├── data
├── mask_dataset.names
└── mask_dataset_validate.txt
├── .gitignore
├── testing
├── screenshots
│ ├── ss1.png
│ ├── ss2.png
│ └── THUMBNAIL.png
├── input
│ └── images
│ │ ├── img.jpg
│ │ └── image2.jpg
├── output
│ └── images
│ │ ├── img.jpg
│ │ └── image2.jpg
└── ExplanantionImg
│ ├── nms.jpg
│ ├── 10647.jpg
│ ├── final.jpg
│ ├── cls_prediction.jpg
│ └── thresholding_2.jpg
├── requirements.txt
├── config
├── mask_dataset.data
└── yolov3_mask.cfg
├── explanation.md
├── utils
├── parse_config.py
├── datasets.py
└── utils.py
├── README.md
├── validate.py
├── train.py
├── image_detect.py
├── cam_detect.py
├── video_detect.py
└── models.py
/data/mask_dataset.names:
--------------------------------------------------------------------------------
1 | MASK
2 | NO_MASK
3 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 |
2 | checkpoints/*.pth
3 | .idea
4 | utils/__pycache__
5 | __pycache__
6 | .gitignore
--------------------------------------------------------------------------------
/testing/screenshots/ss1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/screenshots/ss1.png
--------------------------------------------------------------------------------
/testing/screenshots/ss2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/screenshots/ss2.png
--------------------------------------------------------------------------------
/testing/input/images/img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/input/images/img.jpg
--------------------------------------------------------------------------------
/testing/output/images/img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/output/images/img.jpg
--------------------------------------------------------------------------------
/testing/ExplanantionImg/nms.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/ExplanantionImg/nms.jpg
--------------------------------------------------------------------------------
/testing/input/images/image2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/input/images/image2.jpg
--------------------------------------------------------------------------------
/testing/output/images/image2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/output/images/image2.jpg
--------------------------------------------------------------------------------
/testing/ExplanantionImg/10647.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/ExplanantionImg/10647.jpg
--------------------------------------------------------------------------------
/testing/ExplanantionImg/final.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/ExplanantionImg/final.jpg
--------------------------------------------------------------------------------
/testing/screenshots/THUMBNAIL.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/screenshots/THUMBNAIL.png
--------------------------------------------------------------------------------
/testing/ExplanantionImg/cls_prediction.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/ExplanantionImg/cls_prediction.jpg
--------------------------------------------------------------------------------
/testing/ExplanantionImg/thresholding_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/NisargPethani/FACE-MASK-DETECTION-USING-YOLO-V3/HEAD/testing/ExplanantionImg/thresholding_2.jpg
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.18.1
2 | pillow>=6.2.2
3 | torch==1.4.0
4 | tqdm
5 | terminaltables
6 | torchvision
7 | matplotlib
8 | tensorboard
9 | opencv-python
10 |
--------------------------------------------------------------------------------
/config/mask_dataset.data:
--------------------------------------------------------------------------------
1 | classes=2
2 | train=data/mask_dataset_train.txt
3 | valid=data/mask_dataset_validate.txt
4 | names=data/mask_dataset.names
5 | backup=backup/
6 | eval=coco
7 |
8 |
--------------------------------------------------------------------------------
/explanation.md:
--------------------------------------------------------------------------------
1 | # Explanation
2 |
3 | 
4 |
5 | - Object Detection Process
6 | - **Localization**
7 | - **Class Prediction**
8 |
9 | 
10 |
11 | - Thresholding
12 |
13 | 
14 |
15 | - Non max suppression irrespective of class label
16 |
17 | 
18 |
19 | - Bounding Box Labelling
20 |
21 | 
--------------------------------------------------------------------------------
/utils/parse_config.py:
--------------------------------------------------------------------------------
1 |
2 |
3 | def parse_model_config(path):
4 | """Parses the yolo-v3 layer configuration file and returns module definitions"""
5 | file = open(path, 'r')
6 | lines = file.read().split('\n')
7 | lines = [x for x in lines if x and not x.startswith('#')]
8 | lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces
9 | module_defs = []
10 | for line in lines:
11 | if line.startswith('['): # This marks the start of a new block
12 | module_defs.append({})
13 | module_defs[-1]['type'] = line[1:-1].rstrip()
14 | if module_defs[-1]['type'] == 'convolutional':
15 | module_defs[-1]['batch_normalize'] = 0
16 | else:
17 | key, value = line.split("=")
18 | value = value.strip()
19 | module_defs[-1][key.rstrip()] = value.strip()
20 |
21 | return module_defs
22 |
23 | def parse_data_config(path):
24 | """Parses the data configuration file"""
25 | options = dict()
26 | options['gpus'] = '0,1,2,3'
27 | options['num_workers'] = '10'
28 | with open(path, 'r') as fp:
29 | lines = fp.readlines()
30 | for line in lines:
31 | line = line.strip()
32 | if line == '' or line.startswith('#'):
33 | continue
34 | key, value = line.split('=')
35 | options[key.strip()] = value.strip()
36 | return options
37 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # FACE-MASK DETECTION
2 | A minimal PyTorch implementation of YOLOv3, with support for training, interface & evalution.
3 | To train on custom dataset please visit my another [[GitRepo]]().
4 |
5 | ## ABSTARCT
6 | ### APPROCH
7 | Standard YOLO V3 Approch is modified, and the table shows what change has been made.
8 |
9 | |Standard YOLO Approch | Self-Modified YOLO Approch |
10 | |-----------------------------------------------|--------------------------------------------------|
11 | | 1. Object Detection Process | 1. Object Detection Process |
12 | | ... 1.1. Localization | ... 1.1. Localization |
13 | | ... 1.2. Class Prediction | ... 1.2. Class Prediction |
14 | | 2. Thresholding | 2. Thresholding |
15 | | 3. Non max suppression with respect to Class | 3. Non max suppression irrespective of class label|
16 | ||4. Bounding Box Labelling|
17 |
18 | ### REPORT
19 | - Explanation : [explanation.md](explanation.md)
20 | - You can check the full report of this project here... [[FACE-MASK DETECTION USING YOLO V3 ARCHITECTURE.pdf]](https://drive.google.com/file/d/1QFFEEtHlMsQHcgEiQYy4hlYvCam73KE5/view?usp=sharing)
21 |
22 |
23 | ## INSTALLATION
24 | ##### Clone and install requirements
25 | > git clone https://github.com/NisargPethani/Face-Mask-Detection-using-YOLO-v3.git
26 | > cd Face-Mask-Detection-using-YOLO-v3/
27 | > pip install -r requirements.txt
28 |
29 |
30 | ##### Checkpoints
31 | Download checkpoint From [[GoogleDrive]](https://drive.google.com/drive/folders/1UlF6PmTwwd4cm-wD9v6Qy7gbC_tzif_j?usp=sharing)
32 | Copy `yolov3_ckpt_35.pth` into `checkpoints/`
33 |
34 |
35 | ## EVALUATION
36 | Evaluates the model.
37 |
38 | > python validate.py --weights_path checkpoints/yolov3_ckpt_35.pth
39 |
40 | Average Precisions:
41 | | Class | AP |
42 | | ----------------------- |:-----------------:|
43 | | Class '0' (MASK) | 73.0 |
44 | | Class '1' (NO_MASK) | 83.3 |
45 |
46 | mAP: 78.19
47 |
48 | ## DETECTION
49 | ### Real Time Detection
50 | > python cam_detect.py --weights_path checkpoints/yolov3_ckpt_35.pth
51 | Some Screen-shots of Real-Time Detection is shown below
52 |
53 |

54 | 
55 |
56 |
57 | ### Detection in Image
58 | Move inmages to `testing/input/images`
59 |
60 | > python image_detect.py --image_folder testing/input/images --weights_path checkpoints/yolov3_ckpt_35.pth
61 |
62 | 
63 | 
64 |
65 |
66 | ### Detection in Video
67 | Make new directory with name: `'videos'` in `testing/input`
68 | Move videos to `testing/input/videos`
69 |
70 | > python video_detect.py --image_folder testing/input/videos --weights_path checkpoints/yolov3_ckpt_35.pth
71 |
72 |
73 | ## YOUTUBE
74 | Following YouTube video shows the output.
75 | 
77 |
78 |
79 | ## CREDIT
80 | [[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Project Webpage]](https://pjreddie.com/darknet/yolo/) [[Authors' Implementation]](https://github.com/pjreddie/darknet)
81 |
82 | ```
83 | @article{yolov3,
84 | title={YOLOv3: An Incremental Improvement},
85 | author={Redmon, Joseph and Farhadi, Ali},
86 | journal = {arXiv},
87 | year={2018}
88 | }
89 | ```
90 |
91 | Also Help is taken from [[GitRepo]](https://github.com/eriklindernoren/PyTorch-YOLOv3.git)
--------------------------------------------------------------------------------
/validate.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | from models import Darknet
4 | from utils.utils import non_max_suppression, non_max_suppression_output, xywh2xyxy, get_batch_statistics, ap_per_class, load_classes
5 | from utils.datasets import ListDataset
6 | from utils.parse_config import parse_data_config
7 |
8 | import numpy as np
9 | import argparse
10 | import tqdm
11 |
12 | import torch
13 | from torch.utils.data import DataLoader
14 | from torch.autograd import Variable
15 |
16 |
17 | def evaluate(model, path, iou_thres, conf_thres, nms_thres, img_size, batch_size):
18 | model.eval()
19 |
20 | # Get dataloader
21 | dataset = ListDataset(path, img_size=img_size, augment=False, multiscale=False)
22 | dataloader = torch.utils.data.DataLoader(
23 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, collate_fn=dataset.collate_fn
24 | )
25 |
26 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
27 |
28 | labels = []
29 | sample_metrics = [] # List of tuples (TP, confs, pred)
30 | for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc="Detecting objects")):
31 |
32 | # Extract labels
33 | labels += targets[:, 1].tolist()
34 | # Rescale target
35 | targets[:, 2:] = xywh2xyxy(targets[:, 2:])
36 | targets[:, 2:] *= img_size
37 |
38 | imgs = Variable(imgs.type(Tensor), requires_grad=False)
39 |
40 | with torch.no_grad():
41 | outputs = model(imgs)
42 | outputs = non_max_suppression(outputs, conf_thres=conf_thres, nms_thres=nms_thres)
43 |
44 | sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=iou_thres)
45 |
46 | # Concatenate sample statistics
47 | true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
48 | precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels)
49 |
50 | return precision, recall, AP, f1, ap_class
51 |
52 |
53 | if __name__ == "__main__":
54 | parser = argparse.ArgumentParser()
55 | parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch")
56 | parser.add_argument("--model_def", type=str, default="config/yolov3_mask.cfg", help="path to model definition file")
57 | parser.add_argument("--data_config", type=str, default="config/mask_dataset.data", help="path to data config file")
58 | parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3_ckpt_36.pth", help="path to weights file")
59 | parser.add_argument("--class_path", type=str, default="data/mask_dataset.names", help="path to class label file")
60 | parser.add_argument("--iou_thres", type=float, default=0.4, help="iou threshold required to qualify as detected")
61 | parser.add_argument("--conf_thres", type=float, default=0.9, help="object confidence threshold")
62 | parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression")
63 | parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
64 | opt = parser.parse_args()
65 |
66 | print("")
67 | for arg in vars(opt):
68 | print(str(arg) +":\t\t\t"+ str(getattr(opt, arg)))
69 | print("")
70 |
71 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
72 |
73 | data_config = parse_data_config(opt.data_config)
74 | valid_path = data_config["valid"]
75 | class_names = load_classes(data_config["names"])
76 |
77 | # Initiate model
78 | model = Darknet(opt.model_def).to(device)
79 | if opt.weights_path.endswith(".weights"):
80 | # Load darknet weights
81 | model.load_darknet_weights(opt.weights_path)
82 | else:
83 | # Load checkpoint weights
84 | model.load_state_dict(torch.load(opt.weights_path))
85 |
86 | print("Compute mAP...")
87 | print("")
88 |
89 | precision, recall, AP, f1, ap_class = evaluate(
90 | model,
91 | path=valid_path,
92 | iou_thres=opt.iou_thres,
93 | conf_thres=opt.conf_thres,
94 | nms_thres=opt.nms_thres,
95 | img_size=opt.img_size,
96 | batch_size=8,
97 | )
98 | print("")
99 | print("Average Precisions:")
100 | for i, c in enumerate(ap_class):
101 | print(f"+ Class '{c}' ({class_names[c]}) - AP: {AP[i]}")
102 |
103 | print("")
104 | print(f"mAP: {AP.mean()}")
105 |
--------------------------------------------------------------------------------
/utils/datasets.py:
--------------------------------------------------------------------------------
1 | import glob
2 | import random
3 | import os
4 | import numpy as np
5 | from PIL import Image
6 | import torch
7 | import torch.nn.functional as F
8 |
9 | from torch.utils.data import Dataset
10 | import torchvision.transforms as transforms
11 |
12 | def horisontal_flip(images, targets):
13 | images = torch.flip(images, [-1])
14 | targets[:, 2] = 1 - targets[:, 2]
15 | return images, targets
16 |
17 | def pad_to_square(img, pad_value):
18 | c, h, w = img.shape
19 | dim_diff = np.abs(h - w)
20 | # (upper / left) padding and (lower / right) padding
21 | pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
22 | # Determine padding
23 | pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0)
24 | # Add padding
25 | img = F.pad(img, pad, "constant", value=pad_value)
26 |
27 | return img, pad
28 |
29 |
30 | def resize(image, size):
31 | image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
32 | return image
33 |
34 | class ImageFolder(Dataset):
35 | def __init__(self, folder_path, img_size=416):
36 | self.files = sorted(glob.glob("%s/*.*" % folder_path))
37 | self.img_size = img_size
38 |
39 | def __getitem__(self, index):
40 | img_path = self.files[index % len(self.files)]
41 | # Extract image as PyTorch tensor
42 | img = transforms.ToTensor()(Image.open(img_path))
43 | # Pad to square resolution
44 | img, _ = pad_to_square(img, 0)
45 | # Resize
46 | img = resize(img, self.img_size)
47 |
48 | return img_path, img
49 |
50 | def __len__(self):
51 | return len(self.files)
52 |
53 |
54 | class ListDataset(Dataset):
55 | def __init__(self, list_path, img_size=416, augment=True, multiscale=True, normalized_labels=True):
56 | with open(list_path, "r") as file:
57 | self.img_files = file.readlines()
58 |
59 | self.label_files = [
60 | path.replace("images", "labels").replace(".png", ".txt").replace(".jpg", ".txt")
61 | for path in self.img_files
62 | ]
63 | self.img_size = img_size
64 | self.max_objects = 100
65 | self.augment = augment
66 | self.multiscale = multiscale
67 | self.normalized_labels = normalized_labels
68 | self.min_size = self.img_size - 3 * 32
69 | self.max_size = self.img_size + 3 * 32
70 | self.batch_count = 0
71 |
72 | def __getitem__(self, index):
73 |
74 | # ---------
75 | # Image
76 | # ---------
77 |
78 | img_path = self.img_files[index % len(self.img_files)].rstrip()
79 |
80 | # Extract image as PyTorch tensor
81 | img = transforms.ToTensor()(Image.open(img_path).convert('RGB'))
82 |
83 | # Handle images with less than three channels
84 | if len(img.shape) != 3:
85 | img = img.unsqueeze(0)
86 | img = img.expand((3, img.shape[1:]))
87 |
88 | _, h, w = img.shape
89 | h_factor, w_factor = (h, w) if self.normalized_labels else (1, 1)
90 | # Pad to square resolution
91 | img, pad = pad_to_square(img, 0)
92 | _, padded_h, padded_w = img.shape
93 |
94 | # ---------
95 | # Label
96 | # ---------
97 |
98 | label_path = self.label_files[index % len(self.img_files)].rstrip()
99 |
100 | targets = None
101 | if os.path.exists(label_path):
102 | boxes = torch.from_numpy(np.loadtxt(label_path).reshape(-1, 5))
103 | # Extract coordinates for unpadded + unscaled image
104 | x1 = w_factor * (boxes[:, 1] - boxes[:, 3] / 2)
105 | y1 = h_factor * (boxes[:, 2] - boxes[:, 4] / 2)
106 | x2 = w_factor * (boxes[:, 1] + boxes[:, 3] / 2)
107 | y2 = h_factor * (boxes[:, 2] + boxes[:, 4] / 2)
108 | # Adjust for added padding
109 | x1 += pad[0]
110 | y1 += pad[2]
111 | x2 += pad[1]
112 | y2 += pad[3]
113 | # Returns (x, y, w, h)
114 | boxes[:, 1] = ((x1 + x2) / 2) / padded_w
115 | boxes[:, 2] = ((y1 + y2) / 2) / padded_h
116 | boxes[:, 3] *= w_factor / padded_w
117 | boxes[:, 4] *= h_factor / padded_h
118 |
119 | targets = torch.zeros((len(boxes), 6))
120 | targets[:, 1:] = boxes
121 |
122 | # Apply augmentations
123 | if self.augment:
124 | if np.random.random() < 0.5:
125 | img, targets = horisontal_flip(img, targets)
126 |
127 | return img_path, img, targets
128 |
129 | def collate_fn(self, batch):
130 | paths, imgs, targets = list(zip(*batch))
131 | # Remove empty placeholder targets
132 | targets = [boxes for boxes in targets if boxes is not None]
133 | # Add sample index to targets
134 | for i, boxes in enumerate(targets):
135 | boxes[:, 0] = i
136 | targets = torch.cat(targets, 0)
137 | # Selects new image size every tenth batch
138 | if self.multiscale and self.batch_count % 10 == 0:
139 | self.img_size = random.choice(range(self.min_size, self.max_size + 1, 32))
140 | # Resize images to input shape
141 | imgs = torch.stack([resize(img, self.img_size) for img in imgs])
142 | self.batch_count += 1
143 | return paths, imgs, targets
144 |
145 | def __len__(self):
146 | return len(self.img_files)
147 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | from models import Darknet
4 | from utils.utils import load_classes, weights_init_normal
5 | from utils.datasets import ListDataset
6 | from utils.parse_config import parse_data_config
7 | from validate import evaluate
8 |
9 | from terminaltables import AsciiTable
10 |
11 | import os
12 | import time
13 | import argparse
14 |
15 | import torch
16 | from torch.utils.data import DataLoader
17 | from torch.autograd import Variable
18 |
19 | import warnings
20 | warnings.filterwarnings("ignore", category=UserWarning)
21 |
22 | # from utils.logger import *
23 |
24 | if __name__ == "__main__":
25 | parser = argparse.ArgumentParser()
26 | parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
27 | parser.add_argument("--batch_size", type=int, default=6, help="size of each image batch")
28 | parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step")
29 | parser.add_argument("--model_def", type=str, default="config/yolov3_mask.cfg", help="path to model definition file")
30 | parser.add_argument("--data_config", type=str, default="config/mask_dataset.data", help="path to data config file")
31 | parser.add_argument("--pretrained_weights", type=str, default="weights/yolov3.weights", help="if specified starts from checkpoint model")
32 | parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
33 | parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
34 | parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights")
35 | parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set")
36 | parser.add_argument("--compute_map", default=True, help="if True computes mAP every tenth batch")
37 | parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training")
38 | opt = parser.parse_args()
39 | print(opt)
40 |
41 | # logger = Logger("logs")
42 |
43 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
44 |
45 | os.makedirs("output", exist_ok=True)
46 | os.makedirs("checkpoints", exist_ok=True)
47 |
48 | # Get data configuration
49 | data_config = parse_data_config(opt.data_config)
50 | train_path = data_config["train"]
51 | valid_path = data_config["valid"]
52 | class_names = load_classes(data_config["names"])
53 |
54 | # Initiate model
55 | model = Darknet(opt.model_def).to(device)
56 | model.apply(weights_init_normal)
57 |
58 | # If specified we start from checkpoint
59 | if opt.pretrained_weights:
60 | if opt.pretrained_weights.endswith(".pth"):
61 | model.load_state_dict(torch.load(opt.pretrained_weights))
62 | else:
63 | model.load_darknet_weights(opt.pretrained_weights)
64 |
65 | # Get dataloader
66 | dataset = ListDataset(train_path, augment=True, multiscale=opt.multiscale_training)
67 | dataloader = torch.utils.data.DataLoader(
68 | dataset,
69 | batch_size=opt.batch_size,
70 | shuffle=True,
71 | num_workers=opt.n_cpu,
72 | pin_memory=True,
73 | collate_fn=dataset.collate_fn,
74 | )
75 |
76 | optimizer = torch.optim.Adam(model.parameters())
77 |
78 | # to get mAP
79 | to_get_mAP = None
80 |
81 | for epoch in range(opt.epochs):
82 | model.train()
83 | start_time = time.time()
84 | for batch_i, (_, imgs, targets) in enumerate(dataloader):
85 | batches_done = len(dataloader) * epoch + batch_i
86 |
87 | imgs = Variable(imgs.to(device))
88 | targets = \
89 | Variable(targets.to(device), requires_grad=False)
90 |
91 | loss, outputs = model(imgs, targets)
92 | loss.backward()
93 |
94 | if batches_done % opt.gradient_accumulations:
95 | optimizer.step()
96 | optimizer.zero_grad()
97 |
98 |
99 | log_str = "---- [Epoch %d/%d, Batch %d/%d] ----" % (epoch, opt.epochs, batch_i, len(dataloader))
100 | log_str += f"Total loss {loss.item()}"
101 | print(log_str)
102 |
103 | model.seen += imgs.size(0)
104 |
105 | if epoch % opt.evaluation_interval == 0:
106 | try:
107 | print("\n---- Evaluating Model ----")
108 | # Evaluate the model on the validation set
109 | precision, recall, AP, f1, ap_class = evaluate(
110 | model,
111 | path=valid_path,
112 | iou_thres=0.5,
113 | conf_thres=0.5,
114 | nms_thres=0.5,
115 | img_size=opt.img_size,
116 | batch_size=4,
117 | )
118 | evaluation_metrics = [
119 | ("val_precision", precision.mean()),
120 | ("val_recall", recall.mean()),
121 | ("val_mAP", AP.mean()),
122 | ("val_f1", f1.mean()),
123 | ]
124 | # logger.list_of_scalars_summary(evaluation_metrics, epoch)
125 |
126 | # Print class APs and mAP
127 | ap_table = [["Index", "Class name", "AP"]]
128 | for i, c in enumerate(ap_class):
129 | ap_table += [[c, class_names[c], "%.5f" % AP[i]]]
130 | print(AsciiTable(ap_table).table)
131 | print(f"---- mAP {AP.mean()}")
132 | to_get_mAP = AP.mean()
133 | except:
134 | to_get_mAP = 999999999999
135 |
136 | if epoch % opt.checkpoint_interval == 0:
137 | torch.save(model.state_dict(), "checkpoints/23-04-2020__02-35/yolov3_ckpt_{0}__'{1}'__'{2}'.pth".format(epoch ,loss.item(),to_get_mAP))
138 |
--------------------------------------------------------------------------------
/image_detect.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | from models import Darknet
4 | from utils.utils import load_classes,non_max_suppression_output, non_max_suppression
5 |
6 | import argparse
7 |
8 | import os
9 | import torch
10 | import numpy as np
11 | from torch.autograd import Variable
12 |
13 | import cv2
14 |
15 | if __name__ == "__main__":
16 | parser = argparse.ArgumentParser()
17 | parser.add_argument("--input_file_path", type=str, default="testing/input/images", help="path to images directory")
18 | parser.add_argument("--output_path", type=str, default="testing/output/images", help="output image directory")
19 | parser.add_argument("--model_def", type=str, default="config/yolov3_mask.cfg", help="path to model definition file")
20 | parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3_ckpt_35.pth", help="path to weights file")
21 | parser.add_argument("--class_path", type=str, default="data/mask_dataset.names", help="path to class label file")
22 | parser.add_argument("--conf_thres", type=float, default=0.8, help="object confidence threshold")
23 | parser.add_argument("--nms_thres", type=float, default=0.3, help="iou thresshold for non-maximum suppression")
24 | parser.add_argument("--frame_size", type=int, default=416, help="size of each image dimension")
25 |
26 | opt = parser.parse_args()
27 | print(opt)
28 |
29 | # Output directory
30 | os.makedirs(opt.output_path, exist_ok=True)
31 |
32 | # checking for GPU
33 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34 |
35 | # Set up model
36 | model = Darknet(opt.model_def, img_size=opt.frame_size).to(device)
37 |
38 | # loading weights
39 | if opt.weights_path.endswith(".weights"):
40 | model.load_darknet_weights(opt.weights_path) # Load weights
41 | else:
42 | model.load_state_dict(torch.load(opt.weights_path)) # Load checkpoints
43 |
44 | # Set in evaluation mode
45 | model.eval()
46 |
47 | # Extracts class labels from file
48 | classes = load_classes(opt.class_path)
49 |
50 | # ckecking for GPU for Tensor
51 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
52 |
53 | print("\nPerforming object detection:")
54 |
55 | # for text in output
56 | t_size = cv2.getTextSize(" ", cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
57 |
58 | for imagename in os.listdir(opt.input_file_path):
59 |
60 | print("\n"+imagename+"_______")
61 | image_path = os.path.join(opt.input_file_path, imagename)
62 |
63 | # frame extraction
64 | org_img = cv2.imread(image_path)
65 |
66 | # Original image width and height
67 | i_height, i_width = org_img.shape[:2]
68 |
69 | # resizing => [BGR -> RGB] => [[0...255] -> [0...1]] => [[3, 416, 416] -> [416, 416, 3]]
70 | # => [[416, 416, 3] => [416, 416, 3, 1]] => [np_array -> tensor] => [tensor -> variable]
71 |
72 | # resizing to [416 x 416]
73 |
74 | # Create a black image
75 | x = y = i_height if i_height > i_width else i_width
76 |
77 | # Black image
78 | img = np.zeros((x, y, 3), np.uint8)
79 |
80 | # Putting original image into black image
81 | start_new_i_height = int((y - i_height) / 2)
82 | start_new_i_width = int((x - i_width) / 2)
83 |
84 | img[start_new_i_height: (start_new_i_height + i_height) ,start_new_i_width: (start_new_i_width + i_width) ] = org_img
85 |
86 | #resizing to [416x 416]
87 | img = cv2.resize(img, (opt.frame_size, opt.frame_size))
88 |
89 | # [BGR -> RGB]
90 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
91 | # [[0...255] -> [0...1]]
92 | img = np.asarray(img) / 255
93 | # [[3, 416, 416] -> [416, 416, 3]]
94 | img = np.transpose(img, [2, 0, 1])
95 | # [[416, 416, 3] => [416, 416, 3, 1]]
96 | img = np.expand_dims(img, axis=0)
97 | # [np_array -> tensor]
98 | img = torch.Tensor(img)
99 |
100 | # plt.imshow(img[0].permute(1, 2, 0))
101 | # plt.show()
102 |
103 | # [tensor -> variable]
104 | img = Variable(img.type(Tensor))
105 |
106 | # Get detections
107 | with torch.no_grad():
108 | detections = model(img)
109 |
110 | detections = non_max_suppression_output(detections, opt.conf_thres, opt.nms_thres)
111 |
112 | # print(detections)
113 |
114 | # For accommodate results in original frame
115 | mul_constant = x / opt.frame_size
116 |
117 | # For each detection in detections
118 | for detection in detections:
119 | if detection is not None:
120 |
121 | print("{0} Detection found".format(len(detection)))
122 | for x1, y1, x2, y2, conf, cls_conf, cls_pred in detection:
123 |
124 | # Accommodate bounding box in original frame
125 | x1 = int(x1 * mul_constant - start_new_i_width)
126 | y1 = int(y1 * mul_constant - start_new_i_height)
127 | x2 = int(x2 * mul_constant - start_new_i_width)
128 | y2 = int(y2 * mul_constant - start_new_i_height)
129 |
130 | # Bounding box making and setting Bounding box title
131 | if (int(cls_pred) == 0):
132 | # WITH_MASK
133 | cv2.rectangle(org_img, (x1, y1), (x2, y2), (0, 255, 0), 2)
134 | else:
135 | #WITHOUT_MASK
136 | cv2.rectangle(org_img, (x1, y1), (x2, y2), (0, 0, 255), 2)
137 |
138 | cv2.putText(org_img, classes[int(cls_pred)]+": %.2f" %conf, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1,
139 | [225, 255, 255], 2)
140 |
141 |
142 |
143 | out_filepath = os.path.join(opt.output_path, imagename)
144 | cv2.imwrite(out_filepath,org_img)
145 |
146 | print("Done....")
