27 | ## Mac
28 |
29 | see https://github.com/NicoKiaru/ABBA-Python/issues/16
30 |
31 | ## Linux
32 |
33 | see https://github.com/NicoKiaru/ABBA-Python/issues/17
--------------------------------------------------------------------------------
/constructor/construct.yaml:
--------------------------------------------------------------------------------
1 | name: ABBA-Python
2 | version: 0.5.2
3 |
4 | channels:
5 | - conda-forge
6 | - defaults
7 |
8 | specs:
9 | - python=3.7.12
10 | - mkl
11 | - numpy=1.21.6
12 | - pandas=1.3.5
13 | - pip=22.2.2
14 | - protobuf=4.21.7
15 | - scikit-image=0.17.2
16 | - scikit-learn=0.23.2
17 | - scipy=1.6.0
18 | - tensorflow=1.14.0 # modif 1: other wise the predictions from DeepSlice are bad with nan values everywhere
19 | - tqdm=4.56.0
20 | - pyimagej=1.2.1
21 | - xarray=0.20.2
22 | - h5py=2.10.0 # modif 2: seems required for deepslice, otherwise a keras decode utf8 error is raiser
23 | - bg-atlasapi=1.0.2
24 | - openssl=1.1.1q # modif 3: dll not loaded error with netcdf4 on windows
25 | - openjdk=8 # 8 or 11 should work, but java 11 has issues with xml
26 | - netcdf4=1.5.7
27 | - conda
28 | - console_shortcut # [win]
29 | - menuinst # [win]
30 |
31 | register_python: false
32 | initialize_conda: false
33 |
34 | company: BIOP-EPFL
35 |
36 | extra_files:
37 | - abba-pack-win.tar.gz # [win]
38 |
39 | welcome_image: img/logo128x128.png # [win]
40 | header_image: img/logo.png # [win]
41 | icon_image: img/logo128x128.png # [win]
42 |
43 | post_install: post_install_unix.sh # [unix]
44 | post_install: post_install_win.bat # [win]
45 |
46 | # TODO : pre_uninstall to remove extra shortcuts in windows
--------------------------------------------------------------------------------
/constructor/img/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/constructor/img/logo.png
--------------------------------------------------------------------------------
/constructor/img/logo128x128.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/constructor/img/logo128x128.png
--------------------------------------------------------------------------------
/constructor/img/logo256x256.ico:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/constructor/img/logo256x256.ico
--------------------------------------------------------------------------------
/constructor/img/logo256x256.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/constructor/img/logo256x256.png
--------------------------------------------------------------------------------
/constructor/post_install_unix.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | tar -xzvf "$PREFIX/abba-code.tar.gz"
4 |
--------------------------------------------------------------------------------
/constructor/post_install_win.bat:
--------------------------------------------------------------------------------
1 | REM untar the code to the install folder
2 | REM tar -cvzf abba-code.tar.gz abba-code img
3 | tar -xzvf "%PREFIX%\abba-pack-win.tar.gz" -C "%PREFIX%"
4 |
5 | set shortcutPath='%userprofile%\Desktop\ABBA.lnk'
6 | set shortcutTarget='%PREFIX%\win\run-abba.bat'
7 | set shortcutIcon='%PREFIX%\img\logo256x256.ico'
8 |
9 |
10 | REM '%PREFIX%\img\logo256x256.ico'
11 |
12 | @echo off
13 | REM set /p "id=Shortcut path: "
14 |
15 | echo %shortcutPath%
16 |
17 | @echo off
18 | REM set /p "id=Shortcut target: "
19 |
20 | echo %shortcutTarget%
21 |
22 | @echo off
23 | REM set /p "id=Installing shortcut: "
24 |
25 | %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\powershell.exe "$s=(New-Object -COM WScript.Shell).CreateShortcut("%shortcutPath%");$s.IconLocation="%shortcutIcon%";$s.TargetPath="%shortcutTarget%";$s.Save()"
26 |
27 | REM add shortcut to C:\Users\user\AppData\Roaming\Microsoft\Windows\Start Menu\Programs
28 |
29 | set shortcutProgramsPath='%userprofile%\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\ABBA.lnk'
30 |
31 | %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\powershell.exe "$s=(New-Object -COM WScript.Shell).CreateShortcut("%shortcutProgramsPath%");$s.IconLocation="%shortcutIcon%";$s.TargetPath="%shortcutTarget%";$s.Save()"
32 |
33 | echo ABBA shortcuts installed
34 |
35 | @echo off
36 | REM set /p "id=Shortcut installed "
37 |
38 | echo Checking if Visual C++ redistributable is installed...
39 |
40 | if %errorlevel%==0 (
41 | for /f "tokens=2" %%i in ('reg query "HKLM\SOFTWARE\Microsoft\VisualStudio\14.0\VC\Runtimes\x64" /v Version ^| findstr /i "^[0-9]*\.[0-9]*\.[0-9]*\.[0-9]*$"') do set installed_version=%%i
42 | echo Found installed version %installed_version%
43 | if "%installed_version%" geq "14.0.0.0" (
44 | echo Visual C++ redistributable version is up to date. Skipping installation.
45 | goto end
46 | )
47 | )
48 |
49 | if %errorlevel%==0 (
50 | echo Visual C++ redistributable version %REDIST_VERSION% is already installed.
51 | goto end
52 | )
53 |
54 | echo Visual C++ redistributable version %REDIST_VERSION% is not installed. Downloading...
55 |
56 | %SYSTEMROOT%\System32\WindowsPowerShell\v1.0\powershell.exe -Command "Invoke-WebRequest '%REDIST_URL%' -OutFile '%REDIST_EXE%'"
57 |
58 | echo Installing Visual C++ redistributable version %REDIST_VERSION%...
59 |
60 | start /wait %REDIST_EXE% /quiet /norestart
61 |
62 | echo Visual C++ redistributable version %REDIST_VERSION% has been installed successfully.
63 |
64 | :end
65 | endlocal
66 |
--------------------------------------------------------------------------------
/constructor/prepare_win.bat:
--------------------------------------------------------------------------------
1 | cd /D "%~dp0"
2 |
3 | robocopy ../src/abba_python abba_python /E
4 |
5 | tar -cvzf abba-pack-win.tar.gz abba_python img win Fiji.app
--------------------------------------------------------------------------------
/constructor/unix/TODO.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/constructor/unix/TODO.txt
--------------------------------------------------------------------------------
/constructor/win/README.txt:
--------------------------------------------------------------------------------
1 | TODO : You should unzip elastix-5.0.1 in this folder, windows version
2 |
3 | The folder hierarchy should be:
4 | constructor/win/elastix-5.0.1-win64
5 | and for instance the file
6 | constructor/win/elastix-5.0.1-win64/elastix.exe should exist
--------------------------------------------------------------------------------
/constructor/win/run-abba.bat:
--------------------------------------------------------------------------------
1 | cd /D "%~dp0" & ..\condabin\activate.bat & ..\python.exe ..\abba_python\run-abba-local-fiji.py
2 |
--------------------------------------------------------------------------------
/environment.yml:
--------------------------------------------------------------------------------
1 | # You really need to use mamba or this env will need a year to be created
2 | # Also : some dependencies explicit versions are kept, mostly these are obtained
3 | # by trimming down the deepslice envs examples:
4 | # https://github.com/PolarBean/DeepSlice/tree/master/conda_environments
5 | # and fixing issues as mentioned in the explicit versions below
6 | # it seems to work with for win64 machine
7 | name: abba
8 | channels:
9 | - conda-forge
10 | - defaults
11 | dependencies:
12 | - mkl
13 | - numpy
14 | - pandas
15 | - pip
16 | - protobuf
17 | - scikit-image
18 | - scikit-learn
19 | - scipy
20 | - tensorflow=1.14.0 # modif 1: other wise the predictions from DeepSlice are bad with nan values everywhere
21 | - tqdm
22 | - jupyterlab
23 | - pyimagej
24 | - python
25 | - xarray
26 | - h5py=2.10.0 # modif 2: seems required for deepslice, otherwise a keras decode utf8 error is raiser
27 | - bg-atlasapi
28 | - openssl=1.1.1q # modif 3: dll not loaded error with netcdf4 on windows
29 | - openjdk=8 # 8 or 11 should work, pyimagej not tested for version above
30 | - netcdf4
31 |
32 |
--------------------------------------------------------------------------------
/src/0. Register And Save State.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "007bdd6f",
6 | "metadata": {},
7 | "source": [
8 | "# [Aligning Big Brains and Atlases](https://biop.github.io/ijp-imagetoatlas/) in Python\n",
9 | "\n",
10 | "This series of notebook demoes the use of ABBA with python.\n",
11 | "\n",
12 | "If you managed to create an environment with PyImageJ and DeepSlice, you will be able, by running this notebook, to perform a fully automated registration of demo mouse brain sections to the Adult Mouse Allen Brain atlas.\n",
13 | "\n",
14 | "For this notebook to run, an atlas will need to be downloaded, as well as some sample dataset.\n",
15 | "\n",
16 | "The dataset is downloaded from https://zenodo.org/record/6592478\n",
17 | "\n",
18 | "Multichannel registration works reasonably well in this notebook because the first channel of the atlas (NISSL, indexed 0), is ressembling the DAPI channel of the slices (indexed 0), and the second channel of the atlas (ARA, indexed 1), is ressembling the autofluorescence channel of the slices (indexed 1).\n",
19 | "\n",
20 | "NOTE : You need to set the elastix and transformix path for the elastix registration steps."
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": null,
26 | "id": "5c4e9d2f",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "# core dependencies\n",
31 | "import os\n",
32 | "import time\n",
33 | "from pathlib import Path\n",
34 | "\n",
35 | "from abba_python.Abba import Abba\n",
36 | "\n",
37 | "from bg_atlasapi import utils\n",
38 | "\n",
39 | "#from scijava_python_command.magic import cell_with_modal_ui"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": null,
45 | "id": "86a102df",
46 | "metadata": {},
47 | "outputs": [],
48 | "source": [
49 | "# Demo dataset for automated slices registration\n",
50 | "zenodo_demo_slices_url = 'https://zenodo.org/record/6592478/files/'\n",
51 | "\n",
52 | "\n",
53 | "# Only one section every five section is used for this demo\n",
54 | "demo_sections = [\n",
55 | " 'S00.tif',\n",
56 | " 'S05.tif',\n",
57 | " 'S10.tif',\n",
58 | " 'S15.tif',\n",
59 | " 'S20.tif',\n",
60 | " 'S25.tif',\n",
61 | " 'S30.tif',\n",
62 | " 'S35.tif',\n",
63 | " 'S40.tif',\n",
64 | " 'S45.tif',\n",
65 | " 'S50.tif',\n",
66 | " 'S55.tif',\n",
67 | " 'S60.tif',\n",
68 | " 'S65.tif',\n",
69 | " 'S70.tif',\n",
70 | " 'S75.tif',\n",
71 | " 'S80.tif']\n",
72 | "\n",
73 | "\n",
74 | "def download_if_necessary(base_path, section_name):\n",
75 | " output_path = Path(base_path + section_name)\n",
76 | " if not output_path.exists():\n",
77 | " utils.check_internet_connection()\n",
78 | " url = zenodo_demo_slices_url + section_name + '?download=1'\n",
79 | " utils.retrieve_over_http(url, output_path)\n",
80 | "\n",
81 | "\n",
82 | "def download_test_images(base_path):\n",
83 | " [download_if_necessary(base_path, section) for section in demo_sections]\n",
84 | "\n"
85 | ]
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "id": "9dbd7118",
90 | "metadata": {},
91 | "source": [
92 | "## 1. Download test sections if necessary\n",
93 | "\n",
94 | " "
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": null,
100 | "id": "f68706c1",
101 | "metadata": {},
102 | "outputs": [],
103 | "source": [
104 | "basePath = os.getcwd() + '/images/'\n",
105 | "\n",
106 | "if not os.path.exists(basePath):\n",
107 | " os.makedirs(basePath)\n",
108 | " \n",
109 | "download_test_images(basePath)"
110 | ]
111 | },
112 | {
113 | "cell_type": "markdown",
114 | "id": "54979364",
115 | "metadata": {},
116 | "source": [
117 | "## 2. ABBA initialization"
118 | ]
119 | },
120 | {
121 | "cell_type": "code",
122 | "execution_count": null,
123 | "id": "98c03c88",
124 | "metadata": {
125 | "scrolled": true
126 | },
127 | "outputs": [],
128 | "source": [
129 | "\n",
130 | "\n",
131 | "headless = False\n",
132 | "\n",
133 | "# -- FOR DEBUGGING\n",
134 | "# import imagej.doctor\n",
135 | "# imagej.doctor.checkup()\n",
136 | "# imagej.doctor.debug_to_stderr()\n",
137 | "\n",
138 | "import logging\n",
139 | "# logging.basicConfig(level=logging.DEBUG)\n",
140 | "\n",
141 | "if headless:\n",
142 | " # -- HEADLESS\n",
143 | " # create a thread: the jupyter UI will not be responsive is the cell is not finished. \n",
144 | " # that's why it's needed to split the initialisation in two cells.\n",
145 | " abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3p1', headless=True)\n",
146 | " \n",
147 | "else:\n",
148 | " # -- NOT HEADLESS\n",
149 | " abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3p1')\n",
150 | " abba.show_bdv_ui() # creates and show a bdv view\n"
151 | ]
152 | },
153 | {
154 | "cell_type": "code",
155 | "execution_count": null,
156 | "id": "2f0ce139",
157 | "metadata": {},
158 | "outputs": [],
159 | "source": [
160 | "# Just make sure that elastix and transformix are correctly set -> Useless in headless mode, because the popup window is not displayed\n",
161 | "if not headless:\n",
162 | " # Maybe just run it once not in headless to set elastix and transformix path correctly. They will be remembered in headless mode (stored in java Prefs)\n",
163 | " abba.ij.command().run('ch.epfl.biop.wrappers.ij2command.BiopWrappersSet',True)"
164 | ]
165 | },
166 | {
167 | "cell_type": "markdown",
168 | "id": "358e4e2c",
169 | "metadata": {},
170 | "source": [
171 | "## 3. Import sections into ABBA"
172 | ]
173 | },
174 | {
175 | "cell_type": "code",
176 | "execution_count": null,
177 | "id": "5c444a91",
178 | "metadata": {},
179 | "outputs": [],
180 | "source": [
181 | "# import sections into ABBA\n",
182 | "files = [basePath + section for section in demo_sections]\n",
183 | "abba.import_from_files(filepaths=files)\n",
184 | "\n",
185 | "# ALL REGISTRATIONS AND COMMANDS BELOW ARE PERFORMED ON THE SELECTED SLICES!!\n",
186 | "# since we want to register all of them, we select all of them\n",
187 | "# abba.select_all_slices()\n",
188 | "abba.deselect_all_slices()\n",
189 | "# abba.select_slices([0]) # only one for testing\n",
190 | "# abba.select_all_slices()\n"
191 | ]
192 | },
193 | {
194 | "cell_type": "code",
195 | "execution_count": null,
196 | "id": "96333598",
197 | "metadata": {},
198 | "outputs": [],
199 | "source": [
200 | "abba.select_all_slices()"
201 | ]
202 | },
203 | {
204 | "cell_type": "code",
205 | "execution_count": null,
206 | "id": "66f97d0a",
207 | "metadata": {},
208 | "outputs": [],
209 | "source": [
210 | "# we want to avoid saturation in the display. This does not matter for\n",
211 | "# all registration methods EXCEPT for DeepSlice, which takes in rgb images\n",
212 | "abba.change_display_settings(0, 0, 500)\n",
213 | "abba.change_display_settings(1, 0, 1200)\n",
214 | "\n",
215 | "if not headless:\n",
216 | " # programmatic way to show (or hide) sections and channels\n",
217 | " abba.get_bdv_view().setSelectedSlicesVisibility(True)\n",
218 | " abba.get_bdv_view().setSelectedSlicesVisibility(0, True) # Channel 0\n",
219 | " abba.get_bdv_view().setSelectedSlicesVisibility(1, True) # Channel 1"
220 | ]
221 | },
222 | {
223 | "cell_type": "markdown",
224 | "id": "3964abcb",
225 | "metadata": {},
226 | "source": [
227 | "## 4. DeepSlice Registration(s)"
228 | ]
229 | },
230 | {
231 | "cell_type": "code",
232 | "execution_count": null,
233 | "id": "e65db448",
234 | "metadata": {},
235 | "outputs": [],
236 | "source": [
237 | "# a first deepslice registration round : possible because it's the Allen CCF atlas, cut in coronal mode\n",
238 | "# what's assumed : the sections are already in the correct order\n",
239 | "abba.register_slices_deepslice(channels=[0, 1])\n",
240 | "\n",
241 | "# second deepslice registration: because the slices are resampled for the registration,\n",
242 | "# we usually get a slightly better positioning along z and cutting angle\n",
243 | "# also: it's fast, and the combination of two affine transforms is\n",
244 | "# an affine transform, so it's not like we are adding extra degrees of freedom\n",
245 | "# abba.register_slices_deepslice(channels=[0, 1])"
246 | ]
247 | },
248 | {
249 | "cell_type": "markdown",
250 | "id": "83b8f828",
251 | "metadata": {},
252 | "source": [
253 | "## 5. Elastix affine registration"
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": null,
259 | "id": "4d364363",
260 | "metadata": {},
261 | "outputs": [],
262 | "source": [
263 | "\n",
264 | "# a round of elastix registration, affine\n",
265 | "# the channel 0 of the dataset (DAPI) is registered with the Nissl Channel of the atlas (0)\n",
266 | "# and the channel 1 of the dataset (mainly autofluo) is registered with the autofluo channel of the atlas (1)\n",
267 | "# these two channels have equal weights in the registration process\n",
268 | "abba.register_slices_elastix_affine(channels_slice_csv='0,1',\n",
269 | " channels_atlas_csv='0,1',\n",
270 | " pixel_size_micrometer=40)"
271 | ]
272 | },
273 | {
274 | "cell_type": "markdown",
275 | "id": "ee4cb12b",
276 | "metadata": {},
277 | "source": [
278 | "## 6. Elastix spline registration"
279 | ]
280 | },
281 | {
282 | "cell_type": "code",
283 | "execution_count": null,
284 | "id": "f08093da",
285 | "metadata": {},
286 | "outputs": [],
287 | "source": [
288 | "# %%cell_with_modal_ui\n",
289 | "# optional: a round of elastix registration, spline\n",
290 | "# same channels as in the affine registration\n",
291 | "# 5 control points along x = very coarse spline (and thus maybe unnecessary)\n",