147 |
148 | cv2.destroyAllWindows()
149 |
--------------------------------------------------------------------------------
/cam_detect.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | from models import Darknet
4 | from utils.utils import load_classes,non_max_suppression_output
5 |
6 | import argparse
7 |
8 | import time
9 | import torch
10 | import numpy as np
11 | from torch.autograd import Variable
12 | from datetime import datetime
13 |
14 | import cv2
15 |
16 | if __name__ == "__main__":
17 | parser = argparse.ArgumentParser()
18 | parser.add_argument("--model_def", type=str, default="config/yolov3_mask.cfg", help="path to model definition file")
19 | parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3_ckpt_35.pth", help="path to weights file")
20 | parser.add_argument("--class_path", type=str, default="data/mask_dataset.names", help="path to class label file")
21 | parser.add_argument("--conf_thres", type=float, default=0.9, help="object confidence threshold")
22 | parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression")
23 | parser.add_argument("--frame_size", type=int, default=416, help="size of each image dimension")
24 |
25 | opt = parser.parse_args()
26 | print(opt)
27 |
28 | if(torch.cuda.is_available()):
29 | print("Running on GPU")
30 | else:
31 | print("Running on CPU")
32 |
33 | # checking for GPU
34 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
35 |
36 | # Set up model
37 | model = Darknet(opt.model_def, img_size=opt.frame_size).to(device)
38 |
39 | # loading weights
40 | if opt.weights_path.endswith(".weights"):
41 | model.load_darknet_weights(opt.weights_path) # Load weights
42 | else:
43 | model.load_state_dict(torch.load(opt.weights_path)) # Load checkpoints
44 |
45 | # Set in evaluation mode
46 | model.eval()
47 |
48 | # Extracts class labels from file
49 | classes = load_classes(opt.class_path)
50 |
51 | # ckecking for GPU for Tensor
52 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
53 |
54 | # camara capture
55 | # "http://192.168.43.19:8080/video"
56 | cap = cv2.VideoCapture(0)
57 | assert cap.isOpened(), 'Cannot capture source'
58 |
59 | print("\nPerforming object detection:")
60 |
61 | # Video feed dimensions
62 | _, frame = cap.read()
63 | v_height, v_width = frame.shape[:2]
64 |
65 | # For a black image
66 | x = y = v_height if v_height > v_width else v_width
67 |
68 | # Putting original image into black image
69 | start_new_i_height = int((y - v_height) / 2)
70 | start_new_i_width = int((x - v_width) / 2)
71 |
72 | # For accommodate results in original frame
73 | mul_constant = x / opt.frame_size
74 |
75 | # for text in output
76 | t_size = cv2.getTextSize(" ", cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
77 |
78 | frames = fps = 0
79 | start = time.time()
80 |
81 | while _:
82 |
83 | # frame extraction => resizing => [BGR -> RGB] => [[0...255] -> [0...1]] => [[3, 416, 416] -> [416, 416, 3]]
84 | # => [[416, 416, 3] => [416, 416, 3, 1]] => [np_array -> tensor] => [tensor -> variable]
85 |
86 | # frame extraction
87 | _, org_frame = cap.read()
88 | # resizing to [416 x 416]
89 |
90 | # Black image
91 | frame = np.zeros((x, y, 3), np.uint8)
92 |
93 | frame[start_new_i_height: (start_new_i_height + v_height) ,start_new_i_width: (start_new_i_width + v_width) ] = org_frame
94 |
95 | #resizing to [416x 416]
96 | frame = cv2.resize(frame, (opt.frame_size, opt.frame_size))
97 | # [BGR -> RGB]
98 | frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
99 | # [[0...255] -> [0...1]]
100 | frame = np.asarray(frame) / 255
101 | # [[3, 416, 416] -> [416, 416, 3]]
102 | frame = np.transpose(frame, [2, 0, 1])
103 | # [[416, 416, 3] => [416, 416, 3, 1]]
104 | frame = np.expand_dims(frame, axis=0)
105 | # [np_array -> tensor]
106 | frame = torch.Tensor(frame)
107 |
108 | # plt.imshow(frame[0].permute(1,2,0))
109 | # plt.show()
110 |
111 | # [tensor -> variable]
112 | frame = Variable(frame.type(Tensor))
113 |
114 | # Get detections
115 | with torch.no_grad():
116 | detections = model(frame)
117 | detections = non_max_suppression_output(detections, opt.conf_thres, opt.nms_thres)
118 |
119 | # For each detection in detections
120 | detection = detections[0]
121 | if detection is not None:
122 |
123 | for x1, y1, x2, y2, conf, cls_conf, cls_pred in detection:
124 |
125 | # Accommodate bounding box in original frame
126 | x1 = int(x1 * mul_constant - start_new_i_width)
127 | y1 = int(y1 * mul_constant - start_new_i_height)
128 | x2 = int(x2 * mul_constant - start_new_i_width)
129 | y2 = int(y2 * mul_constant - start_new_i_height)
130 |
131 | # Bounding box making and setting Bounding box title
132 | if (int(cls_pred) == 0):
133 | # WITH_MASK
134 | cv2.rectangle(org_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
135 | else:
136 | #WITHOUT_MASK
137 | cv2.rectangle(org_frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
138 |
139 | cv2.putText(org_frame, classes[int(cls_pred)]+ ": %.2f" % conf, (x1, y1 + t_size[1]),
140 | cv2.FONT_HERSHEY_PLAIN, 1,
141 | [225, 255, 255], 2)
142 |
143 | # CURRENT TIME SHOWING
144 | now = datetime.now()
145 | current_time = now.strftime("%H:%M:%S")
146 |
147 | # FPS PRINTING
148 | cv2.rectangle(org_frame, (0, 0), (175, 20), (0, 0, 0), -1)
149 | cv2.putText(org_frame, current_time + " FPS : %3.2f" % (fps), (0, t_size[1] + 2),
150 | cv2.FONT_HERSHEY_PLAIN, 1,
151 | [255, 255, 255], 1)
152 |
153 | frames += 1
154 | fps = frames / (time.time() - start)
155 |
156 | cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
157 | cv2.setWindowProperty('frame', cv2.WND_PROP_FULLSCREEN-5, cv2.WINDOW_FULLSCREEN)
158 |
159 | cv2.imshow('frame', org_frame)
160 | if cv2.waitKey(1) & 0xFF == ord('q'):
161 | break
162 |
163 | cap.release()
164 | cv2.destroyAllWindows()
165 |
--------------------------------------------------------------------------------
/video_detect.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | from models import Darknet
4 | from utils.utils import load_classes,non_max_suppression_output
5 |
6 | import argparse
7 |
8 | import time
9 | import cv2
10 | import os
11 | import torch
12 | import numpy as np
13 | from torch.autograd import Variable
14 |
15 | if __name__ == "__main__":
16 | parser = argparse.ArgumentParser()
17 | parser.add_argument("--input_file_path", type=str, default="testing/input/videos/Clip032.mp4", help="path to video file")
18 | parser.add_argument("--model_def", type=str, default="config/yolov3_mask.cfg", help="path to model definition file")
19 | parser.add_argument("--weights_path", type=str, default="checkpoints/yolov3_ckpt_35.pth", help="path to weights file")
20 | parser.add_argument("--class_path", type=str, default="data/mask_dataset.names", help="path to class label file")
21 | parser.add_argument("--conf_thres", type=float, default=0.9, help="object confidence threshold")
22 | parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression")
23 | parser.add_argument("--frame_size", type=int, default=416, help="size of each image dimension")
24 | parser.add_argument("--save_video", type=bool, default=True, help="save output video or not")
25 | parser.add_argument("--output_path", type=str, default="testing/output/videos", help="output video path")
26 |
27 | opt = parser.parse_args()
28 | print(opt)
29 |
30 | # Output directory
31 | os.makedirs(opt.output_path, exist_ok=True)
32 |
33 | # checking for GPU
34 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
35 |
36 | # Set up model
37 | model = Darknet(opt.model_def, img_size=opt.frame_size).to(device)
38 |
39 | # loading weights
40 | if opt.weights_path.endswith(".weights"):
41 | model.load_darknet_weights(opt.weights_path) # Load weights
42 | else:
43 | model.load_state_dict(torch.load(opt.weights_path)) # Load checkpoints
44 |
45 | # Set in evaluation mode
46 | model.eval()
47 |
48 | # Extracts class labels from file
49 | classes = load_classes(opt.class_path)
50 |
51 | # ckecking for GPU for Tensor
52 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
53 |
54 | # camara capture
55 | cap = cv2.VideoCapture(opt.input_file_path)
56 | assert cap.isOpened(), 'Cannot capture source'
57 |
58 | # Video feed dimensions
59 | _, frame = cap.read()
60 | v_height, v_width = frame.shape[:2]
61 |
62 | # print(v_height,v_width)
63 |
64 | # Output saving
65 | if(opt.save_video):
66 | fourcc = cv2.VideoWriter_fourcc(*'MP4V')
67 |
68 | filename = opt.input_file_path.split("/")[-1]
69 | filepath = os.path.join(opt.output_path,filename)
70 |
71 | fps = cap.get(cv2.CAP_PROP_FPS)
72 | out = cv2.VideoWriter(filepath, fourcc, fps, (v_width, v_height))
73 |
74 | print("\nPerforming object detection:")
75 |
76 | # For a black image
77 | x = y = v_height if v_height > v_width else v_width
78 |
79 | # Putting original image into black image
80 | start_new_i_height = int((y - v_height) / 2)
81 | start_new_i_width = int((x - v_width) / 2)
82 |
83 | # For accommodate results in original frame
84 | mul_constant = x / opt.frame_size
85 | # print(mul_constant)
86 |
87 | # for text in output
88 | t_size = cv2.getTextSize(" ", cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
89 |
90 | frames = fps = 0
91 | start = time.time()
92 |
93 | while _:
94 |
95 | # frame extraction => resizing => [BGR -> RGB] => [[0...255] -> [0...1]] => [[3, 416, 416] -> [416, 416, 3]]
96 | # => [[416, 416, 3] => [416, 416, 3, 1]] => [np_array -> tensor] => [tensor -> variable]
97 |
98 | # frame extraction
99 | _, org_frame = cap.read()
100 | # resizing to [416 x 416]
101 |
102 | # Black image
103 | frame = np.zeros((x, y, 3), np.uint8)
104 |
105 | frame[start_new_i_height: (start_new_i_height + v_height),start_new_i_width: (start_new_i_width + v_width)] = org_frame
106 |
107 | # resizing to [416x 416]
108 | frame = cv2.resize(frame, (opt.frame_size, opt.frame_size))
109 | # [BGR -> RGB]
110 | frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
111 | # [[0...255] -> [0...1]]
112 | frame = np.asarray(frame) / 255
113 | # [[3, 416, 416] -> [416, 416, 3]]
114 | frame = np.transpose(frame, [2, 0, 1])
115 | # [[416, 416, 3] => [416, 416, 3, 1]]
116 | frame = np.expand_dims(frame, axis=0)
117 | # [np_array -> tensor]
118 | frame = torch.Tensor(frame)
119 |
120 | # plt.imshow(frame[0].permute(1,2,0))
121 | # plt.show()
122 |
123 | # [tensor -> variable]
124 | frame = Variable(frame.type(Tensor))
125 |
126 | # Get detections
127 | with torch.no_grad():
128 | detections = model(frame)
129 | detections = non_max_suppression_output(detections, opt.conf_thres, opt.nms_thres)
130 |
131 | # For each detection in detections
132 | detection = detections[0]
133 | if detection is not None:
134 |
135 | for x1, y1, x2, y2, conf, cls_conf, cls_pred in detection:
136 |
137 | # Accommodate bounding box in original frame
138 | x1 = int(x1 * mul_constant - start_new_i_width)
139 | y1 = int(y1 * mul_constant - start_new_i_height)
140 | x2 = int(x2 * mul_constant - start_new_i_width)
141 | y2 = int(y2 * mul_constant - start_new_i_height)
142 |
143 | # Bounding box making and setting Bounding box title
144 | if (int(cls_pred) == 0):
145 | # WITH_MASK
146 | cv2.rectangle(org_frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
147 | else:
148 | # WITHOUT_MASK
149 | cv2.rectangle(org_frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
150 |
151 | cv2.putText(org_frame, classes[int(cls_pred)] + ": %.2f" % conf, (x1, y1 + t_size[1] + 4),
152 | cv2.FONT_HERSHEY_PLAIN, 1,
153 | [225, 255, 255], 2)
154 |
155 |
156 | # FPS PRINTING
157 | # cv2.rectangle(org_frame, (0, 0), (175, 20), (0, 0, 0), -1)
158 | # cv2.putText(org_frame,"FPS : %3.2f" % (fps), (0, t_size[1] + 4),
159 | # cv2.FONT_HERSHEY_PLAIN, 1,
160 | # [255, 255, 255], 1)
161 |
162 | frames += 1
163 | fps = frames / (time.time() - start)
164 |
165 | # cv2.namedWindow('frame', cv2.WINDOW_NORMAL)
166 | # cv2.setWindowProperty('frame', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
167 |
168 | if (opt.save_video):
169 | out.write(org_frame)
170 |
171 | cv2.imshow('frame', org_frame)
172 | if cv2.waitKey(1) & 0xFF == ord('q'):
173 | break
174 |
175 | if (opt.save_video):
176 | out.release()
177 |
178 | cap.release()
179 | cv2.destroyAllWindows()
--------------------------------------------------------------------------------
/config/yolov3_mask.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | batch=16
3 | subdivisions=1
4 | width=416
5 | height=416
6 | channels=3
7 | momentum=0.9
8 | decay=0.0005
9 | angle=0
10 | saturation = 1.5
11 | exposure = 1.5
12 | hue=.1
13 |
14 | learning_rate=0.0001
15 | burn_in=1000
16 | max_batches = 500200
17 | policy=steps
18 | steps=400000,450000
19 | scales=.1,.1
20 |
21 | [convolutional]
22 | batch_normalize=1
23 | filters=32
24 | size=3
25 | stride=1
26 | pad=1
27 | activation=leaky
28 |
29 | # Downsample
30 |
31 | [convolutional]
32 | batch_normalize=1
33 | filters=64
34 | size=3
35 | stride=2
36 | pad=1
37 | activation=leaky
38 |
39 | [convolutional]
40 | batch_normalize=1
41 | filters=32
42 | size=1
43 | stride=1
44 | pad=1
45 | activation=leaky
46 |
47 | [convolutional]
48 | batch_normalize=1
49 | filters=64
50 | size=3
51 | stride=1
52 | pad=1
53 | activation=leaky
54 |
55 | [shortcut]
56 | from=-3
57 | activation=linear
58 |
59 | # Downsample
60 |
61 | [convolutional]
62 | batch_normalize=1
63 | filters=128
64 | size=3
65 | stride=2
66 | pad=1
67 | activation=leaky
68 |
69 | [convolutional]
70 | batch_normalize=1
71 | filters=64
72 | size=1
73 | stride=1
74 | pad=1
75 | activation=leaky
76 |
77 | [convolutional]
78 | batch_normalize=1
79 | filters=128
80 | size=3
81 | stride=1
82 | pad=1
83 | activation=leaky
84 |
85 | [shortcut]
86 | from=-3
87 | activation=linear
88 |
89 | [convolutional]
90 | batch_normalize=1
91 | filters=64
92 | size=1
93 | stride=1
94 | pad=1
95 | activation=leaky
96 |
97 | [convolutional]
98 | batch_normalize=1
99 | filters=128
100 | size=3
101 | stride=1
102 | pad=1
103 | activation=leaky
104 |
105 | [shortcut]
106 | from=-3
107 | activation=linear
108 |
109 | # Downsample
110 |
111 | [convolutional]
112 | batch_normalize=1
113 | filters=256
114 | size=3
115 | stride=2
116 | pad=1
117 | activation=leaky
118 |
119 | [convolutional]
120 | batch_normalize=1
121 | filters=128
122 | size=1
123 | stride=1
124 | pad=1
125 | activation=leaky
126 |
127 | [convolutional]
128 | batch_normalize=1
129 | filters=256
130 | size=3
131 | stride=1
132 | pad=1
133 | activation=leaky
134 |
135 | [shortcut]
136 | from=-3
137 | activation=linear
138 |
139 | [convolutional]
140 | batch_normalize=1
141 | filters=128
142 | size=1
143 | stride=1
144 | pad=1
145 | activation=leaky
146 |
147 | [convolutional]
148 | batch_normalize=1
149 | filters=256
150 | size=3
151 | stride=1
152 | pad=1
153 | activation=leaky
154 |
155 | [shortcut]
156 | from=-3
157 | activation=linear
158 |
159 | [convolutional]
160 | batch_normalize=1
161 | filters=128
162 | size=1
163 | stride=1
164 | pad=1
165 | activation=leaky
166 |
167 | [convolutional]
168 | batch_normalize=1
169 | filters=256
170 | size=3
171 | stride=1
172 | pad=1
173 | activation=leaky
174 |
175 | [shortcut]
176 | from=-3
177 | activation=linear
178 |
179 | [convolutional]
180 | batch_normalize=1
181 | filters=128
182 | size=1
183 | stride=1
184 | pad=1
185 | activation=leaky
186 |
187 | [convolutional]
188 | batch_normalize=1
189 | filters=256
190 | size=3
191 | stride=1
192 | pad=1
193 | activation=leaky
194 |
195 | [shortcut]
196 | from=-3
197 | activation=linear
198 |
199 |
200 | [convolutional]
201 | batch_normalize=1
202 | filters=128
203 | size=1
204 | stride=1
205 | pad=1
206 | activation=leaky
207 |
208 | [convolutional]
209 | batch_normalize=1
210 | filters=256
211 | size=3
212 | stride=1
213 | pad=1
214 | activation=leaky
215 |
216 | [shortcut]
217 | from=-3
218 | activation=linear
219 |
220 | [convolutional]
221 | batch_normalize=1
222 | filters=128
223 | size=1
224 | stride=1
225 | pad=1
226 | activation=leaky
227 |
228 | [convolutional]
229 | batch_normalize=1
230 | filters=256
231 | size=3
232 | stride=1
233 | pad=1
234 | activation=leaky
235 |
236 | [shortcut]
237 | from=-3
238 | activation=linear
239 |
240 | [convolutional]
241 | batch_normalize=1
242 | filters=128
243 | size=1
244 | stride=1
245 | pad=1
246 | activation=leaky
247 |
248 | [convolutional]
249 | batch_normalize=1
250 | filters=256
251 | size=3
252 | stride=1
253 | pad=1
254 | activation=leaky
255 |
256 | [shortcut]
257 | from=-3
258 | activation=linear
259 |
260 | [convolutional]
261 | batch_normalize=1
262 | filters=128
263 | size=1
264 | stride=1
265 | pad=1
266 | activation=leaky
267 |
268 | [convolutional]
269 | batch_normalize=1
270 | filters=256
271 | size=3
272 | stride=1
273 | pad=1
274 | activation=leaky
275 |
276 | [shortcut]
277 | from=-3
278 | activation=linear
279 |
280 | # Downsample
281 |
282 | [convolutional]
283 | batch_normalize=1
284 | filters=512
285 | size=3
286 | stride=2
287 | pad=1
288 | activation=leaky
289 |
290 | [convolutional]
291 | batch_normalize=1
292 | filters=256
293 | size=1
294 | stride=1
295 | pad=1
296 | activation=leaky
297 |
298 | [convolutional]
299 | batch_normalize=1
300 | filters=512
301 | size=3
302 | stride=1
303 | pad=1
304 | activation=leaky
305 |
306 | [shortcut]
307 | from=-3
308 | activation=linear
309 |
310 |
311 | [convolutional]
312 | batch_normalize=1
313 | filters=256
314 | size=1
315 | stride=1
316 | pad=1
317 | activation=leaky
318 |
319 | [convolutional]
320 | batch_normalize=1
321 | filters=512
322 | size=3
323 | stride=1
324 | pad=1
325 | activation=leaky
326 |
327 | [shortcut]
328 | from=-3
329 | activation=linear
330 |
331 |
332 | [convolutional]
333 | batch_normalize=1
334 | filters=256
335 | size=1
336 | stride=1
337 | pad=1
338 | activation=leaky
339 |
340 | [convolutional]
341 | batch_normalize=1
342 | filters=512
343 | size=3
344 | stride=1
345 | pad=1
346 | activation=leaky
347 |
348 | [shortcut]
349 | from=-3
350 | activation=linear
351 |
352 |
353 | [convolutional]
354 | batch_normalize=1
355 | filters=256
356 | size=1
357 | stride=1
358 | pad=1
359 | activation=leaky
360 |
361 | [convolutional]
362 | batch_normalize=1
363 | filters=512
364 | size=3
365 | stride=1
366 | pad=1
367 | activation=leaky
368 |
369 | [shortcut]
370 | from=-3
371 | activation=linear
372 |
373 | [convolutional]
374 | batch_normalize=1
375 | filters=256
376 | size=1
377 | stride=1
378 | pad=1
379 | activation=leaky
380 |
381 | [convolutional]
382 | batch_normalize=1
383 | filters=512
384 | size=3
385 | stride=1
386 | pad=1
387 | activation=leaky
388 |
389 | [shortcut]
390 | from=-3
391 | activation=linear
392 |
393 |
394 | [convolutional]
395 | batch_normalize=1
396 | filters=256
397 | size=1
398 | stride=1
399 | pad=1
400 | activation=leaky
401 |
402 | [convolutional]
403 | batch_normalize=1
404 | filters=512
405 | size=3
406 | stride=1
407 | pad=1
408 | activation=leaky
409 |
410 | [shortcut]
411 | from=-3
412 | activation=linear
413 |
414 |
415 | [convolutional]
416 | batch_normalize=1
417 | filters=256
418 | size=1
419 | stride=1
420 | pad=1
421 | activation=leaky
422 |
423 | [convolutional]
424 | batch_normalize=1
425 | filters=512
426 | size=3
427 | stride=1
428 | pad=1
429 | activation=leaky
430 |
431 | [shortcut]
432 | from=-3
433 | activation=linear
434 |
435 | [convolutional]
436 | batch_normalize=1
437 | filters=256
438 | size=1
439 | stride=1
440 | pad=1
441 | activation=leaky
442 |
443 | [convolutional]
444 | batch_normalize=1
445 | filters=512
446 | size=3
447 | stride=1
448 | pad=1
449 | activation=leaky
450 |
451 | [shortcut]
452 | from=-3
453 | activation=linear
454 |
455 | # Downsample
456 |
457 | [convolutional]
458 | batch_normalize=1
459 | filters=1024
460 | size=3
461 | stride=2
462 | pad=1
463 | activation=leaky
464 |
465 | [convolutional]
466 | batch_normalize=1
467 | filters=512
468 | size=1
469 | stride=1
470 | pad=1
471 | activation=leaky
472 |
473 | [convolutional]
474 | batch_normalize=1
475 | filters=1024
476 | size=3
477 | stride=1
478 | pad=1
479 | activation=leaky
480 |
481 | [shortcut]
482 | from=-3
483 | activation=linear
484 |
485 | [convolutional]
486 | batch_normalize=1
487 | filters=512
488 | size=1
489 | stride=1
490 | pad=1
491 | activation=leaky
492 |
493 | [convolutional]
494 | batch_normalize=1
495 | filters=1024
496 | size=3
497 | stride=1
498 | pad=1
499 | activation=leaky
500 |
501 | [shortcut]
502 | from=-3
503 | activation=linear
504 |
505 | [convolutional]
506 | batch_normalize=1
507 | filters=512
508 | size=1
509 | stride=1
510 | pad=1
511 | activation=leaky
512 |
513 | [convolutional]
514 | batch_normalize=1
515 | filters=1024
516 | size=3
517 | stride=1
518 | pad=1
519 | activation=leaky
520 |
521 | [shortcut]
522 | from=-3
523 | activation=linear
524 |
525 | [convolutional]
526 | batch_normalize=1
527 | filters=512
528 | size=1
529 | stride=1
530 | pad=1
531 | activation=leaky
532 |
533 | [convolutional]
534 | batch_normalize=1
535 | filters=1024
536 | size=3
537 | stride=1
538 | pad=1
539 | activation=leaky
540 |
541 | [shortcut]
542 | from=-3
543 | activation=linear
544 |
545 | ######################
546 |
547 | [convolutional]
548 | batch_normalize=1
549 | filters=512
550 | size=1
551 | stride=1
552 | pad=1
553 | activation=leaky
554 |
555 | [convolutional]
556 | batch_normalize=1
557 | size=3
558 | stride=1
559 | pad=1
560 | filters=1024
561 | activation=leaky
562 |
563 | [convolutional]
564 | batch_normalize=1
565 | filters=512
566 | size=1
567 | stride=1
568 | pad=1
569 | activation=leaky
570 |
571 | [convolutional]
572 | batch_normalize=1
573 | size=3
574 | stride=1
575 | pad=1
576 | filters=1024
577 | activation=leaky
578 |
579 | [convolutional]
580 | batch_normalize=1
581 | filters=512
582 | size=1
583 | stride=1
584 | pad=1
585 | activation=leaky
586 |
587 | [convolutional]
588 | batch_normalize=1
589 | size=3
590 | stride=1
591 | pad=1
592 | filters=1024
593 | activation=leaky
594 |
595 | [convolutional]
596 | size=1
597 | stride=1
598 | pad=1
599 | filters=21
600 | activation=linear
601 |
602 |
603 | [yolo]
604 | mask = 6,7,8
605 | anchors = 27, 31, 39, 49, 54, 69, 72, 96, 94, 128, 123, 165, 166, 222, 239, 313, 387, 493
606 | classes=2
607 | num=9
608 | jitter=.3
609 | ignore_thresh = .7
610 | truth_thresh = 1
611 | random=1
612 |
613 |
614 | [route]
615 | layers = -4
616 |
617 | [convolutional]
618 | batch_normalize=1
619 | filters=256
620 | size=1
621 | stride=1
622 | pad=1
623 | activation=leaky
624 |
625 | [upsample]
626 | stride=2
627 |
628 | [route]
629 | layers = -1, 61
630 |
631 |
632 |
633 | [convolutional]
634 | batch_normalize=1
635 | filters=256
636 | size=1
637 | stride=1
638 | pad=1
639 | activation=leaky
640 |
641 | [convolutional]
642 | batch_normalize=1
643 | size=3
644 | stride=1
645 | pad=1
646 | filters=512
647 | activation=leaky
648 |
649 | [convolutional]
650 | batch_normalize=1
651 | filters=256
652 | size=1
653 | stride=1
654 | pad=1
655 | activation=leaky
656 |
657 | [convolutional]
658 | batch_normalize=1
659 | size=3
660 | stride=1
661 | pad=1
662 | filters=512
663 | activation=leaky
664 |
665 | [convolutional]
666 | batch_normalize=1
667 | filters=256
668 | size=1
669 | stride=1
670 | pad=1
671 | activation=leaky
672 |
673 | [convolutional]
674 | batch_normalize=1
675 | size=3
676 | stride=1
677 | pad=1
678 | filters=512
679 | activation=leaky
680 |
681 | [convolutional]
682 | size=1
683 | stride=1
684 | pad=1
685 | filters=21
686 | activation=linear
687 |
688 |
689 | [yolo]
690 | mask = 3,4,5
691 | anchors = 27,31, 39,49, 54,69, 72,96, 94,128, 123,165, 166,222, 239,313, 387,493
692 | classes=2
693 | num=9
694 | jitter=.3
695 | ignore_thresh = .7
696 | truth_thresh = 1
697 | random=1
698 |
699 |
700 |
701 | [route]
702 | layers = -4
703 |
704 | [convolutional]
705 | batch_normalize=1
706 | filters=128
707 | size=1
708 | stride=1
709 | pad=1
710 | activation=leaky
711 |
712 | [upsample]
713 | stride=2
714 |
715 | [route]
716 | layers = -1, 36
717 |
718 |
719 |
720 | [convolutional]
721 | batch_normalize=1
722 | filters=128
723 | size=1
724 | stride=1
725 | pad=1
726 | activation=leaky
727 |
728 | [convolutional]
729 | batch_normalize=1
730 | size=3
731 | stride=1
732 | pad=1
733 | filters=256
734 | activation=leaky
735 |
736 | [convolutional]
737 | batch_normalize=1
738 | filters=128
739 | size=1
740 | stride=1
741 | pad=1
742 | activation=leaky
743 |
744 | [convolutional]
745 | batch_normalize=1
746 | size=3
747 | stride=1
748 | pad=1
749 | filters=256
750 | activation=leaky
751 |
752 | [convolutional]
753 | batch_normalize=1
754 | filters=128
755 | size=1
756 | stride=1
757 | pad=1
758 | activation=leaky
759 |
760 | [convolutional]
761 | batch_normalize=1
762 | size=3
763 | stride=1
764 | pad=1
765 | filters=256
766 | activation=leaky
767 |
768 | [convolutional]
769 | size=1
770 | stride=1
771 | pad=1
772 | filters=21
773 | activation=linear
774 |
775 |
776 | [yolo]
777 | mask = 0,1,2
778 | anchors = 27, 31, 39, 49, 54, 69, 72, 96, 94, 128, 123, 165, 166, 222, 239, 313, 387, 493
779 | classes=2
780 | num=9
781 | jitter=.3
782 | ignore_thresh = .7
783 | truth_thresh = 1
784 | random=1
785 |
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | import numpy as np
7 |
8 | from utils.parse_config import parse_model_config
9 | from utils.utils import build_targets, to_cpu
10 |
11 |
12 | def create_modules(module_defs):
13 | """
14 | Constructs module list of layer blocks from module configuration in module_defs
15 | """
16 | hyperparams = module_defs.pop(0)
17 | output_filters = [int(hyperparams["channels"])]
18 | module_list = nn.ModuleList()
19 | for module_i, module_def in enumerate(module_defs):
20 | modules = nn.Sequential()
21 |
22 | if module_def["type"] == "convolutional":
23 | bn = int(module_def["batch_normalize"])
24 | filters = int(module_def["filters"])
25 | kernel_size = int(module_def["size"])
26 | pad = (kernel_size - 1) // 2
27 | modules.add_module(
28 | f"conv_{module_i}",
29 | nn.Conv2d(
30 | in_channels=output_filters[-1],
31 | out_channels=filters,
32 | kernel_size=kernel_size,
33 | stride=int(module_def["stride"]),
34 | padding=pad,
35 | bias=not bn,
36 | ),
37 | )
38 | if bn:
39 | modules.add_module(f"batch_norm_{module_i}", nn.BatchNorm2d(filters, momentum=0.9, eps=1e-5))
40 | if module_def["activation"] == "leaky":
41 | modules.add_module(f"leaky_{module_i}", nn.LeakyReLU(0.1))
42 |
43 | elif module_def["type"] == "upsample":
44 | upsample = Upsample(scale_factor=int(module_def["stride"]), mode="nearest")
45 | modules.add_module(f"upsample_{module_i}", upsample)
46 |
47 | elif module_def["type"] == "route":
48 | layers = [int(x) for x in module_def["layers"].split(",")]
49 | filters = sum([output_filters[1:][i] for i in layers])
50 | modules.add_module(f"route_{module_i}", EmptyLayer())
51 |
52 | elif module_def["type"] == "shortcut":
53 | filters = output_filters[1:][int(module_def["from"])]
54 | modules.add_module(f"shortcut_{module_i}", EmptyLayer())
55 |
56 | elif module_def["type"] == "yolo":
57 | anchor_idxs = [int(x) for x in module_def["mask"].split(",")]
58 | # Extract anchors
59 | anchors = [int(x) for x in module_def["anchors"].split(",")]
60 | anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
61 | anchors = [anchors[i] for i in anchor_idxs]
62 | num_classes = int(module_def["classes"])
63 | img_size = int(hyperparams["height"])
64 | # Define detection layer
65 | yolo_layer = YOLOLayer(anchors, num_classes, img_size)
66 | modules.add_module(f"yolo_{module_i}", yolo_layer)
67 | # Register module list and number of output filters
68 | module_list.append(modules)
69 | output_filters.append(filters)
70 |
71 | return hyperparams, module_list
72 |
73 |
74 | class Upsample(nn.Module):
75 | """ nn.Upsample is deprecated """
76 |
77 | def __init__(self, scale_factor, mode="nearest"):
78 | super(Upsample, self).__init__()
79 | self.scale_factor = scale_factor
80 | self.mode = mode
81 |
82 | def forward(self, x):
83 | x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
84 | return x
85 |
86 |
87 | class EmptyLayer(nn.Module):
88 | """Placeholder for 'route' and 'shortcut' layers"""
89 |
90 | def __init__(self):
91 | super(EmptyLayer, self).__init__()
92 |
93 |
94 | class YOLOLayer(nn.Module):
95 | """Detection layer"""
96 |
97 | def __init__(self, anchors, num_classes, img_dim=416):
98 | super(YOLOLayer, self).__init__()
99 | self.anchors = anchors
100 | self.num_anchors = len(anchors)
101 | self.num_classes = num_classes
102 | self.ignore_thres = 0.5
103 | self.mse_loss = nn.MSELoss()
104 | self.bce_loss = nn.BCELoss()
105 | self.obj_scale = 1
106 | self.noobj_scale = 100
107 | self.metrics = {}
108 | self.img_dim = img_dim
109 | self.grid_size = 0 # grid size
110 |
111 | def compute_grid_offsets(self, grid_size, cuda=True):
112 | self.grid_size = grid_size
113 | g = self.grid_size
114 | FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
115 | self.stride = self.img_dim / self.grid_size
116 | # Calculate offsets for each grid
117 | self.grid_x = torch.arange(g).repeat(g, 1).view([1, 1, g, g]).type(FloatTensor)
118 | self.grid_y = torch.arange(g).repeat(g, 1).t().view([1, 1, g, g]).type(FloatTensor)
119 | self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors])
120 | self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.num_anchors, 1, 1))
121 | self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.num_anchors, 1, 1))
122 |
123 | def forward(self, x, targets=None, img_dim=None):
124 |
125 | # Tensors for cuda support
126 | FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
127 | LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
128 | ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor
129 |
130 | self.img_dim = img_dim
131 | num_samples = x.size(0)
132 | grid_size = x.size(2)
133 |
134 | prediction = (
135 | x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size, grid_size)
136 | .permute(0, 1, 3, 4, 2)
137 | .contiguous()
138 | )
139 |
140 | # Get outputs
141 | x = torch.sigmoid(prediction[..., 0]) # Center x
142 | y = torch.sigmoid(prediction[..., 1]) # Center y
143 | w = prediction[..., 2] # Width
144 | h = prediction[..., 3] # Height
145 | pred_conf = torch.sigmoid(prediction[..., 4]) # Conf
146 | pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred.
147 |
148 | # If grid size does not match current we compute new offsets
149 | if grid_size != self.grid_size:
150 | self.compute_grid_offsets(grid_size, cuda=x.is_cuda)
151 |
152 | # Add offset and scale with anchors
153 | pred_boxes = FloatTensor(prediction[..., :4].shape)
154 | pred_boxes[..., 0] = x.data + self.grid_x
155 | pred_boxes[..., 1] = y.data + self.grid_y
156 | pred_boxes[..., 2] = torch.exp(w.data) * self.anchor_w
157 | pred_boxes[..., 3] = torch.exp(h.data) * self.anchor_h
158 |
159 | output = torch.cat(
160 | (
161 | pred_boxes.view(num_samples, -1, 4) * self.stride,
162 | pred_conf.view(num_samples, -1, 1),
163 | pred_cls.view(num_samples, -1, self.num_classes),
164 | ),
165 | -1,
166 | )
167 |
168 | if targets is None:
169 | return output, 0
170 | else:
171 | iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf = build_targets(
172 | pred_boxes=pred_boxes,
173 | pred_cls=pred_cls,
174 | target=targets,
175 | anchors=self.scaled_anchors,
176 | ignore_thres=self.ignore_thres,
177 | )
178 |
179 | # Loss : Mask outputs to ignore non-existing objects (except with conf. loss)
180 | loss_x = self.mse_loss(x[obj_mask], tx[obj_mask])
181 | loss_y = self.mse_loss(y[obj_mask], ty[obj_mask])
182 | loss_w = self.mse_loss(w[obj_mask], tw[obj_mask])
183 | loss_h = self.mse_loss(h[obj_mask], th[obj_mask])
184 |
185 | # Calculate BCE of objectness score of a bounding box
186 | loss_conf_obj = self.bce_loss(pred_conf[obj_mask], tconf[obj_mask])
187 | # Calculate BCE of no objectness score of a bounding box
188 | loss_conf_noobj = self.bce_loss(pred_conf[noobj_mask], tconf[noobj_mask])
189 |
190 | # Scale and Sum above two LOSS
191 | loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj
192 |
193 | # Calculate BCE of multi-class predictions of a bounding box
194 | loss_cls = self.bce_loss(pred_cls[obj_mask], tcls[obj_mask])
195 |
196 | total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls
197 |
198 | return output, total_loss
199 |
200 |
201 | class Darknet(nn.Module):
202 | """YOLOv3 object detection model"""
203 |
204 | def __init__(self, config_path, img_size=416):
205 | super(Darknet, self).__init__()
206 | self.module_defs = parse_model_config(config_path)
207 | self.hyperparams, self.module_list = create_modules(self.module_defs)
208 | self.yolo_layers = [layer[0] for layer in self.module_list if hasattr(layer[0], "metrics")]
209 | self.img_size = img_size
210 | self.seen = 0
211 | self.header_info = np.array([0, 0, 0, self.seen, 0], dtype=np.int32)
212 |
213 | def forward(self, x, targets=None):
214 | img_dim = x.shape[2]
215 | loss = 0
216 | layer_outputs, yolo_outputs = [], []
217 | for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
218 | if module_def["type"] in ["convolutional", "upsample"]:
219 | x = module(x)
220 | elif module_def["type"] == "route":
221 | x = torch.cat([layer_outputs[int(layer_i)] for layer_i in module_def["layers"].split(",")], 1)
222 | elif module_def["type"] == "shortcut":
223 | layer_i = int(module_def["from"])
224 | x = layer_outputs[-1] + layer_outputs[layer_i]
225 | elif module_def["type"] == "yolo":
226 | x, layer_loss = module[0](x, targets, img_dim)
227 | loss += layer_loss
228 | yolo_outputs.append(x)
229 | layer_outputs.append(x)
230 | yolo_outputs = to_cpu(torch.cat(yolo_outputs, 1))
231 | return yolo_outputs if targets is None else (loss, yolo_outputs)
232 |
233 | def load_darknet_weights(self, weights_path):
234 | """Parses and loads the weights stored in 'weights_path'"""
235 |
236 | # Open the weights file
237 | with open(weights_path, "rb") as f:
238 | header = np.fromfile(f, dtype=np.int32, count=5) # First five are header values
239 | self.header_info = header # Needed to write header when saving weights
240 | self.seen = header[3] # number of images seen during training
241 | weights = np.fromfile(f, dtype=np.float32) # The rest are weights
242 |
243 | # Establish cutoff for loading backbone weights
244 | cutoff = None
245 | if "darknet53.conv.74" in weights_path:
246 | cutoff = 75
247 |
248 | ptr = 0
249 | for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
250 | if i == cutoff:
251 | break
252 | if module_def["type"] == "convolutional":
253 | conv_layer = module[0]
254 | if module_def["batch_normalize"]:
255 | # Load BN bias, weights, running mean and running variance
256 | bn_layer = module[1]
257 | num_b = bn_layer.bias.numel() # Number of biases
258 | # Bias
259 | bn_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.bias)
260 | bn_layer.bias.data.copy_(bn_b)
261 | ptr += num_b
262 | # Weight
263 | bn_w = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.weight)
264 | bn_layer.weight.data.copy_(bn_w)
265 | ptr += num_b
266 | # Running Mean
267 | bn_rm = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_mean)
268 | bn_layer.running_mean.data.copy_(bn_rm)
269 | ptr += num_b
270 | # Running Var
271 | bn_rv = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_var)
272 | bn_layer.running_var.data.copy_(bn_rv)
273 | ptr += num_b
274 | else:
275 | # Load conv. bias
276 | num_b = conv_layer.bias.numel()
277 | conv_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(conv_layer.bias)
278 | conv_layer.bias.data.copy_(conv_b)
279 | ptr += num_b
280 | # Load conv. weights
281 | num_w = conv_layer.weight.numel()
282 | conv_w = torch.from_numpy(weights[ptr : ptr + num_w]).view_as(conv_layer.weight)
283 | conv_layer.weight.data.copy_(conv_w)
284 | ptr += num_w
285 |
286 | def save_darknet_weights(self, path, cutoff=-1):
287 | """
288 | @:param path - path of the new weights file
289 | @:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved)
290 | """
291 | fp = open(path, "wb")
292 | self.header_info[3] = self.seen
293 | self.header_info.tofile(fp)
294 |
295 | # Iterate through layers
296 | for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
297 | if module_def["type"] == "convolutional":
298 | conv_layer = module[0]
299 | # If batch norm, load bn first
300 | if module_def["batch_normalize"]:
301 | bn_layer = module[1]
302 | bn_layer.bias.data.cpu().numpy().tofile(fp)
303 | bn_layer.weight.data.cpu().numpy().tofile(fp)
304 | bn_layer.running_mean.data.cpu().numpy().tofile(fp)
305 | bn_layer.running_var.data.cpu().numpy().tofile(fp)
306 | # Load conv bias
307 | else:
308 | conv_layer.bias.data.cpu().numpy().tofile(fp)
309 | # Load conv weights
310 | conv_layer.weight.data.cpu().numpy().tofile(fp)
311 |
312 | fp.close()
313 |
--------------------------------------------------------------------------------
/utils/utils.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | import tqdm
3 | import torch
4 | import numpy as np
5 |
6 |
7 | def to_cpu(tensor):
8 | return tensor.detach().cpu()
9 |
10 |
11 | def load_classes(path):
12 | """
13 | Loads class labels at 'path'
14 | """
15 | fp = open(path, "r")
16 | names = fp.read().split("\n")[:-1]
17 | return names
18 |
19 |
20 | def weights_init_normal(m):
21 | classname = m.__class__.__name__
22 | if classname.find("Conv") != -1:
23 | torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
24 | elif classname.find("BatchNorm2d") != -1:
25 | torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
26 | torch.nn.init.constant_(m.bias.data, 0.0)
27 |
28 | def xywh2xyxy(x):
29 | y = x.new(x.shape)
30 | y[..., 0] = x[..., 0] - x[..., 2] / 2
31 | y[..., 1] = x[..., 1] - x[..., 3] / 2
32 | y[..., 2] = x[..., 0] + x[..., 2] / 2
33 | y[..., 3] = x[..., 1] + x[..., 3] / 2
34 | return y
35 |
36 |
37 | def ap_per_class(tp, conf, pred_cls, target_cls):
38 | """ Compute the average precision, given the recall and precision curves.
39 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
40 | # Arguments
41 | tp: True positives (list).
42 | conf: Objectness value from 0-1 (list).
43 | pred_cls: Predicted object classes (list).
44 | target_cls: True object classes (list).
45 | # Returns
46 | The average precision as computed in py-faster-rcnn.
47 | """
48 |
49 | # Sort by objectness
50 | i = np.argsort(-conf)
51 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
52 |
53 | # Find unique classes
54 | unique_classes = np.unique(target_cls)
55 |
56 | # Create Precision-Recall curve and compute AP for each class
57 | ap, p, r = [], [], []
58 | for c in tqdm.tqdm(unique_classes, desc="Computing AP"):
59 | i = pred_cls == c
60 | n_gt = (target_cls == c).sum() # Number of ground truth objects
61 | n_p = i.sum() # Number of predicted objects
62 |
63 | if n_p == 0 and n_gt == 0:
64 | continue
65 | elif n_p == 0 or n_gt == 0:
66 | ap.append(0)
67 | r.append(0)
68 | p.append(0)
69 | else:
70 | # Accumulate FPs and TPs
71 | fpc = (1 - tp[i]).cumsum()
72 | tpc = (tp[i]).cumsum()
73 |
74 | # Recall
75 | recall_curve = tpc / (n_gt + 1e-16)
76 | r.append(recall_curve[-1])
77 |
78 | # Precision
79 | precision_curve = tpc / (tpc + fpc)
80 | p.append(precision_curve[-1])
81 |
82 | # AP from recall-precision curve
83 | ap.append(compute_ap(recall_curve, precision_curve))
84 |
85 | # Compute F1 score (harmonic mean of precision and recall)
86 | p, r, ap = np.array(p), np.array(r), np.array(ap)
87 | f1 = 2 * p * r / (p + r + 1e-16)
88 |
89 | return p, r, ap, f1, unique_classes.astype("int32")
90 |
91 |
92 | def compute_ap(recall, precision):
93 | """ Compute the average precision, given the recall and precision curves.
94 | Code originally from https://github.com/rbgirshick/py-faster-rcnn.
95 |
96 | # Arguments
97 | recall: The recall curve (list).
98 | precision: The precision curve (list).
99 | # Returns
100 | The average precision as computed in py-faster-rcnn.