292 | "# abba.register_elastix_spline(\n",
293 | "# nb_control_points=5,\n",
294 | "# atlas_image_channels=[0, 1],\n",
295 | "# slice_image_channels=[0, 1],\n",
296 | "# pixel_size_micrometer=40).get()\n",
297 | "\n",
298 | "# a round of elastix registration, affine\n",
299 | "# same channels as in the affine registration \n",
300 | "# 16 control points = reasonable spline, which allows for local corrections, without deforming two much the section\n",
301 | "abba.register_slices_elastix_spline(channels_slice_csv='0,1',\n",
302 | " channels_atlas_csv='0,1',\n",
303 | " nb_control_points_x=16,\n",
304 | " pixel_size_micrometer=20)"
305 | ]
306 | },
307 | {
308 | "cell_type": "markdown",
309 | "id": "57c522c1",
310 | "metadata": {},
311 | "source": [
312 | "## 7. Wait for end of all registrations"
313 | ]
314 | },
315 | {
316 | "cell_type": "code",
317 | "execution_count": null,
318 | "id": "9d4a3a3c",
319 | "metadata": {},
320 | "outputs": [],
321 | "source": [
322 | "# all tasks/registrations are enqueued and executed asynchronously\n",
323 | "# if you need to wait before saving, then wait for all tasks to be finished:\n",
324 | "abba.wait_for_end_of_tasks()"
325 | ]
326 | },
327 | {
328 | "cell_type": "markdown",
329 | "id": "b7508c96",
330 | "metadata": {},
331 | "source": [
332 | "## 8. Saving the result"
333 | ]
334 | },
335 | {
336 | "cell_type": "code",
337 | "execution_count": null,
338 | "id": "27e6a478",
339 | "metadata": {},
340 | "outputs": [],
341 | "source": [
342 | "# abba.set_slices_thickness_match_neighbors() # not critical, but for 3d reconstruction it will allow for each slice to occupy the place available between its neighbors\n",
343 | "\n",
344 | "save_dir = os.path.join(os.getcwd(), 'temp', 'notebook0', 'state')\n",
345 | "\n",
346 | "if not os.path.exists(save_dir):\n",
347 | " os.makedirs(save_dir)\n",
348 | "\n",
349 | "\n",
350 | "abba.state_save(save_dir+\"/state.abba\") # full absolute path needed"
351 | ]
352 | }
353 | ],
354 | "metadata": {
355 | "kernelspec": {
356 | "display_name": "Python 3 (ipykernel)",
357 | "language": "python",
358 | "name": "python3"
359 | },
360 | "language_info": {
361 | "codemirror_mode": {
362 | "name": "ipython",
363 | "version": 3
364 | },
365 | "file_extension": ".py",
366 | "mimetype": "text/x-python",
367 | "name": "python",
368 | "nbconvert_exporter": "python",
369 | "pygments_lexer": "ipython3",
370 | "version": "3.7.12"
371 | }
372 | },
373 | "nbformat": 4,
374 | "nbformat_minor": 5
375 | }
376 |
--------------------------------------------------------------------------------
/src/1. Open State.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "007bdd6f",
6 | "metadata": {},
7 | "source": [
8 | "# [Aligning Big Brains and Atlases](https://biop.github.io/ijp-imagetoatlas/) in Python\n",
9 | "\n",
10 | "This series of notebook demoes the use of ABBA with python.\n",
11 | "\n",
12 | "If you have executed the previous notebook, you can re-open the saved state file.\n",
13 | "\n",
14 | "ABBA is not headless in this notebook, you can see use the GUI to act on the registration.\n"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "id": "5c4e9d2f",
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "# core dependencies\n",
25 | "import os\n",
26 | "import time\n",
27 | "from pathlib import Path\n",
28 | "\n",
29 | "\n",
30 | "from bg_atlasapi import show_atlases\n",
31 | "from bg_atlasapi import utils\n",
32 | "\n",
33 | "from abba_python.Abba import Abba"
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "id": "54979364",
39 | "metadata": {},
40 | "source": [
41 | "## 1. ABBA initialization"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "id": "98c03c88",
48 | "metadata": {
49 | "scrolled": true
50 | },
51 | "outputs": [],
52 | "source": [
53 | "# -- NOT HEADLESS\n",
54 | "abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3p1') # You may have to click a window!\n",
55 | "abba.show_bdv_ui() # creates and show a bdv view"
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "id": "358e4e2c",
61 | "metadata": {},
62 | "source": [
63 | "## 2. Open state file"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": null,
69 | "id": "5c444a91",
70 | "metadata": {},
71 | "outputs": [],
72 | "source": [
73 | "save_dir = os.path.join(os.getcwd(), 'temp', 'notebook0', 'state')\n",
74 | "\n",
75 | "abba.state_load(save_dir+\"/state.abba\") # full absolute path needed"
76 | ]
77 | },
78 | {
79 | "cell_type": "code",
80 | "execution_count": null,
81 | "id": "da60dcac",
82 | "metadata": {},
83 | "outputs": [],
84 | "source": [
85 | "# ALL COMMANDS ARE PERFORMED ON SELECTED SLICES!!\n",
86 | "abba.select_all_slices()\n",
87 | "\n",
88 | "# change display settings : channel index, min, max\n",
89 | "abba.change_display_settings(0, 0, 500)\n",
90 | "abba.change_display_settings(1, 0, 1200)\n",
91 | "\n",
92 | "abba.get_bdv_view().setSelectedSlicesVisibility(True)\n",
93 | "abba.get_bdv_view().setSelectedSlicesVisibility(0, True)"
94 | ]
95 | }
96 | ],
97 | "metadata": {
98 | "kernelspec": {
99 | "display_name": "Python 3 (ipykernel)",
100 | "language": "python",
101 | "name": "python3"
102 | },
103 | "language_info": {
104 | "codemirror_mode": {
105 | "name": "ipython",
106 | "version": 3
107 | },
108 | "file_extension": ".py",
109 | "mimetype": "text/x-python",
110 | "name": "python",
111 | "nbconvert_exporter": "python",
112 | "pygments_lexer": "ipython3",
113 | "version": "3.7.12"
114 | }
115 | },
116 | "nbformat": 4,
117 | "nbformat_minor": 5
118 | }
119 |
--------------------------------------------------------------------------------
/src/2. Register To BrainGlobe Atlas.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "007bdd6f",
6 | "metadata": {},
7 | "source": [
8 | "# [Aligning Big Brains and Atlases](https://biop.github.io/ijp-imagetoatlas/) in Python\n",
9 | "\n",
10 | "This series of notebook demoes the use of ABBA with python.\n",
11 | "\n",
12 | "If you managed to create an environment with PyImageJ and DeepSlice, you will be able, by running this notebook, to perform a partially automated registration of demo mouse brain sections to the a BrainGLobe atlas.\n",
13 | "\n",
14 | "For this notebook to run, an atlas will need to be downloaded, as well as some sample dataset.\n",
15 | "\n",
16 | "The dataset is downloaded from https://zenodo.org/record/6592478\n",
17 | "\n",
18 | "\n",
19 | "**THIS DOES NOT 'REALLY' WORK, I DO NOT HAVE A DATASET TO TEST WITH ONE OF THE BRAINGLOBE ATLASES.**\n",
20 | "\n",
21 | "Please share if you have one or if you know a nicely available public one."
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": null,
27 | "id": "5c4e9d2f",
28 | "metadata": {},
29 | "outputs": [],
30 | "source": [
31 | "# core dependencies\n",
32 | "import os\n",
33 | "import time\n",
34 | "from pathlib import Path\n",
35 | "\n",
36 | "from bg_atlasapi import show_atlases\n",
37 | "from bg_atlasapi import utils\n",
38 | "\n",
39 | "from abba_python.Abba import Abba"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": null,
45 | "id": "86a102df",
46 | "metadata": {},
47 | "outputs": [],
48 | "source": [
49 | "# Demo dataset for automated slices registration\n",
50 | "zenodo_demo_slices_url = 'https://zenodo.org/record/6592478/files/'\n",
51 | "\n",
52 | "\n",
53 | "# Only one section every five section is used for this demo\n",
54 | "demo_sections = [\n",
55 | " 'S00.tif',\n",
56 | " 'S05.tif',\n",
57 | " 'S10.tif',\n",
58 | " 'S15.tif',\n",
59 | " 'S20.tif',\n",
60 | " 'S25.tif',\n",
61 | " 'S30.tif',\n",
62 | " 'S35.tif',\n",
63 | " 'S40.tif',\n",
64 | " 'S45.tif',\n",
65 | " 'S50.tif',\n",
66 | " 'S55.tif',\n",
67 | " 'S60.tif',\n",
68 | " 'S65.tif',\n",
69 | " 'S70.tif',\n",
70 | " 'S75.tif',\n",
71 | " 'S80.tif']\n",
72 | "\n",
73 | "\n",
74 | "def download_if_necessary(base_path, section_name):\n",
75 | " output_path = Path(base_path + section_name)\n",
76 | " if not output_path.exists():\n",
77 | " utils.check_internet_connection()\n",
78 | " url = zenodo_demo_slices_url + section_name + '?download=1'\n",
79 | " utils.retrieve_over_http(url, output_path)\n",
80 | "\n",
81 | "\n",
82 | "def download_test_images(base_path):\n",
83 | " [download_if_necessary(base_path, section) for section in demo_sections]\n",
84 | "\n"
85 | ]
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "id": "9dbd7118",
90 | "metadata": {},
91 | "source": [
92 | "## 1. Download test sections if necessary\n",
93 | "\n",
94 | " "
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": null,
100 | "id": "f68706c1",
101 | "metadata": {},
102 | "outputs": [],
103 | "source": [
104 | "\n",
105 | "basePath = os.getcwd() + '/images/'\n",
106 | "download_test_images(basePath)\n"
107 | ]
108 | },
109 | {
110 | "cell_type": "markdown",
111 | "id": "fd26eb27",
112 | "metadata": {},
113 | "source": [
114 | "## 2. Choose a BrainGlobe Atlas"
115 | ]
116 | },
117 | {
118 | "cell_type": "code",
119 | "execution_count": null,
120 | "id": "6e64306b",
121 | "metadata": {},
122 | "outputs": [],
123 | "source": [
124 | "show_atlases()"
125 | ]
126 | },
127 | {
128 | "cell_type": "markdown",
129 | "id": "54979364",
130 | "metadata": {},
131 | "source": [
132 | "## 3. ABBA initialization"
133 | ]
134 | },
135 | {
136 | "cell_type": "code",
137 | "execution_count": null,
138 | "id": "98c03c88",
139 | "metadata": {
140 | "scrolled": true
141 | },
142 | "outputs": [],
143 | "source": [
144 | "\n",
145 | "# -- FOR DEBUGGING\n",
146 | "# import imagej.doctor\n",
147 | "# imagej.doctor.checkup()\n",
148 | "# imagej.doctor.debug_to_stderr()\n",
149 | "\n",
150 | "abba = Abba('azba_zfish_4um') # Simply put the name of the BrainGlobe atlas\n",
151 | "abba.show_bdv_ui() # creates and show a bdv view\n",
152 | " \n",
153 | "# !! Warning : it takes time... first : downloading the atlas if not present\n",
154 | "# it can take up to a minute..."
155 | ]
156 | },
157 | {
158 | "cell_type": "markdown",
159 | "id": "358e4e2c",
160 | "metadata": {},
161 | "source": [
162 | "## 4. Import sections into ABBA"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": null,
168 | "id": "5c444a91",
169 | "metadata": {},
170 | "outputs": [],
171 | "source": [
172 | "# import sections into ABBA\n",
173 | "files = [basePath + section for section in demo_sections]\n",
174 | "abba.import_from_files(filepaths=files)\n",
175 | "\n",
176 | "# ALL REGISTRATIONS AND COMMANDS BELOW ARE PERFORMED ON THE SELECTED SLICES!!\n",
177 | "# since we want to register all of them, we select all of them\n",
178 | "abba.select_all_slices()"
179 | ]
180 | },
181 | {
182 | "cell_type": "code",
183 | "execution_count": null,
184 | "id": "66f97d0a",
185 | "metadata": {},
186 | "outputs": [],
187 | "source": [
188 | "# we want to avoid saturation in the display. This does not matter for\n",
189 | "# all registration methods EXCEPT for DeepSlice, which takes in rgb images\n",
190 | "abba.change_display_settings(0, 0, 500)\n",
191 | "abba.change_display_settings(1, 0, 1200)\n",
192 | "\n",
193 | "# programmatic way to show (or hide) sections and channels\n",
194 | "abba.get_bdv_view().setSelectedSlicesVisibility(True)\n",
195 | "abba.get_bdv_view().setSelectedSlicesVisibility(0, True)\n",
196 | "\n",
197 | "# This data does not make a lot of sense... mouse sections with fish..."
198 | ]
199 | },
200 | {
201 | "cell_type": "markdown",
202 | "id": "bb68f320",
203 | "metadata": {},
204 | "source": [
205 | "## 5. Position sections along the atlas axis"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": null,
211 | "id": "23dd1376",
212 | "metadata": {},
213 | "outputs": [],
214 | "source": [
215 | "# Good luck with that, this can be done programmatically with a bit of pain now. \n",
216 | "# However in practice in absence of DeepSlice, you need to deal with that manually:\n",
217 | "# cf https://www.youtube.com/watch?v=sERGONVw4zE"
218 | ]
219 | },
220 | {
221 | "cell_type": "markdown",
222 | "id": "83b8f828",
223 | "metadata": {},
224 | "source": [
225 | "## 5. Elastix affine registration"
226 | ]
227 | },
228 | {
229 | "cell_type": "code",
230 | "execution_count": null,
231 | "id": "4d364363",
232 | "metadata": {},
233 | "outputs": [],
234 | "source": [
235 | "# a round of elastix registration, affine\n",
236 | "# the channel 0 of the dataset (DAPI) is registered with the Nissl Channel of the atlas (0)\n",
237 | "# and the channel 1 of the dataset (mainly autofluo) is registered with the autofluo channel of the atlas (1)\n",
238 | "# these two channels have equal weights in the registration process\n",
239 | "abba.register_slices_elastix_affine(channels_slice_csv='1',\n",
240 | " channels_atlas_csv='0',\n",
241 | " pixel_size_micrometer=40)"
242 | ]
243 | },
244 | {
245 | "cell_type": "markdown",
246 | "id": "ee4cb12b",
247 | "metadata": {},
248 | "source": [
249 | "## 6. Elastix spline registration"
250 | ]
251 | },
252 | {
253 | "cell_type": "code",
254 | "execution_count": null,
255 | "id": "f08093da",
256 | "metadata": {},
257 | "outputs": [],
258 | "source": [
259 | "# optional: a round of elastix registration, spline\n",
260 | "# same channels as in the affine registration\n",
261 | "# 5 control points along x = very coarse spline (and thus maybe unnecessary)\n",
262 | "# abba.register_elastix_spline(\n",
263 | "# nb_control_points=5,\n",
264 | "# atlas_image_channels=[0, 1],\n",
265 | "# slice_image_channels=[0, 1],\n",
266 | "# pixel_size_micrometer=40).get()\n",
267 | "\n",
268 | "# a round of elastix registration, affine\n",
269 | "# same channels as in the affine registration \n",
270 | "# 16 control points = reasonable spline, which allows for local corrections, without deforming two much the section\n",
271 | "abba.register_slices_elastix_spline(channels_slice_csv='1',\n",
272 | " channels_atlas_csv='0',\n",
273 | " nb_control_points_x=16,\n",
274 | " pixel_size_micrometer=20)"
275 | ]
276 | },
277 | {
278 | "cell_type": "markdown",
279 | "id": "57c522c1",
280 | "metadata": {},
281 | "source": [
282 | "## 7. Wait for end of all registrations"
283 | ]
284 | },
285 | {
286 | "cell_type": "code",
287 | "execution_count": null,
288 | "id": "9d4a3a3c",
289 | "metadata": {},
290 | "outputs": [],
291 | "source": [
292 | "# all tasks/registrations are enqueued and executed asynchronously\n",
293 | "# if you need to wait before saving, then wait for all tasks to be finished:\n",
294 | "abba.wait_for_end_of_tasks()"
295 | ]
296 | },
297 | {
298 | "cell_type": "markdown",
299 | "id": "b7508c96",
300 | "metadata": {},
301 | "source": [
302 | "## 8. Saving the result"
303 | ]
304 | },
305 | {
306 | "cell_type": "code",
307 | "execution_count": null,
308 | "id": "27e6a478",
309 | "metadata": {},
310 | "outputs": [],
311 | "source": [
312 | "save_dir = os.path.join(os.getcwd(), 'temp', 'notebook1', 'state')\n",
313 | "\n",
314 | "if not os.path.exists(save_dir):\n",
315 | " os.makedirs(save_dir)\n",
316 | "\n",
317 | "\n",
318 | "abba.state_save(save_dir+\"/state.json\") # full absolute path needed"
319 | ]
320 | },
321 | {
322 | "cell_type": "code",
323 | "execution_count": null,
324 | "id": "1391844f",
325 | "metadata": {},
326 | "outputs": [],
327 | "source": [
328 | "# EXTRA : manipulation of slices programmatically\n",
329 | "\n",
330 | "# slices selection and manipulation\n",
331 | "abba.mp.selectSlice(abba.mp.getSlices().get(2)) # select the last slice\n",
332 | "abba.mp.getReslicedAtlas().setRotateY(0.05) # Small correction in Y slicing of the atlas\n",
333 | "abba.mp.deselectSlice(abba.mp.getSlices()) # deselect all\n",
334 | "\n",
335 | "# The slices are always sorted from small z to high z. To keep track of who's who, reference them before moving them\n",
336 | "slice30 = abba.mp.getSlices().get(0) \n",
337 | "slice40 = abba.mp.getSlices().get(1)\n",
338 | "slice50 = abba.mp.getSlices().get(2)\n",
339 | "\n",
340 | "# move slices along the slicing axis\n",
341 | "abba.mp.moveSlice(slice50,9.5)\n",
342 | "abba.mp.moveSlice(slice40,8.2)\n",
343 | "abba.mp.moveSlice(slice30,7.5)\n",
344 | "\n",
345 | "# For a registration : let's select all slices\n",
346 | "abba.mp.selectSlice(abba.mp.getSlices()) # select all"
347 | ]
348 | }
349 | ],
350 | "metadata": {
351 | "kernelspec": {
352 | "display_name": "Python 3 (ipykernel)",
353 | "language": "python",
354 | "name": "python3"
355 | },
356 | "language_info": {
357 | "codemirror_mode": {
358 | "name": "ipython",
359 | "version": 3
360 | },
361 | "file_extension": ".py",
362 | "mimetype": "text/x-python",
363 | "name": "python",
364 | "nbconvert_exporter": "python",
365 | "pygments_lexer": "ipython3",
366 | "version": "3.7.12"
367 | }
368 | },
369 | "nbformat": 4,
370 | "nbformat_minor": 5
371 | }
372 |
--------------------------------------------------------------------------------
/src/3. Open State and Use Transforms.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "6aaf973e",
6 | "metadata": {},
7 | "source": [
8 | "# [Aligning Big Brains and Atlases](https://biop.github.io/ijp-imagetoatlas/) in Python\n",
9 | "\n",
10 | "This series of notebook demoes the use of ABBA with python.\n",
11 | "\n",
12 | "If you have executed the previous notebook, you can re-open the saved state file.\n",
13 | "\n",
14 | "This notebook shows how to convert the pixel position of a slice to its coordinates in the atlas (forth and back).\n"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": null,
20 | "id": "62435da7",
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "# core dependencies\n",
25 | "import os\n",
26 | "import time\n",
27 | "from pathlib import Path\n",
28 | "\n",
29 | "\n",
30 | "from bg_atlasapi import show_atlases\n",
31 | "from bg_atlasapi import utils\n",
32 | "\n",
33 | "from abba_python.Abba import Abba"
34 | ]
35 | },
36 | {
37 | "cell_type": "code",
38 | "execution_count": null,
39 | "id": "99674331",
40 | "metadata": {},
41 | "outputs": [],
42 | "source": [
43 | "# -- NOT HEADLESS\n",
44 | "abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3p1') # You may have to click a window!\n",
45 | "abba.show_bdv_ui() # creates and show a bdv view\n",
46 | "\n",
47 | "save_dir = os.path.join(os.getcwd(), 'temp', 'notebook0', 'state') # execute the first notebook to get this file!\n",
48 | "abba.state_load(save_dir+\"/state.abba\") # full absolute path needed\n",
49 | "\n",
50 | "# ALL COMMANDS ARE PERFORMED ON SELECTED SLICES!!\n",
51 | "# since we want to register all of them, we select all of them\n",
52 | "abba.select_all_slices()\n",
53 | "\n",
54 | "# change display settings : channel index, min, max\n",
55 | "abba.change_display_settings(0, 0, 500)\n",
56 | "abba.change_display_settings(1, 0, 1200)\n",
57 | "\n",
58 | "# YOU MAY NEED TO CLICK ON THE UI TO FINISH THE EXECUTION OF THIS CELL (angle change notification)"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": null,
64 | "id": "0a056fa5",
65 | "metadata": {},
66 | "outputs": [],
67 | "source": [
68 | "# programmatic way to show (or hide) sections and channels\n",
69 | "abba.get_bdv_view().setSelectedSlicesVisibility(True)\n",
70 | "abba.get_bdv_view().setSelectedSlicesVisibility(0, True)"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "execution_count": null,
76 | "id": "4c913344",
77 | "metadata": {},
78 | "outputs": [],
79 | "source": [
80 | "mp = abba.mp\n",
81 | "mp.selectSlice(mp.getSlices()) # select all slices"
82 | ]
83 | },
84 | {
85 | "cell_type": "code",
86 | "execution_count": null,
87 | "id": "1d17f28e",
88 | "metadata": {},
89 | "outputs": [],
90 | "source": [
91 | "mp.deselectSlice(mp.getSlices()) # deselect all"
92 | ]
93 | },
94 | {
95 | "cell_type": "code",
96 | "execution_count": null,
97 | "id": "d0cb63e0",
98 | "metadata": {},
99 | "outputs": [],
100 | "source": [
101 | "mp.selectSlice(mp.getSlices().get(2)) # select the third slice"
102 | ]
103 | },
104 | {
105 | "cell_type": "code",
106 | "execution_count": null,
107 | "id": "e5b46eae",
108 | "metadata": {},
109 | "outputs": [],
110 | "source": [
111 | "# The slices are always sorted from small z to high z. To keep track of who's who, reference them before moving them\n",
112 | "slice_0 = mp.getSlices().get(0) \n",
113 | "slice_1 = mp.getSlices().get(1)\n",
114 | "slice_2 = mp.getSlices().get(2)"
115 | ]
116 | },
117 | {
118 | "cell_type": "code",
119 | "execution_count": null,
120 | "id": "93687822",
121 | "metadata": {},
122 | "outputs": [],
123 | "source": [
124 | "\n",
125 | "from jpype.types import JString, JArray, JDouble\n",
126 | "\n",
127 | "# Get transformation\n",
128 | "transform_pix_to_atlas = slice_0.getSlicePixToCCFRealTransform()\n",
129 | "\n",
130 | "DoubleArray = JArray(JDouble)\n",
131 | "\n",
132 | "coordInImage = DoubleArray(3)\n",
133 | "coordInCCF = DoubleArray(3)\n",
134 | "\n",
135 | "coordInImage[0] = 500 # X (pixel)\n",
136 | "coordInImage[1] = 500 # Y\n",
137 | "coordInImage[2] = 0 # Z\n",
138 | "\n",
139 | "transform_pix_to_atlas.inverse().apply(coordInImage,coordInCCF)\n",
140 | "\n",
141 | "print('CCF coord (mm):'+str(coordInCCF))\n"
142 | ]
143 | },
144 | {
145 | "cell_type": "code",
146 | "execution_count": null,
147 | "id": "b9f26097",
148 | "metadata": {},
149 | "outputs": [],
150 | "source": [
151 | "# We can also find the coordinates of the atlas into a slice\n",
152 | "# a coordinate in z far from 0, means that it's not in the slice, but far out\n",
153 | "# See https://forum.image.sc/t/coordinates-in-slice-to-atlas-using-abba-python/79513 \n",
154 | "\n",
155 | "coordInCCF = DoubleArray(3)\n",
156 | "coordInCCF[0] = 6.60 # X (pixel)\n",
157 | "coordInCCF[1] = 4.31 # Y\n",
158 | "coordInCCF[2] = 5.58 # Z\n",
159 | "\n",
160 | "coordInImage = DoubleArray(3)\n",
161 | "\n",
162 | "for idx in range(0,mp.getSlices().size()):\n",
163 | " # Get transformation\n",
164 | " transform_pix_to_atlas = mp.getSlices().get(idx).getSlicePixToCCFRealTransform()\n",
165 | " transform_pix_to_atlas.apply(coordInCCF, coordInImage)\n",
166 | " print('Slice['+str(idx)+'] coord (pixel):'+str(coordInImage))\n",
167 | " \n"
168 | ]
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": null,
173 | "id": "4f1cb990",
174 | "metadata": {},
175 | "outputs": [],
176 | "source": [
177 | "# The slice indexed 6 should be the one which is the nearest to the atlas point.\n",
178 | "# Note that the values in Z are small because, in absence of 3D image, \n",
179 | "# each section is assumed to have a size of 1 mm"
180 | ]
181 | },
182 | {
183 | "cell_type": "code",
184 | "execution_count": null,
185 | "id": "9b416a85",
186 | "metadata": {},
187 | "outputs": [],
188 | "source": [
189 | "# You can normalize the slices sections by expanding them to cover the space between neighboring slices, no more, no less\n",
190 | "abba.select_all_slices()\n",
191 | "abba.set_slices_thickness_match_neighbors() # not critical, but for 3d reconstruction it will allow for each slice to occupy the place available between its neighbors\n",
192 | "# The coordinates will be different in Z\n",
193 | "coordInImage = DoubleArray(3)\n",
194 | "\n",
195 | "for idx in range(0,mp.getSlices().size()):\n",
196 | " # Get transformation\n",
197 | " transform_pix_to_atlas = mp.getSlices().get(idx).getSlicePixToCCFRealTransform()\n",
198 | " transform_pix_to_atlas.apply(coordInCCF, coordInImage)\n",
199 | " print('Slice['+str(idx)+'] coord (pixel):'+str(coordInImage))"
200 | ]
201 | },
202 | {
203 | "cell_type": "code",
204 | "execution_count": null,
205 | "id": "90bd8a3e",
206 | "metadata": {},
207 | "outputs": [],
208 | "source": []
209 | }
210 | ],
211 | "metadata": {
212 | "kernelspec": {
213 | "display_name": "Python 3 (ipykernel)",
214 | "language": "python",
215 | "name": "python3"
216 | },
217 | "language_info": {
218 | "codemirror_mode": {
219 | "name": "ipython",
220 | "version": 3
221 | },
222 | "file_extension": ".py",
223 | "mimetype": "text/x-python",
224 | "name": "python",
225 | "nbconvert_exporter": "python",
226 | "pygments_lexer": "ipython3",
227 | "version": "3.7.12"
228 | }
229 | },
230 | "nbformat": 4,
231 | "nbformat_minor": 5
232 | }
233 |
--------------------------------------------------------------------------------
/src/4. Register QuPath Project.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "007bdd6f",
6 | "metadata": {},
7 | "source": [
8 | "# [Aligning Big Brains and Atlases](https://biop.github.io/ijp-imagetoatlas/) in Python\n",
9 | "\n",
10 | "This series of notebook demoes the use of ABBA with python.\n",
11 | "\n",
12 | "If you managed to create an environment with PyImageJ and DeepSlice, you will be able, by running this notebook, to perform an automated registration of a qupath project containind mouse brain sections to the Adult Mouse Allen Brain atlas.\n",
13 | "\n",
14 | "Take care : in this notebook, the slices should be ordered, not flipped, orientated correctly, and you need to adjust the display settings for deepslice to work. Also, it's assumed that channel 0 is DAPI and channel 1 is autofluorescence.\n",
15 | "\n",
16 | "You may download and create a project out of this dataset: https://zenodo.org/record/6553641#.Yz6EHkxBxD8. Remove labels and overview in QuPath before running this notebook\n",
17 | "\n",
18 | "It's probably best not to run it headless to check the project before running the registration\n",
19 | "\n",
20 | "\n",
21 | "Multichannel registration works reasonably well in this notebook because the first channel of the atlas (NISSL, indexed 0), is ressembling the DAPI channel of the slices (indexed 0), and the second channel of the atlas (ARA, indexed 1), is ressembling the autofluorescence channel of the slices (indexed 1).\n",
22 | "\n",
23 | "NOTE : You need to set the elastix and transformix path for the elastix registration steps."
24 | ]
25 | },
26 | {
27 | "cell_type": "code",
28 | "execution_count": null,
29 | "id": "5c4e9d2f",
30 | "metadata": {},
31 | "outputs": [],
32 | "source": [
33 | "# core dependencies\n",
34 | "import os\n",
35 | "import time\n",
36 | "from pathlib import Path\n",
37 | "\n",
38 | "from bg_atlasapi import show_atlases\n",
39 | "from bg_atlasapi import utils\n",
40 | "\n",
41 | "from abba_python.Abba import Abba"
42 | ]
43 | },
44 | {
45 | "cell_type": "markdown",
46 | "id": "54979364",
47 | "metadata": {},
48 | "source": [
49 | "## 1. ABBA initialization"
50 | ]
51 | },
52 | {
53 | "cell_type": "code",
54 | "execution_count": null,
55 | "id": "6497144b",
56 | "metadata": {},
57 | "outputs": [],
58 | "source": [
59 | "headless = False\n",
60 | "\n",
61 | "# -- FOR DEBUGGING\n",
62 | "# import imagej.doctor\n",
63 | "# imagej.doctor.checkup()\n",
64 | "# imagej.doctor.debug_to_stderr()\n",
65 | "\n",
66 | "if headless:\n",
67 | " # -- HEADLESS\n",
68 | " abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3p1', headless=True)\n",
69 | "else:\n",
70 | " # -- NOT HEADLESS\n",
71 | " abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3p1')\n",
72 | " abba.show_bdv_ui() # creates and show a bdv view"
73 | ]
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "id": "5ffd9321",
78 | "metadata": {},
79 | "source": [
80 | "## 2. Loading QuPath project"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": null,
86 | "id": "91eb6323",
87 | "metadata": {},
88 | "outputs": [],
89 | "source": [
90 | "abba.import_slices_from_qupath(slice_axis_initial_mm = 0.2,\n",
91 | " increment_between_slices_mm = 0.08,\n",
92 | " qupath_project= 'C:/Users/nico/Desktop/ABBA-Tutorial/tuto-abba/project.qpproj')"
93 | ]
94 | },
95 | {
96 | "cell_type": "code",
97 | "execution_count": null,
98 | "id": "63e9a7a2",
99 | "metadata": {},
100 | "outputs": [],
101 | "source": [
102 | "print('nSlices = '+str(abba.mp.getSlices().size()))\n",
103 | "# ALL REGISTRATIONS AND COMMANDS BELOW ARE PERFORMED ON THE SELECTED SLICES!!\n",
104 | "# since we want to register all of them, we select all of them\n",
105 | "abba.select_all_slices()"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": null,
111 | "id": "66f97d0a",
112 | "metadata": {},
113 | "outputs": [],
114 | "source": [
115 | "# we want to avoid saturation in the display. This does not matter for\n",
116 | "# all registration methods EXCEPT for DeepSlice, which takes in rgb images\n",
117 | "abba.select_all_slices()\n",
118 | "abba.change_display_settings(0, 0, 800)\n",
119 | "#abba.change_display_settings(1, 0, 1200) # fails because some slices have no channel 1\n",
120 | "\n",
121 | "# programmatic way to show (or hide) sections and channels\n",
122 | "abba.get_bdv_view().setSelectedSlicesVisibility(True)\n",
123 | "abba.get_bdv_view().setSelectedSlicesVisibility(0, True)"
124 | ]
125 | },
126 | {
127 | "cell_type": "markdown",
128 | "id": "3964abcb",
129 | "metadata": {},
130 | "source": [
131 | "## 4. DeepSlice Registration(s)"
132 | ]
133 | },
134 | {
135 | "cell_type": "code",
136 | "execution_count": null,
137 | "id": "e65db448",
138 | "metadata": {},
139 | "outputs": [],
140 | "source": [
141 | "# REMOVE LABELS AND OVERVIEWS!!\n",
142 | "\n",
143 | "# a first deepslice registration round : possible because it's the Allen CCF atlas, cut in coronal mode\n",
144 | "# what's assumed : the sections are already in the correct order\n",
145 | "abba.register_slices_deepslice(channels=[0, 1])\n",
146 | "\n",
147 | "# second deepslice registration: because the slices are resampled for the registration,\n",
148 | "# we usually get a slightly better positioning along z and cutting angle\n",
149 | "# also: it's fast, and the combination of two affine transforms is\n",
150 | "# an affine transform, so it's not like we are adding extra degrees of freedom\n",
151 | "abba.register_slices_deepslice(channels=[0, 1])"
152 | ]
153 | },
154 | {
155 | "cell_type": "raw",
156 | "id": "7f954791",
157 | "metadata": {},
158 | "source": [
159 | "## 5. Elastix affine registration"
160 | ]
161 | },
162 | {
163 | "cell_type": "code",
164 | "execution_count": null,
165 | "id": "4d364363",
166 | "metadata": {},
167 | "outputs": [],
168 | "source": [
169 | "# a round of elastix registration, affine\n",
170 | "# the channel 0 of the dataset (DAPI) is registered with the Nissl Channel of the atlas (0)\n",
171 | "# and the channel 1 of the dataset (mainly autofluo) is registered with the autofluo channel of the atlas (1)\n",
172 | "# these two channels have equal weights in the registration process\n",
173 | "abba.register_slices_elastix_affine(channels_slice_csv='0,1',\n",
174 | " channels_atlas_csv='0,1',\n",
175 | " pixel_size_micrometer=40)"
176 | ]
177 | },
178 | {
179 | "cell_type": "markdown",
180 | "id": "ee4cb12b",
181 | "metadata": {},
182 | "source": [
183 | "## 6. Elastix spline registration"
184 | ]
185 | },
186 | {
187 | "cell_type": "code",
188 | "execution_count": null,
189 | "id": "f08093da",
190 | "metadata": {},
191 | "outputs": [],
192 | "source": [
193 | "# optional: a round of elastix registration, spline\n",
194 | "# same channels as in the affine registration\n",
195 | "# 5 control points along x = very coarse spline (and thus maybe unnecessary)\n",
196 | "# abba.register_elastix_spline(\n",
197 | "# nb_control_points=5,\n",
198 | "# atlas_image_channels=[0, 1],\n",
199 | "# slice_image_channels=[0, 1],\n",
200 | "# pixel_size_micrometer=40).get()\n",
201 | "\n",
202 | "# a round of elastix registration, affine\n",
203 | "# same channels as in the affine registration \n",
204 | "# 16 control points = reasonable spline, which allows for local corrections, without deforming two much the section\n",
205 | "abba.register_slices_elastix_spline(channels_slice_csv='0,1',\n",
206 | " channels_atlas_csv='0,1',\n",
207 | " nb_control_points_x=16,\n",
208 | " pixel_size_micrometer=20)"
209 | ]
210 | },
211 | {
212 | "cell_type": "markdown",
213 | "id": "57c522c1",
214 | "metadata": {},
215 | "source": [
216 | "## 7. Wait for end of all registrations"
217 | ]
218 | },
219 | {
220 | "cell_type": "code",
221 | "execution_count": null,
222 | "id": "9d4a3a3c",
223 | "metadata": {},
224 | "outputs": [],
225 | "source": [
226 | "# all tasks/registrations are enqueued and executed asynchronously\n",
227 | "# if you need to wait before saving, then wait for all tasks to be finished:\n",
228 | "abba.wait_for_end_of_tasks()"
229 | ]
230 | },
231 | {
232 | "cell_type": "code",
233 | "execution_count": null,
234 | "id": "5bd54295",
235 | "metadata": {},
236 | "outputs": [],
237 | "source": [
238 | "abba.export_registration_to_qupath(erase_previous_file=True)"
239 | ]
240 | },
241 | {
242 | "cell_type": "code",
243 | "execution_count": null,
244 | "id": "a21bb282",
245 | "metadata": {},
246 | "outputs": [],
247 | "source": [
248 | "# all tasks/registrations/exports are enqueued and executed asynchronously\n",
249 | "# if you need to wait before saving, then wait for all tasks to be finished:\n",
250 | "abba.wait_for_end_of_tasks()"
251 | ]
252 | },
253 | {
254 | "cell_type": "markdown",
255 | "id": "b7508c96",
256 | "metadata": {},
257 | "source": [
258 | "## 8. Saving the result"
259 | ]
260 | },
261 | {
262 | "cell_type": "code",
263 | "execution_count": null,
264 | "id": "27e6a478",
265 | "metadata": {},
266 | "outputs": [],
267 | "source": [
268 | "save_dir = os.path.join(os.getcwd(), 'temp', 'notebook4', 'state')\n",
269 | "\n",
270 | "if not os.path.exists(save_dir):\n",
271 | " os.makedirs(save_dir)\n",
272 | "\n",
273 | "\n",
274 | "abba.state_save(save_dir+\"/state.abba\") # full absolute path needed"
275 | ]
276 | }
277 | ],
278 | "metadata": {
279 | "kernelspec": {
280 | "display_name": "Python 3 (ipykernel)",
281 | "language": "python",
282 | "name": "python3"
283 | },
284 | "language_info": {
285 | "codemirror_mode": {
286 | "name": "ipython",
287 | "version": 3
288 | },
289 | "file_extension": ".py",
290 | "mimetype": "text/x-python",
291 | "name": "python",
292 | "nbconvert_exporter": "python",
293 | "pygments_lexer": "ipython3",
294 | "version": "3.7.12"
295 | }
296 | },
297 | "nbformat": 4,
298 | "nbformat_minor": 5
299 | }
300 |
--------------------------------------------------------------------------------
/src/Playground - Adding a python registration method.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "id": "3d3bf6b0",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import itk\n",
11 | "import imagej\n",
12 | "import time\n",
13 | "import numpy as np\n",
14 | "\n",
15 | "# core dependencies\n",
16 | "import os\n",
17 | "from pathlib import Path\n",
18 | "\n",
19 | "from abba import Abba\n",
20 | "# NOT FUNCTIONAL!!"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": null,
26 | "id": "192f65c8",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "# -- NOT HEADLESS\n",
31 | "abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3')\n",