101 | """
102 | # correct AP calculation
103 | # first append sentinel values at the end
104 | mrec = np.concatenate(([0.0], recall, [1.0]))
105 | mpre = np.concatenate(([0.0], precision, [0.0]))
106 |
107 | # compute the precision envelope
108 | for i in range(mpre.size - 1, 0, -1):
109 | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
110 |
111 | # to calculate area under PR curve, look for points
112 | # where X axis (recall) changes value
113 | i = np.where(mrec[1:] != mrec[:-1])[0]
114 |
115 | # and sum (\Delta recall) * prec
116 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
117 | return ap
118 |
119 |
120 | def get_batch_statistics(outputs, targets, iou_threshold):
121 | """ Compute true positives, predicted scores and predicted labels per sample """
122 | batch_metrics = []
123 | for sample_i in range(len(outputs)):
124 |
125 | if outputs[sample_i] is None:
126 | continue
127 |
128 | output = outputs[sample_i]
129 | pred_boxes = output[:, :4]
130 | pred_scores = output[:, 4]
131 | pred_labels = output[:, -1]
132 |
133 | true_positives = np.zeros(pred_boxes.shape[0])
134 |
135 | annotations = targets[targets[:, 0] == sample_i][:, 1:]
136 | target_labels = annotations[:, 0] if len(annotations) else []
137 | if len(annotations):
138 | detected_boxes = []
139 | target_boxes = annotations[:, 1:]
140 |
141 | for pred_i, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
142 |
143 | # If targets are found break
144 | if len(detected_boxes) == len(annotations):
145 | break
146 |
147 | # Ignore if label is not one of the target labels
148 | if pred_label not in target_labels:
149 | continue
150 |
151 | iou, box_index = bbox_iou(pred_box.unsqueeze(0), target_boxes).max(0)
152 | if iou >= iou_threshold and box_index not in detected_boxes:
153 | true_positives[pred_i] = 1
154 | detected_boxes += [box_index]
155 | batch_metrics.append([true_positives, pred_scores, pred_labels])
156 | return batch_metrics
157 |
158 |
159 | def bbox_wh_iou(wh1, wh2):
160 | wh2 = wh2.t()
161 | w1, h1 = wh1[0], wh1[1]
162 | w2, h2 = wh2[0], wh2[1]
163 | inter_area = torch.min(w1, w2) * torch.min(h1, h2)
164 | union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
165 | return inter_area / union_area
166 |
167 |
168 | def bbox_iou(box1, box2, x1y1x2y2=True):
169 | """
170 | Returns the IoU of two bounding boxes
171 | """
172 | if not x1y1x2y2:
173 | # Transform from center and width to exact coordinates
174 | b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
175 | b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
176 | b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
177 | b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
178 | else:
179 | # Get the coordinates of bounding boxes
180 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
181 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
182 |
183 | # get the corrdinates of the intersection rectangle
184 | inter_rect_x1 = torch.max(b1_x1, b2_x1)
185 | inter_rect_y1 = torch.max(b1_y1, b2_y1)
186 | inter_rect_x2 = torch.min(b1_x2, b2_x2)
187 | inter_rect_y2 = torch.min(b1_y2, b2_y2)
188 | # Intersection area
189 | inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(
190 | inter_rect_y2 - inter_rect_y1 + 1, min=0
191 | )
192 | # Union Area
193 | b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
194 | b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
195 |
196 | iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
197 |
198 | return iou
199 |
200 | def non_max_suppression_output(prediction, conf_thres=0.5, nms_thres=0.4):
201 | """
202 | Removes detections with lower object confidence score than 'conf_thres' and performs
203 | Non-Maximum Suppression to further filter detections.
204 | Returns detections with shape:
205 | (x1, y1, x2, y2, object_conf, class_score, class_pred) """
206 |
207 | # From (center x, center y, width, height) to (x1, y1, x2, y2)
208 | prediction[..., :4] = xywh2xyxy(prediction[..., :4])
209 | output = [None for _ in range(len(prediction))]
210 |
211 | for image_i, image_pred in enumerate(prediction):
212 |
213 | # Filter out confidence scores below threshold
214 | image_pred = image_pred[image_pred[:, 4] >= conf_thres]
215 |
216 | # If none are remaining => process next image
217 | if not image_pred.size(0):
218 | continue
219 |
220 | # Object confidence times class confidence
221 | score = image_pred[:, 4] * image_pred[:, 5:].max(1)[0]
222 |
223 | # Sort by it
224 | image_pred = image_pred[(-score).argsort()]
225 | class_confs, class_preds = image_pred[:, 5:].max(1, keepdim=True)
226 |
227 | detections = torch.cat((image_pred[:, :5], class_confs.float(), class_preds.float()),1)
228 |
229 | # print(detections)
230 |
231 | # Perform non-maximum suppression
232 | keep_boxes = []
233 | while detections.size(0):
234 | large_overlap = bbox_iou(detections[0, :4].unsqueeze(0), detections[:, :4]) > nms_thres
235 |
236 | # print("------------------------{0}------------------------".format(detections.size(0)))
237 | # print(torch.nonzero(large_overlap).size()[0])
238 |
239 | label_match = detections[0, -1] == detections[:, -1]
240 |
241 | # Indices of boxes with lower confidence scores, large IOUs and matching labels
242 | invalid = large_overlap & label_match
243 | # print(torch.nonzero(invalid).size()[0])
244 |
245 | weights = detections[large_overlap, 4:5]
246 | # Merge overlapping bboxes by order of confidence
247 |
248 | detections[0, :4] = (weights * detections[large_overlap, :4]).sum(0) / weights.sum()
249 |
250 | if not (torch.nonzero(large_overlap).size()[0] == torch.nonzero(invalid).size()[0]):
251 | detections[0,-1] = 0.0
252 |
253 | keep_boxes += [detections[0]]
254 | detections = detections[~large_overlap]
255 | if keep_boxes:
256 | output[image_i] = torch.stack(keep_boxes)
257 |
258 | return output
259 |
260 |
261 | def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4):
262 | """
263 | Removes detections with lower object confidence score than 'conf_thres' and performs
264 | Non-Maximum Suppression to further filter detections.
265 | Returns detections with shape:
266 | (x1, y1, x2, y2, object_conf, class_score, class_pred)
267 | """
268 |
269 | # From (center x, center y, width, height) to (x1, y1, x2, y2)
270 | prediction[..., :4] = xywh2xyxy(prediction[..., :4])
271 | output = [None for _ in range(len(prediction))]
272 |
273 | for image_i, image_pred in enumerate(prediction):
274 |
275 | # Filter out confidence scores below threshold
276 | image_pred = image_pred[image_pred[:, 4] >= conf_thres]
277 |
278 | # If none are remaining => process next image
279 | if not image_pred.size(0):
280 | continue
281 |
282 | # Object confidence times class confidence
283 | score = image_pred[:, 4] * image_pred[:, 5:].max(1)[0]
284 |
285 | # Sort by it
286 | image_pred = image_pred[(-score).argsort()]
287 | class_confs, class_preds = image_pred[:, 5:].max(1, keepdim=True)
288 |
289 | detections = torch.cat((image_pred[:, :5], class_confs.float(), class_preds.float()),1)
290 |
291 | # print(detections)
292 |
293 | # Perform non-maximum suppression
294 | keep_boxes = []
295 | while detections.size(0):
296 | large_overlap = bbox_iou(detections[0, :4].unsqueeze(0), detections[:, :4]) > nms_thres
297 |
298 | label_match = detections[0, -1] == detections[:, -1]
299 |
300 | # Indices of boxes with lower confidence scores, large IOUs and matching labels
301 | invalid = large_overlap & label_match
302 | weights = detections[invalid, 4:5]
303 | # Merge overlapping bboxes by order of confidence
304 | detections[0, :4] = (weights * detections[invalid, :4]).sum(0) / weights.sum()
305 | keep_boxes += [detections[0]]
306 | detections = detections[~invalid]
307 | if keep_boxes:
308 | output[image_i] = torch.stack(keep_boxes)
309 |
310 | return output
311 |
312 |
313 | def build_targets(pred_boxes, pred_cls, target, anchors, ignore_thres):
314 |
315 | ByteTensor = torch.cuda.ByteTensor if pred_boxes.is_cuda else torch.ByteTensor
316 | FloatTensor = torch.cuda.FloatTensor if pred_boxes.is_cuda else torch.FloatTensor
317 |
318 | nB = pred_boxes.size(0)
319 | nA = pred_boxes.size(1)
320 | nC = pred_cls.size(-1)
321 | nG = pred_boxes.size(2)
322 |
323 | # Output tensors
324 | obj_mask = ByteTensor(nB, nA, nG, nG).fill_(0)
325 | noobj_mask = ByteTensor(nB, nA, nG, nG).fill_(1)
326 | class_mask = FloatTensor(nB, nA, nG, nG).fill_(0)
327 | iou_scores = FloatTensor(nB, nA, nG, nG).fill_(0)
328 | tx = FloatTensor(nB, nA, nG, nG).fill_(0)
329 | ty = FloatTensor(nB, nA, nG, nG).fill_(0)
330 | tw = FloatTensor(nB, nA, nG, nG).fill_(0)
331 | th = FloatTensor(nB, nA, nG, nG).fill_(0)
332 | tcls = FloatTensor(nB, nA, nG, nG, nC).fill_(0)
333 |
334 | # Convert to position relative to box
335 | target_boxes = target[:, 2:6] * nG
336 | gxy = target_boxes[:, :2]
337 | gwh = target_boxes[:, 2:]
338 | # Get anchors with best iou
339 | ious = torch.stack([bbox_wh_iou(anchor, gwh) for anchor in anchors])
340 | best_ious, best_n = ious.max(0)
341 | # Separate target values
342 | b, target_labels = target[:, :2].long().t()
343 | gx, gy = gxy.t()
344 | gw, gh = gwh.t()
345 | gi, gj = gxy.long().t()
346 |
347 | ##########
348 | gi[gi < 0] = 0
349 | gj[gj < 0] = 0
350 | gi[gi > nG - 1] = nG - 1
351 | gj[gj > nG - 1] = nG - 1
352 | ###################
353 |
354 | # Set masks
355 | obj_mask[b, best_n, gj, gi] = 1
356 | noobj_mask[b, best_n, gj, gi] = 0
357 |
358 | # Set noobj mask to zero where iou exceeds ignore threshold
359 | for i, anchor_ious in enumerate(ious.t()):
360 | noobj_mask[b[i], anchor_ious > ignore_thres, gj[i], gi[i]] = 0
361 |
362 | # Coordinates
363 | tx[b, best_n, gj, gi] = gx - gx.floor()
364 | ty[b, best_n, gj, gi] = gy - gy.floor()
365 | # Width and height
366 | tw[b, best_n, gj, gi] = torch.log(gw / anchors[best_n][:, 0] + 1e-16)
367 | th[b, best_n, gj, gi] = torch.log(gh / anchors[best_n][:, 1] + 1e-16)
368 | # One-hot encoding of label
369 | tcls[b, best_n, gj, gi, target_labels] = 1
370 | # Compute label correctness and iou at best anchor
371 | class_mask[b, best_n, gj, gi] = (pred_cls[b, best_n, gj, gi].argmax(-1) == target_labels).float()
372 | iou_scores[b, best_n, gj, gi] = bbox_iou(pred_boxes[b, best_n, gj, gi], target_boxes, x1y1x2y2=False)
373 |
374 | tconf = obj_mask.float()
375 | return iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf
376 |
--------------------------------------------------------------------------------
/data/mask_dataset_validate.txt:
--------------------------------------------------------------------------------
1 | ..\Traing_Data\images\CLIP064F00219.jpg
2 | ..\Traing_Data\images\CLIP072F00326.jpg
3 | ..\Traing_Data\images\CLIP003906.jpg
4 | ..\Traing_Data\images\CLIP073F00904.jpg
5 | ..\Traing_Data\images\CLIP072F00111.jpg
6 | ..\Traing_Data\images\CLIP000559.jpg
7 | ..\Traing_Data\images\CLIP010909.jpg
8 | ..\Traing_Data\images\CLIP066F00010.jpg
9 | ..\Traing_Data\images\CLIP001818.jpg
10 | ..\Traing_Data\images\CLIP072F01020.jpg
11 | ..\Traing_Data\images\CLIP074F00555.jpg
12 | ..\Traing_Data\images\CLIP012374.jpg
13 | ..\Traing_Data\images\CLIP000143.jpg
14 | ..\Traing_Data\images\CLIP002521.jpg
15 | ..\Traing_Data\images\CLIP001583.jpg
16 | ..\Traing_Data\images\CLIP080F00044.jpg
17 | ..\Traing_Data\images\CLIP010320.jpg
18 | ..\Traing_Data\images\CLIP011185.jpg
19 | ..\Traing_Data\images\CLIP068F00084.jpg
20 | ..\Traing_Data\images\CLIP000921.jpg
21 | ..\Traing_Data\images\CLIP009781.jpg
22 | ..\Traing_Data\images\CLIP073F00595.jpg
23 | ..\Traing_Data\images\CLIP008035.jpg
24 | ..\Traing_Data\images\2034.jpg
25 | ..\Traing_Data\images\CLIP011496.jpg
26 | ..\Traing_Data\images\CLIP006643.jpg
27 | ..\Traing_Data\images\CLIP001829.jpg
28 | ..\Traing_Data\images\CLIP004690.jpg
29 | ..\Traing_Data\images\CLIP071F00319.jpg
30 | ..\Traing_Data\images\CLIP003903.jpg
31 | ..\Traing_Data\images\CLIP004229.jpg
32 | ..\Traing_Data\images\CLIP075F00053.jpg
33 | ..\Traing_Data\images\CLIP072F00071.jpg
34 | ..\Traing_Data\images\CLIP000393.jpg
35 | ..\Traing_Data\images\CLIP006027.jpg
36 | ..\Traing_Data\images\CLIP010304.jpg
37 | ..\Traing_Data\images\1631.jpg
38 | ..\Traing_Data\images\CLIP012518.jpg
39 | ..\Traing_Data\images\CLIP008518.jpg
40 | ..\Traing_Data\images\CLIP064F00333.jpg
41 | ..\Traing_Data\images\CLIP006770.jpg
42 | ..\Traing_Data\images\1635.jpg
43 | ..\Traing_Data\images\CLIP006938.jpg
44 | ..\Traing_Data\images\CLIP064F00339.jpg
45 | ..\Traing_Data\images\CLIP072F00774.jpg
46 | ..\Traing_Data\images\CLIP074F01071.jpg
47 | ..\Traing_Data\images\CLIP008943.jpg
48 | ..\Traing_Data\images\CLIP071F00129.jpg
49 | ..\Traing_Data\images\CLIP012949.jpg
50 | ..\Traing_Data\images\CLIP011029.jpg
51 | ..\Traing_Data\images\CLIP073F01212.jpg
52 | ..\Traing_Data\images\CLIP001406.jpg
53 | ..\Traing_Data\images\CLIP014057.jpg
54 | ..\Traing_Data\images\CLIP072F00851.jpg
55 | ..\Traing_Data\images\CLIP009145.jpg
56 | ..\Traing_Data\images\CLIP072F00092.jpg
57 | ..\Traing_Data\images\CLIP069F00012.jpg
58 | ..\Traing_Data\images\CLIP072F00598.jpg
59 | ..\Traing_Data\images\CLIP073F01018.jpg
60 | ..\Traing_Data\images\CLIP073F00656.jpg
61 | ..\Traing_Data\images\3125.jpg
62 | ..\Traing_Data\images\CLIP079F00006.jpg
63 | ..\Traing_Data\images\CLIP010673.jpg
64 | ..\Traing_Data\images\CLIP080F00043.jpg
65 | ..\Traing_Data\images\CLIP012622.jpg
66 | ..\Traing_Data\images\CLIP000573.jpg
67 | ..\Traing_Data\images\CLIP070F00046.jpg
68 | ..\Traing_Data\images\CLIP074F00266.jpg
69 | ..\Traing_Data\images\CLIP002516.jpg
70 | ..\Traing_Data\images\CLIP064F00076.jpg
71 | ..\Traing_Data\images\CLIP072F00017.jpg
72 | ..\Traing_Data\images\CLIP002021.jpg
73 | ..\Traing_Data\images\CLIP074F00001.jpg
74 | ..\Traing_Data\images\4176.jpg
75 | ..\Traing_Data\images\4060.jpg
76 | ..\Traing_Data\images\CLIP013048.jpg
77 | ..\Traing_Data\images\CLIP077F01557.jpg
78 | ..\Traing_Data\images\CLIP065F00005.jpg
79 | ..\Traing_Data\images\CLIP070F00068.jpg
80 | ..\Traing_Data\images\CLIP070F00067.jpg
81 | ..\Traing_Data\images\CLIP011599.jpg
82 | ..\Traing_Data\images\CLIP002265.jpg
83 | ..\Traing_Data\images\1662.jpg
84 | ..\Traing_Data\images\CLIP072F00960.jpg
85 | ..\Traing_Data\images\CLIP008418.jpg
86 | ..\Traing_Data\images\CLIP001938.jpg
87 | ..\Traing_Data\images\CLIP075F00463.jpg
88 | ..\Traing_Data\images\CLIP072F00193.jpg
89 | ..\Traing_Data\images\CLIP010815.jpg
90 | ..\Traing_Data\images\CLIP077F01402.jpg
91 | ..\Traing_Data\images\CLIP069F00064.jpg
92 | ..\Traing_Data\images\2016.jpg
93 | ..\Traing_Data\images\CLIP074F00452.jpg
94 | ..\Traing_Data\images\CLIP071F00172.jpg
95 | ..\Traing_Data\images\CLIP073F00619.jpg
96 | ..\Traing_Data\images\CLIP005348.jpg
97 | ..\Traing_Data\images\CLIP077F00498.jpg
98 | ..\Traing_Data\images\CLIP071F00318.jpg
99 | ..\Traing_Data\images\CLIP003377.jpg
100 | ..\Traing_Data\images\CLIP071F00296.jpg
101 | ..\Traing_Data\images\CLIP072F00023.jpg
102 | ..\Traing_Data\images\CLIP072F00226.jpg
103 | ..\Traing_Data\images\CLIP073F00779.jpg
104 | ..\Traing_Data\images\CLIP011776.jpg
105 | ..\Traing_Data\images\CLIP011681.jpg
106 | ..\Traing_Data\images\CLIP069F00030.jpg
107 | ..\Traing_Data\images\CLIP072F00192.jpg
108 | ..\Traing_Data\images\CLIP011295.jpg
109 | ..\Traing_Data\images\CLIP071F00108.jpg
110 | ..\Traing_Data\images\CLIP000814.jpg
111 | ..\Traing_Data\images\647.jpg
112 | ..\Traing_Data\images\CLIP072F00247.jpg
113 | ..\Traing_Data\images\CLIP004791.jpg
114 | ..\Traing_Data\images\CLIP007854.jpg
115 | ..\Traing_Data\images\CLIP000241.jpg
116 | ..\Traing_Data\images\CLIP074F00613.jpg
117 | ..\Traing_Data\images\CLIP068F00076.jpg
118 | ..\Traing_Data\images\CLIP076F00009.jpg
119 | ..\Traing_Data\images\CLIP000165.jpg
120 | ..\Traing_Data\images\CLIP075F00056.jpg
121 | ..\Traing_Data\images\CLIP075F00998.jpg
122 | ..\Traing_Data\images\CLIP073F00877.jpg
123 | ..\Traing_Data\images\CLIP005462.jpg
124 | ..\Traing_Data\images\CLIP072F00861.jpg
125 | ..\Traing_Data\images\1013.jpg
126 | ..\Traing_Data\images\CLIP074F00727.jpg
127 | ..\Traing_Data\images\CLIP010839.jpg
128 | ..\Traing_Data\images\3006.jpg
129 | ..\Traing_Data\images\CLIP003298.jpg
130 | ..\Traing_Data\images\CLIP075F00468.jpg
131 | ..\Traing_Data\images\CLIP072F01018.jpg
132 | ..\Traing_Data\images\1598.jpg
133 | ..\Traing_Data\images\3214.jpg
134 | ..\Traing_Data\images\CLIP073F00642.jpg
135 | ..\Traing_Data\images\CLIP072F00874.jpg
136 | ..\Traing_Data\images\CLIP072F00899.jpg
137 | ..\Traing_Data\images\CLIP073F00584.jpg
138 | ..\Traing_Data\images\CLIP001896.jpg
139 | ..\Traing_Data\images\CLIP079F00516.jpg
140 | ..\Traing_Data\images\CLIP010597.jpg
141 | ..\Traing_Data\images\CLIP002595.jpg
142 | ..\Traing_Data\images\3365.jpg
143 | ..\Traing_Data\images\CLIP012529.jpg
144 | ..\Traing_Data\images\CLIP079F00458.jpg
145 | ..\Traing_Data\images\CLIP072F00253.jpg
146 | ..\Traing_Data\images\CLIP069F00083.jpg
147 | ..\Traing_Data\images\CLIP005615.jpg
148 | ..\Traing_Data\images\CLIP073F00784.jpg
149 | ..\Traing_Data\images\CLIP078F00973.jpg
150 | ..\Traing_Data\images\CLIP072F00176.jpg
151 | ..\Traing_Data\images\CLIP003420.jpg
152 | ..\Traing_Data\images\CLIP002873.jpg
153 | ..\Traing_Data\images\CLIP072F01014.jpg
154 | ..\Traing_Data\images\CLIP077F00303.jpg
155 | ..\Traing_Data\images\CLIP073F00644.jpg
156 | ..\Traing_Data\images\CLIP005749.jpg
157 | ..\Traing_Data\images\CLIP066F00012.jpg
158 | ..\Traing_Data\images\CLIP072F00952.jpg
159 | ..\Traing_Data\images\CLIP075F01002.jpg
160 | ..\Traing_Data\images\362.jpg
161 | ..\Traing_Data\images\CLIP010194.jpg
162 | ..\Traing_Data\images\CLIP013084.jpg
163 | ..\Traing_Data\images\CLIP073F00973.jpg
164 | ..\Traing_Data\images\CLIP004619.jpg
165 | ..\Traing_Data\images\CLIP073F01146.jpg
166 | ..\Traing_Data\images\CLIP072F00937.jpg
167 | ..\Traing_Data\images\CLIP064F00349.jpg
168 | ..\Traing_Data\images\CLIP000609.jpg
169 | ..\Traing_Data\images\CLIP068F00104.jpg
170 | ..\Traing_Data\images\CLIP008573.jpg
171 | ..\Traing_Data\images\CLIP007589.jpg
172 | ..\Traing_Data\images\CLIP005354.jpg
173 | ..\Traing_Data\images\3390.jpg
174 | ..\Traing_Data\images\CLIP010083.jpg
175 | ..\Traing_Data\images\CLIP067F00024.jpg
176 | ..\Traing_Data\images\CLIP074F01068.jpg
177 | ..\Traing_Data\images\CLIP004069.jpg
178 | ..\Traing_Data\images\CLIP071F00195.jpg
179 | ..\Traing_Data\images\CLIP066F00136.jpg
180 | ..\Traing_Data\images\CLIP072F00094.jpg
181 | ..\Traing_Data\images\CLIP074F00478.jpg
182 | ..\Traing_Data\images\CLIP000846.jpg
183 | ..\Traing_Data\images\CLIP001731.jpg
184 | ..\Traing_Data\images\CLIP069F00103.jpg
185 | ..\Traing_Data\images\CLIP013405.jpg
186 | ..\Traing_Data\images\CLIP007775.jpg
187 | ..\Traing_Data\images\CLIP068F00010.jpg
188 | ..\Traing_Data\images\CLIP010564.jpg
189 | ..\Traing_Data\images\CLIP001127.jpg
190 | ..\Traing_Data\images\CLIP074F00632.jpg
191 | ..\Traing_Data\images\CLIP008230.jpg
192 | ..\Traing_Data\images\CLIP003087.jpg
193 | ..\Traing_Data\images\CLIP075F00429.jpg
194 | ..\Traing_Data\images\CLIP008350.jpg
195 | ..\Traing_Data\images\CLIP009335.jpg
196 | ..\Traing_Data\images\CLIP075F01624.jpg
197 | ..\Traing_Data\images\CLIP001828.jpg
198 | ..\Traing_Data\images\CLIP001814.jpg
199 | ..\Traing_Data\images\CLIP073F00638.jpg
200 | ..\Traing_Data\images\2042.jpg
201 | ..\Traing_Data\images\CLIP073F01259.jpg
202 | ..\Traing_Data\images\CLIP069F00073.jpg
203 | ..\Traing_Data\images\CLIP074F00497.jpg
204 | ..\Traing_Data\images\CLIP073F00612.jpg
205 | ..\Traing_Data\images\CLIP013924.jpg
206 | ..\Traing_Data\images\CLIP071F00187.jpg
207 | ..\Traing_Data\images\CLIP001720.jpg
208 | ..\Traing_Data\images\1088.jpg
209 | ..\Traing_Data\images\CLIP071F00259.jpg
210 | ..\Traing_Data\images\CLIP011672.jpg
211 | ..\Traing_Data\images\CLIP071F00299.jpg
212 | ..\Traing_Data\images\CLIP068F00099.jpg
213 | ..\Traing_Data\images\CLIP073F00893.jpg
214 | ..\Traing_Data\images\CLIP002826.jpg
215 | ..\Traing_Data\images\CLIP074F00171.jpg
216 | ..\Traing_Data\images\CLIP004309.jpg
217 | ..\Traing_Data\images\CLIP068F00034.jpg
218 | ..\Traing_Data\images\CLIP011504.jpg
219 | ..\Traing_Data\images\CLIP071F00285.jpg
220 | ..\Traing_Data\images\CLIP005374.jpg
221 | ..\Traing_Data\images\CLIP005997.jpg
222 | ..\Traing_Data\images\CLIP001046.jpg
223 | ..\Traing_Data\images\CLIP007772.jpg
224 | ..\Traing_Data\images\CLIP007679.jpg
225 | ..\Traing_Data\images\CLIP075F01209.jpg
226 | ..\Traing_Data\images\CLIP074F00285.jpg
227 | ..\Traing_Data\images\CLIP014076.jpg
228 | ..\Traing_Data\images\CLIP072F00074.jpg
229 | ..\Traing_Data\images\CLIP068F00009.jpg
230 | ..\Traing_Data\images\CLIP072F00157.jpg
231 | ..\Traing_Data\images\CLIP074F00550.jpg
232 | ..\Traing_Data\images\CLIP005162.jpg
233 | ..\Traing_Data\images\CLIP071F00239.jpg
234 | ..\Traing_Data\images\2168.jpg
235 | ..\Traing_Data\images\CLIP068F00058.jpg
236 | ..\Traing_Data\images\CLIP010622.jpg
237 | ..\Traing_Data\images\CLIP068F00051.jpg
238 | ..\Traing_Data\images\CLIP071F00293.jpg
239 | ..\Traing_Data\images\CLIP074F00611.jpg
240 | ..\Traing_Data\images\CLIP000852.jpg
241 | ..\Traing_Data\images\CLIP012056.jpg
242 | ..\Traing_Data\images\CLIP072F00245.jpg
243 | ..\Traing_Data\images\3922.jpg
244 | ..\Traing_Data\images\1580.jpg
245 | ..\Traing_Data\images\2973.jpg
246 | ..\Traing_Data\images\CLIP074F00299.jpg
247 | ..\Traing_Data\images\CLIP008465.jpg
248 | ..\Traing_Data\images\CLIP005949.jpg
249 | ..\Traing_Data\images\2851.jpg
250 | ..\Traing_Data\images\CLIP008568.jpg
251 | ..\Traing_Data\images\CLIP064F00006.jpg
252 | ..\Traing_Data\images\1944.jpg
253 | ..\Traing_Data\images\CLIP066F00036.jpg
254 | ..\Traing_Data\images\CLIP008349.jpg
255 | ..\Traing_Data\images\CLIP004223.jpg
256 | ..\Traing_Data\images\CLIP072F00594.jpg
257 | ..\Traing_Data\images\CLIP079F00693.jpg
258 | ..\Traing_Data\images\CLIP001696.jpg
259 | ..\Traing_Data\images\CLIP073F00894.jpg
260 | ..\Traing_Data\images\1486.jpg
261 | ..\Traing_Data\images\CLIP007564.jpg
262 | ..\Traing_Data\images\CLIP075F00606.jpg
263 | ..\Traing_Data\images\CLIP013217.jpg
264 | ..\Traing_Data\images\CLIP080F00491.jpg
265 | ..\Traing_Data\images\CLIP064F00093.jpg
266 | ..\Traing_Data\images\CLIP004751.jpg
267 | ..\Traing_Data\images\CLIP077F01560.jpg
268 | ..\Traing_Data\images\CLIP072F00550.jpg
269 | ..\Traing_Data\images\CLIP075F02108.jpg
270 | ..\Traing_Data\images\CLIP013652.jpg
271 | ..\Traing_Data\images\CLIP003443.jpg
272 | ..\Traing_Data\images\CLIP073F00622.jpg
273 | ..\Traing_Data\images\CLIP008387.jpg
274 | ..\Traing_Data\images\CLIP074F00634.jpg
275 | ..\Traing_Data\images\CLIP003138.jpg
276 | ..\Traing_Data\images\CLIP007639.jpg
277 | ..\Traing_Data\images\CLIP066F00059.jpg
278 | ..\Traing_Data\images\CLIP009879.jpg
279 | ..\Traing_Data\images\CLIP008989.jpg
280 | ..\Traing_Data\images\CLIP074F00468.jpg
281 | ..\Traing_Data\images\CLIP075F00505.jpg
282 | ..\Traing_Data\images\CLIP066F00090.jpg
283 | ..\Traing_Data\images\CLIP077F01867.jpg
284 | ..\Traing_Data\images\CLIP064F00013.jpg
285 | ..\Traing_Data\images\CLIP008621.jpg
286 | ..\Traing_Data\images\CLIP071F00169.jpg
287 | ..\Traing_Data\images\CLIP009152.jpg
288 | ..\Traing_Data\images\CLIP072F00248.jpg
289 | ..\Traing_Data\images\CLIP002153.jpg
290 | ..\Traing_Data\images\CLIP071F00245.jpg
291 | ..\Traing_Data\images\CLIP075F01314.jpg
292 | ..\Traing_Data\images\3746.jpg
293 | ..\Traing_Data\images\CLIP072F00003.jpg
294 | ..\Traing_Data\images\CLIP006816.jpg
295 | ..\Traing_Data\images\4127.jpg
296 | ..\Traing_Data\images\CLIP071F00273.jpg
297 | ..\Traing_Data\images\CLIP071F00208.jpg
298 | ..\Traing_Data\images\3532.jpg
299 | ..\Traing_Data\images\CLIP067F00015.jpg
300 | ..\Traing_Data\images\CLIP072F00294.jpg
301 | ..\Traing_Data\images\CLIP071F00196.jpg
302 | ..\Traing_Data\images\116.jpg
303 | ..\Traing_Data\images\CLIP064F00017.jpg
304 | ..\Traing_Data\images\CLIP076F00533.jpg
305 | ..\Traing_Data\images\1653.jpg
306 | ..\Traing_Data\images\2048.jpg
307 | ..\Traing_Data\images\CLIP005380.jpg
308 | ..\Traing_Data\images\CLIP071F00317.jpg
309 | ..\Traing_Data\images\CLIP006414.jpg
310 | ..\Traing_Data\images\CLIP071F00138.jpg
311 | ..\Traing_Data\images\CLIP003026.jpg
312 | ..\Traing_Data\images\CLIP072F01016.jpg
313 | ..\Traing_Data\images\CLIP070F00016.jpg
314 | ..\Traing_Data\images\1219.jpg
315 | ..\Traing_Data\images\CLIP005867.jpg
316 | ..\Traing_Data\images\CLIP069F00019.jpg
317 | ..\Traing_Data\images\CLIP003887.jpg
318 | ..\Traing_Data\images\CLIP000219.jpg
319 | ..\Traing_Data\images\1141.jpg
320 | ..\Traing_Data\images\CLIP077F01561.jpg
321 | ..\Traing_Data\images\CLIP007749.jpg
322 | ..\Traing_Data\images\CLIP012604.jpg
323 | ..\Traing_Data\images\CLIP010542.jpg
324 | ..\Traing_Data\images\1830.jpg
325 | ..\Traing_Data\images\CLIP007526.jpg
326 | ..\Traing_Data\images\CLIP009219.jpg
327 | ..\Traing_Data\images\CLIP000386.jpg
328 | ..\Traing_Data\images\CLIP071F00000.jpg
329 | ..\Traing_Data\images\CLIP010384.jpg
330 | ..\Traing_Data\images\CLIP073F00896.jpg
331 | ..\Traing_Data\images\CLIP069F00090.jpg
332 | ..\Traing_Data\images\CLIP004744.jpg
333 | ..\Traing_Data\images\CLIP071F00152.jpg
334 | ..\Traing_Data\images\CLIP072F00696.jpg
335 | ..\Traing_Data\images\CLIP071F00086.jpg
336 | ..\Traing_Data\images\CLIP003985.jpg
337 | ..\Traing_Data\images\CLIP003467.jpg
338 | ..\Traing_Data\images\CLIP007401.jpg
339 | ..\Traing_Data\images\CLIP071F00231.jpg
340 | ..\Traing_Data\images\CLIP009878.jpg
341 | ..\Traing_Data\images\CLIP072F01003.jpg
342 | ..\Traing_Data\images\CLIP064F00331.jpg
343 | ..\Traing_Data\images\CLIP004405.jpg
344 | ..\Traing_Data\images\1681.jpg
345 | ..\Traing_Data\images\CLIP007073.jpg
346 | ..\Traing_Data\images\CLIP000726.jpg
347 | ..\Traing_Data\images\CLIP069F00061.jpg
348 | ..\Traing_Data\images\CLIP072F00259.jpg
349 | ..\Traing_Data\images\CLIP010856.jpg
350 | ..\Traing_Data\images\CLIP071F00260.jpg
351 | ..\Traing_Data\images\CLIP074F00214.jpg
352 | ..\Traing_Data\images\CLIP072F00876.jpg
353 | ..\Traing_Data\images\CLIP073F00652.jpg