32 | "ij = abba.ij"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": null,
38 | "id": "c02d0bf1",
39 | "metadata": {},
40 | "outputs": [],
41 | "source": [
42 | "from abba.itk.abba_itk import add_abba_itk_registrations\n",
43 | "\n",
44 | "add_abba_itk_registrations(ij)"
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": null,
50 | "id": "ea14c2fc",
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "abba.show_bdv_ui() # creates and show a bdv view"
55 | ]
56 | },
57 | {
58 | "cell_type": "code",
59 | "execution_count": null,
60 | "id": "394c4a75",
61 | "metadata": {},
62 | "outputs": [],
63 | "source": [
64 | "ij.py.show(result_image)"
65 | ]
66 | },
67 | {
68 | "cell_type": "code",
69 | "execution_count": null,
70 | "id": "e58b6f77",
71 | "metadata": {},
72 | "outputs": [],
73 | "source": [
74 | "print(result_transform_parameters)"
75 | ]
76 | },
77 | {
78 | "cell_type": "code",
79 | "execution_count": null,
80 | "id": "4d2adc70",
81 | "metadata": {},
82 | "outputs": [],
83 | "source": [
84 | "print(result_transform_parameters.GetParameter(0, \"CompressResultImage\")[0])"
85 | ]
86 | },
87 | {
88 | "cell_type": "code",
89 | "execution_count": null,
90 | "id": "f5ce6d3b",
91 | "metadata": {},
92 | "outputs": [],
93 | "source": [
94 | "print(result_transform_parameters.GetParameter(0, \"ResampleInterpolator\"))"
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": null,
100 | "id": "7e6ad3d4",
101 | "metadata": {},
102 | "outputs": [],
103 | "source": [
104 | "len(result_transform_parameters.GetParameter(0, \"ResampleInterpolator\"))"
105 | ]
106 | },
107 | {
108 | "cell_type": "code",
109 | "execution_count": null,
110 | "id": "aeb46b5d",
111 | "metadata": {},
112 | "outputs": [],
113 | "source": [
114 | "from tempfile import TemporaryDirectory\n",
115 | "\n",
116 | "with TemporaryDirectory() as temp_dir:\n",
117 | " # ... do something with temp_dir\n",
118 | "# automatically cleaned up when context exited\n"
119 | ]
120 | }
121 | ],
122 | "metadata": {
123 | "kernelspec": {
124 | "display_name": "Python 3 (ipykernel)",
125 | "language": "python",
126 | "name": "python3"
127 | },
128 | "language_info": {
129 | "codemirror_mode": {
130 | "name": "ipython",
131 | "version": 3
132 | },
133 | "file_extension": ".py",
134 | "mimetype": "text/x-python",
135 | "name": "python",
136 | "nbconvert_exporter": "python",
137 | "pygments_lexer": "ipython3",
138 | "version": "3.7.12"
139 | }
140 | },
141 | "nbformat": 4,
142 | "nbformat_minor": 5
143 | }
144 |
--------------------------------------------------------------------------------
/src/abba_python/__init__.py:
--------------------------------------------------------------------------------
1 | __author__ = """nicolas_chiaruttini"""
2 | __version__ = "0.1.0-SNAPSHOT"
3 |
4 | from abba_python.Abba import Abba
5 |
--------------------------------------------------------------------------------
/src/abba_python/abba_private/AbbaAtlas.py:
--------------------------------------------------------------------------------
1 | from bg_atlasapi import BrainGlobeAtlas
2 | from scyjava import jimport
3 | from jpype import JImplements, JOverride
4 | from jpype.types import JString
5 | from abba_python.abba_private.AbbaOntology import AbbaOntology
6 | from abba_python.abba_private.AbbaMap import AbbaMap
7 |
8 | ArrayList = jimport('java.util.ArrayList')
9 | Atlas = jimport('ch.epfl.biop.atlas.struct.Atlas')
10 |
11 |
12 | @JImplements(Atlas)
13 | class AbbaAtlas(object):
14 | """This python class is part of the translation mechanism between the underlying Java ABBA API:
15 | https://github.com/BIOP/ijp-atlas/tree/main/src/main/java/ch/epfl/biop/atlas/struct
16 | and the BrainGlobe API:
17 | https://github.com/brainglobe/bg-atlasapi/
18 |
19 | Wrapper inner class that implements the following Java interface:
20 | https://github.com/BIOP/ijp-atlas/blob/main/src/main/java/ch/epfl/biop/atlas/struct/Atlas.java
21 | """
22 |
23 | def __init__(self, bg_atlas: BrainGlobeAtlas, ij):
24 | self.atlas = bg_atlas
25 | self.ij = ij
26 |
27 | @JOverride
28 | def getMap(self):
29 | return self.bg_atlasmap
30 |
31 | @JOverride
32 | def getOntology(self):
33 | return self.bg_ontology
34 |
35 | @JOverride
36 | def initialize(self, mapURL, ontologyURL):
37 | self.bg_ontology = AbbaOntology(self.atlas)
38 | self.bg_ontology.initialize()
39 | self.bg_ontology.setNamingProperty(JString('acronym'))
40 | self.bg_atlasmap = AbbaMap(self.atlas, self.ij)
41 | self.bg_atlasmap.initialize(self.atlas.atlas_name)
42 | self.dois = ArrayList()
43 | self.dois.add(JString(self.atlas.metadata['citation'].split("doi.org/", 1)[1]))
44 |
45 | @JOverride
46 | def getDOIs(self):
47 | return self.dois
48 |
49 | @JOverride
50 | def getURL(self):
51 | return JString(self.atlas.metadata['atlas_link'])
52 |
53 | @JOverride
54 | def getName(self):
55 | return JString(self.atlas.atlas_name)
56 |
57 | @JOverride
58 | def toString(self):
59 | return self.getName()
60 |
--------------------------------------------------------------------------------
/src/abba_python/abba_private/AbbaMap.py:
--------------------------------------------------------------------------------
1 | from scyjava import jimport
2 | from jpype import JImplements, JOverride
3 | from jpype.types import JString, JDouble, JInt
4 |
5 | import numpy as np
6 |
7 | AffineTransform3D = jimport('net.imglib2.realtransform.AffineTransform3D')
8 | ArrayList = jimport('java.util.ArrayList')
9 | AtlasHelper = jimport('ch.epfl.biop.atlas.struct.AtlasHelper')
10 | AtlasMap = jimport('ch.epfl.biop.atlas.struct.AtlasMap')
11 | BdvFunctions = jimport('bdv.util.BdvFunctions')
12 | BdvOptions = jimport('bdv.util.BdvOptions')
13 | SourceVoxelProcessor = jimport('ch.epfl.biop.sourceandconverter.SourceVoxelProcessor')
14 |
15 | RandomAccessibleIntervalSource = jimport('bdv.util.RandomAccessibleIntervalSource')
16 | Util = jimport('net.imglib2.util.Util')
17 | SourceAndConverterHelper = jimport('sc.fiji.bdvpg.sourceandconverter.SourceAndConverterHelper')
18 | def array_to_source(ij, array, name, transform=AffineTransform3D()):
19 | img = ij.py.to_java(array)
20 | name_java_str = JString(name)
21 | # we supposed it's of dimension 3
22 | pixel_type = Util.getTypeFromInterval(img);
23 | rai_source = RandomAccessibleIntervalSource(img, pixel_type, transform, name_java_str);
24 | return SourceAndConverterHelper.createSourceAndConverter(rai_source)
25 |
26 |
27 | @JImplements(AtlasMap)
28 | class AbbaMap(object):
29 | """This python class is part of the translation mechanism between the underlying Java ABBA API:
30 | https://github.com/BIOP/ijp-atlas/tree/main/src/main/java/ch/epfl/biop/atlas/struct
31 | and the BrainGlobe API:
32 | https://github.com/brainglobe/bg-atlasapi/
33 |
34 | Wrapper inner class that implements the following Java interface:
35 | https://github.com/BIOP/ijp-atlas/blob/main/src/main/java/ch/epfl/biop/atlas/struct/AtlasMap.java
36 | """
37 |
38 | def __init__(self, bg_atlas, ij):
39 | # this function is called way too many times if I put here the content
40 | # of initialize... and I don't know why
41 | # that's why there's this initialize function
42 | self.atlas = bg_atlas
43 | self.ij = ij
44 |
45 | @JOverride
46 | def setDataSource(self, dataSource):
47 | self.dataSource = dataSource
48 |
49 | @JOverride
50 | def initialize(self, atlasName):
51 | self.atlasName = str(atlasName)
52 |
53 | atlas_resolution_in__mm = JDouble(min(self.atlas.metadata['resolution']) / 1000.0)
54 |
55 | vox_x_mm = self.atlas.metadata['resolution'][0] / 1000.0
56 | vox_y_mm = self.atlas.metadata['resolution'][1] / 1000.0
57 | vox_z_mm = self.atlas.metadata['resolution'][2] / 1000.0
58 |
59 | affine_transform = AffineTransform3D()
60 | affine_transform.scale(JDouble(vox_x_mm), JDouble(vox_y_mm), JDouble(vox_z_mm))
61 |
62 | # Convert
63 | reference_sac = array_to_source(self.ij, self.atlas.reference,
64 | name=self.atlas.atlas_name + '_reference',
65 | transform=affine_transform)
66 |
67 | left_right_sac = array_to_source(self.ij, self.atlas.hemispheres,
68 | name=self.atlas.atlas_name + '_hemispheres',
69 | transform=affine_transform)
70 |
71 | self.annotation_sac = array_to_source(self.ij, self.atlas.annotation,
72 | name=self.atlas.atlas_name + '_annotation',
73 | transform=affine_transform)
74 |
75 | image_keys = ArrayList()
76 | image_keys.add(JString('reference'))
77 | for extra_channel in self.atlas.metadata['additional_references']:
78 | image_keys.add(JString(extra_channel))
79 | image_keys.add(JString('borders'))
80 | image_keys.add(JString('X'))
81 | image_keys.add(JString('Y'))
82 | image_keys.add(JString('Z'))
83 | image_keys.add(JString('Left Right'))
84 |
85 | structural_images = dict()
86 | self.maxValues = dict()
87 | structural_images['reference'] = reference_sac
88 | self.maxValues['reference'] = JDouble(np.max(self.atlas.reference) * 2)
89 | for extra_channel in self.atlas.metadata['additional_references']:
90 | structural_images[extra_channel] = array_to_source(self.ij, self.atlas.additional_references[extra_channel],
91 | name=self.atlas.atlas_name + '_' + extra_channel,
92 | transform=affine_transform)
93 | self.maxValues[extra_channel] = JDouble(np.max(self.atlas.additional_references[extra_channel]) * 2)
94 | structural_images['borders'] = SourceVoxelProcessor.getBorders(self.annotation_sac)
95 | self.maxValues['borders'] = 256 # we know this one.
96 | structural_images['X'] = AtlasHelper.getCoordinateSac(0, JString('X'))
97 | structural_images['Y'] = AtlasHelper.getCoordinateSac(1, JString('Y'))
98 | structural_images['Z'] = AtlasHelper.getCoordinateSac(2, JString('Z'))
99 | structural_images['Left Right'] = left_right_sac # return Map
100 |
101 | self.atlas_resolution_in__mm = atlas_resolution_in__mm
102 | self.affine_transform = affine_transform
103 | self.image_keys = image_keys
104 | self.structural_images = structural_images
105 |
106 | @JOverride
107 | def getDataSource(self):
108 | return self.dataSource # return URL
109 |
110 | @JOverride
111 | def getStructuralImages(self):
112 | return self.structural_images
113 |
114 | @JOverride
115 | def getImagesKeys(self):
116 | return self.image_keys
117 |
118 | @JOverride
119 | def getLabelImage(self):
120 | return self.annotation_sac # SourceAndConverter
121 |
122 | @JOverride
123 | def getAtlasPrecisionInMillimeter(self):
124 | return self.atlas_resolution_in__mm
125 |
126 | @JOverride
127 | def getCoronalTransform(self):
128 | return AffineTransform3D()
129 |
130 | @JOverride
131 | def getImageMax(self, key):
132 | return self.maxValues[key]
133 |
134 | @JOverride
135 | def labelRight(self):
136 | return JInt(1)
137 |
138 | @JOverride
139 | def labelLeft(self):
140 | return JInt(2)
141 |
--------------------------------------------------------------------------------
/src/abba_python/abba_private/AbbaOntology.py:
--------------------------------------------------------------------------------
1 | from bg_atlasapi import BrainGlobeAtlas
2 | from bg_atlasapi.descriptors import STRUCTURES_FILENAME
3 | from scyjava import jimport
4 | from jpype import JImplements, JOverride
5 | from jpype.types import JString
6 |
7 |
8 | AtlasHelper = jimport('ch.epfl.biop.atlas.struct.AtlasHelper')
9 | AtlasOntology = jimport('ch.epfl.biop.atlas.struct.AtlasOntology')
10 |
11 |
12 | @JImplements(AtlasOntology)
13 | class AbbaOntology(object):
14 | """This python class is part of the translation mechanism between the underlying Java ABBA API:
15 | https://github.com/BIOP/ijp-atlas/tree/main/src/main/java/ch/epfl/biop/atlas/struct
16 | and the BrainGlobe API:
17 | https://github.com/brainglobe/bg-atlasapi/
18 |
19 | Wrapper inner class that implements the following Java interface:
20 | https://github.com/BIOP/ijp-atlas/blob/main/src/main/java/ch/epfl/biop/atlas/struct/AtlasOntology.java
21 | """
22 |
23 | def __init__(self, bg_atlas: BrainGlobeAtlas):
24 | self.atlas = bg_atlas
25 | # bg_atlas.root_dir.
26 |
27 | @JOverride
28 | def getName(self):
29 | return JString(self.atlas.atlas_name)
30 |
31 | @JOverride
32 | def initialize(self):
33 | BrainGlobeHelper = jimport('ch.epfl.biop.atlas.brainglobe.BrainGlobeHelper')
34 | print(str(self.atlas.root_dir / STRUCTURES_FILENAME))
35 | print(BrainGlobeHelper)
36 | print(BrainGlobeHelper.buildTreeAndGetRoot)
37 | self.root_node = BrainGlobeHelper.buildTreeAndGetRoot(JString(str(self.atlas.root_dir / STRUCTURES_FILENAME))) # AbbaAtlasNode(self.atlas, self.atlas.structures.tree.root, None)
38 | self.idToAtlasNodeMap = AtlasHelper.buildIdToAtlasNodeMap(self.root_node)
39 |
40 | @JOverride
41 | def setDataSource(self, dataSource):
42 | self.dataSource = dataSource
43 |
44 | @JOverride
45 | def getDataSource(self):
46 | return self.dataSource # return URL
47 |
48 | @JOverride
49 | def getRoot(self):
50 | return self.root_node # return AtlasNode
51 |
52 | @JOverride
53 | def getNodeFromId(self, index):
54 | return self.idToAtlasNodeMap.get(index) # return AtlasNode
55 |
56 | @JOverride
57 | def getNamingProperty(self):
58 | return self.namingProperty
59 |
60 | @JOverride
61 | def setNamingProperty(self, namingProperty):
62 | self.namingProperty = namingProperty
63 |
--------------------------------------------------------------------------------
/src/abba_python/abba_private/DeepSliceProcessor.py:
--------------------------------------------------------------------------------
1 | from scyjava import jimport
2 | from abba_python.deepslice.DeepSlice import DeepSlice
3 | from jpype import JImplements, JOverride
4 | from jpype.types import JString
5 | import os
6 |
7 | import urllib.request
8 | from tqdm import tqdm
9 | from abba_python.deepslice.DeepSlice import get_deepslice_path
10 |
11 | # Import deepslice and make the function for the ABBA command
12 | Function = jimport('java.util.function.Function')
13 | File = jimport('java.io.File')
14 |
15 |
16 | # ----- Download with progress bar, cf https://stackoverflow.com/questions/15644964/python-progress-bar-and-downloads
17 | class DownloadProgressBar(tqdm):
18 | def update_to(self, b=1, bsize=1, tsize=None):
19 | if tsize is not None:
20 | self.total = tsize
21 | self.update(b * bsize - self.n)
22 |
23 |
24 | def download_url(url, output_path):
25 | with DownloadProgressBar(unit='B', unit_scale=True,
26 | miniters=1, desc=url.split('/')[-1]) as t:
27 | urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to)
28 |
29 |
30 | # ------------
31 |
32 | def check_model_is_present():
33 | path_to_model = get_deepslice_path() + "/NN_weights"
34 | if not os.path.isdir(path_to_model):
35 | print('DeepSlice model not present, 240 Mb will be downloaded ')
36 | os.makedirs(path_to_model)
37 | model_files = ['/Allen_Mixed_Best.h5',
38 | '/Synthetic_data_final.hdf5',
39 | '/xception_weights_tf_dim_ordering_tf_kernels.h5']
40 |
41 | deepslice_model_url = 'https://github.com/PolarBean/DeepSlice/raw/master/NN_weights'
42 |
43 | for file in model_files:
44 | if not os.path.exists(path_to_model + file):
45 | target_url = deepslice_model_url + file
46 | print('Missing DeepSlice model file ' + file + '. Downloading (80Mb)...')
47 | download_url(target_url, path_to_model + file)
48 |
49 |
50 | @JImplements(Function)
51 | class DeepSliceProcessor:
52 |
53 | @JOverride
54 | def apply(self, folder):
55 | check_model_is_present()
56 | model = DeepSlice()
57 | model.Build()
58 | model.predict(image_dir=str(folder.getParent()))
59 | out = File(folder, JString('results'))
60 | model.Save_Results(out.getAbsolutePath())
61 | return File(folder, JString('results.xml'))
62 |
--------------------------------------------------------------------------------
/src/abba_python/abba_private/__init__.py:
--------------------------------------------------------------------------------
1 | __author__ = """Nicolas Chiaruttini"""
2 | __version__ = "0.1.0-SNAPSHOT"
3 |
4 | # Inner classes, do not access and use them directly
5 | # Used internally by the Abba package
6 |
7 | # from abba_python.abba_private.AbbaAtlasNode import AbbaAtlasNode
8 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/DeepSlice.py:
--------------------------------------------------------------------------------
1 | ##very janky way to solve relative import problem
2 | import os
3 | from pathlib import Path
4 | # store ini paths
5 | ini_path = os.getcwd()
6 | ##set path to be the DeepSlice directory
7 | path = str(Path(__file__).parent)
8 | ##testing automated tests
9 | os.chdir(path)
10 | print(path)
11 | import warnings
12 | from tensorflow.keras.applications.xception import Xception
13 | from tensorflow.keras import Sequential
14 | from tensorflow.keras.layers import Dense
15 | from skimage import color
16 | from tensorflow.keras.preprocessing.image import ImageDataGenerator
17 | from abba_python.deepslice.utilities.QuickNII_functions import pd_to_quickNII, XML_to_csv
18 | from abba_python.deepslice.utilities import plane_alignment
19 | import pandas as pd
20 | import numpy as np
21 | from sklearn.linear_model import HuberRegressor
22 | import re
23 | import imghdr
24 | import struct
25 |
26 | # restore path
27 | os.chdir(ini_path)
28 |
29 | def get_image_size(fname):
30 | # https://stackoverflow.com/questions/8032642/how-to-obtain-image-size-using-standard-python-class-without-using-external-lib
31 | """Determine the image type of fhandle and return its size.