354 | ..\Traing_Data\images\2701.jpg
355 | ..\Traing_Data\images\CLIP075F00052.jpg
356 | ..\Traing_Data\images\672.jpg
357 | ..\Traing_Data\images\CLIP002787.jpg
358 | ..\Traing_Data\images\786.jpg
359 | ..\Traing_Data\images\CLIP073F00641.jpg
360 | ..\Traing_Data\images\CLIP079F00808.jpg
361 | ..\Traing_Data\images\CLIP008606.jpg
362 | ..\Traing_Data\images\CLIP072F01013.jpg
363 | ..\Traing_Data\images\CLIP079F00071.jpg
364 | ..\Traing_Data\images\3872.jpg
365 | ..\Traing_Data\images\CLIP007896.jpg
366 | ..\Traing_Data\images\CLIP074F00274.jpg
367 | ..\Traing_Data\images\CLIP009627.jpg
368 | ..\Traing_Data\images\CLIP075F00456.jpg
369 | ..\Traing_Data\images\CLIP068F00079.jpg
370 | ..\Traing_Data\images\CLIP011853.jpg
371 | ..\Traing_Data\images\CLIP079F00001.jpg
372 | ..\Traing_Data\images\CLIP007117.jpg
373 | ..\Traing_Data\images\CLIP071F00305.jpg
374 | ..\Traing_Data\images\CLIP007488.jpg
375 | ..\Traing_Data\images\CLIP075F00546.jpg
376 | ..\Traing_Data\images\CLIP000403.jpg
377 | ..\Traing_Data\images\CLIP074F00408.jpg
378 | ..\Traing_Data\images\CLIP080F00455.jpg
379 | ..\Traing_Data\images\3649.jpg
380 | ..\Traing_Data\images\CLIP004578.jpg
381 | ..\Traing_Data\images\CLIP005456.jpg
382 | ..\Traing_Data\images\CLIP075F00750.jpg
383 | ..\Traing_Data\images\CLIP009232.jpg
384 | ..\Traing_Data\images\1857.jpg
385 | ..\Traing_Data\images\CLIP002461.jpg
386 | ..\Traing_Data\images\CLIP069F00151.jpg
387 | ..\Traing_Data\images\CLIP009277.jpg
388 | ..\Traing_Data\images\CLIP000348.jpg
389 | ..\Traing_Data\images\CLIP074F00207.jpg
390 | ..\Traing_Data\images\262.jpg
391 | ..\Traing_Data\images\CLIP001041.jpg
392 | ..\Traing_Data\images\CLIP010966.jpg
393 | ..\Traing_Data\images\CLIP004060.jpg
394 | ..\Traing_Data\images\CLIP008201.jpg
395 | ..\Traing_Data\images\CLIP010690.jpg
396 | ..\Traing_Data\images\CLIP004006.jpg
397 | ..\Traing_Data\images\CLIP064F00320.jpg
398 | ..\Traing_Data\images\CLIP072F00311.jpg
399 | ..\Traing_Data\images\3428.jpg
400 | ..\Traing_Data\images\3910.jpg
401 | ..\Traing_Data\images\CLIP072F00180.jpg
402 | ..\Traing_Data\images\CLIP012620.jpg
403 | ..\Traing_Data\images\CLIP072F00515.jpg
404 | ..\Traing_Data\images\CLIP002555.jpg
405 | ..\Traing_Data\images\CLIP006088.jpg
406 | ..\Traing_Data\images\CLIP006411.jpg
407 | ..\Traing_Data\images\77.jpg
408 | ..\Traing_Data\images\CLIP008374.jpg
409 | ..\Traing_Data\images\CLIP072F00252.jpg
410 | ..\Traing_Data\images\CLIP000189.jpg
411 | ..\Traing_Data\images\1430.jpg
412 | ..\Traing_Data\images\2848.jpg
413 | ..\Traing_Data\images\CLIP071F00146.jpg
414 | ..\Traing_Data\images\CLIP072F00160.jpg
415 | ..\Traing_Data\images\4121.jpg
416 | ..\Traing_Data\images\CLIP006149.jpg
417 | ..\Traing_Data\images\CLIP003932.jpg
418 | ..\Traing_Data\images\CLIP004096.jpg
419 | ..\Traing_Data\images\CLIP076F00320.jpg
420 | ..\Traing_Data\images\CLIP080F00029.jpg
421 | ..\Traing_Data\images\CLIP069F00046.jpg
422 | ..\Traing_Data\images\2802.jpg
423 | ..\Traing_Data\images\CLIP065F00006.jpg
424 | ..\Traing_Data\images\CLIP006485.jpg
425 | ..\Traing_Data\images\CLIP071F00147.jpg
426 | ..\Traing_Data\images\CLIP064F00074.jpg
427 | ..\Traing_Data\images\CLIP072F00700.jpg
428 | ..\Traing_Data\images\CLIP007484.jpg
429 | ..\Traing_Data\images\CLIP075F00759.jpg
430 | ..\Traing_Data\images\CLIP005108.jpg
431 | ..\Traing_Data\images\3197.jpg
432 | ..\Traing_Data\images\CLIP001351.jpg
433 | ..\Traing_Data\images\CLIP071F00012.jpg
434 | ..\Traing_Data\images\CLIP068F00073.jpg
435 | ..\Traing_Data\images\CLIP073F00680.jpg
436 | ..\Traing_Data\images\CLIP011733.jpg
437 | ..\Traing_Data\images\CLIP010701.jpg
438 | ..\Traing_Data\images\CLIP001180.jpg
439 | ..\Traing_Data\images\CLIP074F00357.jpg
440 | ..\Traing_Data\images\CLIP064F00325.jpg
441 | ..\Traing_Data\images\CLIP012507.jpg
442 | ..\Traing_Data\images\CLIP004601.jpg
443 | ..\Traing_Data\images\CLIP013678.jpg
444 | ..\Traing_Data\images\CLIP073F00411.jpg
445 | ..\Traing_Data\images\CLIP075F00517.jpg
446 | ..\Traing_Data\images\CLIP072F00543.jpg
447 | ..\Traing_Data\images\CLIP007507.jpg
448 | ..\Traing_Data\images\73.jpg
449 | ..\Traing_Data\images\CLIP072F00776.jpg
450 | ..\Traing_Data\images\CLIP000747.jpg
451 | ..\Traing_Data\images\777.jpg
452 | ..\Traing_Data\images\CLIP069F00153.jpg
453 | ..\Traing_Data\images\CLIP073F00971.jpg
454 | ..\Traing_Data\images\CLIP077F00308.jpg
455 | ..\Traing_Data\images\CLIP066F00092.jpg
456 | ..\Traing_Data\images\CLIP007180.jpg
457 | ..\Traing_Data\images\CLIP075F00445.jpg
458 | ..\Traing_Data\images\CLIP009541.jpg
459 | ..\Traing_Data\images\CLIP002738.jpg
460 | ..\Traing_Data\images\CLIP010728.jpg
461 | ..\Traing_Data\images\CLIP075F00430.jpg
462 | ..\Traing_Data\images\CLIP075F00588.jpg
463 | ..\Traing_Data\images\CLIP013979.jpg
464 | ..\Traing_Data\images\CLIP072F00856.jpg
465 | ..\Traing_Data\images\CLIP073F01051.jpg
466 | ..\Traing_Data\images\CLIP071F00022.jpg
467 | ..\Traing_Data\images\CLIP013876.jpg
468 | ..\Traing_Data\images\CLIP073F00598.jpg
469 | ..\Traing_Data\images\CLIP074F00489.jpg
470 | ..\Traing_Data\images\CLIP010776.jpg
471 | ..\Traing_Data\images\CLIP002252.jpg
472 | ..\Traing_Data\images\CLIP073F00672.jpg
473 | ..\Traing_Data\images\CLIP073F00024.jpg
474 | ..\Traing_Data\images\CLIP072F00907.jpg
475 | ..\Traing_Data\images\CLIP072F00168.jpg
476 | ..\Traing_Data\images\CLIP000614.jpg
477 | ..\Traing_Data\images\CLIP003031.jpg
478 | ..\Traing_Data\images\CLIP073F01148.jpg
479 | ..\Traing_Data\images\CLIP065F00015.jpg
480 | ..\Traing_Data\images\1222.jpg
481 | ..\Traing_Data\images\CLIP075F00743.jpg
482 | ..\Traing_Data\images\CLIP075F00518.jpg
483 | ..\Traing_Data\images\CLIP072F00940.jpg
484 | ..\Traing_Data\images\4056.jpg
485 | ..\Traing_Data\images\CLIP003698.jpg
486 | ..\Traing_Data\images\1702.jpg
487 | ..\Traing_Data\images\CLIP075F00424.jpg
488 | ..\Traing_Data\images\CLIP072F00559.jpg
489 | ..\Traing_Data\images\CLIP073F01312.jpg
490 | ..\Traing_Data\images\1676.jpg
491 | ..\Traing_Data\images\CLIP073F00903.jpg
492 | ..\Traing_Data\images\CLIP003732.jpg
493 | ..\Traing_Data\images\CLIP070F00043.jpg
494 | ..\Traing_Data\images\CLIP071F00001.jpg
495 | ..\Traing_Data\images\CLIP003123.jpg
496 | ..\Traing_Data\images\CLIP073F00025.jpg
497 | ..\Traing_Data\images\CLIP002868.jpg
498 | ..\Traing_Data\images\CLIP072F00331.jpg
499 | ..\Traing_Data\images\CLIP075F00675.jpg
500 | ..\Traing_Data\images\CLIP071F00303.jpg
501 | ..\Traing_Data\images\CLIP073F00618.jpg
502 | ..\Traing_Data\images\CLIP069F00159.jpg
503 | ..\Traing_Data\images\CLIP003301.jpg
504 | ..\Traing_Data\images\CLIP076F00291.jpg
505 | ..\Traing_Data\images\CLIP075F00611.jpg
506 | ..\Traing_Data\images\CLIP012904.jpg
507 | ..\Traing_Data\images\CLIP075F00607.jpg
508 | ..\Traing_Data\images\CLIP079F00518.jpg
509 | ..\Traing_Data\images\CLIP068F00052.jpg
510 | ..\Traing_Data\images\CLIP008089.jpg
511 | ..\Traing_Data\images\CLIP064F00158.jpg
512 | ..\Traing_Data\images\CLIP001499.jpg
513 | ..\Traing_Data\images\CLIP064F00031.jpg
514 | ..\Traing_Data\images\CLIP002598.jpg
515 | ..\Traing_Data\images\CLIP010920.jpg
516 | ..\Traing_Data\images\CLIP073F00602.jpg
517 | ..\Traing_Data\images\CLIP011156.jpg
518 | ..\Traing_Data\images\CLIP073F01149.jpg
519 | ..\Traing_Data\images\CLIP008802.jpg
520 | ..\Traing_Data\images\101.jpg
521 | ..\Traing_Data\images\CLIP074F00371.jpg
522 | ..\Traing_Data\images\CLIP072F00250.jpg
523 | ..\Traing_Data\images\CLIP011095.jpg
524 | ..\Traing_Data\images\CLIP072F00009.jpg
525 | ..\Traing_Data\images\CLIP012420.jpg
526 | ..\Traing_Data\images\CLIP077F00478.jpg
527 | ..\Traing_Data\images\CLIP005974.jpg
528 | ..\Traing_Data\images\CLIP072F00249.jpg
529 | ..\Traing_Data\images\CLIP012486.jpg
530 | ..\Traing_Data\images\3972.jpg
531 | ..\Traing_Data\images\CLIP072F00902.jpg
532 | ..\Traing_Data\images\CLIP010819.jpg
533 | ..\Traing_Data\images\CLIP073F00433.jpg
534 | ..\Traing_Data\images\CLIP064F00073.jpg
535 | ..\Traing_Data\images\CLIP072F00692.jpg
536 | ..\Traing_Data\images\CLIP070F00018.jpg
537 | ..\Traing_Data\images\CLIP077F00811.jpg
538 | ..\Traing_Data\images\CLIP009679.jpg
539 | ..\Traing_Data\images\CLIP064F00304.jpg
540 | ..\Traing_Data\images\CLIP074F00289.jpg
541 | ..\Traing_Data\images\CLIP072F00038.jpg
542 | ..\Traing_Data\images\CLIP073F00783.jpg
543 | ..\Traing_Data\images\CLIP007313.jpg
544 | ..\Traing_Data\images\CLIP004928.jpg
545 | ..\Traing_Data\images\CLIP000781.jpg
546 | ..\Traing_Data\images\CLIP009774.jpg
547 | ..\Traing_Data\images\CLIP064F00213.jpg
548 | ..\Traing_Data\images\CLIP008695.jpg
549 | ..\Traing_Data\images\CLIP067F00017.jpg
550 | ..\Traing_Data\images\1746.jpg
551 | ..\Traing_Data\images\CLIP011790.jpg
552 | ..\Traing_Data\images\CLIP072F00027.jpg
553 | ..\Traing_Data\images\4097.jpg
554 | ..\Traing_Data\images\CLIP080F00032.jpg
555 | ..\Traing_Data\images\CLIP073F00609.jpg
556 | ..\Traing_Data\images\CLIP000595.jpg
557 | ..\Traing_Data\images\142.jpg
558 | ..\Traing_Data\images\1904.jpg
559 | ..\Traing_Data\images\111.jpg
560 | ..\Traing_Data\images\CLIP072F00950.jpg
561 | ..\Traing_Data\images\CLIP000924.jpg
562 | ..\Traing_Data\images\CLIP076F00322.jpg
563 | ..\Traing_Data\images\CLIP005301.jpg
564 | ..\Traing_Data\images\CLIP012887.jpg
565 | ..\Traing_Data\images\CLIP003817.jpg
566 | ..\Traing_Data\images\CLIP068F00068.jpg
567 | ..\Traing_Data\images\CLIP072F00244.jpg
568 | ..\Traing_Data\images\CLIP070F00051.jpg
569 | ..\Traing_Data\images\791.jpg
570 | ..\Traing_Data\images\CLIP078F03120.jpg
571 | ..\Traing_Data\images\2694.jpg
572 | ..\Traing_Data\images\CLIP072F01005.jpg
573 | ..\Traing_Data\images\CLIP077F00635.jpg
574 | ..\Traing_Data\images\CLIP068F00002.jpg
575 | ..\Traing_Data\images\CLIP005293.jpg
576 | ..\Traing_Data\images\CLIP072F00112.jpg
577 | ..\Traing_Data\images\CLIP068F00017.jpg
578 | ..\Traing_Data\images\CLIP066F00042.jpg
579 | ..\Traing_Data\images\CLIP012550.jpg
580 | ..\Traing_Data\images\CLIP007394.jpg
581 | ..\Traing_Data\images\CLIP003085.jpg
582 | ..\Traing_Data\images\CLIP003886.jpg
583 | ..\Traing_Data\images\CLIP074F00733.jpg
584 | ..\Traing_Data\images\CLIP001428.jpg
585 | ..\Traing_Data\images\3628.jpg
586 | ..\Traing_Data\images\CLIP072F01073.jpg
587 | ..\Traing_Data\images\CLIP072F00131.jpg
588 | ..\Traing_Data\images\CLIP065F00014.jpg
589 | ..\Traing_Data\images\CLIP078F03123.jpg
590 | ..\Traing_Data\images\CLIP006237.jpg
591 | ..\Traing_Data\images\CLIP079F00550.jpg
592 | ..\Traing_Data\images\CLIP072F00911.jpg
593 | ..\Traing_Data\images\CLIP071F00144.jpg
594 | ..\Traing_Data\images\CLIP004347.jpg
595 | ..\Traing_Data\images\CLIP005152.jpg
596 | ..\Traing_Data\images\3713.jpg
597 | ..\Traing_Data\images\CLIP000106.jpg
598 | ..\Traing_Data\images\CLIP007615.jpg
599 | ..\Traing_Data\images\CLIP069F00100.jpg
600 | ..\Traing_Data\images\CLIP003620.jpg
601 | ..\Traing_Data\images\CLIP064F00212.jpg
602 | ..\Traing_Data\images\2906.jpg
603 | ..\Traing_Data\images\CLIP008547.jpg
604 | ..\Traing_Data\images\2072.jpg
605 | ..\Traing_Data\images\CLIP073F00590.jpg
606 | ..\Traing_Data\images\CLIP074F00361.jpg
607 | ..\Traing_Data\images\CLIP008059.jpg
608 | ..\Traing_Data\images\CLIP002140.jpg
609 | ..\Traing_Data\images\CLIP012748.jpg
610 | ..\Traing_Data\images\CLIP003444.jpg
611 | ..\Traing_Data\images\CLIP012713.jpg
612 | ..\Traing_Data\images\CLIP002550.jpg
613 | ..\Traing_Data\images\1454.jpg
614 | ..\Traing_Data\images\CLIP072F00134.jpg
615 | ..\Traing_Data\images\CLIP073F00673.jpg
616 | ..\Traing_Data\images\CLIP012706.jpg
617 | ..\Traing_Data\images\CLIP066F00089.jpg
618 | ..\Traing_Data\images\CLIP074F01015.jpg
619 | ..\Traing_Data\images\CLIP073F00658.jpg
620 | ..\Traing_Data\images\CLIP066F00065.jpg
621 | ..\Traing_Data\images\CLIP004856.jpg
622 | ..\Traing_Data\images\CLIP013567.jpg
623 | ..\Traing_Data\images\CLIP071F00096.jpg
624 | ..\Traing_Data\images\CLIP009169.jpg
625 | ..\Traing_Data\images\CLIP008485.jpg
626 | ..\Traing_Data\images\CLIP072F00561.jpg
627 | ..\Traing_Data\images\CLIP066F00067.jpg
628 | ..\Traing_Data\images\CLIP004400.jpg
629 | ..\Traing_Data\images\3480.jpg
630 | ..\Traing_Data\images\CLIP077F01493.jpg
631 | ..\Traing_Data\images\CLIP008255.jpg
632 | ..\Traing_Data\images\1763.jpg
633 | ..\Traing_Data\images\922.jpg
634 | ..\Traing_Data\images\CLIP001710.jpg
635 | ..\Traing_Data\images\CLIP075F00541.jpg
636 | ..\Traing_Data\images\CLIP073F00417.jpg
637 | ..\Traing_Data\images\CLIP004157.jpg
638 | ..\Traing_Data\images\CLIP068F00089.jpg
639 | ..\Traing_Data\images\CLIP073F01017.jpg
640 | ..\Traing_Data\images\CLIP075F00670.jpg
641 | ..\Traing_Data\images\CLIP077F01873.jpg
642 | ..\Traing_Data\images\CLIP071F00223.jpg
643 | ..\Traing_Data\images\CLIP013179.jpg
644 | ..\Traing_Data\images\CLIP009860.jpg
645 | ..\Traing_Data\images\CLIP079F00660.jpg
646 | ..\Traing_Data\images\CLIP073F00623.jpg
647 | ..\Traing_Data\images\CLIP073F00620.jpg
648 | ..\Traing_Data\images\CLIP075F00529.jpg
649 | ..\Traing_Data\images\CLIP004067.jpg
650 | ..\Traing_Data\images\CLIP069F00148.jpg
651 | ..\Traing_Data\images\CLIP069F00024.jpg
652 | ..\Traing_Data\images\CLIP002602.jpg
653 | ..\Traing_Data\images\CLIP064F00175.jpg
654 | ..\Traing_Data\images\3023.jpg
655 | ..\Traing_Data\images\CLIP013846.jpg
656 | ..\Traing_Data\images\2333.jpg
657 | ..\Traing_Data\images\CLIP077F00515.jpg
658 | ..\Traing_Data\images\CLIP008143.jpg
659 | ..\Traing_Data\images\CLIP064F00233.jpg
660 | ..\Traing_Data\images\CLIP064F00251.jpg
661 | ..\Traing_Data\images\CLIP009848.jpg
662 | ..\Traing_Data\images\CLIP071F00237.jpg
663 | ..\Traing_Data\images\CLIP064F00147.jpg
664 | ..\Traing_Data\images\CLIP006055.jpg
665 | ..\Traing_Data\images\CLIP006204.jpg
666 | ..\Traing_Data\images\CLIP069F00104.jpg
667 | ..\Traing_Data\images\CLIP072F00934.jpg
668 | ..\Traing_Data\images\CLIP073F00410.jpg
669 | ..\Traing_Data\images\CLIP005930.jpg
670 | ..\Traing_Data\images\CLIP071F00083.jpg
671 | ..\Traing_Data\images\CLIP013194.jpg
672 | ..\Traing_Data\images\3594.jpg
673 | ..\Traing_Data\images\CLIP075F00997.jpg
674 | ..\Traing_Data\images\CLIP005285.jpg
675 | ..\Traing_Data\images\CLIP008075.jpg
676 | ..\Traing_Data\images\CLIP072F00046.jpg
677 | ..\Traing_Data\images\CLIP072F00152.jpg
678 | ..\Traing_Data\images\CLIP072F00068.jpg
679 | ..\Traing_Data\images\CLIP001819.jpg
680 | ..\Traing_Data\images\CLIP075F00586.jpg
681 | ..\Traing_Data\images\CLIP073F00408.jpg
682 | ..\Traing_Data\images\CLIP071F00232.jpg
683 | ..\Traing_Data\images\CLIP074F00481.jpg
684 | ..\Traing_Data\images\CLIP071F00302.jpg
685 | ..\Traing_Data\images\CLIP072F00579.jpg
686 | ..\Traing_Data\images\CLIP013367.jpg
687 | ..\Traing_Data\images\CLIP008348.jpg
688 | ..\Traing_Data\images\CLIP074F00277.jpg
689 | ..\Traing_Data\images\CLIP072F00011.jpg
690 | ..\Traing_Data\images\CLIP010248.jpg
691 | ..\Traing_Data\images\432.jpg
692 | ..\Traing_Data\images\CLIP013236.jpg
693 | ..\Traing_Data\images\CLIP068F00016.jpg
694 | ..\Traing_Data\images\CLIP007794.jpg
695 | ..\Traing_Data\images\CLIP007911.jpg
696 | ..\Traing_Data\images\CLIP064F00402.jpg
697 | ..\Traing_Data\images\CLIP001443.jpg
698 | ..\Traing_Data\images\CLIP074F00470.jpg
699 | ..\Traing_Data\images\CLIP069F00150.jpg
700 | ..\Traing_Data\images\CLIP012333.jpg
701 | ..\Traing_Data\images\CLIP073F00616.jpg
702 | ..\Traing_Data\images\CLIP011530.jpg
703 | ..\Traing_Data\images\CLIP072F00610.jpg
704 | ..\Traing_Data\images\CLIP003541.jpg
705 | ..\Traing_Data\images\4049.jpg
706 | ..\Traing_Data\images\CLIP073F00788.jpg
707 | ..\Traing_Data\images\2025.jpg
708 | ..\Traing_Data\images\CLIP003215.jpg
709 | ..\Traing_Data\images\CLIP003627.jpg
710 | ..\Traing_Data\images\CLIP009191.jpg
711 | ..\Traing_Data\images\CLIP072F00171.jpg
712 | ..\Traing_Data\images\4089.jpg
713 | ..\Traing_Data\images\CLIP005991.jpg
714 | ..\Traing_Data\images\CLIP075F00749.jpg
715 | ..\Traing_Data\images\CLIP074F00537.jpg
716 | ..\Traing_Data\images\CLIP001417.jpg
717 | ..\Traing_Data\images\CLIP064F00387.jpg
718 | ..\Traing_Data\images\CLIP011930.jpg
719 | ..\Traing_Data\images\CLIP008849.jpg
720 | ..\Traing_Data\images\CLIP074F00351.jpg
721 | ..\Traing_Data\images\CLIP003543.jpg
722 | ..\Traing_Data\images\CLIP009224.jpg
723 | ..\Traing_Data\images\CLIP075F00472.jpg
724 | ..\Traing_Data\images\CLIP010189.jpg
725 | ..\Traing_Data\images\CLIP004957.jpg
726 | ..\Traing_Data\images\CLIP074F00455.jpg
727 | ..\Traing_Data\images\CLIP075F00523.jpg
728 | ..\Traing_Data\images\CLIP012176.jpg
729 | ..\Traing_Data\images\CLIP072F00237.jpg
730 | ..\Traing_Data\images\CLIP073F00614.jpg
731 | ..\Traing_Data\images\CLIP075F00542.jpg
732 | ..\Traing_Data\images\CLIP072F00233.jpg
733 | ..\Traing_Data\images\CLIP068F00020.jpg
734 | ..\Traing_Data\images\3733.jpg
735 | ..\Traing_Data\images\CLIP013314.jpg
736 | ..\Traing_Data\images\CLIP002634.jpg
737 | ..\Traing_Data\images\1408.jpg
738 | ..\Traing_Data\images\CLIP073F00036.jpg
739 | ..\Traing_Data\images\CLIP064F00167.jpg
740 | ..\Traing_Data\images\114.jpg
741 | ..\Traing_Data\images\CLIP010340.jpg
742 | ..\Traing_Data\images\2603.jpg
743 | ..\Traing_Data\images\CLIP072F00916.jpg
744 | ..\Traing_Data\images\CLIP075F00741.jpg
745 | ..\Traing_Data\images\2515.jpg
746 | ..\Traing_Data\images\CLIP003770.jpg
747 | ..\Traing_Data\images\757.jpg
748 | ..\Traing_Data\images\CLIP003262.jpg
749 | ..\Traing_Data\images\CLIP072F00519.jpg
750 | ..\Traing_Data\images\CLIP009112.jpg
751 | ..\Traing_Data\images\CLIP000124.jpg
752 | ..\Traing_Data\images\CLIP072F00565.jpg
753 | ..\Traing_Data\images\CLIP001427.jpg
754 | ..\Traing_Data\images\CLIP008373.jpg
755 | ..\Traing_Data\images\CLIP076F00042.jpg
756 | ..\Traing_Data\images\CLIP010024.jpg
757 | ..\Traing_Data\images\CLIP072F00531.jpg
758 | ..\Traing_Data\images\CLIP073F01019.jpg
759 | ..\Traing_Data\images\CLIP009403.jpg
760 | ..\Traing_Data\images\CLIP009398.jpg
761 | ..\Traing_Data\images\CLIP074F00616.jpg
762 | ..\Traing_Data\images\CLIP002991.jpg
763 | ..\Traing_Data\images\CLIP000663.jpg
764 | ..\Traing_Data\images\CLIP008908.jpg
765 | ..\Traing_Data\images\CLIP073F01050.jpg
766 | ..\Traing_Data\images\CLIP076F00534.jpg
767 | ..\Traing_Data\images\2115.jpg
768 | ..\Traing_Data\images\CLIP007605.jpg
769 | ..\Traing_Data\images\CLIP072F00315.jpg
770 | ..\Traing_Data\images\CLIP064F00186.jpg
771 | ..\Traing_Data\images\CLIP074F00458.jpg
772 | ..\Traing_Data\images\CLIP002003.jpg
773 | ..\Traing_Data\images\CLIP013338.jpg
774 | ..\Traing_Data\images\CLIP003822.jpg
775 | ..\Traing_Data\images\83.jpg
776 | ..\Traing_Data\images\CLIP075F01207.jpg
777 | ..\Traing_Data\images\CLIP003826.jpg
778 | ..\Traing_Data\images\CLIP077F00334.jpg
779 | ..\Traing_Data\images\CLIP069F00026.jpg
780 | ..\Traing_Data\images\CLIP008764.jpg
781 | ..\Traing_Data\images\CLIP075F00497.jpg
782 | ..\Traing_Data\images\CLIP071F00099.jpg
783 | ..\Traing_Data\images\2069.jpg
784 | ..\Traing_Data\images\CLIP006807.jpg
785 | ..\Traing_Data\images\CLIP074F00605.jpg
786 | ..\Traing_Data\images\3653.jpg
787 | ..\Traing_Data\images\CLIP071F00104.jpg
788 | ..\Traing_Data\images\1060.jpg
789 | ..\Traing_Data\images\CLIP075F00760.jpg
790 | ..\Traing_Data\images\CLIP009259.jpg
791 | ..\Traing_Data\images\CLIP073F00592.jpg
792 | ..\Traing_Data\images\CLIP075F00597.jpg
793 | ..\Traing_Data\images\CLIP074F00619.jpg
794 | ..\Traing_Data\images\CLIP013809.jpg
795 | ..\Traing_Data\images\1953.jpg
796 | ..\Traing_Data\images\CLIP010408.jpg
797 | ..\Traing_Data\images\CLIP072F00057.jpg
798 | ..\Traing_Data\images\CLIP009596.jpg
799 | ..\Traing_Data\images\CLIP006041.jpg
800 | ..\Traing_Data\images\CLIP074F00486.jpg
801 | ..\Traing_Data\images\CLIP073F00286.jpg
802 | ..\Traing_Data\images\CLIP066F00043.jpg
803 | ..\Traing_Data\images\CLIP007094.jpg
804 | ..\Traing_Data\images\CLIP074F00540.jpg
805 | ..\Traing_Data\images\CLIP005471.jpg
806 | ..\Traing_Data\images\3823.jpg
807 | ..\Traing_Data\images\CLIP012123.jpg
808 | ..\Traing_Data\images\3930.jpg
809 | ..\Traing_Data\images\CLIP079F00422.jpg
810 | ..\Traing_Data\images\CLIP007668.jpg
811 | ..\Traing_Data\images\3699.jpg
812 | ..\Traing_Data\images\CLIP078F03127.jpg
813 | ..\Traing_Data\images\CLIP003364.jpg
814 | ..\Traing_Data\images\CLIP069F00031.jpg
815 | ..\Traing_Data\images\2499.jpg
816 | ..\Traing_Data\images\3244.jpg
817 | ..\Traing_Data\images\CLIP075F00322.jpg
818 | ..\Traing_Data\images\CLIP007083.jpg
819 | ..\Traing_Data\images\CLIP012878.jpg
820 | ..\Traing_Data\images\CLIP001345.jpg
821 | ..\Traing_Data\images\CLIP072F00865.jpg
822 | ..\Traing_Data\images\CLIP004135.jpg
823 | ..\Traing_Data\images\CLIP065F00018.jpg
824 | ..\Traing_Data\images\CLIP073F00888.jpg
825 | ..\Traing_Data\images\3191.jpg
826 | ..\Traing_Data\images\CLIP071F00210.jpg
827 | ..\Traing_Data\images\CLIP069F00132.jpg
828 | ..\Traing_Data\images\CLIP079F00692.jpg
829 | ..\Traing_Data\images\3892.jpg
830 | ..\Traing_Data\images\CLIP007304.jpg
831 | ..\Traing_Data\images\CLIP064F00008.jpg
832 | ..\Traing_Data\images\CLIP078F03126.jpg
833 | ..\Traing_Data\images\CLIP068F00022.jpg
834 | ..\Traing_Data\images\CLIP074F00498.jpg
835 | ..\Traing_Data\images\3492.jpg
836 | ..\Traing_Data\images\CLIP077F00809.jpg
837 | ..\Traing_Data\images\CLIP000463.jpg
838 | ..\Traing_Data\images\CLIP074F00615.jpg
839 | ..\Traing_Data\images\CLIP072F00534.jpg
840 | ..\Traing_Data\images\2487.jpg
841 | ..\Traing_Data\images\CLIP006490.jpg
842 | ..\Traing_Data\images\CLIP007199.jpg
843 | ..\Traing_Data\images\CLIP073F00042.jpg
844 | ..\Traing_Data\images\CLIP064F00107.jpg
845 | ..\Traing_Data\images\CLIP011442.jpg
846 | ..\Traing_Data\images\3674.jpg
847 | ..\Traing_Data\images\CLIP071F00132.jpg
848 | ..\Traing_Data\images\CLIP000008.jpg
849 | ..\Traing_Data\images\CLIP002905.jpg
850 | ..\Traing_Data\images\CLIP072F00101.jpg
851 | ..\Traing_Data\images\CLIP009314.jpg
852 | ..\Traing_Data\images\2595.jpg
853 | ..\Traing_Data\images\CLIP004303.jpg
854 | ..\Traing_Data\images\CLIP013003.jpg
855 | ..\Traing_Data\images\CLIP072F00330.jpg
856 | ..\Traing_Data\images\CLIP064F00352.jpg
857 | ..\Traing_Data\images\93.jpg
858 | ..\Traing_Data\images\CLIP074F00407.jpg
859 | ..\Traing_Data\images\CLIP072F00197.jpg
860 | ..\Traing_Data\images\CLIP010570.jpg
861 | ..\Traing_Data\images\3816.jpg
862 | ..\Traing_Data\images\CLIP071F00113.jpg
863 | ..\Traing_Data\images\885.jpg
864 | ..\Traing_Data\images\CLIP008062.jpg
865 | ..\Traing_Data\images\CLIP073F00400.jpg
866 | ..\Traing_Data\images\CLIP002614.jpg
867 | ..\Traing_Data\images\CLIP074F00367.jpg
868 | ..\Traing_Data\images\CLIP009509.jpg
869 | ..\Traing_Data\images\3569.jpg
870 | ..\Traing_Data\images\CLIP007656.jpg
871 | ..\Traing_Data\images\CLIP077F00490.jpg
872 | ..\Traing_Data\images\CLIP006985.jpg
873 | ..\Traing_Data\images\CLIP012227.jpg
874 | ..\Traing_Data\images\CLIP000452.jpg
875 | ..\Traing_Data\images\3398.jpg
876 | ..\Traing_Data\images\CLIP073F00183.jpg
877 | ..\Traing_Data\images\CLIP068F00106.jpg
878 | ..\Traing_Data\images\CLIP064F00066.jpg
879 | ..\Traing_Data\images\3236.jpg
880 | ..\Traing_Data\images\864.jpg
881 | ..\Traing_Data\images\CLIP066F00056.jpg
882 | ..\Traing_Data\images\CLIP067F00006.jpg
883 | ..\Traing_Data\images\CLIP003469.jpg
884 | ..\Traing_Data\images\CLIP069F00162.jpg
885 | ..\Traing_Data\images\CLIP072F00107.jpg
886 | ..\Traing_Data\images\2969.jpg
887 | ..\Traing_Data\images\CLIP075F00522.jpg
888 | ..\Traing_Data\images\CLIP005189.jpg
889 | ..\Traing_Data\images\CLIP078F00502.jpg
890 | ..\Traing_Data\images\CLIP075F00475.jpg
891 | ..\Traing_Data\images\CLIP069F00066.jpg
892 | ..\Traing_Data\images\1558.jpg
893 | ..\Traing_Data\images\CLIP066F00053.jpg
894 | ..\Traing_Data\images\CLIP004722.jpg
895 | ..\Traing_Data\images\CLIP079F00520.jpg
896 | ..\Traing_Data\images\CLIP005442.jpg
897 | ..\Traing_Data\images\CLIP005843.jpg
898 | ..\Traing_Data\images\CLIP074F00457.jpg
899 | ..\Traing_Data\images\CLIP069F00069.jpg
900 | ..\Traing_Data\images\CLIP076F00243.jpg
901 | ..\Traing_Data\images\2215.jpg
902 | ..\Traing_Data\images\CLIP071F00106.jpg
903 | ..\Traing_Data\images\2372.jpg
904 | ..\Traing_Data\images\CLIP069F00169.jpg
905 | ..\Traing_Data\images\CLIP068F00075.jpg
906 | ..\Traing_Data\images\CLIP003963.jpg
907 | ..\Traing_Data\images\CLIP068F00041.jpg
908 | ..\Traing_Data\images\CLIP007986.jpg
909 | ..\Traing_Data\images\CLIP008548.jpg
910 | ..\Traing_Data\images\CLIP005696.jpg
911 | ..\Traing_Data\images\4128.jpg
912 | ..\Traing_Data\images\CLIP075F01215.jpg
913 | ..\Traing_Data\images\CLIP072F00758.jpg
914 | ..\Traing_Data\images\CLIP011261.jpg
915 | ..\Traing_Data\images\CLIP010474.jpg
916 | ..\Traing_Data\images\CLIP070F00073.jpg
917 | ..\Traing_Data\images\1059.jpg
918 | ..\Traing_Data\images\3673.jpg
919 | ..\Traing_Data\images\CLIP074F00292.jpg
920 | ..\Traing_Data\images\CLIP004980.jpg
921 | ..\Traing_Data\images\2389.jpg
922 | ..\Traing_Data\images\CLIP003463.jpg
923 | ..\Traing_Data\images\CLIP012148.jpg
924 | ..\Traing_Data\images\CLIP002495.jpg
925 | ..\Traing_Data\images\CLIP004118.jpg
926 | ..\Traing_Data\images\CLIP006268.jpg
927 | ..\Traing_Data\images\CLIP074F00352.jpg
928 | ..\Traing_Data\images\CLIP009147.jpg
929 | ..\Traing_Data\images\CLIP072F00777.jpg
930 | ..\Traing_Data\images\CLIP012566.jpg
931 | ..\Traing_Data\images\CLIP001630.jpg
932 | ..\Traing_Data\images\CLIP003331.jpg
933 | ..\Traing_Data\images\CLIP013004.jpg
934 | ..\Traing_Data\images\CLIP010859.jpg
935 | ..\Traing_Data\images\CLIP072F00591.jpg
936 | ..\Traing_Data\images\CLIP074F01072.jpg
937 | ..\Traing_Data\images\CLIP073F00613.jpg
938 | ..\Traing_Data\images\CLIP073F00683.jpg
939 | ..\Traing_Data\images\CLIP068F00001.jpg
940 | ..\Traing_Data\images\CLIP000973.jpg
941 | ..\Traing_Data\images\CLIP008775.jpg
942 | ..\Traing_Data\images\233.jpg
943 | ..\Traing_Data\images\2248.jpg
944 | ..\Traing_Data\images\CLIP073F00875.jpg
945 | ..\Traing_Data\images\CLIP003058.jpg
946 | ..\Traing_Data\images\CLIP071F00316.jpg
947 | ..\Traing_Data\images\CLIP075F00754.jpg
948 | ..\Traing_Data\images\CLIP003165.jpg
949 | ..\Traing_Data\images\CLIP071F00161.jpg
950 | ..\Traing_Data\images\CLIP004708.jpg
951 | ..\Traing_Data\images\CLIP077F00501.jpg
952 | ..\Traing_Data\images\CLIP012866.jpg
953 | ..\Traing_Data\images\2485.jpg
954 | ..\Traing_Data\images\CLIP072F00779.jpg
955 | ..\Traing_Data\images\CLIP077F00340.jpg
956 | ..\Traing_Data\images\CLIP074F00551.jpg
957 | ..\Traing_Data\images\CLIP075F00054.jpg
958 | ..\Traing_Data\images\3581.jpg
959 | ..\Traing_Data\images\CLIP072F00041.jpg
960 | ..\Traing_Data\images\CLIP072F00520.jpg
961 | ..\Traing_Data\images\CLIP014020.jpg
962 | ..\Traing_Data\images\CLIP066F00064.jpg
963 | ..\Traing_Data\images\CLIP075F00046.jpg
964 | ..\Traing_Data\images\1916.jpg
965 | ..\Traing_Data\images\CLIP072F00255.jpg
966 | ..\Traing_Data\images\CLIP072F00541.jpg
967 | ..\Traing_Data\images\CLIP005142.jpg
968 | ..\Traing_Data\images\CLIP010387.jpg
969 | ..\Traing_Data\images\1958.jpg
970 | ..\Traing_Data\images\CLIP075F00460.jpg
971 | ..\Traing_Data\images\CLIP076F00146.jpg
972 | ..\Traing_Data\images\CLIP068F00006.jpg
973 | ..\Traing_Data\images\CLIP009256.jpg
974 | ..\Traing_Data\images\CLIP002443.jpg
975 | ..\Traing_Data\images\CLIP003103.jpg
976 | ..\Traing_Data\images\CLIP073F00899.jpg
977 | ..\Traing_Data\images\CLIP075F00752.jpg
978 | ..\Traing_Data\images\CLIP076F00008.jpg
979 | ..\Traing_Data\images\CLIP077F00496.jpg
980 | ..\Traing_Data\images\CLIP007357.jpg
981 | ..\Traing_Data\images\3534.jpg
982 | ..\Traing_Data\images\3627.jpg
983 | ..\Traing_Data\images\CLIP075F00058.jpg
984 | ..\Traing_Data\images\CLIP013498.jpg
985 | ..\Traing_Data\images\CLIP068F00055.jpg
986 | ..\Traing_Data\images\CLIP011918.jpg
987 | ..\Traing_Data\images\CLIP077F00337.jpg
988 | ..\Traing_Data\images\2044.jpg
989 | ..\Traing_Data\images\CLIP064F00120.jpg
990 | ..\Traing_Data\images\CLIP010090.jpg
991 | ..\Traing_Data\images\CLIP080F00493.jpg
992 | ..\Traing_Data\images\3900.jpg
993 | ..\Traing_Data\images\CLIP070F00045.jpg
994 | ..\Traing_Data\images\CLIP069F00138.jpg
995 | ..\Traing_Data\images\CLIP073F00415.jpg
996 | ..\Traing_Data\images\CLIP077F00814.jpg
997 | ..\Traing_Data\images\CLIP002712.jpg
998 | ..\Traing_Data\images\CLIP000943.jpg
999 | ..\Traing_Data\images\2860.jpg
1000 | ..\Traing_Data\images\CLIP073F00028.jpg
1001 | ..\Traing_Data\images\CLIP073F00429.jpg
1002 | ..\Traing_Data\images\CLIP075F00671.jpg
1003 | ..\Traing_Data\images\CLIP003859.jpg
1004 | ..\Traing_Data\images\CLIP069F00049.jpg
1005 | ..\Traing_Data\images\CLIP072F00854.jpg
1006 | ..\Traing_Data\images\3364.jpg
1007 | ..\Traing_Data\images\260.jpg
1008 | ..\Traing_Data\images\CLIP010382.jpg
1009 | ..\Traing_Data\images\CLIP072F00551.jpg
1010 | ..\Traing_Data\images\CLIP076F00321.jpg
1011 | ..\Traing_Data\images\CLIP003595.jpg
1012 | ..\Traing_Data\images\CLIP011351.jpg
1013 | ..\Traing_Data\images\CLIP079F00459.jpg
1014 | ..\Traing_Data\images\CLIP003789.jpg
1015 | ..\Traing_Data\images\CLIP010290.jpg
1016 | ..\Traing_Data\images\CLIP069F00143.jpg
1017 | ..\Traing_Data\images\CLIP010897.jpg
1018 | ..\Traing_Data\images\CLIP072F00562.jpg
1019 | ..\Traing_Data\images\CLIP005584.jpg
1020 | ..\Traing_Data\images\CLIP069F00139.jpg
1021 | ..\Traing_Data\images\CLIP071F00134.jpg
1022 | ..\Traing_Data\images\CLIP072F00132.jpg
1023 | ..\Traing_Data\images\CLIP073F00603.jpg
1024 | ..\Traing_Data\images\CLIP072F00153.jpg
1025 | ..\Traing_Data\images\CLIP006778.jpg
1026 | ..\Traing_Data\images\CLIP008158.jpg
1027 | ..\Traing_Data\images\CLIP007980.jpg
1028 | ..\Traing_Data\images\CLIP075F00454.jpg
1029 | ..\Traing_Data\images\CLIP008128.jpg
1030 | ..\Traing_Data\images\CLIP072F00304.jpg
1031 | ..\Traing_Data\images\CLIP077F00307.jpg
1032 | ..\Traing_Data\images\2041.jpg
1033 | ..\Traing_Data\images\CLIP064F00386.jpg
1034 | ..\Traing_Data\images\CLIP074F00257.jpg
1035 | ..\Traing_Data\images\CLIP007196.jpg
1036 | ..\Traing_Data\images\CLIP074F00348.jpg
1037 | ..\Traing_Data\images\CLIP012831.jpg
1038 | ..\Traing_Data\images\CLIP072F00229.jpg
1039 | ..\Traing_Data\images\CLIP076F00005.jpg
1040 | ..\Traing_Data\images\CLIP013528.jpg
1041 | ..\Traing_Data\images\CLIP010849.jpg
1042 | ..\Traing_Data\images\CLIP078F00980.jpg
1043 | ..\Traing_Data\images\CLIP011534.jpg
1044 | ..\Traing_Data\images\CLIP009489.jpg
1045 | ..\Traing_Data\images\CLIP000877.jpg
1046 | ..\Traing_Data\images\3907.jpg
1047 | ..\Traing_Data\images\CLIP004300.jpg
1048 | ..\Traing_Data\images\CLIP007353.jpg
1049 | ..\Traing_Data\images\CLIP072F00146.jpg
1050 | ..\Traing_Data\images\1410.jpg
1051 | ..\Traing_Data\images\CLIP008355.jpg
1052 | ..\Traing_Data\images\CLIP071F00127.jpg
1053 | ..\Traing_Data\images\CLIP072F00510.jpg
1054 | ..\Traing_Data\images\CLIP064F00206.jpg
1055 | ..\Traing_Data\images\CLIP004991.jpg
1056 | ..\Traing_Data\images\CLIP072F00516.jpg
1057 | ..\Traing_Data\images\CLIP072F00105.jpg
1058 | ..\Traing_Data\images\CLIP011571.jpg
1059 | ..\Traing_Data\images\CLIP004169.jpg
1060 | ..\Traing_Data\images\CLIP075F00700.jpg
1061 | ..\Traing_Data\images\CLIP073F00284.jpg
1062 | ..\Traing_Data\images\463.jpg
1063 | ..\Traing_Data\images\CLIP004514.jpg
1064 | ..\Traing_Data\images\CLIP075F00043.jpg
1065 | ..\Traing_Data\images\CLIP000339.jpg
1066 | ..\Traing_Data\images\CLIP013235.jpg
1067 | ..\Traing_Data\images\CLIP001753.jpg
1068 | ..\Traing_Data\images\CLIP010110.jpg
1069 | ..\Traing_Data\images\CLIP012193.jpg
1070 | ..\Traing_Data\images\CLIP007461.jpg
1071 | ..\Traing_Data\images\CLIP071F00090.jpg
1072 | ..\Traing_Data\images\CLIP075F00483.jpg
1073 | ..\Traing_Data\images\CLIP074F00262.jpg
1074 | ..\Traing_Data\images\CLIP066F00033.jpg
1075 | ..\Traing_Data\images\CLIP071F00192.jpg
1076 | ..\Traing_Data\images\CLIP071F00177.jpg
1077 | ..\Traing_Data\images\CLIP068F00074.jpg
1078 | ..\Traing_Data\images\CLIP073F00628.jpg
1079 | ..\Traing_Data\images\CLIP072F00539.jpg
1080 | ..\Traing_Data\images\CLIP008724.jpg
1081 | ..\Traing_Data\images\CLIP073F00588.jpg
1082 | ..\Traing_Data\images\CLIP005625.jpg
1083 | ..\Traing_Data\images\CLIP006478.jpg
1084 | ..\Traing_Data\images\CLIP013808.jpg
1085 | ..\Traing_Data\images\CLIP072F00862.jpg
1086 | ..\Traing_Data\images\CLIP071F00269.jpg
1087 | ..\Traing_Data\images\CLIP005178.jpg
1088 | ..\Traing_Data\images\901.jpg
1089 | ..\Traing_Data\images\CLIP074F00202.jpg
1090 | ..\Traing_Data\images\CLIP012942.jpg
1091 | ..\Traing_Data\images\CLIP013843.jpg
1092 | ..\Traing_Data\images\CLIP000531.jpg
1093 | ..\Traing_Data\images\CLIP080F00033.jpg
1094 | ..\Traing_Data\images\42.jpg
1095 | ..\Traing_Data\images\CLIP074F00628.jpg
1096 | ..\Traing_Data\images\CLIP002141.jpg
1097 | ..\Traing_Data\images\CLIP007990.jpg
1098 | ..\Traing_Data\images\CLIP075F00040.jpg
1099 | ..\Traing_Data\images\CLIP074F00298.jpg
1100 | ..\Traing_Data\images\CLIP080F00027.jpg
1101 | ..\Traing_Data\images\CLIP064F00357.jpg
1102 | ..\Traing_Data\images\CLIP002745.jpg
1103 | ..\Traing_Data\images\CLIP074F00547.jpg
1104 | ..\Traing_Data\images\CLIP072F00766.jpg
1105 | ..\Traing_Data\images\CLIP005228.jpg
1106 | ..\Traing_Data\images\CLIP005468.jpg
1107 | ..\Traing_Data\images\CLIP073F00060.jpg
1108 | ..\Traing_Data\images\CLIP004179.jpg
1109 | ..\Traing_Data\images\CLIP078F00497.jpg
1110 | ..\Traing_Data\images\CLIP004838.jpg
1111 | ..\Traing_Data\images\CLIP064F00371.jpg
1112 | ..\Traing_Data\images\CLIP066F00022.jpg
1113 | ..\Traing_Data\images\CLIP074F00553.jpg
1114 | ..\Traing_Data\images\CLIP072F00768.jpg
1115 | ..\Traing_Data\images\CLIP071F00119.jpg
1116 | ..\Traing_Data\images\CLIP064F00024.jpg
1117 | ..\Traing_Data\images\CLIP073F00418.jpg
1118 | ..\Traing_Data\images\CLIP009784.jpg
1119 | ..\Traing_Data\images\1118.jpg
1120 | ..\Traing_Data\images\CLIP012230.jpg
1121 | ..\Traing_Data\images\CLIP005080.jpg
1122 | ..\Traing_Data\images\CLIP002305.jpg
1123 | ..\Traing_Data\images\3064.jpg
1124 | ..\Traing_Data\images\CLIP075F01627.jpg
1125 | ..\Traing_Data\images\CLIP073F00026.jpg
1126 | ..\Traing_Data\images\3223.jpg
1127 | ..\Traing_Data\images\1906.jpg
1128 | ..\Traing_Data\images\CLIP008596.jpg
1129 | ..\Traing_Data\images\CLIP075F02103.jpg
1130 | ..\Traing_Data\images\CLIP010826.jpg
1131 | ..\Traing_Data\images\CLIP012181.jpg
1132 | ..\Traing_Data\images\CLIP080F00028.jpg
1133 | ..\Traing_Data\images\CLIP069F00071.jpg
1134 | ..\Traing_Data\images\CLIP012357.jpg
1135 | ..\Traing_Data\images\CLIP010835.jpg
1136 | ..\Traing_Data\images\CLIP001272.jpg
1137 | ..\Traing_Data\images\CLIP003654.jpg
1138 | ..\Traing_Data\images\CLIP005044.jpg
1139 | ..\Traing_Data\images\CLIP075F00324.jpg
1140 | ..\Traing_Data\images\CLIP077F00002.jpg
1141 | ..\Traing_Data\images\CLIP067F00000.jpg
1142 | ..\Traing_Data\images\2377.jpg
1143 | ..\Traing_Data\images\CLIP002098.jpg
1144 | ..\Traing_Data\images\CLIP075F00510.jpg
1145 | ..\Traing_Data\images\CLIP070F00034.jpg
1146 | ..\Traing_Data\images\CLIP012724.jpg
1147 | ..\Traing_Data\images\CLIP064F00153.jpg
1148 | ..\Traing_Data\images\CLIP003208.jpg
1149 | ..\Traing_Data\images\CLIP073F01052.jpg
1150 | ..\Traing_Data\images\CLIP073F00892.jpg
1151 | ..\Traing_Data\images\CLIP073F00426.jpg
1152 | ..\Traing_Data\images\CLIP010883.jpg
1153 | ..\Traing_Data\images\CLIP068F00043.jpg
1154 | ..\Traing_Data\images\CLIP013658.jpg
1155 | ..\Traing_Data\images\CLIP006897.jpg
1156 | ..\Traing_Data\images\CLIP073F01035.jpg
1157 | ..\Traing_Data\images\CLIP013326.jpg
1158 | ..\Traing_Data\images\CLIP072F00108.jpg
1159 | ..\Traing_Data\images\CLIP074F00258.jpg
1160 | ..\Traing_Data\images\CLIP073F00187.jpg
1161 | ..\Traing_Data\images\4002.jpg
1162 | ..\Traing_Data\images\CLIP014072.jpg
1163 | ..\Traing_Data\images\CLIP073F01030.jpg
1164 | ..\Traing_Data\images\CLIP064F00098.jpg
1165 | ..\Traing_Data\images\1235.jpg
1166 | ..\Traing_Data\images\CLIP066F00133.jpg
1167 | ..\Traing_Data\images\CLIP072F00953.jpg
1168 | ..\Traing_Data\images\CLIP070F00054.jpg
1169 | ..\Traing_Data\images\CLIP073F00650.jpg
1170 | ..\Traing_Data\images\CLIP064F00116.jpg
1171 | ..\Traing_Data\images\CLIP004155.jpg
1172 | ..\Traing_Data\images\CLIP066F00031.jpg
1173 | ..\Traing_Data\images\CLIP002245.jpg
1174 | ..\Traing_Data\images\CLIP073F00905.jpg
1175 | ..\Traing_Data\images\CLIP073F00173.jpg
1176 | ..\Traing_Data\images\CLIP003750.jpg
1177 | ..\Traing_Data\images\CLIP067F00034.jpg
1178 | ..\Traing_Data\images\2721.jpg
1179 | ..\Traing_Data\images\CLIP001150.jpg
1180 | ..\Traing_Data\images\1082.jpg
1181 | ..\Traing_Data\images\CLIP072F00165.jpg
1182 | ..\Traing_Data\images\CLIP073F00674.jpg
1183 | ..\Traing_Data\images\CLIP006582.jpg
1184 | ..\Traing_Data\images\CLIP064F00393.jpg
1185 | ..\Traing_Data\images\CLIP069F00045.jpg
1186 | ..\Traing_Data\images\1284.jpg
1187 | ..\Traing_Data\images\CLIP074F00618.jpg
1188 | ..\Traing_Data\images\CLIP074F00631.jpg
1189 | ..\Traing_Data\images\CLIP007415.jpg
1190 | ..\Traing_Data\images\CLIP073F00000.jpg
1191 | ..\Traing_Data\images\1409.jpg
1192 | ..\Traing_Data\images\CLIP001065.jpg
1193 | ..\Traing_Data\images\CLIP072F00034.jpg
1194 | ..\Traing_Data\images\CLIP005977.jpg
1195 | ..\Traing_Data\images\2112.jpg
1196 | ..\Traing_Data\images\CLIP074F00622.jpg
1197 | ..\Traing_Data\images\CLIP071F00262.jpg
1198 | ..\Traing_Data\images\CLIP064F00029.jpg
1199 | ..\Traing_Data\images\CLIP007098.jpg
1200 | ..\Traing_Data\images\CLIP071F00289.jpg
1201 | ..\Traing_Data\images\CLIP075F00601.jpg
1202 | ..\Traing_Data\images\CLIP013117.jpg
1203 | ..\Traing_Data\images\CLIP069F00055.jpg
1204 | ..\Traing_Data\images\CLIP076F00037.jpg
1205 | ..\Traing_Data\images\2439.jpg
1206 | ..\Traing_Data\images\CLIP006243.jpg
1207 | ..\Traing_Data\images\CLIP073F00420.jpg
1208 | ..\Traing_Data\images\CLIP072F00299.jpg
1209 | ..\Traing_Data\images\4066.jpg
1210 | ..\Traing_Data\images\CLIP070F00064.jpg
1211 | ..\Traing_Data\images\CLIP009086.jpg
1212 | ..\Traing_Data\images\CLIP003052.jpg
1213 | ..\Traing_Data\images\CLIP077F01410.jpg
1214 | ..\Traing_Data\images\CLIP000172.jpg
1215 | ..\Traing_Data\images\CLIP005155.jpg
1216 | ..\Traing_Data\images\CLIP077F00489.jpg
1217 | ..\Traing_Data\images\CLIP079F00457.jpg
1218 | ..\Traing_Data\images\CLIP005631.jpg
1219 | ..\Traing_Data\images\3088.jpg
1220 | ..\Traing_Data\images\CLIP074F00284.jpg
1221 | ..\Traing_Data\images\CLIP073F00586.jpg
1222 | ..\Traing_Data\images\CLIP073F01315.jpg
1223 | ..\Traing_Data\images\CLIP064F00189.jpg
1224 | ..\Traing_Data\images\CLIP004932.jpg
1225 | ..\Traing_Data\images\CLIP074F00203.jpg
1226 | ..\Traing_Data\images\CLIP008401.jpg
1227 | ..\Traing_Data\images\CLIP072F00773.jpg
1228 | ..\Traing_Data\images\CLIP000224.jpg
1229 | ..\Traing_Data\images\CLIP069F00057.jpg
1230 | ..\Traing_Data\images\CLIP072F00186.jpg
1231 | ..\Traing_Data\images\CLIP078F00701.jpg
1232 | ..\Traing_Data\images\3859.jpg
1233 | ..\Traing_Data\images\CLIP008474.jpg
1234 | ..\Traing_Data\images\CLIP001278.jpg
1235 | ..\Traing_Data\images\CLIP011833.jpg
1236 | ..\Traing_Data\images\CLIP010937.jpg
1237 | ..\Traing_Data\images\CLIP007613.jpg
1238 | ..\Traing_Data\images\CLIP002728.jpg
1239 | ..\Traing_Data\images\CLIP002867.jpg
1240 | ..\Traing_Data\images\CLIP069F00180.jpg
1241 | ..\Traing_Data\images\433.jpg
1242 | ..\Traing_Data\images\3510.jpg
1243 | ..\Traing_Data\images\3839.jpg
1244 | ..\Traing_Data\images\CLIP006623.jpg
1245 | ..\Traing_Data\images\4145.jpg
1246 | ..\Traing_Data\images\CLIP008330.jpg
1247 | ..\Traing_Data\images\CLIP008058.jpg
1248 | ..\Traing_Data\images\CLIP012615.jpg
1249 | ..\Traing_Data\images\CLIP073F00906.jpg
1250 | ..\Traing_Data\images\CLIP080F00000.jpg
1251 | ..\Traing_Data\images\CLIP064F00225.jpg
1252 | ..\Traing_Data\images\3903.jpg
1253 | ..\Traing_Data\images\CLIP001472.jpg
1254 | ..\Traing_Data\images\CLIP073F01021.jpg
1255 | ..\Traing_Data\images\3978.jpg
1256 | ..\Traing_Data\images\CLIP071F00016.jpg
1257 | ..\Traing_Data\images\CLIP012106.jpg
1258 | ..\Traing_Data\images\CLIP071F00179.jpg
1259 | ..\Traing_Data\images\CLIP011348.jpg
1260 | ..\Traing_Data\images\650.jpg
1261 | ..\Traing_Data\images\CLIP072F00778.jpg
1262 | ..\Traing_Data\images\CLIP012347.jpg
1263 | ..\Traing_Data\images\CLIP002900.jpg
1264 | ..\Traing_Data\images\CLIP064F00236.jpg
1265 | ..\Traing_Data\images\CLIP004267.jpg
1266 | ..\Traing_Data\images\CLIP072F00332.jpg
1267 | ..\Traing_Data\images\CLIP072F00505.jpg
1268 | ..\Traing_Data\images\CLIP071F00125.jpg
1269 | ..\Traing_Data\images\CLIP073F00664.jpg
1270 | ..\Traing_Data\images\CLIP073F00061.jpg
1271 | ..\Traing_Data\images\CLIP080F00030.jpg
1272 | ..\Traing_Data\images\CLIP068F00018.jpg
1273 | ..\Traing_Data\images\CLIP007283.jpg
1274 | ..\Traing_Data\images\CLIP072F00072.jpg
1275 | ..\Traing_Data\images\CLIP011809.jpg
1276 | ..\Traing_Data\images\CLIP006635.jpg
1277 | ..\Traing_Data\images\3522.jpg
1278 | ..\Traing_Data\images\CLIP003955.jpg
1279 | ..\Traing_Data\images\CLIP000237.jpg
1280 | ..\Traing_Data\images\CLIP073F01025.jpg
1281 | ..\Traing_Data\images\CLIP002711.jpg
1282 | ..\Traing_Data\images\1291.jpg
1283 | ..\Traing_Data\images\CLIP079F00549.jpg
1284 | ..\Traing_Data\images\CLIP072F00044.jpg
1285 | ..\Traing_Data\images\4019.jpg
1286 | ..\Traing_Data\images\CLIP013381.jpg
1287 | ..\Traing_Data\images\CLIP004539.jpg
1288 | ..\Traing_Data\images\CLIP071F00102.jpg
1289 | ..\Traing_Data\images\CLIP073F00789.jpg
1290 | ..\Traing_Data\images\CLIP071F00271.jpg
1291 | ..\Traing_Data\images\929.jpg
1292 | ..\Traing_Data\images\CLIP072F00305.jpg
1293 | ..\Traing_Data\images\CLIP013487.jpg
1294 | ..\Traing_Data\images\CLIP071F00254.jpg
1295 | ..\Traing_Data\images\CLIP013146.jpg
1296 | ..\Traing_Data\images\CLIP067F00003.jpg
1297 | ..\Traing_Data\images\CLIP009420.jpg
1298 | ..\Traing_Data\images\CLIP064F00391.jpg
1299 | ..\Traing_Data\images\CLIP064F00376.jpg
1300 | ..\Traing_Data\images\CLIP001578.jpg
1301 | ..\Traing_Data\images\CLIP066F00131.jpg
1302 | ..\Traing_Data\images\CLIP003116.jpg
1303 | ..\Traing_Data\images\CLIP074F00287.jpg
1304 | ..\Traing_Data\images\CLIP071F00244.jpg
1305 | ..\Traing_Data\images\CLIP064F00401.jpg
1306 | ..\Traing_Data\images\CLIP001955.jpg
1307 | ..\Traing_Data\images\CLIP013935.jpg
1308 | ..\Traing_Data\images\2582.jpg
1309 | ..\Traing_Data\images\CLIP079F00548.jpg
1310 | ..\Traing_Data\images\CLIP075F00512.jpg
1311 | ..\Traing_Data\images\CLIP005478.jpg
1312 | ..\Traing_Data\images\CLIP072F00518.jpg
1313 | ..\Traing_Data\images\CLIP078F00977.jpg
1314 | ..\Traing_Data\images\3202.jpg
1315 | ..\Traing_Data\images\CLIP009444.jpg
1316 | ..\Traing_Data\images\CLIP012365.jpg
1317 | ..\Traing_Data\images\CLIP010312.jpg
1318 | ..\Traing_Data\images\3205.jpg
1319 | ..\Traing_Data\images\CLIP073F00798.jpg
1320 | ..\Traing_Data\images\CLIP010827.jpg
1321 | ..\Traing_Data\images\CLIP010298.jpg
1322 | ..\Traing_Data\images\CLIP064F00311.jpg
1323 | ..\Traing_Data\images\CLIP075F01377.jpg
1324 | ..\Traing_Data\images\CLIP007730.jpg
1325 | ..\Traing_Data\images\CLIP006670.jpg
1326 | ..\Traing_Data\images\CLIP004699.jpg
1327 | ..\Traing_Data\images\CLIP006456.jpg
1328 | ..\Traing_Data\images\CLIP011089.jpg
1329 | ..\Traing_Data\images\CLIP009555.jpg
1330 | ..\Traing_Data\images\CLIP001736.jpg
1331 | ..\Traing_Data\images\CLIP071F00183.jpg
1332 | ..\Traing_Data\images\CLIP001028.jpg
1333 | ..\Traing_Data\images\CLIP074F00000.jpg
1334 | ..\Traing_Data\images\CLIP003266.jpg
1335 | ..\Traing_Data\images\1980.jpg
1336 | ..\Traing_Data\images\CLIP008774.jpg
1337 | ..\Traing_Data\images\CLIP000212.jpg
1338 | ..\Traing_Data\images\CLIP073F00891.jpg
1339 | ..\Traing_Data\images\CLIP072F00144.jpg
1340 | ..\Traing_Data\images\CLIP001838.jpg
1341 | ..\Traing_Data\images\CLIP073F00647.jpg
1342 | ..\Traing_Data\images\CLIP069F00160.jpg
1343 | ..\Traing_Data\images\CLIP005055.jpg
1344 | ..\Traing_Data\images\CLIP003376.jpg
1345 | ..\Traing_Data\images\CLIP011291.jpg
1346 | ..\Traing_Data\images\CLIP072F00138.jpg
1347 | ..\Traing_Data\images\CLIP012576.jpg
1348 | ..\Traing_Data\images\CLIP004931.jpg
1349 | ..\Traing_Data\images\CLIP073F01012.jpg
1350 | ..\Traing_Data\images\CLIP012693.jpg
1351 | ..\Traing_Data\images\CLIP075F00426.jpg
1352 | ..\Traing_Data\images\CLIP001825.jpg
1353 | ..\Traing_Data\images\CLIP012217.jpg
1354 | ..\Traing_Data\images\CLIP003330.jpg
1355 | ..\Traing_Data\images\CLIP069F00006.jpg
1356 | ..\Traing_Data\images\CLIP013727.jpg
1357 | ..\Traing_Data\images\CLIP072F00333.jpg
1358 | ..\Traing_Data\images\CLIP068F00045.jpg
1359 | ..\Traing_Data\images\CLIP066F00135.jpg
1360 | ..\Traing_Data\images\1223.jpg
1361 | ..\Traing_Data\images\CLIP008096.jpg
1362 | ..\Traing_Data\images\CLIP072F00490.jpg
1363 | ..\Traing_Data\images\CLIP064F00135.jpg
1364 | ..\Traing_Data\images\CLIP072F00015.jpg
1365 | ..\Traing_Data\images\CLIP072F00580.jpg
1366 | ..\Traing_Data\images\CLIP072F00493.jpg
1367 | ..\Traing_Data\images\CLIP074F00276.jpg
1368 | ..\Traing_Data\images\CLIP007131.jpg
1369 | ..\Traing_Data\images\CLIP073F00212.jpg
1370 | ..\Traing_Data\images\CLIP064F00347.jpg
1371 | ..\Traing_Data\images\CLIP069F00188.jpg
1372 | ..\Traing_Data\images\CLIP011478.jpg
1373 | ..\Traing_Data\images\CLIP071F00182.jpg
1374 | ..\Traing_Data\images\1211.jpg
1375 | ..\Traing_Data\images\CLIP012100.jpg
1376 | ..\Traing_Data\images\CLIP072F00530.jpg
1377 | ..\Traing_Data\images\CLIP009041.jpg
1378 | ..\Traing_Data\images\CLIP004595.jpg
1379 | ..\Traing_Data\images\918.jpg
1380 | ..\Traing_Data\images\CLIP002441.jpg
1381 | ..\Traing_Data\images\CLIP009250.jpg
1382 | ..\Traing_Data\images\CLIP007760.jpg
1383 | ..\Traing_Data\images\CLIP071F00116.jpg
1384 | ..\Traing_Data\images\2412.jpg
1385 | ..\Traing_Data\images\CLIP012996.jpg
1386 | ..\Traing_Data\images\CLIP010188.jpg
1387 | ..\Traing_Data\images\CLIP075F00520.jpg
1388 | ..\Traing_Data\images\CLIP068F00047.jpg
1389 | ..\Traing_Data\images\CLIP069F00142.jpg
1390 | ..\Traing_Data\images\CLIP066F00038.jpg
1391 | ..\Traing_Data\images\CLIP068F00087.jpg
1392 | ..\Traing_Data\images\CLIP064F00378.jpg
1393 | ..\Traing_Data\images\CLIP007867.jpg
1394 | ..\Traing_Data\images\270.jpg
1395 | ..\Traing_Data\images\CLIP000420.jpg
1396 | ..\Traing_Data\images\CLIP010767.jpg
1397 | ..\Traing_Data\images\CLIP071F00126.jpg
1398 | ..\Traing_Data\images\CLIP072F00190.jpg
1399 | ..\Traing_Data\images\2384.jpg
1400 | ..\Traing_Data\images\CLIP010732.jpg
1401 | ..\Traing_Data\images\CLIP074F00528.jpg
1402 | ..\Traing_Data\images\3098.jpg
1403 | ..\Traing_Data\images\CLIP066F00020.jpg
1404 | ..\Traing_Data\images\CLIP010804.jpg
1405 | ..\Traing_Data\images\CLIP072F00929.jpg
1406 | ..\Traing_Data\images\3352.jpg
1407 | ..\Traing_Data\images\CLIP069F00082.jpg
1408 | ..\Traing_Data\images\CLIP003029.jpg
1409 | ..\Traing_Data\images\CLIP010138.jpg
1410 | ..\Traing_Data\images\CLIP068F00038.jpg
1411 | ..\Traing_Data\images\CLIP072F00084.jpg
1412 | ..\Traing_Data\images\CLIP072F00529.jpg
1413 | ..\Traing_Data\images\CLIP073F00399.jpg
1414 | ..\Traing_Data\images\CLIP075F00757.jpg
1415 | ..\Traing_Data\images\CLIP072F00572.jpg
1416 | ..\Traing_Data\images\CLIP073F00428.jpg
1417 | ..\Traing_Data\images\CLIP010615.jpg
1418 | ..\Traing_Data\images\CLIP072F00858.jpg
1419 | ..\Traing_Data\images\CLIP064F00053.jpg
1420 | ..\Traing_Data\images\CLIP072F00090.jpg
1421 | ..\Traing_Data\images\CLIP077F01868.jpg
1422 | ..\Traing_Data\images\3520.jpg
1423 | ..\Traing_Data\images\1338.jpg
1424 | ..\Traing_Data\images\CLIP072F00000.jpg
1425 | ..\Traing_Data\images\2612.jpg
1426 | ..\Traing_Data\images\CLIP069F00086.jpg
1427 | ..\Traing_Data\images\CLIP010009.jpg
1428 | ..\Traing_Data\images\CLIP072F00037.jpg
1429 | ..\Traing_Data\images\CLIP072F00549.jpg
1430 | ..\Traing_Data\images\CLIP076F00298.jpg
1431 | ..\Traing_Data\images\CLIP012329.jpg
1432 | ..\Traing_Data\images\CLIP069F00106.jpg
1433 | ..\Traing_Data\images\CLIP072F00555.jpg
1434 | ..\Traing_Data\images\CLIP002617.jpg
1435 | ..\Traing_Data\images\CLIP080F00041.jpg
1436 | ..\Traing_Data\images\CLIP072F00869.jpg
1437 | ..\Traing_Data\images\CLIP003352.jpg
1438 | ..\Traing_Data\images\CLIP008797.jpg
1439 | ..\Traing_Data\images\CLIP012059.jpg
1440 | ..\Traing_Data\images\CLIP074F01069.jpg
1441 | ..\Traing_Data\images\CLIP072F00954.jpg
1442 | ..\Traing_Data\images\CLIP005595.jpg
1443 | ..\Traing_Data\images\CLIP008767.jpg
1444 | ..\Traing_Data\images\CLIP074F00264.jpg
1445 | ..\Traing_Data\images\500.jpg
1446 | ..\Traing_Data\images\CLIP075F01376.jpg
1447 | ..\Traing_Data\images\CLIP010769.jpg
1448 | ..\Traing_Data\images\CLIP073F00663.jpg
1449 | ..\Traing_Data\images\3685.jpg
1450 | ..\Traing_Data\images\CLIP072F00602.jpg
1451 | ..\Traing_Data\images\CLIP077F01298.jpg
1452 | ..\Traing_Data\images\CLIP074F00728.jpg
1453 | ..\Traing_Data\images\CLIP072F00076.jpg
1454 | ..\Traing_Data\images\CLIP068F00091.jpg
1455 | ..\Traing_Data\images\CLIP064F00207.jpg
1456 | ..\Traing_Data\images\CLIP071F00079.jpg
1457 | ..\Traing_Data\images\CLIP005269.jpg
1458 | ..\Traing_Data\images\CLIP073F00213.jpg
1459 | ..\Traing_Data\images\CLIP008962.jpg
1460 | ..\Traing_Data\images\CLIP072F00121.jpg
1461 | ..\Traing_Data\images\CLIP076F00302.jpg
1462 | ..\Traing_Data\images\CLIP072F00191.jpg
1463 | ..\Traing_Data\images\CLIP069F00010.jpg
1464 | ..\Traing_Data\images\CLIP072F00502.jpg
1465 | ..\Traing_Data\images\CLIP075F00367.jpg
1466 | ..\Traing_Data\images\CLIP067F00035.jpg
1467 | ..\Traing_Data\images\CLIP000312.jpg
1468 | ..\Traing_Data\images\CLIP068F00049.jpg
1469 | ..\Traing_Data\images\CLIP074F00363.jpg
1470 | ..\Traing_Data\images\3509.jpg
1471 | ..\Traing_Data\images\2286.jpg
1472 | ..\Traing_Data\images\CLIP072F00232.jpg
1473 | ..\Traing_Data\images\CLIP069F00170.jpg
1474 | ..\Traing_Data\images\2468.jpg
1475 | ..\Traing_Data\images\454.jpg
1476 | ..\Traing_Data\images\CLIP074F00488.jpg
1477 | ..\Traing_Data\images\96.jpg
1478 | ..\Traing_Data\images\CLIP073F01316.jpg
1479 | ..\Traing_Data\images\CLIP009696.jpg
1480 | ..\Traing_Data\images\CLIP079F00517.jpg
1481 | ..\Traing_Data\images\CLIP076F00661.jpg
1482 | ..\Traing_Data\images\CLIP074F00420.jpg
1483 | ..\Traing_Data\images\CLIP071F00015.jpg
1484 | ..\Traing_Data\images\CLIP007413.jpg
1485 | ..\Traing_Data\images\CLIP013064.jpg
1486 | ..\Traing_Data\images\CLIP011882.jpg
1487 | ..\Traing_Data\images\CLIP013159.jpg
1488 | ..\Traing_Data\images\3939.jpg
1489 | ..\Traing_Data\images\CLIP064F00178.jpg
1490 | ..\Traing_Data\images\CLIP009171.jpg
1491 | ..\Traing_Data\images\CLIP011337.jpg
1492 | ..\Traing_Data\images\CLIP011424.jpg
1493 | ..\Traing_Data\images\CLIP009360.jpg
1494 | ..\Traing_Data\images\CLIP075F00464.jpg
1495 | ..\Traing_Data\images\2965.jpg
1496 | ..\Traing_Data\images\CLIP006633.jpg
1497 | ..\Traing_Data\images\CLIP006979.jpg
1498 | ..\Traing_Data\images\CLIP001868.jpg
1499 | ..\Traing_Data\images\CLIP008911.jpg
1500 | ..\Traing_Data\images\CLIP007660.jpg
1501 | ..\Traing_Data\images\CLIP003900.jpg
1502 | ..\Traing_Data\images\3087.jpg
1503 | ..\Traing_Data\images\CLIP076F00282.jpg
1504 | ..\Traing_Data\images\CLIP069F00032.jpg
1505 | ..\Traing_Data\images\CLIP071F00203.jpg
1506 | ..\Traing_Data\images\CLIP076F00297.jpg
1507 | ..\Traing_Data\images\CLIP001031.jpg
1508 | ..\Traing_Data\images\CLIP072F00942.jpg
1509 | ..\Traing_Data\images\582.jpg
1510 | ..\Traing_Data\images\CLIP003962.jpg
1511 | ..\Traing_Data\images\681.jpg
1512 | ..\Traing_Data\images\CLIP004203.jpg
1513 | ..\Traing_Data\images\CLIP011573.jpg
1514 | ..\Traing_Data\images\CLIP005559.jpg
1515 | ..\Traing_Data\images\CLIP073F00631.jpg
1516 | ..\Traing_Data\images\CLIP002758.jpg
1517 | ..\Traing_Data\images\CLIP004714.jpg
1518 | ..\Traing_Data\images\CLIP003777.jpg
1519 | ..\Traing_Data\images\2991.jpg
1520 | ..\Traing_Data\images\CLIP077F00474.jpg
1521 | ..\Traing_Data\images\CLIP064F00238.jpg
1522 | ..\Traing_Data\images\CLIP075F00498.jpg
1523 | ..\Traing_Data\images\CLIP066F00066.jpg
1524 | ..\Traing_Data\images\CLIP064F00028.jpg
1525 | ..\Traing_Data\images\1210.jpg
1526 | ..\Traing_Data\images\CLIP072F00765.jpg
1527 | ..\Traing_Data\images\CLIP073F00006.jpg
1528 | ..\Traing_Data\images\CLIP072F00119.jpg
1529 | ..\Traing_Data\images\CLIP075F00544.jpg