32 | from draco"""
33 | with open(fname, "rb") as fhandle:
34 | head = fhandle.read(24)
35 | if len(head) != 24:
36 | raise Exception("Invalid header")
37 |
38 | ext = imghdr.what(fname)
39 | if imghdr.what(fname) == "png":
40 | check = struct.unpack(">i", head[4:8])[0]
41 | if check != 0x0D0A1A0A:
42 | raise Exception("png checksum failed")
43 | width, height = struct.unpack(">ii", head[16:24])
44 | elif imghdr.what(fname) == "gif":
45 | width, height = struct.unpack("H", fhandle.read(2))[0] - 2
57 | # We are at a SOFn block
58 | fhandle.seek(1, 1) # Skip `precision' byte.
59 | height, width = struct.unpack(">HH", fhandle.read(4))
60 | else:
61 | raise Exception(f"Invalid filetype: {head}")
62 | return width, height
63 |
64 |
65 | def ideal_thickness(results, depth, detect_bad_sections=False):
66 | number_spacing = np.float64(results["section_ID"].values[1:]) - np.float64(
67 | results["section_ID"].values[:-1]
68 | )
69 | depth_spacing = np.array(depth)[:-1] - np.array(depth)[1:]
70 | norm_depth = depth_spacing / number_spacing
71 |
72 | if detect_bad_sections == True:
73 | predicted_thickness = np.mean(norm_depth)
74 | thickness_variability = np.std(norm_depth)
75 | good_indexes = (
76 | norm_depth < (predicted_thickness + (thickness_variability * 3))
77 | ) & (norm_depth > (predicted_thickness - (thickness_variability * 3)))
78 | print(
79 | f"sections {results.Filenames[1:][~good_indexes]} appeared to be outliers and were not incorporated into the spacing analysis"
80 | )
81 | norm_depth = norm_depth[good_indexes]
82 | predicted_thickness = np.mean(norm_depth) * 25
83 | thickness_variability = np.std(norm_depth) * 25
84 |
85 | print(
86 | "Your sections appear to be sectioned at {0:.4f} micron thickness".format(
87 | np.abs(predicted_thickness)
88 | )
89 | )
90 | print(
91 | "the variability of thickness is {0:.4f} microns".format(thickness_variability)
92 | )
93 | return predicted_thickness
94 |
95 |
96 | def ideal_spacing(
97 | pred_oy, section_numbers, section_thickness_um, bad_section_indexes=None
98 | ):
99 | if bad_section_indexes is None:
100 | bad_section_indexes = np.array([False] * len(pred_oy))
101 |
102 | pred_oy = np.float64(pred_oy[~bad_section_indexes])
103 | section_numbers = np.float64(section_numbers.values)
104 | section_thickness_um = np.float64(section_thickness_um)
105 | pred_um = pred_oy * 25
106 | section_um = section_numbers * section_thickness_um
107 | print(f"section_um: {pred_um/25}")
108 | avg_dist = np.mean(pred_um - section_um[~bad_section_indexes])
109 | print("ideal: ", (section_um + avg_dist) / 25)
110 | print("pred_UM: ")
111 | print(f"average distance: {avg_dist}")
112 | # print((pred_um-section_um) - avg_dist)
113 | return ((section_um + avg_dist)) / 25
114 |
115 |
116 | def calculate_brain_center_depth(section):
117 | cross, k = plane_alignment.find_plane_equation(section)
118 | translated_volume = np.array((456, 0, 320))
119 | linear_point = (
120 | ((translated_volume[0] / 2) * cross[0])
121 | + ((translated_volume[2] / 2) * cross[2])
122 | ) + k
123 | depth = -(linear_point / cross[1])
124 | return depth
125 |
126 | def get_deepslice_path():
127 | return path
128 |
129 | class DeepSlice:
130 | def __init__(self, web=False, folder_name=None):
131 | self.web = web
132 | self.folder_name = folder_name
133 |
134 | self.image_dir = None
135 | self.columns = ["ox", "oy", "oz", "ux", "uy", "uz", "vx", "vy", "vz"]
136 |
137 | def init_model(self, DS_weights, xception_weights):
138 | # Download Xception architecture with weights pretrained on imagenet
139 | DenseModel = Xception(include_top=True, weights=xception_weights)
140 | # remove the Dense Softmax layer and average pooling layer from the pretrained model
141 | DenseModel._layers.pop()
142 | DenseModel._layers.pop()
143 | # Build Deepslice
144 | model = Sequential()
145 | model.add(DenseModel)
146 | # we tested various sizes for these last two layers but consistently found that 256 performed best for some unknown reason.
147 | # theoretically larger layers should be better able to fit the training set but this is not what we saw.
148 | model.add(Dense(256, activation="relu"))
149 | model.add(Dense(256, activation="relu"))
150 | # as we are predicting continuous values, here we define 9 output neurons with linear activation functions,
151 | # each corresponding to one of the QuickNII alignment variables Oxyz, Uxyz, Vxyz.
152 | model.add(Dense(9, activation="linear"))
153 | if DS_weights != None:
154 | # load weights
155 | model.load_weights(DS_weights)
156 | return model
157 |
158 | def Build(
159 | self,
160 | DS_weights=path + "/NN_weights/Allen_Mixed_Best.h5",
161 | xception_weights=path
162 | + "/NN_weights/xception_weights_tf_dim_ordering_tf_kernels.h5",
163 | wise_weights=path + "/NN_weights/Synthetic_data_final.hdf5",
164 | species="mouse",
165 | ):
166 | self.wise_weights = wise_weights
167 | self.DS_weights = DS_weights
168 | self.rat_weights = path + "/NN_weights/rat_mixed_4056.h5"
169 | if species.lower() == "rat":
170 | self.model = self.init_model(
171 | DS_weights=self.rat_weights, xception_weights=xception_weights
172 | )
173 | if species.lower() == "mouse":
174 | self.model = self.init_model(
175 | DS_weights=self.DS_weights, xception_weights=xception_weights
176 | )
177 | self.species = species
178 |
179 | def gray_scale(self, img):
180 | # Downsamples images too 299 x 299
181 | # converts images to grayscale
182 | img = color.rgb2gray(img).reshape(299, 299, 1)
183 | return img
184 |
185 | def predict(self, image_dir, prop_angles=True, huber=False, wise=False): # input
186 | # define_image_generator
187 | self.Image_generator = ImageDataGenerator(
188 | preprocessing_function=self.gray_scale, samplewise_std_normalization=True
189 | ).flow_from_directory(
190 | image_dir,
191 | target_size=(299, 299),
192 | batch_size=1,
193 | color_mode="rgb",
194 | shuffle=False,
195 | )
196 | self.image_dir = image_dir
197 | # reset the image generator to ensure it starts from the first image
198 | self.Image_generator.reset()
199 | # feed images to the model and store the predicted parameters
200 | preds = self.model.predict(
201 | self.Image_generator,
202 | steps=self.Image_generator.n // self.Image_generator.batch_size,
203 | verbose=1,
204 | )
205 | # convert the parameter values to floating point digits
206 | preds = preds.astype(float)
207 | if wise:
208 | self.Image_generator.reset()
209 | self.model.load_weights(self.wise_weights)
210 | wise_preds = self.model.predict(
211 | self.Image_generator,
212 | steps=self.Image_generator.n // self.Image_generator.batch_size,
213 | verbose=1,
214 | )
215 |
216 | preds = np.mean((preds, wise_preds), axis=0)
217 | self.model.load_weights(self.DS_weights)
218 |
219 | # define the column names
220 | # create a pandas DataFrame of the parameter values
221 | results = pd.DataFrame(preds, columns=self.columns)
222 | # insert the section filenames into the pandas DataFrame
223 | results["Filenames"] = self.Image_generator.filenames[: results.shape[0]]
224 | ordered_cols = ["Filenames"] + self.columns
225 | self.results = results[ordered_cols] # To get the same column order
226 | if prop_angles:
227 | self.propagate_angles(huber)
228 |
229 | def reorder_indexes(self, ascending):
230 | # reorders values so they are in the same order as the indexes with minimal swaps
231 | self.results.oy = self.results.oy.sort_values(ascending=ascending).values
232 |
233 | def even_spacing(
234 | self,
235 | section_thickness_um=None,
236 | no_correction=False,
237 | order_only=False,
238 | bad_sections=[],
239 | detect_bad_sections=False,
240 | ignore_final_chars=0,
241 | ):
242 | print(
243 | "Section Numbers must have been included as the last three digits of the Filename"
244 | )
245 | ###This function takes a dataset with section numbers and spaces those sections based on their numbers
246 | section_numbers = []
247 | depth = []
248 | count = 1
249 | for Filename in (
250 | self.results.Filenames.str.split("\\", expand=True).iloc[:, -1].values
251 | ):
252 | if ignore_final_chars > 0:
253 | temp_filename = Filename[:-ignore_final_chars]
254 | else:
255 | temp_filename = Filename
256 | ##this removes all non-numeric characters
257 | section_number = re.sub("[^0-9]", "", temp_filename)
258 | ###this gets the three numbers closest to the end
259 | section_number = section_number[-3:]
260 | ind = [Filename in i for i in self.results.Filenames.values]
261 | d = self.results[ind]
262 | d = calculate_brain_center_depth(d[self.columns].values[0])
263 | # print(f"Filename: {Filename} section_number: {section_number} depth: {d}")
264 |
265 | ###find the first appearancex of the specified pattern
266 | ###remove non-numeric characters
267 | if len(section_number) < 3:
268 | warnings.warn(
269 | f'could not find three digit section number for file "{Filename}", it should be the last three digits of the filenames.'
270 | )
271 | if len(section_number) == 0:
272 | warnings.warn(
273 | f'could not find any section number for file "{Filename}\, using {count} instead'
274 | )
275 | section_numbers.append(count)
276 | count += 1
277 | section_numbers.append(section_number)
278 |
279 | self.results["section_ID"] = section_numbers
280 |
281 | self.results.section_ID = self.results.section_ID.astype(np.float64)
282 | self.results = self.results.sort_values(
283 | "section_ID", ascending=True
284 | ).reset_index(drop=True)
285 |
286 | print(self.results)
287 |
288 | depth = []
289 | for section in self.results[self.columns].values:
290 | depth.append((calculate_brain_center_depth(section)))
291 | depth = np.array(depth)
292 |
293 | self.results["depth"] = pd.Series(depth)
294 | if len(bad_sections) > 0:
295 | bad_section_indexes = np.sum(
296 | [self.results.Filenames.str.contains(bs) for bs in bad_sections],
297 | axis=0,
298 | dtype=bool,
299 | )
300 | print(
301 | f" we found {np.sum(bad_section_indexes)} out of {len(bad_sections)} bad sections"
302 | )
303 | estimate_thickness = ideal_thickness(
304 | self.results[~bad_section_indexes],
305 | depth[~bad_section_indexes],
306 | detect_bad_sections=detect_bad_sections,
307 | )
308 | else:
309 | estimate_thickness = ideal_thickness(
310 | self.results, depth, detect_bad_sections=detect_bad_sections
311 | )
312 |
313 | print("\n", estimate_thickness, "\n")
314 | print("new version")
315 |
316 | if estimate_thickness > 0:
317 | print("the sections are numbered rostrocaudaly")
318 | self.reorder_indexes(ascending=False)
319 |
320 | else:
321 | print("the sections are not numbered rostrocaudaly")
322 | self.reorder_indexes(ascending=True)
323 |
324 | if section_thickness_um is not None:
325 | section_thickness_um *= -1
326 |
327 | if no_correction or order_only:
328 | return
329 |
330 | depth = []
331 | for section in self.results[self.columns].values:
332 | depth.append((calculate_brain_center_depth(section)))
333 | depth = np.array(depth)
334 |
335 | if len(bad_sections) > 0:
336 | bad_section_indexes = np.sum(
337 | [self.results.Filenames.str.contains(bs) for bs in bad_sections],
338 | axis=0,
339 | dtype=bool,
340 | )
341 | print(
342 | f" we found {np.sum(bad_section_indexes)} out of {len(bad_sections)} bad sections"
343 | )
344 | estimate_thickness = ideal_thickness(
345 | self.results[~bad_section_indexes],
346 | depth[~bad_section_indexes],
347 | detect_bad_sections=detect_bad_sections,
348 | )
349 | else:
350 | estimate_thickness = ideal_thickness(
351 | self.results, depth, detect_bad_sections=detect_bad_sections
352 | )
353 |
354 | if section_thickness_um is None:
355 | section_thickness_um = -estimate_thickness
356 | print(len(depth))
357 | if len(bad_sections) > 0:
358 | ideal = ideal_spacing(
359 | depth,
360 | self.results["section_ID"],
361 | section_thickness_um,
362 | bad_section_indexes=bad_section_indexes,
363 | )
364 | else:
365 | ideal = ideal_spacing(
366 | depth, self.results["section_ID"], section_thickness_um
367 | )
368 |
369 | self.results.oy -= depth - ideal
370 | depth = []
371 | for section in self.results[self.columns].values:
372 | depth.append((calculate_brain_center_depth(section)))
373 | self.results.section_ID = np.abs(self.results.section_ID)
374 |
375 | def load_QuickNII(self, filename):
376 | self.results = XML_to_csv(filename)
377 | self.results[self.columns] = self.results[self.columns].astype(np.float64)
378 |
379 | def set_angles(self, DV=None, ML=None):
380 | rotated_sections = []
381 | count = 0
382 | for section in self.results.iterrows():
383 | m = section[1][
384 | ["ox", "oy", "oz", "ux", "uy", "uz", "vx", "vy", "vz"]
385 | ].values.astype(np.float64)
386 | cross, k = plane_alignment.find_plane_equation(m)
387 | old_DV = plane_alignment.get_angle(m, cross, k, "DV")
388 | old_ML = plane_alignment.get_angle(m, cross, k, "ML")
389 | section = section[1][self.columns].values
390 | original_depth = calculate_brain_center_depth(section)
391 | for i in range(10):
392 | cross, k = plane_alignment.find_plane_equation(section)
393 | if DV is not None:
394 | section = plane_alignment.Section_adjust(
395 | section, mean=DV, direction="DV"
396 | )
397 | else:
398 | section = plane_alignment.Section_adjust(
399 | section, mean=old_DV, direction="DV"
400 | )
401 | if ML is not None:
402 | section = plane_alignment.Section_adjust(
403 | section, mean=ML, direction="ML"
404 | )
405 | else:
406 | section = plane_alignment.Section_adjust(
407 | section, mean=old_ML, direction="DV"
408 | )
409 | rotated_depth = calculate_brain_center_depth(section)
410 | movement = rotated_depth - original_depth
411 | # section[1] -= movement
412 | rotated_sections.append(section)
413 | cross, k = plane_alignment.find_plane_equation(section)
414 | final_depth = calculate_brain_center_depth(section)
415 | # print(" original: {} \n rotated {} \n corrected {} \n".format(original_depth, rotated_depth, final_depth))
416 |
417 | count += 1
418 | self.results[self.columns] = rotated_sections
419 | # insert the section filenames into the pandas DataFrame
420 |
421 | def propagate_angles(self, huber=True):
422 | DV = []
423 | ML = []
424 | oy = []
425 | for prediction in self.results.iterrows():
426 | m = prediction[1][
427 | ["ox", "oy", "oz", "ux", "uy", "uz", "vx", "vy", "vz"]
428 | ].values.astype(np.float64)
429 | oy.append(m[1])
430 | cross, k = plane_alignment.find_plane_equation(m)
431 | DV.append(plane_alignment.get_angle(m, cross, k, "DV"))
432 | ML.append(plane_alignment.get_angle(m, cross, k, "ML"))
433 | if huber == True:
434 | oy = np.array(oy).reshape(-1, 1)
435 | # we use a huberised linear regressor as it is more robust to outliers
436 | huber_regressor = HuberRegressor().fit(oy, DV)
437 | # for our predictions we multiple the depth by the coefficient and add the y intercept
438 | prop_DV = (huber_regressor.coef_ * oy) + huber_regressor.intercept_
439 | huber_regressor = HuberRegressor().fit(oy, ML)
440 | prop_ML = (huber_regressor.coef_ * oy) + huber_regressor.intercept_
441 | else:
442 | length = len(DV)
443 | weights = plane_alignment.make_gaussian_weights(0, 528)
444 | oy = np.array(oy)
445 | oy[oy < 0] = 0
446 | oy[oy > 527] = 527
447 | weights = [weights[int(y)] for y in oy]
448 | # DV = sorted(DV, key=abs)[int(length*0.75):]
449 | # ML = sorted(ML, key=abs)[int(length*0.75):]
450 | print(weights)
451 | prop_DV = [np.average(DV, weights=np.array(weights))] * length
452 | prop_ML = [np.average(ML, weights=np.array(weights))] * length
453 |
454 | rotated_sections = []
455 | count = 0
456 | for section in self.results.iterrows():
457 | section = section[1][self.columns].values
458 | original_depth = calculate_brain_center_depth(section)
459 | for i in range(10):
460 | cross, k = plane_alignment.find_plane_equation(section)
461 |
462 | section = plane_alignment.Section_adjust(
463 | section, mean=prop_DV[count], direction="DV"
464 | )
465 |
466 | section = plane_alignment.Section_adjust(
467 | section, mean=prop_ML[count], direction="ML"
468 | )
469 | rotated_depth = calculate_brain_center_depth(section)
470 | movement = rotated_depth - original_depth
471 | # section[1] -= movement
472 | rotated_sections.append(section)
473 | cross, k = plane_alignment.find_plane_equation(section)
474 | final_depth = calculate_brain_center_depth(section)
475 | # print(" original: {} \n rotated {} \n corrected {} \n".format(original_depth, rotated_depth, final_depth))
476 |
477 | count += 1
478 | results = pd.DataFrame(rotated_sections, columns=self.columns)
479 | # insert the section filenames into the pandas DataFrame
480 | results["Filenames"] = self.Image_generator.filenames[: results.shape[0]]
481 | ordered_cols = ["Filenames"] + self.columns
482 | self.results = results[ordered_cols] # To get the same column order
483 |
484 | def Save_Results(self, filename):
485 | if "section_ID" in self.results:
486 | section_numbers = np.abs(self.results["section_ID"])
487 | else:
488 | section_numbers = None
489 | widths, heights = [], []
490 | if self.image_dir is not None:
491 | for file in self.results.Filenames:
492 | width, height = get_image_size(self.image_dir + os.path.sep + file)
493 | widths.append(width)
494 | heights.append(height)
495 | else:
496 | for file in self.results.Filenames:
497 | width, height = get_image_size(file)
498 | widths.append(width)
499 | heights.append(height)
500 | self.results["width"] = widths
501 | self.results["height"] = heights
502 | pd_to_quickNII(
503 | results=self.results,
504 | orientation="coronal",
505 | filename=str(filename),
506 | web=self.web,
507 | folder_name=self.folder_name,
508 | aligner="DeepSlice_ver_3.0_python",
509 | )
510 |
511 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/LICENSE:
--------------------------------------------------------------------------------
1 | DeepSlice source code © [2022] Macquarie University patent pending in Australia, and contact Macquarie University for other countries. Macquarie University
2 | grants users a non-exclusive, non-transferable, non-sublicenseable licence to copy, reproduce and adapt DeepSlice only for use for non-commercial research
3 | purposes and not for other purposes without Macquarie University's prior written consent. DeepSlice is made available on the basis that it is released as a test
4 | version, 'as is', and should only be used for coronal images of the adult mouse brain, and may contain errors or produce results that are incorrect. DeepSlice
5 | or its derivatives should not be used or released for commercial use and cannot at present be reliably used to analyse brain images from species other than the
6 | mouse. Users agree that if they adapt DeepSlice, and make those adaptations available for others to use, they will release the adapted source code to GitHub on
7 | the same terms as this licence
8 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/README.md:
--------------------------------------------------------------------------------
1 |
2 | 
3 | DeepSlice is a python library, published by [the McMullan Lab Group](https://researchers.mq.edu.au/en/persons/simon-mcmullan), which automatically aligns mouse histology with the allen brain atlas common coordinate framework.
4 | It is the Masters project of [Harry Carey](https://github.com/PolarBean/). The alignments are viewable, and refinable, using the [QuickNII](https://www.nitrc.org/projects/quicknii "QuickNII") software package.
5 | DeepSlice requires no preprocessing and works on any stain, however we have found it performs best on brightfield images.
6 | At present one limitation is that it only works on Coronally cut sections, we will release an update in the future for sagittal and horizontally cut histology.
7 | 
8 | DeepSlice automates the process of identifying exactly where in the brain a section lies, it can accomodate non-orthogonal cutting planes and will produce an image specific annotation for each section in your brain.
9 | ## Web Application
10 | If you would like to use DeepSlice but don't need your own personal installation, check out [**DeepSlice Flask**](https://www.DeepSlice.com.au), a fully functional web application which will allow you to upload your dataset and download the aligned results. The web interface was developed by [Michael Pegios](https://github.com/ThermoDev/).
11 | ## [Installation: How to install DeepSlice](docs/installation.md)
12 |
13 | ## [Usage: How to align using DeepSlice](docs/usage.md)
14 | For a quick example using google colab, view our notebook here!
15 | [](https://colab.research.google.com/github/PolarBean/DeepSlice/blob/master/example_notebooks/DeepSlice_example.ipynb)
16 |
17 | **Happy Aligning :)**
18 |
19 |
20 |
21 |
22 |
23 |
24 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/__init__.py:
--------------------------------------------------------------------------------
1 | from abba_python.deepslice import DeepSlice
--------------------------------------------------------------------------------
/src/abba_python/deepslice/utilities/QuickNII_functions.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import xml.etree.ElementTree as ET
3 | from tqdm import tqdm
4 | import re
5 | import numpy as np
6 |
7 |
8 | def indent(elem, level=0):
9 | i = "\n" + level * " "
10 | if len(elem):
11 | if not elem.text or not elem.text.strip():
12 | elem.text = i + " "
13 | if not elem.tail or not elem.tail.strip():
14 | elem.tail = i
15 | for elem in elem:
16 | indent(elem, level + 1)
17 | if not elem.tail or not elem.tail.strip():
18 | elem.tail = i
19 | else:
20 | if level and (not elem.tail or not elem.tail.strip()):
21 | elem.tail = i
22 |
23 |
24 | # converts a pandas DataFrame to a quickNII compatible XML
25 | def pd_to_quickNII(
26 | results,
27 | orientation="coronal",
28 | filename="Download",
29 | web=False,
30 | folder_name=None,
31 | aligner=None,
32 | ):
33 | # Replace the subfolder present in results if we are running for the web
34 | if web and folder_name:
35 | results["Filenames"] = (
36 | results["Filenames"]
37 | .str.replace(folder_name, "")
38 | .str.replace("\\", "")
39 | .str.replace("/", "")
40 | )
41 | # Get the total number of sections
42 | num_of_sections = results.shape[0]
43 |
44 | if not "section_ID" in results:
45 | section_numbers = np.arange((num_of_sections)) + 1
46 | if orientation == "coronal":
47 | results = results.sort_values("oy")
48 | if orientation == "sagittal":
49 | results = results.sort_values("ox")
50 | if orientation == "horizontal":
51 | results = results.sort_values("oz")
52 | results["section_ID"] = section_numbers
53 | else:
54 | results = results.sort_values("section_ID")
55 | results = results[
56 | [
57 | "Filenames",
58 | "ox",
59 | "oy",
60 | "oz",
61 | "ux",
62 | "uy",
63 | "uz",
64 | "vx",
65 | "vy",
66 | "vz",
67 | "section_ID",
68 | "width",
69 | "height",
70 | ]
71 | ]
72 | # Create the XML structure
73 | root = ET.Element("series")
74 | root.attrib["first"] = str(results["section_ID"].values)
75 | root.attrib["last"] = str(results["section_ID"].values)
76 | root.attrib["aligner"] = str(aligner)
77 | # Explicitly confirm all filenames are Strings
78 | results["Filenames"] = results["Filenames"].astype(str)
79 | # for each section append Oxyz, Uxyz and Vxyz parameters to the XML
80 | for i in range(num_of_sections):
81 | child = ET.SubElement(root, "slice")
82 | # this is the filename in our results file
83 | child.attrib["filename"] = results.iloc[i, 0]
84 | root.attrib["name"] = results.iloc[i, 0] # so is this
85 | # Organise our coordinates
86 | ox, oy, oz, ux, uy, uz, vx, vy, vz = results.iloc[i, 1:10]
87 | # these next two values are the original file size of the image, i need to fix this later.
88 | child.attrib["height"] = results.iloc[
89 | i,
90 | ]
91 | child.attrib["width"] = "-999"
92 | # Section number
93 | child.attrib["nr"] = str(results.iloc[i, 10])
94 | child.attrib["width"] = str(results.iloc[i, 11])
95 | child.attrib["height"] = str(results.iloc[i, 12])
96 | # writes Oxyz, Uxyz and Vxyz parameters to the XML in the correct format
97 | child.attrib["anchoring"] = (
98 | "ox="
99 | + str(ox)
100 | + "&oy="
101 | + str(oy)
102 | + "&oz="
103 | + str(oz)
104 | + "&ux="
105 | + str(ux)
106 | + "&uy="
107 | + str(uy)
108 | + "&uz="
109 | + str(uz)
110 | + "&vx="
111 | + str(vx)
112 | + "&vy="
113 | + str(vy)
114 | + "&vz="
115 | + str(vz)
116 | )
117 | indent(root)
118 | ET.ElementTree(root).write("{}.xml".format(filename))
119 | results.to_csv("{}.csv".format(filename))
120 |
121 |
122 | # a useful script that converts a Quicknii XML to a csv file
123 | # handy for training on human-aligned QuickNII files.
124 |
125 |
126 | def XML_to_csv(xml):
127 | tree = ET.parse(str(xml))
128 | root = tree.getroot()
129 | count = 0
130 | df = pd.DataFrame()
131 | for i in root.findall("slice"):
132 | try:
133 | stringdata = str(i.attrib["anchoring"])
134 | except KeyError:
135 | continue
136 | df.loc[count, "Filenames"] = i.attrib["filename"]
137 | df.loc[count, "ox"] = re.search("ox=(.+?)&oy", stringdata).group(1)
138 | df.loc[count, "oy"] = re.search("oy=(.+?)&oz", stringdata).group(1)
139 | df.loc[count, "oz"] = re.search("oz=(.+?)&ux", stringdata).group(1)
140 | df.loc[count, "ux"] = re.search("ux=(.+?)&uy", stringdata).group(1)
141 | df.loc[count, "uy"] = re.search("uy=(.+?)&uz", stringdata).group(1)
142 | df.loc[count, "uz"] = re.search("uz=(.+?)&vx", stringdata).group(1)
143 | df.loc[count, "vx"] = re.search("vx=(.+?)&vy", stringdata).group(1)
144 | df.loc[count, "vy"] = re.search("vy=(.+?)&vz", stringdata).group(1)
145 | df.loc[count, "vz"] = re.search("vz=(.+?)$", stringdata).group(1)
146 | count += 1
147 | return df
148 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/utilities/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/src/abba_python/deepslice/utilities/__init__.py
--------------------------------------------------------------------------------
/src/abba_python/deepslice/utilities/neuron_tools.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from abba_python.deepslice.utilities import QuickNII_functions
3 | import glob
4 | import pandas as pd
5 | def points_to_3d(points, plane):
6 | resolution = points[['width', 'height']].values.astype(np.float64)[0]
7 | points = points[['X', 'Y']].values.astype(np.float64)
8 | ## Scale points by the resolution (numbers will now be between 0 and 1
9 | points/=resolution
10 | O_plane = plane[['ox','oy','oz']].values.astype(np.float64)
11 | X_plane = plane[['ux','uy','uz']].values.astype(np.float64)
12 | Y_plane = plane[['vx','vy','vz']].values.astype(np.float64)
13 | ## Since we have the vectors U&V and the fractional cell coordinates
14 | ## We can convert these onto the points on the plane
15 | ## Should probably be vectorised
16 | X_dim = [X_plane * points[i, 0] for i in range(len(points))]
17 | Y_dim = [Y_plane * points[i, 1] for i in range(len(points))]
18 | points = np.sum((X_dim,Y_dim), axis=0)
19 | ##Now we add the origin to these coordinates to transform them into our alignment space
20 | points += O_plane
21 | points = points.reshape((len(points), 3))
22 | return points
23 |
24 | def analyse_slice(point_name, plane):
25 | image_name = point_name.split('/')[-1][:-4]
26 | raw_names = [name[0].split('/')[-1] for name in plane["Filenames"].str.split('.')]
27 | index = [i==image_name for i in raw_names]
28 | plane = plane[index]
29 | points = pd.read_csv(point_name)
30 | points = points_to_3d(points, plane)
31 | return points
32 |
33 | def analyse_brain(plane_file, points_folder = 'points/', save_csv=False):
34 | plane = QuickNII_functions.XML_to_csv(plane_file)
35 | cells = np.empty((0,3))
36 | for points in glob.glob(points_folder+'/*.csv'):
37 | cells = np.vstack((cells, analyse_slice(points, plane)))
38 | cells = pd.DataFrame(cells, columns = ['X', 'Y', 'Z'])
39 | cells.to_hdf(plane_file[:-4]+'Whole_Brain_Cell_Count.h5')
40 | if save_csv:
41 | cells.to_csv(plane_file[:-4]+'Whole_Brain_Cell_Count.csv')
42 |
43 |
44 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/utilities/plane_alignment.py:
--------------------------------------------------------------------------------
1 | import random
2 | from statistics import mean
3 | import numpy as np
4 | import math
5 | from PIL import Image
6 | import glob
7 | image_list = []
8 | # a 2-dimensional plane can be fully describable if you know any three points that lie on its surface
9 |
10 |
11 | def find_plane_equation(plane):
12 | '''
13 | Finds the plane equation of a plane
14 | :param plane: the plane to find the equation of
15 | :type plane: :any:`numpy.ndarray`
16 | :returns: the normal vector of the plane and the constant k
17 | :rtype: :any:`numpy.ndarray`, float
18 | '''
19 | a, b, c = np.array(plane[0:3], dtype=np.float64), np.array(plane[3:6], dtype=np.float64), np.array(plane[6:9],
20 | dtype=np.float64)
21 | cross = np.cross(b, c)
22 | cross /= 9
23 | k = -((a[0] * cross[0]) + (a[1] * cross[1]) + (a[2] * cross[2]))
24 | return (cross, k)
25 |
26 | def get_angle(inp, cross, k, direction):
27 | # inp is the input plane, represented by 3 xzy sets
28 | # cross and k is the normal vector of the plane
29 | # Direction defines whether we want the mediolateral or dorsaventral angle
30 | section = inp.copy()
31 | # transform vector into absolute coordinates
32 | for i in range(3):
33 | section[i + 3] += section[i]
34 | section[i + 6] += section[i]
35 | if direction == 'ML':
36 | # original xzy point
37 | a = section[0:2]
38 | # calculate a point which differs from this point only in the x dimension
39 | # to do this we use the plane equation which tells us the position of every point on the plane
40 | linear_point = (((section[0] - 100) * cross[0]
41 | ) + ((section[2]) * cross[2])) + k
42 | # this tells us the depth of that point which differs in x dimension but lies on the same plane
43 | depth = -(linear_point / cross[1])
44 | b = np.array((section[0] - 100, depth))
45 | c = b + [100, 0]
46 |
47 |
48 | if direction == 'DV':
49 | a = section[1:3]
50 | linear_point = (((section[0]) * cross[0]) +
51 | ((section[2] - 100) * cross[2])) + k
52 | depth = -(linear_point / cross[1])
53 | b = np.array((depth, section[2] - 100))
54 | c = b + [0, 100]
55 | ba = a - b
56 | bc = c - b
57 | cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
58 | # This looks redundant, needs to be tested
59 | angle = np.arccos(cosine_angle)
60 | angle = np.degrees(angle)
61 | if direction == 'ML':
62 | if b[1] > a[1]:
63 | angle *= -1
64 | if direction == 'DV':
65 | if b[0] < a[0]:
66 | angle *= -1
67 | return (angle)
68 |
69 |
70 | def rotation_around_axis(axis, angle):
71 | '''
72 | Generates a 3x3 rotation matrix using the Euler-Rodrigues formula
73 | following the definition here:
74 | https://en.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula.
75 | :param axis: the axis around which to rotate as a vector of length 3
76 | (no normalisation required)
77 | :type axis: array like
78 | :param angle: the angle in radians to rotate
79 | :type angle: float
80 | :returns: the rotation matrix
81 | :rtype: a 3x3 :any:`numpy.ndarray`
82 | '''
83 | angle = np.radians(angle)
84 | axis = axis / np.linalg.norm(axis)
85 |
86 | a = math.cos(angle / 2.0)
87 | b, c, d = axis * math.sin(angle / 2.0)
88 | aa, bb, cc, dd = a * a, b * b, c * c, d * d
89 | bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
90 |
91 | return np.array([[aa + bb - cc - dd, 2 * (bc - ad), 2 * (bd + ac)],
92 | [2 * (bc + ad), aa + cc - bb - dd, 2 * (cd - ab)],
93 | [2 * (bd - ac), 2 * (cd + ab), aa + dd - bb - cc]])
94 |
95 |
96 | def make_gaussian_weights(mini, maxi):
97 | '''
98 | Generates a list of weights for a gaussian distribution
99 | :param mini: the minimum value of the distribution
100 | :type mini: float
101 | :param maxi: the maximum value of the distribution
102 | :type maxi: float
103 | :returns: a list of weights
104 | :rtype: list
105 | '''
106 | weights = []
107 | center = mean((mini, maxi))
108 | quartile = (maxi-mini)/4
109 | while len(weights) < ((maxi-mini)/2):
110 | weights.append(random.gauss(center, quartile))
111 | weights = [max(x, mini) for x in weights]
112 | weights = [min(x, maxi) for x in weights]
113 | weights = [x-center if x > center else x for x in weights]
114 | weights = sorted(weights)
115 | weights_rev = sorted(weights, reverse=True)
116 | weights.extend(weights_rev)
117 | return [x/max(weights) for x in weights]
118 |
119 |
120 | def get_axis(m, translation_vector, direction, plane_of_section=None, atlas='AMBA'):
121 | '''
122 | :param m: the matrix to rotate
123 | :type m: 3x3 :any:`numpy.ndarray`
124 | :param translation_vector: the translation vector to apply
125 | :type translation_vector: 3x1 :any:`numpy.ndarray`
126 | :param direction: the direction of the rotation
127 | :type direction: string
128 | :param plane: the plane to rotate around
129 | :type plane: string
130 | :returns: the axis of rotation
131 | :rtype: 3x1 :any:`numpy.ndarray`
132 | '''
133 | # find the plane equation for a set of QuickNII coordinates
134 | cross, k = find_plane_equation(m)
135 | if atlas == 'AMBA':
136 | volume = np.array((528, 320, 456))
137 | posx, posy, posz = volume/2
138 |
139 | if atlas == 'WHS':
140 | volume = np.array((512, 1024, 512))
141 | posx, posy, posz = 256, 512, 256
142 |
143 | translated_volume = volume - translation_vector
144 |
145 | cor_linear_point = (
146 | (((translated_volume[0] / 2)) * cross[0]) + ((translated_volume[2] / 2) * cross[2])) + k
147 | cor_Y = -(cor_linear_point / cross[1])
148 | # cor_axis = ((translated_volume[0] / 2, depth, translated_volume[2] / 2))
149 |
150 | sag_linear_point = (
151 | ((translated_volume[1] / 2) * cross[1]) + ((translated_volume[2] / 2) * cross[2])) + k
152 | sag_X = -(sag_linear_point / cross[0])
153 | # sag_axis = ((translated_volume[1] / 2, depth, translated_volume[2] / 2))
154 |
155 | horz_linear_point = (
156 | ((translated_volume[0] / 2) * cross[0]) + ((translated_volume[1] / 2) * cross[1])) + k
157 | horz_Z = -(horz_linear_point / cross[2])
158 | if plane_of_section is None:
159 | plane_of_section = np.argmin(np.abs((cor_Y - posy, sag_X - posx, horz_Z - posz)))
160 | choices = {'x': sag_X, ' y': cor_Y,' z': horz_Z }
161 |
162 | if plane_of_section == 0:
163 | axis = ((translated_volume[0] / 2, cor_Y, translated_volume[2] / 2))
164 | print(f'cor: {axis + translation_vector}')
165 |
166 | if direction == 'DV':
167 | linear_point = (
168 | ((translated_volume[0]) * cross[0]) + ((translated_volume[2] / 2) * cross[2])) + k
169 | Ypred = -(linear_point / cross[1])
170 | ##the way QNII rotates is but i prefer my way
171 | # axis2 = ((translated_volume[0], cor_Y, translated_volume[2] / 2))
172 | axis2 = ((translated_volume[0], Ypred, translated_volume[2] / 2))
173 |
174 | ##this gives me the depth of a point directly beside the coronal center point
175 | if direction == 'ML':
176 | linear_point = (((translated_volume[0] / 2) * cross[0]) + ((translated_volume[2]) * cross[2])) + k
177 | Ypred = -(linear_point / cross[1])
178 | axis2 = ((translated_volume[0] / 2, Ypred, translated_volume[2]))
179 |
180 |
181 |
182 |
183 | if plane_of_section==1:
184 | axis = ((sag_X, translated_volume[1] / 2, translated_volume[2] / 2))
185 | print(f'sag: {axis + translation_vector}')
186 |
187 | if direction == 'DV':
188 | linear_point = (
189 | ((translated_volume[1]) * cross[1]) + ((translated_volume[2] / 2) * cross[2])) + k
190 | Xpred = -(linear_point / cross[0])
191 | axis2 = ((Xpred, translated_volume[1], translated_volume[2] / 2))
192 | if direction == 'ML':
193 | linear_point = (
194 | ((translated_volume[1] / 2) * cross[1]) + ((translated_volume[2]) * cross[2])) + k
195 | Xpred = -(linear_point / cross[0])
196 | axis2 = ((Xpred, translated_volume[1] / 2, translated_volume[2]))
197 |
198 |
199 | if plane_of_section==2:
200 | axis = ((translated_volume[0] / 2, translated_volume[1] / 2, horz_Z))
201 | print(f'horz: {axis + translation_vector}')
202 | if direction == 'DV':
203 | linear_point = (
204 | ((translated_volume[0]) * cross[0]) + ((translated_volume[1] / 2) * cross[1])) + k
205 | Zpred = -(linear_point / cross[2])
206 | axis2 = ((translated_volume[0], translated_volume[1] / 2, Zpred))
207 |
208 |
209 | if direction == 'ML':
210 | linear_point = (
211 | ((translated_volume[0] / 2) * cross[0]) + ((translated_volume[1]) * cross[1])) + k
212 | Zpred = -(linear_point / cross[2])
213 | axis2 = ((translated_volume[0] / 2, translated_volume[1], Zpred))
214 | axis_vector = np.array(axis) - np.array(axis2)
215 | return (axis_vector)
216 |
217 |
218 |
219 | def rotate_section(section, degrees, direction, plane_of_section=None, atlas = 'AMBA'):
220 | '''
221 | Rotates a section
222 | :param section: the section to rotate
223 | :type section: :any:`numpy.ndarray`
224 | :param degrees: the degrees to rotate the section
225 | :type degrees: float
226 | :param direction: the direction of the rotation
227 | :type direction: string
228 | :param plane: the plane to rotate around
229 | :type plane: string
230 | :returns: the rotated section
231 | :rtype: :any:`numpy.ndarray`
232 | '''
233 |
234 | cross, k = find_plane_equation(section)
235 |
236 | # this looks redundant
237 | # if direction==ML:
238 | # ML=get_angle(section.reshape(9),cross,k,direction=direction)
239 | section_points = section.copy()
240 | for i in range(3):
241 | section_points[i + 3] += section_points[i]
242 | section_points[i + 6] += section_points[i]
243 |
244 | points = section_points.reshape(3, 3)
245 | if atlas == 'WHS':
246 | translated_volume = np.array((489, 1024, 590))
247 | posx, posy, posz = 256, 512, 256
248 | if atlas == 'AMBA':
249 | translated_volume = np.array((528, 320, 456))
250 | posx, posy, posz = translated_volume/2
251 |
252 | cor_linear_point = (
253 | (((translated_volume[0] / 2)) * cross[0]) + ((translated_volume[2] / 2) * cross[2])) + k
254 | cor_Y = -(cor_linear_point / cross[1])
255 | # cor_axis = ((translated_volume[0] / 2, depth, translated_volume[2] / 2))
256 |
257 | sag_linear_point = (
258 | ((translated_volume[1] / 2) * cross[1]) + ((translated_volume[2] / 2) * cross[2])) + k
259 | sag_X = -(sag_linear_point / cross[0])
260 | # sag_axis = ((translated_volume[1] / 2, depth, translated_volume[2] / 2))
261 |
262 | horz_linear_point = (
263 | ((translated_volume[0] / 2) * cross[0]) + ((translated_volume[1] / 2) * cross[1])) + k
264 | horz_Z = -(horz_linear_point / cross[2])
265 | if plane_of_section is None:
266 | plane_of_section = np.argmin(np.abs((cor_Y - posy, sag_X - posx, horz_Z - posz)))
267 | # midpoint = translated_volume/2
268 | # x = symbols('x')
269 | # expr = sum((x * cross + midpoint) * cross) - k
270 | # m = solve(expr)
271 | # translation_vector = np.array((m * cross + midpoint), dtype=np.float)
272 | if plane_of_section==0:
273 |
274 | translation_vector = (
275 | (translated_volume[0] / 2, cor_Y, translated_volume[2] / 2))
276 |
277 | if plane_of_section==1:
278 | translation_vector = (
279 | (sag_X, translated_volume[1] / 2, translated_volume[2] / 2))
280 |
281 | if plane_of_section==2:
282 | translation_vector = (
283 | (translated_volume[0] / 2, translated_volume[1] / 2, horz_Z))
284 |
285 | translated_points = points - translation_vector
286 | axis = get_axis(section, translation_vector, direction=direction, plane_of_section=plane_of_section)
287 | print(axis)
288 | rot_matrix = rotation_around_axis(axis, degrees)
289 | # perform rotation, centred on (0,0,0)
290 | rotated_translated_points = np.dot(translated_points, rot_matrix)
291 | # translate back to original geometric centre.