1530 | ..\Traing_Data\images\CLIP001005.jpg
1531 | ..\Traing_Data\images\CLIP074F00448.jpg
1532 | ..\Traing_Data\images\CLIP074F00539.jpg
1533 | ..\Traing_Data\images\CLIP010265.jpg
1534 | ..\Traing_Data\images\CLIP071F00242.jpg
1535 | ..\Traing_Data\images\CLIP077F01495.jpg
1536 | ..\Traing_Data\images\CLIP066F00019.jpg
1537 | ..\Traing_Data\images\CLIP004783.jpg
1538 | ..\Traing_Data\images\CLIP072F00054.jpg
1539 | ..\Traing_Data\images\CLIP012857.jpg
1540 | ..\Traing_Data\images\CLIP071F00021.jpg
1541 | ..\Traing_Data\images\CLIP079F00694.jpg
1542 | ..\Traing_Data\images\CLIP076F00535.jpg
1543 | ..\Traing_Data\images\CLIP073F00655.jpg
1544 | ..\Traing_Data\images\CLIP077F01405.jpg
1545 | ..\Traing_Data\images\CLIP009749.jpg
1546 | ..\Traing_Data\images\2234.jpg
1547 | ..\Traing_Data\images\CLIP008503.jpg
1548 | ..\Traing_Data\images\CLIP072F00609.jpg
1549 | ..\Traing_Data\images\CLIP074F00418.jpg
1550 | ..\Traing_Data\images\CLIP072F00957.jpg
1551 | ..\Traing_Data\images\CLIP005316.jpg
1552 | ..\Traing_Data\images\CLIP007172.jpg
1553 | ..\Traing_Data\images\CLIP009205.jpg
1554 | ..\Traing_Data\images\CLIP010797.jpg
1555 | ..\Traing_Data\images\CLIP076F00326.jpg
1556 | ..\Traing_Data\images\CLIP064F00016.jpg
1557 | ..\Traing_Data\images\CLIP001540.jpg
1558 | ..\Traing_Data\images\CLIP077F00512.jpg
1559 | ..\Traing_Data\images\CLIP012533.jpg
1560 | ..\Traing_Data\images\CLIP075F00458.jpg
1561 | ..\Traing_Data\images\CLIP075F00428.jpg
1562 | ..\Traing_Data\images\CLIP074F00451.jpg
1563 | ..\Traing_Data\images\3734.jpg
1564 | ..\Traing_Data\images\CLIP002196.jpg
1565 | ..\Traing_Data\images\CLIP006245.jpg
1566 | ..\Traing_Data\images\CLIP069F00122.jpg
1567 | ..\Traing_Data\images\CLIP071F00013.jpg
1568 | ..\Traing_Data\images\CLIP076F00280.jpg
1569 | ..\Traing_Data\images\CLIP073F01311.jpg
1570 | ..\Traing_Data\images\CLIP073F00419.jpg
1571 | ..\Traing_Data\images\CLIP008607.jpg
1572 | ..\Traing_Data\images\CLIP073F00665.jpg
1573 | ..\Traing_Data\images\CLIP068F00085.jpg
1574 | ..\Traing_Data\images\CLIP004487.jpg
1575 | ..\Traing_Data\images\CLIP064F00239.jpg
1576 | ..\Traing_Data\images\CLIP074F00358.jpg
1577 | ..\Traing_Data\images\CLIP076F00000.jpg
1578 | ..\Traing_Data\images\707.jpg
1579 | ..\Traing_Data\images\781.jpg
1580 | ..\Traing_Data\images\CLIP069F00016.jpg
1581 | ..\Traing_Data\images\CLIP012498.jpg
1582 | ..\Traing_Data\images\CLIP072F00060.jpg
1583 | ..\Traing_Data\images\CLIP074F00485.jpg
1584 | ..\Traing_Data\images\CLIP069F00111.jpg
1585 | ..\Traing_Data\images\CLIP006000.jpg
1586 | ..\Traing_Data\images\CLIP072F00183.jpg
1587 | ..\Traing_Data\images\2976.jpg
1588 | ..\Traing_Data\images\CLIP066F00068.jpg
1589 | ..\Traing_Data\images\CLIP077F00484.jpg
1590 | ..\Traing_Data\images\CLIP014012.jpg
1591 | ..\Traing_Data\images\CLIP068F00090.jpg
1592 | ..\Traing_Data\images\CLIP073F00627.jpg
1593 | ..\Traing_Data\images\2979.jpg
1594 | ..\Traing_Data\images\1729.jpg
1595 | ..\Traing_Data\images\CLIP072F00080.jpg
1596 | ..\Traing_Data\images\CLIP072F00533.jpg
1597 | ..\Traing_Data\images\CLIP080F00451.jpg
1598 | ..\Traing_Data\images\4084.jpg
1599 | ..\Traing_Data\images\CLIP073F00406.jpg
1600 | ..\Traing_Data\images\CLIP073F01013.jpg
1601 | ..\Traing_Data\images\CLIP013988.jpg
1602 | ..\Traing_Data\images\CLIP073F00621.jpg
1603 | ..\Traing_Data\images\CLIP075F01374.jpg
1604 | ..\Traing_Data\images\CLIP071F00156.jpg
1605 | ..\Traing_Data\images\CLIP068F00053.jpg
1606 | ..\Traing_Data\images\CLIP072F00542.jpg
1607 | ..\Traing_Data\images\CLIP011473.jpg
1608 | ..\Traing_Data\images\CLIP012258.jpg
1609 | ..\Traing_Data\images\CLIP065F00001.jpg
1610 | ..\Traing_Data\images\3555.jpg
1611 | ..\Traing_Data\images\CLIP067F00030.jpg
1612 | ..\Traing_Data\images\CLIP009935.jpg
1613 | ..\Traing_Data\images\CLIP068F00097.jpg
1614 | ..\Traing_Data\images\CLIP072F00055.jpg
1615 | ..\Traing_Data\images\CLIP068F00024.jpg
1616 | ..\Traing_Data\images\CLIP073F00289.jpg
1617 | ..\Traing_Data\images\CLIP001434.jpg
1618 | ..\Traing_Data\images\CLIP072F00521.jpg
1619 | ..\Traing_Data\images\CLIP007220.jpg
1620 | ..\Traing_Data\images\CLIP067F00001.jpg
1621 | ..\Traing_Data\images\CLIP073F01020.jpg
1622 | ..\Traing_Data\images\CLIP013918.jpg
1623 | ..\Traing_Data\images\CLIP073F00876.jpg
1624 | ..\Traing_Data\images\CLIP011292.jpg
1625 | ..\Traing_Data\images\CLIP077F00807.jpg
1626 | ..\Traing_Data\images\2367.jpg
1627 | ..\Traing_Data\images\CLIP072F00910.jpg
1628 | ..\Traing_Data\images\CLIP069F00146.jpg
1629 | ..\Traing_Data\images\CLIP013482.jpg
1630 | ..\Traing_Data\images\2296.jpg
1631 | ..\Traing_Data\images\CLIP001000.jpg
1632 | ..\Traing_Data\images\CLIP004563.jpg
1633 | ..\Traing_Data\images\CLIP005415.jpg
1634 | ..\Traing_Data\images\CLIP005182.jpg
1635 | ..\Traing_Data\images\761.jpg
1636 | ..\Traing_Data\images\CLIP072F00158.jpg
1637 | ..\Traing_Data\images\CLIP079F01733.jpg
1638 | ..\Traing_Data\images\CLIP001263.jpg
1639 | ..\Traing_Data\images\CLIP000646.jpg
1640 | ..\Traing_Data\images\CLIP072F00605.jpg
1641 | ..\Traing_Data\images\CLIP001783.jpg
1642 | ..\Traing_Data\images\CLIP068F00050.jpg
1643 | ..\Traing_Data\images\CLIP072F00867.jpg
1644 | ..\Traing_Data\images\CLIP074F00268.jpg
1645 | ..\Traing_Data\images\CLIP008304.jpg
1646 | ..\Traing_Data\images\CLIP007608.jpg
1647 | ..\Traing_Data\images\CLIP074F00356.jpg
1648 | ..\Traing_Data\images\CLIP014039.jpg
1649 | ..\Traing_Data\images\CLIP003729.jpg
1650 | ..\Traing_Data\images\CLIP072F00860.jpg
1651 | ..\Traing_Data\images\CLIP010349.jpg
1652 | ..\Traing_Data\images\513.jpg
1653 | ..\Traing_Data\images\CLIP075F00471.jpg
1654 | ..\Traing_Data\images\CLIP013538.jpg
1655 | ..\Traing_Data\images\CLIP071F00307.jpg
1656 | ..\Traing_Data\images\CLIP012664.jpg
1657 | ..\Traing_Data\images\CLIP012946.jpg
1658 | ..\Traing_Data\images\CLIP073F01213.jpg
1659 | ..\Traing_Data\images\CLIP008944.jpg
1660 | ..\Traing_Data\images\CLIP003891.jpg
1661 | ..\Traing_Data\images\CLIP071F00229.jpg
1662 | ..\Traing_Data\images\1403.jpg
1663 | ..\Traing_Data\images\2746.jpg
1664 | ..\Traing_Data\images\CLIP002028.jpg
1665 | ..\Traing_Data\images\CLIP014093.jpg
1666 | ..\Traing_Data\images\561.jpg
1667 | ..\Traing_Data\images\CLIP073F00615.jpg
1668 | ..\Traing_Data\images\CLIP064F00173.jpg
1669 | ..\Traing_Data\images\CLIP000442.jpg
1670 | ..\Traing_Data\images\CLIP071F00222.jpg
1671 | ..\Traing_Data\images\CLIP075F01208.jpg
1672 | ..\Traing_Data\images\CLIP072F00045.jpg
1673 | ..\Traing_Data\images\CLIP004614.jpg
1674 | ..\Traing_Data\images\CLIP001770.jpg
1675 | ..\Traing_Data\images\666.jpg
1676 | ..\Traing_Data\images\CLIP068F00100.jpg
1677 | ..\Traing_Data\images\CLIP007003.jpg
1678 | ..\Traing_Data\images\CLIP075F00668.jpg
1679 | ..\Traing_Data\images\CLIP069F00052.jpg
1680 | ..\Traing_Data\images\CLIP072F00922.jpg
1681 | ..\Traing_Data\images\CLIP068F00070.jpg
1682 | ..\Traing_Data\images\CLIP010004.jpg
1683 | ..\Traing_Data\images\2743.jpg
1684 | ..\Traing_Data\images\CLIP003063.jpg
1685 | ..\Traing_Data\images\CLIP071F00186.jpg
1686 | ..\Traing_Data\images\2805.jpg
1687 | ..\Traing_Data\images\CLIP066F00061.jpg
1688 | ..\Traing_Data\images\CLIP073F00633.jpg
1689 | ..\Traing_Data\images\CLIP006917.jpg
1690 | ..\Traing_Data\images\CLIP077F01874.jpg
1691 | ..\Traing_Data\images\CLIP077F00506.jpg
1692 | ..\Traing_Data\images\CLIP001368.jpg
1693 | ..\Traing_Data\images\CLIP066F00021.jpg
1694 | ..\Traing_Data\images\CLIP002519.jpg
1695 | ..\Traing_Data\images\CLIP007931.jpg
1696 | ..\Traing_Data\images\CLIP013456.jpg
1697 | ..\Traing_Data\images\CLIP072F00601.jpg
1698 | ..\Traing_Data\images\CLIP007975.jpg
1699 | ..\Traing_Data\images\4047.jpg
1700 | ..\Traing_Data\images\CLIP001378.jpg
1701 | ..\Traing_Data\images\CLIP003883.jpg
1702 | ..\Traing_Data\images\1997.jpg
1703 | ..\Traing_Data\images\CLIP077F00493.jpg
1704 | ..\Traing_Data\images\CLIP079F00420.jpg
1705 | ..\Traing_Data\images\CLIP012456.jpg
1706 | ..\Traing_Data\images\1868.jpg
1707 | ..\Traing_Data\images\CLIP073F01147.jpg
1708 | ..\Traing_Data\images\CLIP000628.jpg
1709 | ..\Traing_Data\images\CLIP001806.jpg
1710 | ..\Traing_Data\images\CLIP008654.jpg
1711 | ..\Traing_Data\images\CLIP001019.jpg
1712 | ..\Traing_Data\images\CLIP009720.jpg
1713 | ..\Traing_Data\images\CLIP001961.jpg
1714 | ..\Traing_Data\images\CLIP071F00165.jpg
1715 | ..\Traing_Data\images\CLIP001624.jpg
1716 | ..\Traing_Data\images\CLIP071F00193.jpg
1717 | ..\Traing_Data\images\2194.jpg
1718 | ..\Traing_Data\images\CLIP006498.jpg
1719 | ..\Traing_Data\images\CLIP064F00237.jpg
1720 | ..\Traing_Data\images\CLIP074F00502.jpg
1721 | ..\Traing_Data\images\CLIP008024.jpg
1722 | ..\Traing_Data\images\CLIP010783.jpg
1723 | ..\Traing_Data\images\3317.jpg
1724 | ..\Traing_Data\images\CLIP079F00419.jpg
1725 | ..\Traing_Data\images\CLIP072F00592.jpg
1726 | ..\Traing_Data\images\2337.jpg
1727 | ..\Traing_Data\images\2733.jpg
1728 | ..\Traing_Data\images\CLIP073F00662.jpg
1729 | ..\Traing_Data\images\CLIP012865.jpg
1730 | ..\Traing_Data\images\CLIP077F00636.jpg
1731 | ..\Traing_Data\images\CLIP004277.jpg
1732 | ..\Traing_Data\images\CLIP009824.jpg
1733 | ..\Traing_Data\images\2443.jpg
1734 | ..\Traing_Data\images\CLIP073F00635.jpg
1735 | ..\Traing_Data\images\CLIP002256.jpg
1736 | ..\Traing_Data\images\CLIP075F00596.jpg
1737 | ..\Traing_Data\images\CLIP008624.jpg
1738 | ..\Traing_Data\images\CLIP067F00029.jpg
1739 | ..\Traing_Data\images\CLIP003314.jpg
1740 | ..\Traing_Data\images\CLIP072F00930.jpg
1741 | ..\Traing_Data\images\CLIP071F00114.jpg
1742 | ..\Traing_Data\images\CLIP064F00398.jpg
1743 | ..\Traing_Data\images\CLIP072F00547.jpg
1744 | ..\Traing_Data\images\CLIP070F00041.jpg
1745 | ..\Traing_Data\images\CLIP068F00105.jpg
1746 | ..\Traing_Data\images\3933.jpg
1747 | ..\Traing_Data\images\3104.jpg
1748 | ..\Traing_Data\images\CLIP069F00171.jpg
1749 | ..\Traing_Data\images\3740.jpg
1750 | ..\Traing_Data\images\CLIP080F00495.jpg
1751 | ..\Traing_Data\images\CLIP074F00410.jpg
1752 | ..\Traing_Data\images\CLIP069F00080.jpg
1753 | ..\Traing_Data\images\CLIP005613.jpg
1754 | ..\Traing_Data\images\CLIP004412.jpg
1755 | ..\Traing_Data\images\CLIP080F00036.jpg
1756 | ..\Traing_Data\images\CLIP008830.jpg
1757 | ..\Traing_Data\images\CLIP010457.jpg
1758 | ..\Traing_Data\images\CLIP000868.jpg
1759 | ..\Traing_Data\images\CLIP073F00402.jpg
1760 | ..\Traing_Data\images\CLIP064F00232.jpg
1761 | ..\Traing_Data\images\2010.jpg
1762 | ..\Traing_Data\images\CLIP000882.jpg
1763 | ..\Traing_Data\images\CLIP068F00037.jpg
1764 | ..\Traing_Data\images\1431.jpg
1765 | ..\Traing_Data\images\CLIP012323.jpg
1766 | ..\Traing_Data\images\CLIP065F00003.jpg
1767 | ..\Traing_Data\images\3175.jpg
1768 | ..\Traing_Data\images\3633.jpg
1769 | ..\Traing_Data\images\CLIP001112.jpg
1770 | ..\Traing_Data\images\CLIP064F00337.jpg
1771 | ..\Traing_Data\images\CLIP008109.jpg
1772 | ..\Traing_Data\images\CLIP076F00328.jpg
1773 | ..\Traing_Data\images\2116.jpg
1774 | ..\Traing_Data\images\CLIP012017.jpg
1775 | ..\Traing_Data\images\CLIP074F00256.jpg
1776 | ..\Traing_Data\images\CLIP008231.jpg
1777 | ..\Traing_Data\images\CLIP072F00169.jpg
1778 | ..\Traing_Data\images\CLIP075F00042.jpg
1779 | ..\Traing_Data\images\CLIP069F00096.jpg
1780 | ..\Traing_Data\images\CLIP069F00181.jpg
1781 | ..\Traing_Data\images\CLIP003479.jpg
1782 | ..\Traing_Data\images\CLIP069F00178.jpg
1783 | ..\Traing_Data\images\CLIP066F00030.jpg
1784 | ..\Traing_Data\images\CLIP075F00532.jpg
1785 | ..\Traing_Data\images\CLIP068F00040.jpg
1786 | ..\Traing_Data\images\171.jpg
1787 | ..\Traing_Data\images\CLIP072F00174.jpg
1788 | ..\Traing_Data\images\1249.jpg
1789 | ..\Traing_Data\images\CLIP012971.jpg
1790 | ..\Traing_Data\images\CLIP074F00630.jpg
1791 | ..\Traing_Data\images\CLIP073F01034.jpg
1792 | ..\Traing_Data\images\CLIP079F00075.jpg
1793 | ..\Traing_Data\images\CLIP012143.jpg
1794 | ..\Traing_Data\images\CLIP006285.jpg
1795 | ..\Traing_Data\images\CLIP072F00487.jpg
1796 | ..\Traing_Data\images\248.jpg
1797 | ..\Traing_Data\images\CLIP006855.jpg
1798 | ..\Traing_Data\images\CLIP011523.jpg
1799 | ..\Traing_Data\images\CLIP074F00541.jpg
1800 | ..\Traing_Data\images\CLIP006051.jpg
1801 | ..\Traing_Data\images\CLIP006468.jpg
1802 | ..\Traing_Data\images\962.jpg
1803 | ..\Traing_Data\images\CLIP004211.jpg
1804 | ..\Traing_Data\images\CLIP079F00528.jpg
1805 | ..\Traing_Data\images\CLIP064F00151.jpg
1806 | ..\Traing_Data\images\CLIP069F00182.jpg
1807 | ..\Traing_Data\images\CLIP009438.jpg
1808 | ..\Traing_Data\images\CLIP068F00032.jpg
1809 | ..\Traing_Data\images\CLIP010968.jpg
1810 | ..\Traing_Data\images\CLIP011581.jpg
1811 | ..\Traing_Data\images\CLIP072F00061.jpg
1812 | ..\Traing_Data\images\CLIP077F00805.jpg
1813 | ..\Traing_Data\images\CLIP077F00335.jpg
1814 | ..\Traing_Data\images\CLIP066F00069.jpg
1815 | ..\Traing_Data\images\1381.jpg
1816 | ..\Traing_Data\images\CLIP072F00587.jpg
1817 | ..\Traing_Data\images\CLIP078F00503.jpg
1818 | ..\Traing_Data\images\CLIP072F00523.jpg
1819 | ..\Traing_Data\images\CLIP072F00504.jpg
1820 | ..\Traing_Data\images\99.jpg
1821 | ..\Traing_Data\images\CLIP010397.jpg
1822 | ..\Traing_Data\images\CLIP003037.jpg
1823 | ..\Traing_Data\images\CLIP071F00020.jpg
1824 | ..\Traing_Data\images\CLIP073F00800.jpg
1825 | ..\Traing_Data\images\CLIP073F00593.jpg
1826 | ..\Traing_Data\images\3883.jpg
1827 | ..\Traing_Data\images\CLIP073F00575.jpg
1828 | ..\Traing_Data\images\CLIP064F00200.jpg
1829 | ..\Traing_Data\images\CLIP074F00366.jpg
1830 | ..\Traing_Data\images\176.jpg
1831 | ..\Traing_Data\images\CLIP001249.jpg
1832 | ..\Traing_Data\images\CLIP072F00920.jpg
1833 | ..\Traing_Data\images\2351.jpg
1834 | ..\Traing_Data\images\CLIP072F00914.jpg
1835 | ..\Traing_Data\images\CLIP072F00301.jpg
1836 | ..\Traing_Data\images\CLIP077F01406.jpg
1837 | ..\Traing_Data\images\CLIP072F00688.jpg
1838 | ..\Traing_Data\images\CLIP011361.jpg
1839 | ..\Traing_Data\images\CLIP000830.jpg
1840 | ..\Traing_Data\images\CLIP067F00007.jpg
1841 | ..\Traing_Data\images\CLIP075F00455.jpg
1842 | ..\Traing_Data\images\CLIP069F00161.jpg
1843 | ..\Traing_Data\images\CLIP011457.jpg
1844 | ..\Traing_Data\images\CLIP072F00596.jpg
1845 | ..\Traing_Data\images\3488.jpg
1846 | ..\Traing_Data\images\CLIP072F00251.jpg
1847 | ..\Traing_Data\images\CLIP010296.jpg
1848 | ..\Traing_Data\images\CLIP001179.jpg
1849 | ..\Traing_Data\images\3660.jpg
1850 | ..\Traing_Data\images\1650.jpg
1851 | ..\Traing_Data\images\CLIP000748.jpg
1852 | ..\Traing_Data\images\CLIP007916.jpg
1853 | ..\Traing_Data\images\CLIP002170.jpg
1854 | ..\Traing_Data\images\CLIP011737.jpg
1855 | ..\Traing_Data\images\CLIP072F00321.jpg
1856 | ..\Traing_Data\images\CLIP074F00259.jpg
1857 | ..\Traing_Data\images\792.jpg
1858 | ..\Traing_Data\images\CLIP005452.jpg
1859 | ..\Traing_Data\images\CLIP066F00051.jpg
1860 | ..\Traing_Data\images\2231.jpg
1861 | ..\Traing_Data\images\CLIP074F00002.jpg
1862 | ..\Traing_Data\images\CLIP009026.jpg
1863 | ..\Traing_Data\images\CLIP071F00168.jpg
1864 | ..\Traing_Data\images\CLIP006488.jpg
1865 | ..\Traing_Data\images\106.jpg
1866 | ..\Traing_Data\images\CLIP007862.jpg
1867 | ..\Traing_Data\images\CLIP004618.jpg
1868 | ..\Traing_Data\images\CLIP002891.jpg
1869 | ..\Traing_Data\images\CLIP074F00205.jpg
1870 | ..\Traing_Data\images\CLIP069F00179.jpg
1871 | ..\Traing_Data\images\CLIP074F00556.jpg
1872 | ..\Traing_Data\images\CLIP003659.jpg
1873 | ..\Traing_Data\images\CLIP012923.jpg
1874 | ..\Traing_Data\images\4040.jpg
1875 | ..\Traing_Data\images\CLIP012740.jpg
1876 | ..\Traing_Data\images\392.jpg
1877 | ..\Traing_Data\images\CLIP076F00324.jpg
1878 | ..\Traing_Data\images\CLIP077F01407.jpg
1879 | ..\Traing_Data\images\CLIP000363.jpg
1880 | ..\Traing_Data\images\CLIP074F00270.jpg
1881 | ..\Traing_Data\images\CLIP004213.jpg
1882 | ..\Traing_Data\images\1448.jpg
1883 | ..\Traing_Data\images\CLIP064F00100.jpg
1884 | ..\Traing_Data\images\1151.jpg
1885 | ..\Traing_Data\images\CLIP076F00001.jpg
1886 | ..\Traing_Data\images\CLIP066F00018.jpg
1887 | ..\Traing_Data\images\CLIP005681.jpg
1888 | ..\Traing_Data\images\CLIP003345.jpg
1889 | ..\Traing_Data\images\CLIP072F00583.jpg
1890 | ..\Traing_Data\images\CLIP064F00061.jpg
1891 | ..\Traing_Data\images\CLIP003987.jpg
1892 | ..\Traing_Data\images\CLIP013825.jpg
1893 | ..\Traing_Data\images\CLIP073F00581.jpg
1894 | ..\Traing_Data\images\CLIP072F00082.jpg
1895 | ..\Traing_Data\images\CLIP014031.jpg
1896 | ..\Traing_Data\images\CLIP072F00552.jpg
1897 | ..\Traing_Data\images\CLIP065F00000.jpg
1898 | ..\Traing_Data\images\CLIP010756.jpg
1899 | ..\Traing_Data\images\CLIP073F00031.jpg
1900 | ..\Traing_Data\images\CLIP071F00278.jpg
1901 | ..\Traing_Data\images\CLIP008777.jpg
1902 | ..\Traing_Data\images\2520.jpg
1903 | ..\Traing_Data\images\CLIP013684.jpg
1904 | ..\Traing_Data\images\CLIP077F01299.jpg
1905 | ..\Traing_Data\images\CLIP070F00031.jpg
1906 | ..\Traing_Data\images\CLIP072F00584.jpg
1907 | ..\Traing_Data\images\CLIP069F00005.jpg
1908 | ..\Traing_Data\images\CLIP009396.jpg
1909 | ..\Traing_Data\images\CLIP074F00546.jpg
1910 | ..\Traing_Data\images\CLIP073F00579.jpg
1911 | ..\Traing_Data\images\CLIP011813.jpg
1912 | ..\Traing_Data\images\CLIP072F00932.jpg
1913 | ..\Traing_Data\images\CLIP010500.jpg
1914 | ..\Traing_Data\images\CLIP005630.jpg
1915 | ..\Traing_Data\images\CLIP074F00484.jpg
1916 | ..\Traing_Data\images\CLIP071F00286.jpg
1917 | ..\Traing_Data\images\CLIP075F00600.jpg
1918 | ..\Traing_Data\images\CLIP071F00249.jpg
1919 | ..\Traing_Data\images\CLIP072F00578.jpg
1920 | ..\Traing_Data\images\CLIP072F00702.jpg
1921 | ..\Traing_Data\images\CLIP073F01049.jpg
1922 | ..\Traing_Data\images\CLIP073F00611.jpg
1923 | ..\Traing_Data\images\CLIP080F00042.jpg
1924 | ..\Traing_Data\images\CLIP077F00332.jpg
1925 | ..\Traing_Data\images\641.jpg
1926 | ..\Traing_Data\images\CLIP012021.jpg
1927 | ..\Traing_Data\images\CLIP072F00083.jpg
1928 | ..\Traing_Data\images\CLIP005670.jpg
1929 | ..\Traing_Data\images\CLIP009921.jpg
1930 | ..\Traing_Data\images\CLIP004663.jpg
1931 | ..\Traing_Data\images\CLIP004236.jpg
1932 | ..\Traing_Data\images\2284.jpg
1933 | ..\Traing_Data\images\CLIP074F00730.jpg
1934 | ..\Traing_Data\images\CLIP077F00305.jpg
1935 | ..\Traing_Data\images\CLIP071F00247.jpg
1936 | ..\Traing_Data\images\CLIP013932.jpg
1937 | ..\Traing_Data\images\CLIP013349.jpg
1938 | ..\Traing_Data\images\CLIP075F00480.jpg
1939 | ..\Traing_Data\images\CLIP010995.jpg
1940 | ..\Traing_Data\images\CLIP067F00010.jpg
1941 | ..\Traing_Data\images\CLIP013891.jpg
1942 | ..\Traing_Data\images\CLIP074F00534.jpg
1943 | ..\Traing_Data\images\CLIP012270.jpg
1944 | ..\Traing_Data\images\CLIP004770.jpg
1945 | ..\Traing_Data\images\3217.jpg
1946 | ..\Traing_Data\images\CLIP072F00062.jpg
1947 | ..\Traing_Data\images\CLIP076F00041.jpg
1948 | ..\Traing_Data\images\CLIP008798.jpg
1949 | ..\Traing_Data\images\CLIP078F00702.jpg
1950 | ..\Traing_Data\images\CLIP006163.jpg
1951 | ..\Traing_Data\images\CLIP001401.jpg
1952 | ..\Traing_Data\images\CLIP072F00506.jpg
1953 | ..\Traing_Data\images\CLIP075F00519.jpg
1954 | ..\Traing_Data\images\CLIP009410.jpg
1955 | ..\Traing_Data\images\CLIP079F00547.jpg
1956 | ..\Traing_Data\images\CLIP008081.jpg
1957 | ..\Traing_Data\images\CLIP004740.jpg
1958 | ..\Traing_Data\images\336.jpg
1959 | ..\Traing_Data\images\CLIP004238.jpg
1960 | ..\Traing_Data\images\CLIP000257.jpg
1961 | ..\Traing_Data\images\CLIP005912.jpg
1962 | ..\Traing_Data\images\CLIP078F00507.jpg
1963 | ..\Traing_Data\images\CLIP072F00118.jpg
1964 | ..\Traing_Data\images\CLIP068F00004.jpg
1965 | ..\Traing_Data\images\CLIP010950.jpg
1966 | ..\Traing_Data\images\CLIP007142.jpg
1967 | ..\Traing_Data\images\CLIP073F00803.jpg
1968 | ..\Traing_Data\images\CLIP064F00164.jpg
1969 | ..\Traing_Data\images\674.jpg
1970 | ..\Traing_Data\images\CLIP006279.jpg
1971 | ..\Traing_Data\images\CLIP074F00526.jpg
1972 | ..\Traing_Data\images\CLIP011387.jpg
1973 | ..\Traing_Data\images\1804.jpg
1974 | ..\Traing_Data\images\CLIP012134.jpg
1975 | ..\Traing_Data\images\CLIP010357.jpg
1976 | ..\Traing_Data\images\CLIP005536.jpg
1977 | ..\Traing_Data\images\CLIP001337.jpg
1978 | ..\Traing_Data\images\CLIP011293.jpg
1979 | ..\Traing_Data\images\1894.jpg
1980 | ..\Traing_Data\images\CLIP075F01865.jpg
1981 | ..\Traing_Data\images\CLIP069F00095.jpg
1982 | ..\Traing_Data\images\CLIP012545.jpg
1983 | ..\Traing_Data\images\CLIP071F00201.jpg
1984 | ..\Traing_Data\images\CLIP002560.jpg
1985 | ..\Traing_Data\images\CLIP079F00656.jpg
1986 | ..\Traing_Data\images\CLIP068F00031.jpg
1987 | ..\Traing_Data\images\CLIP073F00176.jpg
1988 | ..\Traing_Data\images\CLIP004766.jpg
1989 | ..\Traing_Data\images\CLIP011912.jpg
1990 | ..\Traing_Data\images\CLIP073F00646.jpg
1991 | ..\Traing_Data\images\2493.jpg
1992 | ..\Traing_Data\images\971.jpg
1993 | ..\Traing_Data\images\CLIP073F00424.jpg
1994 | ..\Traing_Data\images\3497.jpg
1995 | ..\Traing_Data\images\CLIP000503.jpg
1996 | ..\Traing_Data\images\CLIP011521.jpg
1997 | ..\Traing_Data\images\CLIP066F00058.jpg
1998 | ..\Traing_Data\images\CLIP075F00598.jpg
1999 | ..\Traing_Data\images\CLIP006487.jpg
2000 | ..\Traing_Data\images\3279.jpg
2001 | ..\Traing_Data\images\CLIP006246.jpg
2002 | ..\Traing_Data\images\CLIP010670.jpg
2003 | ..\Traing_Data\images\CLIP069F00136.jpg
2004 | ..\Traing_Data\images\CLIP007234.jpg
2005 | ..\Traing_Data\images\CLIP008248.jpg
2006 | ..\Traing_Data\images\CLIP071F00240.jpg
2007 | ..\Traing_Data\images\CLIP011025.jpg
2008 | ..\Traing_Data\images\CLIP005365.jpg
2009 | ..\Traing_Data\images\CLIP011244.jpg
2010 | ..\Traing_Data\images\CLIP074F00303.jpg
2011 | ..\Traing_Data\images\CLIP064F00009.jpg
2012 | ..\Traing_Data\images\CLIP078F00970.jpg
2013 | ..\Traing_Data\images\CLIP072F00599.jpg
2014 | ..\Traing_Data\images\978.jpg
2015 | ..\Traing_Data\images\CLIP077F00514.jpg
2016 | ..\Traing_Data\images\CLIP011392.jpg
2017 | ..\Traing_Data\images\CLIP072F00327.jpg
2018 | ..\Traing_Data\images\CLIP012003.jpg
2019 | ..\Traing_Data\images\1467.jpg
2020 | ..\Traing_Data\images\CLIP068F00025.jpg
2021 | ..\Traing_Data\images\CLIP013390.jpg
2022 | ..\Traing_Data\images\CLIP078F00004.jpg
2023 | ..\Traing_Data\images\CLIP072F01025.jpg
2024 | ..\Traing_Data\images\CLIP072F00701.jpg
2025 | ..\Traing_Data\images\CLIP077F00505.jpg
2026 | ..\Traing_Data\images\CLIP075F01219.jpg
2027 | ..\Traing_Data\images\CLIP002746.jpg
2028 | ..\Traing_Data\images\CLIP005153.jpg
2029 | ..\Traing_Data\images\CLIP004555.jpg
2030 | ..\Traing_Data\images\CLIP004577.jpg
2031 | ..\Traing_Data\images\CLIP074F00496.jpg
2032 | ..\Traing_Data\images\CLIP073F00796.jpg
2033 | ..\Traing_Data\images\CLIP001925.jpg
2034 | ..\Traing_Data\images\CLIP010537.jpg
2035 | ..\Traing_Data\images\2985.jpg
2036 | ..\Traing_Data\images\CLIP006992.jpg
2037 | ..\Traing_Data\images\CLIP072F00227.jpg
2038 | ..\Traing_Data\images\CLIP005016.jpg
2039 | ..\Traing_Data\images\CLIP000057.jpg
2040 | ..\Traing_Data\images\CLIP072F00921.jpg
2041 | ..\Traing_Data\images\2258.jpg
2042 | ..\Traing_Data\images\CLIP001621.jpg
2043 | ..\Traing_Data\images\CLIP074F00209.jpg
2044 | ..\Traing_Data\images\CLIP012688.jpg
2045 | ..\Traing_Data\images\CLIP072F01075.jpg
2046 | ..\Traing_Data\images\CLIP004873.jpg
2047 | ..\Traing_Data\images\CLIP077F00341.jpg
2048 | ..\Traing_Data\images\CLIP009822.jpg
2049 | ..\Traing_Data\images\CLIP074F01077.jpg
2050 | ..\Traing_Data\images\CLIP073F00675.jpg
2051 | ..\Traing_Data\images\CLIP072F01007.jpg
2052 | ..\Traing_Data\images\CLIP008323.jpg
2053 | ..\Traing_Data\images\CLIP070F00065.jpg
2054 | ..\Traing_Data\images\CLIP073F00679.jpg
2055 | ..\Traing_Data\images\CLIP074F00533.jpg
2056 | ..\Traing_Data\images\CLIP066F00037.jpg
2057 | ..\Traing_Data\images\CLIP069F00056.jpg
2058 | ..\Traing_Data\images\CLIP066F00132.jpg
2059 | ..\Traing_Data\images\CLIP076F00659.jpg
2060 | ..\Traing_Data\images\CLIP007686.jpg
2061 | ..\Traing_Data\images\916.jpg
2062 | ..\Traing_Data\images\CLIP072F00855.jpg
2063 | ..\Traing_Data\images\CLIP011730.jpg
2064 | ..\Traing_Data\images\CLIP004254.jpg
2065 | ..\Traing_Data\images\CLIP000337.jpg
2066 | ..\Traing_Data\images\CLIP076F00301.jpg
2067 | ..\Traing_Data\images\CLIP005864.jpg
2068 | ..\Traing_Data\images\CLIP001651.jpg
2069 | ..\Traing_Data\images\CLIP001015.jpg
2070 | ..\Traing_Data\images\3148.jpg
2071 | ..\Traing_Data\images\CLIP007060.jpg
2072 | ..\Traing_Data\images\CLIP012351.jpg
2073 | ..\Traing_Data\images\657.jpg
2074 | ..\Traing_Data\images\CLIP072F00900.jpg
2075 | ..\Traing_Data\images\CLIP005549.jpg
2076 | ..\Traing_Data\images\2416.jpg
2077 | ..\Traing_Data\images\CLIP011939.jpg
2078 | ..\Traing_Data\images\CLIP064F00072.jpg
2079 | ..\Traing_Data\images\CLIP074F00532.jpg
2080 | ..\Traing_Data\images\CLIP004982.jpg
2081 | ..\Traing_Data\images\CLIP000145.jpg
2082 | ..\Traing_Data\images\CLIP072F00012.jpg
2083 | ..\Traing_Data\images\CLIP004566.jpg
2084 | ..\Traing_Data\images\CLIP013511.jpg
2085 | ..\Traing_Data\images\CLIP012598.jpg
2086 | ..\Traing_Data\images\CLIP010792.jpg
2087 | ..\Traing_Data\images\CLIP076F00038.jpg
2088 | ..\Traing_Data\images\CLIP073F00651.jpg
2089 | ..\Traing_Data\images\CLIP006402.jpg
2090 | ..\Traing_Data\images\CLIP064F00050.jpg
2091 | ..\Traing_Data\images\CLIP074F00538.jpg
2092 | ..\Traing_Data\images\CLIP072F01011.jpg
2093 | ..\Traing_Data\images\CLIP069F00050.jpg
2094 | ..\Traing_Data\images\CLIP009114.jpg
2095 | ..\Traing_Data\images\CLIP071F00234.jpg
2096 | ..\Traing_Data\images\CLIP008442.jpg
2097 | ..\Traing_Data\images\CLIP070F00037.jpg
2098 | ..\Traing_Data\images\CLIP074F00530.jpg
2099 | ..\Traing_Data\images\CLIP074F00269.jpg
2100 | ..\Traing_Data\images\CLIP005021.jpg
2101 | ..\Traing_Data\images\CLIP007534.jpg
2102 | ..\Traing_Data\images\CLIP077F00507.jpg
2103 | ..\Traing_Data\images\CLIP075F00511.jpg
2104 | ..\Traing_Data\images\CLIP003775.jpg
2105 | ..\Traing_Data\images\CLIP012705.jpg
2106 | ..\Traing_Data\images\CLIP010810.jpg
2107 | ..\Traing_Data\images\CLIP073F00785.jpg
2108 | ..\Traing_Data\images\CLIP010418.jpg
2109 | ..\Traing_Data\images\CLIP002326.jpg