292 | rotated_points = rotated_translated_points + translation_vector
293 | rotated_points = rotated_points.reshape(9)
294 | for i in range(3):
295 | rotated_points[i + 3] -= rotated_points[i]
296 | rotated_points[i + 6] -= rotated_points[i]
297 | return (rotated_points)
298 |
299 |
300 |
301 | def Section_adjust(section, direction, mean):
302 | cross, k = find_plane_equation(section)
303 | angle = get_angle(section, cross, k, direction)
304 | dif = angle-mean
305 | rot = (rotate_section(section, -dif, direction))
306 | return(rot)
307 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/utilities/plane_alignment_rat.py:
--------------------------------------------------------------------------------
1 | import random
2 | from statistics import mean
3 | import numpy as np
4 | import math
5 | from PIL import Image
6 | import glob
7 | image_list = []
8 | # a 2-dimensional plane can be fully describable if you know any three points that lie on its surface
9 |
10 |
11 | def find_plane_equation(plane):
12 | '''
13 | Finds the plane equation of a plane
14 | :param plane: the plane to find the equation of
15 | :type plane: :any:`numpy.ndarray`
16 | :returns: the normal vector of the plane and the constant k
17 | :rtype: :any:`numpy.ndarray`, float
18 | '''
19 | a, b, c = np.array(plane[0:3], dtype=np.float64), np.array(plane[3:6], dtype=np.float64), np.array(plane[6:9],
20 | dtype=np.float64)
21 | cross = np.cross(b, c)
22 | cross /= 9
23 | k = -((a[0] * cross[0]) + (a[1] * cross[1]) + (a[2] * cross[2]))
24 | return (cross, k)
25 |
26 |
27 | def get_angle(inp, cross, k, direction):
28 | # inp is the input plane, represented by 3 xzy sets
29 | # cross and k is the normal vector of the plane
30 | # Direction defines whether we want the mediolateral or dorsaventral angle
31 | section = inp.copy()
32 | # transform vector into absolute coordinates
33 | for i in range(3):
34 | section[i + 3] += section[i]
35 | section[i + 6] += section[i]
36 | if direction == 'ML':
37 | # original xzy point
38 | a = section[0:2]
39 | # calculate a point which differs from this point only in the x dimension
40 | # to do this we use the plane equation which tells us the position of every point on the plane
41 | linear_point = (((section[0] - 100) * cross[0]
42 | ) + ((section[2]) * cross[2])) + k
43 | # this tells us the depth of that point which differs in x dimension but lies on the same plane
44 | depth = -(linear_point / cross[1])
45 | b = np.array((section[0] - 100, depth))
46 | c = b + [100, 0]
47 |
48 |
49 | if direction == 'DV':
50 | a = section[1:3]
51 | linear_point = (((section[0]) * cross[0]) +
52 | ((section[2] - 100) * cross[2])) + k
53 | depth = -(linear_point / cross[1])
54 | b = np.array((depth, section[2] - 100))
55 | c = b + [0, 100]
56 | ba = a - b
57 | bc = c - b
58 | cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
59 | # This looks redundant, needs to be tested
60 | angle = np.arccos(cosine_angle)
61 | angle = np.degrees(angle)
62 | if direction == 'ML':
63 | if b[1] > a[1]:
64 | angle *= -1
65 | if direction == 'DV':
66 | if b[0] < a[0]:
67 | angle *= -1
68 | return (angle)
69 |
70 |
71 | def rotation_around_axis(axis, angle):
72 | '''
73 | Generates a 3x3 rotation matrix using the Euler-Rodrigues formula
74 | following the definition here:
75 | https://en.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula.
76 | :param axis: the axis around which to rotate as a vector of length 3
77 | (no normalisation required)
78 | :type axis: array like
79 | :param angle: the angle in radians to rotate
80 | :type angle: float
81 | :returns: the rotation matrix
82 | :rtype: a 3x3 :any:`numpy.ndarray`
83 | '''
84 | angle = np.radians(angle)
85 | axis = axis / np.linalg.norm(axis)
86 |
87 | a = math.cos(angle / 2.0)
88 | b, c, d = axis * math.sin(angle / 2.0)
89 | aa, bb, cc, dd = a * a, b * b, c * c, d * d
90 | bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
91 |
92 | return np.array([[aa + bb - cc - dd, 2 * (bc - ad), 2 * (bd + ac)],
93 | [2 * (bc + ad), aa + cc - bb - dd, 2 * (cd - ab)],
94 | [2 * (bd - ac), 2 * (cd + ab), aa + dd - bb - cc]])
95 |
96 |
97 | def make_gaussian_weights(mini, maxi):
98 | '''
99 | Generates a list of weights for a gaussian distribution
100 | :param mini: the minimum value of the distribution
101 | :type mini: float
102 | :param maxi: the maximum value of the distribution
103 | :type maxi: float
104 | :returns: a list of weights
105 | :rtype: list
106 | '''
107 | weights = []
108 | center = mean((mini, maxi))
109 | quartile = (maxi-mini)/4
110 | while len(weights) < ((maxi-mini)/2):
111 | weights.append(random.gauss(center, quartile))
112 | weights = [max(x, mini) for x in weights]
113 | weights = [min(x, maxi) for x in weights]
114 | weights = [x-center if x > center else x for x in weights]
115 | weights = sorted(weights)
116 | weights_rev = sorted(weights, reverse=True)
117 | weights.extend(weights_rev)
118 | return [x/max(weights) for x in weights]
119 |
120 |
121 | def get_axis(m, translation_vector, direction, plane_of_section=None):
122 | '''
123 | :param m: the matrix to rotate
124 | :type m: 3x3 :any:`numpy.ndarray`
125 | :param translation_vector: the translation vector to apply
126 | :type translation_vector: 3x1 :any:`numpy.ndarray`
127 | :param direction: the direction of the rotation
128 | :type direction: string
129 | :param plane: the plane to rotate around
130 | :type plane: string
131 | :returns: the axis of rotation
132 | :rtype: 3x1 :any:`numpy.ndarray`
133 | '''
134 | # find the plane equation for a set of QuickNII coordinates
135 | cross, k = find_plane_equation(m)
136 | volume = np.array((512, 1024, 512))
137 | translated_volume = volume - translation_vector
138 | print(f'axis_tvol: {translated_volume}')
139 | print(f'axis_tvec: {translation_vector}')
140 |
141 | # translated_volume = volume
142 | midpoint = volume/2
143 |
144 | cor_linear_point = (
145 | (((translated_volume[0] / 2)) * cross[0]) + ((translated_volume[2] / 2) * cross[2])) + k
146 | cor_Y = -(cor_linear_point / cross[1])
147 | # cor_axis = ((translated_volume[0] / 2, depth, translated_volume[2] / 2))
148 |
149 | sag_linear_point = (
150 | ((translated_volume[1] / 2) * cross[1]) + ((translated_volume[2] / 2) * cross[2])) + k
151 | sag_X = -(sag_linear_point / cross[0])
152 | # sag_axis = ((translated_volume[1] / 2, depth, translated_volume[2] / 2))
153 |
154 | horz_linear_point = (
155 | ((translated_volume[0] / 2) * cross[0]) + ((translated_volume[1] / 2) * cross[1])) + k
156 | horz_Z = -(horz_linear_point / cross[2])
157 | if plane_of_section is None:
158 | plane_of_section = np.argmin(np.abs((cor_Y - 512, sag_X - 256, horz_Z - 256)))
159 | choices = {'x': sag_X - 256, ' y': cor_Y-512,' z': horz_Z - 256 }
160 | choices = {'x': sag_X, ' y': cor_Y,' z': horz_Z }
161 |
162 | if plane_of_section == 0:
163 | axis = ((translated_volume[0] / 2, cor_Y, translated_volume[2] / 2))
164 | print(f'cor: {axis + translation_vector}')
165 |
166 | if direction == 'DV':
167 | linear_point = (
168 | ((translated_volume[0]) * cross[0]) + ((translated_volume[2] / 2) * cross[2])) + k
169 | Ypred = -(linear_point / cross[1])
170 | ##the way QNII rotates is but i prefer my way
171 | # axis2 = ((translated_volume[0], cor_Y, translated_volume[2] / 2))
172 | axis2 = ((translated_volume[0], Ypred, translated_volume[2] / 2))
173 |
174 | ##this gives me the depth of a point directly beside the coronal center point
175 | if direction == 'ML':
176 | linear_point = (((translated_volume[0] / 2) * cross[0]) + ((translated_volume[2]) * cross[2])) + k
177 | Ypred = -(linear_point / cross[1])
178 | axis2 = ((translated_volume[0] / 2, Ypred, translated_volume[2]))
179 |
180 |
181 |
182 |
183 | if plane_of_section==1:
184 | axis = ((sag_X, translated_volume[1] / 2, translated_volume[2] / 2))
185 | print(f'sag: {axis + translation_vector}')
186 |
187 | if direction == 'DV':
188 | linear_point = (
189 | ((translated_volume[1]) * cross[1]) + ((translated_volume[2] / 2) * cross[2])) + k
190 | Xpred = -(linear_point / cross[0])
191 | axis2 = ((Xpred, translated_volume[1], translated_volume[2] / 2))
192 | if direction == 'ML':
193 | linear_point = (
194 | ((translated_volume[1] / 2) * cross[1]) + ((translated_volume[2]) * cross[2])) + k
195 | Xpred = -(linear_point / cross[0])
196 | axis2 = ((Xpred, translated_volume[1] / 2, translated_volume[2]))
197 |
198 |
199 | if plane_of_section==2:
200 | axis = ((translated_volume[0] / 2, translated_volume[1] / 2, horz_Z))
201 | print(f'horz: {axis + translation_vector}')
202 | if direction == 'DV':
203 | linear_point = (
204 | ((translated_volume[0]) * cross[0]) + ((translated_volume[1] / 2) * cross[1])) + k
205 | Zpred = -(linear_point / cross[2])
206 | axis2 = ((translated_volume[0], translated_volume[1] / 2, Zpred))
207 |
208 |
209 | if direction == 'ML':
210 | linear_point = (
211 | ((translated_volume[0] / 2) * cross[0]) + ((translated_volume[1]) * cross[1])) + k
212 | Zpred = -(linear_point / cross[2])
213 | axis2 = ((translated_volume[0] / 2, translated_volume[1], Zpred))
214 |
215 |
216 |
217 |
218 | # axis = ((translated_volume[0] / 2, depth, translated_volume[1] / 2))
219 |
220 |
221 | # expr = sum((x * cross + midpoint) * cross) - k
222 | # m = solve(expr)
223 | # axis = np.array((m * cross + midpoint), dtype=np.float)
224 | ##this gives me the depth of a point directly beneath the coronal center point
225 | ##the axis needs to be set
226 | print(r'-------------------------------------------------------------------')
227 |
228 | axis_vector = np.array(axis) - np.array(axis2)
229 | return (axis_vector)
230 |
231 | def rotate_section(section, degrees, direction, plane_of_section=None):
232 | '''
233 | Rotates a section
234 | :param section: the section to rotate
235 | :type section: :any:`numpy.ndarray`
236 | :param degrees: the degrees to rotate the section
237 | :type degrees: float
238 | :param direction: the direction of the rotation
239 | :type direction: string
240 | :param plane: the plane to rotate around
241 | :type plane: string
242 | :returns: the rotated section
243 | :rtype: :any:`numpy.ndarray`
244 | '''
245 | cross, k = find_plane_equation(section)
246 |
247 | # this looks redundant
248 | # if direction==ML:
249 | # ML=get_angle(section.reshape(9),cross,k,direction=direction)
250 | section_points = section.copy()
251 | for i in range(3):
252 | section_points[i + 3] += section_points[i]
253 | section_points[i + 6] += section_points[i]
254 |
255 | points = section_points.reshape(3, 3)
256 | translated_volume = np.array((489, 1024, 590))
257 |
258 | cor_linear_point = (
259 | (((translated_volume[0] / 2)) * cross[0]) + ((translated_volume[2] / 2) * cross[2])) + k
260 | cor_Y = -(cor_linear_point / cross[1])
261 | # cor_axis = ((translated_volume[0] / 2, depth, translated_volume[2] / 2))
262 |
263 | sag_linear_point = (
264 | ((translated_volume[1] / 2) * cross[1]) + ((translated_volume[2] / 2) * cross[2])) + k
265 | sag_X = -(sag_linear_point / cross[0])
266 | # sag_axis = ((translated_volume[1] / 2, depth, translated_volume[2] / 2))
267 |
268 | horz_linear_point = (
269 | ((translated_volume[0] / 2) * cross[0]) + ((translated_volume[1] / 2) * cross[1])) + k
270 | horz_Z = -(horz_linear_point / cross[2])
271 | if plane_of_section is None:
272 | plane_of_section = np.argmin(np.abs((cor_Y - 512, sag_X - 256, horz_Z - 256)))
273 | # midpoint = translated_volume/2
274 | # x = symbols('x')
275 | # expr = sum((x * cross + midpoint) * cross) - k
276 | # m = solve(expr)
277 | # translation_vector = np.array((m * cross + midpoint), dtype=np.float)
278 | if plane_of_section==0:
279 |
280 | translation_vector = (
281 | (translated_volume[0] / 2, cor_Y, translated_volume[2] / 2))
282 |
283 | if plane_of_section==1:
284 | translation_vector = (
285 | (sag_X, translated_volume[1] / 2, translated_volume[2] / 2))
286 |
287 | if plane_of_section==2:
288 | translation_vector = (
289 | (translated_volume[0] / 2, translated_volume[1] / 2, horz_Z))
290 | print('tv: ', translation_vector)
291 |
292 | translated_points = points - translation_vector
293 | axis = get_axis(section, translation_vector, direction=direction, plane_of_section=plane_of_section)
294 | rot_matrix = rotation_around_axis(axis, degrees)
295 | # perform rotation, centred on (0,0,0)
296 | rotated_translated_points = np.dot(translated_points, rot_matrix)
297 | # translate back to original geometric centre.