2110 | ..\Traing_Data\images\CLIP071F00214.jpg
2111 | ..\Traing_Data\images\CLIP006415.jpg
2112 | ..\Traing_Data\images\CLIP072F00574.jpg
2113 | ..\Traing_Data\images\CLIP002691.jpg
2114 | ..\Traing_Data\images\CLIP073F00684.jpg
2115 | ..\Traing_Data\images\CLIP073F00625.jpg
2116 | ..\Traing_Data\images\CLIP012368.jpg
2117 | ..\Traing_Data\images\CLIP002960.jpg
2118 | ..\Traing_Data\images\CLIP006091.jpg
2119 | ..\Traing_Data\images\CLIP010848.jpg
2120 | ..\Traing_Data\images\CLIP075F00501.jpg
2121 | ..\Traing_Data\images\2425.jpg
2122 | ..\Traing_Data\images\CLIP073F00005.jpg
2123 | ..\Traing_Data\images\CLIP006569.jpg
2124 | ..\Traing_Data\images\3491.jpg
2125 | ..\Traing_Data\images\CLIP073F00037.jpg
2126 | ..\Traing_Data\images\CLIP067F00013.jpg
2127 | ..\Traing_Data\images\49.jpg
2128 | ..\Traing_Data\images\CLIP011874.jpg
2129 | ..\Traing_Data\images\CLIP071F00140.jpg
2130 | ..\Traing_Data\images\CLIP007340.jpg
2131 | ..\Traing_Data\images\CLIP069F00116.jpg
2132 | ..\Traing_Data\images\CLIP072F00050.jpg
2133 | ..\Traing_Data\images\CLIP075F00547.jpg
2134 | ..\Traing_Data\images\CLIP069F00027.jpg
2135 | ..\Traing_Data\images\CLIP000395.jpg
2136 | ..\Traing_Data\images\3334.jpg
2137 | ..\Traing_Data\images\CLIP074F00290.jpg
2138 | ..\Traing_Data\images\CLIP079F00005.jpg
2139 | ..\Traing_Data\images\CLIP003990.jpg
2140 | ..\Traing_Data\images\CLIP000761.jpg
2141 | ..\Traing_Data\images\CLIP012952.jpg
2142 | ..\Traing_Data\images\3342.jpg
2143 | ..\Traing_Data\images\CLIP069F00140.jpg
2144 | ..\Traing_Data\images\CLIP071F00151.jpg
2145 | ..\Traing_Data\images\CLIP003071.jpg
2146 | ..\Traing_Data\images\CLIP069F00070.jpg
2147 | ..\Traing_Data\images\CLIP077F01409.jpg
2148 | ..\Traing_Data\images\CLIP008945.jpg
2149 | ..\Traing_Data\images\CLIP077F00808.jpg
2150 | ..\Traing_Data\images\CLIP078F00971.jpg
2151 | ..\Traing_Data\images\CLIP075F00467.jpg
2152 | ..\Traing_Data\images\CLIP077F00497.jpg
2153 | ..\Traing_Data\images\CLIP009687.jpg
2154 | ..\Traing_Data\images\CLIP071F00248.jpg
2155 | ..\Traing_Data\images\CLIP012408.jpg
2156 | ..\Traing_Data\images\CLIP069F00109.jpg
2157 | ..\Traing_Data\images\CLIP008076.jpg
2158 | ..\Traing_Data\images\CLIP075F00744.jpg
2159 | ..\Traing_Data\images\CLIP080F00039.jpg
2160 | ..\Traing_Data\images\CLIP073F00801.jpg
2161 | ..\Traing_Data\images\CLIP073F00589.jpg
2162 | ..\Traing_Data\images\CLIP008168.jpg
2163 | ..\Traing_Data\images\CLIP069F00134.jpg
2164 | ..\Traing_Data\images\CLIP076F00004.jpg
2165 | ..\Traing_Data\images\CLIP002420.jpg
2166 | ..\Traing_Data\images\CLIP073F00884.jpg
2167 | ..\Traing_Data\images\CLIP072F00298.jpg
2168 | ..\Traing_Data\images\CLIP012849.jpg
2169 | ..\Traing_Data\images\CLIP071F00191.jpg
2170 | ..\Traing_Data\images\CLIP072F00139.jpg
2171 | ..\Traing_Data\images\CLIP078F00982.jpg
2172 | ..\Traing_Data\images\CLIP072F00926.jpg
2173 | ..\Traing_Data\images\CLIP076F00658.jpg
2174 | ..\Traing_Data\images\CLIP072F00078.jpg
2175 | ..\Traing_Data\images\CLIP072F00772.jpg
2176 | ..\Traing_Data\images\CLIP064F00369.jpg
2177 | ..\Traing_Data\images\CLIP074F00170.jpg
2178 | ..\Traing_Data\images\CLIP003067.jpg
2179 | ..\Traing_Data\images\CLIP069F00107.jpg
2180 | ..\Traing_Data\images\CLIP068F00082.jpg
2181 | ..\Traing_Data\images\CLIP008157.jpg
2182 | ..\Traing_Data\images\CLIP000517.jpg
2183 | ..\Traing_Data\images\1730.jpg
2184 | ..\Traing_Data\images\CLIP005077.jpg
2185 | ..\Traing_Data\images\CLIP075F00481.jpg
2186 | ..\Traing_Data\images\CLIP066F00063.jpg
2187 | ..\Traing_Data\images\3038.jpg
2188 | ..\Traing_Data\images\CLIP065F00009.jpg
2189 | ..\Traing_Data\images\CLIP072F00228.jpg
2190 | ..\Traing_Data\images\CLIP072F00597.jpg
2191 | ..\Traing_Data\images\CLIP071F00133.jpg
2192 | ..\Traing_Data\images\CLIP075F00503.jpg
2193 | ..\Traing_Data\images\CLIP005160.jpg
2194 | ..\Traing_Data\images\CLIP001491.jpg
2195 | ..\Traing_Data\images\CLIP073F01220.jpg
2196 | ..\Traing_Data\images\CLIP005050.jpg
2197 | ..\Traing_Data\images\CLIP001801.jpg
2198 | ..\Traing_Data\images\CLIP071F00121.jpg
2199 | ..\Traing_Data\images\CLIP006115.jpg
2200 | ..\Traing_Data\images\575.jpg
2201 | ..\Traing_Data\images\CLIP013092.jpg
2202 | ..\Traing_Data\images\CLIP012005.jpg
2203 | ..\Traing_Data\images\CLIP001317.jpg
2204 | ..\Traing_Data\images\CLIP064F00159.jpg
2205 | ..\Traing_Data\images\CLIP072F00607.jpg
2206 | ..\Traing_Data\images\CLIP010172.jpg
2207 | ..\Traing_Data\images\CLIP066F00029.jpg
2208 | ..\Traing_Data\images\CLIP011097.jpg
2209 | ..\Traing_Data\images\CLIP073F01262.jpg
2210 | ..\Traing_Data\images\CLIP005455.jpg
2211 | ..\Traing_Data\images\CLIP072F00043.jpg
2212 | ..\Traing_Data\images\CLIP069F00081.jpg
2213 | ..\Traing_Data\images\CLIP075F01213.jpg
2214 | ..\Traing_Data\images\CLIP074F01074.jpg
2215 | ..\Traing_Data\images\CLIP073F00217.jpg
2216 | ..\Traing_Data\images\CLIP001935.jpg
2217 | ..\Traing_Data\images\CLIP007549.jpg
2218 | ..\Traing_Data\images\553.jpg
2219 | ..\Traing_Data\images\CLIP077F00804.jpg
2220 | ..\Traing_Data\images\890.jpg
2221 | ..\Traing_Data\images\2013.jpg
2222 | ..\Traing_Data\images\CLIP012089.jpg
2223 | ..\Traing_Data\images\CLIP005119.jpg
2224 | ..\Traing_Data\images\CLIP008028.jpg
2225 | ..\Traing_Data\images\CLIP064F00250.jpg
2226 | ..\Traing_Data\images\CLIP002813.jpg
2227 | ..\Traing_Data\images\CLIP073F00792.jpg
2228 | ..\Traing_Data\images\CLIP013280.jpg
2229 | ..\Traing_Data\images\CLIP003425.jpg
2230 | ..\Traing_Data\images\CLIP072F00303.jpg
2231 | ..\Traing_Data\images\CLIP071F00292.jpg
2232 | ..\Traing_Data\images\CLIP074F00499.jpg
2233 | ..\Traing_Data\images\CLIP064F00226.jpg
2234 | ..\Traing_Data\images\CLIP007097.jpg
2235 | ..\Traing_Data\images\CLIP001850.jpg
2236 | ..\Traing_Data\images\CLIP072F00106.jpg
2237 | ..\Traing_Data\images\1878.jpg
2238 | ..\Traing_Data\images\CLIP072F00317.jpg
2239 | ..\Traing_Data\images\41.jpg
2240 | ..\Traing_Data\images\CLIP064F00363.jpg
2241 | ..\Traing_Data\images\636.jpg
2242 | ..\Traing_Data\images\CLIP072F00059.jpg
2243 | ..\Traing_Data\images\CLIP072F00127.jpg
2244 | ..\Traing_Data\images\CLIP000975.jpg
2245 | ..\Traing_Data\images\CLIP010251.jpg
2246 | ..\Traing_Data\images\CLIP001213.jpg
2247 | ..\Traing_Data\images\CLIP013361.jpg
2248 | ..\Traing_Data\images\CLIP011601.jpg
2249 | ..\Traing_Data\images\CLIP000625.jpg
2250 | ..\Traing_Data\images\CLIP070F00044.jpg
2251 | ..\Traing_Data\images\CLIP071F00258.jpg
2252 | ..\Traing_Data\images\CLIP079F00456.jpg
2253 | ..\Traing_Data\images\CLIP004114.jpg
2254 | ..\Traing_Data\images\CLIP009832.jpg
2255 | ..\Traing_Data\images\CLIP073F00900.jpg
2256 | ..\Traing_Data\images\2960.jpg
2257 | ..\Traing_Data\images\CLIP010085.jpg
2258 | ..\Traing_Data\images\1823.jpg
2259 | ..\Traing_Data\images\2779.jpg
2260 | ..\Traing_Data\images\CLIP002663.jpg
2261 | ..\Traing_Data\images\CLIP072F00257.jpg
2262 | ..\Traing_Data\images\CLIP075F00050.jpg
2263 | ..\Traing_Data\images\CLIP006864.jpg
2264 | ..\Traing_Data\images\CLIP073F00177.jpg
2265 | ..\Traing_Data\images\CLIP003820.jpg
2266 | ..\Traing_Data\images\CLIP008240.jpg
2267 | ..\Traing_Data\images\2424.jpg
2268 | ..\Traing_Data\images\CLIP001017.jpg
2269 | ..\Traing_Data\images\CLIP079F00421.jpg
2270 | ..\Traing_Data\images\CLIP069F00126.jpg
2271 | ..\Traing_Data\images\CLIP009099.jpg
2272 | ..\Traing_Data\images\CLIP071F00264.jpg
2273 | ..\Traing_Data\images\CLIP064F00043.jpg
2274 | ..\Traing_Data\images\90.jpg
2275 | ..\Traing_Data\images\CLIP012685.jpg
2276 | ..\Traing_Data\images\CLIP072F00196.jpg
2277 | ..\Traing_Data\images\CLIP069F00009.jpg
2278 | ..\Traing_Data\images\CLIP012303.jpg
2279 | ..\Traing_Data\images\CLIP070F00019.jpg
2280 | ..\Traing_Data\images\CLIP071F00175.jpg
2281 | ..\Traing_Data\images\CLIP071F00088.jpg
2282 | ..\Traing_Data\images\CLIP012902.jpg
2283 | ..\Traing_Data\images\CLIP069F00053.jpg
2284 | ..\Traing_Data\images\CLIP074F01075.jpg
2285 | ..\Traing_Data\images\2564.jpg
2286 | ..\Traing_Data\images\CLIP072F00334.jpg
2287 | ..\Traing_Data\images\CLIP010256.jpg
2288 | ..\Traing_Data\images\CLIP007001.jpg
2289 | ..\Traing_Data\images\CLIP064F00254.jpg
2290 | ..\Traing_Data\images\CLIP073F00668.jpg
2291 | ..\Traing_Data\images\CLIP009054.jpg
2292 | ..\Traing_Data\images\CLIP078F00981.jpg
2293 | ..\Traing_Data\images\CLIP008023.jpg
2294 | ..\Traing_Data\images\CLIP074F00206.jpg
2295 | ..\Traing_Data\images\CLIP073F00062.jpg
2296 | ..\Traing_Data\images\CLIP072F00170.jpg
2297 | ..\Traing_Data\images\CLIP071F00017.jpg
2298 | ..\Traing_Data\images\CLIP064F00094.jpg
2299 | ..\Traing_Data\images\CLIP078F00504.jpg
2300 | ..\Traing_Data\images\CLIP009309.jpg
2301 | ..\Traing_Data\images\CLIP070F00050.jpg
2302 | ..\Traing_Data\images\CLIP009188.jpg
2303 | ..\Traing_Data\images\CLIP075F00508.jpg
2304 | ..\Traing_Data\images\CLIP074F00267.jpg
2305 | ..\Traing_Data\images\CLIP069F00168.jpg
2306 | ..\Traing_Data\images\CLIP008900.jpg
2307 | ..\Traing_Data\images\1434.jpg
2308 | ..\Traing_Data\images\CLIP007444.jpg
2309 | ..\Traing_Data\images\CLIP075F01625.jpg
2310 | ..\Traing_Data\images\CLIP008690.jpg
2311 | ..\Traing_Data\images\CLIP077F00301.jpg
2312 | ..\Traing_Data\images\CLIP068F00081.jpg
2313 | ..\Traing_Data\images\CLIP075F00756.jpg
2314 | ..\Traing_Data\images\CLIP071F00202.jpg
2315 | ..\Traing_Data\images\CLIP002132.jpg
2316 | ..\Traing_Data\images\CLIP073F00601.jpg
2317 | ..\Traing_Data\images\CLIP000436.jpg
2318 | ..\Traing_Data\images\CLIP012327.jpg
2319 | ..\Traing_Data\images\CLIP069F00018.jpg
2320 | ..\Traing_Data\images\CLIP074F01063.jpg
2321 | ..\Traing_Data\images\CLIP000634.jpg
2322 | ..\Traing_Data\images\3077.jpg
2323 | ..\Traing_Data\images\CLIP071F00217.jpg
2324 | ..\Traing_Data\images\CLIP073F00682.jpg
2325 | ..\Traing_Data\images\CLIP071F00224.jpg
2326 | ..\Traing_Data\images\CLIP000215.jpg
2327 | ..\Traing_Data\images\CLIP077F00509.jpg
2328 | ..\Traing_Data\images\CLIP013867.jpg
2329 | ..\Traing_Data\images\CLIP006201.jpg
2330 | ..\Traing_Data\images\907.jpg
2331 | ..\Traing_Data\images\CLIP012297.jpg
2332 | ..\Traing_Data\images\CLIP074F00614.jpg
2333 | ..\Traing_Data\images\CLIP002727.jpg
2334 | ..\Traing_Data\images\CLIP075F00745.jpg
2335 | ..\Traing_Data\images\CLIP071F00236.jpg
2336 | ..\Traing_Data\images\CLIP072F00689.jpg
2337 | ..\Traing_Data\images\CLIP073F00599.jpg
2338 | ..\Traing_Data\images\391.jpg
2339 | ..\Traing_Data\images\CLIP011118.jpg
2340 | ..\Traing_Data\images\2217.jpg
2341 | ..\Traing_Data\images\4067.jpg
2342 | ..\Traing_Data\images\CLIP072F00104.jpg
2343 | ..\Traing_Data\images\CLIP006919.jpg
2344 | ..\Traing_Data\images\CLIP072F01074.jpg
2345 | ..\Traing_Data\images\CLIP071F00120.jpg
2346 | ..\Traing_Data\images\CLIP068F00044.jpg
2347 | ..\Traing_Data\images\CLIP074F00626.jpg
2348 | ..\Traing_Data\images\CLIP011548.jpg
2349 | ..\Traing_Data\images\CLIP072F00593.jpg
2350 | ..\Traing_Data\images\CLIP075F00425.jpg
2351 | ..\Traing_Data\images\CLIP072F01008.jpg
2352 | ..\Traing_Data\images\CLIP072F00870.jpg
2353 | ..\Traing_Data\images\CLIP008575.jpg
2354 | ..\Traing_Data\images\CLIP072F00577.jpg
2355 | ..\Traing_Data\images\CLIP010154.jpg
2356 | ..\Traing_Data\images\CLIP080F00002.jpg
2357 | ..\Traing_Data\images\CLIP072F00906.jpg
2358 | ..\Traing_Data\images\CLIP006221.jpg
2359 | ..\Traing_Data\images\CLIP009807.jpg
2360 | ..\Traing_Data\images\CLIP072F00230.jpg
2361 | ..\Traing_Data\images\CLIP072F00693.jpg
2362 | ..\Traing_Data\images\CLIP074F00293.jpg
2363 | ..\Traing_Data\images\CLIP072F00912.jpg
2364 | ..\Traing_Data\images\CLIP014035.jpg
2365 | ..\Traing_Data\images\1766.jpg
2366 | ..\Traing_Data\images\CLIP012335.jpg
2367 | ..\Traing_Data\images\CLIP078F03121.jpg
2368 | ..\Traing_Data\images\CLIP075F00465.jpg
2369 | ..\Traing_Data\images\CLIP000134.jpg
2370 | ..\Traing_Data\images\CLIP074F00462.jpg
2371 | ..\Traing_Data\images\CLIP002637.jpg
2372 | ..\Traing_Data\images\CLIP006853.jpg
2373 | ..\Traing_Data\images\CLIP002781.jpg
2374 | ..\Traing_Data\images\CLIP003237.jpg
2375 | ..\Traing_Data\images\CLIP007253.jpg
2376 | ..\Traing_Data\images\CLIP002610.jpg
2377 | ..\Traing_Data\images\CLIP075F00667.jpg
2378 | ..\Traing_Data\images\CLIP007664.jpg
2379 | ..\Traing_Data\images\CLIP072F01017.jpg
2380 | ..\Traing_Data\images\3983.jpg
2381 | ..\Traing_Data\images\CLIP073F01032.jpg
2382 | ..\Traing_Data\images\CLIP078F00125.jpg
2383 | ..\Traing_Data\images\CLIP014089.jpg
2384 | ..\Traing_Data\images\CLIP072F00697.jpg
2385 | ..\Traing_Data\images\CLIP071F00272.jpg
2386 | ..\Traing_Data\images\CLIP071F00131.jpg
2387 | ..\Traing_Data\images\CLIP007442.jpg
2388 | ..\Traing_Data\images\CLIP071F00276.jpg
2389 | ..\Traing_Data\images\CLIP069F00023.jpg
2390 | ..\Traing_Data\images\CLIP069F00165.jpg
2391 | ..\Traing_Data\images\CLIP001739.jpg
2392 | ..\Traing_Data\images\CLIP072F00760.jpg
2393 | ..\Traing_Data\images\CLIP078F00983.jpg
2394 | ..\Traing_Data\images\CLIP010592.jpg
2395 | ..\Traing_Data\images\CLIP073F00626.jpg
2396 | ..\Traing_Data\images\CLIP070F00062.jpg
2397 | ..\Traing_Data\images\CLIP078F00500.jpg
2398 | ..\Traing_Data\images\CLIP072F01024.jpg
2399 | ..\Traing_Data\images\617.jpg
2400 | ..\Traing_Data\images\CLIP075F00479.jpg
2401 | ..\Traing_Data\images\CLIP010459.jpg
2402 | ..\Traing_Data\images\CLIP000958.jpg
2403 | ..\Traing_Data\images\CLIP006017.jpg
2404 | ..\Traing_Data\images\CLIP072F01006.jpg
2405 | ..\Traing_Data\images\CLIP072F00582.jpg
2406 | ..\Traing_Data\images\CLIP075F00476.jpg
2407 | ..\Traing_Data\images\CLIP074F00477.jpg
2408 | ..\Traing_Data\images\CLIP076F00303.jpg
2409 | ..\Traing_Data\images\CLIP072F01072.jpg
2410 | ..\Traing_Data\images\CLIP003459.jpg
2411 | ..\Traing_Data\images\CLIP069F00187.jpg
2412 | ..\Traing_Data\images\1490.jpg
2413 | ..\Traing_Data\images\2658.jpg
2414 | ..\Traing_Data\images\CLIP075F00755.jpg
2415 | ..\Traing_Data\images\CLIP001040.jpg
2416 | ..\Traing_Data\images\CLIP075F00372.jpg
2417 | ..\Traing_Data\images\CLIP074F00603.jpg
2418 | ..\Traing_Data\images\CLIP072F00919.jpg
2419 | ..\Traing_Data\images\CLIP072F00873.jpg
2420 | ..\Traing_Data\images\CLIP013109.jpg
2421 | ..\Traing_Data\images\CLIP069F00185.jpg
2422 | ..\Traing_Data\images\CLIP072F00322.jpg
2423 | ..\Traing_Data\images\2705.jpg
2424 | ..\Traing_Data\images\CLIP069F00145.jpg
2425 | ..\Traing_Data\images\CLIP002580.jpg
2426 | ..\Traing_Data\images\CLIP072F01071.jpg
2427 | ..\Traing_Data\images\CLIP007040.jpg
2428 | ..\Traing_Data\images\CLIP067F00025.jpg
2429 | ..\Traing_Data\images\CLIP075F02106.jpg
2430 | ..\Traing_Data\images\CLIP069F00007.jpg
2431 | ..\Traing_Data\images\CLIP006513.jpg
2432 | ..\Traing_Data\images\CLIP001397.jpg
2433 | ..\Traing_Data\images\CLIP012985.jpg
2434 | ..\Traing_Data\images\CLIP008628.jpg
2435 | ..\Traing_Data\images\CLIP008994.jpg
2436 | ..\Traing_Data\images\CLIP011418.jpg
2437 | ..\Traing_Data\images\CLIP071F00206.jpg
2438 | ..\Traing_Data\images\CLIP003098.jpg
2439 | ..\Traing_Data\images\1569.jpg
2440 | ..\Traing_Data\images\CLIP075F00672.jpg
2441 | ..\Traing_Data\images\CLIP077F01492.jpg
2442 | ..\Traing_Data\images\CLIP002096.jpg
2443 | ..\Traing_Data\images\CLIP076F00006.jpg
2444 | ..\Traing_Data\images\CLIP009168.jpg
2445 | ..\Traing_Data\images\CLIP069F00089.jpg
2446 | ..\Traing_Data\images\CLIP006142.jpg
2447 | ..\Traing_Data\images\CLIP009760.jpg
2448 | ..\Traing_Data\images\CLIP004174.jpg
2449 | ..\Traing_Data\images\CLIP003572.jpg
2450 | ..\Traing_Data\images\CLIP001966.jpg
2451 | ..\Traing_Data\images\CLIP002225.jpg
2452 | ..\Traing_Data\images\CLIP002840.jpg
2453 | ..\Traing_Data\images\CLIP072F00939.jpg
2454 | ..\Traing_Data\images\3512.jpg
2455 | ..\Traing_Data\images\CLIP013163.jpg
2456 | ..\Traing_Data\images\CLIP013888.jpg
2457 | ..\Traing_Data\images\CLIP066F00054.jpg
2458 | ..\Traing_Data\images\CLIP003412.jpg
2459 | ..\Traing_Data\images\CLIP073F00607.jpg
2460 | ..\Traing_Data\images\CLIP009539.jpg
2461 | ..\Traing_Data\images\CLIP076F00011.jpg
2462 | ..\Traing_Data\images\CLIP005787.jpg
2463 | ..\Traing_Data\images\CLIP073F00666.jpg
2464 | ..\Traing_Data\images\1050.jpg
2465 | ..\Traing_Data\images\1111.jpg
2466 | ..\Traing_Data\images\CLIP012402.jpg
2467 | ..\Traing_Data\images\CLIP073F00043.jpg
2468 | ..\Traing_Data\images\CLIP002426.jpg
2469 | ..\Traing_Data\images\CLIP007519.jpg
2470 | ..\Traing_Data\images\CLIP010962.jpg
2471 | ..\Traing_Data\images\54.jpg
2472 | ..\Traing_Data\images\CLIP072F00135.jpg
2473 | ..\Traing_Data\images\CLIP005446.jpg
2474 | ..\Traing_Data\images\CLIP072F00143.jpg
2475 | ..\Traing_Data\images\CLIP002784.jpg
2476 | ..\Traing_Data\images\CLIP072F00195.jpg
2477 | ..\Traing_Data\images\CLIP069F00184.jpg
2478 | ..\Traing_Data\images\CLIP013659.jpg
2479 | ..\Traing_Data\images\CLIP076F00003.jpg
2480 | ..\Traing_Data\images\CLIP075F00540.jpg
2481 | ..\Traing_Data\images\CLIP071F00256.jpg
2482 | ..\Traing_Data\images\CLIP067F00031.jpg
2483 | ..\Traing_Data\images\CLIP008092.jpg
2484 | ..\Traing_Data\images\CLIP013794.jpg
2485 | ..\Traing_Data\images\CLIP068F00030.jpg
2486 | ..\Traing_Data\images\CLIP072F00089.jpg
2487 | ..\Traing_Data\images\CLIP068F00066.jpg
2488 | ..\Traing_Data\images\CLIP074F00529.jpg
2489 | ..\Traing_Data\images\CLIP071F00078.jpg
2490 | ..\Traing_Data\images\CLIP008040.jpg
2491 | ..\Traing_Data\images\CLIP008279.jpg
2492 | ..\Traing_Data\images\CLIP010233.jpg
2493 | ..\Traing_Data\images\CLIP073F00182.jpg
2494 | ..\Traing_Data\images\CLIP072F01019.jpg
2495 | ..\Traing_Data\images\CLIP064F00099.jpg
2496 | ..\Traing_Data\images\CLIP074F01065.jpg
2497 | ..\Traing_Data\images\1.jpg
2498 | ..\Traing_Data\images\CLIP003498.jpg
2499 | ..\Traing_Data\images\CLIP071F00279.jpg
2500 | ..\Traing_Data\images\CLIP066F00070.jpg
2501 | ..\Traing_Data\images\CLIP011861.jpg
2502 | ..\Traing_Data\images\3009.jpg
2503 | ..\Traing_Data\images\CLIP009531.jpg
2504 | ..\Traing_Data\images\CLIP009078.jpg
2505 | ..\Traing_Data\images\CLIP009603.jpg
2506 | ..\Traing_Data\images\CLIP079F00417.jpg
2507 | ..\Traing_Data\images\CLIP013310.jpg
2508 | ..\Traing_Data\images\CLIP071F00139.jpg
2509 | ..\Traing_Data\images\CLIP005602.jpg
2510 | ..\Traing_Data\images\1993.jpg
2511 | ..\Traing_Data\images\CLIP074F00623.jpg
2512 | ..\Traing_Data\images\CLIP077F00508.jpg
2513 | ..\Traing_Data\images\1753.jpg
2514 | ..\Traing_Data\images\125.jpg
2515 | ..\Traing_Data\images\CLIP071F00184.jpg
2516 | ..\Traing_Data\images\CLIP005679.jpg
2517 | ..\Traing_Data\images\2597.jpg
2518 | ..\Traing_Data\images\CLIP075F00368.jpg
2519 | ..\Traing_Data\images\CLIP064F00395.jpg
2520 | ..\Traing_Data\images\3931.jpg
2521 | ..\Traing_Data\images\CLIP006558.jpg
2522 | ..\Traing_Data\images\CLIP071F00008.jpg
2523 | ..\Traing_Data\images\CLIP072F00783.jpg
2524 | ..\Traing_Data\images\CLIP004121.jpg
2525 | ..\Traing_Data\images\CLIP008504.jpg
2526 | ..\Traing_Data\images\CLIP006379.jpg
2527 | ..\Traing_Data\images\CLIP012657.jpg
2528 | ..\Traing_Data\images\CLIP073F00645.jpg
2529 | ..\Traing_Data\images\CLIP078F00976.jpg
2530 | ..\Traing_Data\images\CLIP009552.jpg
2531 | ..\Traing_Data\images\CLIP000204.jpg
2532 | ..\Traing_Data\images\CLIP072F00931.jpg
2533 | ..\Traing_Data\images\CLIP072F00576.jpg
2534 | ..\Traing_Data\images\667.jpg
2535 | ..\Traing_Data\images\CLIP013802.jpg
2536 | ..\Traing_Data\images\CLIP000520.jpg
2537 | ..\Traing_Data\images\CLIP072F00241.jpg
2538 | ..\Traing_Data\images\CLIP070F00056.jpg
2539 | ..\Traing_Data\images\CLIP072F00002.jpg
2540 | ..\Traing_Data\images\CLIP075F00545.jpg
2541 | ..\Traing_Data\images\999.jpg
2542 | ..\Traing_Data\images\CLIP064F00396.jpg
2543 | ..\Traing_Data\images\CLIP073F00600.jpg
2544 | ..\Traing_Data\images\CLIP074F00609.jpg
2545 | ..\Traing_Data\images\CLIP010482.jpg
2546 | ..\Traing_Data\images\1095.jpg
2547 | ..\Traing_Data\images\CLIP064F00077.jpg
2548 | ..\Traing_Data\images\CLIP010331.jpg
2549 | ..\Traing_Data\images\CLIP069F00176.jpg
2550 | ..\Traing_Data\images\CLIP072F00161.jpg
2551 | ..\Traing_Data\images\CLIP009343.jpg
2552 | ..\Traing_Data\images\CLIP072F00097.jpg
2553 | ..\Traing_Data\images\CLIP005545.jpg
2554 | ..\Traing_Data\images\CLIP013906.jpg
2555 | ..\Traing_Data\images\CLIP005969.jpg
2556 | ..\Traing_Data\images\CLIP077F01494.jpg
2557 | ..\Traing_Data\images\CLIP072F00117.jpg
2558 | ..\Traing_Data\images\CLIP076F00039.jpg
2559 | ..\Traing_Data\images\CLIP012393.jpg
2560 | ..\Traing_Data\images\2618.jpg
2561 | ..\Traing_Data\images\CLIP073F00676.jpg
2562 | ..\Traing_Data\images\CLIP012409.jpg
2563 | ..\Traing_Data\images\CLIP074F00260.jpg
2564 | ..\Traing_Data\images\3625.jpg
2565 | ..\Traing_Data\images\CLIP013600.jpg
2566 | ..\Traing_Data\images\CLIP077F00300.jpg
2567 | ..\Traing_Data\images\3529.jpg
2568 | ..\Traing_Data\images\CLIP064F00382.jpg
2569 | ..\Traing_Data\images\CLIP007481.jpg
2570 | ..\Traing_Data\images\CLIP065F00002.jpg
2571 | ..\Traing_Data\images\CLIP009662.jpg
2572 | ..\Traing_Data\images\CLIP005937.jpg
2573 | ..\Traing_Data\images\CLIP071F00220.jpg
2574 | ..\Traing_Data\images\CLIP010327.jpg
2575 | ..\Traing_Data\images\CLIP007674.jpg
2576 | ..\Traing_Data\images\CLIP070F00020.jpg
2577 | ..\Traing_Data\images\CLIP071F00313.jpg
2578 | ..\Traing_Data\images\3004.jpg
2579 | ..\Traing_Data\images\CLIP000233.jpg
2580 | ..\Traing_Data\images\CLIP072F00187.jpg
2581 | ..\Traing_Data\images\CLIP072F00328.jpg
2582 | ..\Traing_Data\images\CLIP074F00213.jpg
2583 | ..\Traing_Data\images\CLIP066F00017.jpg
2584 | ..\Traing_Data\images\CLIP077F01300.jpg
2585 | ..\Traing_Data\images\CLIP011379.jpg
2586 | ..\Traing_Data\images\CLIP010054.jpg
2587 | ..\Traing_Data\images\CLIP009468.jpg
2588 | ..\Traing_Data\images\CLIP008591.jpg
2589 | ..\Traing_Data\images\CLIP072F00307.jpg
2590 | ..\Traing_Data\images\CLIP069F00060.jpg
2591 | ..\Traing_Data\images\CLIP064F00171.jpg
2592 | ..\Traing_Data\images\3957.jpg
2593 | ..\Traing_Data\images\CLIP071F00312.jpg
2594 | ..\Traing_Data\images\CLIP072F00028.jpg
2595 | ..\Traing_Data\images\CLIP008127.jpg
2596 | ..\Traing_Data\images\1188.jpg
2597 | ..\Traing_Data\images\CLIP072F00903.jpg
2598 | ..\Traing_Data\images\CLIP066F00046.jpg
2599 | ..\Traing_Data\images\CLIP075F00603.jpg
2600 | ..\Traing_Data\images\CLIP012793.jpg
2601 | ..\Traing_Data\images\CLIP014002.jpg
2602 | ..\Traing_Data\images\CLIP072F00570.jpg
2603 | ..\Traing_Data\images\CLIP006188.jpg
2604 | ..\Traing_Data\images\CLIP013950.jpg
2605 | ..\Traing_Data\images\CLIP074F00281.jpg
2606 | ..\Traing_Data\images\CLIP073F00414.jpg
2607 | ..\Traing_Data\images\CLIP075F00747.jpg
2608 | ..\Traing_Data\images\CLIP002071.jpg
2609 | ..\Traing_Data\images\CLIP069F00094.jpg
2610 | ..\Traing_Data\images\CLIP068F00057.jpg
2611 | ..\Traing_Data\images\CLIP004042.jpg
2612 | ..\Traing_Data\images\2498.jpg
2613 | ..\Traing_Data\images\CLIP013510.jpg
2614 | ..\Traing_Data\images\CLIP072F00522.jpg
2615 | ..\Traing_Data\images\CLIP066F00039.jpg
2616 | ..\Traing_Data\images\CLIP075F01001.jpg
2617 | ..\Traing_Data\images\359.jpg
2618 | ..\Traing_Data\images\CLIP013072.jpg
2619 | ..\Traing_Data\images\3130.jpg
2620 | ..\Traing_Data\images\CLIP007690.jpg
2621 | ..\Traing_Data\images\CLIP075F00051.jpg
2622 | ..\Traing_Data\images\1711.jpg
2623 | ..\Traing_Data\images\CLIP071F00110.jpg
2624 | ..\Traing_Data\images\CLIP073F00285.jpg
2625 | ..\Traing_Data\images\3100.jpg
2626 | ..\Traing_Data\images\CLIP072F00096.jpg
2627 | ..\Traing_Data\images\CLIP003404.jpg
2628 | ..\Traing_Data\images\CLIP072F00242.jpg
2629 | ..\Traing_Data\images\3654.jpg
2630 | ..\Traing_Data\images\CLIP002920.jpg
2631 | ..\Traing_Data\images\CLIP072F00110.jpg
2632 | ..\Traing_Data\images\CLIP074F00365.jpg
2633 | ..\Traing_Data\images\CLIP073F00184.jpg
2634 | ..\Traing_Data\images\CLIP006287.jpg
2635 | ..\Traing_Data\images\CLIP009008.jpg
2636 | ..\Traing_Data\images\CLIP006761.jpg
2637 | ..\Traing_Data\images\CLIP068F00000.jpg
2638 | ..\Traing_Data\images\CLIP073F01310.jpg
2639 | ..\Traing_Data\images\CLIP010958.jpg
2640 | ..\Traing_Data\images\CLIP068F00026.jpg
2641 | ..\Traing_Data\images\CLIP077F00806.jpg
2642 | ..\Traing_Data\images\CLIP064F00216.jpg
2643 | ..\Traing_Data\images\CLIP000020.jpg
2644 | ..\Traing_Data\images\CLIP074F00629.jpg
2645 | ..\Traing_Data\images\CLIP000093.jpg
2646 | ..\Traing_Data\images\CLIP075F00041.jpg
2647 | ..\Traing_Data\images\CLIP072F00915.jpg
2648 | ..\Traing_Data\images\CLIP068F00093.jpg
2649 | ..\Traing_Data\images\CLIP073F00639.jpg
2650 | ..\Traing_Data\images\CLIP071F00261.jpg
2651 | ..\Traing_Data\images\CLIP012006.jpg
2652 | ..\Traing_Data\images\CLIP000845.jpg
2653 | ..\Traing_Data\images\CLIP071F00162.jpg
2654 | ..\Traing_Data\images\CLIP005254.jpg
2655 | ..\Traing_Data\images\CLIP003315.jpg
2656 | ..\Traing_Data\images\CLIP064F00134.jpg
2657 | ..\Traing_Data\images\CLIP079F00074.jpg
2658 | ..\Traing_Data\images\CLIP073F00069.jpg
2659 | ..\Traing_Data\images\CLIP069F00025.jpg
2660 | ..\Traing_Data\images\CLIP075F00470.jpg
2661 | ..\Traing_Data\images\CLIP071F00300.jpg
2662 | ..\Traing_Data\images\CLIP008193.jpg
2663 | ..\Traing_Data\images\2128.jpg
2664 | ..\Traing_Data\images\CLIP064F00372.jpg
2665 | ..\Traing_Data\images\CLIP065F00013.jpg
2666 | ..\Traing_Data\images\CLIP011787.jpg
2667 | ..\Traing_Data\images\CLIP009525.jpg
2668 | ..\Traing_Data\images\CLIP007884.jpg
2669 | ..\Traing_Data\images\CLIP001882.jpg
2670 | ..\Traing_Data\images\2716.jpg
2671 | ..\Traing_Data\images\CLIP010232.jpg
2672 | ..\Traing_Data\images\CLIP064F00123.jpg
2673 | ..\Traing_Data\images\CLIP005905.jpg
2674 | ..\Traing_Data\images\1637.jpg
2675 | ..\Traing_Data\images\CLIP074F00272.jpg
2676 | ..\Traing_Data\images\CLIP008414.jpg
2677 | ..\Traing_Data\images\CLIP072F00243.jpg
2678 | ..\Traing_Data\images\CLIP071F00137.jpg
2679 | ..\Traing_Data\images\1383.jpg
2680 | ..\Traing_Data\images\CLIP012063.jpg
2681 | ..\Traing_Data\images\CLIP077F00306.jpg
2682 | ..\Traing_Data\images\2672.jpg
2683 | ..\Traing_Data\images\CLIP010114.jpg
2684 | ..\Traing_Data\images\CLIP075F00673.jpg
2685 | ..\Traing_Data\images\CLIP071F00091.jpg
2686 | ..\Traing_Data\images\CLIP006239.jpg
2687 | ..\Traing_Data\images\3328.jpg
2688 | ..\Traing_Data\images\CLIP007135.jpg
2689 | ..\Traing_Data\images\1988.jpg
2690 | ..\Traing_Data\images\CLIP071F00087.jpg
2691 | ..\Traing_Data\images\CLIP010708.jpg
2692 | ..\Traing_Data\images\CLIP074F00301.jpg
2693 | ..\Traing_Data\images\CLIP072F00492.jpg
2694 | ..\Traing_Data\images\CLIP079F00661.jpg
2695 | ..\Traing_Data\images\CLIP000018.jpg
2696 | ..\Traing_Data\images\215.jpg
2697 | ..\Traing_Data\images\CLIP070F00066.jpg
2698 | ..\Traing_Data\images\CLIP076F00289.jpg
2699 | ..\Traing_Data\images\CLIP003460.jpg
2700 | ..\Traing_Data\images\CLIP009738.jpg
2701 | ..\Traing_Data\images\CLIP009372.jpg
2702 | ..\Traing_Data\images\CLIP072F00567.jpg
2703 | ..\Traing_Data\images\CLIP008541.jpg
2704 | ..\Traing_Data\images\CLIP007704.jpg
2705 | ..\Traing_Data\images\CLIP071F00158.jpg
2706 | ..\Traing_Data\images\CLIP074F00624.jpg
2707 | ..\Traing_Data\images\CLIP075F00427.jpg
2708 | ..\Traing_Data\images\CLIP012249.jpg
2709 | ..\Traing_Data\images\CLIP004160.jpg
2710 | ..\Traing_Data\images\CLIP077F00634.jpg
2711 | ..\Traing_Data\images\CLIP006803.jpg
2712 | ..\Traing_Data\images\CLIP072F00137.jpg
2713 | ..\Traing_Data\images\CLIP003607.jpg
2714 | ..\Traing_Data\images\CLIP002686.jpg
2715 | ..\Traing_Data\images\CLIP066F00041.jpg
2716 | ..\Traing_Data\images\CLIP064F00400.jpg
2717 | ..\Traing_Data\images\CLIP078F00129.jpg
2718 | ..\Traing_Data\images\2023.jpg
2719 | ..\Traing_Data\images\CLIP007478.jpg
2720 | ..\Traing_Data\images\CLIP069F00043.jpg
2721 | ..\Traing_Data\images\CLIP064F00385.jpg
2722 | ..\Traing_Data\images\CLIP068F00080.jpg
2723 | ..\Traing_Data\images\CLIP004524.jpg
2724 | ..\Traing_Data\images\CLIP073F00034.jpg
2725 | ..\Traing_Data\images\CLIP071F00253.jpg
2726 | ..\Traing_Data\images\3420.jpg
2727 | ..\Traing_Data\images\CLIP071F00233.jpg
2728 | ..\Traing_Data\images\CLIP003571.jpg
2729 | ..\Traing_Data\images\CLIP073F00661.jpg
2730 | ..\Traing_Data\images\CLIP003909.jpg
2731 | ..\Traing_Data\images\CLIP077F00342.jpg
2732 | ..\Traing_Data\images\2222.jpg
2733 | ..\Traing_Data\images\CLIP068F00011.jpg
2734 | ..\Traing_Data\images\CLIP000285.jpg
2735 | ..\Traing_Data\images\CLIP072F00947.jpg
2736 | ..\Traing_Data\images\CLIP009611.jpg
2737 | ..\Traing_Data\images\CLIP002487.jpg
2738 | ..\Traing_Data\images\CLIP001402.jpg
2739 | ..\Traing_Data\images\CLIP009418.jpg
2740 | ..\Traing_Data\images\CLIP011316.jpg
2741 | ..\Traing_Data\images\CLIP077F00000.jpg
2742 | ..\Traing_Data\images\CLIP068F00094.jpg
2743 | ..\Traing_Data\images\CLIP067F00019.jpg
2744 | ..\Traing_Data\images\CLIP004552.jpg
2745 | ..\Traing_Data\images\CLIP004320.jpg
2746 | ..\Traing_Data\images\CLIP075F00999.jpg
2747 | ..\Traing_Data\images\3911.jpg
2748 | ..\Traing_Data\images\3301.jpg
2749 | ..\Traing_Data\images\CLIP002037.jpg
2750 | ..\Traing_Data\images\CLIP009024.jpg
2751 | ..\Traing_Data\images\CLIP079F01730.jpg
2752 | ..\Traing_Data\images\CLIP008437.jpg
2753 | ..\Traing_Data\images\CLIP071F00118.jpg
2754 | ..\Traing_Data\images\CLIP074F00500.jpg
2755 | ..\Traing_Data\images\CLIP066F00028.jpg
2756 | ..\Traing_Data\images\CLIP069F00011.jpg
2757 | ..\Traing_Data\images\CLIP071F00094.jpg
2758 | ..\Traing_Data\images\CLIP079F00418.jpg
2759 | ..\Traing_Data\images\CLIP071F00211.jpg
2760 | ..\Traing_Data\images\CLIP072F00936.jpg
2761 | ..\Traing_Data\images\CLIP004515.jpg
2762 | ..\Traing_Data\images\CLIP009253.jpg
2763 | ..\Traing_Data\images\CLIP073F00624.jpg
2764 | ..\Traing_Data\images\CLIP004682.jpg
2765 | ..\Traing_Data\images\CLIP009050.jpg
2766 | ..\Traing_Data\images\CLIP008567.jpg
2767 | ..\Traing_Data\images\CLIP007533.jpg
2768 | ..\Traing_Data\images\CLIP008720.jpg
2769 | ..\Traing_Data\images\CLIP073F00291.jpg
2770 | ..\Traing_Data\images\CLIP006076.jpg
2771 | ..\Traing_Data\images\CLIP003312.jpg
2772 | ..\Traing_Data\images\CLIP072F00254.jpg
2773 | ..\Traing_Data\images\CLIP071F00288.jpg
2774 | ..\Traing_Data\images\CLIP071F00160.jpg
2775 | ..\Traing_Data\images\CLIP069F00163.jpg
2776 | ..\Traing_Data\images\CLIP075F00451.jpg
2777 | ..\Traing_Data\images\CLIP013881.jpg
2778 | ..\Traing_Data\images\CLIP073F00438.jpg
2779 | ..\Traing_Data\images\CLIP003568.jpg
2780 | ..\Traing_Data\images\CLIP073F01145.jpg
2781 | ..\Traing_Data\images\CLIP001803.jpg
2782 | ..\Traing_Data\images\CLIP077F00333.jpg
2783 | ..\Traing_Data\images\CLIP010780.jpg
2784 | ..\Traing_Data\images\CLIP006170.jpg
2785 | ..\Traing_Data\images\CLIP002049.jpg
2786 | ..\Traing_Data\images\CLIP074F00412.jpg
2787 | ..\Traing_Data\images\CLIP067F00016.jpg
2788 | ..\Traing_Data\images\CLIP002387.jpg
2789 | ..\Traing_Data\images\CLIP005416.jpg
2790 | ..\Traing_Data\images\CLIP073F00578.jpg
2791 | ..\Traing_Data\images\CLIP074F00493.jpg
2792 | ..\Traing_Data\images\CLIP005768.jpg
2793 | ..\Traing_Data\images\CLIP007369.jpg
2794 | ..\Traing_Data\images\CLIP066F00034.jpg
2795 | ..\Traing_Data\images\CLIP065F00004.jpg
2796 | ..\Traing_Data\images\CLIP072F00149.jpg
2797 | ..\Traing_Data\images\CLIP006976.jpg
2798 | ..\Traing_Data\images\1522.jpg
2799 | ..\Traing_Data\images\CLIP007815.jpg
2800 | ..\Traing_Data\images\CLIP072F00052.jpg
2801 | ..\Traing_Data\images\CLIP005721.jpg
2802 | ..\Traing_Data\images\60.jpg
2803 | ..\Traing_Data\images\CLIP002917.jpg
2804 | ..\Traing_Data\images\CLIP074F00369.jpg
2805 | ..\Traing_Data\images\CLIP072F00129.jpg
2806 | ..\Traing_Data\images\CLIP013583.jpg
2807 | ..\Traing_Data\images\CLIP072F00560.jpg
2808 | ..\Traing_Data\images\CLIP069F00068.jpg
2809 | ..\Traing_Data\images\CLIP007963.jpg
2810 | ..\Traing_Data\images\3678.jpg
2811 | ..\Traing_Data\images\CLIP012934.jpg
2812 | ..\Traing_Data\images\CLIP003210.jpg
2813 | ..\Traing_Data\images\CLIP072F00095.jpg
2814 | ..\Traing_Data\images\CLIP068F00027.jpg
2815 | ..\Traing_Data\images\CLIP003965.jpg
2816 | ..\Traing_Data\images\CLIP013100.jpg
2817 | ..\Traing_Data\images\CLIP074F00456.jpg
2818 | ..\Traing_Data\images\CLIP009528.jpg
2819 | ..\Traing_Data\images\CLIP007550.jpg
2820 | ..\Traing_Data\images\CLIP078F00979.jpg
2821 | ..\Traing_Data\images\CLIP072F00125.jpg
2822 | ..\Traing_Data\images\CLIP001257.jpg
2823 | ..\Traing_Data\images\CLIP071F00221.jpg
2824 | ..\Traing_Data\images\1779.jpg
2825 | ..\Traing_Data\images\CLIP005944.jpg
2826 | ..\Traing_Data\images\1655.jpg
2827 | ..\Traing_Data\images\CLIP077F00485.jpg
2828 | ..\Traing_Data\images\CLIP075F00589.jpg
2829 | ..\Traing_Data\images\CLIP013849.jpg
2830 | ..\Traing_Data\images\CLIP001407.jpg
2831 | ..\Traing_Data\images\CLIP012999.jpg
2832 | ..\Traing_Data\images\CLIP008619.jpg
2833 | ..\Traing_Data\images\3395.jpg
2834 | ..\Traing_Data\images\CLIP013027.jpg
2835 | ..\Traing_Data\images\CLIP073F00401.jpg
2836 | ..\Traing_Data\images\CLIP005687.jpg
2837 | ..\Traing_Data\images\CLIP000968.jpg
2838 | ..\Traing_Data\images\CLIP008734.jpg
2839 | ..\Traing_Data\images\CLIP009367.jpg
2840 | ..\Traing_Data\images\CLIP068F00029.jpg
2841 | ..\Traing_Data\images\CLIP012261.jpg
2842 | ..\Traing_Data\images\CLIP005667.jpg
2843 | ..\Traing_Data\images\CLIP006362.jpg
2844 | ..\Traing_Data\images\CLIP077F00480.jpg
2845 | ..\Traing_Data\images\CLIP012561.jpg
2846 | ..\Traing_Data\images\CLIP073F00629.jpg
2847 | ..\Traing_Data\images\602.jpg
2848 | ..\Traing_Data\images\CLIP071F00280.jpg
2849 | ..\Traing_Data\images\CLIP073F00793.jpg
2850 | ..\Traing_Data\images\CLIP072F00029.jpg
2851 | ..\Traing_Data\images\CLIP064F00346.jpg
2852 | ..\Traing_Data\images\CLIP073F00879.jpg
2853 | ..\Traing_Data\images\CLIP012635.jpg
2854 | ..\Traing_Data\images\CLIP013459.jpg
2855 | ..\Traing_Data\images\CLIP069F00131.jpg
2856 | ..\Traing_Data\images\CLIP001335.jpg
2857 | ..\Traing_Data\images\CLIP006199.jpg
2858 | ..\Traing_Data\images\CLIP069F00108.jpg
2859 | ..\Traing_Data\images\CLIP075F00366.jpg
2860 | ..\Traing_Data\images\CLIP012597.jpg
2861 | ..\Traing_Data\images\CLIP006371.jpg
2862 | ..\Traing_Data\images\CLIP075F00800.jpg
2863 | ..\Traing_Data\images\CLIP078F00974.jpg
2864 | ..\Traing_Data\images\CLIP076F00300.jpg
2865 | ..\Traing_Data\images\CLIP002503.jpg
2866 | ..\Traing_Data\images\CLIP064F00034.jpg
2867 | ..\Traing_Data\images\622.jpg
2868 | ..\Traing_Data\images\CLIP064F00163.jpg
2869 | ..\Traing_Data\images\CLIP066F00138.jpg
2870 | ..\Traing_Data\images\CLIP074F00300.jpg
2871 | ..\Traing_Data\images\CLIP071F00174.jpg
2872 | ..\Traing_Data\images\CLIP064F00242.jpg
2873 | ..\Traing_Data\images\CLIP072F00588.jpg
2874 | ..\Traing_Data\images\CLIP076F00290.jpg
2875 | ..\Traing_Data\images\CLIP001677.jpg
2876 | ..\Traing_Data\images\CLIP000142.jpg
2877 | ..\Traing_Data\images\2480.jpg
2878 | ..\Traing_Data\images\836.jpg
2879 | ..\Traing_Data\images\CLIP002573.jpg
2880 | ..\Traing_Data\images\CLIP006366.jpg
2881 | ..\Traing_Data\images\CLIP002400.jpg
2882 | ..\Traing_Data\images\CLIP073F00878.jpg
2883 | ..\Traing_Data\images\CLIP064F00348.jpg
2884 | ..\Traing_Data\images\2342.jpg
2885 | ..\Traing_Data\images\1683.jpg
2886 | ..\Traing_Data\images\CLIP006429.jpg
2887 | ..\Traing_Data\images\CLIP004646.jpg
2888 | ..\Traing_Data\images\CLIP072F00496.jpg
2889 | ..\Traing_Data\images\200.jpg
2890 | ..\Traing_Data\images\CLIP011916.jpg
2891 | ..\Traing_Data\images\2024.jpg
2892 | ..\Traing_Data\images\CLIP003247.jpg
2893 | ..\Traing_Data\images\CLIP011635.jpg
2894 | ..\Traing_Data\images\CLIP004693.jpg
2895 | ..\Traing_Data\images\CLIP000466.jpg
2896 | ..\Traing_Data\images\CLIP072F00524.jpg
2897 | ..\Traing_Data\images\CLIP070F00072.jpg
2898 | ..\Traing_Data\images\CLIP079F00073.jpg
2899 | ..\Traing_Data\images\CLIP074F00295.jpg
2900 | ..\Traing_Data\images\CLIP000449.jpg
2901 | ..\Traing_Data\images\2274.jpg
2902 | ..\Traing_Data\images\CLIP072F00554.jpg
2903 | ..\Traing_Data\images\CLIP005722.jpg
2904 | ..\Traing_Data\images\CLIP072F00595.jpg
2905 | ..\Traing_Data\images\CLIP079F01731.jpg
2906 | ..\Traing_Data\images\CLIP011713.jpg
2907 | ..\Traing_Data\images\CLIP072F00538.jpg
2908 | ..\Traing_Data\images\CLIP072F00167.jpg
2909 | ..\Traing_Data\images\CLIP071F00002.jpg
2910 | ..\Traing_Data\images\CLIP064F00071.jpg
2911 | ..\Traing_Data\images\CLIP071F00014.jpg
2912 | ..\Traing_Data\images\CLIP007922.jpg
2913 | ..\Traing_Data\images\CLIP002490.jpg
2914 | ..\Traing_Data\images\CLIP071F00194.jpg
2915 | ..\Traing_Data\images\CLIP006066.jpg
2916 | ..\Traing_Data\images\CLIP064F00082.jpg
2917 | ..\Traing_Data\images\CLIP077F00482.jpg
2918 | ..\Traing_Data\images\CLIP076F00288.jpg
2919 | ..\Traing_Data\images\CLIP070F00061.jpg
2920 | ..\Traing_Data\images\159.jpg
2921 | ..\Traing_Data\images\CLIP075F00363.jpg
2922 | ..\Traing_Data\images\CLIP012812.jpg
2923 | ..\Traing_Data\images\CLIP074F00368.jpg
2924 | ..\Traing_Data\images\CLIP073F01014.jpg
2925 | ..\Traing_Data\images\CLIP070F00070.jpg
2926 | ..\Traing_Data\images\CLIP008960.jpg
2927 | ..\Traing_Data\images\CLIP008527.jpg
2928 | ..\Traing_Data\images\CLIP072F00600.jpg
2929 | ..\Traing_Data\images\CLIP008305.jpg
2930 | ..\Traing_Data\images\CLIP072F00103.jpg
2931 | ..\Traing_Data\images\CLIP073F00649.jpg
2932 | ..\Traing_Data\images\CLIP071F00275.jpg
2933 | ..\Traing_Data\images\CLIP007422.jpg
2934 | ..\Traing_Data\images\CLIP077F01563.jpg
2935 | ..\Traing_Data\images\CLIP009779.jpg
2936 | ..\Traing_Data\images\CLIP076F00316.jpg
2937 | ..\Traing_Data\images\CLIP005101.jpg
2938 | ..\Traing_Data\images\CLIP003483.jpg
2939 | ..\Traing_Data\images\CLIP008677.jpg
2940 | ..\Traing_Data\images\CLIP069F00114.jpg
2941 | ..\Traing_Data\images\2952.jpg
2942 | ..\Traing_Data\images\CLIP079F00523.jpg
2943 | ..\Traing_Data\images\CLIP073F00216.jpg
2944 | ..\Traing_Data\images\CLIP072F00759.jpg
2945 | ..\Traing_Data\images\CLIP074F00480.jpg
2946 | ..\Traing_Data\images\CLIP004719.jpg
2947 | ..\Traing_Data\images\CLIP003012.jpg
2948 | ..\Traing_Data\images\CLIP068F00014.jpg
2949 | ..\Traing_Data\images\CLIP071F00309.jpg
2950 | ..\Traing_Data\images\CLIP073F00004.jpg
2951 | ..\Traing_Data\images\CLIP069F00120.jpg
2952 | ..\Traing_Data\images\CLIP072F00690.jpg
2953 | ..\Traing_Data\images\CLIP010129.jpg
2954 | ..\Traing_Data\images\CLIP008484.jpg
2955 | ..\Traing_Data\images\CLIP069F00175.jpg
2956 | ..\Traing_Data\images\CLIP071F00173.jpg
2957 | ..\Traing_Data\images\CLIP064F00404.jpg
2958 | ..\Traing_Data\images\CLIP069F00033.jpg
2959 | ..\Traing_Data\images\CLIP004968.jpg
2960 | ..\Traing_Data\images\CLIP008447.jpg
2961 | ..\Traing_Data\images\CLIP072F00016.jpg
2962 | ..\Traing_Data\images\CLIP011164.jpg
2963 | ..\Traing_Data\images\CLIP073F00643.jpg
2964 | ..\Traing_Data\images\CLIP000133.jpg
2965 | ..\Traing_Data\images\CLIP072F00606.jpg
2966 | ..\Traing_Data\images\1914.jpg
2967 | ..\Traing_Data\images\CLIP001398.jpg
2968 | ..\Traing_Data\images\1064.jpg
2969 | ..\Traing_Data\images\CLIP011909.jpg
2970 | ..\Traing_Data\images\CLIP069F00039.jpg
2971 | ..\Traing_Data\images\CLIP000990.jpg
2972 | ..\Traing_Data\images\CLIP006785.jpg
2973 | ..\Traing_Data\images\1787.jpg
2974 | ..\Traing_Data\images\CLIP012512.jpg
2975 | ..\Traing_Data\images\CLIP001535.jpg
2976 | ..\Traing_Data\images\CLIP072F00526.jpg
2977 | ..\Traing_Data\images\CLIP079F01732.jpg
2978 | ..\Traing_Data\images\CLIP001350.jpg
2979 | ..\Traing_Data\images\CLIP069F00074.jpg
2980 | ..\Traing_Data\images\3458.jpg
2981 | ..\Traing_Data\images\CLIP077F01869.jpg
2982 | ..\Traing_Data\images\CLIP002255.jpg
2983 | ..\Traing_Data\images\CLIP078F00984.jpg
2984 | ..\Traing_Data\images\CLIP000621.jpg
2985 | ..\Traing_Data\images\CLIP009043.jpg
2986 | ..\Traing_Data\images\CLIP072F00240.jpg
2987 | ..\Traing_Data\images\CLIP005038.jpg
2988 | ..\Traing_Data\images\3465.jpg
2989 | ..\Traing_Data\images\CLIP075F00453.jpg
2990 | ..\Traing_Data\images\CLIP073F00640.jpg
2991 | ..\Traing_Data\images\CLIP069F00154.jpg
2992 | ..\Traing_Data\images\CLIP074F00463.jpg
2993 | ..\Traing_Data\images\CLIP005266.jpg
2994 | ..\Traing_Data\images\CLIP073F00885.jpg
2995 | ..\Traing_Data\images\CLIP079F00515.jpg
2996 | ..\Traing_Data\images\CLIP072F00236.jpg
2997 | ..\Traing_Data\images\3242.jpg
2998 | ..\Traing_Data\images\CLIP075F00762.jpg
2999 | ..\Traing_Data\images\CLIP073F00437.jpg
3000 | ..\Traing_Data\images\CLIP064F00032.jpg
3001 | ..\Traing_Data\images\CLIP000446.jpg
3002 | ..\Traing_Data\images\CLIP064F00047.jpg
3003 | ..\Traing_Data\images\CLIP008851.jpg
3004 | ..\Traing_Data\images\CLIP013798.jpg
3005 | ..\Traing_Data\images\CLIP001018.jpg
3006 | ..\Traing_Data\images\CLIP075F00604.jpg
3007 | ..\Traing_Data\images\CLIP067F00020.jpg
3008 | ..\Traing_Data\images\CLIP069F00133.jpg
3009 | ..\Traing_Data\images\CLIP007230.jpg
3010 | ..\Traing_Data\images\CLIP072F00238.jpg
3011 | ..\Traing_Data\images\CLIP069F00017.jpg
3012 | ..\Traing_Data\images\CLIP001451.jpg
3013 | ..\Traing_Data\images\CLIP079F00658.jpg
3014 | ..\Traing_Data\images\CLIP074F00201.jpg
3015 | ..\Traing_Data\images\CLIP004182.jpg
3016 | ..\Traing_Data\images\2982.jpg
3017 | ..\Traing_Data\images\CLIP072F00512.jpg
3018 | ..\Traing_Data\images\CLIP010979.jpg
3019 | ..\Traing_Data\images\CLIP005273.jpg
3020 | ..\Traing_Data\images\CLIP070F00032.jpg
3021 | ..\Traing_Data\images\CLIP072F00586.jpg
3022 | ..\Traing_Data\images\2553.jpg
3023 | ..\Traing_Data\images\1356.jpg
3024 | ..\Traing_Data\images\CLIP069F00113.jpg
3025 | ..\Traing_Data\images\CLIP072F00314.jpg
3026 | ..\Traing_Data\images\CLIP011896.jpg
3027 | ..\Traing_Data\images\CLIP073F00901.jpg
3028 | ..\Traing_Data\images\CLIP073F00787.jpg
3029 | ..\Traing_Data\images\CLIP077F00302.jpg
3030 | ..\Traing_Data\images\CLIP078F00002.jpg
3031 | ..\Traing_Data\images\CLIP079F00522.jpg
3032 | ..\Traing_Data\images\CLIP001928.jpg
3033 | ..\Traing_Data\images\CLIP071F00267.jpg
3034 | ..\Traing_Data\images\CLIP004920.jpg
3035 | ..\Traing_Data\images\CLIP073F00791.jpg
3036 | ..\Traing_Data\images\CLIP005804.jpg
3037 | ..\Traing_Data\images\CLIP073F00218.jpg
3038 | ..\Traing_Data\images\CLIP002724.jpg
3039 | ..\Traing_Data\images\CLIP077F01403.jpg
3040 | ..\Traing_Data\images\CLIP072F00026.jpg
3041 | ..\Traing_Data\images\CLIP006317.jpg
3042 | ..\Traing_Data\images\CLIP010253.jpg
3043 | ..\Traing_Data\images\CLIP011948.jpg
3044 | ..\Traing_Data\images\603.jpg
3045 | ..\Traing_Data\images\12.jpg
3046 | ..\Traing_Data\images\CLIP074F00265.jpg
3047 | ..\Traing_Data\images\CLIP013785.jpg
3048 | ..\Traing_Data\images\CLIP075F00669.jpg
3049 | ..\Traing_Data\images\CLIP071F00228.jpg
3050 | ..\Traing_Data\images\CLIP069F00085.jpg
3051 | ..\Traing_Data\images\CLIP075F02104.jpg
3052 | ..\Traing_Data\images\CLIP001196.jpg
3053 | ..\Traing_Data\images\2338.jpg
3054 | ..\Traing_Data\images\CLIP072F00904.jpg
3055 | ..\Traing_Data\images\CLIP006231.jpg
3056 | ..\Traing_Data\images\CLIP070F00039.jpg
3057 | ..\Traing_Data\images\CLIP072F00181.jpg
3058 | ..\Traing_Data\images\CLIP008924.jpg
3059 | ..\Traing_Data\images\CLIP075F00521.jpg
3060 | ..\Traing_Data\images\CLIP010416.jpg
3061 | ..\Traing_Data\images\CLIP006024.jpg
3062 | ..\Traing_Data\images\CLIP004697.jpg
3063 | ..\Traing_Data\images\CLIP072F00959.jpg
3064 | ..\Traing_Data\images\CLIP069F00102.jpg
3065 | ..\Traing_Data\images\CLIP071F00100.jpg
3066 | ..\Traing_Data\images\CLIP001580.jpg
3067 | ..\Traing_Data\images\CLIP072F00532.jpg
3068 | ..\Traing_Data\images\CLIP071F00304.jpg
3069 | ..\Traing_Data\images\CLIP001098.jpg
3070 | ..\Traing_Data\images\CLIP014075.jpg
3071 | ..\Traing_Data\images\CLIP073F01261.jpg
3072 | ..\Traing_Data\images\CLIP071F00284.jpg
3073 | ..\Traing_Data\images\CLIP070F00017.jpg
3074 | ..\Traing_Data\images\CLIP008608.jpg
3075 | ..\Traing_Data\images\CLIP069F00004.jpg
3076 | ..\Traing_Data\images\CLIP010077.jpg
3077 | ..\Traing_Data\images\CLIP005897.jpg
3078 | ..\Traing_Data\images\CLIP075F00530.jpg
3079 | ..\Traing_Data\images\CLIP010517.jpg
3080 | ..\Traing_Data\images\CLIP013860.jpg
3081 | ..\Traing_Data\images\CLIP064F00063.jpg
3082 | ..\Traing_Data\images\CLIP072F00329.jpg
3083 | ..\Traing_Data\images\30.jpg
3084 | ..\Traing_Data\images\CLIP000207.jpg
3085 | ..\Traing_Data\images\CLIP011849.jpg
3086 | ..\Traing_Data\images\3274.jpg
3087 | ..\Traing_Data\images\CLIP072F00263.jpg
3088 | ..\Traing_Data\images\CLIP071F00170.jpg
3089 | ..\Traing_Data\images\CLIP080F00454.jpg
3090 | ..\Traing_Data\images\CLIP006247.jpg
3091 | ..\Traing_Data\images\CLIP067F00033.jpg
3092 | ..\Traing_Data\images\CLIP072F00509.jpg
3093 | ..\Traing_Data\images\CLIP076F00285.jpg
3094 | ..\Traing_Data\images\CLIP064F00324.jpg
3095 | ..\Traing_Data\images\1706.jpg
3096 | ..\Traing_Data\images\CLIP073F00427.jpg
3097 | ..\Traing_Data\images\CLIP071F00301.jpg
3098 | ..\Traing_Data\images\CLIP071F00157.jpg
3099 | ..\Traing_Data\images\CLIP075F00048.jpg
3100 | ..\Traing_Data\images\CLIP075F00482.jpg
3101 | ..\Traing_Data\images\2600.jpg
3102 | ..\Traing_Data\images\1507.jpg
3103 | ..\Traing_Data\images\CLIP073F00068.jpg
3104 | ..\Traing_Data\images\4117.jpg
3105 | ..\Traing_Data\images\CLIP010729.jpg
3106 | ..\Traing_Data\images\CLIP012842.jpg
3107 | ..\Traing_Data\images\CLIP072F00122.jpg
3108 | ..\Traing_Data\images\CLIP077F00299.jpg
3109 | ..\Traing_Data\images\CLIP002726.jpg
3110 | ..\Traing_Data\images\CLIP064F00096.jpg
3111 | ..\Traing_Data\images\457.jpg
3112 | ..\Traing_Data\images\1182.jpg
3113 | ..\Traing_Data\images\CLIP077F01562.jpg
3114 | ..\Traing_Data\images\1773.jpg
3115 | ..\Traing_Data\images\CLIP068F00103.jpg
3116 | ..\Traing_Data\images\CLIP072F00924.jpg
3117 | ..\Traing_Data\images\CLIP075F00047.jpg
3118 | ..\Traing_Data\images\584.jpg
3119 | ..\Traing_Data\images\CLIP074F00364.jpg
3120 | ..\Traing_Data\images\CLIP072F00151.jpg
3121 | ..\Traing_Data\images\649.jpg
3122 | ..\Traing_Data\images\CLIP075F00422.jpg
3123 | ..\Traing_Data\images\CLIP072F00087.jpg
3124 | ..\Traing_Data\images\CLIP073F00804.jpg
3125 | ..\Traing_Data\images\CLIP074F00297.jpg
3126 | ..\Traing_Data\images\3643.jpg
3127 | ..\Traing_Data\images\CLIP008196.jpg
3128 | ..\Traing_Data\images\CLIP013848.jpg
3129 | ..\Traing_Data\images\CLIP010075.jpg
3130 | ..\Traing_Data\images\CLIP077F00500.jpg
3131 | ..\Traing_Data\images\2442.jpg
3132 | ..\Traing_Data\images\CLIP013247.jpg
3133 | ..\Traing_Data\images\CLIP077F00816.jpg
3134 | ..\Traing_Data\images\CLIP012839.jpg
3135 | ..\Traing_Data\images\950.jpg
3136 | ..\Traing_Data\images\CLIP072F00099.jpg
3137 | ..\Traing_Data\images\CLIP002373.jpg
3138 | ..\Traing_Data\images\CLIP075F00758.jpg
3139 | ..\Traing_Data\images\CLIP005143.jpg
3140 | ..\Traing_Data\images\CLIP074F00296.jpg
3141 | ..\Traing_Data\images\CLIP075F00748.jpg
3142 | ..\Traing_Data\images\CLIP073F00059.jpg
3143 | ..\Traing_Data\images\1827.jpg
3144 | ..\Traing_Data\images\CLIP075F00509.jpg
3145 | ..\Traing_Data\images\CLIP003927.jpg
3146 | ..\Traing_Data\images\CLIP005688.jpg
3147 | ..\Traing_Data\images\318.jpg
3148 | ..\Traing_Data\images\CLIP012278.jpg
3149 | ..\Traing_Data\images\CLIP073F00897.jpg
3150 | ..\Traing_Data\images\CLIP071F00188.jpg
3151 | ..\Traing_Data\images\CLIP070F00036.jpg
3152 | ..\Traing_Data\images\CLIP008751.jpg
3153 | ..\Traing_Data\images\CLIP071F00150.jpg
3154 | ..\Traing_Data\images\CLIP008232.jpg
3155 | ..\Traing_Data\images\CLIP000736.jpg
3156 | ..\Traing_Data\images\CLIP011726.jpg
3157 | ..\Traing_Data\images\CLIP071F00291.jpg
3158 | ..\Traing_Data\images\CLIP000100.jpg
3159 | ..\Traing_Data\images\CLIP072F00163.jpg
3160 | ..\Traing_Data\images\CLIP010646.jpg
3161 | ..\Traing_Data\images\CLIP077F00813.jpg
3162 | ..\Traing_Data\images\CLIP072F00140.jpg
3163 | ..\Traing_Data\images\CLIP006534.jpg
3164 | ..\Traing_Data\images\CLIP012057.jpg
3165 | ..\Traing_Data\images\CLIP000702.jpg
3166 | ..\Traing_Data\images\CLIP073F00654.jpg
3167 | ..\Traing_Data\images\CLIP078F00972.jpg
3168 | ..\Traing_Data\images\CLIP004538.jpg
3169 | ..\Traing_Data\images\CLIP003756.jpg
3170 | ..\Traing_Data\images\CLIP069F00110.jpg
3171 | ..\Traing_Data\images\CLIP072F00040.jpg
3172 | ..\Traing_Data\images\2913.jpg
3173 | ..\Traing_Data\images\CLIP002980.jpg
3174 | ..\Traing_Data\images\CLIP076F00536.jpg
3175 | ..\Traing_Data\images\CLIP069F00099.jpg
3176 | ..\Traing_Data\images\3128.jpg
3177 | ..\Traing_Data\images\CLIP070F00021.jpg
3178 | ..\Traing_Data\images\CLIP002061.jpg
3179 | ..\Traing_Data\images\CLIP074F00620.jpg
3180 | ..\Traing_Data\images\1786.jpg
3181 | ..\Traing_Data\images\CLIP001761.jpg
3182 | ..\Traing_Data\images\CLIP013067.jpg
3183 | ..\Traing_Data\images\2526.jpg
3184 | ..\Traing_Data\images\2123.jpg
3185 | ..\Traing_Data\images\3050.jpg
3186 | ..\Traing_Data\images\CLIP012829.jpg
3187 | ..\Traing_Data\images\728.jpg
3188 | ..\Traing_Data\images\CLIP001259.jpg
3189 | ..\Traing_Data\images\CLIP072F00956.jpg
3190 | ..\Traing_Data\images\CLIP075F00449.jpg
3191 | ..\Traing_Data\images\CLIP072F00036.jpg
3192 | ..\Traing_Data\images\CLIP011819.jpg
3193 | ..\Traing_Data\images\CLIP007370.jpg
3194 | ..\Traing_Data\images\2527.jpg
3195 | ..\Traing_Data\images\CLIP064F00355.jpg
3196 | ..\Traing_Data\images\CLIP070F00074.jpg
3197 | ..\Traing_Data\images\CLIP075F00459.jpg
3198 | ..\Traing_Data\images\CLIP072F00699.jpg
3199 | ..\Traing_Data\images\CLIP074F00353.jpg
3200 | ..\Traing_Data\images\785.jpg
3201 | ..\Traing_Data\images\CLIP064F00138.jpg
3202 | ..\Traing_Data\images\CLIP069F00177.jpg
3203 | ..\Traing_Data\images\CLIP079F00454.jpg
3204 | ..\Traing_Data\images\CLIP011910.jpg
3205 | ..\Traing_Data\images\CLIP072F00917.jpg
3206 | ..\Traing_Data\images\CLIP075F00370.jpg
3207 | ..\Traing_Data\images\1585.jpg
3208 | ..\Traing_Data\images\CLIP007557.jpg
3209 | ..\Traing_Data\images\CLIP006133.jpg
3210 | ..\Traing_Data\images\CLIP012642.jpg
3211 | ..\Traing_Data\images\CLIP010246.jpg
3212 | ..\Traing_Data\images\CLIP064F00399.jpg
3213 | ..\Traing_Data\images\CLIP073F00972.jpg
3214 | ..\Traing_Data\images\CLIP012652.jpg
3215 | ..\Traing_Data\images\587.jpg
3216 | ..\Traing_Data\images\CLIP079F00070.jpg
3217 | ..\Traing_Data\images\CLIP003060.jpg
3218 | ..\Traing_Data\images\CLIP008869.jpg
3219 | ..\Traing_Data\images\CLIP070F00063.jpg
3220 | ..\Traing_Data\images\1697.jpg
3221 | ..\Traing_Data\images\CLIP012881.jpg
3222 | ..\Traing_Data\images\CLIP011224.jpg
3223 | ..\Traing_Data\images\CLIP007973.jpg
3224 | ..\Traing_Data\images\CLIP067F00022.jpg
3225 | ..\Traing_Data\images\CLIP073F00002.jpg
3226 | ..\Traing_Data\images\CLIP075F00528.jpg
3227 | ..\Traing_Data\images\CLIP012894.jpg
3228 | ..\Traing_Data\images\1030.jpg
3229 | ..\Traing_Data\images\CLIP072F00499.jpg
3230 | ..\Traing_Data\images\CLIP077F00477.jpg
3231 | ..\Traing_Data\images\CLIP004602.jpg
3232 | ..\Traing_Data\images\CLIP069F00172.jpg
3233 | ..\Traing_Data\images\CLIP001111.jpg
3234 | ..\Traing_Data\images\CLIP073F00422.jpg
3235 | ..\Traing_Data\images\CLIP005426.jpg
3236 | ..\Traing_Data\images\CLIP064F00125.jpg
3237 | ..\Traing_Data\images\CLIP073F00001.jpg
3238 | ..\Traing_Data\images\CLIP072F00100.jpg
3239 | ..\Traing_Data\images\CLIP006125.jpg
3240 | ..\Traing_Data\images\269.jpg
3241 | ..\Traing_Data\images\CLIP009605.jpg
3242 | ..\Traing_Data\images\CLIP013121.jpg
3243 | ..\Traing_Data\images\CLIP004297.jpg
3244 | ..\Traing_Data\images\CLIP012220.jpg
3245 | ..\Traing_Data\images\CLIP076F00329.jpg
3246 | ..\Traing_Data\images\CLIP072F00548.jpg
3247 | ..\Traing_Data\images\CLIP003457.jpg
3248 | ..\Traing_Data\images\CLIP073F00887.jpg
3249 | ..\Traing_Data\images\CLIP074F00467.jpg
3250 | ..\Traing_Data\images\CLIP003529.jpg
3251 | ..\Traing_Data\images\CLIP072F00513.jpg
3252 | ..\Traing_Data\images\CLIP077F01559.jpg
3253 | ..\Traing_Data\images\CLIP074F00169.jpg
3254 | ..\Traing_Data\images\CLIP004533.jpg
3255 | ..\Traing_Data\images\CLIP071F00226.jpg
3256 | ..\Traing_Data\images\CLIP068F00039.jpg
3257 | ..\Traing_Data\images\CLIP071F00315.jpg
3258 | ..\Traing_Data\images\CLIP012538.jpg
3259 | ..\Traing_Data\images\CLIP013304.jpg
3260 | ..\Traing_Data\images\CLIP005776.jpg
3261 | ..\Traing_Data\images\CLIP071F00287.jpg
3262 | ..\Traing_Data\images\CLIP003749.jpg
3263 | ..\Traing_Data\images\2327.jpg
3264 | ..\Traing_Data\images\CLIP079F00809.jpg
3265 |
--------------------------------------------------------------------------------