298 | rotated_points = rotated_translated_points + translation_vector
299 | rotated_points = rotated_points.reshape(9)
300 | for i in range(3):
301 | rotated_points[i + 3] -= rotated_points[i]
302 | rotated_points[i + 6] -= rotated_points[i]
303 | return (rotated_points)
304 |
305 |
306 |
307 |
308 | def Section_adjust(section, direction, mean, plane='Coronal'):
309 | '''
310 | Adjusts a section
311 | :param section: the section to adjust
312 | :type section: :any:`numpy.ndarray`
313 | :param direction: the direction of the adjustment
314 | :type direction: string
315 | :param mean: the target angle to adjust to
316 | :type mean: float
317 | :param plane: whether the section is coronal, sagittal, horizontal
318 | :type plane: string
319 | :returns: the adjusted section
320 | :rtype: :any:`numpy.ndarray`
321 | '''
322 | cross, k = find_plane_equation(section)
323 | angle = get_angle(section, cross, k, direction)
324 | dif = angle-mean
325 | rot = (rotate_section(section, -dif, direction, plane))
326 | return(rot)
327 |
--------------------------------------------------------------------------------
/src/abba_python/deepslice/utilities/render_tools.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NicoKiaru/ABBA-Python/1626654aaf370cd2619896195c7f88aeb7d16a7c/src/abba_python/deepslice/utilities/render_tools.py
--------------------------------------------------------------------------------
/src/abba_python/itk/__init__.py:
--------------------------------------------------------------------------------
1 | __author__ = """Nicolas Chiaruttini"""
2 | __version__ = "0.1.0-SNAPSHOT"
3 |
4 | # Inner classes, do not access and use them directly
5 | # Used internally by the Abba package
6 |
7 |
--------------------------------------------------------------------------------
/src/abba_python/itk/abba_itk.py:
--------------------------------------------------------------------------------
1 | from scyjava import jimport
2 | from jpype import JImplements, JOverride
3 | from jpype.types import JString, JDouble, JInt
4 | import os
5 |
6 | from abba_python.scijava_python_command import ScijavaCommand, ScijavaInput
7 | import itk
8 | import numpy as np
9 | import tempfile
10 |
11 | ExternalABBARegistrationPlugin = jimport('ch.epfl.biop.atlas.aligner.plugin.ExternalABBARegistrationPlugin')
12 | AffineTransform3D = jimport('net.imglib2.realtransform.AffineTransform3D')
13 | MultiSlicePositioner = jimport('ch.epfl.biop.atlas.aligner.MultiSlicePositioner')
14 |
15 | Supplier = jimport('java.util.function.Supplier')
16 |
17 | Command = jimport('org.scijava.command.Command')
18 | JPlugin = jimport('org.scijava.plugin.Plugin')
19 | Parameter = jimport('org.scijava.plugin.Parameter')
20 | ImagePlus = jimport('ij.ImagePlus')
21 |
22 | SimpleABBARegistrationPlugin = jimport('ch.epfl.biop.atlas.aligner.plugin.SimpleABBARegistrationPlugin')
23 |
24 | ElastixTransform = jimport('itc.transforms.elastix.ElastixTransform')
25 | ElastixEuler2DToAffineTransform3D = jimport('itc.converters.ElastixEuler2DToAffineTransform3D')
26 | File = jimport('java.io.File')
27 |
28 | SourcesChannelsSelect = jimport('ch.epfl.biop.sourceandconverter.processor.SourcesChannelsSelect')
29 | HashMap = jimport('java.util.HashMap')
30 | SimpleRegistrationWrapper = jimport('ch.epfl.biop.atlas.aligner.plugin.SimpleRegistrationWrapper')
31 |
32 |
33 | @JImplements(SimpleABBARegistrationPlugin)
34 | class ITKRigidRegistration(object):
35 |
36 | def __init__(self, ij):
37 | print('init SimpleRotateAffineRegistration')
38 | self.ij = ij
39 | pass
40 |
41 | # @return Sampling required for the registration, in micrometer (double)
42 | #
43 | @JOverride
44 | def getVoxelSizeInMicron(self):
45 | return JDouble(40)
46 |
47 | # Is called before registration to pass any extra registration parameter
48 | # argument. Passed as a dictionary of String to preserve serialization
49 | # capability.
50 | # param parameters dictionary of parameters (Map)
51 | @JOverride
52 | def setRegistrationParameters(self, parameters):
53 | self.parameters = parameters
54 |
55 | # param fixed image (ImagePlus)
56 | # param moving image (ImagePlus)
57 | # param fixed mask (ImagePlus)
58 | # param moving mask (ImagePlus)
59 | # return the transform, result of the registration, (InvertibleRealTransform)
60 | # going from fixed to moving coordinates, in pixels
61 | @JOverride
62 | def register(self, fixed, moving, fixedMask, movingMask):
63 | # fixed.show()
64 | # moving.show()
65 | # ij.py.show(fixed)
66 | # ij.py.show(moving)
67 |
68 | # global parameter_object
69 | parameter_object = itk.ParameterObject.New()
70 | default_rigid_parameter_map = parameter_object.GetDefaultParameterMap('rigid')
71 | parameter_object.AddParameterMap(default_rigid_parameter_map)
72 |
73 | # global fixed_py
74 | # global moving_py
75 | fixed_py = self.ij.py.from_java(fixed)
76 | moving_py = self.ij.py.from_java(moving)
77 | fixed_py = fixed_py.to_numpy().astype(np.float32)
78 | moving_py = moving_py.to_numpy().astype(np.float32)
79 |
80 | # Call registration function
81 | with tempfile.TemporaryDirectory() as temp_dir:
82 | # ... do something with temp_dir
83 | itk.elastix_registration_method(
84 | fixed_py, moving_py,
85 | output_directory=temp_dir,
86 | parameter_object=parameter_object,
87 | log_to_console=False)
88 | output_path = os.path.join(temp_dir, 'TransformParameters.0.txt')
89 | et = ElastixTransform.load(File(output_path))
90 | transform = ElastixEuler2DToAffineTransform3D.convert(et)
91 |
92 | # temp dir automatically cleaned up when context exited
93 | return transform
94 |
95 |
96 | @JImplements(Supplier)
97 | class ITKRigidRegistrationSupplier(object):
98 |
99 | def __init__(self, ij):
100 | self.ij = ij
101 | pass
102 |
103 | @JOverride
104 | def get(self):
105 | return SimpleRegistrationWrapper(JString('ITKRigidRegistration'),
106 | ITKRigidRegistration(self.ij))
107 |
108 |
109 | def add_abba_itk_registrations(ij):
110 | MultiSlicePositioner.registerRegistrationPlugin('ITKRigidRegistration',
111 | ITKRigidRegistrationSupplier(ij))
112 |
113 | @ScijavaCommand(context=ij.context(), # ij context needed
114 | name='ITK - Rigid Registration')
115 | @ScijavaInput('fixed_channel', JInt,
116 | label='Atlas channel index:', description='')
117 | @ScijavaInput('moving_channel', JInt,
118 | label='Section channel index', description='')
119 | @ScijavaInput('mp', MultiSlicePositioner,
120 | label='Section channel index', description='')
121 | class SimpleRotateAffineRegistrationCommand:
122 | def run(self):
123 | params = HashMap()
124 | self.mp.registerSelectedSlices('ITKRigidRegistration',
125 | SourcesChannelsSelect(self.fixed_channel),
126 | SourcesChannelsSelect(self.moving_channel),
127 | params)
128 |
129 | MultiSlicePositioner.registerRegistrationPluginUI('ITKRigidRegistration',
130 | 'ITK - Rigid Registration');
131 |
--------------------------------------------------------------------------------
/src/abba_python/run-abba-local-fiji.py:
--------------------------------------------------------------------------------
1 | # core dependencies
2 | import time
3 |
4 | from abba_python.Abba import enable_python_hooks, add_brainglobe_atlases
5 | # in order to wait for a jvm shutdown
6 | import jpype
7 | import imagej
8 |
9 | import os
10 |
11 | # THIS FILE SETS MANY PATHS EXPLICITLY WHEN ABBA IS INSTALLED FROM THE INSTALLER!
12 | # IF YOU WANT TO RUN ABBA FROM PYTHON, TRY run-abba.py first!
13 |
14 | if __name__ == '__main__':
15 | os.path.dirname(os.getcwd())
16 | # In ABBA PYthon, Fiji.app is in the parent directory of this script
17 | fiji_app_path = str(os.path.join(os.path.dirname(os.getcwd()), 'Fiji.app'))
18 | ij = imagej.init(fiji_app_path, mode="interactive")
19 |
20 | ij.ui().showUI()
21 | enable_python_hooks(ij)
22 | add_brainglobe_atlases(ij)
23 |
24 | # Set Elastix Path:
25 | # File ch.epfl.biop.wrappers.elastix.Elastix exePath
26 | # File ch.epfl.biop.wrappers.transformix.Transformix exePath
27 | from scyjava import jimport
28 | from jpype.types import JString
29 |
30 | # Java class imports
31 |
32 | DebugTools = jimport('loci.common.DebugTools')
33 | File = jimport('java.io.File')
34 | # DebugTools.enableLogging('OFF')
35 | DebugTools.enableLogging("INFO");
36 | # DebugTools.enableLogging("DEBUG");
37 |
38 | import platform
39 | if platform.system() == 'Windows':
40 | elastixPath = str(os.path.join(os.path.dirname(os.getcwd()), 'win', 'elastix-5.0.1-win64', 'elastix.exe'))
41 | transformixPath = str(os.path.join(os.path.dirname(os.getcwd()), 'win', 'elastix-5.0.1-win64', 'transformix.exe'))
42 |
43 | Elastix = jimport('ch.epfl.biop.wrappers.elastix.Elastix')
44 | Elastix.exePath = JString(str(elastixPath))
45 | Elastix.setExePath(File(JString(str(elastixPath))))
46 | Transformix = jimport('ch.epfl.biop.wrappers.transformix.Transformix')
47 | Transformix.exePath = JString(str(transformixPath))
48 | Transformix.setExePath(File(JString(str(transformixPath))))
49 |
50 | # Now let's set the atlas folder location in a folder that all users can access
51 |
52 | AtlasLocationHelper = jimport('ch.epfl.biop.atlas.AtlasLocationHelper')
53 | directory = os.path.join(os.environ['ProgramData'], 'abba-atlas')
54 |
55 | # create the directory with write access for all users
56 | try:
57 | print('Attempt to set ABBA Atlas cache directory to ' + directory)
58 | # //os.mkdir(directory)
59 | os.makedirs(directory, exist_ok=True)
60 | atlasPath = str(directory)
61 | AtlasLocationHelper.defaultCacheDir = File(JString(atlasPath))
62 | print('ABBA Atlas cache directory set to ' + directory)
63 | except OSError:
64 | print('ERROR! Could not set ABBA Atlas cache dir')
65 | # directory already exists ?
66 | pass
67 | else:
68 | print('ERROR! '+platform.system()+' OS not supported yet.')
69 |
70 | # --
71 |
72 | # Wait for the JVM to shut down
73 | while jpype.isJVMStarted():
74 | time.sleep(1)
75 |
76 | print("JVM has shut down")
77 |
--------------------------------------------------------------------------------
/src/abba_python/run-abba.py:
--------------------------------------------------------------------------------
1 | # core dependencies
2 | import time
3 |
4 | from abba_python.Abba import enable_python_hooks, get_java_dependencies, add_brainglobe_atlases
5 | # in order to wait for a jvm shutdown
6 | import jpype
7 | import imagej
8 |
9 | import os
10 |
11 |
12 | if __name__ == '__main__':
13 |
14 | # MAC ISSUE
15 | # https: // github.com / imagej / pyimagej / issues / 23
16 | # -- FOR DEBUGGING
17 | # import imagej.doctor
18 | # imagej.doctor.checkup()
19 | # imagej.doctor.debug_to_stderr()
20 | # -- Atlas
21 | # Any brainglobe atlas can be used
22 | # show_atlases()
23 | # abba_python = Abba("azba_zfish_4um", slicing_mode='sagittal', headless=True) # or any other brainglobe atlas
24 |
25 | # -- HEADLESS
26 | # abba_python = Abba('Adult Mouse Brain - Allen Brain Atlas V3', headless=True) # or any other brainglobe atlas
27 | # --
28 |
29 | # -- NOT HEADLESS
30 | # abba = Abba('Adult Mouse Brain - Allen Brain Atlas V3')
31 | # abba.show_bdv_ui() # creates and show a bdv view
32 | ij = imagej.init(get_java_dependencies(), mode="interactive")
33 | ij.ui().showUI()
34 | enable_python_hooks(ij)
35 | add_brainglobe_atlases(ij)
36 |
37 | from scyjava import jimport
38 | from jpype.types import JString
39 |
40 | # loci.common.DebugTools.enableLogging("OFF");
41 | DebugTools = jimport('loci.common.DebugTools')
42 | # DebugTools.enableLogging('OFF')
43 | DebugTools.enableLogging("INFO");
44 | # DebugTools.enableLogging("DEBUG");
45 |
46 | import platform
47 | if platform.system() == 'Windows':
48 | File = jimport('java.io.File')
49 | # Now let's set the atlas folder location in a folder with all users access
50 |
51 | AtlasLocationHelper = jimport('ch.epfl.biop.atlas.AtlasLocationHelper')
52 | directory = os.path.join(os.environ['ProgramData'], 'abba-atlas')
53 |
54 | # create the directory with write access for all users
55 | try:
56 | print('Attempt to set ABBA Atlas cache directory to ' + directory)
57 | os.makedirs(directory, exist_ok=True)
58 | atlasPath = str(directory)
59 | AtlasLocationHelper.defaultCacheDir = File(JString(atlasPath))
60 | print('ABBA Atlas cache directory set to ' + directory)
61 | except OSError:
62 | print('ERROR! Could not set ABBA Atlas cache dir')
63 | # directory already exists ?
64 | pass
65 | else:
66 | print('ERROR! '+platform.system()+' OS not supported yet.')
67 |
68 | # --
69 |
70 | # Wait for the JVM to shut down
71 | while jpype.isJVMStarted():
72 | time.sleep(1)
73 |
74 | print("JVM has shut down")
75 |
--------------------------------------------------------------------------------
/src/abba_python/scijava_python_command/__init__.py:
--------------------------------------------------------------------------------
1 | __author__ = """nicolas_chiaruttini"""
2 | __version__ = "0.1.0-SNAPSHOT"
3 |
4 | #from scijava_python_command.MagicJupyter import run_in_another_thread
5 | #from scijava_python_command.ScijavaJupyterUI import enable_jupyter_ui
6 | #from scijava_python_command.ScijavaCommand import ScijavaCommand, ScijavaInput, ScijavaOutput
7 |
--------------------------------------------------------------------------------
/src/abba_python/scijava_python_command/command.py:
--------------------------------------------------------------------------------
1 | from scyjava import jimport
2 | from jpype.types import JObject, JClass
3 |
4 | import logging
5 |
6 | PyCommandBuilder = jimport('org.scijava.command.PyCommandBuilder')
7 | PyParameterBuilder = jimport('org.scijava.command.PyParameterBuilder')
8 |
9 | # Decorator that registers a python CLASS containing a method named "run" as a Scijava Command
10 | #
11 | # This uses PyCommandBuilder which is in the java repo ch.epfl.biop:pyimagej-scijava-command
12 | # PyCommandBuilder allows to build a Command fully programmatically without using any
13 | # java annotation as java annotations are needed for 'easy' Scijava Commands definition
14 | # but these are not completely supported in JPype:
15 | # cf https://github.com/jpype-project/jpype/issues/940
16 | #
17 | # Example of registering a Scijava Command via the @ScijavaCommand decorator:
18 | # ------------------------------------------
19 | # @ScijavaCommand(context=ij.context(), # ij context needed
20 | # name='pyCommand.HelloCommand')
21 | # @ScijavaInput('name', JString,
22 | # label='Name :', description='Please enter your name')
23 | # @ScijavaInput('familiar', JBoolean,
24 | # label='Familiar :', description='Hi or Hello ?')
25 | # @ScijavaOutput('greetings', JString)
26 | # class HelloCommand:
27 | #
28 | # def run(self):
29 | # if (self.familiar):
30 | # self.greetings = 'Hi ' + str(self.name) + '!'
31 | # else:
32 | # self.greetings = 'Hello my dear ' + str(self.name) + '.'
33 | # print(self.greetings)
34 | # ------------------------------------------
35 | #
36 | # Note: this way of defining a command is probably not ideal if this has to be used from the python side also
37 | #
38 | # Because it's a preliminary work, this decorator prints a lot of stuff in the process
39 | #
40 | # TODO: functools ??
41 |
42 | logger = logging.getLogger('ScijavaCommand')
43 |
44 | def ScijavaCommand(name, context):
45 | logger.info("- Registering scijava command " + name)
46 |
47 | def registerCommand(func):
48 |
49 | # This class will be registered as a SciJava Command
50 | builder = PyCommandBuilder() # Java PyCommandBuilder
51 |
52 | # The name of the command - to avoid name conflicts, consider a 'virtual' class name with its package
53 | builder = builder.name(name).label(name)
54 |
55 | # Register all inputs
56 | if hasattr(func, 'scijava_inputs'):
57 | logger.debug('- Inputs')
58 | for scijava_input_name, scijava_input_properties in func.scijava_inputs.items():
59 | logger.debug('\t'+ scijava_input_name+ ' : '+ str(scijava_input_properties['scijava_class']))
60 | builder = builder.input(scijava_input_name,
61 | scijava_input_properties['scijava_class'],
62 | scijava_input_properties['scijava_parameter'])
63 | setattr(func, scijava_input_name, None) # declares empty input field
64 | logger.debug('Inputs registered')
65 | else:
66 | logger.debug('- No input')
67 |
68 | # Register all outputs
69 | if hasattr(func, 'scijava_outputs'):
70 | logger.debug('- Outputs')
71 | for scijava_output_name, scijava_output_properties in func.scijava_outputs.items():
72 | logger.debug('\t'+ scijava_output_name+ ' : '+ str(scijava_output_properties['scijava_class']))
73 | builder = builder.output(scijava_output_name,
74 | scijava_output_properties['scijava_class'],
75 | scijava_output_properties['scijava_parameter'])
76 | setattr(func, scijava_output_name, None) # declares empty input field
77 | logger.debug('Outputs registered')
78 | else:
79 | logger.debug('- No Output')
80 |
81 | # Wraps the run function - takes kwargs as input, returns outputs
82 | def wrapped_run(inner_kwargs):
83 | inner_object = func()
84 | logger.debug('Settings inputs...')
85 | if hasattr(func, 'scijava_inputs'):
86 | for input_name in func.scijava_inputs.keys():
87 | setattr(inner_object, input_name, inner_kwargs[input_name])
88 | logger.debug('Inputs set.')
89 | logger.debug('Running scijava command: ' + name)
90 | inner_object.run()
91 | logger.debug(name + ' command execution done.')
92 | logger.debug('Fetching outputs...')
93 | outputs = {}
94 | if hasattr(func, 'scijava_outputs'):
95 | for output_name in func.scijava_outputs.keys():
96 | outputs[output_name] = getattr(inner_object, output_name) # gets outputs
97 | logger.debug('Outputs set.')
98 | return JObject(outputs, JClass('java.util.Map')) # Returns output as a java HashMap
99 |
100 | # Sets the function in PyCommandBuilder:
101 | # Function